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INTRODUCTION

Regional climate is influenced by a large number of
processes with complicated feedbacks. Among these
processes, the interaction between the radiation and
cloud fields plays a special role because a variety of
types of cloud cover and the high space–time variability
of cloud fields significantly influence the dynamics of
the radiative regime of the atmosphere–underlying-sur-
face system. In most of the modern models for weather
and climate forecasting, calculations of radiative char-
acteristics are based on the two- (or higher) flux
approximation of the solution of the one-dimensional
deterministic radiative transfer equation (RTE). The
assumption on the horizontal homogeneity of clouds
leads, in particular, to the phenomenon that the results
of numerical simulations agree with satellite measure-
ments only if the radiative codes use the cloud optical-
thickness values corresponding to water contents lower
than the observed water contents [1]. The difference
between calculated and measured radiative characteris-
tics can be decreased by taking into account the spatial
inhomogeneity of real cloud fields [2].

In [3], it is shown that important conclusions on the
dynamics of the radiative regime in the atmosphere–
underlying-surface system can be made from relations
between the ensemble-average statistical characteris-
tics of cloud and radiation fields. This understanding
promoted the intensive development of the statistical
approach to describing radiative transfer in clouds.
After the cloud-field model by Mullamaa and his col-
leagues [4], several stochastic models of one-layer
clouds were developed (see, e.g., [5–11]).

The applicability of a stochastic model to calcula-
tions of radiative characteristics for subgrid-scale cloud
fields is primarily due to the effectiveness and accuracy
of the calculation algorithm. At present, the indepen-
dent pixel approximation (IPA) provides the basis for
the most developed method of taking into account the
horizontal inhomogeneity of clouds [12, 13]. The
essence of this method lies in calculating radiation
fluxes by the one-dimensional deterministic RTE and
subsequent averaging of the results in accordance with
a specified probability density of the cloud optical
thickness [14, 15]. It is shown that, for several types of
stratiform clouds, such an approach to calculations of
area-average solar-radiation fluxes gives satisfactorily
accurate results [13, 14, 16–18]. IPA applicability to the
calculations of radiative characteristics for clouds of
other types is open to question; this remark relates pri-
marily to vertically developed clouds, where optical
radiative transfer is determined largely by three-dimen-
sional (3D) effects [19–21].

In the late 1970s, G.A. Titov proposed an approach
allowing an effective (in respect to computational bur-
den) and sufficiently accurate consideration for the sto-
chastic geometry of clouds in calculations of the statis-
tical characteristics of solar radiation [6]. In the models
intended for weather and climate prediction, the appli-
cability of these algorithms to the parametrization of
the radiative characteristics of mesoscale fields of bro-
ken clouds depends largely on the results of validation.
The validation can be performed on the basis of both
the models that have been validated completely or par-
tially by using realistic subgrid-scale fields [22, 23] and
complex radiation experiments (see, e.g., [24]). At the
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Abstract

 

—In this study, the validation of a stochastic model of broken clouds based on the Poisson point fluxes
is considered. As a prototype of real cloud fields, realizations obtained by the fractionally integrated cascade
model are used. To consider variations in the cloud optical thickness (

 

τ

 

) in the Poisson model, additional aver-
aging of radiative characteristics in accordance with the probability density (

 

f

 

(

 

τ

 

)

 

) is proposed. The effective
value of the aspect ratio 

 

γ

 

, which is the most important input parameter of the Poisson model, is chosen from
the condition that the mean nonscattered fluxes calculated with the Poisson and cascade models are consistent.
It is shown that, for the conditions of low or moderate cloud fractions (

 

N

 

 < 0.7) and of moderate light absorption
by water droplets (the single scattering albedo 

 

ω ≥ 

 

0.95

 

), this approach allows a more accurate calculation of
the area-average diffuse-solar-radiation fluxes than the independent pixel approximation and than the model of
horizontally homogeneous clouds.



 

714

 

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS

 

      

 

Vol. 41

 

      

 

No. 6

 

      

 

2005

 

ZHURAVLEVA, MARSHAK

 

initial stage of validation of Titov’s broken cloud model
based on Poisson point fluxes, only a small amount of
experimental data was available to us. In addition, the
available data were not combined; i.e., radiative, opti-
cal, and geometrical characteristics of clouds were not
always measured simultaneously. Nevertheless, com-
parisons of simulated statistical characteristics of
clouds and radiation with results of the corresponding
measurements have shown that the given model
describes solar radiative transfer in broken clouds ade-
quately on the whole [6].

This study is aimed at further validation of the sta-
tistically homogeneous Poisson model of broken
clouds. At this stage of investigation, the data obtained
by the fractionally integrated cascade model [25] mod-
ified in [26] were taken instead of data on real cloud and
radiation fields.

1. STOCHASTIC MODELS OF CLOUDS

 

1.1. Poisson Model

 

The one-layer Poisson model of broken clouds is
detailed in monograph [6]. Let us briefly summarize the
results relating to the statistically homogeneous cloud
model (hereafter, the Poisson model) considered in this
paper.

The Poisson model is completely determined by the
cloud fraction 

 

N

 

, cloud geometrical thickness 

 

H

 

, and
mean horizontal size of clouds 

 

D

 

; the input optical
characteristics of clouds, namely, the extinction coeffi-
cient 

 

σ

 

, single scattering albedo 

 

ω

 

, and scattering phase
function, are taken to be constant for all cloud elements
and for all realizations. If the cloud thickness 

 

H

 

 is fixed,
the parameter 

 

γ 

 

= 

 

H

 

/

 

D

 

 (the aspect ratio), which is more
instructive in characterizing the cloud-field geometrical
structure, is often used instead of the cloud diameter 

 

D

 

.
For statistically homogeneous cloud fields, a closed

system of equations is obtained for the mean intensity
and effective algorithms are developed for its solution
by the Monte Carlo method. The accuracy and applica-
bility range of these equations are estimated through
their comparison with the corresponding calculations
based on numerical simulations. This comparison have
shown that the equations for the mean intensity are suf-
ficiently accurate and can be used to study the effects of
random geometry on the radiative properties of broken
clouds. The main advantage of the method of closed
equations (CEM) is that RTE analytical averaging, per-
formed under certain assumptions on the probabilistic
characteristics of the cloud field, allows low-burden
calculations of the mean radiative characteristics of
clouds.

In [23, 27], the proposed approach is generalized for
a multilayer inhomogeneous broken-cloud model with
a multitude of input parameters that are bound to con-
tain information on the degree of correlation of clouds
lying at different atmospheric levels. The amount of
such information is extremely limited; however, the

current strong interest in the combined studies of com-
plicated cloud systems gives hope that the necessary
data will be available in the coming years.

 

1.2. Fractionally Integrated Cascade Model

 

In [25, 28], fractal models are proposed for the spa-
tial distribution of liquid-water in clouds. These models
conserve the total water amount within a cloud field.
Their advantage lies in the fact that, varying a few eas-
ily measurable input parameters, one can obtain differ-
ent distributions of liquid-water whose spatial correla-
tions correspond to the observed ones. The procedure
of constructing some fractal models generated by mul-
tiplicative cascades in a overcast sky is described
briefly in the Appendix (singular and bounded cas-
cades, fractionally integrated cascade model).

In this study, the horizontal distribution of the liq-
uid-water path (LWP) is simulated using the fraction-
ally integrated cascade model with the power spectrum

 

(1)

 

In (1), the wave number 

 

k

 

 = 

 

π

 

/

 

r

 

, the scale 

 

r

 

 (km), and
the LWP probability density correspond to marine stra-
tocumulus clouds [29–31]. The vertical optical thick-
ness of clouds 

 

τ

 

 is related to the LWP according to the
following well-known expression: 

 

τ

 

 = 3

 

LWP

 

/(2

 

ρ

 

r
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)

 

,
where 

 

r

 

eff

 

 is the effective radius of cloud droplets and 

 

ρ

 

is the water density. Therefore, if 

 

r

 

eff

 

 is fixed, one can
switch from the 

 

LWP
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 distribution to the distribu-
tion of optical thickness 
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.
At present, there is no substantiated theory of

switching from overcast skys 

 

τ

 

(

 

x

 

, 

 

y

 

)

 

 to broken clouds

 

τ

 

bc

 

(
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, 

 

y

 

)

 

. Therefore, we simulate “holes” in a cloud
layer on the basis of the approach proposed in [26]:

 

(2)

 

where 

 

a

 

 = const > 0 and 

 

b

 

 = const > 0. The limitation of
the optical thickness at a level of 

 

a

 

 > 

 

τ

 

min

 

 would lead to
a decrease in the liquid-water amount in the layer; to
avoid such a decrease, we introduce the factor 

 

b

 

. Thus,
each broken-cloud realization simulated on the basis of
the fractionally integrated cascade model (hereafter, the
cascade model) is determined by the following param-
eters:

mean optical thickness ,
parameter 

 

p

 

 characterizing variations in the optical
thickness,

exponent 

 

β

 

 in (1), and
cloud fraction 

 

N

 

 related to the parameter 

 

a

 

 by (2).
In the model version under consideration, it is

assumed that the geometrical cloud thickness is con-
stant and the extinction coefficient is independent of
height; i.e., 

 

σ

 

(

 

z

 

) = 

 

σ

 

.
The fractionally integrated cascade model was com-

pared earlier with both additive fractal models (e.g., the

E k( ) k β– .∝

τbc x,y( ) bmax τ x,y( ) a– 0,[ ],=

τ
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model of fractional Brownian motion [32]) and multipli-
cative fractal models (e.g., the model of bounded cas-
cades [33]), which are used for simulation of horizon-
tally inhomogeneous stratocumulus clouds observed
from the LANDSAT-type satellites with a high spatial
resolution. These comparisons have shown that, among
the simplest fractal models, which hold the correlation
properties of simulated cloud fields in addition to the
mean and standard deviation, the fractionally integrated
cascade model provides the most adequate description of
fluctuations in the cloud optical thickness.

 

1.2.1. Statistical characteristics of clouds

 

As a result of simulation of a multitude of cascade-
model realizations for fixed input parameters, we
obtain a set of values of the cloud fraction 

 

N

 

 and distri-
butions of the cloud optical thickness, which change
from one realization to another. Several examples of the
realizations corresponding to one 

 

a

 

 value and fixed val-
ues of 

 

,

 

 

 

p

 

, and 

 

β

 

 are given in Fig. 1. This figure and
the other figures give results corresponding to the val-
ues (unless otherwise indicated) 

 

β 

 

= 5/3,

 

 

 

p

 

 = 0.35, num-
ber of pixels 

 

N

 

pix

 

 = 2

 

9

 

, pixel size 0.1 km 

 

× 

 

0.1

 

 km, and

 

H

 

 = 1 km.
We will treat the cloud fraction as a random variable

characterized by the mean 

 

〈

 

N

 

〉

 

, standard deviation 

 

σ

 

N

 

,
and probability density fcas(N). Hereafter, angular
brackets 〈〉 indicate characteristics averaged over an
ensemble of realizations. Numerical experiments
showed that simulation of 5000 to 10000 realizations
(M = 5000–10000) are sufficient for obtainment of reli-

τ

able statistics. Figure 2 presents the cloud-amount sta-
tistical characteristics corresponding to different 〈N〉
values. Note that as 〈N〉 increases, the N variability
range increases: for example, (Nmax – Nmin) ≈ 0.04 at
〈N〉 = 0.1 and (Nmax – Nmin) ≈ 0.08 at 〈N〉 = 0.52. (Nmax
and Nmin are the maximum and minimum N values,
respectively.)

For a overcast sky, the optical-thickness probability
density averaged over a multitude of realizations can
be closely approximated by a log-normal distribution
(Fig. 3a). For broken clouds, asymmetry is increased as
a result of the occurrence of a large number of optically
thin clouds (Figs. 3b–3d). This result correlates well
with observational data [34]. The minimum and maxi-
mum cloud optical thicknesses depend on a realization;
hereafter, we use 〈τmin〉 and 〈τmax〉 values averaged over
the multitude of realizations.

Note that the probability density of the optical thick-
ness for real clouds depends on the type of clouds, the
underlying surface, the season, etc. For some types of
clouds, such as marine stratocumulus and plane cumu-
lus clouds, the probability density of the optical thick-
ness is approximated closely by a Γ-distribution:

(3)

where ν =  and the standard deviation  = 

[16].
The comparison illustrated by Figs. 3b–3d shows

that the probability densities 〈 fcas(N)〉 and fΓ(τ) are close
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Fig. 1. Examples of realizations of cloud fields in the fractionally integrated cascade model of broken clouds: a = 11.5 (〈N〉 = 0.51)
and  = 13.τ
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in value if τ ≥ (1.5–2). ( fΓ(τ) is calculated at the  and
στ values corresponding to the cascade model.) If the
distribution of optical thickness in the cascade model is
approximated on the basis of fΓ(τ), the portion of opti-

τ cally thin clouds is underestimated as 〈N〉 is decreased.
At low and moderate cloud fractions (〈N〉 ≤ 0.7), the
function 〈 fcas(N)〉 can be approximated closely by an
exponential distribution [34].
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N: (a) a = 21.0 and (b) a = 11.5.

0.08

0.04

0

0 10 20 30 40 50

Pr
ob

ab
ili

ty
 d

en
si

ty
 f(

τ)

(a) N = 1, στ = 6.02 0.08

0.04

0

0.8 1.2 1.6
log(τ)

0.08

0.04

0

0 604020 80

(b)〈N〉 = 0.88, στ = 10.8

1

2

0.08

0.04

0

0 604020 80

(d)〈N〉 = 0.1, στ = 12.4
0.08

0.04

0

0 20 40 60 80

Pr
ob

ab
ili

ty
 d

en
si

ty
 f(

τ)

(c) 〈N〉 = 0.5, στ = 12.1

Optical thickness τOptical thickness τ

Fig. 3. (1) Probability density of the optical thickness in the cascade model of clouds fcas(τ) and (2) the corresponding Γ-distribution

fΓ(τ) for different cloud fractions and  = 13.τ



IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS      Vol. 41      No. 6      2005

ON THE VALIDATION OF THE POISSON MODEL OF BROKEN CLOUDS 717

1.2.2. Statistical characteristics of radiation

First, we will discuss an efficient procedure of cal-
culating statistical characteristics of radiation (R)
averaged over a multitude of realizations in the cas-
cade model. (Hereinafter, the letter R is used to denote
the nonscattered S and diffuse Qs transmissions and
albedo A'.)

Taking into account the constructive character of the
cascade model, we can calculate the radiative charac-
teristics by using a simple albeit time-consuming pro-
cedure. This calculation procedure consists of the con-
secutive numerical simulation of random cloud-field
realizations, “exact” solution of the RTE for each of the
realizations, and statistical processing of the ensemble
of radiation fields. The solution of the RTE for cloud
realizations is time consuming because each cloud real-
ization represents a complicated inhomogeneous three-
dimensional medium; therefore, the applicability of the
approach considered above is restricted significantly.

To effectively calculate the radiative characteristics
averaged over a multitude of cloud realizations, we use
the randomization procedure, i.e., introduce an addi-
tional randomness [35, 36]. According to this approach,
the statistical characteristics of radiation can be
obtained on the basis of their random evaluation for m
independent photon trajectories chosen randomly in
each realization. An optimal number of photon trajecto-
ries is chosen on the basis of special numerical tests.
Our preliminary calculations have shown that, for the
mean-flux calculations, a rather small number of trajec-
tories (1 ≤ m ≤ 1000 depending on the input parameters
of the problem) is sufficient; meanwhile, to calculate
the variance, m ~ 104 should be used.

To simulate radiative characteristics for each of the
cloud realizations, the “method of a maximum cross
section” is used [37]. The algorithm of calculations of
radiation in the three-dimensional inhomogeneous
medium, such as a cloud realization of the cascade
model, was tested within the framework of the Interna-
tional Project “Intercomparison 3D Radiation Codes”
(http://i3rc.gsfc.nasa.gov).

Let a unit solar-radiation flux fall on the upper bound-
ary of the atmosphere in the direction W0 = (θ0, ϕ0). (θ0
and ϕ0 are the zenith and azimuth angles, respectively.) At
this stage of the study, we assume that the underlying sur-
face is a blackbody (its albedo As = 0) and neglect the
aerosol and molecular constituents of the atmosphere.
The calculations are performed using the scattering phase
function corresponding to cloud model C1 (λ = 0.69 µm)
[38]. Let us restrict ourselves to the consideration of
monochromatic radiation because the transition to the
radiative characteristics integrated over the spectrum
leads to an increase in the uncertainties caused by inaccu-
racies in the parametrizations of cloud microphysical
characteristics, in the specification of the atmospheric gas
model and the spectroscopic information, etc.

The cloud-field areas were equal to (51.2 × 51.2) km2.
According to the classification of the space–time scales
of atmospheric phenomena, such fields correspond to a
mesoscale of 20–200 km (a cluster of clouds) [39]. The
application of the cascade model to a simulation of the
horizontal distribution of liquid-water in large-scale
cloud fields is unreasonable because no LWP correla-
tions occur on scales exceeding 50 km [31]. Boundary
conditions in horizontal directions were assumed to be
periodic.

The stochasticity of radiation fields follows from the
stochastic nature of clouds. In [40], by an example of
rather small cloud fields (6.4 km × 6.4 km) it was shown
that the nonscattered radiation S at the surface in differ-
ent realizations may vary almost threefold, depending
on the parameters of the problem, and the variation
coefficient νS = 100%σS/〈S〉, where σS is the standard
deviation, can reach 50%. If the cloud field is increased
to the sizes considered in this problem (51.2 km ×
51.2 km), the variation coefficient νR = 100%σR/〈R〉 is
decreased substantially (Fig. 4). However, in this case,
the radiation fluxes calculated by the cascade model are
also sufficiently variable, thus necessitating averaging
of radiative characteristics over a multitude of realiza-
tions.

2. PROCEDURE FOR VALIDATION
OF THE BROKEN-CLOUD POISSON MODEL

Before proceeding further, we should find a reason-
able way to specify the input parameters for the Poisson
model. We were guided by the following two argu-
ments.

First, the CEM proposed by Titov [6] allows an effi-
cient computation of the characteristics averaged over
ensembles of cloud realizations 〈R〉pois if the extinction
coefficient σ is constant for all cloud elements and for
all realizations. Since the mean radiative regimes in
clouds of moderate optical thickness (τ ≥ 5) change
only slightly under small variations in σ (the derivatives

of fluxes  and  are two or three orders of mag-

nitude smaller than the derivatives of these fluxes with
respect to N and D, depending on the parameters), the
assumption that σ = const can be considered to be per-
missible under certain conditions. However, the situa-
tion changes significantly when the cloud extinction
coefficients are small; namely, the mean fluxes depend

significantly on σ and the derivative  changes its

sign at σ ≈ 2–3 km–1 (H = 1 km) (see Fig. 5). These fea-
tures should be taken into account because the optical
thickness (i.e., the extinction coefficient at a constant
geometricalthickness H) of real clouds can vary in a
wide range.

To take into account variations in the cloud optical
thickness, we average the function 〈R(τ, γ, N, θ0)〉pois

∂Qs

∂σ
--------- ∂A

∂σ
------

∂Qs

∂σ
---------
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over τ, while assuming that the probability density f(τ)
is known:

(4)

The symbol 〉R〈pois denotes the radiative characteristics
averaged over the multitude of cloud realizations corre-

〉R γ N θ0, ,( )〈pois

=  〈R τ γ N θ0, , ,( )〉pois f τ( ) τ, Rd

0

∞

∫ S A Qs., ,=

sponding to τ = const and over the multitude of the pos-
sible values of optical thickness. For f(τ), we use below
the function 〈 fcas(τ)〉 averaged over the multitude of
realizations of the cascade model. According to the
results presented in Section 1.2.1, the Γ-distribution
written with the parameters corresponding to the  and
στ can be apparently used for averaging (4) if no infor-
mation on the probability density f(τ) is available. The
estimates of the errors caused by such an approxima-
tion require additional studies and are not considered in
this paper.

Second, the parameter γ is the most important input
parameter for the Poisson model. For its specifications,
it is necessary to have information on the vertical thick-
ness H and mean horizontal sizes D of clouds. The best
but extremely complicated procedure of the combined
estimation of the sizes of clouds H and D lies in con-
ducting complex experiments. If the determination of
the probability densities for the cloud sizes f(D) and
f(H) is problematic for some reason, the cloud geomet-
rical characteristics for other (preferably, similar)
regions and atmospheric conditions can be used as a
first approximation.

Information from monitoring stations, aircraft, and
satellites about the heights of the upper and lower cloud
boundaries is generalized and published in a number of
papers (see, e.g., [39]). Note that passive satellite mea-
surements (Moderate Resolution Imaging Spectroradi-
ometer, MODIS, and Advanced Very High Resolution
Radiometer, AVHRR) determine the upper cloud
boundary only. The use of the THOR (Thickness from

τ
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Offbeam Returns) lidar offers prospects for retrieving
the cloud geometrical thicknesses [41].

The amount of experimental data on f(D) is rather
large [39, 42–44]. It is shown in [45] that the probabil-
ity density for the horizontal sizes of cumulus clouds
over the Florida region decreases exponentially as D
increases. According to radiometric measurements per-
formed by the LANDSAT over southern California, the
D distribution for twelve types of stratocumulus cloud
fields can be approximated by the function f(D) ~ D–α,
where 1 < α < 3 [46]. The horizontal sizes of clouds can
also be obtained as a result of analysis of the MODIS
data [47] and (after launching the CLOUDSAT) of the
CLOUDSAT radar data [48].

We emphasize that such a climatological approach
to the choice of the parameter γ can initiate errors in the
process of Poisson-model validation because data on
the vertical and horizontal sizes of clouds vary signifi-
cantly for different regions, seasons, cloud types, etc.

On the basis of the above remarks, we propose to
preset the Poisson model input parameters, taking the
cloud fraction N to be equal to 〈N〉 and choosing the
parameter γ such that, at N = 〈N〉, the mean nonscattered
radiation in the Poisson model 〉S(γ, N, θ0)〈pois is equal
to the nonscattered radiation averaged over a multitude
of cloud realizations of the cascade model; i.e.,

(5)

The effective value of the parameter γ determined in
this manner can differ from its physical value γ = H/D.
The correspondence between these values is of doubt-
less interest; however, it is not considered in this study.

To conclude this section, we will discuss the mean
nonscattered-radiation sensitivity in the Poisson model
to γ variations. Calculations show (Fig. 6) that the
dependence of 〈S〉pois on γ0 becomes stronger as the
solar zenith angle increases; moreover, even for moder-
ate optical thickness values (τ = 13), the mean nonscat-

〉S γ N θ0, ,( )〈pois 〈S N θ0,( )〉.=

tered radiation decreases significantly: 〈S〉pois ≤ 0.02 at
γ ≥ 3 (θ0 = 75°). As the cloud fraction and the cloud
optical thickness increase, these regularities begin to
reveal themselves at lower θ0. In addition, we note that,
according to [6], the mean scattered-radiation fluxes
〈A〉pois and 〈Qs〉pois are most sensitive to D variations
(i.e., to γ variations at fixed H values) at N ≈ 0.2–0.5.
(According to the experimental data of [45], such
cloud-amount values are typical of good-weather
cumulus clouds.) This consideration shows that the
retrieval of the effective value of γ by (5) is possible for
the conditions when the solar zenith angle θ0 ≥ 30° and
the cloud amount N < 0.7.

3. RESULTS OF NUMERICAL SIMULATION

Below, we will compare the mean solar-radiation
fluxes simulated using the following four cloud models:

(1) The fractionally integrated cascade model, 〈R〉.
(2) The Poisson model of broken clouds, 〉R〈pois:

(6)

(3) The model of broken clouds under the assump-
tion of horizontally homogeneous (HH) clouds at the
mean optical thickness ,

(7)

where the superscripts os and cs relate to the calcula-
tions for an overcast sky and a cloudless sky, respec-
tively.

(4) The IPA modified for broken clouds,

(8)

〉R γ N θ0, ,( )〈pois

=  〈R τ γ N θ0, , ,( )〉pois〈 f cas τ( )〉 τ.d

〈τ〉min

〈τ〉max

∫

τ

RHH NRcc τ( ) 1 N–( )Rcs,+=

RIPA NRIPA
cc 1 N–( )Rcs,+=
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Fig. 6. Mean fluxes of nonscattered radiation 〈S〉pois vs. the parameter γ at different optical thicknesses τ: (a) θ0 = 30° and (b) θ0 =
75°. The cloud fraction N = 0.3.
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where

(9)

The calculations are performed with the input
parameters varied in a wide range: β = 4/3 or 5/3 (see
[31]); cloud amount N = 0.1, 0.3, or 0.5; cloud geomet-
ric thickness H = 0.5 or 1 km; mean cloud optical thick-
ness  = 6, 13, or 26; and cloud single scattering albedo
ω = 0.95, 0.99, or 1.00. For most of the events, the
parameter p is taken to be 0.35. The solar zenith angle
varied in the range 0° ≤ θ0 ≤ 75°.

The differences between the radiative characteris-
tics obtained for each of the above models and for the

RIPA
cc Rcc τ( )〈 f cas τ( )〉 τ.d

〈τ〉min

〈τ〉max

∫=

τ

cascade model (which is regarded as the reference
model) are characterized by the relative error

(10)

where the subscript mod corresponds to the IPA, Pois-
son model, or HH model.

3.1. Independent Pixel Approximation, Cascade 
Model, and Horizontally Homogeneous Model
In the range of the aforementioned input parameters,

the relations between the albedo values for the IPA, cas-
cade model, and HH model depend on the solar zenith
angle. For 0° ≤ θ0 ≤ 30°, the inequality

(10a)

is fulfilled and the relative difference δHH(A) is about
−25% (Fig. 7a). As the solar zenith angle increases fur-
ther, the sign in the inequality between 〈A〉 and AIPA
changes at θ0 = 60° and the difference between them
increases:

(10b)

At θ0 = 75°, the maximum mean albedo is obtained for
the cascade model:

(10c)

At N = 0.5, δIPA(A) is about 15% for θ0 = 75°. Note that
these estimates are obtained for  = 13; a decrease in
the cloud optical thickness can reduce 3D effects (see
also [21]).

In the case of conservative scattering, the relations
for the transmission T = 1 – A = Qs + S follow from
inequality (10). Let us consider the degree of agreement
between the nonscattered and diffuse components of
the downward radiation in these models.

The nonscattered fluxes in the IPA and HH model
have a weak sensitivity to variations in the solar zenith
angle, unlike those in the cascade model (Fig. 7b). The
difference between 〈S〉 and SIPA (and SHH, having a sim-
ilar value) increases with θ0, and δIPA(S) is about –65%
at θ0 = 75°. The diffuse transmission Qs, IPA depends
more strongly on the solar zenith angle in comparison
with 〈Qs〉 and, at θ0 = 75°, δIPA(Qs) reaches 45–55%,
increasing as N and ω decrease (Fig. 7c). The HH cloud
model leads to an even lower accuracy of the calculated
Qs values.

These differences are so significant because the IPA
and the HH model are based on the solution of a one-
dimensional deterministic RTE and, unlike the cascade
model, do not take into account 3D effects of clouds.
The causes determining the relations between 〈A〉 and
AIPA are detailed in [49]. At high solar zenith angles, the
photons entering a cloud layer through its side bound-
aries (the cascade model) make an additional contribu-
tion to the transmission as compared to the photons

δmod R( )
=  100% 〈R〉 〈R〉mod–( )/〈R〉, R S A Qs,, ,=

AHH AIPA 〈A〉≥>

AHH 〈A〉 AIPA.> >

〈A〉 AHH AIPA.> >

τ
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Fig. 7. Radiation fluxes calculated in the IPA and in the cas-
cade, Poisson, and HH models of clouds at 〈N〉 = 0.51,  =
13, and στ = 12.1.

τ
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entering there through the upper boundary: 〈Qs〉 > Qs, IPA
(Fig. 7c) and AIPA ≥ 〈A〉. As the solar zenith angle
increases, the portion of reflected radiation consisting
of photons entering the cloud through its side bound-
aries increases, the sign of the inequality changes to the
opposite: AIPA ≤ 〈A〉. Note that AHH > AIPA always
because the function A(τ) is convex.

The influence of the 3D-effects on the solar radiative
transfer through broken clouds was discussed earlier in
a number of works (see, e.g., [18, 21, 26]).

3.2. Cascade and Poisson Models

An analysis of the calculated results shows that the
relative difference between the mean diffuse fluxes
obtained on the basis of the cascade and Poisson mod-
els is no greater than 1–3% in most cases. It is impor-
tant that, at fixed , στ, N, H, and θ0, the parameter γ
chosen on the basis of relation (5) can be used in calcu-
lating 〉A〈pois and 〉Qs〈pois not only in the case of conser-
vative scattering but also in the presence of a moder-
ate absorption of radiation by cloud drops (ω ≥ 0.95)
(Fig. 7). At small solar zenith angles (θ0 = 30°), as the
cloud amount decreases to N = 0.1, the mean cloud
albedo decreases in both models and the error δpois(A)
may increase to about 5–7%. As the solar zenith angle
θ0 and  increase to 75° and 26, respectively, the
δpois(Qs) value increases and can reach 10–20% depend-
ing on ω.

The mean radiative characteristics calculated on the
basis of the Poisson model are in significantly better
agreement with the results of the cascade model than
the results of calculations in the IPA and HH approxi-
mation. This finding can be explained by the use of the
CEM, which allows an accurate consideration for the
effects caused by the random geometry of clouds (for
details, see [6]).

The efficiency of the algorithm for mean-flux calcu-
lations in the Poisson model is significantly higher than
in the cascade model. For example, at  = 13 and θ0 =
60°, the ratio of computer times necessary for 〈R〉 and
〉R〈pois calculations with the same relative error is
greater than 100.

The computational burden for the cascade model is
caused mainly by the necessity of simulation of cloud
realizations and by the use of the maximum cross-sec-
tion method for simulation of photon trajectories [37].

3.3. Dependence of the Parameter g 
on the Solar Zenith Angle

In Section 3.2., the effective value of γ was obtained
by us for each specific set of parameters N, H, θ0, , and
στ. Let the parameters of the cloud field be insignifi-
cantly varied in a time interval within which variations

in the solar zenith angle  ≤ θ0(t) ≤  can be sub-

τ

τ

τ

τ

θ0
min θ0

max

stantial. In view of the stable state of clouds, it is logical
to expect that, at constant N, H, , and στ, there is a
range of γ variations such that any value from the inter-
val γmin ≤ γ ≤ γmax can be used to calculate the diffuse
radiation with a reasonable accuracy at any solar zenith

angle ( , ). To test this assumption, we use the
following approach.

Let us fix the values of N, H, , and στ and calculate
the Poisson model parameter γ(θ0) from (5) for the
range of zenith angles 30° ≤ θ0 ≤ 75°. The range of γ(θ0)
variability depends on the input parameters: for exam-
ple, at  = 13, στ = 12.1, and H = 1 km, it is within the
limits 0.32 ≤ γ(θ0) ≤ 0.41 (2.45 km ≤ D ≤ 3.13 km) for
N = 0.5 and 0.53 ≤ γ(θ0) ≤ 0.79 (1.27 km ≤ D ≤ 1.88 km)
for N = 0.1.

Let the permissible variability of the mean nonscat-
tered radiation be no more than ∆S. (In the subsequent
calculations, we will assume that the corresponding rel-
ative difference δS = 100% × ∆S/〉S〈pois is equal to 5%
for the entire set of parameters.) For each θ0, we choose
γmin(θ0) and γmax(θ0) such that

(11)

Figure 8a presents the functions γmin(θ0) and γmax(θ0) for
the solar zenith angles 30° < θ0 ≤ 75°. It is evident that
there is an interval of γ values γmin ≤ γ ≤ γmax appropriate
for all angles θ0 under consideration. (The correspond-
ing region is shaded in the figure.) This region corre-
sponds to the interval of γ(θ0) variation for the maxi-
mum solar zenith angle θ0 = 75°. For the input parame-
ters indicated in the caption of Fig. 8, this interval is
0.29 ≤ γ ≤ 0.35 (2.83 km ≤ D ≤ 3.48 km). According to
the Poisson model, the mean nonscattered fluxes
depend only slightly on θ0 near the zenith . Therefore,
it is believed that the interval (γmin, γmax) can be
extended to a wider range of variation 0° ≤ θ0 ≤ 75°. It
is necessary to take into account that the interval (γmin,
γmax) depends on the cloud amount and on the statistical
characteristics of τ.

Let us calculate the mean radiation fluxes by the
Poisson model of broken clouds, 〉R(γmin)〈pois and
〉R(γmax)〈pois, where R = S, A, or Qs. An analysis of these
results shows that the relative difference between the
mean nonscattered fluxes 〈S〉 and 〉S(γ)〈pois and albedo
〈A〉 and 〉A(γ)〈pois does not exceed 5% and the relative
difference between the corresponding diffuse transmis-
sions does not exceed 10% at any angles 0° ≤ θ0 ≤ 75°
for γmin ≤ γ ≤ γmax. This difference can increase some-
what when the mean diffuse fluxes decrease. For exam-
ple, as N decreases, the albedo differences increase to
10% and, as  increases and ω decreases, the diffuse-
transmission differences can increase to 20%. However,
in this case as well, the mean radiative characteristics

τ

θ0
min θ0

max

τ

τ

〉S γ min θ0( ),θ0( )〈pois 〉S γ θ0( ),θ0( )〈pois ∆S θ0( ),+=

〉S γ max θ0( ),θ0( )〈pois 〉S γ θ0( ),θ0( )〈pois ∆S θ0( )– .=
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obtained in the Poisson model are in better agreement
with the cascade model than those obtained in the IPA
and in the HH models.

Thus, the effective γ values chosen in the interval
γmin ≤ γ ≤ γmax provide a reasonable accuracy of calcu-
lated diffuse fluxes for a wide range of solar zenith
angles. This result testifies that the approach used by us
for calculation of the effective γ values characterizes
the geometric structure of cloud fields correctly on the
whole.

CONCLUSIONS

This study concerns the problem of validation of the
statistically homogeneous Poisson model of clouds and
represents the continuation of the studies started in [6].
As the prototype of subgrid-scale real cloud fields, we
used realizations of the fractionally integrated cascade
model of broken clouds. A comparative analysis was
performed on the basis of a new approach to the choice
of input parameters for the Poisson model. This
approach includes

(1) consideration for variations in the cloud optical
thickness by averaging in accordance with the probabil-
ity density 〈 fcas(τ)〉 and

(2) fitting of the effective γ value such that the cas-
cade and Poisson models lead to identical fluxes of non-
scattered radiation. (The following conditions should
also be fulfilled: N < 0.7 and θ0 ≥ 30°.)

The results of numerical simulation have shown that
our approach provides an agreement within 1–3% of
the mean diffuse fluxes in a wide range of input param-
eters. The disagreement increases somewhat as the
mean fluxes decrease; in particular, an increase in 
leads to an increase in δpois(Qs) to 10–20% depending
on ω. It is important that the same γ values can be used
for calculations in the case of conservative scattering
and in the presence of moderate absorption by liquid
drops (ω ≥ 0.95). Moreover, if the optical characteristics
and the geometric cloud thickness are fixed, there is a
range γmin ≤ γ ≤ γmax such that, in most cases, the error of
mean-flux calculations is no greater than 5 to 10% for
all solar zenith angles 0° ≤ θ0 ≤ 75°.

Thus, the Poisson cloud model shows promise for
use in calculations of radiative characteristics of sub-
grid-scale cloud fields owing to its following advan-
tages:

(1) The computational burden is two or more orders
of magnitude lower than that characteristic of the cas-
cade model.

(2) The calculations of area-averaged radiation
fluxes are more accurate than those provided by the IPA
and the HH cloud models because the Poisson cloud
model allows consideration for the effects caused by
the random geometry of clouds.

The results obtained by us can be useful for compar-
ison of area-averaged scattered fluxes with the data of
field measurements: when measured data on the struc-
ture of real cloud fields are deficient, the effective value
of γ can be calculated from measurements of nonscat-
tered radiation. The problem of how much would this
value be in agreement with the physical value γ = H/D
is the subject of further investigations. Its solution is
related to the accumulation and use of the data of satel-
lite and ground-based measurements carried out, in par-
ticular, at the sites of the Atmospheric Radiation Mea-
surement (ARM) Program.

ACKNOWLEDGMENTS

This work was supported in part by the DOE’s ARM
Program, project no. DE-A-105-90ER61069 and con-
tract no. 5012; by the Russian Foundation for Basic
Research, project no. 03-05-64655a; and INTAS
project no. 01-0239.

APPENDIX

As is shown in [31, 50, 51], the liquid water distri-
bution in marine stratocumulus clouds (Sc) is character-
ized by the power-law spectral density E(k) ∝ k–β (k =
π/r is the wave number and r is the scale, km) for spatial
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models are calculated for γmin and γmax at ω = 0.99 and at all
other parameters as in Fig. 7. In the cascade model, variations
in the mean fluxes are 5% for S and A and 10 % for Qs.
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scales varying within at least three orders of magnitude.
This implies that stochastic models used for simulation
of LWP fluctuations are bound to be spatially invariant.

Below, the simplest one-dimensional case is consid-
ered to show how a multiplicative cascade model satis-
fying the condition of spatial invariance is constructed
[13, 31]. Let us consider a plane-parallel homogeneous
layer of finite length L. We divide this layer into two
segments, and a liquid-water portion f1 is transported
from one segment to the other in a random direction.
This operation is analogous to the multiplication of the
initially specified uniform probability density of the

LWP by  = 1 ± f1. At the next step, we divide each
of these segments into two and transport a liquid-water
portion f2 from one quarter of the cloud layer to the
neighboring one in a direction chosen randomly and
independently. Then, we repeat such a procedure with a
smaller segment of the smaller size ri + 1, where ri + 1 =
L/2i. This segment contains a liquid-water portion fi (i =
3, 4, …). As a result, the initial plane-parallel layer will
be divided into pixels uniform in size but with different
LWPs.

Singular Cascades

We parameterize the multiplicative weights:

(A.1)

At any i, the probability that the sign of the fi increment
is positive or negative is 50%. Such a parametrization

W1
±( )

Wi
±( ) 1 f i± 1 1 2 p–( )±

2 p

2 1 p–( )⎩ ⎭
⎨ ⎬
⎧ ⎫

,= = =

0 p
1
2
---, i≤ ≤ 1 2 …., ,=

leads to a singular multifractal model, which is termed
a p-model [52]: the parameter p controls the mass
(energy) ε redistributed at each step. The p-model
(Fig. 9) is spatially invariant and has the wave-number
spectrum

where the exponent is determined by the relation

For real cloud fields, the exponent β > 1. Therefore, to
simulate LWP fluctuations within continuous cloud
layers, the problem of p-model transformation should
be solved.

Limited Cascades

The easiest way to obtain β > 1 lies in reducing vari-
ations in multiplicative weights (A.1) at each step.
Choosing

we obtain “limited” cascade models [13]. The point
α = 0 is singular and corresponds to a singular model.
The variability range for the exponent β corresponding
to the new field ϕ transforms into the interval

independently of p. Figure 10a presents the realization
corresponding to 14 steps of the limited cascade
ϕ-model with α = 1/3 and p = 0.375.

Fractional Integration

Another way of transforming singular cascades with
βε < 1 into more realistic cascades with βϕ > 1 lies in fil-
tering in the Fourier space [25]

(A.2)

This operation, also known as the fractional integration,
involves convolution with a weakly singular kernel.
Varying the α* value, we can switch from the field with
βε < 1 to the field in which βϕ is equal to the preset value

(A.3)

An example of realization of the fractionally integrated
cascade ϕ-model is presented in Fig. 10b for p = 0.375
(βε(p) = 0.91) and α* = 0.38 (βϕ(p, α*) = 5/3). The model
obtained on the basis of relation (A.2a) is referred to as
the fractionally integrated cascade model. It can be
used for description of the liquid water distribution in
continuous cloud layers.
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Fig. 9. Multiplicative cascade p-model: p = 0.375, βε =

0.91,  = 1, and the number of pixels Npix = 212.ε
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Switching from a one-dimensional case to a two-
dimensional cascade model is detailed in [53].
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