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[1] The statistical problem of comparing rain gauge measurements to satellite rain-rate
estimates over an area surrounding the gauge(s) is examined using a model of rainfall
variability developed for studies of sampling error in averages of satellite data. The model
is able to capture a number of important aspects of the space-time spectrum of rain-rate
variability, including the interdependence of time and space scales of variability. Four
parameters must be specified in the model. Sets of parameters have been obtained that fit
the statistics of radar-derived rain rates over the eastern tropical Atlantic (from GATE) and
the western tropical Pacific (from TOGA COARE). The model predicts that there is an
optimal averaging time for gauge data when gauge averages are compared to average
satellite rain-rates for a specified area around the gauge. The optimal averaging time
ranges from minutes to days as the diameter of the area around the gauge is extended from
2 km to 200 km. The optimal averaging time shrinks as more gauges are added to the area
viewed by the satellite, but the model suggests that even over fairly dense gauge networks
it is necessary to compare averages of several hundred satellite overflights in order to
bring the comparison error down to the 10% level. The possibility that comparisons of
gauge data with satellite averages might be improved by weighting the gauge data
differently depending on how close the gauge data are in time to the satellite overflights is
investigated, and it is found that in some cases the variance of the comparison error can be
reduced by a factor of two by using optimal time-dependent weighting. INDEX TERMS:

1833 Hydrology: Hydroclimatology; 1854 Hydrology: Precipitation (3354); 1869 Hydrology: Stochastic

processes; KEYWORDS: validation, precipitation, remote sensing, stochastic, space-time
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1. Introduction

[2] Satellites are the only practicable means of monitor-
ing rainfall on a global scale, but remote-sensing methods
used to estimate rainfall from space-borne instruments are
inexact. Quantitative use of the satellite products requires
that they be accompanied by estimates of their accuracy, and
along with the decades-long effort to improve satellite rain
estimates there has been a parallel effort to compare the
estimates from space with more direct observations taken
from the ground in order to determine the error character-
istics of the satellite estimates whenever possible. An
especially extensive set of such studies of satellite algo-
rithms is reviewed by Ebert et al. [1996].
[3] Since satellite-instrument estimates are inherently

limited by the resolution of the instrument, loosely referred

to here as the field of view (FOV), the satellite estimates
represent rain rates averaged over areas similar in size to the
instrument resolution [see, e.g., Olson, 1989], with addi-
tional blurring because the satellite estimate actually
depends on the state of the column of atmosphere above
the FOV-sized area rather than on the rain rate at the
surface. Verifying such estimates with ground observations
requires that accurate estimates of rain averaged over FOV-
sized areas be provided. Hydrologists have been grappling
with this type of problem since well before the needs for
satellite verification arose, and it is a notoriously difficult
one.
[4] There are many ground-based approaches to estimat-

ing area-averaged rain rate. Many involve remote-sensing
methods such as radar. We will principally concern our-
selves here with estimates made with rain gauges. Rain
gauges have the advantage that they measure rain in a fairly
direct manner, and the errors they make are generally easily
understood and to a considerable extent quantifiable. Errors
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in measurements by well maintained gauges can include
both random and systematic components, depending on the
type of apparatus, the environment, and the rain itself. Wind
effects are often the most important, and can lead to
underestimates ranging from a few percent to ten or twenty
percent, depending on rain rate, wind speed, and gauge type
and exposure. For discussions of these issues, see, for
example, Nešpor and Sevruk [1999], Habib et al. [1999],
Krajewski et al. [2000], and Serra et al. [2001]. Gauges also
have the advantage that they are relatively inexpensive to
deploy and are located at many sites around the world.
Aside from all the mishaps to which any mechanical or
electrical apparatus left outdoors is prone, they have the
major disadvantage that they measure only what is falling
within an area a few tens of centimeters in diameter.
Inferences about what might have fallen in the tens of
square kilometers around the gauge can only be made to
the extent that what the gauge encounters is representative
of what happened in the surrounding area.
[5] Rain rates vary rapidly in time and space on the scale

of human perceptions, as anyone who has watched rain
falling over a large flat open area can attest, and the same
can be said for both the larger scales accessible to radars
and satellites and the smaller scales explored with acous-
tical and optical instruments. What a rain gauge measures
can therefore represent what has occurred in its neighbor-
hood only in an average sense at best. This question has
been investigated by setting out arrays of rain gauges and
comparing the rain totals obtained by each gauge. Gra-
dients in the rain totals can sometimes persist and be
explained by local topographic and meteorological influen-
ces. See, for just a few of many examples, Court [1960]
and Wood et al. [2000]. The representativeness of each rain
gauge must therefore be examined carefully for such
influences.
[6] The problem of how well a gauge average agrees

with the average rainfall in its vicinity has been extensively
studied theoretically as well as empirically. Examples of
such studies include Rodrı́guez-Iturbe and Mejı́a [1974a,
1974b], Silverman et al. [1981], and Morrissey et al.
[1995]. A particularly interesting and extensive empirical
study was carried out by Rudolf et al. [1994]. They showed
that the rms difference of the gauge average from the true
areal average appeared to depend in a simple way on the
number of gauges in the area. A theoretical argument for a
dependence similar to what they found is given by
McCollum and Krajewski [1998], who also investigated
the error levels in averages of rain gauge data used to
estimate areal monthly averages as a function of spatial
correlation of the rain gauge data. Krajewski et al. [2000]
used rain gauge correlations found in U.S. data to make
quantitative estimates of error levels for areal averages of
such data.
[7] In comparing the average rain rate seen by gauges to

the average of satellite estimates made in the vicinity of the
gauges, a number of questions arise: (1) How much dis-
agreement between the two averages is attributable to the
fact that a gauge sees a very small area continuously,
whereas the satellite sees a very large area around the gauge
only intermittently? (2) What is the best time interval over
which to compare the two averages? (3) Over what area
around the gauge(s) should the satellite averages extend? (4)

If the gauge data are available as a function of time (e.g.,
minute by minute, hour by hour), would it be better to use
time-weighted averages of the gauge data with weightings
determined by the overflight times of the satellite?
[8] The answers to these questions are not usually

obvious. An important aspect of these problems is that the
statistics of space and time averages of rain rate change with
the amount of averaging. Daily rain gauge data are corre-
lated over shorter distances than monthly rain data, as can
be inferred, for example, from the correlation lengths of
order 101–102 km seen for daily rainfall by Abtew et al.
[1995] and Ciach et al. [1997], as opposed to the correlation
lengths of many hundreds of kms seen for monthly rainfall
by Mooley and Ismail [1982] and Morrissey [1991]. Small-
area averages of radar-derived rain rates are correlated over
shorter times than large-area averages, as was shown, for
example, by Laughlin [1981]. Determining the answers
directly from data without the aid of a statistical model
can be frustrating because of the inherent noisiness of rain
statistics, so that extremely long averaging times are
required in order to get stable results.
[9] A number of theoretical studies of the problem of

comparing averages of satellite rain estimates with averages
of data from one or more gauges have been carried out. The
studies by North and Nakamoto [1989], Graves et al.
[1993], North et al. [1994], and Yoo et al. [1996], in
particular, used stochastic models in which time and space
scales are interrelated. The studies emphasize the use of
Fourier-transform methods, but the mathematical frame-
work used in these studies is otherwise similar to what is
used here.
[10] In earlier studies, error levels in satellite/gauge com-

parisons were estimated for specified averaging areas and
time intervals. In this paper we shall explore how satellite/
gauge comparisons change with averaging areas and times.
The questions posed above will be examined with the aid of
a model of rainfall statistics that was primarily developed
for studies of sampling errors in monthly averaged satellite
estimates of rainfall [Bell and Kundu, 1996] (hereinafter
BK96). It is able to describe the changes in rainfall statistics
with averaging times and averaging areas mentioned above
to an impressive degree, and is therefore in that respect well
suited to the study of these problems. Only second-order
moment statistics of rain (variances, correlations) are
described by the model, however, and the model cannot
address problems having to do with the higher-moment
statistics of rain without additional assumptions. See Ha
and North [1999] and Ha et al. [2002] for examples of
satellite/gauge comparisons that make use of information
about whether or not rain is detected by the gauges and
therefore involve statistics of the rain beyond space-time
covariances.
[11] Section 2 describes a framework for investigating

how much satellite and gauge averages tend to differ due to
their different observational characteristics. Section 3
describes the statistical model used in the study and its
ability to handle different time and space scales. Section 4
explores a number of different averaging schemes and
shows that there is often an optimal scale for comparison.
Section 5 raises the possibility of using time-varying
weighted averages of gauge data to help reduce sampling
error in satellite/gauge comparisons. The results are dis-
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cussed in section 6. Mathematical details of some of the
calculations are given in two appendices.

2. Comparing Satellite and Gauge Averages

[12] Comparisons of single, ‘‘instantaneous,’’ coincident
observations by satellites and rain gauges tend not to be
very informative since, as we shall see, their very different
sampling characteristics introduce too much uncertainty into
the comparison. In addition, the instantaneous satellite
estimates for single FOVs are themselves commonly
believed to have errors of order 50% or more [see, e.g.,
Wilheit, 1988; Olson et al., 1996]. Errors in satellite
estimates for the average rain rate in a FOV will be referred
to here as retrieval errors. The many sources of these errors
are reviewed by Berg and Avery [1995]. The goal in
comparing averages of satellite rain-rate estimates to aver-
ages of rain gauge data is finding evidence (or lack of it) for
bias in the satellite estimates.
[13] Biases in satellite estimates cannot be represented by

a single number. They almost certainly vary with the kinds
of rain being observed, the amounts, and a host of mete-
orological and climatological factors that will take long and
patient research to unravel. The most informative compar-
isons of satellite and gauge averages will therefore be ones
where just enough averaging is done to reduce the varia-
bility in the differences due to random sampling and
retrieval error to a level where residual bias is detectable
at a certain desired level. Large data sets consisting of long
sequences of satellite observations in the neighborhood of
rain gauges and the accompanying gauge data will need to
be broken down into comparisons of subsets of observa-
tions, and indications of apparent bias examined for patterns
that might indicate problems with the satellite retrievals in
certain situations. For example, if the bias seemed to vary
with the amount of stratiform precipitation, such a depend-
ence might be revealed by comparing the biases seen in
low-stratiform-amount and high-stratiform-amount cases.
For this to be an effective approach the averaging must be
sufficient to bring out the bias, but not so great that it
reduces the data set to too few cases.
[14] As mentioned above, we expect averages of satellite

data and of rain gauge data to differ because they each
include rain observations that the other does not. This
difference is referred to here as the error due to sample
differences, or sampling error. There are also a number of
other reasons the two averages might differ: the rain may
not fall with equal probabilities at different times of the day,
for example, or the mean rainfall may differ at different
points (e.g., in hilly areas or near coasts). To the extent
possible, the averages of the data must be adjusted to reduce
the error due to these inhomogeneities to an acceptable
level. The studies described here were originally motivated
by questions about using gauge data from isolated, small
atolls or oceanic buoys (as described by McPhaden et al.
[1998], for example), where spatial and temporal inhomo-
geneities in the statistics tend to be less problematic.
Environmentally complex areas may require either that the
gauge density be high or that satellite/gauge comparisons be
carried out at a more qualitative level.
[15] Let us first consider a simple example of the kinds of

satellite/gauge comparisons one might wish to investigate,

the difference between the average of satellite FOV esti-
mates made in the neighborhood of a gauge during a single
overflight of the gauge by the satellite and the average rain
rate recorded by the gauge in a time interval bracketing the
overflight time. Assume that the satellite overflight time
occurs at t = 0 and that the rain gauge is located at position
x = 0, with x = {x, y}. The average rain rate seen by the
gauge over a time interval T is

Rg ¼ RT x ¼ 0ð Þ ð1Þ

with

RT xð Þ � 1

T

Z T=2

�T=2

dt R x; tð Þ; ð2Þ

where R(x, t) is the rain rate at point x at time t, and the rain
rate over the gauge orifice has been approximated by the
rain rate at the point x = 0.
[16] The satellite, on the other hand, is treated as provid-

ing an estimate of the average rain rate over an area A at
time t = 0,

Rs ¼ RA t ¼ 0ð Þ ð3Þ

with

RA tð Þ � 1

A

Z
A

d2xR x; tð Þ; ð4Þ

where A is a circle of radius a with area A = pa2. See the
illustration in Figure 1. It would of course be possible to
include several gauges and/or many satellite overflight
times in the above averages, or to average over a rectangular
area instead of a circular area. We will return to these
questions later.
[17] The satellite can only provide an estimate of Rs in (3)

as an average of the FOV estimates that fall within the
circular area A. When the area A is comparable in size to an
FOV, the precise location of the gauge within the FOV
matters. As we shall see later, however, our analysis suggests
that averages over relatively large areas around the gauge are
preferable, and, anticipating that, we will ignore the com-
plication of specifying where the gauge is on the scale of
satellite FOVs.
[18] A bias in the satellite estimates is identified when the

difference

�R ¼ Rs � Rg ð5Þ

is larger than can be accounted for by the sampling
differences of the two systems or by random retrieval and
measurement errors. If there is no bias in the estimates, �R
should, on average, be zero. In order to test for the presence
of a bias, we require an estimate of the random error
components in �R. The mean squared difference of the
averages is a useful measure of the error levels in the
difference, defined as

s2 � R̂
0
s � R̂

0
g

� �2
� �

� s2samp þ s2err;s þ s2err;g; ð6Þ
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where R̂s and R̂g are the satellite and gauge estimates of Rs

and Rg in (3) and (1), respectively, with (unknown)
estimation errors included and where the error variances
in (6) are defined as

s2samp ¼ R0
s � R0

g

� �2
� �

; ð7Þ

s2err;s ¼ R̂
0
s � R0

s

� �2
� �

; ð8Þ

s2err;g ¼ R̂
0
g � R0

g

� �2
� �

: ð9Þ

Angular brackets indicate an average over an ensemble of
meteorological situations similar to the one for which we
are trying to estimate s2, and primes indicate deviations
from the ensemble mean; i.e., z0 � z � hzi.
[19] In writing equation (6) it is implicitly assumed that

sampling errors due to nonoverlapping coverage, satellite
retrieval errors, and gauge measurement errors are uncorre-
lated with each other. It is difficult to think of a plausible
physical mechanism that would produce such correlations,
particularly correlations of sampling error with either
retrieval or gauge errors. Correlations between retrieval
and gauge errors might be generated if satellite retrievals
had a rain-type-dependent bias (e.g., a tendency to over-
estimate stratiform rain amounts and to underestimate
convective rain amounts), and the gauges used in the
comparisons had a rain-type-dependent bias (e.g., due to
changes in surface winds with rain type). In such a
situation retrieval and gauge errors would vary in concert

with rain type. For lack of quantitative estimates of the true
sizes of the cross-correlation terms omitted from the right-
hand side of (6), their contributions, if any, are neglected in
estimating s2.
[20] A typical comparison of satellite estimates with

gauge averages results in a scatter plot of the satellite
averages versus the gauge averages for the same areas
and time periods. The quantity s in equation (6) is a
measure of the amount of scatter about the ‘‘ideal’’ 45�
line on which the points would lie if the satellite estimates
were perfect and the gauge averages gave the true rain rate
over the area sampled by the satellite. (Proper account of
the ‘‘error-in-variable’’ problem must be taken in compar-
ing the satellite and gauge data [see, e.g., Fuller, 1987].). In
this paper we will concentrate on estimating the sampling
error term in (6) based on models of the statistics of the
‘‘true’’ surface rain rates being estimated by the satellite and
the gauge. Because a considerable amount of averaging
(large A and T ) is needed to reduce the error variance s2 to
acceptable levels, the contributions to s2 by random
retrieval and measurement errors represented by serr,s

2 and
serr,g
2 tend to be considerably reduced, so that s2 is domi-

nated by ssamp
2 , but this needs to be checked for each

validation study.
[21] If a good estimate of s can be obtained, one can

conclude that if j�Rj > 2s, there is a strong probability
(>95%) that a bias exists—always assuming that inhomo-
geneities in the rain statistics have been compensated for
and that the gauge data are accurate. The estimated bias in
the satellite estimate would be

Satellite bias ¼ �R� s; ð10Þ

with ‘‘one-sigma’’ confidence limits. In the analyses that
follow, determination of bias at the 10% level is used as a
reasonable goal, i.e., ssamp < 0.1 R, where R is the mean rain
rate in the locality.
[22] The sampling error variance defined in (7) can be

written in terms of the covariance of rain rate at two points
separated in space by r and in time by t,

c r; tð Þ ¼ R0 xþ r; t þ tð ÞR0 x; tð Þh i; ð11Þ

which is assumed to depend only on the separation of the
points {r, t}. If (1) and (3) are substituted into the definition
for ssamp

2 in (7), we can use (11) to write (7) as

s2samp ¼ css þ cgg � 2csg ð12Þ

with

css � R0
s

� �2D E
¼ 1

A2

Z
A

d2x1

Z
A

d2x2c x1 � x2; 0ð Þ; ð13Þ

cgg � R0
g

� �2
� �

¼ 1

T2

Z T=2

�T=2

dt1

Z T=2

�T=2

dt2c 0; t1 � t2ð Þ; ð14Þ

Figure 1. Comparison of average rain rate over a period T
observed by a gauge located at the center of an area A of
radius a, when the area A is observed at t = 0 by a satellite.
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and

csg � R0
sR

0
g

D E

¼ 1

AT

Z T=2

�T=2

dt

Z
A

d2x c x; tð Þ: ð15Þ

[23] In the next section we describe a model for the rain-
rate covariance (11) that was developed to estimate the
sampling error in monthly averages of satellite data for a
given area relative to the true monthly average that would
have been obtained if the satellite were capable of contin-
uous observation of the area. The model parameters were
adjusted to fit the statistics of radar data over oceanic sites
during two field campaigns, the Global Atmospheric
Research Program (GARP) Atlantic Tropical Experiment
(GATE) [Houze and Betts, 1981] and the Tropical Ocean
Global Atmosphere (TOGA) Coupled Ocean-Atmosphere
Response Experiment (COARE) [Webster and Lukas,
1992]. Given such a model, calculations of sampling error
of satellite/gauge comparisons like the one described above
can be carried out. These will be discussed in the following
sections.

3. Spectral Model of Rain-Rate Covariance

[24] The model is described in BK96. Its four parameters
characterize the space-time covariance of rain rate (11)
needed for calculations like the one described in the
previous section. It captures an aspect of rain behavior that
is not always represented in statistical models of rain:
timescales of variations in area-averaged rain rate become
longer as the area is increased, and spatial correlations of
time-averaged rain become longer as the time interval is
lengthened. This phenomenon is partially captured by
statistical models describing rain as randomly created cells,
within which daughter cells are grown randomly, which in
turn themselves grow daughter cells, etc., with faster and
faster timescales and smaller and smaller spatial scales [e.g.,
Waymire et al., 1984; Rodrı́guez-Iturbe et al., 1987; Smith
and Krajewski, 1987]. The present model was originally
motivated by a model developed by Bell [1987] that used
spectral methods to establish the space-time statistics of the
rain being modeled. It is in some respects a generalization of
the diffusive model of North and Nakamoto [1989].
[25] Although the model is described in detail in BK96,

we review it briefly here in order to introduce the param-
eters needed for the computations. The space-time cova-
riance of point rain rates (11) is expressed in terms of the
Fourier transform in space and time of a spectral power
function,

c x; tð Þ ¼ 2pð Þ�3=2

Z 1

�1
dw

Z 1

�1
dkx

�
Z 1

�1
dky e

i k�x�wtð Þ~c k;wð Þ; ð16Þ

where k is a 2-dimensional wavevector {kx, ky}. The
spectral power is given in this model by

~c k;wð Þ ¼ F0

w2 þ 1=t2k
; ð17Þ

tk ¼
t0

1þ k2L20
� �1þn ; ð18Þ

with k = jkj. There are 4 parameters in the model, F0, n, L0,
and t0. The timescale for fluctuations with spatial
wavelength 2p/k is tk. It gets longer as the wavelength
gets larger, approaching t0 for wavelengths longer than L0.
Area-averaged instantaneous rain rate, when the area is
large (for example, the area seen in one 360� scan by a
radar), has a correlation time t0 in the model. Time averages
of point rain rates, when the averaging time is long (as, for
example, monthly averaged rain gauge data), have a
correlation length L0. Spatial variability at small scales
increases as the exponent n becomes more negative. Values
of n must lie within the range �1/2 < n � 0. All variances
and covariances in the model are proportional to F0. See
BK96 for details about the motivation and interpretation of
the model.
[26] The model will be specified in terms of the 4

parameters g0, n, L0, and t0, with g0 defined for conven-
ience by

F0 ¼
ffiffiffiffiffiffiffiffi
2=p

p
� 1þ nð Þ L20=t0

� �
g0; ð19Þ

where �(n) is the Euler gamma function. Model parameters
were obtained in BK96 that best fit the statistics of radar-
derived rain-rate maps over the eastern Atlantic produced in
GATE [Hudlow and Patterson, 1979].
[27] P. K. Kundu and T. L. Bell (A stochastic model of

space-time variability of tropical rainfall, 1, Statistics of
spatial averages, submitted to Water Resources Research,
2002) recently obtained model fits to radar-derived rain data
collected over an area in the western tropical Pacific during
TOGA COARE. Radar observations were used from two
ships designated ‘‘MIT’’ and ‘‘TOGA’’ during three cruises,
each providing about four weeks of data [Short et al., 1997].
Data used from the cruises spanned the periods

Cruise 1 : 11 Nov: to 10 Dec: 1992;

Cruise 2 : 15 Dec: 1992 to 18 Jan: 1993;

Cruise 3 : 23 Jan: to 23 Feb: 1993:

ð20Þ

Separate sets of parameters were obtained for each ship for
each cruise. The parameter values for which the model best
fits the data statistics are given in Table 1, as well as the
mean rain rate R for each case. (The mean rain rate may be
thought of as a ‘‘5th’’ parameter of the model, although it is
not used in specifying the model spectrum.) Length and
time scales for GATE, as represented by the model
parameters L0 and t0, tend to be larger than the
corresponding TOGA COARE parameters, which may
reflect greater contributions to GATE rainfall by large-scale
systems during the observation period. The variability
among the TOGA COARE parameter values n, L0 and t0 is
probably representative of the uncertainties in the parameter
values because of the lengths of the observation periods
(i.e., ‘‘sampling error’’). Substantially more rain fell during
Cruise 2 than the other two cruises, and this is reflected in
the larger values of the parameters g0 and R.
[28] Since the model parameters in Table 1 were obtained

from gridded radar data with grid spacings of 4 km for
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GATE and 2 km for TOGA COARE and covering a time
period of 2–4 weeks, it is not obvious that the model can
successfully describe the smaller scale statistics of rain
gauge data nor the statistics of long time averages of gauge
data, although it does quite well at fitting the data over the
range of scales available in the radar data. To investigate the
model’s behavior on different scales, its predictions for
the spatial correlation of time-averaged gauge data can be
obtained by using an equation like (14) with ‘‘0’’ replaced
by the separation of the two gauges. A formula for the spatial
correlations is given in Appendix A in equation (A23).
[29] Figure 2 shows the spatial correlations for 15-min-

averaged gauge data predicted by the model using param-
eter values in Table 1. As can be seen from Figure 2, the
model with TOGA COARE parameters predicts correla-
tion lengths ranging from about 8 km to 16 km (as
measured by where the correlation falls to 1/e), whereas
the GATE parameters predict a correlation length of about
35 km. There were unfortunately not enough gauges
deployed during TOGA COARE and GATE to test these
predictions against actual gauge data. The TOGA COARE

correlation lengths are comparable to what were found for
a gauge array near Melbourne, Florida, by Habib et al.
[2001], who found correlation lengths of about 4–5 km
for 15-min-averaged gauge data for August–September
1998.
[30] On the other hand, correlations of monthly averaged

gauge data (Figure 3) are predicted by the model to have
spatial correlation lengths of about 50–80 km for TOGA
COARE and about 145 km for GATE. Again, gauge
statistics for these cases are unavailable, but Krajewski et
al. [2000] found correlation lengths of order 200–460 km
for summertime monthly averages from 14 U.S. gauge
arrays, and Morrissey [1991] found correlation lengths of
order 500 km for Pacific atoll rain gauges, perhaps a factor
of 2 to 3 larger than what the model with the parameter
values in Table 1 predicts. This suggests that the effects of
large-scale variations in rainfall occurring over periods of a
month or more are, not surprisingly, underestimated in the
statistics for 3–4 weeks of radar data such as were used in
obtaining the parameters in Table 1. Predictions using the
model with the parameters in Table 1 must therefore be

Table 1. Parameter Values for Rain-Rate Covariance Modela

Data Set g0, mm2 h�2 n L0, km t0, h R, mm h�1 sA
2, mm2 h�2

GATE Phase I 1.0 �0.11 104. 13.0 0.50 0.461
TOGA Cruise 1 0.067 �0.335 94.06 6.8 0.139 0.039
MIT Cruise 1 0.086 �0.297 73.89 5.8 0.134 0.032
TOGA Cruise 2 0.616 �0.239 53.81 5.0 0.351 0.127
MIT Cruise 2 0.206 �0.205 70.40 8.2 0.229 0.062
TOGA Cruise 3 0.127 �0.290 61.04 5.2 0.155 0.035
MIT Cruise 3 0.180 �0.259 64.94 4.5 0.200 0.052

aParameters for the model spectrum, defined in (16), (17), and (18), from fits to radar data from Phase I of GATE and from the ships MIT and
TOGA during the three TOGA COARE cruises listed in (20). Average rain rate for each data set and model-predicted variance of instantaneous
area-averaged rain rate for a 314-km-diameter circle with the same area as a 2.5� � 2.5� square are given in the last two columns.

Figure 2. Predictions of spatial correlations of 15-min-
averaged gauge data by spectral model using parameter
values in Table 1. Correlations cTT (b)/cTT (0) are plotted
versus separation b using equation (A23) in Appendix A.

Figure 3. Predictions of spatial correlations of monthly
averaged gauge data. Note change of scale of abscissa from
Figure 2.
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tempered by these considerations. We will return to this
issue in the discussion at the end.

4. Sampling Errors for Validation

[31] In this section we will explore the behavior of
sampling error in the differences between satellite obser-
vations over an area surrounding one or more gauges for
various averaging times T and averaging areas A. All of
the calculations are done using circular areas rather than
using square, grid box shaped areas. The difference in the
results should be very small if the areas are equal in
magnitude. For example, the last column of Table 1 shows
the variance of instantaneous area-averaged rain rate
calculated from the model for each set of parameters listed
in the table for a 314-km-diameter circle, using (A9). At
the equator, a 2.5� � 2.5� square box has the same area as
the circle. When variances of area-averaged rain rate are
calculated for the square area using the spectral model,
they are found to be smaller than the values for the circle
by only about 1.5%.

4.1. Single Satellite Overflight, Single Gauge

[32] As a first example, consider the problem of comparing
an average of satellite estimates from a single overflight of an
area A with an average rain rate seen by a gauge over an
interval of time T bracketing the overflight time of the
satellite, as sketched in Figure 1. The rms difference ssamp

between the two averages can be calculated using (12) and
the model covariance (16)–(18). Results for ssamp/R are
plotted in Figure 4 using the GATE model parameters from

Table 1. A number of conclusions are illustrated by this
figure: (1) Comparisons of a single-gauge average with one
satellite pass are, not surprisingly, extremely noisy, as evi-
denced by relative errors considerably larger than 100%, no
matter what the averaging time T. (2) The comparisons
become less noisy as the area averaged over increases. (3)
Less obviously, for a given area A there is an optimal
accumulation interval T for the gauge, and T increases as
the satellite averaging area A increases.
[33] These sampling error results depend on the rain

statistics. Model predictions (not shown) for ssamp/R are
considerably higher when the TOGA COARE parameter
values in Table 1 are used, especially for the smaller areas
A. This is largely due to the fact that the TOGA COARE
statistics suggest higher spatial variability at small scales
than for GATE, as evidenced by the larger negative values
of the exponent n in Table 1.

4.2. Single Satellite Overflight, Gauge Array

[34] As a second example, consider the problem of
comparing a satellite average over an area Awhere an array
of gauges is present, thus providing a better estimate of the
area-averaged rain rate in A than a single gauge can. In such
a case, the gauge average in equation (1) is replaced by the
n-gauge average

Rng ¼
1

n

Xn
i¼1

RT xið Þ; ð21Þ

where the locations of the n gauges are specified by the
positions xi, i = 1, . . ., n. We must then calculate an

Figure 4. Model predictions of relative sampling error for comparisons of a single satellite overflight
over an area A of radius a to a gauge average over an interval T bracketing the overflight time, as depicted
in Figure 1.
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expression like (7) with Rg replaced by Rng. The term cgg is
replaced by the double-sum expression

cng;ng ¼
1

n2

Xn
i¼1

Xn
j¼1

R0
T xið ÞR0

T xj
� � �

; ð22Þ

which can be calculated from the spectral model using the
covariance cTT(jxi � xjj), an expression for which is
obtained in Appendix A (equation A23). Likewise, the
cross-term csg in (7) is replaced by the n-gauge expression

cs;ng ¼
1

n

Xn
i¼1

R0
AR

0
T xið Þ

 �
; ð23Þ

which can be calculated from the model using the
covariance cAT (jxij) given by (A20) in Appendix A.
[35] As an example of such a situation, consider the sort

of comparisons that might be possible over the Oklahoma
Mesonet described by Brock et al. [1995]. About 100
gauges are distributed over an approximate 3� � 5� area,
with an average inter-gauge distance of about 40 km.
Suppose satellite estimates over grid box areas of order
1� � 1� or 2.5� � 2.5� are compared to averages of data
from gauges within these areas. In order to make the model
calculations easier, we consider an idealized version of this
problem in which gauges are equally spaced within circular
disks with the same area as the grid boxes, i.e., with radii
a = 63 km and a = 157 km respectively. Figure 5 shows a
sketch of the areas with the assumed gauge positions
marked. Based on this configuration, the sampling error
for comparison of a single overflight of the array by a
satellite can be computed using the n-gauge analogue to
equation (12),

s2ng;samp ¼ css þ cng;ng � 2cs;ng ð24Þ

using expressions (22) and (23).
[36] Relative sampling errors for comparisons over the

two arrays illustrated in Figure 5 are shown as smooth

curves in Figure 6 as a function of the gauge averaging time
T, calculated using the GATE model parameters. The
optimal gauge averaging time for the larger area grid box
containing 49 gauges is predicted to be about 1 h, and
relative error for the comparison is 30%, much lower than
for the single-gauge comparisons shown in Figure 4, as
expected. The same averaging time, 1 h, is best for the 1� �
1� box, though with much larger comparison errors.
[37] When the same calculations are done with TOGA

COARE model parameters (not shown), the comparison
errors for regularly spaced gauge arrays are predicted to be
larger than 100%, and the optimal averaging time increases
to several hours. It should be noted, of course, that the
model used in these calculations has been fitted to oceanic
radar data, whereas continental rain-rate variability, espe-
cially during the summer, is likely to be much stronger and
to exhibit strong diurnal modulations.
[38] As an example of how the gauge spacing in an array

affects the optimal averaging time, we show in Figure 7 the
relative sampling error for a very dense 21-gauge array with
gauges spaced 2 km apart and covering a circular 100-km2

area, similar in size to a microwave instrument FOV. Note
that the best averaging time is of the order of minutes rather
than hours (cf. Figure 6) for this spacing, and that the
sampling error estimates using the TOGA COARE param-
eters are considerably higher than for the GATE parameters.
Minimum sampling errors range from about 60% for GATE
to 250% for TOGA Cruise 1; reducing the sampling error in

Figure 5. Idealized distribution of gauges with a density
similar to that of the Oklahoma Mesonet. Inter-gauge
distance is 39 km. (a) Circular area with a = 63 km with
same area as a 1� � 1� grid box (9 gauges); and (b) circular
area with a = 157 km with same area as a 2.5� � 2.5� grid
box (49 gauges).

Figure 6. Model predictions of relative sampling error for
comparison of a single satellite overflight over circular areas
equivalent to 1� � 1� and 2.5� � 2.5� boxes containing 9
and 49 gauges respectively. Errors are plotted as a function
of the time interval T over which the gauge data are
averaged. Smooth curves show sampling error for gauges as
depicted in Figure 5, spaced 39 km apart (similar in density
to that of the Oklahoma Mesonet). Dotted curves show
sampling error averaged over all possible random place-
ments of the gauges within the areas. GATE model
parameters in Table 1 were used in the calculations.
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satellite/gauge comparisons to the 10% level would require
averaging over anywhere from 36 to 625 satellite over-
flights of the array, according to these results.

4.3. Single Satellite Overflight, Random Gauges

[39] It is interesting to investigate how sensitive the
results are to the idealized spacing used in the previous
example. It is quite easy to calculate the average of sng,samp

2

over all possible configurations of the n gauges within the
area A allowing each of the positions xi to be arbitrarily
assigned within A. Averaging over every possible config-
uration is equivalent to acting on expressions (22) and (23)
with the averaging operation (1/A)

R
Ad

2xi for each gauge i.
Except for the terms involving [R0

T(xi)]
2, this is equivalent

to replacing RT (xi) for each gauge by RAT, the space-time
average of rain rates everywhere within A over the interval
T, as defined in equation (A3) in Appendix A. For cng,ng one
obtains

cng;ng
 �

x
¼ s2AT þ s2T � s2AT

n
; ð25Þ

with the bracket operation on the left hand side indicating an
average over gauge locations, and with s2T and s2AT defined
in Appendix A by equations (A13) and (A17).
[40] The remaining term in (24), averaged over gauge

positions, is

cs;ng
 �

x
¼ R0

AR
0
AT

 �
; ð26Þ

which is computed for the model in Appendix A, with the
result given in equation (A25). Relative sampling error for

the two cases studied in the previous subsection for
randomly placed gauges is shown in Figure 6 as dotted
curves. As expected, when the gauge locations become
more random, comparison error tends to increase, and,
perhaps less obviously, the optimal averaging time increases
as well, probably because of the tendency for there to be
larger gaps between the randomly placed gauges.

4.4. [Aside:] A Classic Hydrological Problem

[41] Rain-gauge arrays have long been used to estimate the
average rain rate RAT for a time period T over an area A
covered by the array. (The total rain accumulation is given by
TRAT.) It is interesting to note that the mean squared error in
the classic hydrological problem of determining RAT with a
gauge array [e.g., Zawadzki, 1973] is easily obtained for the
random-gauge case just discussed, using (25) and hRng

0 RAT
0 ix

= sAT
2 , as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rng � RAT

� �2D E
x

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2T � s2AT

n

r
; ð27Þ

which gives the approximate n�1/2-dependence on gauge
number found by Rudolf et al. [1994] in their studies, and
indicates that the coefficient of sT /

ffiffiffi
n

p
they obtained is

predicted to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rng � RAT

� �2D E
x

r
¼ s2T � s2AT

s2T

� �1=2 sTffiffiffi
n

p ; ð28Þ

the coefficient (sT
2 � sAT

2 )1/2/sT depends solely on the
spatial correlation of the gauge data at averaging time T.
Physically plausible spatial correlations will always produce
coefficients between 0 and 1. Note that equation (28) is a
consequence of equation (25) alone and does not depend on
the particular model we are using. When the coefficient is
calculated using the model for a case analogous to the ones
studied by Rudolf et al. [1994], assuming a disk with area
equal to that of a 2.5� � 2.5� grid box for monthly averaged
gauge data, the model with GATE parameters predicts a
coefficient value of 0.76, while with TOGA COARE
parameters the model predicts coefficients ranging from
0.88 to 0.93, depending on the case.
[42] Rudolf et al. [1994] fitted their collective results for

relative mean absolute error for gauge arrays in Australia,
Germany, and the United States, to an approximate form
0.865 � sT/n

0.555 (neglecting a small additive constant
term). Since equation (28) is written for rms error instead
of mean absolute error, the coefficient 0.865 found by
Rudolf et al. [1994] should be multiplied by

ffiffiffiffiffiffiffiffi
p=2

p
to be

compared with the coefficient in (28), as pointed out by
McCollum and Krajewski [1998] (who also provide an
argument for the n�1/2 dependence on gauge number seen
by Rudolf et al. [1994]). Since

ffiffiffiffiffiffiffiffi
p=2

p
� 0.865 = 1.1 is

greater than 1, the effects of spatial correlation of the
gauges predicted by (28) do not seem to have shown up
in the results obtained by Rudolf et al. [1994]. This may
indicate the presence of greater than expected sampling
error in the coefficient obtained by Rudolf et al. [1994],
possibly due to nonnormality in the distribution of the
errors, or the influence of inhomogeneity in the statistics.
Rudolf et al. [1994] found that sampling error appeared to
decrease slightly faster with gauge number than n�1/2. This

Figure 7. Model predictions of relative sampling error for
comparison of a single satellite overflight over a circular
100-km2 area containing 21 gauges spaced 2 km apart.
Relative error is plotted as a function of the gauge-
averaging time interval T bracketing the satellite overflight
time. Parameter values in Table 1 were used in the
calculations. Note change in timescale from Figure 6.
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may be due to the fact that the real gauge arrays studied by
Rudolf et al. [1994] were not randomly distributed, since
gauges in real arrays tend to be spaced a certain minimum
distance apart, whereas the n�1/2 behavior derived above
depended on the assumption of complete randomness of
gauge positions.

4.5. Monthly Averages, Many Satellite Visits

[43] It is clear from the above results that using rain gauge
data to validate satellite estimates at the 10% level requires
averaging over more than one satellite overflight of the
gauges. We turn next to comparisons of monthly averaged
gauge data with averages of satellite data taken in the
vicinity of the gauges during the month. In this case the
time interval T = 1 month is specified beforehand, and we
investigate how ssamp/R changes with A, the area around the
gauge(s) over which the satellite data are averaged.
[44] The low Earth-orbiting satellites carrying microwave

instruments tend to revisit a location about once per day, at
least in lower latitudes, averaging about 30 visits per month.
To simplify our calculations, we assume that a satellite visits
a site at regular intervals �t, and that the visit times are
given by

tj ¼ t0 þ j� 1ð Þ�t; j ¼ 1; . . . ;m: ð29Þ

The satellite average to which the gauge average Rg is
compared is given by

Rs ¼
1

m

Xm
j¼1

RA tj
� �

; ð30Þ

where RA(t) is defined in (4). Mean squared sampling error
is thus given by (12), taking into account the effect of
multiple satellite visits. In particular,

css ¼ R0
s

� �2D E

¼ 1

m2

X
i

X
j

R0
A tið ÞR0

A tj
� � �

:
ð31Þ

This can be simplified using the lagged covariance of area-
averaged rain rate cAA(t), defined in Appendix A in (A31),
and the identity

Xm
i¼1

Xm
j¼1

f j� ið Þ ¼
Xm
u¼�m

m� uj jð Þf uð Þ ð32Þ

to obtain

css ¼
1

m
s2A þ

2

m

Xm�1

u¼1

1� u

m

� �
cAA u�tð Þ; ð33Þ

with sA
2 = cAA(t = 0). Because cAA(t) falls off rapidly for

t � 1 day, equation (33) is well approximated by

css �
1

m
s2A þ 2

X1
u¼1

cAA u�tð Þ
" #

: ð34Þ

The cross term csg for this case,

csg ¼
1

m

Xm
j¼1

R0
A tj
� �

R0
T

 �
; ð35Þ

can likewise be well approximated by

csg � R0
A 0ð ÞR0

T

 �
; ð36Þ

which is dealt with in equation (A19) of Appendix A.
Sampling error for multiple satellite visits during T = 1
month can therefore be calculated from

s2samp � s2T þ 1

m
s2A þ 2

X1
u¼1

cAA u�tð Þ
" #

� 2cAT b ¼ 0ð Þ: ð37Þ

Model predictions for each of the terms in (37) are obtained
in Appendix A.
[45] Figure 8 shows the relative sampling error for a

typical sampling interval of �t = 1 day, and also for more
frequent visits, down to the interval �t = 3 h being
discussed as a goal for an international satellite program
called the Global Precipitation Measurement (GPM) mis-
sion. The optimal area for satellite averages being compared
with a single rain gauge over one month is quite large, of the
order of a 2.5� box for typical sampling intervals of once per
day. As the satellite visit interval becomes shorter, the
optimal area for averaging shrinks, to one smaller than a
1� box for a GPM-like case. Note that a month of averaging
is still not sufficient for achieving comparisons at the 10%

Figure 8. Relative sampling error predicted by model
using GATE statistics for comparison of monthly averages
of data from a single gauge with averages of all satellite
estimates during the month for an area A around the gauge.
The satellite is assumed to visit at intervals �t. Satellites
with microwave instruments typically visit at intervals �t �
24 h. A dashed line indicates error at the 10% level.
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level. If we assume that relative sampling error using M
months of data will decrease by a factor M�1/2 from the
sampling error for 1 month, approximately 6 months would
be required to reach the 10% level for validation of a single
satellite’s estimates—or more gauges within the area are
required. With two gauges, for instance, the required aver-
aging time (not shown) drops to about 4 months. In a GPM-
like era with the equivalent of 3-hourly satellite visits to a
gauge site it may be possible to establish bias levels at the
10% level in a single month with just a few gauges in an
area. It should be noted that the above estimates are based
on GATE parameters, which tend to give smaller sampling-
error estimates than may generally be the case.

5. Time-Weighted Gauge Data

[46] The comparison of long time averages of gauge data
with averages of satellite data in the previous section used
straightforward averaging of the gauge data. Suppose one
were to allow the weighting of the gauge data to vary in time
depending on how far away in time the gauge observation is
from a satellite overflight occurrence? In this section we look
at a simplified version of this proposition to obtain an
estimate of how much improvement in the validation pro-
cedure might be possible by using time-weighted averages of
the gauge data.
[47] As an example, assume that the gauge data are

available at hourly intervals for a period H hours in length,
of the order of a month or more. The gauge data are
therefore provided as a sequence of hourly averages RT (tj),
T = 1 h, j = 1, . . ., H, where RT (t) is the time-averaged gauge
data over an interval T centered on time t, as defined in
Appendix A in (A26). The time-weighted gauge average is

Rg;w ¼ 1

H

XH
j¼1

wjRT tj
� �

: ð38Þ

The weighting must preserve the long-term mean rain rate,
so we require the weights wj to satisfy

XH
j¼1

wj ¼ H : ð39Þ

We expect the weights to emphasize gauge data taken near
the satellite observation times and de-emphasize data taken
far from the satellite observation times.
[48] To simplify the problem, assume that the interval

between satellite visits, �t, is an integral number of hours,
and that N satellite overflights occur during the averaging
period H. The satellite average rain rate is

Rs ¼
1

N

XN
q¼1

RA tq
� �

; ð40Þ

where the satellite visit times are given by tq, q = 1, . . ., N,
at intervals tq + 1 � tq = �t. The weights wj must then be
found that minimize the variance of the scatter of Rs about
Rg,w,

s2samp;w ¼ Rs � Rg;w

� �2D E
: ð41Þ

This is a standard minimization problem, requiring mini-
mization of (41) with the constraint (39) included by adding
it to ssamp,w

2 as a Lagrange multiplier term:

L ¼ Rs � Rg;w

� �2D E
� 2l

H

XH
j¼1

wj: ð42Þ

The factor (�2/H ) has been included with the Lagrange
multiplier l for convenience.
[49] The optimal weights wj are determined by the

equations @L/@wj = 0, j = 1, . . ., H, or

1

H

XH
j0¼1

cgg tj0 � tj
� �

wj0 �
1

N

XN
q¼1

csg tq � tj
� �

� l ¼ 0; ð43Þ

with l determined by the constraint equation (39), where
the lagged gauge covariance terms cgg(tj0 � tj) are provided
in Appendix A by equation (A28), and the lagged satellite-
gauge covariance terms csg(tq � tj) are provided by equation
(A30). Equations (43) are linear in the weights wj and can
be solved using standard methods. Once the wj are known,
the value of ssamp,w

2 can be computed from (41), using (33)
for h(R0

s)
2i. Appendix B gives some additional information

about solving (43) for the weights and obtaining the
sampling error ssamp,w

2 .
[50] Figure 9 shows the optimal weights obtained using

GATE parameters for comparison of an area equivalent to a
1� � 1� box with a single gauge at the center providing 1-h
average rain rates, assuming that the satellite returns every
24 h. The calculation is done for a 6-day period, and shows
that once the ‘‘end effects’’ have subsided the weights settle
into a regular repeating pattern for the interior hours. The

Figure 9. Optimal weights of hourly gauge data for
comparison with averages of satellite data provided every
24 h over a 126-km diameter area centered on the gauge,
assuming GATE statistics, for 6 days of satellite data.
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optimal weights indicate, as expected, that it is the hour of
gauge data bracketing the satellite visit that should be
weighted most, contributing about 30% to the weighted
average (7.5/24). The sampling error variance ssamp,w

2 for
the optimal weighting is reduced to about 50% of the error
variance for uniform weighting ssamp

2 .
[51] The amount of reduction in sampling error provided

by adding time-varying weighting depends on the area A
and the parameter values of the model, among other factors.
For instance, if the parameters in Table 1 for TOGA Cruise
1 are used, the error variance is only reduced to about 80%
of the variance for uniform weighting. The reduction in
variance is larger, percentage-wise, for smaller areas, but the
error variance also gets worse as the area shrinks, as shown
in Figure 4. It is not clear that generalizations about the best
approach for satellite/gauge comparisons can be made, since
it depends so much on the characteristics of the data in each
case.

6. Discussion and Conclusions

[52] Rain gauges provide such direct measurements of
rainfall that testing remote sensing estimates of rainfall
against gauge observations is extremely attractive. The high
spatial and temporal variability of rain, however, makes
comparisons of the two difficult. One of the choices that
must be made in such comparisons is how much averaging
of the gauge data and satellite data are needed in order to
reduce the ‘‘noisiness’’ of the comparisons to a level low
enough that they can be informative. A spectral model was
used to examine some of these questions because it captures
one of the more subtle statistical features of rain: the linking
of characteristic times for changes in areal averages to the
size of the averaging area.
[53] Although the model parameters were adjusted to fit

the statistics of radar-derived rain rates (rather than of gauge
data) over two tropical oceanic regions, the model seems to
capture many of the statistical characteristics of gauge data
as well. The model parameters obtained from the fits to
radar data may cause the model to underestimate the
amount of small-scale variability on timescales of a fraction
of an hour and the amount of large-scale variability on
timescales of a week or more. Based on some limited
experiments, it is likely that increased small-scale variabil-
ity will make intercomparisons noisier, whereas increased
large-scale variability will probably make intercomparisons
more informative.
[54] As Table 1 makes clear, the parameters in the spectral

model change depending on the data set used to estimate
them. The calculations described here provide some exam-
ples of how large sampling error in satellite/gauge compar-
isons might be, but even over the oceanic areas from which
the Table 1 data were gathered the model predictions are
likely to represent the true rms errors for comparisons at
only a factor-of-2 level of accuracy. The results should,
however, be able to serve as a guide for how sampling
errors in satellite/gauge comparisons might depend on the
comparison areas, periods, and gauge densities.
[55] The spectral model assumes that the statistics of rain

(not rain rates themselves, of course) are the same every-
where in the comparison area and at all times during the
averaging periods. The model covariance of rain rate at two

points separated in space and/or time depends only on their
separation (as in equation (11)), not on their absolute
locations. It is possible to develop models that describe
covariance statistics that depend on location or, for instance,
the time of day. Empirical orthogonal functions (EOFs) can
be used to describe inhomogeneous covariance statistics.
Shen et al. [1994], for example, use them to obtain optimal
weights for estimating global average temperature from
isolated station data around the world. Kim and North
[1997] propose a type of EOF that can in principle describe
statistics that change with the time of day. When compared
with temperature, however, rain rates at gauge scales are so
highly variable that it may require many decades of data
over a dense gauge network to obtain stable estimates of the
EOFs needed for such approaches.
[56] The model indicates that comparisons of rain esti-

mates from single satellite-instrument footprints in the
neighborhood of a single gauge are too noisy to be of much
use—a fact well documented in many examinations of such
comparisons. If areal averaging of the satellite data is used
to reduce sampling noise, the model indicates that there is
an optimal averaging time for the gauge data for best
comparisons, and that the optimal time increases with the
area. Comparisons of data from a single gauge and a single
satellite overflight, however, require averaging times and
areas that are too large to be practical.
[57] The situation is improved when multiple gauges are

present in the area observed by the satellite during its
overflight. Even gauge densities as high as 1 per 1000
km2 in a 2.5� � 2.5� box, however, are unlikely to bring
comparison errors down to the 10% level. Averaging over
multiple overflights of the gauges is required. For a typical
passive-microwave-instrument-bearing satellite providing
about 30 visits per month, the optimal averaging area
around a single gauge is about that of a 2.5� � 2.5� box,
and time averaging over a substantial part of a year is
required to bring sampling errors down to the 10% level.
The optimal averaging area and time decreases when more
gauges are present. Multiple satellites with similar instru-
ments providing more than 1 visit per day can also decrease
the averaging time required. For satellite visits every 3 h, for
example, a single month of averaging might suffice.
[58] Finally, the improvements in satellite/gauge compar-

isons that might be possible if the gauge data are weighted
depending on their relationship in time to the satellite
overflight times indicates that substantial reduction in the
scatter of the gauge and satellite averages is possible using
this technique, though the amount of improvement varies
considerably with the situation.

Appendix A: Details of Model Calculations

[59] Many of the results presented in this paper require
calculations of variances and covariances of spatial and
temporal averages of the rain-rate field based on the point
covariance function in equation (11) and the spectral model
in equations (16)–(18). By carrying out the spatial averages
over circular areas A (A = pa2) instead of the more tradi-
tional square areas, calculations are made much simpler. A
number of results useful in carrying out the calculations in a
numerically efficient manner are collected in this appendix.
Both the algebraic and numerical results presented in this
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paper were obtained with the help of Mathematica software
(version 4 [see Wolfram, 1999]).
[60] To simplify notation, define the instantaneous area-

averaged rain rate (identical to equation (4)) at time t as

RA tð Þ ¼ 1

A

Z
A

d2x R x; tð Þ; ðA1Þ

the time-averaged rain rate for a gauge located at a point b
relative to the center of the area A as

RT bð Þ ¼ 1

T

Z T=2

�T=2

dt R b; tð Þ; ðA2Þ

and the area-time averaged rain rate as

RAT ¼ 1

AT

Z
A

d2x

Z T=2

�T=2

dt R x; tð Þ: ðA3Þ

[61] We give as an example some of the steps needed in
obtaining a simple integral expression for the variance of
RA,

s2A � R0
A

� �2D E
¼ 1

A2

Z
A

d2x

Z
A

d2y R0 x; 0ð ÞR0 y; 0ð Þ
� �

ðA4Þ

¼ 1

A2

Z
A

d2x

Z
A

d2y c x� y; 0ð Þ ðA5Þ

using equation (11). Substituting equation (16) we obtain

s2A ¼ 1

A2

Z
A

d2x

Z
A

d2y 2pð Þ�3=2

�
Z

d2k

Z
dw eik� x�yð Þ~c k;wð Þ:

ðA6Þ

Since ~c (k, w) does not depend on the direction of k, the
areal integrals can be done using

Z
A

d2x eik�x ¼
Z a

0

rdr

Z 2p

0

df eikr cosf

¼ 2pa2J1 kað Þ= kað Þ;
ðA7Þ

where Jm(x) is the Bessel function of the first kind [see, e.g.,
Dwight, 1961], and the integral over w in (A6) with ~c(k, w)
in (17) gives

Z 1

�1
dw~c k;wð Þ ¼ pF0tk : ðA8Þ

After some algebra, one obtains from (A6)

s2A ¼ 4g00
a2

Z 1

0

dk
k

J 21 kð Þ
v k=að Þ ðA9Þ

with the definitions

g00 ¼ � 1þ nð Þg0; ðA10Þ

a ¼ a=L0; ðA11Þ

and

v zð Þ ¼ 1þ z2
� �1þn

: ðA12Þ

[62] The variance of RT(b) defined in (A2), which does
not depend on position b, can be calculated with an
approach similar to the one above, yielding

s2T � R02
T

 �
ðA13Þ

¼ 2g00
u

Z 1

0

dk
k

v2 kð Þ h k; uð Þ; ðA14Þ

with

u � T=t0 ðA15Þ

and

h k; uð Þ � 1� 1

uv kð Þ 1� e�uv kð Þ
h i

: ðA16Þ

Likewise, the variance of RAT defined in (A3) can be
calculated to be

s2AT � R02
AT

 �
ðA17Þ

¼ 8g00
ua2

Z 1

0

dk
k

J 21 kð Þ
v2 k=að Þ h k=a; uð Þ: ðA18Þ

[63] A number of covariances are also needed, and these
are calculated in a manner similar to the example given
above. The covariance of RA(t = 0) with a gauge average
RT (b) is given by

cAT bð Þ � R0
AR

0
T bð Þ

 �
ðA19Þ

¼ 4g00
ua2

Z 1

0

dk
J1 kð ÞJ0 bk=að Þ

v2 k=að Þ 1� e� u=2ð Þv k=að Þ
h i

ðA20Þ

with

b � b=L0: ðA21Þ

The covariance of time averages of gauge data for two
gauges separated by a distance b is given by

cTT bð Þ � R0
T bð ÞR0

T 0ð Þ
 �

ðA22Þ

¼ 2g00
u

Z 1

0

dk
kJ0 bkð Þ
v2 kð Þ h k; uð Þ: ðA23Þ

The spatial correlation of the gauges is, of course, given by
cTT(b)/cTT (0).
[64] The covariance of spatial averages with space-time

averages needed for equation (26) is given by

cA;AT � R0
AR

0
AT

 �
ðA24Þ

¼ 8g00
ua2

Z 1

0

dk
k

J 21 kð Þ
v2 k=að Þ 1� e� u=2ð Þv k=að Þ

h i
: ðA25Þ
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[65] The calculation of optimal time-dependent weighting
of gauge data for comparison with satellite estimates requires
formulas for the lagged covariance of gauge averages and
satellite areal averages. First, define the gauge average
centered around time t0 as

RT t0ð Þ � 1

T

Z T=2

�T=2

dt R 0; t0 þ tð Þ: ðA26Þ

The covariance of two gauge averages with averaging
interval T lagged by time t is given by

cTT t;Tð Þ � R0
T tð ÞR0

T 0ð Þ
 �

ðA27Þ

¼ 2g00
u2

Z 1

0

dk k
e� t=t0j jv kð Þ

v3 kð Þ sinh2 uv kð Þ=2½ �; ðA28Þ

valid for jtj � T. The lagged covariance of an instantaneous
average over a circular area A at t = 0 with a gauge average
lagged by t is given by

cAT t;Tð Þ � R0
A 0ð ÞR0

T tð Þ
 �

ðA29Þ

¼ 4g00
ua2

Z 1

0

dk
J1 kð Þe� t=t0j jv k=að Þ

v2 k=að Þ sinh uv k=að Þ=2½ �; ðA30Þ

valid for jtj � T/2. Finally, the covariance of instantaneous
area-averaged rain rate separated by a time interval t is
given by

cAA tð Þ � R0
A tð ÞR0

A 0ð Þ
 �

ðA31Þ

¼ 4g00
a2

Z 1

0

dk
k

J 21 kð Þ
v k=að Þ e� t=t0j jv k=að Þ: ðA32Þ

Using this result, the bracketed sum in equation (37) can be
carried out inside the integral in (A32) using �j=0

1 z j = 1/(1
� z) to yield

s2A þ 2
X1
u¼1

cAA u�tð Þ ¼ 4g00
a2

�
R1
0

dk
k

J 21 kð Þ
v k=að Þ coth � �t=t0j j v k=að Þ=2½ �:

ðA33Þ

Appendix B: Optimal Weight Solution

[66] In section 5 of the paper equations (43) for the
optimal weights of gauge data are obtained. They are fairly
simple to solve for the weights using standard linear-algebra
methods. We present here a brief description of the approach
we have used.
[67] Rewrite equations (43) in a form amenable to meth-

ods for solving sets of simultaneous linear equations by
defining the weight vector w,

wð Þj¼ wj; ðB1Þ

the symmetric covariance matrix,

Cð Þjj0¼ cgg tj0 � tj
� �

; ðB2Þ

and the vector defined by the middle term of (43), summed
over all satellite overflight times, as

dð Þj¼
1

N

XN
q¼1

csg tq � tj
� �

: ðB3Þ

It is also convenient to introduce a vector consisting entirely
of 1’s,

1ð Þj¼ 1; j ¼ 1; . . . ;H : ðB4Þ

Using the above definitions, equation (43) can be written in
vector notation as

H�1 Cw� d� l1 ¼ 0; ðB5Þ

with the constraint equation (39) for w written as

1Tw ¼ H ; ðB6Þ

where the superscript T indicates matrix transpose (e.g.,
w � d ¼ wTd). Equation (B5) is readily solved for the
weights as

w ¼ HC�1
dþ l1ð Þ; ðB7Þ

where l is determined by the constraint equation (B6) and
solution (B7) to be

l ¼ 1� 1TC�1
d

1TC�1
1

: ðB8Þ

The solution requires obtaining the inverse matrix C�1�1,
which is a standard numerical problem.
[68] Once the weights are obtained, the sampling error for

the difference of the satellite average from the time-
weighted gauge average can be obtained from (41) as

s2samp;w ¼ R0
s

� �2D E
þ R0

g;w

� �2
� �

� 2 R0
sR

0
g;w

D E
¼ R0

s

� �2D E
þ H�2wTCw� 2H�1wTd

¼ css þ H�1wT dþ l1ð Þ � 2H�1wTd

¼ css þ l� H�1wTd

ðB9Þ

using equations (38), (B2), and (B3) for the first step above,
equation (B5) for the second step, and the constraint
equation (B6) for the last step. Equation (33) provides an
exact expression for css.
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