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ABSTRACT

In this conceptual and numerical study, sudden stratospheric warmings (SSW) are identified as catastrophes.
A catastrophe is the transition toward a separate new equilibrium after the original stable equilibrium state of
a dynamical system terminates as an external parameter changes smoothly and slowly across a critical value.
Many qualitative results of some previous modeling studies of SSW are interpreted in light of catastrophe theory.
For example, the cutoff amplitudes in wave forcing as functions of initial conditions determined by Holton and
Dunkerton are shown to be in the loci of unstable equilibria in a bifurcation diagram. Also the stage of warmest
polar temperature represents the peak of the overshooting in a catastrophe. Moreover, the rapid restoration of
westerlies corresponds to the return from the overshooting. Basic concepts in catastrophe theory related to
SSW—for example, hysteresis, cusp and triggering—are demonstrated in a numerical study using the Holton-
Mass model.

The transition from the steady regime to the vacillation regime in the Holton-Mass model, i.e., SSW, is
explained conceptually in terms of the topographically induced Rossby wave instability. The multiple equilibria
involved owe their existence to the resonant response of the system to bottom forcing. The suddenness of SSW
is due to the resonant increase of wave amplitude and its positive feedback on the mean flow. The model, as
well as the conceptual explanation, gives a resonant buildup of the planetary wave, followed quickly by its decay
and then by the warming peak, a scenario corresponding well with observations. A surge of wave amplitude at
upper tropospheric levels prior to the warming peak is a result of the instability and, as such, should not be
used as a trigger to instigate SSW as in many previous mechanistic models.

Implications of the catastrophic nature of SSW for simulation and forecasting efforts are discussed. An additional
and perhaps more difficult challenge in the SSW forecasting effort comes when the initial planetary wave amplitude
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is not yet in the rapid building-up phase; i.e., before the instability occurs.

1. Entroduction

Sudden stratospheric warmings (SSW), the most
spectacular dynamical phenomena in the winter
stratosphere, have attracted researchers’ attention ever
since their discovery in the 1950s. Reviews include
Quiroz et al. (1975), MclInturff (1978), Schoeberl
(1978), Holton (1980) and Mclntyre (1982). In a nu-
merical study, Matsuno (1971) first proposed that SSW
are a result of stratospheric mean flow interaction with
upward propagating planetary waves originating in the
troposphere. His basic idea of wave-mean flow inter-
action has been reasonably successful in simulating
SSW in other mechanistic model studies (e.g., Holton,
1976; Schoeberl and Strobel, 1980). However, his em-
phasis on the critical line has proved to have been mis-
placed.

Many global models have also simulated sponta-
neous SSW (e.g., Grose and Haggard, 1981; Lordi et
al., 1980; Mahlman and Umscheid, 1984). Predictions
of SSW using general circulation models (GCM) start-
ing from observed initial conditions have been at least
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qualitatively successful (e.g., Miyakoda et al., 1970;
Simmons and Striifing, 1983; Geller et al., 1985). These
studies, along with various observational studies (e.g.,
O’Neill and Taylor, 1979; Palmer, 1981), have eluci-
dated the evolutionary process of SSW, but the basic
theoretical understanding as to why SSW occur and
occur so suddenly is not complete. Sudden strato-
spheric warmings {SSW) often are preceded by a surge
in the upward planetary wave flux from the tropo-
sphere. Many authors have believed this surge to be a
trigger. Is this belief correct? If so, why can SSW be
triggered and if not, why? These are among the many
unanswered questions.

Attempts to attribute SSW to either barotropic or
baroclinic instability have not been fruitful. Recently,
Plumb (1981b) suggested that SSW arise from an in-
trinsic instability of the winter atmosphere in the pres-
ence of steady bottom wave forcing. In this instability
mechanism, the stationary forced wave acts as a catalyst
for the free wave to draw energy from the basic flow.
This instability is essentially the topographically in-
duced instability of Rossby waves (Charney and
DeVore, 1979; Plumb, 1981a; Pedlosky, 1983; Revell
and Hoskins, 1984; Buzzi et al., 1984) and offers some
understanding of the SSW process. In this paper this
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instability is investigated from a different perspective.
Here we take a conceptual and numerical approach,
guided by catastrophe theory, in obtaining some qual-
itative understanding of SSW.

Using a severely truncated quasi-geostrophic 8-plane
model, Holton and Mass (1976; hereafter HM) showed
that the model stratosphere exhibits recurrent warm-
ings when the steady wave forcing at the bottom
boundary exceeds a critical value. When the forcing is
subcritical, the model stratosphere reaches a steady
equilibrium close to the radiative equilibrium. The
equilibrium—or quasi-equilibrium—state on the other
side of the critical forcing has a completely different
structure (see Fig. 1 of HM). The sudden cessation of
a final equilibrium solution and the appearance of an-
other totally different one, as an external parameter is
changed slightly, is reminiscent of a catastrophe.

Catastrophe theory, a branch of the combined fields
of calculus, differential equations and topology, was
first systematically elaborated by Thom (1972), and
has subsequently been applied to atmospheric sciences.
It has been used in studies of Rayleigh-Benard con-
vection, quasi-geostrophic flows, climate and the onset
of turbulence (see Dutton, 1982 and the bibliography
therein). Because the nomenclature is not unified, this
theory has also been termed—or overlaps with—bi-
furcation theory, structural instability, singularity the-
ory, etc. For an introduction to catastrophe theory,
refer to Poston and Stewart (1978), Saunders (1980),
and Arnold (1984).

A simple example of a catastrophe taken from non-
linear dynamics is given in Section 2 to illustrate some
basics of catastrophe theory. Readers who are already
familiar with the theory may find this section elemen-
tary. In Section 3, many qualitative results from pre-
vious modeling studies of SSW are interpreted in light
of catastrophe theory. Further properties of this theory
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essential to SSW such as hysteresis, cusp and triggering
are demonstrated in a numerical study using the HM
model in Section 4. A qualitative explanation of the
transition from the steady regime to the vacillation re-
gime in the HM model in terms of the topographically
induced barotropic Rossby wave instability is offered
in Section 5. Some implications for simulation and
prediction of SSW are discussed in the final section.

2. Some basic concepts in catastrophe theory

A simple example depicting a catastrophe is Ben-
jamin’s buckling of a wire arch under gravity (Iooss
and Joseph, 1980). His apparatus (Fig. 1) is a board
with two holes through which a bicycle brake cable is
passed. The length of the wire above the board, /, an
independent variable, can be adjusted slowly and con-
tinuously by moving one end of the wire. The equilib-
rium state of the wire is denoted by the angle 8, a de-
pendent variable. When / is small, the only equilibrium
state is the upright one (6 = 0). This upright state re-
mains as / is increased slowly until / exceeds a critical
value /,. At that instant, § changes abruptly to a finite
value, either positive .or negative, representing a right
or left bend. Further increasing / results in a continuous
change in 6. On the other hand, when [/ is decreased
past /., 6 does not change abruptly back to zero; instead,
it decreases continuously until another crmcal I by, is
reached, when # snaps back to zero.

Figure 2 shows the bifurcation diagram where stable
equilibrium states are drawn in solid lines and unstable
equilibrium states in dashed lines. The dashed lines
indicate mathematically possible, but physically un-
realizable, equilibrium states. The abrupt loss of sta-
bility of an equilibrium solution as an external param-
eter slowly passes a critical value and the simultaneous
racing towards another equilibrium solution is called
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FIG. 1. Front and side view of Benjamin’s wire arch which contains a board with two holes through which a bicygle
brake cable is passed. The state variable is the inclination angle 6, and the external adjustable parameter is the wire
length / above the board. (Courtesy of looss and Joseph, 1980)
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FIG. 2. Bifurcation diagram of the wire arch experiment, which
shows the stable (solid) and unstable (dashed) equilibrium states as
functions of wire length /. (Courtesy of Tooss and Joseph, 1980)

a catastrophe. In the range between /y and /., there are
three stable equilibrium states, and the choice depends
on the past history of the system. This phenomenon is
called hysteresis.

The loci of the solid lines can be determined exper-
imentally as described above. Those of the dashed lines
can also be determined experimentally. If an experi-
ment is done with a fixed / (/ > ), by holding § at an
arbitrary initial value 6, and letting go, i.e., (d/dr);
= 0, then which equilibrium state # will come to rest
at depends of course on 6;. In a series of experiments
with successively increasing §;, there is a critical 6;,
8;, across which the final # will reside on different solid
lines. By repeating this series with different /’s, one
obtains §; as a function of /, which is the locus of the
dashed lines. This series of experiments can also be
done in an inverse manner by using the same 6; and
successively increasing /, and thus obtaining a critical
/, |. By repeating such a series of experiments with dif-
ferent 6;’s, one gets the same loci. In more general cases
with nonzero initial df/dr and 6;, when similar exper-
iments are done, one can obtain instead of the dashed
lines, “dashed™ surfaces in the 3-D space of 6, d8/ds
and /, which of course intersect the 9~/ plane at the
dashed lines in Fig. 2.

The values of /, and . depend on the stiffness, or
elasticity, of the wire. Figure 3 shows a schematic dia-
gram of this dependence in a cusp shape. The bifur-
cation diagram also depends on the stiffness. If the
stiffness is very great, only the upright state of equilib-
rium can exist. On the other extreme, if the degree of
stiffness is very low, only the bent state can exist. In
the intermediate range, the bifurcation diagrams are
of two different types, depending on the physical prop-

WINSTON C. CHAO

1633

erties of the wire such as stiffness and weight per unit
length (Fig. 4). In Type A, the solid lines are connected;
thus, the transition from one branch of the equilibrium
to another involves continuous, noncatastrophic and
nonexplosive changes of states. In Type B, on the other
hand, the solid lines are disconnected and the transition
is discontinuous, catastrophic and explosive (Sturrock,
1966). Type A is often referred to as a bifurcation and
Type B as a catastrophe.

It is essential to recognize that catastrophes can be
triggered. When J, < I < [, if the system in a nonbent
state (f = 0) is subject to a sufficiently large outside
disturbance in the form of a shaking motion and/or a
Jjerking push or pull of one end of the wire, § will move
into one of the other regions separated by the “dashed”
surfaces in the 3-D space of [, 6 and df/dt, (“surfaces
of no return™), and 6 will start racing toward one of
the other equilibria. The required intensity of the trigger
1s, of course, a function of how far the current equilib-
rium state is away from the “dashed” surfaces. The
triggering process may proceed at any speed, but the
catastrophe usually proceeds quickly once under way.
Exactly how sudden the catastrophe is largely depends
on the physical properties (e.g., the stiffness) of the wire,
though the intensity of the trigger is also a determining
factor.

The entire picture can also be viewed by considering
the potential energy (sum of the gravitational and the
elastic potentials) distribution. Figure 5 shows the po-
tential energy as a function of # for different /’s. The
location of the particle represents the state of the sys-
tem. When / = /,, the particle at equilibrium can be
pushed (or triggered) over the potential energy peak,
falling into the neighboring valley (a triggered catas-
trophe). Alternatively, when / is increased beyond /.,
a spontaneous catastrophe occurs. How fast the particle
falls naturally depends on the steepness of the walls of
the valley and the intensity of the push in a triggered
catastrophe. If the dissipation is not too great, the falling
particle will overshoot the new stable equilibrium po-
sition and oscillate about it a number of times before
coming to rest.

The sequence of pictures can also be viewed in a
reverse order, with decreasing /. Starting from / > /.,
the particle lies in either of the two valleys. As / de-
creases, a new valley develops at the center, but the
particle remains in the original valley until / < Jy, and
the particle falls into the central valley as the side valleys
disappear. Thus, when /, < / < [, the particle may be
found in any of the three valleys, depending on its past
history (i.e., hysteresis). Also the shape of the potential
energy distribution shows multiple equilibria. If the
stiffness of the wire is such that the bifurcation diagram
is of Type A, then as / increases, instead of the ap-
pearance of two humps on either side of the particle
in the energy diagram, a single hump develops at the
center. In this instance, the particle moves slowly as
the valleys deepen and no catastrophe occurs.
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FI1G. 3. Schematic diagram of the cusp dependence of /. and I, on
physical properties of the wir: such as stiffness and weight per unit
length. :

In a more general system with more degrees of free-
dom and with an energy source, sink and/or other in-
stability mechanisms, the equilibrium states can have
different characteristics; i.€., they can be steady (fixed
point), time-periodic (limit cycie) or time aperiodic
(quasi-equilibrium, attractor set or strange attractor).
For example, the transition between wavenumber re-
gimes in annulus experiments, a catastrophe whose
suddenness and hysteretic nature have been clearly
demonstrated (Fultz ‘et al., 1959), involves two time-
periodic equilibria. Often the two equilibria involved
in the change have different characteristics. For in-
stance, the transition from the Hadley regime to the
Rossby regime in annulus experiments, also a catas-
trophe, involves steady and time periodic equilibria.

3. Interpretation of some previous modeling results of
SSW

Although the proof that SSW is a catastrophe will
not be forthcoming until the numerical study in Section
4 is presented, one can interpret many of HM and
Holton and Dunkerton’s (1978; hereafter HD) model
results, along with some observational results, assuming
such a hypothesis is valid. These interpretations will
also help to design further model experiments to verify
our assumption. Before doing so, however, a recapit-
ulation of HM and HD is useful.

Holton and Mass studied the wave-mean flow in-
teraction in the stratosphere using a quasi-geostrophic,
B-plane channel numerical model, an outgrowth of
“Geisler’s (1974) model. This model extends vertically
from 10 to 80 km, and over 60° in the meridional
domain. In the zonal direction, only one wavenumber
is allowed, and in the meridional direction, only one
mode exists. In the vertical direction, the model has a
2.5-km size grid system. External forcings include iat-
itudinal differential heating, parameterized in terms of
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Newtonian cooling, and a steady bottom boundary
wave forcing. The zonal wind at the bottom is fixed.
The initial conditions correspond to a zonally sym-
metric flow closely resembling the winter mean con-
ditions in the Northern Hemisphere.

Holton and Mass did a series of experiments starting
from the same initial conditions, but with different
bottom wave forcing amplitude rising in three days
and staying constant thereafter, and studied the re-
sulting equilibrium (or quasi-equilibrium) state. They
found that when the bottom forcing is sufficiently small,
the model’s final state is a steady circulation very close
to radiative equilibrium conditions. However, when
the amplitude of the steady bottom boundary wave
forcing s (as_defined in Eq. (11) of HM) exceeds a
critical value /p the final state is no longer steady; in-
stead, the mean zonal flow and eddy components os-
cillate quasi-periodically; i.e., the model exhibits re-
peated warmings, or vacillation. With the exception of
the first one, these repeated warmings do not show any
suddenness. Also, the time mean of the vacillation so-
lution is very different from the radiative equilibrium
state.

Holton and Mass concluded that oscillation in
stratospheric long waves does not necessarily reflect
oscillating tropospheric forcing, but may occur even
in the presence of steady bottom forcing. This conclu-
sion is not particularly surprising, since vacillation has
been known to exist under steady external forcing pa-
rameters in annulus experiments. (It should be stressed
that steady external forcing parameters can still allow
nonsteady external forcings. In the HM model, the ra-
diative forcing is nonsteady.) However, this finding is
significant since it demonstrates the importance of the
internal nonlinear dynamical processes associated with
stratospheric planetary waves.

Subsequently, HD continued the same study and
showed that wave transience, not dissipation, is the
primary mechanism for generating mean flow oscil-
lation. In addition, in a series of experiments, they
found that the critical wave forcing amplitude necessary
to produce a vacillation response is very sensitive to
the initial mean flow profile, which in their experiments
is identical to the radiative equilibrium profile.

The relevance of HM and HD’s results to the real
stratosphere is supported by another 3-plane model
(Schoeberl, 1983) which has more degrees of freedom
in the meridional direction and has demonstrated sim-
ilar critical bottom wave forcing amplitude.

If an analogy is drawn between HM and HD’s ex-
periments and the buckling of the wire arch example
in Section 2, one can identify hp with /, the model
state—a point in a multidimensional phase space—
with 6, and the vertical gradient of radiative equilibrium
zonal wind, dUr/dz, with the stiffness. The model bi-
furcation diagram looks conceptually like that in Fig.
6. (Fig. 6 may or may not be a complete picture, since
there might be other equilibrium states not found in
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F1G. 4. Types A and B bifurcation diagrams. Stable equilibria
(solid lines); unstable ones (dashed).

HM and HD’s experiments. Indeed, as shown later, it
is incomplete.) The upper solid line represents the vac-
illation regime and lower one, the steady regime. The
dashed line represents the unstable equilibrium states
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or the loci of the “potential energy hump.” The warm-
ings they obtained correspond to the phase of the vac-
illation that is farthest from the steady regime. The first
few warmings in the model have the help of overshoot-
ing. (The first occurrence of overshooting in the valley
brings the particle farthest from the new equilibrium.
Likewise, the first warming in HM’s results is the
strongest.)

The experiments done by HM and HD in finding
the critical bottom forcing amplitude are analogous to
the series of experiments on the buckling wire arch
described in Section 2 in searching for / as a function
of §;, or more precisely, for the “dashed” surface in the
3-D space of /, 8; and (d8/d);. From this analogy, it is
not surprising that HD’s results showed that /5 depends
on the initial conditions [since / is a function of §; and
(db/dt);, hp is equivalent to /, or more precisely, to a
point on the ““‘dashed” surface, rather than to /,.]. Fur-
thermore, the fact that this dependence is very sensitive
to the initial conditions only indicates that (4z),, cor-
responding to [, and (43z),, corresponding to /., are far
apart. For the sake of discussion we have ignored the
fact that sz was gradually turned on in three days in
HM and we assume that /5 is turned on instantly. Par-
enthetically, in HD, for different experiments with a
fixed bottom zonal wind, dUg/dz was changed, but
this does not affect our conclusion.

To find the critical amplitude of the bottom bound-
ary forcing (/). corresponding to /., one needs to start
from an equilibrinum state-—a final state in HM’s ex-
periments with small #z—and integrate with time, with
a very gradual increase of /5, so as to keep the model
state in equilibrium. Eventually when /g increases past
(hs)., the model will jump into the vacillation regime
within a short time, i.e., a catastrophe or SSW will
occur. Similarly, to find the /4 corresponding to /,
(h15)o, one should start from a vacillation state and de-
crease /1 gradually; these experiments have been done
(see Section 4).

Though there is a fundamental analogy between the
wire arch and HM’s model, a number of differences
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FIG. 5. Potential energy distribution as a function of # for various /’s.
Upper part for Type B; lower part for Type A.
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FiG. 6. Schematic diagram showing the two stable equilibrium
regimes (solid) and unstable ones (dashed) in the HM model.

exist between them that arise from the greater number
of degrees of freedom and the existence of external
forcings in the HM model. The oscillation of the par-
ticle in the potential energy valley 1in the wire arch ex-
periment involves only exchange of kinetic energy and
potential energy, whereas the vacillation in the HM
model involves the additional, and more important,
energy exchange between wave and zonal flow. In the
wire arch example, the particle periodically passes
through the bottom of the potential energy valley before
coming to a rest. In the HM model, the state particle
may spiral toward the valley bottom, and the valley
bottom is not necessarily a point in a N-dimensional
state space and can occupy a space ofupto N — 1
degrees of freedom.

For the particle representing the state of the wire
arch to continue oscillating in the potential energy val-
ley (Fig. 5), it has to experience an external time de-
pendent forcing. Similarly, in the vacillation regime,
the model experiences time dependent radiative forc-
ing; thus, time dependent bottom boundary forcing is
not necessary. However, in the model, the time period,
regular or irregular, of the radiative forcing and of the
vacillation itself is internally determined, whereas the
time period of the particle oscillation can be completely
determined externally. If the bottom forcing is oscil-
latory, then the model should have an additional os-
cillation with the same frequency. Still more frequen-
cies may appear also, due to nonlinearity and/or other
instability mechanisms, if more degrees of freedom are
introduced into the model. ’

Observations show that SSW is often preceded by a
surge of upward wave energy flux from the troposphere.
Many authors believe that this surge acts as a trigger
for SSW. This belief may fit the description of SSW as
a catastrophe, which by definition can be triggered,
‘and is tested in a numerical study in ‘Section 4. The
rapid restoration of the westerlies after a warming re-
sembles the return of the overshot particle in the po-
tential valley towards the new equilibrium state. As
just mentioned, the steady state equilibrium for hp
< (hg).in HM’s result can be generalized to allow vac-
illation—a vacillation of much smaller amplitude that
does not result in warmings—either by imposing a pe-
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riodicity on the bottom boundary wave forcing as the
index cycles in the troposphere might suggest, and/or
by allowing more zonal wavenumbers (or meridional
modes) to interact nonlinearly with each other and with
the zonal mean flow. The results would resemble the
vacillation observed in the stratosphere with a quasi-
two-week period (Hirota and Sato, 1969) before any
warming event takes place.

4. Numerical experiments using the HM model

The model used is that of HM; a very brief descrip-
tion of it is given in Section 3. Their parameter settings,
along with their notations, are strictly adhered to unless
otherwise specified. The code was written exactly as
documented in HM. As stated in HM, all results from
this model should be considered as heuristic only, be-
cause the quantitative details are certainly affected by
the severe truncation and because sphericity is not
taken into account. Results for wavenumber 2 will be
discussed first.

a. Spontaneous SSW

The initial conditions used are those of HM: a 10
m s~ bottom zonal wind, a constant vertical zonal
wind shear of 3 m's™!/km up to 50 km, and zero shear
above it at midchannel. At the model top both the
wave amplitude and the mean wind are set at zero.
The radiative forcing gives a vertical shear of the ra-
diative equilibrium zonal wind, dUg/dz,0f3m s~ !/km,
which corresponds to the winter solstice condition. The
bottom boundary (at 10 km) steady wave forcing of
wavenumber 2 has an amplitude of hp = 40 m, rising
in three days. (Note that the amplitude of bottom forc-
ing is hp exp(zp/H) =~ 2hg, where zg is the model bot-
tom height and H is the scale height. See Eq. 7a of
HM.) Then h was increased by 0.075 m day ! as the
integration continued until termination at day 2000.
Figure 7 shows the transition from a near radiative
equilibrium state to a (quasi-) periodic vacillation state
of repeated warmings at approximately day 1600 when

“hg~ 159 m, denoted by (#15).. The repeated warmings

follow the first warming as shown in the figure. The
near barotropic nature of the transition is indicated by
the nearly vertical phase contours in Fig. 7c. The tran-
sition occurs almost simultaneously at all levels. Before
the transition, the wave has only a very small vertical
phase tilt and is essentially in phase with the topog-
raphy. The model SSW is characterized by an anom-
alous increase in wave amplitude, followed by a rapid
decay. The wave phase shows a westward movement.
In the meantime, the zonal wind decreases ever more
rapidly and becomes zero just as the wave amplitude
peaks. The zonal wind then continues its decrease at
a progressively slower rate and soon reaches a peak
easterly, which represents the peak of the warming.
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FIG. 7. Spontaneous SSW for wavenumber 2, dUg/dz = 3 m s7!/km, Uy = 10 m s7'; (a) time-height
section of zonal mean wind (m s~') at midchannel; (b) height perturbation amplitude (m); (c) cosine of
phase angle; Note: hp was raised from 40 m at a rate of 0.075 m day™".

Figure 8 shows a more detailed picture of the evolution
at 40 km. The subsequent restoration of the westerly
is also very rapid. The sequence of events exhibits a
good resemblance to real warmings.

b. Hysteresis and cusp

To find (hz), an experiment was started from hp
= 70 m rising in three days, which is sufficient to put
the model state in the vacillation regime; 4z was then
reduced at a rate of 0.025 m a day. The transition from
a vacillation regime to a steady state regime occurs
almost simultaneously at all levels when 4g ~ 26.5 m
(Fig. 9). This transition is much slower than the one
reported in Section 4a, though it shows the same baro-
tropic nature. Since (43). > (hg)o, there is a range of

hy values where both flow regimes can coexist. Thus,
the hysteretic property of the model is established, and
the catastrophic nature of the sudden warmings in the
model is identified.

In an attempt to obtain the dependence of (43). and
(hg)o on 3Ug/9z, the two experiments described above
were repeated with dUg/dz equal to 2 m s™!/km and
then 1 m s™!/km. The experiments with increasing hp
to obtain (/). gave qualitatively similar results. How-
ever, the experiment with decreasing /4 starting from
the vacillation regime and with dUg/dz = | m s™!/km
showed two consecutive transitions. The first is a tran-
sition from the vacillation regime to a steady state re-
gime; this is different from the steady state we have
found in the early experiments before the warming oc-
curs in that the wave is baroclinic and the state resem-
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Fi1G. 8. Detailed evolution of model SSW (shown in Fig. 7) at 40 km."

bles closely the time mean of the vacillation regime.
This transition occurs first at lower levels and then
spreads into.higher levels in about four hundred days.
The second transition brings the state to a steady state
similar to that found before the warming in the earlier
experiments, i.e., the wave is in phase with respect to
the bottom forcing. In the second transition the wave
is coherent in height. Upon reexamination of the results
from similar experiments for Uz/3z = 3 m s™'/km
and 0Ugx/dz = 2 m's™!/km cases, hint of the first tran-
sition was found though the second transition is more
readily identified. Figure 10 shows the dependence of
(hg). and (hg)e on Ug/3z in a cusp form. Curve (hg),
corresponds to the transition into the near radiative
equilibrium solution. The first transition in the de-
creasing /g cases occurs fairly close to (4z), and is not
shown in Fig. 10. When the state of the external pa-
rameters moves into the region flanked by the two
curves, nothing drastic happens. On the other hand,
when the state of the external parameters continues
moving in the same direction and leaves the shaded
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region, a catastrophe occurs. (On leaving the region on
the (hg), side, two consecutive transitions occur.)

In other experiments with wavenumber 2, it was
found that (&3). and (%), both decrease as the specified
bottom (at 10 km) zonal wind Uy is decreased. This is
consistent with HD’s finding (Table 1 of HD) that A,
decreases with Up (at the surface).

c. Triggering

To demonstrate that SSW can be triggered, an ex-
periment was done with wavenumber 2, dUgz/dz = 3
m s~ !/km, and with A slowly increasing from 0 to 140
m, which is below (/3),, in 1000 days, and kept at 140
m from day 1000 to day 1600. At day 1600, hg was
raised abruptly to 160 m, and it remained at that value
for 10 days (shorter than the radiative relaxation time
scale in the lower portion of the model), and was then
restored to 140 m. Computation was continued until
day 2000. Figure 11 shows the evolution of zonal winds
and reveals a sudden jump from a steady equilibrium
state to a vacillation, as a result of the triggering. When
the same experiment was repeated with the raised value
of hg, 160 m, replaced by 150 m, starting on day 1600,
the model state experienced only a slight perturbation
and no sudden warming, and it soon returned to the
original near-radiative equilibrium state. These results
fit perfectly with the triggering concepts discussed in
Section 2. Perturbation in external parameters or in
boundary condition parameters other than A5 can also
serve as a trigger, as can nonlinear wave-wave inter-
action which is present in a more complete model.
Moreover, perturbing prognostic quantities in the
model can also trigger SSW.

d. Wavenumber 1 results

An experiment was done with the same initial con-
dition as before, with Az increasing from zero at a slow
rate, and with wavenumber 1. For small /g, the steady
state wave is almost barotropic and exhibits a nearly
180° out-of-phase relationship with respect to bottom
forcing; transition to the vacillation regime first occurs
at higher levels and then spreads slowly downward (Fig.
12). Such a slow transition bears no resemblance to
real warmings and s clearly different from the transi-
tion discussed in Section 4a. The hysteretic nature of
the wavenumber 1 transition is revealed in Fig. 13,
which shows two steady equilibrium states at the same
bottom forcing amplitude. The steady equilibrium, (a)
in Fig. 13, is the near radiative equilibrium state before
the transition that exhibits the nearly 180° out-of-phase
relationship with respect to bottom forcing, and is dis-
tinguished from the steady state obtained by HM. So-
lution (b) is the low forcing limit of the vacillation re-
gime and is obtained by starting from vacillation so-
lution and reducing bottom forcing. In the vacillation
regime, the period of vacillation becomes greater as /15
decreases (Fig. 5 of HM). The period of vacillation be-
comes infinity, i.e., a steady state, as 15 < 60 m. Schoe-
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FIG. 9. As in Fig. 7 except for decrease of 4 from 70 m at a rate of 0.025 m day™".

berl (1983) also found a steady solution similar to (b)
in an extended model, and attributed its existence to
the fact that his model allows more meridional modes
which facilitate the critical level’s turning reflective.
The current study shows, in contrast, that this steady
state is a low forcing limit of the vacillation regime,
and can exist even when only one meridional mode is
allowed in the model. The cusp for this transition is
difficult to obtain, since the two critical curves forming
the cusp are very close to each other.

e. Comparison with Holton-Mass code

Professor Holton kindly provided us with the HM
code listing for comparison purposes. Their code had
the model bottom at the surface. We failed to follow
enough details in their code to move the model bottom
to 10 km. After changing the model bottom to surface

in our code, we used the two sets of codes to run the
spontaneous SSW experiment reported in Section 4a.
Both codes gave (Ag). of about 330 m and the other
quantitative results compared very well. Also, results
from their code exhibited the same hysteretic property.
However, when our code was used to repeat the ex-
periments reported in HM with bottom forcing rising -
in three days, the critical 45 we obtained was around
50 m, about one-third of that reported in HM. This
discrepancy is hitherto unresolved.

5. A conceptual explanation of the catastrophe in the
HM mode!

Thus far we have only identified through experi-
ments that SSW, at least as appeared in the Holion-
Mass model, are catastrophes. The fundamental ques-
tions of why SSW occur at all and why so suddenly



1640 JOURNAL OF THE AT

3
g
3 2
E
|
28 1

{ § L { 1 { i | j
0 20 40 60 80 100 120 140 160 180
' hg {m)
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number 2.

have not been addressed. The fact that SSW are catas-
trophes does not explain the suddenness. As discussed
earlier, the speed of a catastrophe depends on the slope
of the new potential valley wall which in principle can
have any value. This section provides answers to these
fundamental questions.

An explanation of results of the numerical experi-
ments shown in Section 4 can be obtained by first
looking at the topographically induced barotropic
Rossby wave instability (TIBI). The TIBI was first in-
vestigated by Charney and DeVore (1979; hereafter,
CD) in explaining blocking. The multiple equilibria
associated with the TIBI were discovered in an earlier
independent work by Vickroy and Dutton (1979). The
TIBI was subsequently studied and reviewed by many
authors. The brief discussion of TIBI in the following
paragraph is based on a concise review of CD by Held
(1983).

MOSPHERIC SCIENCES VoL. 42, No. 15

As shown by Held, a 8-plane channel shallow water
flow (or a divergent barotropic flow) over wavy topog-
raphy can be described by quasi-geostrophic approxi-
mation as:

olul
ot

—«([u} ~ [u.)) — D([u])- 8]

which states that the zonally averaged zonal wind, [u],
in the absence of the drag by steady forced waves gen-
erated by topography, D([u]), relaxes to an equilibrium
value, [u,.], through an external forcing, which in a
baroclinic atmosphere would be the radiative forcing.
" The associated relaxation time scale is «™; D({u]) is
the sum of the eddy momentum flux divergence and
the form drag. In a baroclinic model, [u.] would be
the radiative equilibrium zonal mean wind. Held also
showed that Dfu] is equal to the southward eddy flux
of potential vorticity. When the wave consists of only
one meridional mode, D([u]) has the same shape as
[7*?], where #* is the perturbation of surface height
and is proportional to the amplitude of bottom topog-
raphy. The steady state solution of (1) is shown sche-
matically in Fig. 14. The peak of D([u]) corresponds
to a resonance. If the parameters are such as to produce
the graph shown, three equilibria exist. It is clear from
Eq. (1) that if « + dD/d[u] is negative, as it is for the
intermediate equilibrium, point B, the state is unstable.
A physical explanation for the TIBI for the case of «
= 0 is given by Revell and Hoskins (1984). The equi-
librium state “A” corresponds to a high wave amplitude
and low zonal wind “blocking state” and the other
equilibrium state C corresponds to a low wave ampli-
tude and high zonal wind “normal state.” Also, solution
C is nearly in phase with the bottom forcing whereas
solution A is nearly 180° out-of-phase with the bottom
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FIG. 11. Time-height section of zonal mean wind at midchannel for wavenumber 2, illustrating the triggering
effect; hp is raised from 140 to 160 m at day 1600 and restored to 140 m at day 1610.
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FIG. 12. As in Fig. 7 except for wavenumber 1; 4, was raised from 0 m at a rate of 0.035 m day™'.

forcing. Clearly, the multiple equilibria owe their ex-
istence to the resonant structure in D([u]).

Equation (1) and Fig. 14 can be used to investigate
the HM model, which is identical to the CD system
except for its being vertically stratified, in an analogous
manner. Steady solutions that exist in a barotropic
model have their counterparts in the corresponding
baroclinic model. However, a steady solution that is
stable in a barotropic model may become unstable as
the model is switched to a baroclinic one, due to the
additional degree of freedom in the vertical direction
in the baroclinic model. The numerical results in Sec-
tion 4 indicated that in the HM model, solution C
remains stable and solution A becomes unstable when
the bottom forcing is large. Also, the steady solution

A, when unstable in the stratified flow, is replaced by
a stable limit cycle (periodic) or attractor (aperiodic).

Before further elaborating on these numerical find-
ings, we would like to note the differences and the
analogy between the CD and HM systems. Unlike the
shallow water system where the change in bottom wave
forcing is felt at all heights simultaneously, the baro-
clinic atmosphere has to depend on vertical wave
propagation for any change in bottom wave forcing to
influence higher levels. Also, for lack of thermody-
namics, the shallow water system has no meridional
heat flux as does the baroclinic atmosphere. Despite
these differences, the important point for our expla-
nation of the results in Section 4 is that the HM model
also has analogous multiple equilibria; this is borne
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FIG. 13. Two steady state solutions at midchannel for wavenumber 1; iz = 47 m and
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near radiative equilibrium solution. Curve (b)

is a limit solution which bifurcates into a vacillation solution when Ay is increased.

out by the numerical experiments which owe their ex-
istence to the resonant structure in the wave forcing of
the mean flow.

The steady equilibrium solution in the HM model

is a counterpart of solution C of the CD system, which -

is close to the radiative equilibrium state. This iden-

tification is clear from Fig. 7 which shows the evolution -

of phase and amplitude of the wave disturbance and
the zonal flow speed in the HM model as the amplitude
of the bottom wave forcing gradually increases. Before
the warming occurs, the equilibrium steady state ex-
hibits an almost barotropic structure forced by bottom
topography. This almost barotropic structure mater-
ializes because of a low reflecting level, above which

xluel

the wave is evanescent and below which the upward
propagating wave combines with the reflected down-
ward propagating wave to give the almost barotropic
structure. The stationary wave is almost in phase with
the topography; the minute out-of-phase feature exists
in response to the dissipation in the model, which is
greater at higher levels. When /5 is very small, the peak
of D([u]) is lower than «([u] — [u.]) and the solutions
A and B do not exist. Solution C is the only solution.
As the topographic amplitude increases, the curve
D({u]) in Fig. 14 moves upward and solutions A and
B appear but the model solution is still at point C. As
the topographic amplitude continues increasing, point
C moves upward and point B moves downward at a

4.

-

— [u]

[ule

p [Ulreso

[uel

FIG. 14. Schematic representation of Eq. (1). (Adapted from Held, 1983)
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slower rate along the line x([#] — [u.]). Similarly, in
the HM model the steady solution experiences a grad-
ual decrease in zonal flow speed and an increase in
wave amplitude. Eventually, when the topographic
amplitude increases past a critical value, (/4g)., point
C meets point B, and then both solutions terminate.
Immediately following the termination the state races
toward the other equilibrium state, point A—a catas-
trophe has occurred.

Immediately after point C meets point B, D([u]),
which experiences a resonant increase, reduces [u] at
an accelerated pace, and the wave amplitude experi-
ences a resonant increase in a positive feedback. As a
result, the energy is released from the mean flow to the
wave. Thus, the resonance and the positive feedback
are the basic cause of the suddenness of SSW. The
wave amplitude reaches a peak as [¢] becomes zero
(Fig. 8). This feature, which appears in the model, is
due to the conservation of potential enstrophy. The
maximum wave potential vorticity amplitude is
achieved when the zonal mean flow potential vorticity
becomes zero (Davies, 1981). As [u] turns more east-
erly, the wave amplitude undergoes a rapid decay. The
square of the wave amplitude tends to follow the res-
onant shape of D([u]), though maximum wave ampli-
tude corresponding to zero [u] instead of [#];eso. Sub-
sequently, the further overshooting brings [u#] to a
maximum easterly and brings about the corresponding
warming peak. This description of the evolution of
SSW fits very well with observation. A Lagrangian view
of the overshooting process leading to the warming
peak, after the buildup of the wave, was presented by
Matsuno (1983). .

As [u] changes from superresonant to subresonant
after the instability starts, the phase of the wave
changes, according to linear resonance theory, from an
in-phase to a 90° out-of-phase (when [#] = [u] s ) then
to a greater out-of-phase relationship with respect to
the topographic forcing. In the present nonlinear
model, similar phase change is followed, though it is
not synchronized with [«] in the same manner (Fig.
8). Such a phase change preceding the warming peak
corresponds to a westward movement of the wave. Ob-
servations (e.g., Quiroz et al., 1975), however, show
both eastward and westward movement of thermal
centers (and often followed by a poleward movement
as the polar region warms up). Such a discrepancy may
be attributed to the truncation of the model.

In the HM model, [¢] at point A may lie within the
range of zonal flow such that the Charney-Drazin cri-
terion is met for most of the model vertical domain, 0
< [ula < [ulcp. In this case, point A is no longer a
steady solution (as in a barotropic flow). Instead, due
to wave and mean flow interaction point A is replaced
by a quasi-periodic solution, V; i.e., a vacillation in-
volving critical level descent as explained by HM and
HD. The Charney-Drazin criterion also explains why
solution C remains stable when the CD system is re-
placed by the HM system.
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The maximum allowed [#]a i [#]weso (~B8/K?, where
K is the total wavenumber). Since [t]cp < [#)resos A,
the steady external 180°-out-of-phase solution, can ex-
ist in the baroclinic atmosphere, which is the steady
state solution we found in experiments with wave-
number 1 when /5 is small; A is also found in some
wavenumber 2 experiments with reducing Az before
the transition into solution C.

In the HM model, when dUg/dz is reduced, [u,] is
reduced and the line «([«] — [u.]) moves leftward and
downward; the critical amplitude (/). becomes smaller
as was obtained in the model experiments (Fig. 10).
Such dependence implies that if a SSW has not already
occurred, as the season advances from winter solstice
to vernal equinox, the chance of an occurrence of a
SSW becomes greater and greater. Similarly it is easy
to see from Fig. 14 that (%g) should diminish as dUg/
dz is reduced as already shown in Fig. 10. The greater
slope of the (Hg), curve than that of the (Hp), curve
in Fig. 10 is related to the fact that D([«]) is proportional
to the square of topographic amplitude. Thus, Fig. 10
is well explained by Fig. 14. The decrease of (hz), as
Up is decreased, as reported in the last paragraph of
Section 4.b, is explained by the fact that [#,] is reduced
by a decreased Ujp. Furthermore, the steady state results
with wavenumber 1, before its transition into the vac-
illation regime (Section 4d), correspond to point A in
Fig. 14. The failure to obtain the steady state corre-
sponding to C in the wavenumber | experiments must
be due to the fact that [u].s, is greater than [u,] that
both B and C do not exist. Indeed, when the experiment
was repeated with dUxr/dz increased to 9 m s !/km
(unrealistically large), a steady state corresponding to
point C was found, and when Az became sufficiently
large a qualitatively realistic SSW occurred.

Thus, Fig. 6 does not present a complete picture. A
better presentation is given in Fig. 15. Some of the
solutions in Fig. 15 may or may not exist and may
occupy more or less domain of 4z depending on the
model parameters. The thick lines in Fig. 15 represent
barotropic solutions; C is the near radiative equilibrium
steady solution, which is nearly in-phase with respect
to the bottom forcing. If the model is barotropic, so-
lution A/, like A, is stable and steady; both are largely
180° out-of-phase with respect to the bottom forcing.
If the model is baroclinic, A’ becomes unstable and
new solutions V and V' associated with the baroclinic
modes appear. Solution V is the vacillation regime.
The period of vacillation of V increases as /5 decreases
and solution V' is its steady state low forcing limit (so-
lution (b) of Fig. 13), which exhibits similar time mean
features as solution V. The transition between V and
V' is a bifurcation.

6. Discussion and conclusion

The repeated warmings in the vacillation regime, as
shown in HM, involve a gradual descent of the critical
line, and have a period of tens of days; they do not
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FIG. 15. Schematic representation of solutions in a S-plane channel flow model with one wave-
number and one wave mode. The thick lines represent solutions if the model is barotropic.
Solution C is the near radiative equilibrium solution which is nearly in-phase with respect to the
bottom wave forcing. Solutions A and A’ are the “blocking” solution which is largely 180° out-
of-phase with respect to the bottom wave forcing: If the model is baroclinic, A’ becomes unstable
and new solutions V and V' appear; V is the vacillation solution and V' its steady state limit.

have the explosive characteristics of a real warming.
Though interesting theoretically, they do not appear
to be relevant in explaining any real phenomena, be-
cause before the warming can repeat as described in
HM, other important physical processes such as
changes in the external forcings and nonlinear inter-
action among waves of different wavenumbers, pre-
clude the occurrence of such a slow warming. However,
the first warming in the HM model (as reported in 4a)
involves a catastrophic transition of the flow from a
superresonant steady regime to a vacillation regime,
and has many characteristics of a real warming, such
as the resonant intensification of the planetary wave
followed by its rapid decay, and then the reversal of
the zonal flow at all levels almost simultaneously and,
most importantly, the suddenness of the event [see Fig.
4 of Matsuno (1983) for observational results]. Though
a complete description of a real warming should take
into account the modifying effects of the nonlinear
wave-wave interaction (e.g., Smith, 1983; Austin and
Palmer, 1984) and the sphericity, the HM model suc-
ceeds in capturing the major physical process of a real
warming—a catastrophic flow regime transition.
More general models allowing more meridional
modes have generated essentially the same results as
HM'’s model results. The northern and southern wall
boundaries in the HM model provide a perfect reflector
for the wave and thus facilitate the formation of res-
onance. In a more realistic description these perfect
reflectors should be replaced by partial reflectors.
Though resonance can still occur, the required (/45),
would be greater. Nevertheless, the conceptual expla-
nation for SSW given in Section 5 still holds. To es-
tablish that the onset of SSW in nature is catastrophic,
. one needs to experiment with an even more general

model allowing sphericity and more zonal wavenum-
bers. One such model (Koermer et al., 1983) has fa-
vorably indicated the existence of critical bottom forc-
ing. Furthermore, the observed suddenness of SSW and
the rapid return of the westerly strongly suggest that
the onset of SSW in nature is catastrophic.

The topographical forcing that we have emphasized
in this paper should be considered as the sum of the
topographical forcing and the thermal forcing due to
the land-sea contrast. The relative importance of the
two is a subject of great interest. A recent review of
this subject is given by Held (1983).

If a model stratosphere possesses multiple equilib-
rium states, then no matter how crude the model is, it
is possible to generate a sudden warming. This and the
near barotropic nature of the SSW explain why some
of the early stratospheric models could be used to ob-
tain events qualitatively resembling sudden warmings,
despite their crudeness in vertical resolution (e.g.,
Trenberth, 1973). The necessary criteria for SSW to
occur may not always be met in every winter that is
modeled. Thus, some general circulation models were
able to obtain warmings in some winters, while other
winters in the same simulation may have been quies-
cent (Grose and Haggard, 1981).

The successful forecast of sudden warming events
depends very much on the initial conditions. If the
initial conditions are (as in the case of beginning the
forecast simulation only a few days before the warming
peak) such that they represent a point in phase space—
in the model as well as in nature—that is, already over
the potential energy barrier in a triggered warming case
or that has met the instability criteria in a spontaneous
warming case, and is already on its way down the new
potential energy valley (i.e., the wave amplitude is al-



1 AUGUST 1985

ready in the accelerated increasing phase), then it is
very simple to obtain the warming; however, the success
of predicting the intensity and the detailed structure
of the warming still depends on the fidelity of the
model. An additional and perhaps more difficult chal-
lenge in forecasting a triggered SSW comes when the
initial conditions represent a point in phase space that
has not passed over the potential energy barrier; i.e.,
the rapid buildup of wave amplitude is not obvious
yet, as in the case of starting the forecast simulation
far ahead of the real warming, This challenge is twofold.
The first is that of correctly simulating the energy bar-
rier, and the second is the challenge of simulating the
triggering mechanism. On the other hand, if the warm-
ing is spontaneous, the correct forecasting of the growth
of forcings external to the stratosphere to meet the in-
stability criterion presents an equally difficult challenge.
The high sensitivity of critical forcing amplitude to the
external parameters reported in Section 4 indicates the
difficulty. A slight imperfection in the model or inferior
initial conditions can hasten, delay or even preclude
the warming event and make the forecast highly in-
accurate, i.e., lower predictability. Thus, there is a sig-
nificant temporal variation in the stratospheric pre-
dictability during the period of onset of sudden warm-
ings.

In attributing SSW to essentially the same instability
mechanism that explains blocking (Section 5), we take
the view that SSW and tropospheric blocking are dif-
ferent manifestations of an instability process occurring
in the troposphere and stratosphere as a whole. This
instability occurs frequently and has a range of different
zonal wavenumbers. When the stratospheric condition
is unfavorable for vertical wave propagation, this in-
stability is confined in the troposphere as a blocking
without SSW, as often is the case. With the right zonal
wavenumber and when the stratospheric condition
(refractive index) is suitable, the resonance cavity,
which is usually confined in the troposphere, can ex-
tend to the stratosphere and the mesosphere. Thus, the
instability can affect the atmosphere from surface to
mesopause. This instability, being forced by orography
and land-sea thermal contrast, first occurs in the tro-
posphere as blocking and spreads simultaneously into
the stratosphere leading to warming. The upward
spreading accounts for the fact that blocking occurs
slightly before the wave amplitude peaks in the strato-
sphere. The surge of wave amplitude observed at tro-
popause level prior to warming is a result of the insta-
bility mechanism and thus should not be considered
as the initiator of the instability; this is often used as
justification for raising the bottom wave forcing am-
plitude rapidly to initiate SSW in many mechanistic
models. Though successful in getting SSW,. these
mechanistic models obtain rather artificially triggered
SSW. Of course, the spontaneous SSW depicted in
Section 4a does not represent a precise picture either,
because in nature the state is never in an exact equi-
librium before SSW. Something like the example given
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in Section 4c, which requires a light trigger starting
from a state close to critical point, is a much better
depiction of the real events.

In summary, the current study shows that SSW can
be identified as a catastrophic event whose associated
instability is the topographically forced Rossby wave
instability. The associated multiple equilibria owe their
existence to the resonant response to bottom wave for-
cing. Many of the previous modeling and observational
results related to SSW can be interpreted in the light
of catastrophe theory. Basic concepts in catastrophe
theory related to SSW—hysteresis, cusp, and trigger-
ing—are demonstrated in a numerical study using the
Holton-Mass model. The chain of events in SSW, the
rapid buildup of the planetary wave followed by its
quick decay and then by the warming peak, are well
explained by the topographically induced Rossby wave
instability and are simulated in the HM model. The
suddenness of SSW is due to the resonant increase of
wave amplitude and its positive feedback on the mean
flow. A surge in the wave amplitude at upper tropo-
spheric levels prior to the warming peak is a result of
the instability and, as such, should not be used as a
trigger to instigate SSW, as is done in many previous
mechanistic models. Finally, additional challenge in
the SSW forecasting effort comes when the initial con-
ditions have not yet shown any sizable planetary wave
amplitude.
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