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Marine stratocumulus spatial structure
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Introduction

Many theoretical studies have shown the sensitivity of cloud radiative properties to their spatial
structure, ranging from the seminal work of McKee and Cox (1974) and Stephens (1976) to more recent
work by Harshvardan and Weinman (1982), Welch and Wielicki (1985), and others. As Harshvardan
and Randall (1985) have pointed out, current general circulation models, because of their reliance
on plane-paralle] assumptions, are in the embarrassing situation of having to use unrealistically small
liquid water amounts to produce realistic albedos. Stephens (1985) has emphasized that the mean
albedo is not a function of mean liquid water alone, but depends upon its spatial distribution. Lovejoy
(1982) suggested that cloud spatial distributions may be modelled as self-similar fractals, and has more
recently generalized to multifractals (Schertzer and Lovejoy, 1988). Rhys and Waldvogel (1986) and
others have shown that cloud fractal dimensions undergo abrupt changes at certain scales, and Cahalan
and Joseph (1989) found that these characteristic scales depend upon cloud type.

Marine stratocumulus are perhaps closest to plane-parallel, being largely confined between the
lifting condensation level and the strong subtropical inversion. In a recent study of marine stratocn-
mulus, using data from FIRE (summarized by Albrecht et al.), Cahalan and Snyder (1989, hereafter
CS) found a change in the stratocumulus wavenumber spectrum from a -5 /3 power to a -3 power at
a scale determined by the cloud thickness, a few hundred meters. This is consistent with two- dimen.
sional homogeneous turbulence (Kraichnan, 1967), in which energy injected at a particular scale (e.g.
the cloud thickness) cascades to lower wavenumbers with a -5/3 power law, while the enstropy cascades
to higher wavenumbers with a -3. Observations by commercial aircraft (Gage and Nastrom, 1986)
show a -3 at low wavenumbers, presumably from baroclinic forcing at a few thousand km, changing at
a few hundred kilometers to a -5/3, which we suggest is associated with convective forcing at the cloud
thickness scale. In the following we briefly summarize the stratocumulus observations, then present a
simple model for the observed structure.

Observed Stratocumulus Structure

Much of our knowledge of stratocumulus horizontal structure is based upon observations of cloud
reflectivity (see e.g. Cahalan and Joseph, 1989; for vertical structure see Boers and Betts, 1988). A
more basic question is how the cloud liquid water is distributed, since the reflectivity can he computed
from the distribution of liquid water, traditionally by specifying microscopic properties like drop sizes.
and macroscopic properties like optical depth, etc.. The radiation field provides a kind of low-pass
spatial filter, so that there may be small-scale variations of liquid water to which the LANDSAT
data are completely insensitive (Cahalan, 1988b). [At the same time, the mesoscale structure of
stratocumulus liquid water, which leads to the power-law wavenumber spectrum described below, is
to some extent mirrored in the reflectivity data, which follows the same power-law (CS).] These liquid
water variations are not included in our usual plane-parallel computations, and will be an important
input to more realistic radiative transfer models.

Vertically integrated liquid water was measured at 1 minute intervals over a three-week period
during FIRE (see CS for details). The histogram of this data is shown in figure 1a on a log-linear
scale, with a lognormal fit plotted for comparison. The lognormal roughly follows the data. while
differing in detail. The “shoulders” seen to each side of the observed central peak are a reminder that
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Figure 1: (o) Probability distribution of vertically integrated stratocumulus liquid water in mm plotted on

a log-linear scale, along with a lognormal fit. The equivalent optical depth scale shown at the top assumes a

10 micron effective radius. {b) Wavenumber spectrum of integrated liquid water computed from time series

assuming b m/s frozen turbulence.(CS)

individual days often show a bimodal distribution. The liquid water wavenumber spectrum (fig.1h)
was estimated from the frequency spectra computed from several one-day time series of one-minnte
averages of total vertically integrated liquid water measured at San Nicolas Island during FIRE.
Results were translated from frequency to wavenumber assuming frozen turhbulence with a 5 m/s
mean advection. The least-squares &t from about 400 km down to about 400 m gives S(k) ~ k=83
(see Cahalan and Snider, 1989). By contrast, fair weather cumulus show a much flatter spectrum over
the same scales (CS).

This is the classic Kolmogorov result for the wavenumber spectrum of any component of the
velocity field, and is also the spectrum expected for a “passive scalar”, i.e. & scalar field whose
variations in space and time are due only to advection. This suggests that the total integrated liguid
water in stratocumulus clouds fuctuates with the vertical velocity, being large in updrafts and small
in downdrafts. This kind of behavior has been observed in fine-resolution numerical simulations
(MacVean and Nicholls, 1988), though they do not reproduce the highly irregular fractal structure
described above. Correlations of vertical velocity and liquid water will be of much interest as more of

the FIRE data is analyzed.

Fractal Stratocumulus Streets

In this section we first describe a technique for analyzing wavenumber spectra which is especially
convenient for cascade models. We then consider two simple multiplicative cascade models which give
spatial distributions of liquid water which are fractal in one horizontal dimension, and uniform in the
other horizontal direction and in the vertical. Both models give lognormal-like probability densities of
optical depth. However, the range of optical depths in the first model is inbounded as the resolution
increases, while the second model has both an upper and lower bound. The first model also produces
a wavenumber spectrum flatter than k~1, while the second model may be tuned to reproduce the

observed L5873,
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Spectral analysis preliminaries

Consider a stochastic function of position f(z), which is homogeneous over some domain Lo, and let
f'(z) be the deviation from the mean, so that (f'(z)) = 0, where the angular brackets indicate an
ensemble average. The associated lag covariance function is then given by

c(z) = (f'(z0) f'(z0 + 2)). (1)
The power spectrum may be computed from the covariance by Fourier transform, so that
oo .
S(k):/ dz e~ ¢(z). (2)
A simple approach to analyzing the spectrum, which turns out to be particularly convenient for

multiplicative cascade models, is Lorenz’ “poor man’s spectral analysis” (Lorenz, E. N., 1979). We
consider averages of f(z) over successively smaller subdivisions of the domain:

— 1 L,
F.(z) = f‘/ dz f(z), (3)
n JO
where each interval, L,, is half as big as the previous:
Lo
L,=-.
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To remove the mean in (5), we consider the variance increment defined as

F ) =

AVn déf ‘fn - Vn-—la (8)

which gives the variance on scales L, about the means over twice that scale. Using (5), (8) becomes

o dk
AV, = / = S(K) D(KLn) (9)

—oo 2T

with
def . sin%(z/2)

D(z) ¥ |F (P - 1Fea = (= 5T (10)
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According to (9) AV, is simply a filtered version of the spectrum S§(k), with the hand-pass filter
unction D(kL,) isolating power in the wavenumber interval centered on

def T

k, = —. 11
n i. (11)
Inserting into (9)a power-law wavenumber spectrum,

S(ky~k %, -1<a< 2, (12)

the effect of the filter on the spectrum gives k%, and an additional factor of k, comes from the dk.
so that
AV, ~ k1@ ~ L3 ~ 219, (13)
In other words, if we observe a variance increment as in (13), then the spectrum must have the
power-law given by (12). Taking the natural log of both sides of (13), we find that the spectral
exponent a may be determined by

_ In(&V)

nln2 (14)

a =
Simple cascade models
We consider a stratocumulus cloud confined between the lifting condensation level and the inversion
height, and initially having a uniform distribution of liquid water with optical depth given by

To — 10 (15)

We consider an infinitely long slab of horizontal width Lo, and divide it into two slabs of width La/2.
A fraction of the liquid water is transferred from one half to the other, with the direction chosen at
random. The optical depth in one half is then increased by some fraction, say f1 (due to increased
density — thickness is assumed unchanged), and the other half is correspondingly optically thinner.

This may be written
Tii) = (1 :t fl)‘l’o. - (16)

where the superscript on the left side of (16) indicates whether the brighter or darker half is being

considered.
To continue the process, each half is itself divided in half, and a fraction of liquid water. fo. is

transferred, again in a random direction, so that
+
B =1 ) (17)

After iterating for n + 1 steps, there are on+1 gegments, each with an optical depth of the form
i n
3 = [0 fimo. (18)
k=1

Any of the possibie combinations of signs in (18) may be found somewhere among the 2"%! segments.
An upper bound on the optical depth of the optically thickest segment may be found from

I+ fi) < TL explfi) = exp()_ fx) (19)
k=1 k=1

k=1

The fractions f, are assumed to be stictly between 0 and 1, and we consider two models:

f. = f, (singular model) (20)
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where f is constant, and
fn = fc*. (bounded model) (21)

where f and c are both constants between 0 and 1. The upper bound given by (19) diverges for the
singular model, and it can be shown in this case that the liquid water becomes concentrated on a
fractal set of singularities as n — oo. The upper bound for the bounded model is exp(fe/(1 - ¢))7o
and provides a good estimate of Thmax-

From the variance increment defined in equation (8) we may compute the spectral exponent of
both the singular model and the bounded model using (14). The computation is aided by the fact
that the optical depth averaged over L, is a constant independent of n, since liquid water is heing

conserved. Thus we may write

I

Ve = (1% foml)
k=1

=TI 5P, (22)
k=1

While the optical depth is different for each segment in a given realization, the statistics are the same
for all segments. If we let

def
e (1% £, (23)
then (22) may be written
Ve = (I wl(73)- (24)
k=1
so that the variance increment becomes
n-1
AVy = [TT sl(pn = 1)(70)- (25)
k=1
For each of the models we obtain
e = 1+ f2, (singular model) (26)
and
=1+ 22k, (bounded model) (27)

so that the variance increment in (25) behaves for large n as

AV, ~ (1 + f*)", (singular model) (28)
and ;
AV, = [H (1+ fzcu‘)] F2c*(2). (hounded model) (29)
. k=1 '
Finally, using (14) we obtain
_, W@+
a=1- O (singular model) (30)
and In
a=1- 2111—;. (bounded model) (31)

where we used the fact that the factor in square brackets in (29) becomes independent of n for large
n. Note that as f — 1 the exponent of the singular model goes to zero, giving a flat (white noise)
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spectrum, while as f — 0 the spectrum steepens to k1. No value of f allows the singular model]
to fit the observed a = 5/3 spectrum shown in figure 1h. The exponent of the bounded model is
independent of f, and if we choose ¢ = 2-1/3 we ohtain a = 5/3. The probability density is quite
sensitive to the value of ¢, and often has considerable structure. However, when ¢ = 2-1/3 it is close
to lognormal, and qualitatively agrees with figure la.

Conclusions

The simple 2-parameter model presented here gives a reasonable fit to two important properties of
vertically integrated stratocumulus liquid water : the lognormal-like probability density, and the
power-law wavenumber spectrum. The model is being used to determine the radiative properties of
fractal clouds, and investigate the limits of plane-parallel theory. Each cascade step redistributes
liquid water in an initially plane-parallel cloud while cloud height and mean optical depth are held
fixed at each step. Redistribution invariably decreases the mean albedo from the plane parallel case,
since the albedo of optically thick regions saturates as optical depth is increased. The albedo of each
homogeneous region may be computed from the thickness of each region independently only when
the horizontal optical depth is large compared to the photon mean free path. The albedo of a region
comparable in horizontal optical depth to the photon mean free path depends upon radiation from the
sides. The mean albedo is insensitive to variations in optical depth on horizontal scales mnch smaller
than the photon mean free path. Further development of these concepts will be closely tied to realistic
simulations of the turbulent structure of boundary-layer clouds observed during FIRE.
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