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The Impact of Subsampling on MODIS Level-3
Statistics of Cloud Optical Thickness

and Effective Radius
Lazaros Oreopoulos

Abstract—The Moderate Resolution Imaging Spectrora-
diometer (MODIS) Level-3 optical thickness and effective radius
cloud product is a gridded 1 1 dataset that is derived from
aggregation and subsampling of every fifth pixel, along both
spatial directions, of Level-2 orbital swath data (Level-2 granules).
The present study examines the impact of this subsampling on the
mean, standard deviation, and inhomogeneity parameter statistics
of optical thickness and effective radius. The methodology is
simple and consists of estimating mean errors for a large collection
of Terra and Aqua Level-2 granules by taking the difference of the
statistics at the original and subsampled resolutions. It is shown
that the Level-3 subsampling does not affect the various quantities
investigated to the same degree, with second-order moments suf-
fering greater subsampling errors, as expected. Mean errors drop
dramatically when averages over a sufficient number of regions
(e.g., monthly and/or zonal averages) are taken, pointing to a
dominance of errors that are of random nature. When histograms
built from subsampled data with the same binning rules as in the
Level-3 dataset are used to reconstruct the quantities of interest,
the mean errors do not deteriorate significantly. The results in this
paper provide guidance to users of MODIS Level-3 optical thick-
ness and effective radius cloud products on the range of errors
due to subsampling they should expect and perhaps account for,
in scientific work with this dataset. In general, subsampling errors
should not be a serious concern when moderate temporal (e.g.,
monthly) and/or spatial (e.g., zonal) averaging is performed.

Index Terms—Aqua, clouds, effective radius, inhomogeneous
media, optical thickness, remote sensing, sampling methods,
satellite applications, Terra.

I. INTRODUCTION

I N ORDER to study the global distribution of cloud proper-
ties and the main features of their monthly, seasonal, and di-

urnal evolution, in other words, in order to examine cloud clima-
tology, a gridded set of spatially averaged cloud retrievals would
be the most convenient. Such a product is provided for the Mod-
erate Resolution Imaging Spectrometer (MODIS) instrument
aboard the Earth Observing System (EOS) Terra and Aqua plat-
forms as Level-3 MOD08 (Terra) and MYD08 (Aqua) datasets
[1]. There are actually three Level-3 MODIS cloud products
available for each platform. Statistics are summarized over a

global grid for daily (D3), eight-day (E3), and monthly

Manuscript received June 18, 2004; revised October 29, 2004. This work was
supported by the National Aeronautics and Space Administration under Contact
NAG5-11631.

The author is with the University of Maryland Baltimore County, Baltimore,
MD 21250 USA (e-mail: lazaros@climate.gsfc.nasa.gov).

Digital Object Identifier 10.1109/TGRS.2004.841247

(M3) time scales. Each of the Level-3 products contain statis-
tics generated from the Level-2 (Orbital Swath) products. Statis-
tics for a given derived quantity or science dataset (SDS) might
include: simple (mean, minimum, maximum, standard devia-
tion) statistics; parameters of normal and lognormal distribu-
tions; fraction of pixels that satisfy some condition (e.g., cloudy,
clear); histograms of the quantity within each gridpoint; his-
tograms of the confidence placed in the retrieved quantity; his-
tograms and/or regressions derived from comparing one science
parameter to another; statistics computed for a subset that satis-
fies some condition [1]. All these statistics are computed by sub-
sampling pixel-level values of 1-km nadir resolution every fifth
pixel, along both spatial directions, since the geolocation in-
ternal to the MOD06 (Level-2) cloud product is 5 km [1]. Thus,
cloud optical thickness or effective radius statistics for an over-
cast gridpoint around the equator that contains pixels ob-
served at near-nadir view angles come from about pixels
instead of the 1-km pixels that are originally contained
within the gridpoint. The subject of this study is to examine
whether the process of subsampling has distorting effects on
several Level-3 SDSs and other quantities of interest derived
from them. This is obviously an important issue for current and
future users of the Level-3 cloud dataset who intend to compare
MODIS cloud climatologies with those from other sources.

The outline of the paper is as follows. First, Section II presents
the dataset used to examine the subsampling effects, the SDSs,
and other quantities of interest, and discusses the methodology
for analyzing the subsampling errors. In Section III, results for
optical thickness errors are presented, while Section IV is de-
voted to effective radius errors. Section V examines whether
the findings in Sections III and IV are affected when the quan-
tities of interest are derived from histograms built following
Level-3 binning rules for optical thickness and effective radius.
The final section consists of an overview discussion on our find-
ings and their implications for users of MODIS Level-3 cloud
climatologies.

II. DATASET AND METHODOLOGY

The dataset consists of 300 Level-2 granules, each made of
2030 pixels along track and 1354 pixels across track, obtained
for various post-2000 November months for both Terra (200
granules) and Aqua (100 granules). The granules are largely
confined within 20 N to 60 N (with most granule centers
falling within 20 N and 50 N), but cover the full meridional
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range. They contain a wide variety of cloud types of different
phase, cloud fraction, thickness, and degree of inhomogeneity.
For those pixels identified as cloudy from the cloud masking
algorithm [2], the cloud phase is determined (“liquid,” “ice,”
“undetermined”), and subsequently, cloud optical thickness ,
and cloud effective radius (ratio of the third to the second
moment of the cloud particle radius distribution) are retrieved
(among others) [3]. The retrievals used here come from the
0.65- m (over land) and 0.86- m (over ocean) bands that are
the most sensitive to changes in cloud optical thickness, in
conjunction with the 2.1- m band, which is most sensitive
to changes in cloud particle size [3]. The resolution of these
retrievals (pixel size) is 1 km for near-nadir observations, but
decreases gradually (pixel size increases) with view angle [4].
In this study, the pixel-by-pixel phase determination will be
largely ignored, since it is not an essential factor in subsam-
pling error estimates, as will become evident later. The only
instance where phase enters the discussion is in Section V
where, due to different histogram binning rules for the two
phases, all cloudy pixels are assumed to be of one or the other
phase.

In the Level-3 dataset, the statistics of each gridpoint
(near the equator) are derived by subsampling and aggregating
every fifth of approximately 110 110 pixels near-nadir (1-km
resolution). However, the available number of pixels to be sub-
sampled approximately decreases with the cosine of latitude as
one moves poleward. For example, at , each grid-
point is made of 1-km pixels. At the same time, for ob-
servations close to the edge of the orbital swath, where pixel
expansion occurs, fewer pixels are needed to cover a
geographic area (an effect somewhat compensated by accompa-
nying pixel overlap [4]). Thus, the number of pixels used to con-
struct the Level-3 statistics can potentially become quite small,
especially when only a fraction of the gridpoint is cloudy (as is
often the case). The impact of the varying number of pixels used
to construct Level-3 statistics has to be, therefore, taken into ac-
count in the analysis.

The approach used in this work is the following. The gran-
ules are divided into pixel
regions (i.e., eight regions sizes). Since one of the main goals
is to examine the effects of subsampling on the cloud optical
thickness inhomogeneity climatology presented in the paper by
Oreopoulos and Cahalan [5], only regions with cloud fraction
(fraction of pixels with nonzero optical thickness) greater than
0.1 are considered, as in their work. For each of these regions
(e.g., regions of 110 110 pixels), and for the optical
thickness part of the analysis, cloud fraction (CF), spatial mean
of optical thickness , standard deviation of optical thickness

, and the inhomogeneity parameters

(1a)

(1b)

(1c)

are calculated. In (1b), . The first two equations
provide two different ways to estimate the shape parameter of a
gamma distribution, which has been found to describe well the
observed distributions of cloud optical thickness [6], [7]. The
first equation is for the method of moments (MOM), and the
second is an empirical approximation for the maximum-likeli-
hood estimate (MLE) method, which gives a shape parameter
less sensitive to outliers [8]. The third equation is the definition
of the inhomogeneity parameter of Cahalan et al. [9], which ap-
proximates the factor by which should be multiplied to recover
the mean albedo of a region. For the effective radius part of the
analysis, only the mean and standard deviation are calculated.

For both and , two methods of calculation are used:
1) all the cloudy pixels within the region are included; and
2) only every fifth pixel along both spatial directions, if it hap-
pens to be cloudy, is included. The percentage difference of
the values obtained from the above two methods gives the im-
pact of subsampling as a percentage error (positive signifies
that subsampling underestimates). Cloud phase is ignored in
this procedure, so the means and standard deviations obtained
closely correspond to their counterpart SDSs for “combined op-
tical thickness” and “combined effective radius” in the Level-3
MODIS products.

The analysis shown in the following also accounts for the
fact that, at most times, we are not interested in the error of a
single region, but in the error of an ensemble of regions. For
example, in the work by Oreopoulos and Cahalan [5], the au-
thors are interested in the climatology of and , i.e., monthly,
zonal, and global averages of these quantities. The mean error
of an ensemble of 30 regions can then be thought of as the mean
monthly sampling error for a single gridpoint. Simi-
larly, the error for an ensemble of 90 regions can be thought
of as the mean seasonal sampling error of a single gridpoint, the
error of an ensemble of 360 regions as the mean annual sampling
error of a single gridpoint or the daily error of a latitude zone,
and the error for an ensemble of 10 000 regions as
the mean monthly subsampling error of a latitude zone. To ex-
amine these “climatological” errors, 1000 ensembles of regions
are constructed with each ensemble resulting from assembling
in a random fashion, a prespecified number of regions (1, 30,
90, 360, 10 000) for each of the eight region sizes, so that 5000
ensembles correspond to each region size, i.e., 1000 consisting
of 1 region, 1000 consisting of 30 regions, etc. The distribu-
tion of errors for these 40 000 ensembles can then be examined.
The random fashion with which the ensembles are built also en-
sures that regions observed under a variety of viewing angles are
combined, thus crudely simulating the fact that over a period of
time, each gridpoint contains pixels viewed under a wide
range of scan angles (a similar argument applies for gridpoints
that make up a latitude zone). Still, it is not clear that pixel ex-
pansion at large view angles systematically increases the sub-
sampling errors. Indeed, regions consisting of the same number
of pixels, but viewed at near-nadir and the largest view angles
(i.e., larger regions at the edges of the swath) did not exhibit
substantially different subsampling errors in test comparisons.
This may be because pixel expansion with view angle is accom-
panied by simultaneous pixel overlap [4], which tends to reduce
subsampling effects.
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Fig. 1. Subsampling error in the mean and standard deviation of optical
thickness (both in percent) for each 110� 110 pixel region of our dataset. The
numbers in the corners are the percentage of regions with errors falling into the
respective quadrants. Note that there were few regions whose errors fell outside
the axis limits (�50%) of this plot.

III. OPTICAL THICKNESS ERRORS

Fig. 1 shows subsampling errors (in percent, with the very
few falling outside the % range excluded) of and for
all regions of our dataset. Errors for indi-
vidual regions are often quite large, although the greatest con-
centration of points is within the % error bounds. There is
about the same number of regions with positive and negative
errors in , and the same applies for . This is a good indi-
cation of the random nature of these errors. For most regions
( %, upper right and lower left quadrants), overestimates
in by subsampling are accompanied by overestimates in
and vice-versa, but the number of regions where the error is of
opposite sign is still substantial. Fig. 2(a) shows a similar graph,
but this time for CF and . The errors in this case are generally
smaller with the densest concentration of points confined within
the % error bounds. The number of regions on each quad-
rant is now distributed more evenly than in the previous figure.
Fig. 2(b) shows the percent errors in for each region as a func-
tion of the cloud fraction of the region before subsampling, and
indicates that the distribution of errors tightens around smaller
values as cloud fraction increases.

Fig. 3 shows the mean error for 110 110 pixel regions as
a function of cloud fraction. Each value was obtained by av-
eraging the errors of regions that have cloud fraction within the
predetermined 0.1-width bin. Note that the last bin has by far the
most values consistent with the well-known -shape behavior
of cloud fraction distributions. The dramatic effect of averaging
a large number of random errors is in clear view: the mean er-
rors of ensembles of regions and above are very small,
with the exception of at small cloud fractions. The larger
impact of sampling on compared to the other two inho-
mogeneity parameters can be easily explained: both and
depend on first moment quantities (the linear mean and the mean

Fig. 2. (a) As in Fig. 1, but for cloud fraction and �. (b) Subsampling error of
� as a function of the actual (perfectly sampled) CF of each region.

logarithm of optical thickness, the former being simply the ratio
, and the latter being a function of the difference

), while depends on a second moment quantity
that is more sensitive to subsampling. Between and

, the latter is less affected by subsampling. There are two rea-
sons for this. First, is defined simply as the ratio of two quan-
tities, while is a more intricate function of the linear mean
and mean logarithm difference (1b) and is, therefore, subject to
greater error propagation. Second, has an upper bound of 1, by
definition, while (and, of course, ) are unbounded.
Despite the fact that regions with or greater than
40 are excluded in the analysis to eliminate contributions from
pathological cases, some residual impact remains from regions
with large , where its value can be easily affected by sub-
sampling. Thus, the unbounded nature of is responsible
for the apparent paradox that some of the most homogeneous
regions can also potentially suffer from the greatest percentage
subsampling errors for this particular parameter.
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Fig. 3. Mean error (in percent) for various statistics of optical thickness as a
function of cloud fraction. The right ordinate shows the number of 110� 110
pixel regions with cloud fraction that falls within each 0.1-width bin (regions
with cloud fractions less than 0.1 were omitted).

Fig. 4. Mean error (in percent) of (a) � and (b) � for each of the 1000
ensembles of 30 and 10 000 110� 110 pixel regions as a function of the mean
value of the ensemble obtained with perfect sampling.

Further evidence of the beneficial effects of averaging errors
over a large number of regions is shown in Fig. 4. These
percentage errors of and are for 1000 ensembles each
consisting of 30 and 10 000 regions. The size of each region in
these randomly constructed ensembles is 110 110 pixels. As
discussed in Section II, the mean error of an ensemble of 30

Fig. 5. (a) Subsampling error range (in percent) that contains 95% of the 1000
ensembles each of which is made of the number of 110� 110 pixel regions
shown in the abscissa. (b) As in (a) panel, but for 1000 ensembles of 30 regions
of the size shown in the abscissa.

regions is meant to represent typical monthly average errors of
individual gridpoints, while the mean error of an ensemble of
10 000 regions approximates typical monthly-average errors of
latitude zones. The mean error of 30-region ensembles almost
always stays within % for and within % for .
The mean errors of ensembles consisting of 10 000 regions
are much smaller than the 30-region ensembles and cluster
within a very small range of values. This clustering is not
unexpected since each of the 10 000-region ensembles, even
if constructed randomly, contains many common regions with
the other ensembles because the population from which it is
drawn is only larger by an approximate factor of 5 (there are

regions in the dataset). It is also interesting
that the mean errors of 10 000-region ensembles are always
positive for . This is because of the tight range of errors and
the fact that a slightly larger number of regions with positive
errors is encountered [Fig. 2(a) indicates that 52.7% of regions
have positive errors]. On the other hand, because of the wider
range of errors, there are both positive and negative mean
errors for 10 000-region ensembles. The positives dominate due
to the larger fraction of positive errors for individual regions

% .
Another way to assess the errors of subsampling on optical

thickness statistics is shown in Fig. 5. Fig. 5(a) shows the bounds
of percentage errors than contain 95% of the 1000 ensembles,
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when ensembles consisting of various region numbers (each of
110 110 pixel size) are considered. For example, Fig. 5(a) in-
dicates that 95% (950) of 90-region ensembles have mean er-
rors of within % (third point of topmost curve).
CF and have the smallest error bounds that contain 95% of
the ensembles, followed by , and . For ensem-
bles consisting of 10 000 regions, the error range that contains
95% of the ensembles is smaller than % for all quantities
( % for !). Fig. 5(b) shows the percentage error range
that contains 95% of 30-region ensembles of region size indi-
cated in the abscissa. For example, 95% of 30-region ensem-
bles have subsampling errors within % when the
region size is 60 60 pixels (third point of topmost curve). Be-
cause the number of ensembles is kept constant at 1000 for each
region size (even if more regions of smaller size actually exist
in the dataset), it is not surprising that there is a tendency for
the error range that contains 95% of the ensembles to decrease
with region size. In other words, subsampling errors are ex-
pected to grow for regions consisting of a smaller number of
cloudy pixels (i.e., gridpoints at higher latitudes, grid-
points containing many edge-of-swath pixels, or gridpoints with
smaller cloud fractions).

Finally, it must be noted that the errors discussed in this sec-
tion (as well as in the next two sections) for small region sizes
(high latitudes) may in some cases actually be overestimates
of the errors resulting from the actual Level-3 processing. The
reason is that the number of pixels falling within a grid-
point each day is greater than that from a single orbital swath.
This in turn is because of the overlap of successive Terra and
Aqua orbits (except near the equator), which is especially pro-
nounced at high latitudes. Hence, the drastic reduction with lat-
itude of the number of pixels within gridpoints is to
some extent compensated by repeated sampling of the region
from multiple satellite passes.

IV. EFFECTIVE RADIUS ERRORS

The analysis in this section follows on the footsteps of that in
the previous section. Case in point, Fig. 6 is the counterpart of
Fig. 1, i.e., it shows the errors for all 110 110 pixel regions, but
this time for the mean and standard deviation of . There are
similarities with Fig. 1, such as the rapid decrease in the density
of points outside the % error range, but also differences such
as the stronger dominance of positive errors for both the mean
and the standard deviation. Indeed, only 21.3% of 110 110 re-
gions have negative errors in the mean, and 35.3% have negative
errors in the standard deviation. This explains the lack of nega-
tive errors when averaging is performed over a larger number of
regions, as in Figs. 7 and 8. These show (similar to their counter-
part Figs. 3 and 4) the mean error of mean and standard de-
viation for 110 110 pixel regions falling within different cloud
fraction bins (Fig. 7) and the mean errors of 1000 ensembles of
30 or 10 000 110 110 pixel regions as a function of the cor-
responding perfectly sampled quantity (Fig. 8). Fig. 7 suggests
that mean errors of subsampling for mean are slightly greater
than those for , while somewhat unexpectedly the error in stan-
dard deviation does not improve with CF; it does, however, im-
prove with region size, as shown in the bottom panel of Fig. 9(b),

Fig. 6. As in Fig. 1, but for effective radius.

which is analogous to Fig. 5(b), showing the error range con-
taining 95% of the ensembles. Also, there seems to be resistance
in reducing the mean errors below 2% even when ensembles
consist of 10 000 regions [Figs. 8 and 9(a)].

All the above points to systematic biases in the statistics of
when subsampling is performed: apparently, subsampling

yields frequent systematic underestimates of both the mean and
the standard deviation of , i.e., errors are not always random.
This curious phenomenon was further explored by examining
effective radius histograms retrieved from perfectly sampled
and subsampled data. When the collective (i.e., from all 300
granules) normalized frequency distributions of combined
(i.e., both liquid and ice clouds) were plotted with a 1- m
bin resolution (not shown), there were small but noticeable
differences between the histograms: a larger normalized fre-
quency at small effective radii and a smaller at large effective
radii occurred for the subsampled retrievals. These differences
were large enough to result in systematically smaller effective
radii for the subsampled data in the majority of regions to
which we divide the granules. They also resulted in somewhat
narrower histograms for the subsampled data, which explains
the tendency for positive subsampling errors in standard de-
viation. When the histogram analysis was repeated separately
for the Terra and Aqua granules, histogram differences ap-
peared only for the Terra platform (incidentally, subsampled
and perfectly sampled histograms of optical thickness were
virtually indistinguishable for both platforms). When Terra
histograms were then constructed separately (not shown) for
retrievals corresponding to different pairs of detector elements
(the 2.1- m band has 20 detector elements each of 500-m
resolution for a total viewing path of 10 km along track, so for
the 1-km effective radius Level-2 product, measurements from
two detectors are aggregated), one of the histograms stood out
as having characteristics similar to those described above for
the ensemble histogram of subsampled data. This histogram
was from the detector pair that yielded lines 1, 11, 21, 31, etc.
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Fig. 7. As in Fig. 3, but for mean and standard deviation of effective radius.

Fig. 8. As in Fig. 4, but for mean and standard deviation of effective radius.

of the granule, which are included in the subsampled dataset of
this analysis as well as the actual MODIS Level-3 processing.
Thus, bias errors can appear in subsampled Level-3 data if
pixel lines with distinct radiative characteristics (and therefore
distinct retrieved values) from the other lines are systematically
selected by the subsampling algorithm. This is exactly what
occured in this case, and while the bias errors were small in
magnitude, they were still easily detected by the subsampling
analysis.

Fig. 9. As in Fig. 5, but for mean and standard deviation of effective radius.

V. ERRORS FROM HISTOGRAMS

The MODIS Level-3 cloud product also includes SDSs that
represent histograms of and . These are also constructed
from subsampled data. Although the statistical quantities and
parameters examined here are either given directly as distinct
SDS products or can be trivially derived from them
using (1) , it would be interesting to obtain an
assessment of the errors when the same quantities are calculated
from the histogram SDSs.

The three moments ( ) that are needed for (1) are
derived from the discrete normalized probability distribution

built from the histograms for each region (of the eight
regions sizes) using values subsampled every fifth pixel as
follows:

(2a)

(2b)

(2c)
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Fig. 10. As in Fig. 5(b) (save the cloud fraction), but when histograms from
subsampled data are used to reconstruct the optical thickness statistics or
inhomogeneity parameters. (a) Results when the Level-3 binning for liquid
clouds is used. (b) Results when ice cloud binning is used.

Equations analogous to (2a) and (2b) apply for mean and
standard deviation. The number of bins varies according to
the type of histogram, and the values used for each case will be
given below. It should be underlined that the subsampling error
is defined in this case as the difference between the value of
the desired quantity calculated from the perfectly sampled data
directly (i.e., not from histograms constructed from perfectly
sampled data) and the value derived from (2) and histograms
built from data subsampled every fifth pixel along both spatial
directions.

Fig. 10 shows results and is the counterpart of Fig. 5(b).
Panel (a) is for calculations using MODIS Level-3 binning for
liquid clouds ( bins) and panel (b) is for calculations
with ice cloud binning ( bins). Both histograms ex-
tend up to a value of 100 for , but the width of the bins is dif-
ferent (the ice histograms better resolve small values of and
use coarser binning for large values). Results for both panels
of Fig. 10 look similar to the results in Fig. 5(b), except for the

error with liquid cloud histogram binning, which is worse
for most region sizes from its counterpart for .

Fig. 11 is for and is the counterpart of Fig. 9(b). Fig. 9(a)
is for calculations using histogram binning for liquid clouds
and the bottom is for calculations with ice cloud binning. The

Fig. 11. As Fig. 10, but for mean and standard deviation of effective radius.

former originally uses bins in the Level-3 dataset, ex-
tending from 2–30 m, but a 24th very wide bin was added from
30–60 m to accommodate the large particle effective radii en-
countered in the current dataset. The latter uses his-
togram bins extending from 6–60 m. Again, there is little dif-
ference from what has already been shown in Fig. 9, with the ex-
ception of the error in standard deviation when the liquid cloud
histogram binning is used. This is probably the result of the
coarse last bin that was arbitrarily added. Results with ice cloud
binning do not seem to be much affected by omission of particle
sizes below 6 m.

In conclusion, for monthly or longer time scales, one can re-
construct or moments and inhomogeneity parameters
from MODIS Level-3 histograms (built from data subsampled
every fifth pixel) for a region, without suffering much
additional subsampling error relative to the case where the mo-
ments and parameters are derived from distinct Level-3 SDSs.

VI. SUMMARY AND CONCLUSION

Cloud optical thickness and effective radius scientific datasets
in the MODIS Level-3 daily, eight-day, and monthly products
come from aggregation on a grid of Level-2 orbital swath
data that have been subsampled every fifth pixel along both spa-
tial directions (along and across the satellite track). The present
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study examined the impact of this subsampling on cloud frac-
tion, the mean and standard deviation of optical thickness and
effective radius, as well as on parameters that convey the ra-
diative impact of optical thickness variability. The subsampling
effect was quantified as the percentage difference between per-
fectly sampled and subsampled results for ensembles of regions
with size on the order of . The perfectly sampled data
come from 300 Terra and Aqua granules obtained at northern
subtropics/midlatitudes for several post-2000 November days.

It was shown that Level-3 subsampling does not affect
the various quantities investigated to the same degree, with
second-order moments and quantities depending on second-
order moments suffering greater subsampling errors, as ex-
pected. For individual regions consisting of 110 110 pixels
(about around the equator), the vast majority of regions
have errors within % for mean and standard deviation of
optical thickness and effective radius. Errors for cloud fraction
and the inhomogeneity parameter are smaller, and errors for
the inhomogeneity parameters and are greater
(especially for ). Mean errors drop dramatically when
averages over a sufficient number of regions (e.g., monthly
and/or zonal averages) are taken: for ensembles of 30 regions
(corresponding to monthly averages) errors for most regions
sizes are less than 15% for and 95% of the time,
while for the other quantities they are generally below 5%.
Subsampling errors seem to be mostly of random nature, but
evidence was found of small but systematic underestimates for
effective radius mean and standard deviation. This was traced
back to systematic differences in the retrievals from different
2.1- m band detectors: the subsampling procedure was system-
atically picking a pixel line (from the first two detectors) with
radiatively different appearance from the other pixel lines; this
pixel line is used in the actual MODIS Level-3 aggregation and
subsampling algorithm. Finally, when histograms built from
subsampled data with the same binning rules as in the Level-3
dataset are used to reconstruct the quantities of interest, the
mean errors at monthly scales do not deteriorate significantly.

It may be worth mentioning that subsampling error analysis
was also performed with the two-dimensional bounded cascade
model of Cahalan [10], which offers the advantage that the
properties of clouds (cloud fraction, degree of inhomogeneity,
mean optical thickness) can be easily controlled. Optical thick-
ness errors due to subsampling from MODIS largely mirrored
those derived from the model clouds. The ranking of parameters
according to error magnitude was the same ( exhibited the
smallest errors and the largest), the error decreased with
cloud fraction and cloud homogeneity, and experienced rapid
decline when averaged over ensembles of randomly generated
cascade fields.

The results in this paper provide guidance to users of MODIS
Level-3 cloud products on the range of errors due to subsam-
pling they should expect and perhaps account for, in scientific
work with this dataset. Although the findings do not come from
a global dataset of successive satellite orbits, which would allow
the Level-3 aggregation and subsampling algorithm to
be better imitated (a nontrivial exercise by any means), it would
probably be safe to conclude that subsampling errors should not
be a serious concern for individual gridpoints of MODIS D3

(daily) data that have undergone moderate additional temporal
averaging ( % error for monthly values of mean optical thick-
ness and % for mean effective radius), or for spatial averages
such as zonal averages ( % and % for means of optical
thickness and effective radius, respectively). Still, a study of the
type shown here, but with a global dataset from successive or-
bits spanning over a month or longer, and which would perhaps
examine other SDSs as well, would give a more definitive as-
sessment of the impact of MODIS Level-3 subsampling.
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