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ABSTRACT

The uncertainty of rainfall estimated from averages of discrete samples collected by a satellite is assessed
using a multiyear radar dataset covering a large portion of the United States. The sampling-related uncertainty
of rainfall estimates is evaluated for all combinations of 100-, 200-, and 500-km space domains; 1-, 5-, and 30-
day rainfall accumulations; and regular sampling time intervals of 1, 3, 6, 8, and 12 h. These extensive analyses
are combined to characterize the sampling uncertainty as a function of space and time domain, sampling fre-
quency, and rainfall characteristics by means of a simple scaling law. Moreover, it is shown that both parametric
and nonparametric statistical techniques of estimating the sampling uncertainty produce comparable results.
Sampling uncertainty estimates, however, do depend on the choice of technique for obtaining them. They can
also vary considerably from case to case, reflecting the great variability of natural rainfall, and should therefore
be expressed in probabilistic terms. Rainfall calibration errors are shown to affect comparison of results obtained
by studies based on data from different climate regions and/or observation platforms.

1. Introduction

Monitoring rainfall on a global scale is key to a quan-
titative understanding of the global hydrologic cycle and
our climate system. Observations from spaceborne plat-
forms offer global coverage, albeit with limited sam-
pling in space and time depending on the satellite’s orbit
and instrument configuration. This limitation in sam-
pling frequency, in combination with the intermittence
of rainfall in space and time, causes satellite-based rain-
fall estimates to be uncertain. Studies such as North and
Nakamoto (1989), Bell et al. (1990), Steiner (1996), Bell
and Kundu (2000), and Bell et al. (2001), using ground-
based rainfall data, have shown that this uncertainty is
expected to decrease for higher rainfall rates, larger do-
main sizes, and longer time integration. This has also
been seen in studies using satellite data, for example,
by Chang et al. (1993), Weng et al. (1994), Berg and
Avery (1995), Huffman (1997), and Chang and Chiu
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(2001). On the other hand, increasing the sampling time
interval (i.e., reducing the sampling frequency) will re-
sult in a larger uncertainty. A recent survey of sampling
uncertainty for various geophysical parameters is pro-
vided by Astin (1997).

Motivated by these earlier studies, therefore, the
sampling-related uncertainty sE is assumed to be a
function of the rainfall rate R, the domain size A, the
time integration T, and the sampling time interval D t
according to

1 1 Dt
s 5 f , , . (1)E 1 2R A T

A specific analytical framework for estimation of the
sampling uncertainty is developed in section 2. Using
a multiyear dataset of continental-scale, radar-based
rainfall observations over the United States east of the
Rocky Mountains, the sampling-related uncertainty of
averages of observations made at regular time intervals
is studied in depth (section 3). Irregularities in the
space–time sampling pattern (e.g., Salby 1982a,b;
Wunsch 1989; Chelton and Schlax 1991; Wu et al. 1995;
Zeng and Levy 1995; Negri et al. 2002) and issues of
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rainfall retrieval accuracy (e.g., Wilheit 1988; Bell et
al. 1990, 2001; Ha and North 1995) or combination of
observations from multiple satellite platforms (e.g., Shin
and North 1988; North et al. 1993; Bell and Kundu
1996) are not considered as part of this analysis.

The sampling-related uncertainty is evaluated as a
function of typical space and time domains, sampling
frequency, and the rainfall intensity. The present anal-
yses go beyond what previous studies have achieved in
at least two major ways: 1) an extensive database is
explored in depth and 2) two distinctly different ap-
proaches of estimating the sampling-related uncertainty
are compared. Moreover, an attempt is made to char-
acterize the accuracy of such uncertainty estimates.

This study thus aims at quantifying the uncertainty
(often dubbed the sampling error) of remotely sensed
rainfall estimates based on discrete sampling in space
and time. The results will provide guidance for inter-
pretation of rainfall estimates from satellites, such as
the Tropical Rainfall Measuring Mission (TRMM) sat-
ellite (Simpson et al. 1988, 1996; Kummerow et al.
1998) or the Advanced Microwave Sounding Units
(AMSU) flown aboard the current operational National
Oceanic and Atmospheric Administration (NOAA) po-
lar-orbiting satellite series (e.g., Kidder et al. 2000; Fer-
raro et al. 2002), and planning of future satellite mis-
sions, such as the Global Precipitation Measurement
(GPM) mission.

2. Analysis procedures and data

a. A framework for estimation of sampling
uncertainty

There are at least two different statistical approaches
to estimating the sampling-related uncertainty of rain-
fall: parametric methods (with stochastic space–time
rainfall model parameters fitted to data) and nonpara-
metric, purely empirical methods (based on subsampling
scenarios). These latter methods typically build on re-
sampling by shifts techniques based on high-resolution
rain gauge and/or radar data (e.g., McConnell and North
1987; Steiner 1996; Li et al. 1996). A mathematical
framework is developed here that enables direct com-
parison of the two approaches.

In the study of sampling uncertainty by Laughlin
(1981), a satellite is assumed to make its first obser-
vation at t 5 0, subsequent observations at regular in-
tervals of Dt, and its last observation at t 5 T. The
resampling by shifts method of estimating the sampling-
related uncertainty assumes instead that the simulated
satellite observations begin at an arbitrary time t0 with
0 # t0 , Dt. Laughlin’s approach, however, can easily
be modified to accommodate arbitrary starting times
within the averaging interval [0, T], as summarized be-
low. Except for the starting time, the assumptions are
the same as in Laughlin (1981): the satellite sees an area
A (all of it) at intervals Dt during a time period T.

Sampling begins at starting time t0, and a total of n 5
T/Dt samples are collected. Regardless of the starting
point t0, the true average rainfall is defined to be

T1
R 5 R (t) dt, (2)E AT 0

while the sample average, with starting time t0, is
n211

R̂(t ) 5 R (t 1 kDt). (3)O0 A 0n k50

Here, RA(t) is the instantaneous rain rate at time t av-
eraged over a grid box with area A. The error in the
sample average due to the discrete sampling for a par-
ticular starting time t0 is

ˆ«(t ) 5 R(t ) 2 R .0 0 (4)

The resampling by shifts method (nonparametric ap-
proach) obtains an estimate of the mean-squared sam-
pling uncertainty from the average of «2(t0) over all2s E

possible values of t0 in the interval 0 # t0 , Dt, which
may be denoted as

2 2s 5 ^« (t )& .E 0 t0
(5)

Using the same statistical assumptions as Laughlin
(1981), an estimate of (5) for the parametric approach
is derived in the appendix, with the result

Dt Dt
2 2 2ˆs 5 ^[R(t ) 2 R] & ø s c , (6)E 0 t A 10 1 2T t A

where

c (z) 5 coth(z/2) 2 2/z.1 (7)

Here, is the variance and tA the correlation time (i.e.,2s A

1/e-folding time of the autocorrelation) of the instan-
taneous area-average rain rate RA(t). Terms that only
become significant for small T are omitted in Eq. (6).
Their contributions to the sampling uncertainty estimate
are discussed in the appendix. Shin and North (1988),
Bell and Kundu (1996, 2000), and Bell et al. (2001)
provide additional background for the derivation of Eq.
(6). We refer to approximation (6) as the Laughlin–Bell
approach.

Equation (6) predicts that sE should be approximately
linear in Dt for small Dt, because a power series ex-
pansion of (6) gives

2 4(Dt) (Dt)
2 2s 5 s 2 1 · · · . (8)E A 3[ ]6t T 360t TA A

For T k tA (typically tA ; 3–8 h), this is well ap-
proximated by

s DtAs ø . (9)E Ï6t ÏTA

Because the next order correction term in (8) is fairly
small, the linearity between sE and Dt may persist over
a substantial range of values of Dt. As Dt becomes large
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compared with the correlation time tA, however, (6)
predicts that sE should begin to scale more like .ÏDt

It should be noted that this linearity in Dt is a con-
sequence of Laughlin’s (1981) assumption that the au-
tocorrelation of the area-average rain rate behaves like
an exponential e for small lags t. An autocorrelation2t/tA

that did not drop off so quickly for small lags, as
e , for instance, would lead to sampling uncertainty22(t/t )A

increasing as a higher power of Dt. As we will see later
(section 3), the data exhibit an approximately linear de-
pendence on Dt over the sampling frequency range in-
vestigated, suggesting that the autocorrelation of RA(t)
may be roughly exponential.

The sampling uncertainty sE is predicted by Eq. (6)
to be proportional to T20.5. For T small enough, there
is the possibility that the terms omitted from (6) might
predict deviations from this simple proportionality. As
shown in the appendix, however, even for T as small as
1 day the deviations from the inverse square root scaling
are small. (See also results discussed in section 3.)

How does sE depend on the area A? This is not quite
as easy to assess, because the dependence of sE on A
is governed both by the dependence of sA and of tA on
A. For large A, assuming that the spatial and temporal
correlation of rain events decreases rapidly for suffi-
ciently large space and time separations, it is likely that
sA ; A20.5 and that tA may become independent of A;
thus, for large space domains sE may be proportional
to A20.5. For small A, however, this may not generally
be the case. In radar data collected during the Global
Atmospheric Research Program (GARP) Atlantic Trop-
ical Experiment (GATE; Kuettner et al. 1974), for ex-
ample, a behavior like ø 25A20.33 mm2 h22 and tA

2s A

ø 0.39A0.26 h is seen (Bell 1987; Bell et al. 1990), where
A has units of km2. The dependence of sE on A for
small A, if the fits to GATE statistics are to be believed,
is thus approximately ;A20.3 according to (9).

b. Data and analysis procedures

The analyses of the sampling-related uncertainties are
based on a multiyear, continental-scale, merged radar
data product provided by Weather Services International
(WSI) Corporation at a resolution of approximately 2
km in space and 15 min in time. Radar reflectivity of
this product comes at 16 discrete levels. For the purpose
of our analyses, the radar reflectivity factor Z was con-
verted to rainfall rate R using a hail threshold of 55 dBZ
and a gauge-adjusted Z 5 600R1.4 relationship. A more
detailed description and different use of this data prod-
uct may be found in Carbone et al. (2002). Issues about
the radar rainfall estimation are extensively discussed
in Steiner et al. (1999) and references therein.

This dataset may not reflect the true rainfall that oc-
curred at any given point in space and time; however,
it provides a most realistic representation of rain vari-
ability over the continental United States east of the
Rocky Mountains. The gauge adjustment resulted in es-

sentially unbiased radar rainfall estimates, as shown in
Fig. 1. The analyses of the sampling-related uncertainty
are thus on good grounds, particularly because they
build primarily upon relative comparisons rather than
absolute values, as detailed later.

The analyses discussed here are focused on the sum-
mer months June 1999 (Fig. 1c), July 2000 (Fig. 1d),
August 1997 (Fig. 1e), and September 1998 (Fig. 1f).
These months were selected to represent data from var-
ious months and years, and to have minimal data gaps
(less than 3 rainfall maps missing in total). Data gaps
were filled by linear interpolation between time steps
for each grid point individually. The present study do-
main spans approximately 358–458N in latitude and 808–
1008W in longitude (Fig. 1a). Roughly speaking, this
domain covers the area in between the Rocky Mountains
(to the west) and the Appalachian Mountains (to the
east), and reaches from Texas (in the south) to the Great
Lakes (in the north).

The study area was divided into squared domains with
side length L (L 5 A0.5) of 500 km (6 domains), 200
km (48), or 100 km (192), respectively, and rainfall
observations were integrated over time periods T of 30
days (1 period), 5 days (6), or 1 day (30) for our anal-
yses. The sampling-related uncertainty was assessed for
sampling time intervals Dt of 12, 8, 6, 3, and 1 h, and
15 min (full resolution), respectively. Analyses were
carried out for all combinations of domain size, time
period, and sampling frequency for all 4 months inves-
tigated.

1) APPROACH BASED ON RESAMPLING BY SHIFTS

The basic analysis procedure is that of a subsampling
exercise to determine how much uncertainty is typically
present in rainfall estimates, as a function of the fre-
quency of sampling. The rainfall for a given time period
is estimated from samples obtained at regular time in-
tervals, assuming that each sample is representative of
what occurred during the unobserved interval around it.
All possible sampling scenarios based on the 15-min
data and the selected sampling time interval are ana-
lyzed (by shifting the start time) and comparing the
sample average to the rainfall estimate based on using
all samples, as outlined in section 2a.

The sampling-related uncertainty sE, estimated as the
standard deviation of the rainfall estimates obtained by
successive shifts of the start time, is expressed relative
to the true average rainfall as

Ïvar[«(t )]s 0E 5 , (10)
R R

where var[«(t0)] is the variance of rainfall errors «(t0)
as defined in (4), over all possible shifts in the starting
time t0. This variance typically increases with decreas-
ing sampling frequency.

The resampling by shifts procedure has been em-
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FIG. 1. Geography and radar rainfall calibration. (a) Study domain (shaded in gray) covering the Great Plains of the United States. The
approximate boundaries of this domain are 358–458N and 808–1008W. (b) Radar-based vs gauge-accumulated rainfall for all 4 months
combined. (c)–(f ) Radar vs gauge rainfall for Jun 1999, Jul 2000, Aug 1997, and Sep 1998, respectively. The ratio of mean radar to mean
gauge rainfall is indicated in each bottom-right corner.

ployed in numerous studies (e.g., McConnell and North
1987; Steiner et al. 1995; Soman et al. 1995; Steiner
1996; Li et al. 1996). Steiner (1996), for example, used
this methodology to estimate the sampling-related un-
certainty of surface rainfall based on extensive rain
gauge information. Using radar data, these analyses
were subsequently expanded by Steiner and Houze
(1998) to examine the sampling uncertainty of the entire
three-dimensional structure of rainfall.

2) APPROACH BASED ON LAUGHLIN AND BELL

The sampling-related uncertainty is estimated based
on the Laughlin–Bell approach according to Eqs. (6)
and (7) described in section 2a. The key rainfall param-
eters needed are the variance and time correlation2s A

tA of the area-average rainfall-rate time series RA(t). As
in Eq. (10), the sampling-related uncertainties are ex-
pressed relative to the true rain rate as sE/ .R

Figures 2–4 show the distributions of three key pa-
rameters for the 4-month dataset: the space and time

domain-average true rain rate (Fig. 2), the varianceR
in time of the instantaneous area-average rain rates2s A

(Fig. 3), and the time correlation tA of the instantaneous
area-average rain rates (Fig. 4).1 The number shown in
the bottom-right corner of a panel indicates the sample
size contained in that distribution. The distributions are
normalized using their respective sample size. The max-
imum value of a given distribution is shown in the up-
per-right corner of the panel.

The rain-rate distribution significantly widens with
decreasing time integration, but also with decreasing
domain size (albeit not as quickly), as shown in Fig. 2.
This is expected because reduced levels of averaging

1 The correlation time tA of the instantaneous area-average rain rate
is determined as the 1/e-folding time of the autocorrelation. The au-
tocorrelation function is obtained by dividing all covariances by the
geometric mean of the corresponding variances. The covariance func-
tion is estimated by summing the lagged products and dividing by
the length of the time series. The S-PLUS software package was used,
which is available from Statistical Sciences, Inc., Seattle, Washington
98109.
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FIG. 2. Distributions of space and time domain-average rain rate based on 4 months of data for three averaging areas and three averagingR
periods. The sample size, indicated by the number in each bottom-right corner, is used to normalize the respective mean rain-rate distribution.
The maximum value of each distribution is shown in the top-right corner.

will retain peak rain-rate values more easily. The max-
imum space and time domain-average rain rate increases
from approximately 0.3 mm h21 for the 500-km and 30-
day setting (Fig. 2, top left) to roughly 3.4 mm h21 for
the 100-km and 1-day configuration (bottom right). To
put this in perspective, a rainfall of 0.3 mm h21 intensity
accumulates approximately 7 mm day21 and 220 mm
month21. At 3.4 mm h21 more than 80 mm of rain
(averaged over a 10 000 km2 area) are generated in a
day. The 4-month dataset thus comprises a representa-
tive range of mean rain rates.

The variance of the area-average rain-rate trace2s A

increases rapidly both with decreasing space and time
domain, as shown in Fig. 3. The time correlation tA of
the area-average rain-rate trace, however, exhibits a
rather different behavior (Fig. 4). Although the maxi-
mum of tA appears to be similar for given time periods,
independent of the space domain, the bulk of the dis-
tribution of correlation times clearly shifts to smaller
values with decreasing space and time domains. A bi-
modal distribution with typical values of tA ; 5.5 and
8.5 h is seen for monthly rainfall on a 500-km domain.
Much shorter time correlations (,3 h) are observed for

daily rainfall on 100-km domains. The reduction in cor-
relation times evaluated using the 1-day time series may,
in part, be due to a bias introduced by the standard
estimator of autocovariances.

The coefficient of variation sA/ of the area-averageR
rain rates is directly proportional to the sampling un-
certainty sE, as can be seen from (9). This rainfall pa-
rameter, shown in Fig. 5, will be used later in the dis-
cussion of results (section 3c).

3. Results and discussion

a. Characteristics of rainfall sampling uncertainty

The sampling-related uncertainty is estimated for any
combination of the various space and time domains, and
sampling frequencies explored based on the 4-month
dataset. Note that the examined dataset represents the
equivalent of 2 yr worth of data for a 500-km domain,
16 yr for a 200-km domain, and 64 yr for a 100-km
domain. Moreover, the sampling uncertainty is esti-
mated using two distinctly different approaches, as out-
lined in section 2b. The results obtained using the re-
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FIG. 3. Distributions of the variance of the instantaneous area-average rain rate RA(t) based on 4 months of data. The corner notations2s A

are similar to Fig. 2.

sampling by shifts technique are discussed first. The
results using the Laughlin–Bell approach will be de-
scribed in section 3b.

Figure 6 summarizes the results of estimating the
sampling uncertainty for the nine possible combinations
based on three space (500, 200, and 100 km) and three
time (30, 5, and 1 day) domains. In addition, within
each panel the results for five sampling time intervals
(1, 3, 6, 8, and 12 h) are shown. The sampling uncer-
tainty distributions are represented by their full range
of values (bold solid line), the center 50% of values
(outlined box), and the distribution median (bold dot).
The results shown in Fig. 6 are limited to space- and
time-domain-average rain rates ; 0.1 mm h21 (i.e.,R
0.075 , # 0.125 mm h21). Results for other meanR
rain rates are presented later. The corresponding sample
size (identical for all sampling frequencies) is indicated
by the number in the bottom-right corner of each panel.
The dotted line (and shaded area) indicates sampling
uncertainty estimates (and range of uncertainty) based
on a fitted scaling law to the data, as will be discussed
later as well.

The sampling-related uncertainty clearly scales with

space and time domain, and with sampling frequency,
as can be seen from Fig. 6. The larger the space and
time domain the smaller is the sampling uncertainty.
Similarly, the higher the sampling frequency (i.e., small-
er sampling time interval) the smaller is the related un-
certainty. However, even for a narrow rain-rate range
of 0.075 , # 0.125 (nominal ; 0.1 mm h21), aR R
very significant range of sampling uncertainty is ob-
served. This range of sampling uncertainty is a reflection
of the great variability of rainfall in space and time. For
example, for a TRMM-like sampling2 of Dt ; 12 h, the
median of the distribution of sampling uncertainty for
daily rainfall on a 100-km domain (bottom right of Fig.
6) is 154%, yet the center 50% of the distribution spans
from 116% to 196% (extreme values of sampling un-
certainty are found as low as 40% and as high as 460%).
For a GPM-like sampling (Dt ; 3 h), this sampling
uncertainty drastically reduces to 43% (median), with
half the estimates falling within the range of 26%–67%.

2 Note that at the equator the true TRMM sampling is closer to Dt
; 24 h. For simplicity, however, variable sampling intervals as a
function of latitude are not considered in this study.
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FIG. 4. Distributions of the time correlation tA of the instantaneous area-average rain rate RA(t) based on 4 months of data. The corner
notations are similar to Fig. 2.

The sampling-related uncertainties for monthly rainfall
on a 500-km domain (top-left of Fig. 6), as observed
by a TRMM-like satellite platform, show a median value
of 17%, with the center 50% of values falling between
8% and 20%.

Similarly to Fig. 6, the sampling-related uncertainty
may be shown for any mean rain rate. Rain rates of 0.5,
1.0, and 1.5 mm h21 are selected to highlight the scaling
of sampling uncertainty with rain rate in Fig. 7; however,
results are shown for 1-day periods only. No samples
exhibited mean rain rates of 1 and 1.5 mm h21, re-
spectively, for daily rainfall on 500-km domains. Sim-
ilarly, there were no samples with mean rain rates of
1.5 mm h21 for daily rainfall on 200-km domains. None-
theless, the scaling of sampling uncertainty with domain
size can be seen for all rain rates, and by comparing
Figs. 6 and 7 a scaling with rain rate becomes apparent.

In order to quantify the scaling of sampling uncer-
tainty with space and time domain size, sampling fre-
quency, and mean rain rate, the distribution medians
were determined for all 45 combinations of space (3
options) and time (3) domains, and sampling frequen-
cies (5). The median was selected rather than the mean

because of its much reduced sensitivity to extreme val-
ues (outliers). Moreover, this was done for the rain-rate
range of 0 , # 3.5 mm h21 in steps of 0.05 mm h21R
(70 intervals). The resulting large ensemble of distri-
bution medians was then used to fit the coefficients a,
b, c, d, and e of the following, empirically guided, sim-
ple sampling uncertainty scaling law:

b c d e
s R L T DtE 0 0 0100% 5 a , (11)1 2 1 2 1 2 1 2R R L T Dt0

by minimizing the root-mean-square (rms) difference
between the predicted uncertainty (11) and the corre-
sponding median value, using R0 5 1.0 mm h21, L0 5
500 km, T0 5 30 day, and Dt0 5 1 h, respectively.3 In
addition, sensitivity tests were performed to assess the
robustness of the coefficient values (Table 1). In par-
ticular, we assessed the variability of the coefficients

3 The multiplicative factor a was adjusted by means of removing
the mean difference (bias), while the coefficients b, c, d, and e were
determined iteratively (in steps of 0.05) to find the minimum rms
difference.
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FIG. 5. Distributions of the coefficient of variation sA/ of the instantaneous area-average rain rate RA(t) based on 4 months of data. TheR
corner notations are similar to Fig. 2.

from month to month, and also used only medians that
were based on distributions containing minimally 1, 5,
10, or 15 samples. By increasing the minimum number
of samples required in a given distribution, the respec-
tive median values are thought to become more repre-
sentative and thus are given priority in the fitting pro-
cedure.

Based on the results summarized in Table 1, we se-
lected a 5 0.80, b 5 0.20, c 5 0.70, d 5 0.35, and e
5 1.05 as the ‘‘best fit’’ coefficients of (11). These
coefficients exhibit some variability from month to
month and depend on the underlying data constraints;
however, overall they appear to be rather robust esti-
mates. The exponents (i.e., coefficients b, c, d, and e)
may be uncertain at the 10% level and the overall pre-
diction of sampling uncertainty at the 25% level, based
on the results compiled in Table 1 and experimentation
with weighted fitting procedures in logarithmic space
(not shown).

Equation (11), using the fitted coefficients, displays
a scaling of sampling-related uncertainty of rainfall es-
timates that is pretty much linear in sampling time in-
terval Dt (e 5 1.05)—at least for the range 0 , Dt #

12 h investigated (see Figs. 6 and 7)—similar to the
results obtained by Steiner (1996) or Li et al. (1996),
and as predicted by Eq. (9). A linear scaling in Dt sug-
gests that the autocorrelation of the area-average rain
rate should decrease roughly exponentially, as originally
assumed by Laughlin (1981). This linearity predicted
for small Dt, however, depends only on the small-lag
behavior of the autocorrelation, and does not contradict
potentially different behavior for longer time lags, as is
sometimes observed. For example, Rodriguez-Iturbe et
al. (1998) provide evidence that rainfall observations
appear to have a long-range memory, which suggests
that the scaling with sampling time interval might
change for larger Dt. In fact, Weng et al. (1994) show
that an approximate linearity in scaling of sampling un-
certainty for Dt , 12 h starts to break down for Dt .
12 h. The scaling of sampling uncertainty with time
domain T (d 5 0.35) is close to (albeit not quite) the
inverse square root behavior advocated by (9). The scal-
ing with space domain size L (c 5 0.70) is very similar
to what would be predicted from GATE I rainfall data,
as discussed in section 2a.

Figure 8 highlights the scaling of sampling uncer-
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FIG. 6. Distributions of the sampling-related uncertainty (determined by the resampling by shifts approach) as a function of space and
time domain, and sampling frequency. Shown are the results for a space and time domain-average rain rate of ; 0.1 mm h21 based onR
the 4-month dataset. The full range of each distribution is shown by the solid line, the outlined box indicates the center 50% of the values,
and the bold dot marks the distribution median. The sample size for each distribution (identical for all sampling frequencies shown within
a panel) is indicated by the number in the bottom-right corner. The dotted line is based on the fitted scaling law (11) characterizing the
sampling-related uncertainty as a function of space and time domain, and sampling frequency, with 5 0.1 mm h21. The surroundingR
shaded area marks the predicted sampling uncertainty 625% of its value.

tainty with mean rain rate (b 5 0.20), showing a clearR
departure from the inverse square root behavior sug-
gested by simple models (e.g., Bell and Kundu 2000).
The scaling of sampling uncertainty as 20.5 is born outR
of the assumption that variations in total rainfall within
an area would primarily be due to variations in the num-
ber of independently evolving precipitation systems pre-
sent rather than variations in the intensity of the indi-
vidual system. If domains with more rain tend also to
have larger spatial extent of rainy areas and/or more
intense rain, the 20.5 dependence may be altered. Ap-R
parently the previous assumptions leading to a 20.5R
behavior are not applicable here.

The shaded areas in Figs. 6, 7, and 8 outline the range
of 0.75–1.25 times the sampling uncertainty estimated
by (11) using the median-fitted coefficients (dotted
lines). This uncertainty range roughly approximates the
center 50% of the sampling uncertainties estimated by
the resampling by shifts method.

How well does the scaling law (11) based on the fitted

coefficients gauge the sampling-related uncertainty us-
ing all 4 months’ worth of data? The visual impression
obtained from Figs. 6, 7, and 8 suggests that the simple
scaling law (11) predicts the sampling uncertainty as a
function of space and time domain, sampling frequency,
and mean rain rate rather well. A closer inspection
though, reveals deviations from the approximate linear
scaling in Dt. For example, a scaling with sampling time
interval of Dte.1 is hinted for 500-km domains, while
a scaling more like Dte,1 is observed for 100-km do-
mains. These nuances become most visible for sampling
time intervals of Dt . 8 h. Recall Fig. 4 that displayed
tA , 3 h for 100-km domains, which is significantly
smaller than the sampling time interval, consistent with
the discussion in section 2a.

Tables 2 and 3 compile the actual mean and rms dif-
ferences (in %) between sampling uncertainties esti-
mated by the resampling by shifts method and predicted
by the median-fitted scaling law (11). The mean dif-
ferences (Table 2) are typically small (a few percent
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FIG. 7. Distributions of the sampling-related uncertainty (determined by the resampling by shifts approach) as a function of space and
time domain, and sampling frequency, similar to Fig. 6. Shown are the results for 1-day rainfall only, but for increasing mean rain rates of
(left) 0.5, (middle) 1.0, and (right) 1.5 mm h21.

TABLE 1. Results of sensitivity analyses for fitting scaling law coefficients to Eq. (11). See text for details.

Data Medians Samples a b c d e Rms

Jun 1999 All
Min 5 values
Min 10 values
Min 15 values

675
420
315
255

0.69
0.80
1.01
1.13

0.20
0.15
0.10
0.10

0.70
0.65
0.65
0.65

0.40
0.40
0.35
0.35

1.05
1.05
1.05
1.00

10.83%
8.96%
7.95%
7.83%

Jul 2000 All
Min 5 values
Min 10 values
Min 15 values

645
425
310
250

0.74
0.82
1.05
1.07

0.25
0.20
0.15
0.15

0.70
0.70
0.65
0.65

0.35
0.35
0.35
0.35

1.05
1.05
1.00
1.00

9.73%
8.23%
8.06%
7.16%

Aug 1997 All
Min 5 values
Min 10 values
Min 15 values

755
365
270
210

0.80
0.75
0.80
0.81

0.15
0.20
0.20
0.20

0.70
0.70
0.65
0.65

0.35
0.35
0.35
0.35

1.05
1.05
1.05
1.05

11.46%
8.07%
7.25%
6.83%

Sep 1998 All
Min 5 values
Min 10 values
Min 15 values

535
275
210
165

0.64
0.97
1.25
1.28

0.25
0.20
0.15
0.15

0.75
0.65
0.65
0.65

0.40
0.35
0.30
0.30

1.00
1.00
1.00
1.00

14.75%
10.71%

7.97%
7.75%

All 4 months All
Min 5 values
Min 10 values
Min 15 values

845
565
480
410

0.64
0.70
0.79
0.80

0.20
0.20
0.20
0.20

0.75
0.70
0.70
0.70

0.35
0.35
0.35
0.35

1.10
1.10
1.05
1.05

9.22%
7.03%
6.84%
6.76%
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FIG. 8. Distributions of the sampling-related uncertainty (determined by the resampling by shifts approach) as a function of space and
time domain, and domain-average rain rate in intervals of 0.05 mm h21, as used for the fitting of Eq. (11). Results are shown for a sampling
time interval of 12 h. The lines, outlined boxes, and shaded areas are similar to Figs. 6 and 7.

TABLE 2. Mean difference between sampling uncertainties estimated by the resampling by shifts approach minus the fitted scaling law
(11) using the coefficients a 5 0.80, b 5 0.20, c 5 0.70, d 5 0.35, and e 5 1.05. The numbers are based on the results displayed in Figs.
6 and 7.

R̄
(mm h21)

T
(day)

L
(km) Dt 5 1 h Dt 5 3 h Dt 5 6 h Dt 5 8 h Dt 5 12 h

0.1 30 500
200
100

20.7%
21.1%
21.5%

22.2%
22.6%
20.3%

23.8%
22.3%

0.9%

25.2%
20.8%
21.4%

22.7%
23.0%
25.3%

5 500
200
100

21.1%
21.4%
21.4%

22.5%
22.5%

3.0%

24.3%
0.6%

10.5%

25.4%
2.9%

10.5%

0.6%
4.1%
2.9%

1 500
200
100

20.2%
20.2%

0.4%

20.2%
2.8%
8.8%

2.7%
11.0%
11.8%

4.8%
12.9%
6.1%

11.9%
9.2%

215.9%
0.5 1 500

200
100

21.4%
21.8%
22.8%

22.9%
21.8%

2.6%

25.7%
4.2%

11.5%

27.1%
8.5%

11.5%

26.8%
13.2%
2.2%

1.0 1 500
200
100

—
21.5%
22.5%

—
22.9%
20.1%

—
4.8%
5.1%

—
7.0%
6.2%

—
1.4%
2.2%

1.5 1 500
200
100

—
—

23.4%

—
—

28.4%

—
—

210.6%

—
—

29.4%

—
—

219.2%
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TABLE 3. Rms difference between sampling uncertainties estimated by the resampling by shifts approach and the fitted scaling law (11)
using the coefficients a 5 0.80, b 5 0.20, c 5 0.70, d 5 0.35, and e 5 1.05. The numbers are based on the results displayed in Figs. 6
and 7.

R̄
(mm h21)

T
(day)

L
(km) Dt 5 1 h Dt 5 3 h Dt 5 6 h Dt 5 8 h Dt 5 12 h

0.1 30

5

1

500
200
100
500
200
100
500
200
100

0.8%
1.3%
1.9%
1.4%
2.6%
4.1%
2.8%
6.4%

11.7%

2.5%
3.5%
5.3%
4.1%
7.2%

15.5%
8.3%

21.8%
32.8%

4.5%
6.3%

11.1%
7.8%

16.5%
29.9%
15.6%
38.0%
46.8%

5.9%
8.7%

11.6%
9.1%

19.9%
32.8%
21.3%
43.6%
51.6%

7.6%
11.8%
15.7%
13.3%
27.1%
39.5%
30.2%
49.9%
62.1%

0.5

1.0

1.5

1

1

1

500
200
100
500
200
100
500
200
100

1.7%
3.3%
5.2%

—
2.5%
4.2%

—
—

3.9%

3.7%
10.3%
20.9%

—
9.0%

15.4%
—
—

11.4%

8.7%
24.6%
37.5%

—
25.0%
29.6%

—
—

14.4%

14.6%
30.8%
42.2%

—
29.6%
33.4%

—
—

20.7%

19.0%
40.1%
47.3%

—
37.0%
41.0%

—
—

33.7%

only); mean differences of 10% or larger are found for
Dt $ 6 h, but compared to the values of the corre-
sponding distribution median (Figs. 6 and 7) these dif-
ferences are mostly still relatively small. The rms dif-
ferences (Table 3), in contrast, show magnitudes com-
parable to the median values for most space and time
domains and sampling time intervals of Dt # 6 h; only
lower sampling frequencies reduce the rms differences
to a fraction of the respective median values.

These results underline the basic difficulties in esti-
mating sampling-related uncertainties for real rainfall
situations. In light of the previous discussion, and be-
cause the estimation methods applied are statistical in
nature, the derived sampling uncertainties should be ex-
pressed in probabilistic terms. For example, based on
the 4 months’ worth of data analyses, there is a 50%
chance that the true (yet unknown) sampling uncertainty
falls within the range of 0.75–1.25 times the sampling
uncertainty predicted by the median-fitted simple scal-
ing law (11).

Moreover, in the ‘‘real world,’’ attaching a sampling
uncertainty to satellite rainfall averages is based on the
sample averages themselves, because the underlying
true rainfall is unknown. This, of course, introduces
additional uncertainty that needs to be quantified. Facing
this problem, however, is beyond the scope of the pre-
sent study.

b. Comparison of two approaches

It is instructive to compare sampling uncertainties that
are estimated based on approaches other than the one
described in the previous section. The observed differ-
ences will highlight a sensitivity of the results to the
method applied in obtaining them. Here, sampling un-
certainties estimated by the resampling by shifts tech-

nique (nonparametric approach) are contrasted with re-
sults obtained by the (parametric) Laughlin–Bell ap-
proach based on approximation (6). Figures 9 and 10
show this comparison for the same data as displayed in
Figs. 6 and 7, respectively. For clarity of the figures,
however, the data are shown in a slightly different way:
there are fifteen panels for all combinations of time
periods and sampling frequency, and the results are dis-
tinguished in colors by domain size (500 km in red, 200
km in green, and 100 km in blue).

The encouraging outcome of this comparison is that
the sampling uncertainties estimated by both the non-
parametric and parametric statistical approaches agree
rather well, independent of the space and time domain,
and sampling frequency, as demonstrated by Figs. 9 and
10. A closer look, however, reveals that there is signif-
icant variability (and potentially some minor trends)
among the results that has to be attributed to differences
in the way the sampling uncertainty is estimated. Some,
but not all, differences can be explained by the correc-
tion terms omitted from (6), as is shown in the appendix.
Interpreting these nuances, however, is not straightfor-
ward and requires further evaluation.

Tables 4 and 5 list the actual mean and rms differences
of the data displayed in Figs. 9 and 10 to provide some
quantitative information about the comparison. The
mean difference (Table 4) between the resampling by
shifts and the Laughlin–Bell approaches typically
amounts to a few percent only (the maximum difference
is 12.4%). Most of the time the Laughlin–Bell approach
tends to predict sampling uncertainties that on average
are slightly larger than those obtained by the resampling
by shifts method. This may not fully concur though with
the visual impression obtained from Figs. 9 and 10. The
mean difference values listed in Table 4 may be influ-
enced by the large number of samples within the range
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FIG. 9. Comparison of sampling uncertainty estimated by the Laughlin–Bell approximation (6) vs the resampling by shifts estimates for
the various explored space and time domains, and sampling frequencies. Shown are the results for a space and time domain-average rain
rate of ; 0.1 mm h21 based on the 4-month dataset. The results for the three space domains are shown in different colors (500 km inR
red, 200 km in green, and 100 km in blue). The dotted line indicates 1:1 correspondence.

of sampling uncertainties smaller than 100%, where the
Laughlin–Bell approximation tends toward larger un-
certainty estimates than the resampling by shifts ap-
proach. For larger sampling uncertainty estimates, the
nonparametric and parametric methods yield very sim-
ilar results—although there is a slight tendency for the
resampling by shifts values to exceed the Laughlin–Bell
estimates. The rms differences (Table 5) vary between
approximately 1% and 17%. Moreover, the rms differ-
ences appear to scale with space and time domain size,
sampling frequency, and mean rain rate, similar to the
estimated sampling uncertainties. For daily rainfall on
a 100-km domain observed by a GPM-like sampling
(Dt ; 3 h), the rms difference between sampling un-
certainties estimated by the resampling by shifts and
Laughlin–Bell approach is about 12%–13%, which is
significantly less than the sampling uncertainty itself
(see Figs. 9 and 10) for mean rain rates of 1.0 mm h21

or less. For sampling time intervals Dt ; 1 h, the rms
differences are of the same magnitude as the median
values of sampling uncertainty (Figs. 6 and 7). Espe-
cially for longer sampling time intervals, however, the

rms differences tend to be a fraction of the sampling
uncertainty only. For a TRMM-like sampling (Dt ; 12
h), the rms differences are small compared to the value
of the sampling uncertainty for all space and time do-
mains examined.

The rms difference between sampling uncertainties
estimated by the resampling by shifts method and the
Laughlin–Bell approach, as shown in Table 5, is of com-
parable magnitude or smaller (particularly for Dt $ 3
h) than the rms difference between uncertainties esti-
mated by the resampling by shifts method and those
predicted by the median-fitted simple scaling law (11),
compiled in Table 3. The largest differences occur for
infrequent sampling (Dt . 3 h) of small mean rain rates
on smaller domains (#200 km), where the data-based
uncertainty estimates agree more closely with each other
than to the uncertainties gauged by the simple scaling
law (11).

c. Discussion
There are numerous studies of sampling uncertainty

assessments for satellite-based rainfall estimates re-
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FIG. 10. Comparison of sampling uncertainty estimated by the Laughlin–Bell approximation (6) vs the resampling by shifts estimates for
the various explored space and time domains, and sampling frequencies, similar to Fig. 9. Shown are the results for 1-day rainfall only, but
for increasing mean rain rates of (bottom) 0.5, (middle) 1.0, and (top) 1.5 mm h21.

TABLE 4. Mean difference between sampling uncertainties estimated by the resampling by shifts method minus the Laughlin–Bell
approach. The numbers are based on the results displayed in Figs. 9 and 10.

R̄
(mm h21)

T
(day)

L
(km) Dt 5 1 h Dt 5 3 h Dt 5 6 h Dt 5 8 h Dt 5 12 h

0.1 30

5

1

500
200
100
500
200
100
500
200
100

20.7%
21.5%
22.5%
22.0%
23.1%
24.9%
22.3%
24.3%
25.4%

21.8%
23.5%
22.5%
24.6%
26.8%
25.2%
25.6%
27.0%
22.7%

22.9%
23.2%
21.1%
27.7%
26.0%
20.2%
25.8%
21.5%

3.5%

23.7%
21.2%
22.0%
29.4%
24.1%

1.0%
24.4%

1.8%
5.8%

0.2%
21.4%
20.6%
23.8%
21.2%

1.3%
3.9%
6.9%
8.6%

0.5

1.0

1.5

1

1

1

500
200
100
500
200
100
500
200
100

22.6%
24.5%
27.1%

—
23.5%
25.6%

—
—

24.0%

25.9%
28.6%
27.5%

—
27.9%
27.3%

—
—

28.8%

210.4%
25.8%
20.2%

—
22.3%
23.0%

—
—

27.7%

212.4%
21.5%

2.8%
—
0.0%
0.6%
—
—

22.3%

211.5%
7.3%
6.5%
—

22.0%
7.5%
—
—
0.3%
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TABLE 5. Rms difference between sampling uncertainties estimated by the resampling by shifts and Laughlin–Bell approaches. The
numbers are based on the results displayed in Figs. 9 and 10.

R̄
(mm h21)

T
(day)

L
(km) Dt 5 1 h Dt 5 3 h Dt 5 6 h Dt 5 8 h Dt 5 12 h

0.1 30

5

1

500
200
100
500
200
100
500
200
100

0.8%
1.8%
3.0%
2.2%
3.9%
6.4%
3.2%
6.3%
9.1%

2.3%
4.2%
5.1%
5.3%
9.8%

11.6%
8.8%

12.1%
12.5%

3.5%
6.7%
9.3%

10.1%
12.8%
13.2%
11.6%
11.8%
12.2%

4.4%
8.0%
9.7%

12.7%
11.4%
13.1%
10.9%
11.6%
12.8%

6.9%
10.7%
12.4%
12.0%
13.1%
13.5%
12.2%
12.2%
13.3%

0.5

1.0

1.5

1

1

1

500
200
100
500
200
100
500
200
100

3.3%
5.6%
9.1%

—
5.7%
7.0%

—
—

5.2%

7.8%
11.8%
13.7%

—
13.2%
12.6%

—
—

11.8%

14.1%
12.4%
12.3%

—
12.5%
11.3%

—
—

12.7%

16.5%
12.7%
11.8%

—
7.9%

11.7%
—
—

12.2%

14.6%
17.1%
11.4%

—
13.6%
14.3%

—
—

9.7%

ported in the literature. Most of these are (a) based on
rather limited data samples and/or (b) primarily con-
cerned with one particular approach of estimating the
sampling uncertainty. Notable exceptions to (a) are the
studies of Oki and Sumi (1994) and Steiner (1996), the
former using a large dataset of gauge-adjusted radar data
over Japan and the latter lots of rain gauge data from
Melbourne, Florida, and especially Darwin, Australia.
An exception to (b) is the study of Li et al. (1996), who
compared rainfall sampling uncertainty estimates based
on stationary and nonstationary rainfall models, plus
the resampling by shifts method—albeit on 1 month of
data from Darwin only. Much research has focused on
assessing the uncertainty of rainfall averages as a func-
tion of sampling frequency for fixed space and time
domains. The scaling of sampling-related uncertainty
with space and time domains has received attention
mostly from a theoretical perspective based on sto-
chastic rainfall model assumptions. Similarly, the de-
pendence of sampling uncertainty on rainfall character-
istics awaits a thorough evaluation based on large
amounts of data.

The extensive analyses presented here thus provide a
unique basis for evaluating the sampling uncertainty
behavior as a function of space and time domains, sam-
pling frequency, and rainfall characteristics. Moreover,
the results of this study enable comparison to sampling
uncertainties estimated over a wide range of climatic
rainfall conditions and sampling configurations. This is
achieved by scaling the respective results to a common
basis in terms of space and time domains, sampling
frequency, and rainfall. Before we can do so, however,
we need to concern ourselves with the problem of rain-
fall calibration first. A calibration error in rainfall could
potentially affect comparisons in two different ways: (i)
through errors in the estimation of the sampling uncer-
tainty and/or (ii) the comparison of sampling uncer-

tainties derived for various climatic rainfall regimes or
observing platforms.

A rainfall calibration error will affect both the vari-
ance of the area-average rainfall and the mean rain rate.
Fortunately, however, the relative sampling uncertainty,
expressed in terms of the ratio of standard deviation
divided by the mean, remains unaffected by a rainfall
calibration error—at least when the calibration error is
multiplicative in nature. Similarly, the correlation time
of the area-average rainfall is not affected as well. Thus,
the relative sampling uncertainties estimated by both the
resampling by shifts and the Laughlin–Bell methods are
unaffected by calibration error.

The relative sampling uncertainty needs to be tied to
an absolute mean rain rate, however, in order to make
it comparable to results obtained for different climate
regimes or observing platforms. This is where the prob-
lem of a potential rainfall calibration error may enter.
A simple back-of-the-envelope calculation shows how
much difference a calibration error might cause. Let us
assume that sE/ is the relative sampling uncertaintyR
estimated for a given mean rain rate and fixed spaceR
and time domains, and sampling frequency. Moreover,
let us assume that the sampling uncertainty scales as Eq.
(11) suggests, sE/ 5 a 2b. It can be shown then thatR R
a rainfall calibration error g has no effect on the power
factor b. Because the relative sampling uncertainties
obtained for two different rainfall calibrations are iden-
tical, as demonstrated earlier, it follows that

2b s s̃E E 2baR 5 5 5 ã(gR) . (12)
R gR

The two multiplicative factors of the above scaling law,
therefore, are related through 5 agb. In order toã
quantify this effect, let us assume a calibration error of
g 5 2—radar-based rainfall estimates may easily be in
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error by a factor of 2 compared to rain gauges, because
of application of an inappropriate relationship between
radar reflectivity and rain rate, or radar hardware cali-
bration problems (e.g., Steiner et al. 1999). For a power
factor of b ; 0.2, as seen in the present analyses (section
3a), the effect of such a calibration error causes a dif-
ference of 15%. Note that Chang and Chiu (2001) and
Bell et al. (2001) find b ; 0.3 based on several years
worth of Special Sensor Microwave Imager (SSM/I) and
TRMM Microwave Imager (TMI) rainfall estimates
over tropical latitudes. For a power factor of b ; 0.5,
which appears more typical for rainfall over southern
Japan (Oki and Sumi 1994; see also Bell and Kundu
1996, 2000) and near Darwin, Australia (Steiner 1996),
however, the calibration error will result in a 40% dif-
ference. In summary, one has to be aware of the rainfall
calibration problem when comparing results of sampling
uncertainties estimated for various locations and/or ob-
serving platforms. Moreover, for as long as the depen-
dence of b on rainfall characteristics remains unknown,
there is an inherent uncertainty with regard to the choice
of b when scaling sampling uncertainties to a common
basis.

Armed with knowledge about these caveats, let us
now focus on comparing the results of the present anal-
yses with sampling uncertainties estimated for various
climatic regions. These comparisons will be limited pri-
marily to studies concerned with infrequent but regu-
larly timed, flush visits made by a single satellite, similar
to our assumptions. Laughlin (1981), McConnell and
North (1987), North and Nakamoto (1989), and Nak-
amoto et al. (1990), all using radar-based rainfall data
collected during GATE, found sampling-related uncer-
tainties of 8%–10% for monthly (30 day) rainfall esti-
mated based on 12-h sampling over a squared domain
with a side length of 280 km. The mean rain rate for
GATE Phase I was 0.445 mm h21 (Kedem et al. 1990;
Bell et al. 1990). The present dataset does not contain
rainfall examples of that intensity over a similar space
and time domain. However, based on the median-fitted
sampling uncertainty scaling law (11), the correspond-
ing sampling uncertainty is predicted as 19.2%. More-
over, there is a 50% chance (i.e., shaded area in Figs.
6 and 7) that the true sampling error would fall within
the range 14.4%–24.0%. Both, the GATE rainfall (Hud-
low and Patterson 1979) and the rainfall data used in
this study (Fig. 1) appear to compare favorably with
contemporaneous rain gauge measurements. Thus, radar
rainfall calibration errors may not explain the difference
in estimated sampling uncertainty. In addition, the dif-
ference, whether the sampling uncertainty is gauged
based on a scaling law (11) fitted to the results of the
resampling by shifts approach (section 3a) or the results
obtained by the Laughlin–Bell approach (fitted coeffi-
cients not shown), amounts to a few percent only. The
difference in sampling uncertainty estimated for GATE
rainfall and rainfall in the central United States, there-
fore, appears to be real and has to be attributed to dif-

ferences in rainfall characteristics. For example, the co-
efficient of variation sA/ of the area-average rain ratesR
over a 200-km domain is significantly smaller for GATE
rainfall (;1.9) than for the data underlying this study
(;3), as can be seen from Fig. 5 (see 30-day, 200-km
panel). On the other hand, the correlation in time of
GATE rainfall (tA ; 8 h) appears somewhat longer than
for the central U.S. precipitation (Fig. 4). The observed
differences in rainfall characteristics are consistent with
the differences seen in sampling uncertainty between
analyses based on GATE rainfall and this study.

Seed and Austin (1990), using radar information of
rainfall observed in Florida during August 1987, report
a sampling-related uncertainty of 22% for the 20-day
rainfall accumulation over a 425-km domain based on
12-h sampling. The corresponding mean rain rate was
0.1 mm h21. Using Eq. (11) a sampling uncertainty of
22.2% is predicted for a similar configuration, with a
50% likelihood of the true value to range within 16.6%–
27.8%. This excellent agreement, however, is likely to
be fortuitous in light of the fact that the radar-based
rainfall data used by Seed and Austin (1990) have not
been calibrated with rain gauges. The coefficient of var-
iation of approximately 2.8 and time correlation of 3 h
estimated by Seed and Austin (1990) are similar to the
present analyses.

For their analyses of sampling uncertainty, Li et al.
(1996) used data collected during December 1989–Feb-
ruary 1990 as part of the Down Under Doppler and
Electricity Experiment (DUNDEE; Rutledge et al. 1992)
by a radar located near Darwin, Australia. For a monthly
rainfall accumulation (mean rain rate ; 0.1 mm h21)R
over a 200-km domain, estimated based on 12-h sam-
pling, a sampling-related uncertainty of 26% was ob-
tained essentially independent of whether this uncer-
tainty was estimated based on a stationary or nonsta-
tionary model, or the resampling by shifts technique.
Present analyses based on using (11) suggest a sam-
pling-related uncertainty of 32.7% (68.2%) for a similar
configuration. This is in fairly close agreement, partic-
ularly considering that the radar rainfall dataset used by
Li et al. (1996) was only roughly calibrated with rain
gauge information, and that the coefficient of variation
of the area-average rain rates was about 2.5 and the time
correlation approximately 3.5 h.

Soman et al. (1995, 1996) provide another set of anal-
yses of radar-based rainfall data collected in January
and February 1988 at Darwin, Australia. The sampling
uncertainties estimated for the 18-day ( ; 0.28 mmR
h21, sA/ ; 1.61) and 21-day ( ; 0.43 mm h21, sA/R R

; 1.47) time periods over a domain of roughly 280-R
km side length were approximately 32% and 25%, re-
spectively, based on a TRMM-like (Dt ; 12 h) sampling
frequency. The sampling uncertainty estimates obtained
by either the resampling by shifts method (Soman et al.
1995) or space–time spectral analyses (Soman et al.
1996) were in close agreement. These estimates com-
pare also favorably with predictions of sampling un-
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certainty for similar configurations using (11): 25.2%
(66.3%) and 21.9% (65.5%) for the first and second
phase, respectively.

4. Conclusions

The uncertainty of rainfall estimates obtained from
discrete satellite sampling in space and time was as-
sessed based on multiyear, continental-scale radar-mo-
saic data. Uncertainties for typical space and time do-
mains, and sampling frequencies were evaluated. The
sampling uncertainty was investigated for all combi-
nations of 1-, 3-, 6-, 8-, or 12-h sampling of rainfall
over 100-, 200-, or 500-km domains, and 1-, 5-, or 30-
day accumulations. The analyses of four selected sum-
mer months represent the equivalent of 2 yr worth of
analyses on a 500-km domain, 16 yr on a 200-km do-
main, and 64 yr on a 100-km domain. Moreover, a the-
oretical framework was established that enabled direct
comparison of parametric and nonparametric statistical
approaches to estimating the sampling-related uncer-
tainty. In particular, results based on a statistical meth-
odology with roots in the work of Laughlin (1981) and
Bell et al. (1990) were contrasted with those obtained
by a simple empirical resampling by shifts technique.

The main results of this study may be summarized as
the following:

• The sampling uncertainty scales inversely with space
(L) and time (T) domain size, and rainfall (R), but
directly with sampling time interval (Dt). The scaling
with space and time domain, and sampling frequency
behaves as anticipated from previous studies. The
scaling with rainfall, however, deviates significantly
from the expected inverse square root behavior as pre-
dicted by simple theoretical models, which appeared
to account for the results of Oki and Sumi (1994) and
Steiner (1996).

• The rainfall sampling uncertainty, expressed as a per-
centage of the domain-average rain rate, may be char-
acterized by a simple scaling law

0.20 0.70 0.35 1.05
s R L T DtE 0 0 0100% 5 0.80 , (13)1 2 1 2 1 2 1 2R R L T Dt0

where R0 5 1 mm h21, L0 5 500 km, T0 5 30 days,
and Dt0 5 1 h. Although (13) captures the main fea-
tures of the central U.S. precipitation data, there is
significant variability of sampling uncertainty about
this simple (fitted) scaling law, some of which is cer-
tainly attributable to the great space–time variability
of rainfall.

• Sampling uncertainties predicted by (13) are statistical
in nature and should therefore be expressed in prob-
abilistic terms. For example, based on the data ex-
amined, there is a 50% chance that the true sampling
uncertainty may reside within the range of 0.75–1.25
times the value estimated by (13).

• The results of the parametric Laughlin–Bell and non-

parametric resampling by shifts approaches to esti-
mating the sampling-related uncertainty agree rather
favorably, despite some appreciable variability. The
differences between the two approaches highlight a
sensitivity of the estimated sampling uncertainties to
the choice of method. In addition, the assumptions
leading to the Laughlin–Bell approximation (6) may
not be valid for small T (few days or less), in which
case the complete formulation (A16) would have to
be used instead, as discussed in the appendix.

• A potential calibration error of the rainfall data does
not affect the estimation of relative sampling uncer-
tainty. However, an absolute calibration of the rainfall
data is required in order to make the results compa-
rable to other studies based on different climate re-
gions and/or observing platforms. Such comparisons
are highly sensitive to the accuracy of rainfall obser-
vations.

• Comparison among different land-based datasets re-
veals comparable sampling-related uncertainties for
rainfall estimates based on discrete observations in
space and time. Sampling uncertainties estimated for
oceanic rainfall (e.g., GATE), in contrast, are some-
what smaller. This result is consistent with a larger
variability and shorter time correlation of rainfall over
land than over ocean (e.g., Ricciardulli and Sardesh-
mukh 2002).

Additional work is required to evaluate the relation-
ship between rainfall characteristics and the power law
of the scaling with domain-average rain rate. This will
encompass analyses of rainfall data collected in a wide
variety of climate regions. Moreover, future investiga-
tions may reveal that, besides the domain-average rain
rate, variance and correlation time of the area-average
instantaneous rain rate, there might be other descriptors
of rainfall characteristics important for predicting sam-
pling-related uncertainty. The sampling uncertainty will
have to be explored also for more realistic satellite over-
flight patterns. And last but not least, in the ‘‘real
world,’’ attaching a sampling uncertainty to satellite
rainfall averages is based on the sample averages them-
selves, because the underlying true rainfall is unknown.
This, of course, introduces additional uncertainty that
needs to be quantified.
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APPENDIX

Details of Estimating Sampling Uncertainty
According to Laughlin

Some details of the derivation of the exact result for
which Eq. (6) is an approximation are given here. For
the first time, the validity of the assumption of neglect-
ing the higher-order terms in the analytical expression
for rainfall sampling uncertainty based on the parametric
approach is explicitly evaluated. In addition, differences
between the exact and approximate result that might
explain slight tendencies for the resampling and Laugh-
lin uncertainty estimates to disagree, as seen in Figs. 9
and 10, are explored.

The average squared uncertainty «2(t0) for a particular
starting time t0 is estimated in Laughlin’s (1981) ap-
proach by writing the ensemble average in terms of the
lagged correlations of the area-average rain rate RA(t),
starting from the definition

2 2ˆ^« (t )& 5 ^[R(t ) 2 R] & (A1)0 0

9 2ˆ5 ^[R9(t ) 2 R ] &, (A2)0

where R̂(t0) is the sample average rainfall for starting
time t0 and is the true mean rainfall as given in Eqs.R
(3) and (2), respectively; and where the primes indicate
deviations from the ensemble mean, z9 [ z 2 ^z&. Equa-
tion (A2) expands to

2
2 2 9 9ˆ ˆ^« (t )& 5 ^[R9(t )] & 1 ^R & 2 2^R9(t )R &. (A3)0 0 0

Substituting (3) into the first term of (A3), we obtain
n21 n211

2ˆ^[R9(t )] & 5 ^R9 (t 1 iDt)R9 (t 1 jDt)&, (A4)OO0 A 0 A 02n i50 j50

and defining the lagged covariance of RA(t) as

c (t) 5 ^R9 (t 1 t)R9 (t)&,A A A (A5)

which was assumed by Laughlin (1981) to depend only
on the separation in time of the two rain rates, we can
write (A4) as

n21 n211
2ˆ^[R9(t )] & 5 c [(i 2 j)Dt] (A6)O O0 A2n i50 j50

n211
5 (n 2 |q|)c (qDt), (A7)O A2n q52(n21)

where we have used the dependence of cA[(i 2 j)Dt]
on i and j only through the difference i 2 j to rewrite
the double sum in (A6) as a single sum in (A7). Note
that (A7) does not in fact depend on t0.

Likewise, the second term in (A3) can be written in
terms of cA(t) using the definition of in Eq. (2) toR
obtain

T T192^R & 5 c (t 2 t ) dt dt (A8)E E A 1 2 2 12T 0 0

T1
5 (T 2 |u|)c (u) du, (A9)E A2T

2T

where the double integral in (A8) has been reduced to
a single integral by taking advantage of the integrand’s
dependence on the difference in the two integration
times. As in the case of (A7), (A9) does not depend on
t0.

The cross term in (A3), after substitution for andR
R̂(t0) from Eqs. (2) and (3), becomes

Tn211 19ˆ^R9(t )R & 5 c (t 1 iDt 2 t ) dt . (A10)O0 E A 0 1 1n Ti50 0

Although more complex than the previous two terms,
this can be simplified considerably if we take into ac-
count at this point the resampling by shifts averaging
in Eq. (5), which we approximate as a continuous av-
erage,

Dt19 9ˆ ˆ^R9(t )R & ø ^R9(t )R & dt . (A11)0 t E 0 00 Dt 0

We can then use (A10) and n 5 T/Dt to write (A11) as

9ˆ^R9(t )R &0 t0

T Dtn211 Dt 1
ø c (t 1 iDt 2 t ) dt dtOE E A 0 1 0 1[ ]T T Dti500 0

T T1 295 c (t 2 t ) dt dt 5 ^R &, (A12)E E A 2 1 2 12T 0 0

where the last step in (A12) uses (A8). Laughlin’s (1981)
approach therefore gives an approximate expression for
the resampling by shifts average over Eq. (A3) as

2
2 2 9ˆ^« (t )& 5 ^[R9(t )] & 2 ^R &. (A13)0 t 00

Laughlin (1981) proposed approximating the lagged co-
variance as an exponential,

2 2 | t | /tAc (t) 5 s e ,A A (A14)

where is the variance and tA the correlation time of2s A

the instantaneous area-average rain rate RA(t). If the
assumed form of the autocorrelation (A14) is substituted
into (A7) and (A9), some straightforward algebra and
the summation identities

n21 n1 2 z
qz 5O

1 2 zq50

n21 nz 2 [n 2 (n 2 1)z]z
qqz 5 (A15)O 2(1 2 z)q50

give
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FIG. A1. Distributions of the ratio of sampling uncertainty estimated by the Laughlin–Bell approach using Eq. (A16) (i.e., including both
terms c1 and c2) and using approximation (6) (i.e., c1 term only). Shown are the results for the space and time domains explored based on the
4-month dataset. No distinction is made for different sampling frequencies. The distributions are normalized by their respective sample size.

2 2ˆs 5 ^[R(t ) 2 R] &E 0 t0

2
Dt Dt Dt Dt T

25 s c 1 c 1 2 exp 2A 1 25 1 2 1 2 1 2 1 2 6[ ]T t T t tA A A

(A16)

with c1(z) given by Eq. (7) and

22 21c (z) 5 2z 1 [1 2 cosh(z)] .2 (A17)

Note that assumptions different from (A14) for the
lagged autocovariance will result in different expres-
sions for (A16). The term exp(2T/tA) in (A16) is of
order 1022 or less for values of T and tA met here, and
so can be ignored. The Laughlin–Bell approach, ex-
pressed by Eq. (6), is a good approximation to (A16)
when T is large.

What is the effect of the c2 term when estimating the
sampling uncertainty using (A16) instead of Eq. (6)?
The effect of including this term in the Laughlin–Bell
estimates becomes noticeable for 5-day and particularly
for 1-day periods, as highlighted by Fig. A1. Note that
no distinction was made for different sampling fre-

quencies, because of the small overall effect. The effect
becomes more apparent with decreasing time rather than
space domain. However, the maximum difference in
sampling uncertainty estimates between using the c1

term only (i.e., setting c2 5 0) or using both terms c1

and c2 in (A16) was less than 10% for the space and
time domains explored. This is clearly less than the
difference between estimating the sampling uncertainty
based on the resampling by shifts method and the
Laughlin–Bell approach, as displayed in Figs. 9 and 10
and gauged by Tables 4 and 5. On a monthly or even
weekly basis, therefore, the c2 term may safely be ig-
nored.
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