
Appendix C. Internal Representation of Data Types C-1

Appendix C. Internal Representation of Data
Types

This appendix contains the detailed internal representations of the PDS standard data types listed
in Table 3.2 of the Data Type Definitions chapter of this document.

Chapter Contents

Appendix C. Internal Representation of Data Types..C-1

C.1 MSB_INTEGER ...C-2
C.2 MSB_UNSIGNED_INTEGER..C-4
C.3 LSB_INTEGER ..C-6
C.4 LSB_UNSIGNED_INTEGER...C-8
C.5 IEEE_REAL..C-10
C.6 IEEE_COMPLEX ...C-13
C.7 PC_REAL ...C-14
C.8 PC_COMPLEX...C-17
C.9 VAX_REAL, VAXG_REAL...C-18
C.10 VAX_COMPLEX, VAXG_COMPLEX..C-22
C.11 MSB_BIT_STRING..C-23
C.12 LSB_BIT_STRING...C-25

C-2 Appendix C. Internal Representation of Data Types

C.1 MSB_INTEGER
Aliases: INTEGER

MAC_INTEGER
SUN_INTEGER

This section describes the signed integers stored in Most Significant Byte first (MSB) order. In
this section the following definitions apply:

b0 – b3 Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, and b3)

i-sign Integer sign bit (bit 7 in the highest-order byte

i0 – i3 Arrangement of bytes in the integer, from lowest order to highest order.

The bits within each byte are interpreted from right to left (e.g., lowest
value = bit 0, highest value = bit 7) in the following way:

 4-byte integers:
 In i0, bits 0-7 represent 2**0 through 2**7
 In i1, bits 0-7 represent 2**8 through 2**15
 In i2, bits 0-7 represent 2**16 through 2**23
 In i3, bits 0-6 represent 2**24 through 2**30

 2-byte integers:
 In i0, bits 0-7 represent 2**0 through 2**7
 In i1, bits 0-6 represent 2**8 through 2**14

 1-byte integers:
 In i0, bits 0-6 represent 2**0 through 2**6

Negative integers are represented in two’s complement.

C.1.1 MSB 4-byte Integer

Appendix C. Internal Representation of Data Types C-3

C.1.2 MSB 2-byte Integer

C.1.3 MSB 1-byte Integer

C-4 Appendix C. Internal Representation of Data Types

C.2 MSB_UNSIGNED_INTEGER
Aliases: UNSIGNED_INTEGER

MAC_UNSIGNED_INTEGER
SUN_UNSIGNED_INTEGER

This section describes unsigned integers stored in Most Significant Byte first (MSB) format. In
this section the following definitions apply:

b0 – b3 Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2 and b3)

i0 – i3 Arrangement of bytes in the integer, from lowest order to highest order.

The bits within each byte are interpreted from right to left (e.g., lowest
value = bit 0, highest value = bit 7), in the following way:

 4-bytes:
 In i0, bits 0-7 represent 2**0 through 2**7
 In i1, bits 0-7 represent 2**8 through 2**15
 In i2, bits 0-7 represent 2**16 through 2**23
 In i3, bits 0-7 represent 2**24 through 2**31

 2-bytes:
 In i0, bits 0-7 represent 2**0 through 2**7
 In i1, bits 0-7 represent 2**8 through 2**15

 1-byte:
 In i0, bits 0-7 represent 2**0 through 2**7

C.2.1 MSB 4-byte Unsigned Integers

Appendix C. Internal Representation of Data Types C-5

C.2.2 MSB 2-byte Unsigned Integers

C.2.3 MSB 1-byte Unsigned Integers

C-6 Appendix C. Internal Representation of Data Types

C.3 LSB_INTEGER
Aliases: PC_INTEGER

VAX_INTEGER

This section describes signed integers stored in Least Significant Byte first (LSB) order. In this
section the following definitions apply:

b0 – b3 Arrangement of bytes as they appear when reading a file (e.g., read byte
b0 first, then b1, b2 and b3)

i-sign Integer sign bit – bit 7 in the highest order byte

i0 – i3 Arrangement of bytes in the integer, from lowest order to highest order.

The bits within each byte are interpreted from right to left (e.g., lowest
value = bit 0, highest value = bit 7), in the following way:

 4-bytes:
 In i0, bits 0-7 represent 2**0 through 2**7
 In i1, bits 0-7 represent 2**8 through 2**15
 In i2, bits 0-7 represent 2**16 through 2**23
 In i3, bits 0-6 represent 2**24 through 2**30

 2-bytes:
 In i0, bits 0-7 represent 2**0 through 2**7
 In i1, bits 0-6 represent 2**8 through 2**14

 1-byte:
 In i0, bits 0-6 represent 2**0 through 2**6

All negative values are represented in two’s complement.

C.3.1 LSB 4-byte Integers

Appendix C. Internal Representation of Data Types C-7

C.3.2 LSB 2-byte Integers

C.3.3 LSB 1-byte Integers

C-8 Appendix C. Internal Representation of Data Types

C.4 LSB_UNSIGNED_INTEGER
Aliases: PC_UNSIGNED_INTEGER

VAX_UNSIGNED_INTEGER

This section describes unsigned integers stored in Least Significant Byte first (LSB) format. In
this section the following definitions apply:

b0 – b3 Arrangement of bytes as they appear when reading a file (e.g., read byte
b0 first, then b1, b2 and b3)

i0 – i3 Arrangement of bytes in the integer, from lowest order to highest order.

The bits within each byte are interpreted from right to left (e.g., lowest
value = bit 0, highest value = bit 7), in the following way:

 4-bytes:
 In i0, bits 0-7 represent 2**0 through 2**7
 In i1, bits 0-7 represent 2**8 through 2**15
 In i2, bits 0-7 represent 2**16 through 2**23
 In i3, bits 0-7 represent 2**24 through 2**31

 2-bytes:
 In i0, bits 0-7 represent 2**0 through 2**7
 In i1, bits 0-7 represent 2**8 through 2**15

 1-byte:
 In i0, bits 0-7 represent 2**0 through 2**7

C.4.1 LSB 4-byte Unsigned Integers

Appendix C. Internal Representation of Data Types C-9

C.4.2 LSB 2-byte Unsigned Integers

C.4.3 LSB 1-byte Unsigned Integers

C-10 Appendix C. Internal Representation of Data Types

C.5 IEEE_REAL
Aliases: FLOAT

REAL
MAC_REAL
SUN_REAL

This section describes the internal format of IEEE-format floating-point numbers. In this section
the following definitions apply:

b0 – b9 Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, b3, etc.)

m-sign Mantissa sign bit

int-bit In 10-byte real format only, the integer part of the mantissa, assumed to be

“1” in other formats, is explicitly indicated by this bit

e0 – e1 Arrangement of the portions of the bytes that make up the exponent, from

lowest order to highest order. The bits within each byte are interpreted
from right to left (e.g., lowest value = rightmost bit in the exponent part of
the byte, highest value = leftmost bit in the exponent part of the byte) in
the following way:

 10-bytes (temporary):
 In e0, bits 0-7 represent 2**0 through 2**7
 In e1, bits 0-6 represent 2**8 through 2**14

 Exponent bias = 16383

 8-bytes (double precision):
 In e0, bits 4-7 represent 2**0 through 2**3
 In e1, bits 0-6 represent 2**4 through 2**10

 Exponent bias = 1023

 4-bytes (single precision):
 In e0, bit 7 represent 2**0
 In e1, bits 0-6 represent 2**1 through 2**7

 Exponent bias = 127

Appendix C. Internal Representation of Data Types C-11

m0 – m7 Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to the lowest order fraction. The order of the bits
within each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

 10-bytes (temporary):
 In m0, bits 6-0 represent 1/2**1 through 1/2**7
 In m1, bits 7-0 represent 1/2**8 through 1/2**15
 In m2, bits 7-0 represent 1/2**16 through 1/2**23
 In m3, bits 7-0 represent 1/2**24 through 1/2**31
 In m4, bits 7-0 represent 1/2**32 through 1/2**39
 In m5, bits 7-0 represent 1/2**40 through 1/2**47
 In m6, bits 7-0 represent 1/2**48 through 1/2**55
 In m7, bits 7-0 represent 1/2**56 through 1/2**63

 8-bytes (double precision):
 In m0, bits 3-0 represent 1/2**1 through 1/2**4
 In m1, bits 7-0 represent 1/2**5 through 1/2**12
 In m2, bits 7-0 represent 1/2**13 through 1/2**20
 In m3, bits 7-0 represent 1/2**21 through 1/2**28
 In m4, bits 7-0 represent 1/2**29 through 1/2**36
 In m5, bits 7-0 represent 1/2**37 through 1/2**44
 In m6, bits 7-0 represent 1/2**45 through 1/2**52

 4-bytes (single precision):
 In m0, bits 6-0 represent 1/2**1 through 1/2**7
 In m1, bits 7-0 represent 1/2**8 through 1/2**15
 In m2, bits 7-0 represent 1/2**16 through 1/2**23

The following representations all follow this format:

1.mantissa ? 2**(exponent – bias)

Note that the integer part (“1.”) is implicit in all formats except the 10-byte (temporary) real
format, as described above. In all cases the exponent is stored as an unsigned, biased integer (that
is, the stored exponent value – bias value = true exponent).

C-12 Appendix C. Internal Representation of Data Types

C.5.1 IEEE 10-byte (Temporary) Real Numbers

C.5.2 IEEE 8-byte (Double Precision) Real Numbers

C.5.3 IEEE 4-byte (Single Precision) Real Numbers

Appendix C. Internal Representation of Data Types C-13

C.6 IEEE_COMPLEX
Aliases: COMPLEX

MAC_COMPLEX
SUN_COMPLEX

IEEE complex numbers consist of two IEEE_REAL format numbers of the same precision,
contiguous in memory. The first number represents the real part and the second the imaginary
part of the complex value.

For more information on using IEEE_REAL formats, see Section C.5.

C-14 Appendix C. Internal Representation of Data Types

C.7 PC_REAL
Aliases: None

This section describes the internal storage format corresponding to the PC_REAL data type. In
this section the following definitions apply:

b0 – b9 Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2 and b3)

m-sign Mantissa sign bit

int-bit In 10-byte real format only, the integer part of the mantissa, assumed to be

“1” in other formats, is explicitly indicated by this bit.

e0 – e1 Arrangement of the portions of the bytes that make up the exponent, from

lowest order to highest order. The bits within each byte are interpreted
from right to left (e.g., lowest value = rightmost bit in the exponent part of
the byte, highest value = leftmost bit in the exponent part of the byte) in
the following way:

 10-bytes (temporary):
 In e0, bits 0-7 represent 2**0 through 2**7
 In e1, bits 0-6 represent 2**8 through 2**14

 Exponent bias = 16383

 8-bytes (double precision):
 In e0, bits 4-7 represent 2**0 through 2**3
 In e1, bits 0-6 represent 2**4 through 2**10

 Exponent bias = 1023

 4-bytes (single precision):
 In e0, bit 7 represent 2**0
 In e1, bits 0-6 represent 2**1 through 2**7

 Exponent bias = 127

m0 – m7 Arrangement of the portions of the bytes that make up the mantissa, from

highest order fractions to the lowest order fraction. The order of the bits
within each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

 10-bytes (temporary):

Appendix C. Internal Representation of Data Types C-15

 In m0, bits 6-0 represent 1/2**1 through 1/2**7
 In m1, bits 7-0 represent 1/2**8 through 1/2**15
 In m2, bits 7-0 represent 1/2**16 through 1/2**23
 In m3, bits 7-0 represent 1/2**24 through 1/2**31
 In m4, bits 7-0 represent 1/2**32 through 1/2**39
 In m5, bits 7-0 represent 1/2**40 through 1/2**47
 In m6, bits 7-0 represent 1/2**48 through 1/2**55
 In m7, bits 7-0 represent 1/2**56 through 1/2**63

 8-bytes (double precision):
 In m0, bits 3-0 represent 1/2**1 through 1/2**4
 In m1, bits 7-0 represent 1/2**5 through 1/2**12
 In m2, bits 7-0 represent 1/2**13 through 1/2**20
 In m3, bits 7-0 represent 1/2**21 through 1/2**28
 In m4, bits 7-0 represent 1/2**29 through 1/2**36
 In m5, bits 7-0 represent 1/2**37 through 1/2**44
 In m6, bits 7-0 represent 1/2**45 through 1/2**52

 4-bytes (single precision):
 In m0, bits 6-0 represent 1/2**1 through 1/2**7
 In m1, bits 7-0 represent 1/2**8 through 1/2**15
 In m2, bits 7-0 represent 1/2**16 through 1/2**23

The following representations all follow this format:

1.mantissa ? 2**(exponent – bias)

Note that the integer part (“1.”) is implicit in all formats except the 10-byte (temporary) real
format, as described above. In all cases the exponent is stored as an unsigned, biased integer (that
is, the stored exponent value – bias value = true exponent).

C-16 Appendix C. Internal Representation of Data Types

C.7.1 PC 10-byte (Temporary) Real Numbers

C.7.2 PC 8-byte (Double Precision) Real Numbers

C.7.3 PC 4-byte (Single Precision) Real Numbers

Appendix C. Internal Representation of Data Types C-17

C.8 PC_COMPLEX
Aliases: None

PC complex numbers consist of two PC_REAL format numbers of the same precision,
contiguous in memory. The first number represents the real part and the second the imaginary
part of the complex value.

For more information on using PC_REAL formats, see Section C.7.

C-18 Appendix C. Internal Representation of Data Types

C.9 VAX_REAL, VAXG_REAL
Aliases: VAX_DOUBLE for VAX_REAL only.

No aliases for VAXG_REAL

This section describes the internal format corresponding to the VAX_REAL and VAXG_REAL
data types. In this section the following definitions apply:

b0 – b15 Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2 and b3)

m-sign Mantissa sign bit

e0 – e1 Arrangement of the portions of the bytes that make up the exponent, from

lowest order to highest order. The bits within each byte are interpreted
from right to left (e.g., lowest value = rightmost bit in the exponent part of
the byte, highest value = leftmost bit in the exponent part of the byte) in
the following way:

 16-bytes (H-type, quad precision):
 In e0, bits 0-7 represent 2**0 through 2**7
 In e1, bits 0-6 represent 2**8 through 2**14

 Exponent bias = 16385

 8-bytes (G-type, double precision):
 In e0, bits 4-7 represent 2**0 through 2**3
 In e1, bits 0-6 represent 2**4 through 2**10

 Exponent bias = 1025

 8-bytes (D-type, double precision):
 In e0, bit 7 represents 2**0
 In e1, bits 0-6 represent 2**1 through 2**7

 Exponent bias = 129

 4-bytes (F-type, single precision):
 In e0, bit 7 represent 2**0
 In e1, bits 0-6 represent 2**1 through 2**7

 Exponent bias = 129

Appendix C. Internal Representation of Data Types C-19

m0 – m13 Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to the lowest order fraction. The order of the bits
within each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

 16-bytes (H-type, quad precision):
 In m0, bits 7-0 represent 1/2**1 through 1/2**8
 In m1, bits 7-0 represent 1/2**9 through 1/2**16
 In m2, bits 7-0 represent 1/2**17 through 1/2**24
 In m3, bits 7-0 represent 1/2**25 through 1/2**32
 In m4, bits 7-0 represent 1/2**33 through 1/2**40
 In m5, bits 7-0 represent 1/2**41 through 1/2**48
 In m6, bits 7-0 represent 1/2**49 through 1/2**56
 In m7, bits 7-0 represent 1/2**57 through 1/2**64
 In m8, bits 7-0 represent 1/2**65 through 1/2**72
 In m9, bits 7-0 represent 1/2**73 through 1/2**80
 In m10, bits 7-0 represent 1/2**81 through 1/2**88
 In m11, bits 7-0 represent 1/2**89 through 1/2**96
 In m12, bits 7-0 represent 1/2**97 through 1/2**104
 In m13, bits 7-0 represent 1/2**105 through 1/2**112

 8-bytes (G-type, double precision):
 In m0, bits 3-0 represent 1/2**1 through 1/2**4
 In m1, bits 7-0 represent 1/2**5 through 1/2**12
 In m2, bits 7-0 represent 1/2**13 through 1/2**20
 In m3, bits 7-0 represent 1/2**21 through 1/2**28
 In m4, bits 7-0 represent 1/2**29 through 1/2**36
 In m5, bits 7-0 represent 1/2**37 through 1/2**44
 In m6, bits 7-0 represent 1/2**45 through 1/2**52

 8-bytes (D-type, double precision):
 In m0, bits 6-0 represent 1/2**1 through 1/2**7
 In m1, bits 7-0 represent 1/2**8 through 1/2**15
 In m2, bits 7-0 represent 1/2**16 through 1/2**23
 In m3, bits 7-0 represent 1/2**24 through 1/2**31
 In m4, bits 7-0 represent 1/2**32 through 1/2**39
 In m5, bits 7-0 represent 1/2**40 through 1/2**47
 In m6, bits 7-0 represent 1/2**48 through 1/2**55

 4-bytes (F-type, single precision):
 In m0, bits 6-0 represent 1/2**1 through 1/2**7
 In m1, bits 7-0 represent 1/2**8 through 1/2**15
 In m2, bits 7-0 represent 1/2**16 through 1/2**23

C-20 Appendix C. Internal Representation of Data Types

The following representations all follow this format:

1.mantissa ? 2**(exponent – bias)

Note that the integer part (“1.”) is implicit in all formats except the 10-byte (temporary) real
format, as described above. In all cases the exponent is stored as an unsigned, biased integer (that
is, the stored exponent value – bias value = true exponent).

C.9.1 VAX 16-byte H-type (Quad Precision) Real Numbers

C.9.2 VAX 8-byte G-type (Double Precision) Real Numbers

Appendix C. Internal Representation of Data Types C-21

C.9.3 VAX 8-byte D-type (Double Precision) Real Numbers

C.9.4 VAX 4-byte F-type (Single Precision) Real Numbers

C-22 Appendix C. Internal Representation of Data Types

C.10 VAX_COMPLEX, VAXG_COMPLEX
Aliases: None

VAX complex numbers consist of two VAX_REAL (or VAXG_REAL) format numbers of the
same precision, contiguous in memory. The first number represents the real part and the second
the imaginary part of the complex value.

For more information on using VAX_REAL formats, see Section C.9.

Appendix C. Internal Representation of Data Types C-23

C.11 MSB_BIT_STRING
Aliases: None

This section describes the storage format for bit strings stored in Most Significant Byte first
(MSB) format. In this section the following definitions apply:

b0 – b3 Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2 and b3)

The bits within a byte are numbered from left to right, as shown below:

Note that in the case of MSB bit strings, no byte-swapping is required. That is, the physical
storage order of the bytes is identical to the logical order.

C.11.1 MSB n-byte Bit Strings

C.11.2 MSB 2-byte Bit String

C-24 Appendix C. Internal Representation of Data Types

C.11.3 MSB 1-byte Bit String

Appendix C. Internal Representation of Data Types C-25

C.12 LSB_BIT_STRING
Aliases: VAX_BIT_STRING

This section describes the structure of bit strings stored in Least Significant Byte first (LSB)
order. In this section, the following definitions apply:

b0 – b3 Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2 and b3)

The bits within a byte are numbered from left to right, as shown below:

Note that for LSB bit strings byte-swapping is required to convert the storage order of bytes to
the logical order.

C.12.1 LSB 4-byte Bit String

Physical order (as read from the file):

Logical order (after byte-swapping):

C-26 Appendix C. Internal Representation of Data Types

C.12.2 LSB 2-byte Bit String

Physical order (as read from the file):

Logical order (after byte-swapping):

C.12.3 LSB 1-byte Bit String

Note that in this degenerate case no byte-swapping is required.

