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ABSTRACT

We summarize work being done at the Goddard Laboratory for Atmospheres on
the fractal properties of clouds and their effects on the large-scale radiative properties of
the atmosphere. This involves three stages:

1. analysis of high resolution cloud data to determine the scaling
properties associated with various cloud types;

2. simulation of fractal clouds with realistic scaling properties;

3. computation of mean radiative properties of fractal clouds as a
function of their scaling properties.

The approximation that clouds are scaling fractals with dimension 4/3 (Lovejoy,
1982) must be modified in three ways: First, a change in the fractal dimension is found
at a characteristic size which depends upon cloud type, so that exact scale invariance
does not hold. Secondly, the fractal dimensions are different for each cloud type in a
given size range, so that exact universality does not hold. Finally, the -more intense
cloud areas are found to have a higher perimeter fractal dimension, perhaps indicative of
the increased turbulence at cloud top. :

Simulations of fair weather cumulus and stratocumulus clouds have been
developed which take these properties into account. The simulations depend upon two
scaling parameters which determine the distributions of cloud sizes and spacings,
respectively, and also upon a maximum characteristic cell size.

The initial Monte Carlo radiative transfer computations have been carried out
with a highly simplified model in which liquid water is redistributed in an initially
plane-parallel cloud while cloud height and mean optical depth are held fixed.
Redistribution decreases the mean albedo from the plane parallel case, since the albedo
of optically thick regions saturates as optical depth is increased. The albedo of each
homogeneous region may be computed from the thickness of each region independently
only when the horizontal optical depth is large compared to the photon mean free path.
The albedo of a region comparable in horizontal optical depth to the photon mean free
path depends upon radiation from the sides. The mean albedo is insensitive to variations
in optical depth on horizontal scales much smaller than the photon mean free path.
These concepts have been illustrated with a simple one-parameter fractal model.
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1. INTRODUCTION

There is a growing body of observational evidence on inhomogeneous cloud
structure. Derr and Gunter (1982) reported searching in vain for the sort of clouds
assumed by cloud radiation modelers (whether plane-parallel, or a lattice of simple
shapes). More recently, measurements of vertically averaged liquid water at
one-minute intervals over a three-week period during the July 1987 FIRE experiment at
San Nicolas Island in California stratus -- perhaps the closest thing to plane-parallel
clouds -- show variations on all scales (J. B. Snider, private communication). Baker and
Latham (1979) have suggested that such variations arise from inhomogeneous
entrainment. Entrained dry air, rather than mixing uniformly with cloudy air, remains
intact in blobs of all sizes, which decay only slowly by invasion of cloudy air.

_ A useful notion for discussing such cloud structure is that of a "scaling fractal”
(Mandelbrot, 1983 and references therein), which is a set or object which is extremely
irregular on all scales, while at the same time statistically invariant under certain
transformations of scale. The simplest examples are the statistically "self-similar"
fractals (op.cit. p. 350) -- geometrical patterns (other than Euclidean lines, planes and
surfaces) with no intrinsic scale, so that no matter how closely you inspect them, they
always look the same, at least in a statistical sense. While self-similar fractals are
statistically isotropic, the so-called "self-affine" fractals scale differently in different
directions (see e.g. Mandelbrot, 1986). The most general scaling fractals are the
multidimensional fractals, or "multifractals" (Hentschel and Procaccia, 1983 and Frisch
and Parisi, 1985) which exhibit a spectrum of fractal dimensions.

Lovejoy (1982) has presented empirical evidence that clouds are statistically
self-similar in the horizontal plane from 1000 km down to 1 km, with a fractal
dimension of approximately 4/3. If this were strictly true, than a satellite image of a
cloud field, taken over a uniform dark ocean background with no evident geographical
features, would be statistically indistinguishable from an image of any small portion of
the scene if it had the same number of pixels as the original. Schertzer and Lovejoy
(1986) have argued that clouds are self-affine in a vertical plane, and have considered
multifractal cloud models (Schertzer and Lovejoy, 1988 and references therein). These
idealizations provide important alternatives to the simple plane-parallel or lattice cloud
fields, and it is important to consider their consequences and limitations.

The purpose of this paper is to give a brief summary of work being done at the
Goddard Laboratory for Atmospheres to investigate’ the implications of the fractal
properties of clouds for the large-scale radiative properties of the atmosphere. The
empirical work is being done in collaboration with Mark Nestler of Science Applications
Research, and Professor J. H. Joseph and his group at Tel-Aviv University. The
radiative transfer computations are being done in collaboration with Warren Wiscombe
of Goddard and William Ridgeway of Applied Research Corporation. Our approach
involves three stages:

1. analysis of high-resolution cloud data to determine the spatial
structure of various cloud types;

2. simulation of the spatial distribution of cloud liquid water and
optical depth using a minimum number of parameters; and

3. computation of the mean radiative properties of the simulated
clouds as a function of the cloud parameters.



The outline of the paper will follow these three stages. In the next section we
begin by giving a brief introduction to fractals with a few simple examples. Section 3
summarizes the results of the analysis of LANDSAT data. Section 4 discusses a simple
class of cloud simulations. Section 5 discusses the radiative properties of the simplest
simulated cloud having a single fractal parameter. Finally, section 6 concludes with a
brief discussion.

2. INTRODUCTION TO FRACTALS

A fractal is a mathematical set or object whose form is extremely irregular and/or
fragmented on all scales. Clouds certainly qualify under this general but rather vague
definition. To become more concrete and specific, we consider a self-similar scaling
fractal, which is an object which remains similar (in the sense of statistical distributions)
when subject to arbitrary magnification. (Fractals invariant under non-isotropic
rescalings are termed self-affine.) Statistical properties such as the power spectrum, P,
scale as

P(Ax) = Af9P(x),
2.1

where f is a scaling exponent which depends upon the fractal dimension d, which may be
defined in terms of N,, the number of objects with characteristic linear dimension T, as

N;=Ch,

(2.2)

where Cis a constant of proportionality. For a discussion of various types of dimensions
in the context of chaotic attractors see Farmer et al., 1983.

In the following we give three simple examples of fractals, each introducing a
new aspect needed in the fractal modelling of clouds. For a more systematic
mathematical discussion of fractal sets, see Falconer (1985).

Perhaps the simplest example of a fractal is the von Koch snowflake. In order to
construct this, we define a "kink operator" K, which puts a kink in every straight line
segment of any figure by replacing its middle third by two equal line segments:

K(—) =/
(2.3)

The snowflake is generated from an equilateral triangle by successive
applications of K. The first application, K(A), produces a figure with 3*4 = 12 sides,
each 1/3 as long as the sides of the original triangle. After n applications, K% A) has
3*4" sides, each 1/3" as long as the original, so that the perimeter is 3*(4/3)". In the limit
n—o of K®(A), the fractal snowflake, K*(A), has an infinite perimeter which encloses a
finite area! Even in this simplest example, we see that fractals force us to modify our
usual intuitions about geometrical objects.

The kink operator explicitly generates the multiple scales of a fractal, but the
iteration of even the simplest operator may generate multiple scales, even when this is
not explicit in the operator. Mandelbrot demonstrated this with the simple quadratic
function. Consider the "Mandelbrot operator”



M(z) = z% +c,

(2.4)
where z and ¢ are complex. For each value of ¢, we begin at z,=0 and iterate, computing
z,=M(0), then 2,=M(M(0)), and so on. The Mandelbrot Set consists of those values of ¢
for which z, < . It is a compact set with a fractal boundary. Zooming in on the
boundary, one sees miniature copies of the whole set which are roughly similar, just as
in the snowflake. Unlike the snowflake, however, each copy has its own unique
features, and increasingly complex structures appear as one zooms in. The iteration
process is analogous to a dynamical process, with the operator M generating the time
evolution from the initial state at z, The fact that such a complex attractor arises from a
mapping as simple as (2.4) suggests the ubiquity of fractals in dynamical systems.

Neither of the above two examples contain any random element, which is
necessary in the modelling of clouds. Thus as a final example in our list of "simplest”
fractals, consider a random walk on a one-dimensional lattice with unit lattice spacing.
In the usual non-fractal random walk, only nearest-neighbor jumps are allowed, and if
both directions are equally probable, the probability of making a transition Ax is given
by S

P(AX) = 12[8, | + 8, ],

and the corresponding structure function, the Fourier transform of (2.5), is

(2.5)

p(k) = cos(k),

(2.6)
where k is the wavenumber. All other quantities of interest may be computed in terms
of p(k). In particular, the single particle distribution becomes Gaussian at large times,
with a variance increasing linearly with time, the well-known diffusion law.

To generate a fractal random walk, termed a "Levy walk" (Shlesinger, West and
Klafter, 1987, and references therein) we allow not only nearest-neighbor jumps, but
also jumps of length b with probability 1/a, jumps of length b? with probability 1/a2, and
so on, where a and b are integers greater than 1. The transition probability then becomes

p(Ax) = (a-l)/ZaE 1/a"[8w + 8Ax,~3’]’

n=0
(2.7)
and the corresponding structure function is
p(k) = (a-1)/2a X 1/a® cos(b"k).
=0
(2.8)

This distribution is identical to Weierstrass’ example of a function which is
continuous, but nowhere differentiable. If the time required for each jump is assumed to
be an increasing function of the jump distance, the variance of the single particle
distribution at large times increases as a power greater than one, which Shlesinger et al.
have termed "enhanced diffusion". ' :

The record of a single realization of a Levy walk shows a property also seen in
cloud fields : a heirarchy of clusters (Randall and Huffman, 1980 and Cahalan. 1986). A



typical particle initially takes a number of nearest-neighbor jumps, then a larger jump of
size b followed by more nearest-neighbor jumps, and so on, until eventually a jump of
size b? occurs. After a number of b? jumps occur, there will eventually be a b’ jump, and
so on. Any given cluster of points, then, is part of a larger cluster created by the less
frequent events.

3. EMPIRICAL RESULTS

The initial finding of Lovejoy (1982) that clouds are self-similar fractals was
based upon a scatter plot of the area versus the perimeter of cloud areas determined by a
threshold method from meteorological satellites and radar. This study was limited to
clouds larger than a kilometer or so in horizontal dimension. Lovejoy and Mandelbrot
(1985) studied the distribution of rain areas in GATE and compared them to a "fractal
sum of pulses” (FSP) model. Lovejoy and Schertzer (1985) found somewhat better
agreement with a "scaling cluster of pulses" (SCP) model, and Rhys and Waldvogel
(1986) found violations of scaling in hail clouds. We have extended these results by
employing the finer resolution available in LANDSAT data (see for example Cahalan,
1987, Cahalan and Joseph, 1988, and Wielicki and Welch, 1986.) We give a brief
summary of the LANDSAT findings below.

In analysis of a large number of LANDSAT multispectral scanner (MSS) and
thematic mapper (TM) images, over 200,000 cloud areas were identified, The procedure
was to first determine the cloud fraction from the thermal channel by the spatial
coherence method (Coakley and Bretherton, 1982). The brightness threshold was then
adjusted to give the same cloud fraction in the reflected channels. This was termed the
cloud "base" threshold. The method works well for the fair weather cumulus and
stratocumulus clouds upon which the study focused, but fails for thin cirrus which show
up only in the thermal channel. All contiguous areas above the threshold were identified
for each scene. Finally, a second cloud "top" threshold was chosen in such a way that
the brighter areas covered approximately 10% of the cloud fraction.

The distribution of cloud areas was first determined by binning in terms of the
logarithm of the square root of the area, and plotting the logarithm of the number in each
bin. If we let

ri = (Ai)lﬂa
3.1

where A; is the cloud area, then if clouds are scaling fractals we expect a power-law N, =
C/rP, which gives

log(N,) = constant - p log(r),
: (3.2)

so that the log-log plot should be linear with slope -p. In fact, we typically found two
linear regions separated by a sharp break in slope at a characteristic size which is about
0.5 kilometers for fair weather cumulus. The smaller clouds follow the straight line
quite closely, with a slope typically p=0.6.

Scatter plots of cloud perimeter versus the square root of the area on a log-log
plot show a change in slope at the same characteristic scale. The smaller fair weather
cumulus follow a slope close to Lovejoy’s value of 4/3, but the larger fair weather
cumulus have an average slope of 1.55.



The fact that the larger clouds are less probable and more irregular in shape
suggests a random coincidence hypothesis. That is, the smaller clouds are generated by
a scaling fractal process up to some maximum cell size of about 0.5 kilometers, and
larger clouds occur only as accidental coincidences of the smaller ones. One test of this
picture is to see if the smaller cloud areas have a simpler distribution of cloud
brightmesses within each cloud area. Visual inspection of a few scenes seems to bear
this out, since we observe that the smaller cloud areas have a single brightness
maximum, while larger ones invariably have multiple brightness maxima.

Raising the threshold to a high level allows the determination of the fractal
dimensions of the bright regions, those above the cloud "top" threshold. The brighter
regions were found to have higher perimeter dimensions for both fair weather cumulus
and stratocumulus. In the case of fair weather cumulus it may be that the thicker, and
therefore brighter, cloud regions are more irregular because they arise from the random
coindidence of the smaller cells. On the other hand, in the case of stratocumulus this
may be associated with increased turbulence at the cloud top, where the convection is
driven by radiative cooling (Caughey et al., 1982). Note that there is a limit to the
increase of the perimeter dimension with threshold, since the brighter regions cover a
successively smaller area as the threshold is raised. -

Stratocumulus dimensions are intermediate between the smaller and larger fair
weather cumulus, and the break in slope is less pronounced. Since stratocumulus
convection is driven by cooling at the cloud top, rather than heating from below as in
fair weather cumulus, the stratocumulus downdraft regions are of special interest.
These take the form of long, irregular leads, not unlike those observed in sea ice.

The mean radiative properties of a cloud field depend not only on the shapes of
individual cloud areas, but also upon the relative spatial arrangement of the clouds,
Perhaps the simplest measure of this is the distance from the center of a given cloud to
that of its nearest neighbor. One can show (Cahalan, 1986) that cloud centers distributed
randomly and independently would produce a Weibull-type nearest-neighbor
distribution, which is sharpley peaked near the mean spacing, so that large cloud clusters
separated by large gaps have exponentially small probability. By contrast, the spacing
of cumulus clouds in the LANDSAT images shows many large gaps and clusters. While
a Weibull-type distribution is an adequate fit for small spacings, the larger spacings are
better fit by a distribution generated by a Levy walk similar to that discussed above.

To summarize our empirical results:

1. the horizontal scaling properties of clouds depend upon
characteristic sizes (e.g. larger fair weather cumulus are
more irregular), cloud type (stratocumulus are more
irregular than small fair weather cumulus), and brightness
threshold (brighter regions being more irregular).

2. the greater irregularity of larger clouds and brighter regions of
cloud suggest a hypothesis of random coincidence of
smaller cloud elements.

3. cloud spacings are not independently distributed, but exhibit
strong clustering similar to that of a Levy walk.




4. CLOUD SIMULATIONS

In the preceeding section we drew a number of conclusions about cloud structure
based on observations of cloud reflectivity. What we really wish to know is how the
cloud liquid water is distributed, since the reflectivity is computable from the
distribution of liquid water, traditionally by specifying microscopic properties like drop
sizes, and macroscopic properties like optical depth, etc.. As we shall see in the next
section, the radiation field provides a kind of low-pass spatial filter, so that there may be
small-scale variations of liquid water to which the LANDSAT data is completely
insensitive. Analysis of data on cloud liquid water during the FIRE field program
should help pin down the important relationship between reflectivity and liquid water.

For the sake of this discussion, we must assume a distribution of liquid water
which depends upon a few basic input parameters, and then determine output parameters
from the resulting reflectances which may be compared with the LANDSAT results. Let
us consider the minimum set of parameters needed to describe the reflectivity of a fair
weather cumulus cloud field :

a = 0.6, power of the Varea distribution,
A_ = (1/2 km)?, maximum area,
4.1)
B, = 1.6, power of the spacing distribution,
X, = 1 km, maximum spacing,

where the subscript reminds us that these are parameters of the reflectivity field. We
assume that the distribution of the square root of the area falls off with a power of -0.6
out to an area of 0.5 km, and that the nearest-neighbor spacing is determined by a Levy
walk with a power of 1.6 out to a maximum spacing of 1 km. Larger cloud areas and

. larger spacings are assumed to occur by random coincidences.

One procedure for generating a field of liquid water which can reproduce the
above parameters is as follows :

1. choose some simple initial distribution of liquid water, such as
a homogeneous ellipsoid, which we shall term a "zero
generation cloudlet”, labelled Cos

2. choose a power, o, for the distribution of cloudlet horizontal
size, so that the probability density of size goes as (size)”
%w out to some specified maximum size, and let the
orientations be uniformly distributed;

3. choose a power, B, for the distribution of cloudlet horizontal
spacings, so that the probability density of spacings goes
as (spacing) Piw out to some specified maximum spacing,
and let the direction to the neighboring cloudlet be
distributed isotropically;

4. generate a "first generation cloudlet" from the zero generation
one, ¢, = F(cy), by superimposing ¢, cloudlets with sizes
and spacings chosen from the above distributions, and
successive locations being generated by a Levy walk;
where cloudlets overlap, the liquid water is added up until
a "saturation" value is reached, and the cloudlet in which
saturation first occurs is defined to be Cps

5. iterate the above, so that ¢,=F(F(c)), and so on.
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As a result of the iteration, the liquid water field eventually becomes insensitive
to details of the c, cloudlet, but depends upon the parameters of the size and spacing
distributions. Parameters of the associated reflectivities, computed by Monte Carlo
methods, also depend upon the liquid water parameters. They must be adjusted to
reproduce (4.1), so that for example o (o . AL, 1w X1 )=0.6.

Even this minimal attempt to reproduce the LANDSAT analysis involves a
number of parameters, and the Monte Carlo computation introduces additional
parameters, as we shall see in the next section. For the sake of theoretical simplicity in
understanding the radiative results, it is useful to introduce a highly simplified fractal
cloud model involving a single fractal parameter.

Our simplified fractal liquid water distribution has a constant mean vertical
optical depth, t (0), and a constant mean horizontal optical depth, 7,(0). We begin with
a plane parallel cloud which is infinite in one horizontal direction and has, for example,
:hh(O) = 4000 in the other horizontal direction, and 1.(0) = 10 in the vertical. The cloud is

en divided horizontally in half, and one of the h ves 1S Chosen at random in which T,
is increased by a factor, say f = 0.3, while T, is decreased by the same factor in the other
half. The total amount of liquid water and the mean optical depth remain unchanged.
The cloud thickness is also kept fixed, so that the changes in <, are due to changes in the
droplet density alone, and may be thought of as a transfer of droplets from one half to
the other. Each half is then subdivided again in half, and the same process of droplet
transfer carried out in each half, so that one has 22 regions, each with

T(2) = (1) (1), (0)/22, and
T,2) = (1+f)(1),(0).
where the + and - signs occur with equal probability. The sum of all the values of 7,(2)

equals 7, (0), so that the average horizontal optical depth is t_(0)/22. The average vertical
optical depth is of course 7,(0). This subdivision process is ﬁlen iterated down to a small
‘inner scale". In the above example the average T, is reduced to about one after twelve
iterations, at which point T, varies between about 0.1 and 10 (see e.g. figure 1). The
wavenumber spectrum of T, is approximately a power-law, with a power depending on f
(see next section).

(4.2)

Figure 1 shows a horizontal cross-section of the vertical optical depth variations
for one realization of the subdivision process described above. The optical depth is
uniform in the perpendicular plane. The cloud height and the drOpIet_ size distribution
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Figure 1. One realization of the horizontal variation of optical depth for the subdivision
process described in the text after 12 iterations. (The optical depth is uniform
in the other horizontal direction.) The initial horizontal optical depth of 4000
has been divided into 2!2=4096 segments with average horizontal optical
depth of about 1 and vertical optical depth varying from about 0.1 to 10. The
mean vertical optical depth is 10, and does not vary during the iteration.



5. MONTE CARLO COMPUTATIONS

The radiative transfer results described in this section are from Wiscombe et al.
(1988). Although the results depend on only a single fractal parameter, the parameter f
described in the preceeding section, there are additional parameters associated with the
iteration process, and with the Monte Carlo computation itself. We first list the input
parameters associated with the optical depth variations, along with our "typical values" :

1. f=0.3: fractal parameter;

2. ;?(O) = 4000 : initial horizontal optical depth;

3. N=12: number of iterations;

4. NR=10: number of realizations

5. NP =80,000: number of photons per realization;

and finally we list the input parameters in common with the usual one-dimensional
radiative computations :

6. 1,(0)=10: mean vertical optical depth;
7. @y=1: single scattering albedo;

8. 8=60° 0=0°180°: sun angle;

9. g=085: asymmetry parameter

(Henyey-Greenstein phase function)

The power spectrum of the subdivision process may be determined from the
covariance, which may be computed as follows: If, after N subdivisions, we let R be the
ratio of vertical optical depth at sorne typical point to the mean vertical optical depth,
R=t (N)/t (0), then it is a product of N factors 1+f, and the logarithm

N
In(R) =X x,
k=1
(5.1)

is a sum of N independent identically distributed random variables, X, = In(1%f), and is
therefore normally distributed for large N. If we consider two points separated by
distance d, they will become separated into two segments after, say, n steps, where n is
determined by

n = {smallest k 3 d > L/2k}.
(5.2)

where L is the horizontal length corresponding to T,(0). The covariance may be
determined using the two identities

R,R, =exp[InR +InR,],
(5.3)

and
<exply]>=exp[<y>+var(y)/2],
(5.4)

where angular brackets indicate an ensemble average,’'and vy is any normally distributed
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F1gure 2. Average wavenumber spectrum of horizontal optical depth variations for 10
realizations similar to that shown in figure 1. The solid straight line
corresponds to the theoretical form given by (wavenumber) 08 where the
exponent, determined by (5.8) in the text, is given by
1-[In((1+£)/(1-))/2]*/In2 with £=0.3



e S

random variable with variance var(y). The first n terms in InR, and InR, (before the
points are separated) will be identical, and the last N-n will be independent, so that

n 2(N-n)
lnR1+lnR2 =2 k}.",lxk +k_213 X,
(5.5)

This is normally distributed for large N, so that the mean of (5.3) may be found from the
identity (5.4), using

var(InR;+InR,) = 4nvar(x)+2(N-n)var(x).
(5.6)
The n-dependent part behaves as

<R,R,> ~ exp[nvar(x)] ~ (L/d)"*xMn2
(5.7

The power spectrum corresponding to the covariance (5.7), given by the Fourier
transform, behaves as .

S ~ k-Al-varGain2]
(5.8)

where k is the wavenumber. This power-law satisfies the relation (2.1) expected of a
self-similar scaling fractal. The average spectrum for 10 realizations of the subdivision
process is shown on a log-log plot in figure 2, and decreases with a slope given by the
exponent in (5.8). The random deviations from this power-law behavior are due to
sampling error, and decrease with the square root of the number of realizations.

After carrying out the Monte Carlo computations with the parameters listed
above, perhaps the simplest quantity to examine is the horizontally averaged albedo.
Figure 3 shows a plot of the average albedo versus N, the number of iterations, for 10
realizations of the subdivision process. The error bars give the albedo range, and the
solid line the mean albedo over the 10 realizations. As one subdivides to finer and finer
scales, the albedo initially decreases linearly with N, and then approaches a constant
after about N=8, where the horizontal optical depth of each segment becomes less than
about 10, so that the aspect ratio becomes less than 1.

The linear regime, in which N is small and each segment is horizontally optically
thick, can be approximated by computing the albedo of each segment independently as if
it were plane-parallel. This approximation is shown as the line labelled "independent
pixels" in figure 3. The redistribution of liquid water at each iteration decreases the
mean albedo from the plane parallel case, since the albedo of optically thick regions
saturates as their optical depth is increased, while the thin regions continue to darken as
their optical depth is decreased.

The albedo of each homogeneous region may be computed from the thickness of
each region independently only when the horizontal optical depth is large compared to
the photon mean free path. As we approach N=8 in figure 3, each segment becomes
comparable in horizontal optical depth to the photon mean free path, and the albedo
depends upon radiation from the sides of each segment. As we approach the large N
asymptotic regime, the mean albedo becomes insensitive to variations in optical depth
occuring on horizontal scales much smaller than the photon mean free path, so that
further subdivisions produce no further decrease.  °
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Figure 3. Mean albedo versus the number of iterations of the subdivision process. The
error bars give the range of values for 10 realizations. The horizontal line
gives the plane-parallel albedo for optical depth = 10. The line labelled
"independent pixels" gives the average albedo obtained by setting the albedo
of each segment equal to the plane-parallel albedo corresponding to its
particular optical depth. As the number of iterations increases, the actual
albedo determined by Monte Carlo follows the independent approximation
until the horizontal optical depth becomes comparable to the vertical optical

* depth, which occurs near N=8 (since 4000/23=10), beyond which the albedo
becomes insensitive to further subdivision.
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The effect of the photon mean free path on the horizontal variations in albedo
may be seen in figure 4, which shows the average power spectrum of the albedo on a
log-log plot for 10 realizations of the subdivision process. The large-scale (small k)
behavior shows the same type of power-law decrease as the optical depth, while the
small scale behavior is independent of k, indicating purely uncorrelated variations, or
"white noise".

A feeling for the type of errors made by the linear "independent pixel”
approximation can be gained by comparing its horizontal variation with that of the
Monte Carlo result for a single realization. For each of the curves in figure 5 the white
noise has been filtered out by applying a triangular running mean over the horizontal
scale T,=+50. The solid curve shows one realization of the Monte Carlo horizontal
variation of albedo. The dotted curve shows the independent pixel approximation, in
which the albedo is a monotonic function of the local optical depth. It clearly
underestimates the albedo in each of the darker regions, near local minima of the optical
depth, but provides a good approximation in the brighter regions. This difference is due
to the radiation from the sides of the optically thinner regions, which considerably
brightens them. Note that the solar radiation, which is incident from the left in the
figure, tends to enhance the albedo on the left of each of the optical depth maxima. This
solar zenith angle dependence also depends upon the fractal parameter f.

To improve the independent pixel approximation, we must estimate the effect of
radiation transferred from the optically thick regions into the thin ones. One way is to
employ an "effective” optical depth which depends on the environment of each segment.
As a first guess, we simply apply the same +50 triangular running mean to the optical
depth to obtain an “effective” optical depth. This "filtered independent pixel"
approximation is given by the dashed line in figure 5. It provides a clear improvement
in the dark regions, and a better estimate of the mean albedo, but does not show the solar
zenith angle dependence of the Monte Carlo result.

6. DISCUSSION

We have given a brief overview of work being done at Goddard Space Flight
Center and Tel-Aviv University on the fractal properties of clouds and their implications
for large-scale radiative properties of the atmosphere. Three examples of relatively
simple fractals were described to illustrate concepts needed in modelling fractal cloud
structure.  The results of empirical studies of- cloud structure determined from
LANDSAT observations were then summarized, emphasizing the dependence of the
fractal parameters on cloud type and threshold. A procedure for simulatin g the type of
structure observed by LANDSAT was described, with a summary of the various
parameters involved, and a one-parameter fractal model was introduced, which despite
its lack of realism provides a useful tool for the investigation of radiative transfer
through fractal clouds. The radiative properties of this "simplest" fractal cloud were
summarized, with emphasis on the importance of the optically thin regions, and the role
of the photon mean-free-path.

Work along these lines is continuing in our group and elsewhere (see e.g.
references by Lovejoy and Schertzer, Rhys and Waldvogel, and Wielicki and Welch).
Much remains to be done in terms of understanding the physical basis of fractal cloud
structure and the process of radiative transfer through fractal clouds. This improved
understanding may lead to improved remote sensing of cloud properties, and better
parameterization of clouds in climate models.



[ T ¢ I - R

=

[ IR SR C I Sl SR N S S ¢ N ¢ ']

w

-

Wy Py e W R WY ) b

¥ BdBN T

Al VIV WE A ANMNMANT BLARLd N RANT NS BAINT - - SO0

ALBEDO POWER SPECTRUM
10-REALIZATION AVERAGE

I L Illllll L ¥ IllIlIl ] i L LI AL B
10_3 — —
w - ]
Q K -
D - 4
= . 4
J -
m i N
= i §
<
G
—4
W 10—4E
oc C
P N
D =
@) s
w 5
&)
LI.J -
N
<
—5 |-
s 107°F
o =
O =
Z [ =
B Tv = 10
- | f =03
B 1 | lllLlll l;llllllll
100 101 102 103
WAVENUMBER
Figure 4. Average wavenumber spectrum of horizontal albedo variations for 10

realizations of albedos computed from optical depth variations like those
shown in figure 1. The spectrum initially follows the power law indicated by
the straight line, but becomes independent of wavenumber above about 400,
which corresponds to horizontal scales smaller than about 10 optical depth
units, the same scales to which the mean albedo in figure 3 is insensitive.
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Figure 5. One realization of the horizontal variation of albedo, with the incident solar
radiation from the left at a zenith angle of 60°. All three curves have been
smoothed over horizontal optical depths of +50 with a triangular filter. The
dotted line is obtained by setting the albedo of each segment equal to the
plane-parallel albedo corresponding to its particular optical depth. Thin
regions appear very dark in this approximation. The solid line is the Monte
Carlo result, which shows the brightening effect of neighboring segments on
the thin regions. The dashed line is obtained by setting the albedo of each
segment equal to the plane-parallel albedo associated with the average
vertical optical depth over the region 50 units on either side. This produces a
better approximation to the Monte Carlo result, especially in the thin regions,
but tends to overestimate on the downstream side of the thick regions.
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DISCUSSION

King: You know when you think of ice crystals they are hexagons because they represent a minimum
energy configuration of hydrogen and oxygen atoms. My question is, is there anything in the physics
of cloud formation, that is, nucleation, condensation, evaporation and so forth, that would lead
one to a physical theory that they would obey fractal geometry, or in other words, is fractal geometry
a phenomenological theory or is it a physical theory?

Cahalan: There is no physics in what I have talked about here. This is a physics-free description
of the liquid water distribution in the cloud. If you try to put in some simple physics like you
were talking about and have some sort of a minimum energy configuration, you tend to get clouds
that are like soap bubbles. You start out with a bunch of little ones, little ones combine and beget
‘ bigger ones and pretty soon your whole region is covered with cloud. On the average, observed
- cloud fraction tends to be about 50%. The way I think of that is these cells that I was talking
B about that you are generating the larger ones from have a longer lifetime and you have a largest
cell and that has the longest lifetime. If you start generating a bunch of these and let them die
after a certain time, you are going to tend to get something like 50% cloud cover from that sort
L of model. And the physics is what determines the lifetime.

Neuendorffer: It would seem like you might be able to do another step improving it if you increas-
ed thickness as well as increase the amount of water. Is that going to be complicated?

Cahalan: So far we just took the simplest theoretical model because we have many parameters
to vary and we’ve been burning CYBER time. But eventually the model will be motivated by
the FIRE data analysis of both height and liquid water variations. The Monte Carlo calculations
are set up to be able to deal with an arbitrary three-dimensional distribution.

Neuendorffer: It is very interesting work. Are you the only people doing this kind of thing?

Cahalan: Bruce Wielick at NASA/Langley is also doing analysis of LANDSAT data. Shawn Lovejoy
at McGill in Montreal is working on radiative transfer theory but using a six flux type of model.

Speaker: 1 just wondered how confident are you in your Monte Carlo scheme?
Cahalan: We have error bars in this curve of albedo vs. number of cascades. Each of these points

is a computation of 80,000 photons in a single realization and we show 10 realizations there.
So. that is the spread that you would get and the solid line is just the mean of those.
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Wesrwater: Many turbulence processes have a spectral decay which goes as -5/3rds in wave number.
Is there any connection between the slope of that line and fractal dimension?

Cahalan: Originally, Lovejoy suggested that he was getting 4/3rds because if you consider a
temperature field having independent Gaussian variations from point to point then areas above
a threshold have a fractal dimension of 4/3. However, more recent data analysis finds that there
is no single magic number. Different cloud types have different fractal dimensions. So, I think
there is going to be more physics in it. The way the cloud forms is going to matter. For example,
fair weather cumulus are driven by heating from below, whereas stratocumulus are driven by cooling
from above, and have a strong inversion layer capping them. We find a difference in fractal pro-
perties between those two cloud types.

Kleespies: Once you have characterized a cloud field with fractal properties have you thought
of any way of using the fractal numbers in paramaterizing the radiative transfer and, in particular,
the radiation budget?

Cahalan: That is what we are working toward. These results that I showed you with this highly
simplified model of the mean albedo depend on the fractal parameter F. If you believe that type
of model (and actually it might apply in certain cirrus situations where you have long streaks
of various optical depths) then, you can parameterize large-scale average albedo in terms of the
single parameter F. But for other cloud types I think that the average albedo will depend upon
additional parameters characterizing such things as cloud spacing and cloud height.



