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Nonlocal Independent Pixel Approximation:
Direct and Inverse Problems

Alexander Marshak, Anthony Davis, Robert F. Cahalan, and Warren Wiscombe

Abstract— The independent pixel approximation (IPA), which
treats radiative properties of each pixel independently by using
standard plane-parallel calculations preserves scale-invariance
found in the analyses of the horizontal variability of liquid water
in marine stratocumulus clouds. Several studies, however, report
a violation of scale-invariance in LANDSAT cloud radiance fields
that are much smoother than cloud structure on small scales.
This shows a limitation of IPA on small scales: it is unable
to simulate the smooth small-scale behavior that is due to the
horizontal photon transport. This paper introduces a “nonlocal”
independent pixel approximation (NIPA) that extends the IPA
by incorporating empirically the smoothing effects of horizontal
interpixel fluxes through a convolution product of the IPA and
an approximate Green function for radiative transfer. We also
address the inverse problem of cloud optical depth retrieval from
satellite data, showing how NIPA can be used to overcome the
limitations of current IPA-based methods at small scales.

I. INTRODUCTION

A CCURATE retrieval of cloud optical properties from
satellite data is one of the main problems of cloud

remote sensing. The large number of cloud types with differ-
ent vertical and horizontal variability in cloud optical prop-
erties makes this problem very difficult and the retrieved
optical depth fields in some cases unreliable. Many studies
address the problem of uncertainties in the retrieval of visible
wavelength optical depth from satellite measurements [1]–[5].
These discuss uncertainties arising from inaccurate knowledge
of illumination geometry, cloud aspect ratio, single-scattering
albedo, scattering phase function, surface albedo, vertical
structure of clouds, and calibration/discretization. A review of
uncertainties in cloud optical depth retrieval was done in [6].
Recently [7], systematic biases in the retrieved optical depths
were found for thick clouds at oblique solar zenith angles.

The existing retrieval techniques are entirely one-
dimensional, assuming horizontal homogeneity below
the pixel-scale, and based on look-up tables [2], [3], [8].
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According to [9], these are an operational independent pixel
approximation (IPA), where radiation fields are computed
on a pixel-by-pixel basis with plane-parallel theory. In other
words, IPA is a standard plane-parallel radiative transfer
model weighted by the probability distributions of the various
cloud properties. For the large enough scales (e.g., averaged
over several tens of kilometers) and completely overcast
skies, IPA is a reasonable approximation. Recently [10],
domain-averaged properties of IPA have been improved by
including the actual spatial distribution of the direct solar
transmission as the source term in otherwise one-dimensional
(1-D) computations. If the distribution of cloud optical depth
is approximated by the gamma distribution [11], an analytical
expression for the domain-averaged radiative fluxes can be
derived for both conservative and nonconservative scattering
[12]. This method is called a gamma-IPA model. The gamma
function parameter can be used to fit the histograms of
IPA-retrieved cloud optical depth [13].

Because IPA performs plane-parallel calculations for each
pixel, it neglects the net horizontal fluxes excited by the spatial
variability. As a result, dramatic errors in individual pixel
radiances that can exceed 50% [14], [15] even for high solar
zenith angles. These errors lead to large discrepancies in local
optical depth, retrieved by inverting the IPA at scales smaller
than 0.5–1 km [16].

On the other side, Monte Carlo (MC) methods are accu-
rate but computationally costly when pixel-scale resolution
is required; furthermore, they do not give one-to-one radi-
ance/optical depth relations. Up to now there is nothing that
combines the accuracy of MC with speed and straightforward
invertability of IPA. The method proposed in this paper
fills this gap. We call it the nonlocal independent pixel
approximation (NIPA) because it is not limited to the local
values of optical thickness but takes into account horizontal
radiative fluxes. It has recently been realized theoretically [15]
and verified empirically [16] that these horizontal fluxes are
dictated by a specific process called “radiative smoothing”
mediated by multiple scattering. Radiative smoothing is incor-
porated into NIPA empirically through a convolution product
of the IPA and the cloud’s radiative Green function, which
characterizes the spot of diffusely reflected light resulting from
illumination by a narrow beam [16].

There are several limitations of NIPA in the present study.
First, the interpixel correction remains independent of solar
angles and thus of geometrical shadows (see [7] for the
effect of solar zenith angles on the retrieved optical depths).
Second, NIPA is unable to simulate albedos larger than unity:
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due to converging horizontal fluxes, more energy leaves the
corresponding pixel than enters it. This is not a rare occurrence
for low sun and highly variable clouds [15], [17]. Third,
we assume vertical homogeneity. The geometrical shadowing,
however, may have a large effect for clouds with vertical
inhomogeneity [18]. Finally, we assume that each pixel is
either completely filled with a single uniform cloud layer or
else it is clear.

In this study, we constrain ourselves with overcast clouds
having constant top and base. The only variable quantity is
the horizontal distribution of optical thickness. This simple
model corresponds most closely to marine stratocumulus (Sc),
typically a few hundred meters thick and at least several hun-
dred kilometers across with approximately horizontal upper
boundary. Based on passive microwave observations [19], a
simple fractal model of the horizontal variability of optical
thickness that simulates internal cloud structure was developed
[20]. The main property of this model is the power-law
behavior of its wavenumber spectrum

(1)

over a large range of scales . Davis et al. [21],
[22] indeed found such power-law spectra for liquid water
fluctuations in marine Sc, with in a range from several tens
of meters to tens of kilometers.

The plan of this paper is as follows. The next section
briefly describes our fractal cascade models that reproduce the
scaling properties of measured cloud liquid water. Section III
compares two methods of computing radiation fields (IPA and
MC) and shows the results of a numerical experiment where
net horizontal fluxes are estimated directly inside inhomoge-
neous clouds. In Section IV, we describe a direct NIPA and
compare it with both MC and IPA. Finally, Section V sets up
the inverse problem of deconvolution and shows how this ill-
posed problem can be regularized to obtain a stable solution
for the retrieved optical depth field. Section VI summarizes
the results and discusses their applicability.

II. HORIZONTAL DISTRIBUTION OF CLOUD OPTICAL DEPTH

Both in situ measurements of liquid water content [21], [22]
and ground-based measurements of liquid water path [19], [23]
indicate power-law behavior of the horizontal variability of
cloud structure over at least three orders of magnitude: from
several tens of meters to tens of kilometers. This means that
a plot of any well-defined measure of variability (variance,
standard deviation, wavenumber spectrum, etc.) versus scale in
a log–log plot produces a straight line. For example, a log–log
plot of wavenumber spectrum versus in (1) gives a
slope , which is invariant under changes in wavenumber

. Similarly, for the incremental standard deviation of a
field one can write

(2)

where denotes ensemble averaging and the exponent
is invariant under changes in scale; it is defined by the
slope of a straight line in a log versus log plot. (The
Wiener–Khinchine theorem [24] for scale-invariant stochastic

Fig. 1. A schematic log–log plot of variance at a given scale versus that
scale. Vertically we represent the wavenumber spectrum or the incremental
variance. The plot shows (scale-invariant) cloud liquid water data along with
two computed radiation fields, IPA and MC/NIPA. The latter, showing a
scale-break at the “radiative smoothing” scale� � 100–300 m for marine
stratocumulus clouds, agrees with LANDSAT observations. The IPA curve
depends only on the cloud optical depth field and thus is slaved to it, showing
no scale-break.

processes tells us that the two exponentsand are related as
.) The upper line in Fig. 1 schematically illustrates

the scale-invariant behavior of cloud liquid water.
Different fractal models have been proposed to simulate

cloud inhomogeneity [20], [25], [27]. For the purposes of
this study, we employ two-parameter bounded cascade model
[20], [26], which mimics the wavenumber spectrum (1) and
variance of log of observed cloud liquid water in marine Sc.
This model assumes that clouds have fixed upper and lower
boundaries; cloud optical thickness is homogeneous in the
vertical direction and varies only horizontally. Fig. 2 shows
a perspective plot of this model in two-dimensions (2-D).

III. I NDEPENDENTPIXEL APPROXIMATION AND MONTE CARLO

Perhaps the simplest way to study the radiation properties
of horizontally inhomogeneous clouds is to apply the IPA,
i.e., plane-parallel theory on a pixel-by-pixel bases. In other
words,net horizontal photon transport is neglected, and each
pixel is treated as an independent plane-parallel medium,
when only local optical depth varies. To compute an IPA
reflection for each local value of optical thickness, one can
use either generalized two-stream formulae (e.g., [9]) or, more
accurately, any numerical technique developed for a plane-
parallel medium (e.g., DISORT routines described in [28]).

For our purposes, the most important property of IPA is the
preservation of scaling. In other words, if the optical thickness
field is scale-invariant, as in (2), then, to a first approximation,
the resulting IPA radiation field is also scale-invariant
[16] and

(3)

The middle line in Fig. 1 schematically shows scale-invariance
of the IPA. As it follows from (3), this line is parallel to the
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Fig. 2. A 2-D bounded cascade model of optical thickness with seven
discrete cascade steps (128� 128 pixels). Described in [20] and [29],
it realistically simulates a rich cloud structure with only two adjustable
parameters. The first parameter (p) controls the variance-to-mean ratio of
cloud liquid water while the second one (H) defines its scaling behavior. The
choice of parameters are made according to [9]:p = 0:4 andH = 0:38;
the latter gives a spectral exponent� � 1:6, roughly that observed for cloud
liquid water [21], [22]. The average optical thicknessh�i is set to 13; this
yields the standard deviation�� = 8:9.

cloud liquid water one and both straight lines are uniquely
defined by the same slope.

One consequence of scaling preservation can also be seen by
comparing Fig. 3(a) and (c), respectively, grayscale renderings
of and 2-D fields. The sharp edges in
the field result from the discrete nature of the cascade model
used to generate optical depth fluctuations [29]; because it is
slaved to -field, the -field shows the same sharp features.

Another way of computing radiation reflected from hor-
izontally inhomogeneous clouds is by Monte Carlo (MC)
simulations—a robust but rather costly technique that uses
photon trajectories with given probability densities, defined
by the integral equation of radiative transfer [30]. Fig. 3(b)
shows the 2-D albedo field calculated by MC
[29] for the -field in panel 3a. Even visually, we see that
this is much smoother than in Fig. 3(c). At largest
scales, the discreteness of the model is still perceptible, i.e.,
the large-scale fluctuations of the optical thickness fieldare
preserved. At small scales, however, the edges are smoothed
by the horizontal fluxes. This reflects the fact that is no
longer scale-invariant, and the lower part of the broken line
in Fig. 1 defines a characteristic scaleseparating the two
regimes. For scales above, radiation follows the fluctuations
in cloud structure while, for scales below, the radiation field
is smoother than predicted.

Scale-by-scale analyses of cloudy LANDSAT scenes [16],
[19], [33] show a scale break at around 200 m. We plotted
in Fig. 4(a) and (b), respectively, wavenumber spectra
and standard deviations of the July 7, 1987, LANDSAT
marine Sc scene of 61 61 km for two weakly-absorbing
channels: band 2 (0.52–0.60m) and band 4 (0.76–0.90m).

We can clearly see a scale-invariant regime from about 0.2–8
km. The scale-break at km marks the decay of spatial
correlations at the “integral” scale [16], [22]. The transition
to a steeper slope at around 0.2 km indicates the onset of the
radiative smoothing at scale. Comparison with other cloudy
LANDSAT images (e.g., [16]) shows that the large-end scale
break changes from image to image while the small-end scale
break is quite robust.

Based on the diffusion approximation,is found to be given
[15], [16] by

(4)

where and are, respectively, geometrical and (mean)
optical cloud thickness and is the asymmetry factor. For
typical marine Sc, km, , and ;
equation (4) then yields km, which is close to the one
observed in Fig. 4(a) and (b).

The IPA provides a reasonable estimate of the radiative
properties at large scales [9], [29]; however, because it ignores
any horizontal photon transport, there is a dramatic difference
for small scales that can be in error by 50% or more (e.g., [15],
[17]). To measure the magnitude of the net horizontal fluxes
excited by horizontal inhomogeneity, we set up the following
numerical experiment. A homogeneous slab of 300 m depth
is divided into two parts: one is set to the optical thickness 30
and the other to 5. A backward Monte Carlo [30] was used to
simulate separately vertical and horizontal fluxes at different
levels. Sun was in zenith to eliminate any effect of geometrical
shadowing. Fig. 5 illustrates the results “measured” at 15 m
from the discontinuity, in the more tenuous region. For the
homogeneous case ( ), the net vertical fluxes
(the straight line at 0.775) are computed using DISORT [28]
and the net horizontal fluxes (noisy line around 0) using MC;
the latter shows the level of MC errors. The net horizontal flux
is of course directed toward the thinner region; its maximum
is reached about 50 m from cloud top, which is close to one
transport mean free path in the dense region

m. Near cloud bottom, the effect of horizontal fluxes
is minimal. The most interesting fact is that the maximum
value of net horizontal fluxes is about 30% of their vertical
counterpart for the gradient between thick and thin regions
of 25, which is not a rare event in horizontal variations in
optical depth of real marine Sc [19]. It has also been noticed
[17] that for nonabsorbing wavelengths the sum of albedo and
transmittance on a pixel-by-pixel bases can be different from
unity by up to 30–50%.

To summarize, ignoring net horizontal radiative fluxes for
horizontally variable clouds yields incorrect radiation fields
for scales on the order of—or smaller than—the smoothing
scale . Fig. 1 illustrates this schematically using scale-by-
scale analysis. To incorporate the effect of photon horizontal
transport in a simple IPA-type radiative transfer method, one
has to find a nonlinear transformation, which “bends” the slope
of variance on a log–log plot toward less variability at the
smallest scales. The next section shows such a transformation
as a convolution product of IPA with an approximate Green
function for radiative transfer.
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(a)

(b) (c) (d)

(e) (f)

Fig. 3. A 2-D optical thickness, albedo, and albedo-error fields. (a) Density plot of the optical thickness model in Fig. 2. Optical thickness varies from 1.4
to 63. Cloud geometrical thicknessh = 300 m and the horizontal grid size is 128� 128 with 50 m pixels. (b)RMC for sun at 22.5� (from the north)
and Henyey–Greenstein phase function withg = 0:85. RMC varies from 0.14 to 0.83 with meanhRMCi = 0:46, and standard deviation�R = 0:14.
The grayscale goes from 0.07 (black) to 0.85 (white). (c)RIP for the same conditions as in (b). It varies over the full grayscale from 0.07 to 0.85 with
hRIPi � hRMCi, and�R = 0:17 > �R . (d) RNIP with � = 1:5 and� = 0:0205 km for the same conditions as in (b) and (c). It varies from 0.13 to
0.77 with hRNIPi = hRIPi � hRMCi, and�R = 0:14 � �R . The grayscale is the same as in (b) and (c). (e)RMC � RIP varies from�0.31 to
0.23 with hRMC � RIPi = 0:0016 and�R � RIP = 0:0669. The grayscale covers the full range, from�0.31 to 0.23. (f)RMC � RNIP varies from
�0.11 to 0.10 withhRMC � RNIPi = hRMC � RIPi, and�R �R = 0:0205 � �R �R =3. The grayscale is the same as in panel e.
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(a)

(b)

Fig. 4. Wavenumber spectra and standard deviations for a Landsat marine
Sc scene of 61� 61 km2 from July 7, 1987. (a) Log–log plot of 2-D
wavenumber spectra for two bands: band 2 (0.52–0.60�m) and band 4
(0.76–0.90�m). (b) For the same bands, log–log plot of standard deviation
�(r) = hjR(x1 + r; x2)�R(x1; x2)j2i, averaged over 2048 stripes in
the y-direction. Two positions of 8 and 0.2 km are indicated with arrows.
Note the small-scale break around 100–200 m.

IV. NONLOCAL INDEPENDENT PIXEL

APPROXIMATION: THE DIRECT PROBLEM

As illustrated in Fig. 1, is scale-invariant and the
scaling of its variability is therefore defined by just one
exponent [see (3)] over the full range of scales. In contrast,
to describe the scaling properties of , one needs at least
two more parameters. There is another exponent, which
determines small-scale behavior in Fig. 1 [and/or Fig. 4(a)
and (b)] and the characteristic scale, which defines the
scale break. Thus to “simulate” the scaling properties of
with , we can convolve the latter with a two-parameter
smoothing kernel. Studying numerically the profile of the
“spot” of reflected light associated with a point-wise source
(the cloud’s Green function), it was found [15] that a gamma-
type distribution is a good candidate for this convolution
product.

Let

(5)

where is a normalization constant, be a two-parameter
gamma-type distribution, which approximates the cloud’s ra-

Fig. 5. Net horizontal and vertical fluxes. A homogeneous cloud layer 300
m thick was divided into two regions with optical thicknesses 30 and 5.
Point-wise fluxes were calculated using backward MC at 15 m from the
discontinuity in extinction. Sun was in zenith and a Henyey–Greenstein phase
function with g = 0:85 was used. Net fluxes are defined as the differences
between down and up fluxes (net vertical) and right and left fluxes (net
horizontal). A straight line at 0.775 is computed using DISORT [28] and
corresponds to the net (constant) vertical flux in a homogeneous medium with
� = 5. The noisy line at 0 is net horizontal flux in homogeneous medium of
� = 5 computed by backward MC. Note that, near cloud top, net horizontal
flux exceeds 30% of net vertical flux.

diative transfer Green function [34]. We define the “nonlocal
independent pixel approximation” (NIPA) as the 2-D convo-
lution product of with , i.e.,

(6)

Fig. 3(d) illustrates ; it is almost indistinguishable
from plotted in Fig. 3(b). From the other side, visual
comparison between [Fig. 3(d)] and [Fig. 3(c)]
indicates that, while the large-scale variability of NIPA and
IPA [i.e., the distribution ofbig bright and dark areas in
Fig. 3(c) and (d)] is very similar, the small-scale fluctuations
are quite different. Because of the dampening effect of the
convolution product in (6), is much smoother. In [15]
it is shown that, for scales larger than, wavenumber spectra

of and are alike; the small-scale spectrum of
, however, has a much steeper slope, which is determined

by and . Fig. 3(e) and (f) show errors of both methods with
respect to . Due to the normalization in (5), and

have the same spatial mean; thus

(7a)

The standard deviation of the difference
however is more than three times smaller than for ,
more precisely

(7b)
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(a) (b)

(c) (d)

Fig. 6. IPA, MC and NIPA for cloud albedos. (a)RIP, RMC, andRNIP (� = 0:115 km, � = 1:0) applied to a 1-D cloud model (plotted in Fig. 8)
based on a ten-step bounded cascades (2

10
= 1024 pixels). The differencesRMC � RIP and RMC � RNIP are added for better visualization. The

average optical thicknessh�i = 13 and geometrical thicknessh = 300 m. The horizontal pixel size is set to 12.5 m, hence, an outer-scale of 12.8 km.
Solar zenith angle�0 = 22:5� and azimuthal angle'0 = 0

� (illumination from the left); scattering is determined by a Henyey–Greenstein phase function
with g = 0:85. (b) The same as in (a) but for another realization (the same as in [15]) of bounded model. (c) Energy spectra of the three fields from
(a) and (b) averaged over two realizations. Compare with the schematic illustration in Fig. 1. (d) Scatter plot of IPA and NIPA albedos versus MC albedo
for two realizations from (a) and (b). For clarity,RIP results are shifted down by 0.2.

The improvement can be visualized even more clearly in
a 1-D case. Fig. 6(a) and (b) show , and
( km and ) for two different realizations of
a 1-D bounded model with ten cascades. (The main statistics
of all three albedo fields together with a bounded cascade
model for the -field are given in the first four columns of
Table I.) For clarity and to distinguish from , the
differences and are also plotted.
Having the same spatial mean, the standard deviation of

is three to four times smaller than of its
counterpart. In particular, the average relative

error (in %) between is 6.3% while between
is only 1.6%, which is not much larger than

the level of MC noise (0.5%). Note that the accuracy of NIPA
is not very sensitive to the choice of (from 0.05 to 0.25)
and (from 0.5 to 1.0 km): the values of km [as
estimated by (4)] and (as estimated in [15]) yield
the average relative error 1.9%, which is still more than three
times smaller than its counterpart.

Fig. 6(c) illustrates the energy spectra (1) averaged over two
realizations. As schematically plotted in Fig. 1, IPA exhibits
scale-invariance over the whole range of scales from 25 m to
13 km. Because of convolution product (6), both and

have the same energy spectra (except the small-scale
differences that are caused by MC noise). Finally, both NIPA
and IPA albedos are plotted versus MC albedo on a scatter
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TABLE I
SOME STATISTICS OF THREE ALBEDO FIELDS AND THREE OPTICAL DEPTH FIELDS. ALL STATISTICS ARE AVERAGED OVER TWO REALIZATIONS. CLOUD

MODEL, SCATTERING AND ILLUMINATION CONDITIONS ARE THE SAME AS IN FIG. 6(a) AND (b). ALBEDO FIELDS ARE PLOTTED IN FIG. 6(a)
AND (b); THEIR HISTOGRAMS ARE IN FIG. 12(b), (d),AND (f). THE “T RUE” OPTICAL DEPTH FIELD (ONE REALIZATION ) IS PLOTTED IN

FIG. 8; ITS HISTOGRAM IS IN FIG. 12(a). HISTOGRAMS OF THERETRIEVED OPTICAL DEPTH FIELDS ARE IN FIG. 12(c) AND (e)

MC albedo IPA albedo NIPA albedo �true �ret (IPA ) �ret (NIPA )
min 0.271 0.189 0.258 3.307 4.871 4.194
max 0.761 0.792 0.741 40.333 33.964 44.272
mean 0.500 0.499 0.499 13 12.831 13.061

std deviat. 0.118 0.129 0.118 6.499 5.963 6.702

plot [Fig. 6(d)] for each of the 2 1024 pixels. (For clarity,
is shifted by 0.2 in the vertical direction.) We see that

the points are concentrated along the diagonal showing
a good agreement with MC. Note that the CPU time for the
calculation of was about 2500 shorter than for .

For high solar elevations, direct NIPA applies not only to
albedo but also to nadir-viewing radiance. As an example,
in Fig. 7(a) the MC nadir radiances for C1 clouds [31] with a
realistic phase function [32] are shown for the same realization
of 1-D bounded model as in Fig. 6(a). The appropriate NIPA
has similar to the albedo fields ( km) but smaller

( ). This is understandable: because of an additional
angular integration, the small-scale behavior of albedos is
smoother than that of radiances [15], [16]. Similar to Fig. 6(d),
Fig. 7(b) illustrates a scatter-plot of IPA and NIPA versus MC.
The improvement of NIPA with respect to IPA is obvious.

Finally, we note that the performance of NIPA deteriorates
substantially with the decrease of solar zenith angle. As
mentioned above, the correction factor is independent
of solar angle. All solar angle dependence of the NIPA is
concentrated in the IPA, which is insensitive to the pixel-
by-pixel correlation. As a result, , being a convolution
product of and , does not distinguish between two
different azimuthal angles . However, the low-sun albedo is
highly affected by . Fig. 8 illustrates two fields with

and together with for .
Optical depth is added for reference. We see that, while the
domain-averaged values are almost identical, there are huge
differences in individual pixels caused by optical shadowing.
The , even smoothed (as ) to have the same energy
spectrum as , is unable to follow pixel-by-pixel variability
in .

A way to improve NIPA for low solar angles is to use a mod-
ified IPA with a source function based on three-dimensional
(3-D) computations for the direct solar beam [10]. The new “3-
D direct-beam IPA” will take care of the horizontal variations
in the optical depth depending on the direction of a solar beam;
its convolution with a simple approximation of the radiative
transfer Green function will add the required smoothness. This
should improve the total performance of NIPA for low sun. In
this paper, we are not yet ready to discuss the details of the
proposed modification.

To summarize, the direct NIPA, as a convolution of the IPA
and the radiative transfer Green function, works well for high
solar angles ( ). It improves the performance of IPA
for a negligible additional computational cost using FFT. The
standard deviation of the differences between MC and NIPA is
typically three to four times smaller than that of MC and IPA.

Taking into account the computational cost of MC calculations,
the direct NIPA is an accurate and efficient substitute of MC
for both fluxes computations as well as radiances for high
enough sun. However, for low solar angles ( ), the
direct NIPA in its present form, while producing the same
smoothness as its MC counterpart, is unable to match MC
reflectance for individual pixels.

V. NONLOCAL INDEPENDENT PIXEL

APPROXIMATION: THE INVERSE PROBLEM

We now set up the inverse problem of retrieving the-field
from the -field. There are two main steps in the retrieval:
first, we retrieve from (6) assuming that the approximate
Green function is known and that ;
second, we use a look-up table to estimatefrom .
Because of the one-to-one connection betweenand ,
the last step is trivial; so we will focus on inverting (6), i.e.,
solving the equation

(8)

where is unknown.
Note that the deconvolution operation is a typical “ill-

posed” problem. Indeed, all we know about (8) is that, if
and is the exact solution of (6), then the

solution of (8) will be . In general, one can write

(9)

where is the small difference between MC and NIPA fields.
Furthermore, the convolution product in (8) is best done in
Fourier space

(10)

Then, from (9) and (10) we have

(11)

Applying the inverse Fourier transform to both sides of (11),
we obtain

(12)
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(a)

(b)

Fig. 7. IPA, MC and NIPA for cloud nadir radiances. (a) Cloud model and
illumination conditions are the same as in Fig. 6(a). Scattering is determined
by a realistic phase function specified in [32] for C1 clouds defined in [31].
Nadir radiance is used instead of albedo. To reach a less than 1% level of MC
noise for the nadir radiance with a strong forward-peaked phase function,10

9

photons were irradiated [this is five times more photons than for albedo and
a Henyey–Greenstein phase function shown in Figs. 3(b), 6(a), 6(b) and 8].
The NIPA nadir radiance is computed using� = 0:125 km, � = 0:24. (b)
Scatter plot of IPA and NIPA nadir radiances versus their MC counterpart. For
clarity, IPA results are shifted down by 0.2. Note a good agreement between
NIPA and MC.

where , and is the exact solution
of (6). Note that the last integral in (12) is unstable. First
of all, since both Fourier transforms and as

, the inverse Fourier transform of their ratio does
not necessarily exist. Second, even if the last integral exists,
the effect of large ’s can make this integral quite large;

Fig. 8. IPA, and MC albedos for two different azimuthal angles. Cloud
model and scattering are the same as in Fig. 6(a). Horizontal distribution
of optical depth is given for reference. Solar zenith angle�0 = 60

�. MC
results correspond to two azimuthal angles:'0 = 0

� (illumination from
the left) and'0 = 180

� (illumination from the right). IPA results are
'0-independent. Note sharp fluctuations that correspond to cloud optical
shadows; their locations strongly depend on the azimuthal direction of the
direct solar beam. The results of IPA are mostly between of those by MC.
The results of NIPA are not shown since they are based on the IPA and
unable to match those of MC.

in essence, the “noise” is amplified by the high-pass filter
described by 1/ . As a result, can be very far from
the exact solution . In other words, small differences
between and lead to unpredictable differences
between and ; thus the optical depth field cannot
be accurately retrieved.

It follows from the above arguments that, in order to get a
stable solution of (8), we at least have to remove artificially
the effect of large harmonics in (12). This is equivalent to the
low-pass filtering, or small-scale smoothing. Let us introduce
an even function that is defined for any with
the following main properties [35]:

as for any (13a)

as (13b)

We now seek the solution of (8) in the form of

(14)

Function will “stabilize” our solution. Indeed, be-
cause of (13a), it removes the effect of large’s, and due to
(13b) it converges to the unstable “solution” as . As a
simple independent of “stabilizer” , one can take

(15a)

which satisfies (13a) and (13b).
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(a)

(b) (c)

(d) (e)

Fig. 9. A 1-km fragment of a large optical thickness retrieval. (a) IPA-retrieved� -field together with “true”� from the bounded cascade model [the same
one as used in Fig. 6(b)]. Note that because of radiative smoothing the retrieved field is much less variable than the original one. (b) NIPA-retrieved� -field
without regularization. Note that most retrieved� ’s show errors larger than for inverse IPA. (c) NIPA retrieved� -field with regularization parameter = 0:1.
The retrieved curve is even smoother than for IPA. (d) NIPA retrieved� -field with regularization parameter = 0:01. The retrieved curve is still too smooth.
(e) NIPA retrieved� -field with regularization parameter = 0:005, which is the optimal value in the sense that it minimizes the standard deviation between
�true and�ret. Note that the resulting� -field is again smoother than “true“� ; however, it is a much better approximation than the one in (b).
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Fig. 10. A 3-km fragment of optical thickness retrieval (next to the one in
Fig. 9). “True” � is plotted together with IPA and NIPA retrievals. Note that
the NIPA retrieval is much better than its IPA counterpart. From the other side,
the regularization parameter = 0:005 being optimal for the whole field, is
not optimal for this 3-km fragment. Decreasing, one gets a rougher—and
closer to “true”—retrieved� -field.

From the other side, it can be shown [35] that for any ,
there is a function

(15b)

that minimizes the integral

(16)

It is easy to check that (15b) satisfies (13a) and (13b).
Substituting (15b) into (14), we have

(17)

If one knows additionally the energy spectraof both the
unknown solution and the difference between and

, the optimal stable solution of (8) can be expressed as
[35]

(18)

where and are energy spectra of ,
and , respectively. Note that (18) coincides with
the so-called optimal Wiener filter [36]. More sophisticated

Fig. 11. The inverse NIPA and IPA; the effect of NIPA regularization in a
“retrieved” versus “true” scatter plot. Optical depths are retrieved from the
1-D nadir radiances for C1 clouds plotted in Fig. 7. The “true” optical depth
is plotted in Fig. 8. Note how increasing the value of eliminates the outliers
at large� . For this retrieval, the regularization parameter = 0:001 is found
to be optimal. For clarity, IPA retrieved� -field is shifted down by 20.

techniques of stabilizing the solutions of ill-posed problems
and defining the regularization parameterin (17) are given,
for instance, in [35].

To demonstrate the effect of the regularization parameter
in (15a), we plotted in Fig. 9, a 1-km fragment of the retrieval
with different ’s. If (no stabilization), the retrieved
optical thickness is quite erratic [Fig. 9(b)]; large values
of for several pixels exceed over 100%. To better
understand physical reasons of these uncertainties, note that
the smoothing kernel defined in (5) uses a parameter
from (4), which is determined entirely by the average value
of optical thickness . For regions with optical thicknesses
several times larger than , the local radiative smoothing
scale . For those pixels, is smoother than its

counterpart. As a result, the inverse NIPA yields rougher
and therefore more variable . Mathematically, this

follows from the unpredictably large values at high frequency
in the last integral in (12).

Fig. 9(c) and (d) demonstrate the effect of large’s. As
we see, the resulting -field is much smoother than ;
for , is even smoother than retrieved from
the simplest IPA plotted in Fig. 9(a). Fig. 9(e) shows
with , which minimizes . Note that the
fragment shown in Fig. 9 is amongst the worst cases; the
retrieval algorithm works much better for regions with close-
to-average optical thicknesses. In Fig. 10 we plotted a 3-km
fragment (next to the one in Fig. 9) that hasfrom 5 to 25
(recall that ). We can clearly see how NIPA-retrieved

’s improve on those retrieved from IPA.
The scatter plot in Fig. 11 shows the effect of stabilizing the

inverse NIPA and compares it with inverse IPA. Both methods
retrieve optical depth from the nadir radiances for C1 clouds



202 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 1, JANUARY 1998

(a) (b)

(c) (d)

(e) (f)

Fig. 12. The histograms of MC, IPA, and NIPA albedos together with “true” and retrieved optical depths. Two realizations plotted in Fig. 6(a) and (b)
are used. (a) A “true” optical depth to be retrieved. (b)RMC. (c) Optical depth retrieved fromRMC using inverse IPA. (d)RIP. (e) Optical depth
retrieved fromRMC using inverse NIPA. (f)RNIP.
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plotted in Fig. 7(a). As mentioned above, by changing, we
affect primarily the retrieval of large ’s. To quantitatively
characterize retrieval, we use a standard deviation of the
differences between and . For the above retrieval,
we have for NIPA without regularization,
1.29 for IPA and 1.07 for NIPA with regularization. Also note
that the least-square fit for NIPA yields a slope of 1.01, which
is far better than the one obtained for IPA, which is 0.93.

Finally, we use histograms (Fig. 12) to illustrate both meth-
ods. Some statistics of all six fields (three albedo fields and
three optical depth fields) are given in Table I. Fig. 12(a)
shows a histogram of a bounded model, which is close to the
log–normal one. Fig. 12(b), (d), and (f) illustrate histograms
of , , and , respectively. We see that because of
photon horizontal fluxes, both and have irregular
shapes; the histogram of has a regular shape, which
is the result of a one-to-one transformation of each bin in
Fig. 12(a). As shown in Table I, has the largest range
(from 0.19–0.79), while the ranges of and are
very close (from 0.26–0.74 and from 0.27–0.76, respectively.)
As a result, standard deviation is almost 10% larger than
its NIPA and MC counterparts. Fig. 12(c) and (e) illustrate
histograms for two ’s retrieved from . It is not surpris-
ing, that the range of the IPA-retrievedis smaller; the IPA is
unable to retrieve large’s and completely misses the long tail
of the -pdf. As shown in Table I, its mean value and standard
deviation are also smaller. The NIPA-retrieved optical depth
slightly overestimates the range of; however, its mean value
and standard deviation are closer to those of than their
IPA counterparts.

To summarize, even a simple regularization (14) and (15a)
of the ill-posed problem (8) improves the retrieval of optical
depth with respect to IPA. However, the inverse NIPA, in its
present form, exhibits less accuracy than its direct counterpart.
There is a hope that a more complicated technique with a
stabilizer as a function of [see (15b), (17), and
(18)] will substantially improve optical depth retrieval.

VI. GENERAL SUMMARY AND DISCUSSION

Scale-by-scale analysis of the variability of both internal
cloud structure and the associated radiation fields is a powerful
instrument for studying the smoothing effect of multiple scat-
tering. Starting with a scale-invariant model of the horizontal
distribution of optical depth (Fig. 2), we showed that while
IPA (just standard plane-parallel radiative transfer on a pixel-
by-pixel basis) preserves scale-invariance, MC yields two
distinct scaling regimes. Large-scale fluctuations, to a first
approximation, are similar to those of cloud structure but the
small-scale variability is essentially weaker (Fig. 1). This is
due to photon horizontal transport, which is strong enough to
smooth the small-scale fluctuations of optical depth.

Using the diffusion approximation, the radiative smoothing
scale can be estimated as a measure of the range where net
horizontal fluxes arise [16]. The scaleis proportional to the
harmonic mean of cloud depth and photon transport mean free
path (4). A statistically robust analysis of LANDSAT cloud
scenes [Fig. 4(a) and (b)] not only confirms this theoretical

result but also indicates a way to improve IPA. Indeed, Fig. 1
shows that, if we are able to define a simple operation on the

field that bends its spectrum around the radiative
smoothing scale, then we have a method statistically compa-
rable with MC. A convolution product (6) between IPA and an
approximate Green function for radiative transfer (5) is such
an operation. Since, in contrast to IPA, the new method takes
into account optical properties of neighboring pixels, we called
it the “nonlocal” IPA or NIPA. Figs. 3, 6, and 7 illustrate NIPA
and compare it with the traditional IPA.

To retrieve cloud optical thickness from an unknown
corresponding to a given , we developed the inverse
NIPA. Instead of a simple deconvolution of (8), which is a
typical ill-posed problem, we used a regularization (14) that
enables us to get astablesolution of (8). Fig. 10 illustrates how
the (too-smooth) -field retrieved directly from IPA can be
improved by the NIPA retrieval. Note that, since the radiative
smoothing scale depends only on average optical thickness

, both direct and inverse NIPA work better for optical
thicknesses not too far from the average value. Indeed,
in a region of large , the “local” radiative smoothing scale is
smaller than . As a result, direct NIPA (being a convolution)
smooths this neighborhood more than necessary; conversely,
inverse NIPA yields ’s that are too rough.

Another weak point of NIPA is related to the compounded
effects of cloud edges and oblique illumination (Fig. 8). Since
both IPA and NIPA are independent of solar azimuthal angle,
the shadowing effect of cloud edges is not taken into ac-
count. Consequently, NIPA violates the principle of directional
reciprocity [37], and the retrieved optical thickness from the
illuminated side will be overestimated while the one from the
shadowed side will be underestimated. To generalize NIPA for
oblique illumination, we can use the so-called “3-D direct-
beam IPA,” which is a modification of IPA, by using the
results of 3-D computations for the direct solar beam [10]. For
broken cloudiness we have to adapt the definition of radiative
smoothing to variable sun angles and use a more sophisticated
approximation of the radiative transfer Green function.

In spite of the limitations listed above, NIPA proves to
be a substantial improvement over the standard IPA. On
the one hand, it allowed us to reproduce the observed two-
point statistics of high-resolution satellite radiances. On the
other hand, the NIPA-retrieved one-point distribution of cloud
optical thickness is quite realistic, leading in particular to
similar mean and standard deviation as for the actual cloud op-
tical thickness. The simplicity and computational efficiency of
NIPA enables it to be used in high-resolution satellite imagery
retrieval algorithms for cloud optical properties [13], [38].

Finally, we note that another application of the fundamental
smoothing scale (4) found in marine stratocumulus is in active
rather than passive cloud remote sensing. The idea is to
directly measure the brightness distribution in the spot created
by pencil-beam illumination of a cloud. One can set up a
pulsed-lidar experiment in which the measured spot profile
is combined with the distribution of photon arrival times to
infer both the cloud’s geometrical and optical thicknesses, as
well as information on cloud structure, at km
resolution [16], [39].
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