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ABSTRACT

Testing general circulation model parameterizations against observations is traditionally done by comparing
simulated and observed, time-averaged quantities, such as monthly mean cloud cover, evaluated on a stationary
grid. This approach ignores the dynamical aspects of clouds, such as their life cycle characteristics, spatial coverage,
temporal duration, and internal variability. In this study, a complementary Lagrangian approach to the validation
of modeled tropical cloudiness is explored. An automated cloud detection and tracking algorithm is used to observe
and track overcast decks of cloud in a consecutive set of hourly Meteosat-5 images and the National Center for
Atmospheric Research Community Climate Model version 3 (NCAR CCM3). The algorithm is applied to the deep
convective cloud systems of the tropical Indian Ocean region during a 49-day period of the 1999 winter monsoon
season. Observations of precipitation are taken from the Tropical Rainfall Measuring Mission (TRMM) satellite in
addition to a Meteosat-5 infrared rainfall technique that is calibrated using the TRMM data.

Clouds, defined as overcast decks, are observed spanning spatial scales from 25 km2 to greater than 107 km2,
as well as temporal scales from 1 h to greater than 100 h. Semipermanent decks of anvil and cirrus cloud, with
numerous regions of deep convection embedded within, dominate total cloud cover. Bridging between convective
centers within the deck by cirrus clouds, particularly during the suppressed portion of the diurnal cycle of
convection, may help to maintain the integrity of semipermanent overcast decks over long timescales. At scales
greater than 106 km2 the size distribution of simulated clouds is biased such that the dominant scale of clouds
is several million square kilometers larger than the dominant scale of observed clouds. Virtually all of the
simulated precipitation occurs at rain rates lower than 2 mm h21, while as much as 25% of observed precipitation
occurs at rain rates higher than 2 mm h21. Precipitation associated with deep convection in observed semiper-
manent cloud systems is organized into more localized mesoscale structures of adjacent convective cells attached
to stratiform precipitation regions. A separate analysis of TRMM data by Wilcox and Ramanathan determined
that such structures can exceed the size of grid cells in coarse-grid global models and have area-averaged rain
rates up to and exceeding 2 mm h21. These mesoscale convective systems are responsible for the extreme,
episodic precipitation events that are not parameterized in the model. The simulated cloud systems gently
precipitate throughout their duration and everywhere within their boundaries. The model lacks a process that
acts to organize the convective cells within fewer grid cells, in addition to a representation of the observed
stratiform precipitation structures. A modification to CCM3 is tested that is intended to account for the evaporation
of upper-level precipitation in midlevel mesoscale downdrafts. The modification results in only a slight change
in domain-averaged precipitation. However, it causes a significant shift in the distribution of precipitation toward
higher rain rates that is more consistent with the distribution of TRMM observed rain rates. The modification
demonstrates the sensitivity of the model to one important component of mesoscale organized convection.

1. Introduction

Condensed moisture, in the form of clouds and pre-
cipitation, is a key component of the climate system and
continues to be a challenge for global models of the
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atmospheric general circulation. Latent heating from the
condensation of precipitation is the largest source of
heat driving atmospheric circulations. Variability of pre-
cipitation in time and space has important impacts on
ecosystems and societies. Uncertainties in feedbacks as-
sociated with cloud cover and radiative forcing remain
a leading source of uncertainty in greenhouse warming
predictions (Houghton et al. 2001). Accurate, quanti-
tative predictions of condensed moisture remain a chal-
lenge for global models because of their dependence
upon processes, such as cumulus convection and ther-
modynamic phase changes, that often occur on time-
and space scales that are small relative to the time steps
and grid cells of such models. Progress in this matter
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is further hindered by a lack of available observations
across the necessary scales to constrain the problem.

Validation of the representation of moist processes in
models is typically approached by means of Eulerian
analysis schemes whereby time and space averages of
simulated and observed quantities, such as surface rain
rate or fractional cloud cover, are evaluated over sta-
tionary grids. Presented in this study is a Lagrangian
analysis scheme, similar to the scheme developed by
Boer and Ramanathan (1997), whereby the boundaries
of clouds are identified and tracked in order to reveal
the spatial and temporal scales of clouds and precipi-
tation. This scheme was further refined to distinguish
between precipitating and nonprecipitating cloud sys-
tems by Wilcox and Ramanathan (2001). The analysis
scheme is intended as a complement to the traditional
Eulerian approach by identifying cases where the phys-
ical properties of cloud systems may be improperly sim-
ulated even when time- and space-averaged quantities
agree with observations. Statistics are compiled and
compared based on large ensembles of both observed
clouds and modeled clouds whose properties, such as
spatial coverage, temporal duration, and cloud-averaged
precipitation rate, have been observed throughout the
life cycle of each cloud.

This study focuses specifically on clouds associated
with the deep convective regime located over the trop-
ical Indian Ocean during the winter monsoon season.
Cloud observations are made using the Meteosat-5 geo-
synchronous satellite. Rain-rate estimates are also made
using the infrared channel of Meteosat-5 by means of
a cloud-top temperature proxy that is tuned using si-
multaneous measurements from the Tropical Rainfall
Measuring Mission (TRMM) satellite. Further compar-
isons of simulated and observed rain-rate distributions
are made using only TRMM data. The Meteosat-5 im-
agery provide the ability to observe cloud systems span-
ning spatial scales from 25 km2 to greater than 107 km2,
and temporal scales as small as 0.5 h. The observed
cloud systems will be compared with simulated cloud
systems from the National Center for Atmospheric Re-
search (NCAR) Community Climate Model, version
3.6.6 (CCM3) global atmospheric model.

As climate models evolve toward parameterization
schemes that are more physically based, it should be
expected that elements, such as clouds, which result
from a combination of several independently parame-
terized processes, should accurately represent the be-
havior of complex, natural cloud systems. In regions of
tropical deep convection, clouds arise primarily through
the process of moist convection. The organization of
convection into adjacent convective cells and mesoscale
circulations (Houze and Betts 1981) results in precipi-
tation structures that can exceed 106 km2 (Wilcox and
Ramanathan 2001). Convective updrafts transport con-
densate to the middle and upper troposphere where de-
trained condensate either precipitates, or remains sus-
pended as large and persistent decks of cirrus cloud.

Precipitating drops result from diffusion and coales-
cence within convective cells and the settling and melt-
ing of hail and graupel in mesoscale anvil circulations.
Each of these processes is parameterized separately in
GCMs, and the links between them are often absent. In
this study the boundaries of clouds are chosen such that
entire overcast cloud systems, including deep convec-
tion imbedded within extended cirrus decks, are grouped
together. Thus the analysis provides a test of how well
simplified numerical representations replicate complete
natural cloud decks that result from the linked processes
listed earlier.

Increasingly, global GCMs are being coupled to
chemical and aerosol transport models for the study and
prediction of aerosol–climate interactions. For soluble
species, the residence time in the atmosphere can be as
short as 5–15 days because of the efficient removal by
precipitation (Balkanski et al. 1993; Rasch et al. 2001).
In this case it is crucial to validate the spatial and tem-
poral distribution of precipitation at the scales of indi-
vidual cloud systems. The following analysis identifies
biases in the distribution of precipitation that may have
significant implications for the simulated transport of
soluble constituents.

2. Data and methodology

Images from the Meteosat-5 geosynchronous satellite
are used to identify clouds, measure their sizes, estimate
their area-averaged rain rates and track them in time.
Meteosat-5 provides half-hourly images from two chan-
nels in the infrared region of the spectrum and one in
the visible. For this study, only brightness temperatures
from the infrared window (IR) channel (10.5–12.5 mm)
and the infrared water vapor band (WV) channel (5.7–
7.1 mm) are used. The visible channel data is not used
because clouds are tracked through the nighttime hours.
The satellite was moved by the European Organization
for the Exploration of Meteorological Satellites (EU-
METSAT) to its present location above the equator at
638 east longitude in support of the Indian Ocean Ex-
periment (INDOEX). The raw data were gridded by
EUMETSAT to a 5 km 3 5 km grid prior to being
transferred to the INDOEX science team. The infrared
window channel and water vapor channel images are
distributed as digital counts, which are converted to
brightness temperatures (TIR and TWV, respectively) us-
ing calibration coefficients provided by EUMETSAT.
The coefficients are determined by comparing the counts
to calculated radiances for a subset of clear sky oceanic
pixels where collocated reanalysis and radiosonde pro-
files are used as input to a radiative transfer model.

The bounds for this study are 2208–208 latitude and
408–1208E. Meteosat-5 images from 1 January–18 Feb-
ruary 1999 are used. Calibration coefficients were not
reported for six images during the period. For these
cases, the coefficients from the previous image are used
and visual inspection of the retrieved cloud maps in-
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TABLE 1. Meteosat-5 pixel classification scheme.

Brightness temperature
(K)

Deep convection/anvil
Shallow convection/thick cirrus
Thin cirrus
Clear sky or broken cloud*

TIR , 240
240 # TIR , 280
TIR $ 280, TWV , 245
TIR $ 280, TWV . 245

* Not included in the cloud detection or tracking analysis.

dicated that the affected images fit smoothly into the
context of the surrounding images. Following 18 Feb-
ruary 1999, contamination of the images by direct sun-
light near local midnight resulted in gaps of several
hours in the record, thus only the 49-day period between
1 January and 18 February is included in the study.

a. Pixel classification and cloud detection

For the purposes of this study, a cloud is defined as
a set of contiguous overcast pixels. In order to identify
such regions in the Meteosat-5 images, each pixel is
placed in one of four classifications. Pixels with TIR less
than 240 K are labeled deep convection/anvil. Pixels
with TIR greater than 240 and less than 280 K are labeled
shallow convection/thick cirrus. Pixels with TIR greater
than 280 K and TWV less than 245 K are labeled thin
cirrus. All other pixels are assumed to be either clear
sky or only partially covered by cloud and are disre-
garded in the following analysis. The classification
scheme is summarized in Table 1.

Once the overcast pixels in an image have been iden-
tified and classified, a cloud clustering algorithm is ap-
plied whereby adjacent overcast pixels are grouped into
a single cloud. Although a different algorithm is used
here, the clustering scheme is identical to that described
in Mapes and Houze (1993). Overcast pixels must share
a side to be included in the same cloud.

Validation of the cloud detection algorithm has been
performed using the National Aeronautics and Space
Administration (NASA) TRMM Visible Infrared Scan-
ner (TRMM-VIRS) data [supplied using the Clouds and
Earth’s Radiant Energy System (CERES) data products]
for 10 days of passes of the TRMM satellite that have
been collocated with Meteosat-5. The TRMM-VIRS
data provide cloud cover fraction for 10-km (approxi-
mately) footprints derived from multispectral cloud im-
ager data at 2-km resolution based on the techniques of
Rossow and Garder (1993) and Stowe et al. (1991). The
validation is performed from 21–31 January (no data
was available for January 26) where only daytime
TRMM passes are used in order to benefit from VIRS
visible channel data. Collocation is performed by grid-
ding the Meteosat-5 and TRMM-VIRS data on the same
25-km grid. Over 75 000 collocated grid points are used
in the comparison. Total cloud fraction for all collocated
data points were in close agreement at 67% for the
TRMM-VIRS data and 66% for the Meteosat-5 cloud

detection. All pixels identified as overcast by TRMM-
VIRS were also identified as overcast by the Meteosat-
5. The largest errors in terms of discriminating partially
filled grid cells from overcast grid cells occurred for
cases where the TRMM-VIRS data indicated cloud cov-
er greater than 80% and Meteosat-5 misidentified them
as overcast. This occurred in about 12% of cases, how-
ever, results in small errors in terms of overall cloud
cover, because TRMM-VIRS identified them as greater
than 80% cloud cover. The largest errors in terms of
identifying the boundaries and scales of clouds, as well
as total cloud cover, probably occurs in grid cells with
cloud fraction less than 10% that are misidentified as
overcast by Meteosat-5. This occurs in only about 4%
of the cases. Based on the close agreement in total cloud
cover and the low incidence of mostly clear grid cells
being misidentified as overcast, the Meteosat-5 thresh-
olds are reasonable for discriminating overcast decks of
cloud. The separation of Meteosat-5 pixels into the three
classes indicated in Table 1 is intended to be mostly
qualitative and is not compared with CCM3 output in
this study. A separate validation of a cloud classification
using similar IR and WV thresholds has been performed
by Roca et al. (2002). They report that in addition to
discriminating clear sky fraction to within 4% compared
to a bispectral visible/IR scheme, the IR/WV thresholds
determine thin cirrus coverage to within 1% compared
to the visible/IR scheme.

b. Automated cloud tracking

Once cloud maps have been constructed for a series
of consecutive images, an automated cloud tracking al-
gorithm is applied to them based upon overlapping pix-
els in consecutive images. If a cloud overlaps at least
one pixel from a cloud in the subsequent image, the two
clouds are assumed to be related. Often, because of
splitting, a cloud will overlap several clouds in the sub-
sequent image. Likewise, a cloud often overlaps several
clouds from the previous image because of merging. To
determine which two clouds are the same cloud from a
group of clouds related by overlap in two consecutive
images, an ‘‘overlap parameter’’ is calculated for each
pair of related clouds, which is the product of the frac-
tional area of each cloud that is overlapped. The pair
of overlapping clouds with the largest overlap parameter
is assumed to be the same cloud. This approach is cho-
sen because it has the effects of identifying the pair of
clouds with the maximum area of overlap, as well as
the pair with the minimum change in area from one
image to the next. Previous studies have tested several
different decision algorithms designed to solve this
problem and the results were found to be robust re-
gardless of which decision algorithm is applied (Ma-
chado et al. 1998; Gambheer and Bhat 2000). The over-
lap requirement means that fast-moving, small-scale
features may avoid tracking. For a single 5-km pixel
feature, the required speed to avoid tracking would be
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FIG. 1. (a) Sample Meteosat-5 infrared channel brightness tem-
perature image from 1100 UTC 18 Jan 1999. (b) The same image
following the pixel classification stage of the analysis. Red pixels are
deep convection/anvil; green pixels are shallow convection/thick cir-
rus; blue pixels are thin cirrus. (c) The same image following the
cloud clustering stage of the analysis.

only 5 km h21. For larger features, however, the speed
required to avoid tracking is much higher. Tracking
schemes requiring an overlap constraint have been used
successfully to track convective clusters that are likely
to have maximum propagation speeds faster than the
overcast decks tracked in this study (e.g., Williams and
Houze 1987).

Figure 1a shows an example of a Meteosat-5 IR-chan-
nel brightness temperature image. The same image, fol-
lowing the pixel classification stage is shown in Fig. 1b.
The classification scheme is intended to be descriptive
only and indicates the rough location of deep convec-
tion/anvil cloud, shallow convection/thick cirrus cloud,
and thin cirrus. Figure 1c shows the same image fol-

lowing the cloud detection stage. The colors in Fig. 1c
are chosen randomly and each color indicates a different
cloud. The scene depicted in Fig. 1 is not uncommon
during the winter monsoon season and shows a giant
deck of overcast cloudiness oriented along the inter-
tropical convergence zone with a number of smaller
clouds at the periphery of the convergence zone. Ac-
cording to the analysis scheme employed in this study,
the giant overcast deck is a single cloud and imbedded
within this cloud are numerous regions of deep con-
vection. Throughout this paper, the terms cloud and
overcast deck will be used interchangeably to refer to
the overcast features illustrated by the different-colored
features in Fig. 1c that are detected and tracked in the
satellite imagery. The details of the cloud detection
scheme were chosen to fulfill two goals: 1) to provide
an objective means of identifying cloud boundaries that
encompasses deep convective elements and their at-
tached cirrus decks; and 2) to identify cloud elements
in the satellite imagery that are comparable to cloud
elements that may be identified in output from a global
GCM. The definition of a cloud used here, and the cloud
objects that result, is not intended to identify individual
dynamical elements. Clearly the overcast deck indicated
in blue in Fig. 1c includes several regions of convection
that may be dynamically uncoupled. Furthermore, these
convective regions are likely embedded in a cirrus deck
that includes condensate that has detrained from the
convective cores as well as cirrus associated with large-
scale upper-tropospheric uplift that is not directly cou-
pled to the convection. While a complete understanding
of the dynamics giving rise to such cloud decks might
warrant a more detailed separation of the overcast decks
into smaller components, distinctions between these
components cannot be made in the output of CCM3, as
discussed further in section 2d. Clouds are therefore
defined as overcast decks in order to distinguish indi-
vidual objects in both the satellite imagery and the
CCM3 output that are directly comparable. The resulting
statistical description of overcast decks provides a test
of the CCM3 cloud parameterization scheme that is ap-
propriate for the level of complexity exhibited in the
simulated cloud decks of the model.

c. Infrared rain-rate estimation

Surface rain-rate estimates, averaged over the area of
each cloud, are made using a variation of the Geosta-
tionary Operational Environmental Satellite (GOES)
precipitation index (GPI) technique of Arkin and Meis-
ner (1987). Rain rate (Rs, with units mm h21) is related
to f 240, the fraction of the area of each cloud with TIR

, 240 K according to the following expression:

R 5 Gf ,s 240

where the coefficient, G, is calibrated by passive mi-
crowave rain-rate measurements from collocated passes
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FIG. 2. Scatterplot of cloud area–averaged rain rate (Rs) from
TRMM and cloud area fraction colder than 240 K ( f 240) from Me-
teosat-5 for a sample of nearly 350 clouds from Jan 1999.

TABLE 2. Comparison of mean precipitation and cloud properties.

TRMM
observations

Meteosat-5
observations

CCM3
simulation

Rain rate (mm day21) 3.31 3.25 5.31
Fraction of precipitation from

partly cloudy grid cells (%) 32* 19
Cloud cover (%) 45 66
Overcast grid cell cover (%) 27 52
Partially filled grid cell cover (%) 18 14

* From collocated Meteosat-5 cloud mask and TRMM TMI rain rates.

of the TRMM satellite (Kummerow et al. 1998). TRMM
Microwave Imager (TMI) brightness temperatures are
inverted to surface rain rates by means of the Goddard
profiling algorithm (Kummerow et al. 2001). Meteosat-
5 and TRMM images are collocated in time and space
by matching the Meteosat-5 image nearest in time to
the equator crossing time of each TRMM pass within
the region, and both images are averaged over the same
0.258 3 0.258 grid. Because of the high temporal sam-
pling of Meteosat-5, the collocated images differ in time
by no more than about 15 min. The cloud classification
and detection algorithm is applied to the Meteosat-5
image and the fraction of each clouds’ area that lies
within the 760-km TRMM swath is noted. Only clouds
with at least 20% of their area within the TRMM swath
are used for calibrating the IR rain estimate. Further-
more, the area of the cloud captured by the TRMM
swath must be at least 5 3 104 km2. The fraction of
each clouds’ area that is colder than 240 K ( f 240) and
the TRMM rain rate are averaged over the area of the
cloud contained within the swath. Nearly 350 clouds fit
these criteria. The relationship between area-averaged
rain rate and f 240 for these clouds is shown in Fig. 2.
The correlation coefficient between Rs and f 240 is 0.7.

The value G is determined by a least squares regression
where the contribution of each point in Fig. 2 to the
regression is weighted by the size of the cloud; G has
the value 1.86 mm h21 according to the regression.
Weighting the data by cloud size ensures that the do-
main-averaged value of Rs estimated by Meteosat-5 will
agree reasonably well with that estimated by TRMM
since the largest clouds contribute the most to the rain-
fall in the region. The domain-averaged rain rates
(which are discussed in section 3) appear in Table 2.
They are 3.31 mm day21 for TRMM and 3.25 mm day21

for Meteosat-5. The Meteosat-5 rain estimates are biased
slightly low relative to TRMM because there is a small
amount of precipitation observed from clouds that con-
tain no cloud area colder than 240 K. However, only
about 2% of total precipitation observed by TRMM oc-
curs in Meteosat-5 identified clouds with f 240 5 0. To
the extent that TRMM may underestimate warm rain
production (Kummerow et al. 2001), the 2% figure is a
lower bound on the amount of rain occurring in clouds
assumed not to be precipitating. Otherwise, the close
agreement between the TRMM and Meteosat-5 esti-
mates reflects the tuning of G by the TRMM data.

Relationships between cold cloud fraction and pre-
cipitation, when averaged over sufficient temporal and/
or spatial scales tend to be robust in spite of a poor
correlation between rain rate and cloud-top temperature
at the scale of satellite pixels. A discussion of techniques
such as the one described earlier can be found in Atlas
et al. (1990). In general, a greater amount of cold cloud-
top coverage corresponds to a higher rain rate. However,
a young, growing convective cell can have a relatively
warm cloud top, but a high rain rate. Alternatively, a
decaying anvil cloud can have a cold cloud top but a
low rain rate. The IR rain estimate requires averaging
over a sufficiently large area to capture an ensemble of
cloud elements at various stages of the convective cloud
life cycle. Alternatively, small regions can be averaged
over a sufficient period of time to capture the necessary
variability. In this study, the emphasis will be on rela-
tively large cloud systems; systems at least as large as
a grid cell in a coarse global model. For these reasons,
only clouds larger than 5 3 104 km2 are used in the
calibration of the IR rain-rate estimate. Averaging over
an area of at least 5 3 104 km2 captures a sufficient
ensemble of cloud elements to establish a reasonable
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correlation with independent rain-rate measurements,
and further averaging tends not to improve the corre-
lation (Richards and Arkin 1981).

Note that satellite estimates of surface rain rate are
uncertain; in part because of a lack of an unambiguous
ground truth. A complete analysis of the TRMM rain
estimates appears in Kummerow et al. (2001). They note
that one comparison between instantaneous rain rates
measured by TRMM and the radar located at the tropical
station on Kwajalein suggests the TRMM measurements
are biased low by 32%. An independent analysis, how-
ever, suggests a positive bias of 17%. Additional random
error is introduced into the IR estimate due to the scatter
in the relationship between Rs and G apparent in Fig. 2.

In addition to calibrating the IR rain-rate estimate,
TRMM measurements will be compared with the fre-
quency distribution and domain average of simulated
rain rates.

d. NCAR CCM3 simulation

The analysis of satellite imagery described earlier re-
sults in an ensemble of more than one million clouds
spanning several orders of magnitude in spatial coverage
and temporal duration. A companion ensemble of sim-
ulated clouds is generated for comparison using the
NCAR CCM version 3.6.6 (Kiehl et al. 1996, 1998) run
at T42 resolution (approximately 2.58 3 2.58). The mod-
el is initialized with observations from 1 September
1998 and run through 18 February 1999. The period
from 1 September through 31 December is included only
to spin up the model and is not used in the analysis.
Observed monthly mean sea surface temperatures are
applied. For comparison with the satellite imagery, only
the Indian Ocean region (208–208 lat, 408–1108 lon) is
investigated. Overcast decks of cloud are identified in
the model output by applying a threshold to the verti-
cally integrated cloud fraction field (assuming random
overlap) of 0.99. Clear sky and partially filled grid cells
are not used in the detection and tracking of simulated
clouds. The temporal and spatial scales of simulated
clouds are relatively insensitive to the choice of cloud
fraction threshold. Values between 80% and 99% were
tested with little difference in the resulting statistics.
Simulated cloud cover associated with the intertropical
convergence zone during the winter monsoon is char-
acterized by a strong gradient between grid cells with
very high cloud fraction and adjacent grid cells of low
cloud fraction.

In CCM3, the processes leading to the formation of
cloud and precipitation arise from separate parameter-
izations. Layer clouds are formed using relationships
based on relative humidity that are similar to those de-
veloped by Slingo (1987). Convective cloud cover is
computed using a relationship based primarily on con-
vective mass flux. In the tropical Indian Ocean region,
the layer cloud parameterization provides most of the
cloud cover, while the convective cloud amounts to a

steady contribution of 10% low-level coverage in nearly
all grid cells. The poor physical connection between
convection, convective cloud cover, and anvil/cirrus–
layer cloud in the model is discussed by Rasch and
Kristjánsson (1998). The spatial and temporal scales of
CCM3 simulated tropical cloudiness are thus deter-
mined primarily by the resolved-scale distribution and
transport of water vapor.

Given the important role of convection in generating
condensate for convectively coupled cloud decks, as
well as providing moisture for extended thin cirrus
decks, investigations of the spatial scales of the con-
vective cloud clusters embedded within the overcast
decks addressed in this study is essential. Observations
of the spatial scales of winter monsoon convective cloud
clusters are presented in Roca and Ramanathan (2000)
using geosynchronous satellite imagery and an algo-
rithm developed by Boer and Ramanathan (1997) that
distinguishes individual convectively generated cloud
systems from features that may be dynamically unre-
lated to them, such as low clouds or thin cirrus. The
Boer and Ramanathan (1997) approach is not used in
this study because the individual convective clouds are
not distinguishable in the model output and therefore
cannot be directly compared with the resulting obser-
vations. This is partly due to the fact that many mon-
soonal convective cloud systems are smaller than a grid
cell, though the largest cloud systems should be iden-
tifiable in model output as model resolution improves
(Roca and Ramanathan 2000). As discussed in section
4, however, convection in CCM3 tends to be smoothed
out in time and space, making individual convective
systems indistinguishable. Furthermore, the layer cloud
parameterization does not distinguish between cirrus
cloud generated directly by convection and cirrus cloud
that may result from other processes, such as large-scale
upper-tropospheric uplift. As a result, further improve-
ment of convection parameterizations, as well as im-
proved physical links between the convection parame-
terization and simulated cloud cover, are required before
individual convective clouds may be identified in model
output. Once this is possible, comparisons such as pre-
sented here should be extended to the scales of indi-
vidual convective clouds using more sophisticated ap-
proaches, such as that of Boer and Ramanathan (1997),
as a test of the improved parameterizations.

Simulated precipitation in the tropical Indian Ocean
region depends entirely on physics assumed to be oc-
curring at subgrid scales. Virtually all of the precipi-
tation produced by the model in this region is generated
within the deep convection parameterization scheme.
According to the scheme, mass fluxes of a subgrid-scale
ensemble of convective updrafts and downdrafts is pre-
dicted based on the quantity of convective available
potential energy determined from grid cell values of
temperature and humidity. Precipitation is produced at
a rate that is proportional to the mass flux of the updrafts
and a fraction of that precipitation is evaporated in the
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FIG. 3. (a) Number distribution of clouds. (b) Cloud area averaged
over the lifetime of each cloud. (c) Cumulative contribution to total
cloud area. All are shown as a function of cloud lifetime. Solid lines
are observed clouds. Dotted lines are simulated clouds. Horizontal
dashed line in (b) indicates approximate size of a single model grid
cell. Error bars indicate one standard deviation of the mean cloud
area in each size bin.

downdrafts. Details of the scheme are described in
Zhang and McFarlane (1995). In winter monsoon cloud
systems, approximately 97% of total precipitation re-
sults from deep convection. Another 2% of total pre-
cipitation is generated by a separate parameterization of
shallow convection (Hack 1994). The remainder is con-
tributed through the process of stable condensation,
whereby an entire grid cell reaches supersaturation and
the excess moisture is removed as precipitation.

3. Domain-averaged precipitation and cloud cover

A comparison of the precipitation amount and cloud
cover averaged over the entire observation region and
time period is presented in Table 2. The domain-aver-
aged rain rate as observed by TRMM during the period
is 3.31 mm day21. Using the infrared cloud-top tem-
perature proxy for rain (calibrated by TRMM) the av-
erage rain rate is 3.25 mm day21. The model-simulated
rain rate during the same period is 5.31 mm day21; or
about 60% greater than observed. The amount of pre-
cipitation that occurs in grid cells that are partially filled
with cloud is about 19% of the total model-simulated
precipitation in the domain. By collocating the Meteo-
sat-5 cloud mask and TRMM surface rain-rate obser-
vations and averaging over the CCM3 grid, it is deter-
mined that 32% of observed precipitation occurs in par-
tially filled grid cells. When observed rain rates are
averaged over cloud area and arranged by cloud size,
however, it is revealed that only about 2% of total pre-
cipitation results from clouds that are smaller than a
single T42 model grid cell (not shown). This result sug-
gests that it is common for the boundaries of interme-
diate-scale clouds and giant semipermanent clouds to
fall in the middle of a grid cell, and for that portion of
the cloud to contain some precipitation. This result im-
plies there is a limitation in the application of the cloud
detection scheme to coarse-grid model output since all
partially cloud-covered grid cells are assumed to be
composed of isolated clouds that are smaller than a grid
cell, when in fact they include cloud cover that is at-
tached to multigrid-cell overcast decks. Hence the spa-
tial scales reported for CCM3 clouds are probably some-
what underestimated.

Cloud cover is substantially larger in the model sim-
ulation than in the observations. Model-simulated cloud
fraction is 66%; 52% is attributable to the overcast cloud
decks tracked in this study, while 14% is contributed
from partially filled grid cells. Observed cloud fraction
is 45%, suggesting that the model overestimates cloud
cover by 20%. Resampling the Meteosat-5 images, at
the resolution of the model grid, indicates that the cloud
cover associated with partially filled grid cells is 18%,
which is in relatively close agreement with the model
simulation. This suggests that the largest problems in
simulating spatial coverage of cloud are associated with
the overcast decks.

4. Spatial and temporal properties of cloud cover

The satellite image analysis indicates that a few, very
large, semipermanent overcast decks dominate winter
monsoon cloud coverage over the tropical Indian Ocean.
Figure 3a (solid line) shows the number distribution of
observed clouds as a function of cloud lifetime. While
over one million individual clouds were detected and
tracked, only five clouds where found to last for greater
than 100 h. They are, however, the five largest clouds
observed; each exceeding one million square kilometers
in mean area, as illustrated in Fig. 3b (solid line). Mean
area is defined as the area of the cloud averaged over
each of the time steps through which the cloud was
tracked. The cumulative contribution to the total ob-
served cloud cover is presented in Fig. 3c and dem-
onstrates that over 80% of the cloud coverage is attrib-
utable to just these five long-lived clouds. Note that the
lifetime of clouds is a somewhat arbitrary quantity be-
cause the birth and death of clouds, even at moderate
scales, is predominantly determined by the merging and
splitting of existing clouds rather than the spontaneous
generation and dissipation of independent clouds. Nev-
ertheless, the relationship between size and lifetime
(Fig. 3b) indicates that, on average, the longevity and
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FIG. 4. (a) Evolution of cloud area for a single cloud observed over a 7-day period. (b) Evolution
of spatial coverage of each cloud type within the cloud. Solid line is deep convection/anvil cloud;
dashed line is shallow convective/thick cirrus cloud; dash–dot line is thin cirrus. (c) Evolution
of rain rate averaged over the entire area of the cloud. (d) Same as in (b) for 24-h period. Time
on axis indicates local time at the geographic center of the cloud.

spatial coverage of clouds are positively correlated. A
similar feature was observed for the convective clouds
over the Pacific Ocean (Boer and Ramanathan 1997).
Overcast decks reaching scales of tens of millions of
square kilometers exist because the spatial scales of ex-
tended cirrus decks is sufficient to bridge the gaps be-
tween regions of intense deep convection. Such decks
of cloud are able to persist for periods of weeks in spite
of the faster timescale variability of deep convection.

The diurnal variability of convection and extended
decks of anvil and cirrus cloud are indicated in time
series of cloud area for specific clouds. An example of
the evolution of cloud area for a single tracked cloud
appears in Fig. 4a. Figure 4b shows the area of the cloud
that is attributable to each classification (the sum of each
of the three lines in Fig. 4b is the curve shown in Fig.
4a). Deep convection and anvil cloudiness within this

cloud tend to peak in the afternoon as illustrated by the
area colder than 240 K (solid line). The area covered
by thin cirrus (dash–dot line) peaks 12–15 h later and
the intermediate cloud class (dashed line) peaks in be-
tween. While convection varies strongly on a diurnal
timescale, a time lag between the peak in convection
and the peak in cirrus cloud cover may explain how
giant overcast decks persist for days to weeks. Time
lags between active convection and the spatial coverage
of resulting cloud decks observed in geostationary sat-
ellite imagery are discussed by Churchill and Houze
(1984) and subsequently by Sherwood and Wahrlich
(1999). Both studies address the evolution of individual
convective structures (or composites of them as in Sher-
wood and Wahrlich 1999), whereas the overcast cloud
deck shown in Fig. 4 could be described as a cluster of
such structures embedded within a larger region of over-
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cast cloud cover. As noted by Sherwood and Wahrlich
(1999), the evolution of cloud types within convective
structures depends upon the scale of the structure. Fur-
thermore, natural variability in the timescales of the
evolution is apparent within size classes. They report a
4-h lag between the area within the 235-K brightness
temperature contour and the area within the 267-K con-
tour in the largest mesoscale convective systems ob-
served in the western tropical Pacific. This is somewhat
shorter than the 7-h lag between the peak in the deep
convection/anvil cloud class and the shallow convec-
tion/thick cirrus apparent in Fig. 4d, which may reflect
the warmer temperature threshold (280 K) used to dis-
tinguish the shallow convection/thick cirrus cloud class,
compared to the 267-K threshold used by Sherwood and
Wahrlich (1999).

A comparison of the evolution of cloud types in
CCM3 to the Meteosat-5 observations is particularly
challenging because of the low vertical and horizontal
resolution of global models, as well as the dominance
of the layer cloud parameterization. Care must be taken
that the cloud classifications assigned to model output
accurately correspond to cloud classifications assigned
to satellite brightness temperatures, and this has not been
attempted here. Nevertheless, the satellite-observed and
model-simulated cloud evolution should be reconciled,
particularly as cloud parameterizations become more
physically linked to convection and prognostic cloud
water schemes become more commonplace. One prom-
ising approach to facilitating a comparison between the
evolution of clouds in geostationary satellite imagery
and model output is to simulate satellite imager bright-
ness temperatures using cloud properties predicted by
the model as demonstrated by Morcrette (1991) and
Roca (2000). In this fashion, cloud classifications based
on brightness temperature can be consistently applied
to both the satellite data and model output.

Although cloud cover associated with overcast decks
is overpredicted in CCM3, the comparison of modeled
and observed temporal cloud statistics shown in Fig. 3
indicates good agreement (all results for model-simu-
lated clouds are shown with dotted lines). Differences
in the number distribution and mean area of clouds at
timescales of 1 h to 1 day result from the difference in
resolution between the model grid and the satellite im-
agery. The horizontal dashed line in Fig. 3b indicates
the approximate size of a single model grid cell. There
cannot be any overcast decks in the model that are small-
er than a grid cell. Because of the finer resolution of
the satellite, there are overcast decks identified in the
imagery that are smaller than the model grid cell. In
fact, there are a large number of these observed subgrid-
scale clouds, which tend to have lifetimes shorter than
a day. These clouds, if present in the model, are ex-
cluded from the cloud detection and tracking analysis.
Hence, the appearance of a larger number of short-lived
subgrid-scale clouds in the observations is an artifact
of the analysis scheme. When the data are expressed as

the cumulative contribution to total cloud cover (Fig.
3c), the dominance of the giant, semipermanent overcast
decks is apparent in both the satellite imagery and the
model simulation.

That the model is capable of reproducing the presence
of the semipermanent decks is noteworthy because the
model does not impose any timescales on the cloud
cover. In the standard configuration, the model com-
pletely erases and recalculates the cloud field once each
model hour. Since relative humidity is the sole predictor
of the upper-level clouds that make up the semiper-
manent cloud decks, this result implies that the time-
scales associated with the large-scale distribution of hu-
midity and the moisture transport are appropriate for
maintaining the cloud decks.

As mentioned above, however, cloud fraction asso-
ciated with the semipermanent decks is too large, which
is attributable to an improper representation of the spa-
tial scales of these cloud systems. Figure 5a shows the
number distribution of clouds as a function of cloud size
for observed and simulated clouds. The observations
indicate that there are many orders of magnitude more
clouds at the scale of a satellite pixel than there are at
the scales of 106–107 km2. The distribution of model-
simulated clouds indicates that there are too many
clouds at the intermediate scales of one to a few grid
cells, too few clouds between 106 and 107 km2, and too
many clouds at scales of the largest overcast decks.

In order to assess how the number distribution as a
function of size may depend upon the criteria used to
identify the boundaries of overcast decks, an inset is
included in Fig. 5a comparing distributions resulting
from clouds identified in three separate datasets: the
Meteosat-5 imagery, 23 days of TRMM-VIRS multi-
spectral data from January 1999, and 38 days of TRMM-
CERES broadband shortwave flux data from winter
1998 published previously (Wilcox and Ramanathan
2001). Because the absolute number of clouds observed
depends upon the total amount of area observed, which
is different in each dataset, the distributions are nor-
malized by the number of clouds in the 5 3 104 km2

size bin. The inset shows that up to the 106 km2 scale,
two independent measures from the polar-orbiting
TRMM data observe a size distribution of clouds com-
parable to that observed by the Meteosat-5 geostation-
ary data. However, the sizes of clouds larger than 106

km2 cannot be properly measured with polar-orbiting
data because they extend beyond the edges of the swath.

The consequence of the model bias in the size dis-
tribution of clouds is evident in Fig. 5b, which shows
the cumulative contribution to total cloud cover as a
function of cloud size. The dominant scale of clouds,
those that contribute to most of the total cloud cover,
is several million square kilometers larger in the model.
This result implies that either the upper-tropospheric
humidity is distributed too broadly over the region dur-
ing too much of the period, or the diagnostic relationship
between relative humidity and cloud fraction is biased
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FIG. 5. (a) Number distribution of clouds as a function of cloud area. Solid line is Meteosat-5
observed clouds and dotted line is simulated clouds. Inset: number distribution of clouds observed
by Meteosat-5 (solid line), TRMM-VIRS (dashed line), TRMM-CERES (dotted line; from Wilcox
and Ramanathan 2001). (b) Cumulative contribution to total cloud area as a function of cloud
area.

toward too much cloud for winter monsoon anvil and
cirrus cloud.

5. Observed and simulated precipitation properties

Across the observed scales of clouds, precipitation
rate increases with cloud size. In contrast, simulated
clouds exhibit a nearly binary behavior with respect to
precipitation (Fig. 6a). Simulated clouds smaller than 2
3 106 km2 have cloud area–averaged rain rates of about
0.15 mm h21, while clouds larger than 2 3 106 km2

have rain rates of about 0.35 mm h21. Because of the
large time- and space scales of the largest clouds, they
dominate the contribution to the domain-averaged pre-
cipitation. The overprediction of rain rate within clouds
at the largest scales, is responsible for the overprediction
of precipitation over the entire domain and time period.

Although the intermediate-scale clouds (5 3 104–5
3 105 km2) have average rain rates in better agreement
with observed rain rates, the fraction of clouds at this
scale that are precipitating is slightly overestimated, as
indicated by Fig. 6b. Here the probability that a cloud
contains a region of precipitation within its boundaries
is presented as a function of cloud size. The giant, semi-
permanent cloud decks always contain active deep con-
vection, and are therefore always precipitating. The
smallest observed clouds (less than 1 3 105 km2) almost
never precipitate. A fraction ranging between 0.4 and
1 of the intermediate-scale clouds are precipitating
clouds. This includes a fraction of clouds that never
precipitate as well as a fraction of clouds that precipitate
for only a portion of their total lifetime.

While precipitation averaged over the horizontal
scales of giant cloud decks is larger than observed, rain
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FIG. 6. (a) Rain rate averaged over the entire area of cloud. (b)
Fraction of clouds in each size bin that contain some precipitation.
All are shown as a function of cloud area. Solid lines are observed
clouds. Dotted lines are simulated clouds. Error bars indicate one
standard deviation of the mean rain rate in each size bin.

FIG. 7. (a) Frequency distribution of rain rate. (b) Cumulative con-
tribution to total precipitation. Solid lines are observations from the
TRMM Microwave Imager. Simulated rain rates from CCM3 (dotted
lines) and from CCM3 with the mesoscale evaporation modification
added to the model (dashed line). All rain rates are averaged over
CCM3 grid boxes at T42 resolution.rates on the scale of individual grid cells are biased low

relative to observations. This is confirmed by directly
comparing the frequency distribution of simulated grid
cell rain rates to measured rain rates averaged over the
same CCM3 model grid. Because rain rates estimated
by infrared brightness temperatures are less accurate
than passive microwave measurements, only TRMM
measurements are used here. All TRMM passes over
the Indian Ocean region during the 49-day period are
used and the pixel data are averaged over the CCM3
grid cells at T42 resolution. The result is shown in Fig.
7 (solid and dotted lines). Virtually all of the simulated
precipitation occurs at instantaneous rain rates lower
than 2 mm h21, while as much as 25% of the observed
precipitation occurs a rain rates higher than 2 mm h21.
Furthermore, greater than 99% of the simulated precip-
itation is diagnosed by the convective parameterization
scheme and hence is assumed to result entirely from
convective updrafts at scales much smaller than a single
grid cell. This means that less than 1% of the precipi-
tation occurs by the stable condensation process, where-
by an entire grid cell reaches supersaturation and the
excess moisture is removed as precipitation. However,
application of the cloud clustering algorithm directly to
the surface rain-rate images from TRMM indicates that
60% of observed precipitation in the region occurs in
contiguous regions of precipitation that are larger than
a single T42 model grid cell (not shown). The horizontal

scale of rain areas and the horizontal scale of a resolved
dynamical feature necessary to produce a supersaturated
grid cell are probably not comparable. Nevertheless, the
observations reveal that a significant portion of precip-
itation in the winter monsoon environment results from
mesoscale organized convective structures spanning ar-
eas larger than a model grid cell. Such structures are
not parameterized in the model, yet the model resolution
is not sufficient for motions at these scales to emerge.
These mesoscale convective systems are responsible for
the extreme, episodic precipitation events at the tail of
the TRMM rain distribution in Fig. 7. Such systems are
typically embedded within larger cloud decks with as
much as 75% of the cloud deck consisting on nonpre-
cipitating cloud (Wilcox and Ramanathan 2001). In con-
trast, the simulated clouds gently precipitate everywhere
and all of the time.

The smoothing of precipitation in time and space in
the model has obvious implications for the prediction
of extreme precipitation events. The effects on simu-
lations of the atmospheric circulation and hydrological
cycle in regions of deep convection require further
study. The poor representation of the time- and space
scales of precipitation may also have important impli-
cations for the evolution of soluble trace gas and aerosol
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constituents. The transports of such constituents are now
commonly added to global general circulation models
in order to assess their climate impacts. The distribution
of such constituents is often quite heterogeneous. Sub-
jecting them to a scavenging loss mechanism that is
improperly represented in time and space could poten-
tially lead to large errors in predictions of their con-
centrations.

6. Sensitivity of simulated rain-rate distribution to
moisture recycling

The broad distribution of gentle precipitation in
CCM3 is a consequence of a tendency within the con-
vective parameterization scheme to neutralize instability
too frequently. Similarly, the complete dominance of
convective precipitation over stable condensation results
from the too frequent invocation of the convection
scheme. A reformulation of the convective parameter-
ization is beyond the scope of this paper. However, a
simple modification to the parameterization of convec-
tive precipitation in the model is tested here that sim-
ulates the effect of the evaporation of convectively gen-
erated precipitating condensate in mesoscale down-
drafts. The modification has a significant impact on the
frequency distribution of rain rate.

In the standard formulation of CCM3, convective pre-
cipitation is diagnosed from the magnitude of convec-
tive mass flux (Zhang and McFarlane 1995). Under the
assumption that all of evaporation of precipitation oc-
curs within narrow saturated downdrafts, a portion of
the diagnosed precipitation is allowed to reevaporate.
In the case of tropical convection, however, as much as
16% of the total precipitation in a mesoscale cloud clus-
ter may be evaporated in unsaturated mesoscale down-
drafts (Gamache and Houze 1983). As mentioned pre-
viously, the physics of these mesoscale organized con-
vective structures are absent from the present formu-
lation of convection in CCM3. In this section, a simple
modification is made to CCM3 that allows a fraction of
the convective precipitation to reevaporate within the
environment surrounding the convective updrafts and
downdrafts. This modification is not intended to be a
complete parameterization of organized tropical con-
vection, as it does not include many important features,
such as the mass and momentum fluxes within meso-
scale updrafts and downdrafts. The modification does,
however, illustrate the potential importance of environ-
mental moistening by such structures in modulating the
spatial and temporal scales of precipitation. Note that
the evaporation scheme applied here is similar to a
scheme that will be included in the next version of
CCM3 and is present in other GCMs.

Parameterized mesoscale reevaporation is limited
only to precipitation generated through the parameter-
ization of deep convection. Following the formulation
of the reevaporation of stable condensation, which is
already present in the model, deep convective precipi-

tation is made available for evaporation in each lower
layer where relative humidity is less than 1. Unlike sta-
ble condensation, however, evaporation of deep con-
vective precipitation is further constrained by the cloud
field. In addition to being subsaturated, grid cells must
have a cloud fraction less than 0.5 for deep convective
precipitation to evaporate. The cloud fraction constraint
is chosen arbitrarily, however, and is designed to be
consistent with the observation that mesoscale evapo-
ration occurs in clear areas beneath precipitating anvils.
Like the evaporation of stable condensation, the rate of
evaporation of deep convective precipitation is calcu-
lated using the relation proposed by Sundqvist (1988):

1/2E 5 k (1 2 RH) R .E

Here, E is the rate of the evaporation, RH is relative
humidity, and R is the rate of production of precipita-
tion; E has the units of kg kg21 s21 and R has units of
kg m22 s21. The constant, kE, has the value 1025. For
grid columns in the Indian Ocean region with rain rates
greater than 1 mm h21, this formulation results in a
vertically integrated evaporation rate that is on average
about 10% of the surface rain rate, which is in reason-
able agreement with the observational study of Gamache
and Houze (1983).

Domain-averaged rain rate remains nearly constant
(5.39 compared to 5.31 mm day21) in spite of the in-
creased evaporation, indicating that the overall quantity
of moisture removed from the Indian Ocean monsoon
trough is somewhat insensitive to the details of precip-
itation microphysics. The distribution of precipitation,
however, changes significantly. The addition of param-
eterized mesoscale evaporation shifts the distribution of
winter monsoon precipitation toward higher rain rates
than in the standard CCM3 simulation (Fig. 7, dashed
lines). While almost no simulated precipitation occurs
at rates higher than 2 mm h21 in the standard model,
nearly 20% of the total precipitation occurs in grid cells
with rain rates greater than 2 mm h21 in the modified
model. The addition of moisture recycling also results
in a modest increase in the percentage of precipitation
resulting from stable condensation; rising from 1% in
the standard simulation to 3% in the modified simula-
tion. As discussed previously, observations of the hor-
izontal scales of surface rain-rate features suggest that
the stable condensation fraction should be higher than
in the standard model, however, the proper value of this
partitioning is not well constrained by observations.
Better observations of the vertical profile of precipitat-
ing condensate would help in this regard. Furthermore,
the value of this partitioning should be closely tied to
the convective parameterization, which, in turn, should
be properly tuned to the resolution of the model, since
the amount of stable condensation will reflect the
amount of resolved-scale convection assumed to be
present.

The modification to the model tested here is intended
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to determine if a simple modification to the model could
significantly change the distribution of precipitation.
The increased frequency of extreme rain events occurs
because of an increase in the lower-tropospheric hu-
midity, which is most prevalent in the regions where
convection is already occurring, because that is where
the evaporation is applied. This increases the conver-
gence of moisture in grid columns already undergoing
convection. Enhanced convergence of moisture at the
scale of individual storm systems has been suggested
as a mechanism for the increased frequency of extreme
precipitation events that occurs in simulations of en-
hanced greenhouse forcing (Trenberth 1998). While suc-
cessful in generating extreme precipitation rates more
similar to the observations, the modification is not in-
tended to account for the mass, momentum, and energy
fluxes associated with organized mesoscale convection.
A discussion of the effects of a more complete param-
eterization of mesoscale dynamics on many aspects of
a GCM integration can be found in Donner et al. (2001).

7. Summary

A Lagrangian analysis scheme is explored as a tool
for testing the spatial, temporal, and precipitation char-
acteristics of winter monsoon clouds over the tropical
Indian Ocean as simulated by the NCAR CCM3 global
general circulation model. Overcast decks of cloud of
the scale of a single model grid cell and larger are de-
tected and tracked over a 49-day period during January
and February 1999 and compared with clouds observed
by the Meteosat-5 geosynchronous satellite. Statistics
for simulated and observed clouds are arranged by size
and lifetime in order to determine if the frequency dis-
tribution of clouds as a function of size and lifetime are
properly simulated. Furthermore, the dependence of rain
rate and rain frequency upon cloud size is compared,
where infrared rainfall estimates are supplemented with
collocated observations from the TRMM satellite. Such
Lagrangian statistics supplement more traditional Eu-
lerian techniques of comparing time- and space-aver-
aged, gridded fields of cloud cover and precipitation in
determining where model parameterizations fall short
of simulating complex deep convective cloud systems.

Note that the 1 January–18 February 1999 period
spanned by this study coincides with one complete Mad-
den–Julian oscillation. Convective activity is building
during the early part of January and peaks about 23
January. Convective activity then decreases, and is sup-
pressed during the first part of February, before building
again following the 18 February ending date of this
study. The strength of this oscillation, in terms of in-
traseasonal variability of outgoing longwave radiation,
is not particularly strong or weak relative to other years,
although the timing of the 23 January peak in the area
influenced by convective activity is unusual (J.-P. Duvel
2002, personal communication).

Clouds, defined as overcast decks, are observed span-

ning spatial scales from 25 km2 to greater than 107 km2;
as well as temporal scales from 1 h to greater than 100
h. Semipermanent decks of anvil and cirrus cloud, with
numerous regions of deep convection embedded within,
dominate total cloud cover. The peak in the spatial cov-
erage of cirrus cloud lags the peak in coverage by deep
convective cloudiness by 12–15 h, acting to bridge the
regions between convective centers. As a result, semi-
permanent cloud decks can persist for timescales of days
to weeks. It is potentially advantageous for global mod-
els with coarse grids that overcast decks as large or
larger than several model grid cells dominate deep con-
vective cloud cover. From a validation standpoint, this
fact means there are identifiable cloud features (i.e.,
resolved overcast decks) that can be directly compared
to similar observable features. Semipermanent decks are
simulated in CCM3 in spite of the fact that the diag-
nostic scheme for predicting cloud cover makes no as-
sumptions about the timescales of cloud material. Nev-
ertheless, several significant differences are apparent be-
tween the observed and simulated cloud systems.

At scales greater than 106 km2 the size distribution
of simulated clouds is biased such that the dominant
scale of clouds is several million square kilometers larg-
er than the dominant scale of observed clouds. Averaged
over the entire domain, cloud cover attributable to the
giant overcast decks is overpredicted by greater than
20%. In order to maintain cloud decks of this scale,
precipitating deep convection is always occurring some-
where within the boundaries of the cloud. These cloud
systems also contribute most of the precipitation in the
region. Within the simulated semipermanent decks, pre-
cipitation rates averaged over cloud area are substan-
tially higher than observed. As a result, the domain-
averaged precipitation rate is larger in the model sim-
ulation than is observed by the TRMM satellite. Al-
though precipitation is overpredicted in the model, the
frequency distribution of rain rates is biased low in the
model relative to TRMM data averaged over the model
grid. The semipermanent cloud decks simulated in the
model gently precipitate throughout their duration and
everywhere within their boundaries. This contrasts with
observed semipermanent cloud systems, which precip-
itate throughout their duration, but do so in more lo-
calized regions of precipitation with nonprecipitating
regions of cloud between. Most of the observed pre-
cipitation occurs in mesoscale precipitation features
with high precipitation rates that are absent from the
model. All of the simulated precipitation occurs in con-
vective updrafts assumed to be small relative to a model
grid cell. What the model lacks is a process that acts to
organize the convective cells within fewer grid cells, in
addition to a representation of the observed stratiform
precipitation structures. Furthermore, while most grid
cells within the semipermanent clouds are precipitating,
very few reach grid cell supersaturation and precipitate
by stable condensation. The scales of saturated regions
cannot be observed; however, the TRMM imagery in-
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dicates that as much as 60% of precipitation results from
precipitation regions that are larger than a single grid
cell. This implies that a greater fraction of simulated
precipitation should arise from stable condensation, al-
though more detailed observations are required to prop-
erly constrain this parameter.

On average, intermediate-scale clouds (clouds of the
size of one to a few grid cells) have precipitation rates
that are similar to observed clouds of comparable scale.
However, the probability that a cloud at this scale con-
tains some precipitation is slightly overestimated in the
model. Cloud cover associated with partially filled grid
cells in the model agrees reasonably well with observed
clouds averaged over the model grid. Evidence suggests
that a significant portion of the partially filled grid cells
are in fact attached to overcast decks that are larger than
a grid cell; 19% of simulated precipitation and 32% of
observed precipitation occurs in model grid cells that
are only partially filled with cloud. Clouds that are phys-
ically smaller than a model grid cell are plentiful in the
observations; however, they account for a small portion
of the total cloud cover and only 2% of precipitation
observed by TRMM.

As the application of general circulation models ex-
pands to the simulation and prediction of precipitation
variability of societal importance, such as the frequency
of extreme precipitation events, the biases in the dis-
tribution of rain rates documented here will become an
increasingly serious issue. Even in cases where analyses
of simulated monthly mean precipitation fields indicate
quantitative and spatial agreement with observations,
the intense precipitation events associated with orga-
nized mesoscale structures are missing. Likewise, the
use of global GCMs to drive the advection and scav-
enging of aerosols will require that the spatial and tem-
poral scales of precipitation be adequately represented.
The application of the Lagrangian analysis scheme em-
ployed in this study to satellite imagery of clouds and
precipitation can help constrain assumptions within
aerosol scavenging parameterizations about the spatial
scales of precipitation.

Convection parameterizations that include the orga-
nization of deep convection, and associated mesoscale
circulations, may help generate the extreme precipita-
tion events not presently found in CCM3. In this study,
a modification to CCM3 is tested that is intended to
account for the evaporation of upper-level precipitation
in midlevel mesoscale downdrafts. The modification re-
sults in only a slight change in domain-averaged pre-
cipitation, indicating that the regional-scale hydrologi-
cal balance is not sensitive to this aspect of convection.
However, it causes a significant shift in the distribution
of precipitation toward higher rain rates, as well as a
modest increase in the fraction of precipitation resulting
from stable condensation. The modification demon-
strates the sensitivity of the model to one important
component of mesoscale organized convection. Further
testing with more complete parameterizations of me-

soscale convection, including representations of addi-
tional processes such as mesoscale mass fluxes and anvil
cloud microphysics, should be performed. Attention
should be paid to how such processes impact quantities
such as instantaneous rain rate and cloud scales, in ad-
dition to time- and space-averaged climate. For exam-
ple, a more complete representation of phase changes
associated with mesoscale circulations may impact the
upper-tropospheric water budget and the spatial scales
of simulated cloud decks.

The analysis presented here needs to be extended
globally in order to completely document the extent of
the model biases found here and the specific regions
and meteorological regimes affected by them. Compar-
isons between simulated and observed cloud systems
should include time- and space-averaged quantities,
such as monthly mean cloud cover and precipitation, as
well as instantaneous quantities, such as the spatial
scales of cloud systems and instantaneous rain rates. For
example, global climate models, such as CCM3 are used
to investigate the response of the hydrological cycle to
enhanced greenhouse forcing (e.g., Roads et al. 1996).
Increases in accumulated regional precipitation, in con-
junction with an increase in the frequency of extreme
instantaneous, storm-scale precipitation events, is a
common response in GCMs to enhanced greenhouse
forcing (Trenberth 1998). In the simulated winter mon-
soon, however, accumulated regional precipitation is bi-
ased high while instantaneous, storm-scale rain rates are
biased low. This result highlights the need to test models
at multiple scales.

An advantage of the Lagrangian analysis scheme is
that it evaluates clouds and precipitation in the context
of integrated cloud systems. Convection, clouds, and
microphysics are parameterized separately in GCMs. In
nature, however, close coupling between each of these
processes gives rise to the cloud systems observed in
satellite imagery. Not every applicable quantity is ob-
servable, however, the Lagrangian scheme provides a
means of evaluating how well the links between each
of the parameterized processes result in cloud systems
that mimic natural cloud systems. This study has ex-
plored some of the relationships between precipitation
and cloud cover. The analysis demonstrates that there
is a mismatch between the distribution of precipitation
and the distribution of cloud cover: most seriously with-
in the giant semipermanent decks. In spite of the fact
that convective-scale and mesoscale updrafts provide
the condensate for both the precipitation and the ex-
tended decks of cloud, the relative humidity–based
cloud cover parameterization is physically decoupled
from convection in the model. The resulting cloud cover
associated with the semipermanent decks is higher than
observed and precipitation is not properly distributed in
time and space within the clouds.
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