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1. — Introduction.

Weather varies from one day to the next and its changes cannot be pre-
dicted very far into the future [1]. The climate of an area refers to probabilities
of meeting with weather of different kinds there. Lmirm [2] has suggested a
quantitative way to talk about climate and climatic change by introducing
the concept of an ensemble. He suggests constructing an ensemble of planets,
each identical to the Earth in all respects believed to be important in determin-
ing the climate, but differing in the initial conditions for the atmospheres.
Averages over the ensemble are assumed to give the same results as long-time
averages over a simple planet. In this framework climate refers to the sta-
tistics of the ensemble.

In order to make our discussion more concrete, let us concentrate on a
single variable describing the atmosphere, the globally averaged surface air
temperature 7To(t), which depends on time {. We shall represent ensemble
averages by angular brackets (T,>. For a stationary climate, the time-averaged

temperature 7,

¥

_ 1
(1.1) T, = ?fdt To(t)

]

will approach the ensemble average <{T,> for long averaging times Y. The
advantage of introducing an ensemble average is that we may discuss climatic
change in terms of the time dependence of the nonstationary ensemble-averaged
temperature (Ty(t)>. It is much more difficult to discuss climatic change when
climate is defined in terms of time-averaged quantities.

We can write the equations for T, schematically as

ar,

(1.2) g = LoToy @a) + fo
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where I, depends, in principle at least, on T, itself and all of the other variables
2, of the atmosphere, oceans, etc. that affect the temperature T, and cause it
to vary in time. The variables x, in turn have equations of the form

dx

(1.3) T; = Is(To, #a) + fa,

where again we have represented the interactions of the various variables with
each other schematically.

In both eqs. (1.2) and (1.3) we have separated off a «forcing » term f that
we are interested in changing to see how the system reacts. The forcing f,
may, for instance, represent solar heating of the atmosphere, and a change
Af, might represent the increased heating due to an increase in the luminosity
of the Sun.

Climatic sensitivity is represented by the proportionality constant M relating
a climatic change to a small change in foreing:

(1.4) ATy = M Af, .

We assume that climatic change is linear in small changes in the forcing, which
is plausible for a stable climate. We can, of course, consider the sensitivity
of T, to changes in forcing fs of other variables, and write

(1.5) ACTS = MoxMfe .

Climate sensitivity Map is thus a matrix relating shifts in climatic means
Alwxyy to changes in foreing Afg.

The importance of knowing the sensitivity matrix M to climate research
is clear. There is the direct benefit that what we know about changes in the
forcing Af can be translated into its consequences for climate. The classic
example of such relationships is the prediction of how much warming of the
planet we can expect due to the extra opacity of the atmosphere to infra-red
radiation caused by increasing carbon-dioxide concentration.

Another possible benefit lies in the interesting possibility that, if we knew
the sensitivity matrix of the atmosphere, we could replace the atmosphere in
coupled-ocean-atmosphere models by a «black box» constructed from the
sensitivity matrix, so that we could run the model using time steps with a size
characteristic of the ocean rather than having to use the much shorter time
steps required to integrate properly the full atmospheric equations. Need for
some such scheme is exemplified by the discussion of the coupled-ocean-atmos-
phere problem by DICKINSON [3].

But the sensitivity matrix M is not easy to obtain. Some information about
it can occasionally be obtained when «natural experiments» such as voleanic
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eruptions oceur that affect the radiative equilibrium of the atmosphere. But
the climatic changes that result are not easily distinguished from the natural
variability of time averages of atmospheric variables due to day-to-day weather
changes. This problem is discussed by LEeiTH [2].

Another approach to learning about M is through computer modeling of
the climate system. One tries to construct as good a model as possible, in-
corporating as many of the physical processes determining atmospheric behavior
as possible, and integrates the model on a computer. But models of the atmos-
Phere require a lot of simplification of the equations for the climate system,
and it is a difficult problem to determine whether the simplifications used are
adequate. To test the model, one tries to compare its behavior with the atmos-
Phere’s. But quantitative information about the climatic sensitivity of the
atmosphere is rather scanty, and tests of the model tend to be limited to re-
producing atmospheric behavior on time scales of a week, by comparing weather
forecasts to actual weather developments, and to trying to make the model
climate agree with the present climate.

Large models of the atmosphere strain the capacity of the most powerful
computers, and this makes experimenting with the models difficult, especially
for the long runs required to establish climatic means. Determining the sensi-
tivity of the model to a change in forcing Af, requires a separate run for each a.

HALL ef al. [4] have proposed using the adjoint method of sensitivity analysis
in order to alleviate the computational task. In this method, a set of modified
(adjoint) model equations linearized about a solution of the equations is inte-
grated backwards in time. Certain results from functional analysis [5] allow
the solution of the backward adjoint problem to be used in obtaining the
sensitivity of the model to many different changes in forcing Afx from a single
computer integration. The method will be difficult to apply to large general-
circulation models of the atmosphere, but is worth further investigation.

Finally, LeITH [6] has suggested a method of determining M from obser-
vations of natural fluctuations of the atmosphere about the mean. He points
out that the average manner in which fluctuations of the atmosphere relax
back to the mean should give us some information about the dynamical respon-
siveness of the atmosphere, and suggests using the fluctuation-dissipation relation
(FDR) to express this relationship quantitatively.

2. — The fluctuation-dissipation relation.

2'1. Statement of the relation. — Leith’s paper [6] on the FDR is beautifully
written and makes excellent reading, and we shall not attempt here to explore
the FDR with as much rigor or in as much detail as he has done, but will
only try to review the elements necessary for an understanding of the method.

Let us suppose for simplicity that we need consider only one variable of
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the atmosphere, T,. In order to state the FDR, we will first need to define
two functions related to the evolution of 7(f). The first is the lagged auto-
correlation of the temperature,

(2.1) 0(1) = (Tt + 1) Ty ) [(TH)

where we have assumed that the statistics are stationary in time, so that the
autocorrelation is a function of lag = alone and not of {. The primes indicate
variations from the climatic mean, T‘; =T,—<T>.

The second function needed is the average response of T, to an infinitesimal
heat pulse

(2.2) Afo(t) = ed(t — 1)

occurring at ¢,. To compute this response, consider the perturbed equation
obtained by adding Af, to eq. (1.2),

aT,
(2.3) A = I+ fo -+ ed(t — 1) ,

where 7', is the solution to the perturbed equation. The solution may be written
in terms of the response funection ¢(¢; ¢,) as

(2.4) To(t) =To(t) + eg(t; t) -
The average response to a perturbation is obtained from the ensemble mean
(2.5) g(z) = Lg(t; 1)) T=t— 1,

where the stationarity assumption has been used again.
The FDR may be stated now for our simplified, one-variable model:

(2.6) 9(7) = C(7)0(7),

where 6(t) is the Heaviside step function. In words, the mean response function
is identical to the lagged autocorrelation function for the system. Notice that
g(7) vanishes for negative 7 because of causality.

We may express the response of the system to any small perturbation
Afy(t) as

2.7) AT(1) = [ar Afy(t)g(t; ¥)
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and the response to a constant Af, as
13
(2.8) ATy (t) = Afofdt'g(t; #).

It follows that the climatic change due to Af, is

[

(2.9) ALT,) = Af,|dzg(7) ,

0

and from eq. (1.4) we identify the sensitivity of this elementary model as
(2.10) M :fg(r) dr.
0

If the FDR, eq. (2.6), is valid, one can obtain the climate sensitivity directly
from the autocorrelation function:

(2.11) M :fou) dr.

The climate sensitivity of a perturbed system obeying the FDR can be obtained
from the correlation time of the undisturbed system. This is what makes the
FDR so interesting.

2'2. Markov processes and the FDR. — An example of a system for which
the FDR works, and which helps in analyzing some of the issues that need to
be considered in wusing it, is a multivariate first-order Markov process. Its
variables x, satisfy the stochastic equations

(2.12) o= — 2 Aapws+ fx,
B

where A is a matrix of coefficients and f.(¢) is a zero-mean white-noise forcing
function with covariance

(2.13) Jalt) (")) = Fapdlt— 1),

F being a symmetric positive-definite matrix. The solution to eq. (2.12) may
be obtained by using an integrating factor, which yields

(2.14) x(1) :fdt' exp[— At — )] f ().
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From (2.14) we immediately identify the response function
(2.15) gt; 1) =exp[—AE—t)]OE— ).

Since (2.12) is linear in «, this response function is independent of any particular
solution. Therefore, the mean response function for the system is

(2.16) g(t) = exp [— A7]0(7) .

With a liftle more algebra one can obtain the lagged covariance matrix of
the system

(2.17) Uap(z) = <2a(t + 1) 28(1))

which may be written
(2.18) U(7) = exp[—A7]T0(z) 4+ T exp [AT7]0(— 1),

where I' is the zero-lag covariance Uap(0) and A" is the matrix transpose of A.
Comparing (2.16) and (2.18), we find the relation

(2.19) g(z) = U(n)U~4(0)6(z) ,

which is a multivariate generalization of the single-variable expression (2.6).
This is the form in which LirrH [6] has expressed the FDR.

We have so far dealt with models assumed to have stationary statistics,
but the atmosphere has statistics that vary, for example, with the diurnal
and annual cycles. The assumption of stationary statistics can be relaxed in
eq. (2.12) by allowing A,z and F,p to be time dependent, and a form of the
FDR very similar to eq. (2.19) derived appropriate to a system with non-
stationary statistics,

(2.20) gt - 7; 1)) = U(z; HU(0; 1)0() ,

where the definition of U(r;?) is as in eq. (2.17). Nonstationary versions of
the FDR are used in construeting statistical theories of turbulence [7].

3. — Will the FDR work?
The fluctuation-dissipation theorem, which states that the FDR, eq. (2.19),

holds for a system, is known to be valid for a wide class of dynamical systems
studied in statistical mechanics: namely, systems that 1) satisfy the Liouville
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equation, which states that an ensemble of systems moves as an incompress-
ible gas in phase space, 2) have quadratic constants of the motion, such as
energy, and 3) are in thermal equilibrium [8]. The atmosphere is unfortunately
not one of these systems. It does, however, have many characteristics of systems
that do obey the FDR, and so, as LEITH [6] argues, the theorem may provide
serviceable estimates of the climatic sensitivity. One must keep in mind that,
even if the FDR is off by a factor of 2, it may still provide useful information
where none is otherwise available.

Some of the arguments that the FDR may be applicable to the atmosphere
are:

1) The statistics of the atmosphere on large spatial scales and for time
scales small compared with a year are probably not too far from Gaussian, if
for no other reason than that the central-limit theorem implies that large-
scale averages of independent smaller-scale phenomena will tend to be normally
distributed. Very little has been done to test systematically the statistics of
the large scales [9]. Some model results will be presented later in this seetion.
(The Gaussianity of geopotential height on small seales has been studied by
WHITE [10]. Deviations from normality are small but detectable in some
regions of the northern hemisphere.)

2) The time-dependent behavior of the atmosphere on large scales can
be represented by multivariate Markov processes. This is perhaps more con-
jecture than the result of observation, since very little rescarch has been done
yet to test it systematically. Results of a model study described later in this
section are encouraging.

3) Closure models for some statistical properties of turbulence in the
atmosphere con be constructed that satisfy a FDR and seem to be able to do
a creditable job of representing the statistics [11].

There are indications that the FDR may serve less well for small scales.
There is, first, evidence from turbulence closure models [11, 12] that on small
scales the correlation times may over-estimate response times by more than
a factor of 2. There is also reason to believe that from a practical point of
view the FDR will be difficult to use for obtaining small-scale sensitivities be-
cause of our inability to collect enough of the necessary data. This will be dis-
cussed in more detail later.

The best evidence for the usefulness of the FDR may come from tests of
the method using atmospheric models. We present a few results of such tests
here, some of which are not yet completed.

With regard to how well the statistics of a model are fitted by a Markov proc-
ess, we congider first a version of the 2-level Held-Suarez general-circulation
model [13]. The model used here has no oceans, no moisture transport and
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mean annual solar heating (i.e. no diurnal or seasonal cycle), in order to reduce
the number of variables and time scales involved in carrying out the test.

The amplitudes of large-scale temperature fluctuations are extracted from
the data generated by the model, using

(3.1) 0, = (2m) f dQP,(sin 1) 0(F) ,

where 0(7) is the vertically averaged potential temperature of the atmosphere
at point # on the sphere, P, is a Legendre polynomial, 1 is latitude, and inte-
gration is over the surface of the sphere, dQ being the surface element of the
unit sphere. The variable 0, represents globally averaged temperature of the
model, and 0, represents roughly the equator-to-pole temperature difference
averaged over the two hemispheres.

a)
300+
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b) « 68 % confidence Limits
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Fig. 1. — Histograms of two of the Legendre amplitudes defined in eq. (3.1) of verti-
cally averaged potential temperature for the Held-Suarez model described in the text:
Gaussian curves are fitted to the histograms. a) P,, 3200 days, mean = — 13.79
o = 0.68; b) Py, 3200 days, mean = 53.168, o = 0.074.

’
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Figure 1 shows histograms of these two variables from a 3200-day run of
the model. Gaussian curves are fitted to the histograms. The variables are
well approximated by Gaussian variables. The tendency to have more days
at large positive deviations of 0, than at large negative deviations is probably
a reflection of the increased stability of the atmosphere when the meridional
gradient of temperature is reduced.

Figure 2 shows an attempt to represent the lagged correlation statistics of
the variables 6, using a Markov model. The solid curve shows the autocor-
relation function of the variable from data, which is, of course, only imperfectly
known because it is estimated from a finite-length time series. Two Markov

-02 |

7 (days)

Fig. 2. — Lagged autocorrelation of the amplitude 6, defined in eq. (3.1) (solid curve)
and autocorrelations for a first-order Markov process (2.12) fitted to the data using 2
variables f, and 6, (dash-dotted curve) and using 7 variables 6,, 6,, 6;, 0,, 65, 0,, 8,
(dashed curve), where § is the vertical gradient of potential temperature in the Held-
Suarez model. Error bars show 68% confidence limits.

models of the form shown in eq. (2.12) are tried, one in which only 2 variables
6, and 6, are included, and another in which 7 variables 0, 0,, 0, 0., 0, 0., 0,
are used, where §, represents the Legendre amplitude of the vertical gradient
of temperature. The variable §, was left out of the Markov models because
its fluctuations are small and so tied to the fluetuations of 0, that it was not
useful to include it.

The 68 %, confidence limits are shown on the model fits. The sampling error
size for the correlation function of f, is similar to the 689, confidence limits
of the 7-variable model fits; deviations of the correlation function from 0 for
lags 7 beyond 20 days are not statistically significant. The 7-variable fit, while
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not perfect, is probably good to 259, or so. Cross-correlations, not shown
here, are similarly well fitted.

Note how much error in our knowledge of the true behavior of the corre-
lations is present because of sampling error, even for a relatively long run of
the model. When the FDR is used to estimate the response characteristics of
the model from the correlation functions, the estimates will suffer the same
level of uncertainty. A test of the validity of the FDR for this model is under
way but not yet completed.

We shall touch briefly on a test of the FDR for a much simpler model where
the FDR proves to function quite well as a predictor of the model’s sensitivity
even though the model was studied in a regime far from where the fluctuation-
dissipation theorem can be proved. Details may be found elsewhere [14].

The model was constructed using the barotropic vorticity equation for
incompressible flow on a nonrotating plane. The equation governing the vor-
ticity { = (V xwv)-¢,, the vertical component of the curl of the velocity, is

oL

(3.2) 5 T VI=F—D,
ot

where the forcing and dissipation terms F and D will be specified in a moment.
If a Fourier mode expansion of vorticity is introduced,

(3.3) g C(k, 1) ) exp [ik-x], k= 2L_7z (Ryy My)
after assuming spatial periodicity, the equations of motion of the amplitudes
C(k t) can be obtained using (3.2). These equations are truncated, so that only
terms involving Fourier modes with k2= |k|2=1, 2, 4 and 5 (with L — 27z)
are allowed to be nonzero. This results in 20 coupled nonlinear equations.
The forcing term F and the dissipation term D on the right-hand side of
(3.2) have the form

(3.4) 5( k) = nonlinear terms + F(k) — v(k) (k)

Q-[p..

for the Fourier amplitude equations. The study described here sets F(k) =
for all k except F(0,1) = 1. The « viscosities » were given values

(3.5a) wkr=1) = p(k*=5) =1,

(3.5b) p(k=2) = p(kt=4) = — 0.6

The modes with k2= 2, 4 were made artificially unstable by the choice (3.5b)

28 - Rendiconti S.I.F. - LXXXVIII




434 THOMAS L. BELL

in order to make the model behave turbulently. This is discussed in more
detail in ref. [14]. The resulting model is turbulent, but because of the forcing
and dissipation terms the FDR cannot be proved for it.

The response functions and the correlation functions for two of the model
variables are plotted in fig. 3. They should be equal if eq. (2.6) were satisfied.
The response function is determined from an ensemble average and sampling
error estimates (due to the finite size of the ensemble) are shown as 689, con-
fidence limit error bars. The uncertainty diverges nearly exponentially with =
because of the turbulent behavior of the model. It is clear that, while the FDR
is not exaet, it is satisfied to within 259,.

14
-3
] l
9
3
l“l
-02p H
[:]
- ]
-06L_ s L . '
0 1 2 3 LT 5

Fig. 3. — Lagged autocorrelation functions C(r) (smooth curves) and response functions
g(z) (dots) for 2 of the 20 variables for the model described in eqs. (3.2)-(3.6). These
functions are graphed for the real part of (0, 1), defined in eq. (3.3), in the lower half
of the figure, and for the real part of £(—1, 1) in the upper half. Error bars on the response
function are 689%, confidence limits determined from sampling errors due to the finite
size of the ensemble used in estimating the ensemble averages in eq. (2.5). For further
details see ref.[14].
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The tests just described explored the validity of eq. (2.6) at each lag 7.
To test whether the climatic sensitivity of the model is accurately predicted
by eq. (2.11), the strength of F(0, 1) in eq. (3.4) was increased from 1.0 to 1.5.
A change

ACE(0, 1)> = 0.28 4- 0.05

was observed in the climatic mean of variable & (0, 1). The uncertainty in the
change is due to sampling error from the finite length of the computer run
used to obtain the new climatic mean of the model.

From eq. (1.4), this result corresponds to a value of the climatic sensitivity
of the model

(3.6) M = 0.56 4-0.10 .

The value of the integral of () for variable & (0, 1) estimated from fig. 3 is
(3.7) fO(r) dv = 0.65 4+ 0.05 .
0

Estimate (3.7) of the sensitivity M of the model from the FDR using eq. (2.11)
agrees with the climatic sensitivity (3.6) actually observed for the variable to
within the confidence limits of the estimates.

Similar tests [14] for three other variables of the model showed no sta-
tistically significant departures from equality (2.11) predicted by the FDR.
The integrated form of the FDR, eq. (2.11), thus seems to be obeyed quite
well by this model, even though the dissipation terms in the equations of motion
drive it well away from the regime where a fluctuation-dissipation theorem
can be proved.

4. — Sampling problems.

Even if we were sure the FDR is exact for the atmosphere, there are prac-
tical problems with using it due to the unavailability of data needed to obtain
the covariance matrices in (2.19). There is also the obvious problem that the
number of variables that may in prineciple be used to describe fully the atmos-
phere is enormous. General-circulation models of the atmosphere can integrate
equations for 105--10¢ variables. One must find some means of limiting a prior:
the variables that need to be considered.

LEITH [6] suggests using empirical orthogonal functions (EOF’s), the eigen-
functions of the covariance matrix

(4.1) . U(0)p™ = Ap®
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where ™ is the k-th eigenfunction and 4, is the corresponding eigenvalue,
ordered so that A;>4,>...> 4> Ak >>.... EOF’s are orthonormal:

(4.2) B P = §,,, .
They can be used as a basis to represent the original set of variables x as
(4.3) x(t) = 3 &ty

k

(4.4) E=yW-x .

The variance of &, is 4,.
EOI’s have the useful property that a large portion of the total variance
of the system > Usa can be expressed in terms of a small subset of the eigen-

=2

functions, because of the relation

(4.5) S Use= 3 4

and the empirical fact that the eigenvalues 1, tend to diminish rapidly with
increasing k. It is not uncommon to find that over 909, of the variance can
be represented by the first dozen EOF’s in expansion (4.3). Moreover, the
EOF’s in this subset tend to describe large-scale variations and have the longest
time scales. They, therefore, tend to have large sensitivities, if the FDR is
any guide (see eq. (2.11)).

The FDR; eq. (2.19), has a particularly simple form when expressed in terms
of EOF amplitudes:

(4.6) Gr(7) = Us(0)] 2

7>0, where the tildes denote quantities expressed in the EOF basis. As
LEerri [15] points out, determining the response of EOF variable &, to a per-
turbation of variable &, using the FDR (4.6) requires knowledge of the covari-
ance of those two variables alone. In contrast, using the FDR expressed in
terms of the original variables is considerably more complicated, since it
requires knowing the full covariance matrix of all of the variables in order to
invert the 0-lag matrix in eq. (2.19). Model tests of the validity of the FDR
would be much easier to carry out in this basis, since the tests could focus
on a subset of EOF’s and escape the cumbersome collection of statistics for
thousands of variables.

However, one does not know the EOF’s of the atmosphere exactly, owing
both to the lack of data for all variables and to sampling errors due to the
short time histories of atmospheric data. It may be that EOF amplitudes




CLIMATIC SENSITIVITY AND FLUCTUATION-DISSIPATION RELATIONS 437

describing large-scale variability of the atmosphere may escape these problems.
Further investigation is needed here.

The usefulness of EOF’s in any practical study of climate sensitivity may
depend on how well the forcing Af can be expressed in terms of the Y®. If
the forcing of a single variable x, is Afs, representing some extra heating near
a grid point, perhaps, the EOF representation of this forcing would be

4.7) Af,=vPAf,;

that is, the foreing amplitude in the EOF representation, Af;, is proportional
to the «-th component of EOF {®, But it is an empirical fact that the com-
ponents of EOF’s tend to be about 1/4/p in size, for a p-variable system,
independent of k, and so a localized perturbation of variable x, will tend to
appear in the EOF representation evenly spread over all EOF’s. The EOF
representation is, therefore, more appropriate to studies of sensitivities to
large-scale influences, since they are likely to be represented by just a few
EOF’s.

One can also argue that sensitivities to small-scale disturbances may be
difficult to obtain from the FDR because of sampling problems due to insuf-
ficient amounts of data for determining the covariance matrices needed. As a
simple model designed to illustrate the kinds of problems that may appear,
let us suppose that the true lagged covariance matrix of a system may be
written

(4.8) Uji(zr) = ;05 exp [— |7|/7,],

where we have expressed the statistics for the EOF amplitudes rather than
for the original variables x.. The zero-lag covariance matrix is necessarily
diagonal, by definition of EOF’s, and we assume that it remains diagonal for
all lags 7. Different correlation times 7; are allowed for different EOF’s. It is
observed in analyses of atmospheric models that eigenvalues 1, decrease with
L almost exponentially, and much faster than time scales 7.

Suppose now that we have a data set covering a time period 0<t< T and
we try to estimate the covariance function (4.8) from the data. For j =k,
the estimates T of T will differ from zero by an amount

(4.9) U(7) = 04 (2,2) 27, 7,/((7, + 7,) T) ]

for § = k and large lag 7, a result that can be found in standard textbooks
on statistics [16].

The estimate of the sensitivity matrix M, is obtained by integrating expres-
sion (2.19) over 7, as in eq. (2.11). However, we cannot integrate very far in
7, because our data allow us to estimate covariances only for T < 7, in principle,
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and usefully only for 7<«T. We must decide somehow where to stop the inte-
gration over 7, but wherever we stop we shall have accumulated sampling
errors in the integral dictated by the size of errors in (4.9). A more sophisticated
approach might be to fit the data to a Markov process and estimate M from
the Markov fit. This reduces the sampling errors somewhat over the brute-
force approach just described, but, of course, does not eliminate them. A la-
borious but straightforward calculation gives an estimate of the errors in what
we obtain for M s of order
(4.10) M = 1,8, + (4,)2)! v, 7,(v,+ 7,)/T] .
Sampling errors generate off-diagonal elements in the sensitivity matrix!
Suppose now that we wanted the sensitivity of EOF $© to a perturbation
Afy, j <k, for which 4, 4, and 7,>7,. Result (4.10) becomes approximately

(4.11) MG~ & 7 [(Aaf ) (0 T

But, as mentioned earlier, the ratio 7,/4, increases rapidly with % for the atmos-
phere. Consequently, if we try to estimate the sensitivity of EOF @ to a
localized perturbation, for which Af; tends to be of the same order of magnitude
as Af, (as we mentioned at the beginning of this section), the sampling noise
from the contribution M, Af, will tend to swamp the frue contribution
M ;Af; = 7, A, by a tactor [(2,/A)(7./T)]* unless T is enormous. This argument
is by no means rigorous, but it explaing sampling problems encountered in
trying to obtain statistically stable results for the Held-Suarez model study.

5. — Additional remarks.

The FDR may give us access to the climate sensitivity of the atmosphere
without having to construct elaborate climate models, although confidence in
the accuracy of the FDR will probably require testing how well it works with
models.

LErra [15] has suggested two areas where the FDR may also be useful
for studying and improving models of the atmosphere. The first is more in
the realm of weather forecasting than in climate modeling. Suppose, as is
likely, that the climatic mean of a forecast model differs from the true climate.
Every time atmospheric data are used to initialize the forecast model, part
of the time evolution of the models will consist in a drift from the eclimatic
mean of the atmospheric data to the climatic mean preferred by the model.
This climatic drift will generate a systematic bias in the model forecast. The
bias could be removed if we knew what it was. The mean response function
g(7) represents exactly the information we need to remove the bias, and, if
the FDR is valid, can be obtained from the covariance statistics of the model.
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The second area where the FDR can help is in suggesting tests of climate
models to probe how well the model’s climatic sensitivity agrees with the real
atmosphere’s. Even if the FDR were to prove an inaccurate gauge of climatic
sensitivity (and there is no reason as yet to suppose this), the FDR suggests
that the failure of a model to generate values of U(r)U-%(0) that agree with
values derived from atmospheric data is good cause for concern about the
ability of the model to estimate climatic sensitivity well.

6. — Conclusion.

We have discussed how the fluctuation-dissipation relation might be useful
to the study of climate dynamics and reviewed some of the reasons for believing
it might be an accurate guide to climatic sensitivity of the atmosphere, at least
on large scales. Much hard work remains to be done on solving the sampling prob-
lems associated with making actual estimates of climate sensitivity from real
data, but is justified by the unique contribution such estimates would represent
to research on how and why the climate changes.
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