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ABSTRACT 

Computational results have been obtained for the spherical albedo, global transmission, and global absorption 
of plane-parallel layers composed of cloud droplets. These computations, obtained using the doubling method 
for the entire range of single scattering albedos (0 c e c 1) and for optical depths between 0.1 and 100, are 
compared with corresponding results obtained using selected multiple scattering approximations. Both the 
relative and absolute accuracies of asymptotic theory for thick layers, three diffuse two-stream approximations, 
and two integrated two-stream approximations are presented as a function of optical thickness and single scattering 
albedo for a scattering phase function representative of cloud droplets at visible wavelengths. The spherical 
albedo and global absorption computed using asymptotic theory are found to be accurate to better than 5% for 
all values of the single scattering albedo, provided the optical thickness exceeds about 2. The diffuse two-stream 
approximations have relative accuracies that are much worse than 5% for the spherical albedo over most of the 
parameter space, yet are accurate to within 5% in the global absorption when the absorption is significant. The 
integrated delta-Eddington scheme appears to be the most suitable model over the entire range of variables, 
generally producing relative errors of less than 5% in both the spherical albedo and global absorption. 

1. Introduction 

The role of clouds in determining the earth’s radia- 
tion budget has led to increased interest in the param- 
eterization of the radiative properties of cloud layers 
in numerical atmospheric models. Recent work has 
been concerned with relating cloud microphysics to 
optical properties (Sling0 1989) that can then be used 
in radiative transfer schemes within models. Most 
models now use some form of approximation to com- 
pute cloud radiative properties, such as the plane albedo 
from a given set of optical properties (optical thickness, 
single scattering albedo, etc.). Whereas in the past these 
optical properties were generally fixed, there is now 
increasing use of interactive schemes in which cloud 
optical properties are generated internally by the model 
(Charlock and Ramanathan 1985; Harshvardhan et 
al. 1989). 

As cloud fields evolve during a model integration, 
the optical properties of the generated clouds and 
models of gaseous absorption are used in a radiative- 
transfer scheme to provide the shortwave and longwave 
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radiative-energy field through the atmosphere. These 
computations need to be carried out at each model 
grid point at least every time the model cloud fields 
are updated. In models that resolve the diurnal cycle, 
this could be every three hours of simulated time, or 
even hourly. The computational burden is such that 
rapid, yet accurate, techniques are essential. In the 
shortwave, a common procedure is the computation 
of cloud-layer properties by a two-stream method and 
the adding of radiative fluxes through the atmosphere 
in an energy-conserving scheme (Lacis and Hansen 
1974; Coakley et al. 1983; Charlock and Ramanathan 
1985; Geleyn and Hollingsworth 1979; Harshvardhan 
et al. 1987), although the two-stream equations can 
also be solved directly for multiple layers using matrix 
solvers ( Wiscombe 1977; Toon et al. 1989 ) . The flux 
adding method is essentially a severely truncated form 
of the adding-doubling method (Hansen and Travis 
1974), using upward and downward fluxes instead of 
intensities. 

In order to compute radiative fluxes through several 
atmospheric layers by the flux adding method, the ra- 
diative properties of cloud layers for two different 
sources are required (Harshvardhan et al. 1987; Kiehl 
et al. 1987 ) . When collimated solar radiation is incident 
on an isolated cloud layer at some zenith angle with 
respect to the vertical direction, the fluxes emergent 
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from the layer in the upward and downward directions 
are determined by the plane albedo and total trans- 
mission of the layer, respectively. If the incident source 
is diffuse, the emergent flux may be obtained by an 
angular integration over the incident intensity field. In 
two-stream methods, the angular distribution of the 
incident intensity field is hot resolved, and a common 
practice is to assume an isotropic diffuse source. For 
example, in a multilayer cloud system, the diffuse solar 
flux transmitted through the upper layer is the incident 
source for the lower layer. Also, in the case of a cloud 
layer overlying a reflecting ground surface, multiple 
reflections between the cloud and ground are consid- 
ered by assuming an isotropic diffuse source at the bot- 
tom boundary of the cloud layer. These diffuse radiative 
properties have also been used in the past to provide 
estimates of global effects of aerosol layers (Chylek and 
CoakIey 1974). A comprehensive study of the accuracy 
of various multiple scattering approximations for the 
plane albedo, total transmission, and fractional ab- 
sorption of isolated cloud layers corresponding to in- 
cident collimated radiation was presented by King and 
Harshvardhan (1986a,b). The present study comple- 
ments the earlier one in assessing the accuracy of var- 
ious approximations for calculating the radiative prop- 
erties of cloud and aerosol layers for an incident iso- 
tropic diffuse source. 

The presentation follows the organization of King 
and Harshvardhan ( 1986a, hereafter referred to as 
RI-I). Section 2 discusses multiple scattering calcula- 
tions used to obtain the diffuse radiative properties of 
cloud layers of varying optical thicknesses and single 
scattering albedos. These computational results, ob- 
tained with the doubling method, will be considered 
the benchmark solutions with which various multiple 
scattering approximations will be compared. Section 
3 introduces the asymptotic theory approximation and 
the general class of two-stream approximations that we 
will consider. Section 4 presents the results of the com- 
parison between the approximate and exact results in 
terms of absolute and relative differences. A discussion 
of the results follows in section 5. Section 6 is a sum- 
mary including recommendations for using these ap- 
proximations. 

2. Multiple scattering computations 

To assess the accuracy of various multiple scattering 
approximations, radiative transfer computations were 
performed using the doubling method described by 
Hansen and Travis ( 1974)) together with the invariant 
embedding initialization described by King ( 1983). 
These computations were performed for a cloud drop 
size distribution typical of fair weather cumulus (WC) 
clouds ( Hansen 197 1)) and were performed at a wave- 
length X = 0.754 pm assuming a refractive index of 
liquid water m = 1.332. A detailed description of the 
cloud model, together with an illustration of the single 

scattering phase function, can be found in KH. The 
azimuth-independent terms of the reflection and 
transmission functions were used to obtain the plane 
albedo r( rl, h) and total transmission t( TV, h) as a 
function of TV, the total optical thickness of the layer, 
and h, the cosine of the solar zenith angle. In terms 
of these functions the spherical albedo, global trans- 
mission, and global absorption of the layer are given 
by 

s 

I 
f(q) = 2 o f(Tt, L4hdh (2) 

ii = 1 - Y(Tt) -7(q). (3) 

In order to cover a wide range of applications, these 
computations were performed for values of the single 
scattering albedo ranging from pure absorption (w. 
= 0) to conservative scattering (w. = 1). The single 
scattering phase function was left unchanged such that 
all computations apply to a phase function having an 
asymmetry factor g = 0.843. 

Figure 1 illustrates numerical computations of the 
spherical albedo [ Y( T,), global transmission [?( TV)], and 
global absorption [ a( TV)] as a function of o. and rl. 
The doubling computations used to generate these re- 
sults were obtained at 12 optical depths 0.0625,O. 125, 

128 interleaved with another set of 11 optica 
hkiihs 0.0884,O. 1768, . . . ,90.5 1. Each set of doubling 
computations was itself made at each of 3 1 values of 
the single scattering albedo. The single scattering albedo 
scale is linear in the similarity parameters, defined by 

l-w0 ‘I2 

s= l-w,g * ( 1 (4) 

This makes it possible to expand the scale in the vicinity 
of conservative scattering (w. = 1) and still to span the 
full range 0 & w. < 1. The angular computations, in- 
cluding the integration in ( 1) and (2)) were performed 
at 80 Gaussian quadrature points. As in RI-I, the com- 
puted results were first interpolated to generate a 300 
X 300 matrix prior to plotting. The interpolated arrays 
represent the exact results to which the radiative trans- 
fer approximations are compared in section 4. 

It is perhaps pertinent to point out certain features 
of the radiative properties illustrated in Fig. 1. For con- 
servative or very weakly absorbing layers, the spherical 
albedo increases rapidly with increasing optical thick- 
ness for small values of 7t and then much more slowly 
as T( becomes large. This is the well-known nonlinear 
behavior that leads to problems in estimating area-av- 
eraged albedos for a nonhomogeneous cloud layer 
(Harshvardhan and Randall 1985). For moderate to 
strong absorption, the saturation of both the spherical 
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albedo and global absorption at optical thicknesses of 
about 10 or even less is the most striking feature of 
Fig. 1. In the near-infrared, this implies that cloud ab- 
sorption is primarily a function of the single scattering 
albedo and not the optical thickness once the cloud 
layer is several hundred meters thick (Twomey 1976 ). 
The importance of determining the spectral depen- 
dence of w. for cloud layers and the development of 
accurate parameterizations for inclusion in radiative 
transfer models follows from this observation (King et 
al. 1990; Fouquart et al. 199 1) . 
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FIG. I. Doubling computations of the (a) spherical albedo ?( T,, 
W& (b) global transmission, i(r,, q-,), and (c)global absorption 
a( ‘T,, q,) as a function of optical thickness and single-scattering 
albedo for the FWC phase function. The single scattering albedo 
scale is linear in the similarity parameter, defined by Eq. (4). 

3. Radiative-transfer approximations 

Three classes of approximations will be considered 
here for comparison with the multiple scattering results 
presented above. In all cases, analytic or easily integra- 
ble functions relate the radiative properties to the 
optical properties. The three approximations we will 
consider are asymptotic theory for thick layers, diffuse 
two-stream approximations, and integrated two-stream 
approximations. Although there are several variations 
of two-stream approximations, only a few common 
and representative models will be considered. 
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a. Asymptotic theory 

Asymptotic theory is a rigorous solution to the 
equation of transfer in optically thick layers, and as 
such, makes no assumption about the angular distri- 
bution of scattered radiation within the medium. 
Expressions for the plane albedo and total transmission 
of an optically thick layer under collimated illumina- 
tion conditions can be found in KH and will not be 
repeated here. From these expressions, it can be shown 
that the asymptotic theory approximations for the 
spherical albedo [ t( r,)] , global transmission [?( rl)], 
and global absorption [ d( rr)] are given by 

F(q) = r, - 
,&Ie-2h 

, - /2e-2kr, ) (5) 

2(Q) = 
mn2e-kv 

, - 12e-2krt ’ (6) 

d(q) = 1 - F(q) -f(q), (7) 

for nonconservative scattering (wO < 1). In these 
expressions, Ym is the spherical albedo of a semi-infinite 
atmosphere and m, n, I, and k are constants (coeffi- 
cients) that depend primarily on the similarity param- 
eter given by (4). All of the functions and constants 
that appear in these expressions can be computed by 
equating asymptotic formulas and doubling results at 
three values of the optical thickness for which asymp- 
totic theory is valid (viz., r1 = 8, 16, and 32), as first 
pointed out by van de Hulst ( 1968). Similarity relations 
for calculating ?m (denoted A * by van de Hulst 1968 ), 
m, n, 1, and k as a function of s for the full range 0 
G s =G 1 can be found in Table 1 of King et al. ( 1990). 
Once these coefficients have been computed, expres- 
sions for all of the radiative properties are analytic 
functions that can be computed rapidly within a ra- 
diative transfer code. 

For the special case of conservative scattering (w. 
= l),Eqs.(5)and(6)reduceto 

F(q) = 1 - 
4 

3( 1 - g)t7l+ 2qo) ’ 
(8) 

^ 
f(71) = 

4 

3( 1 - g)t71+ 2qo) ’ 

where q. is the extrapolation length. The reduced ex- 
trapolation length q’ = ( 1 - g)qo is known to range 
between 0.709 and 0.715 for all possible phase func- 
tions (van de Hulst 1980), and has the value q’ = 0.7 I5 
for the phase function used here. Again, one is left with 
simple a$alytic functions describing the variation of 
?( TV) and t( 7,) as a function of TV for a given asymmetry 
factor g. The set of equations (5)-( 9) forms the ap- 
proximations for the diffuse radiative properties of a 
medium based on asymptotic theory. 

6. D#iise two-stream approximations 

In the absence of any direct collimated beam, the 
two-stream equations of radiative transfer result in a 

set of differential equations for the upward and down- 
ward diffuse fluxes F*(r) (Coakley and Chylek 1975; 
Meador and Weaver 1980) 

dF-( r) 
~ = YI F-(T) - %F+(T), 

dr 

dF+(r) 

t 10) 

___ = YZF-(7) - Y, F+(T), 
dr (11) 

where F-(T) represents the upward flux and F+(T) the 
downward flux at optical depth 7. The equations can 
easily be solved subject to the boundary conditions 

F+(O) = Fo, (12) 

F-(7,) = 0, (13) 

for a diffuse isotropic source incident at the top bound- 
ary of the layer (or cloud) and for which no illumi- 
nation is incident from below. The spherical albedo is 
thus obtained from the expression 

F(q) = F-(0)/Fo, (14) 

and the global transmission from 

T(q) = F+(TO/FO. (15) 

For nonconservative scattering (w. < 1)) the solution 
may be obtained in the form (Coakley and Chylek 
1975; Meador and Weaver 1980) 

F(q) = 
y2( 1 - e-2kTc) 

k + yI + (k - y,)e-2krr (16) 

f(,,) = 
2kemk’l 

k + y, + (k - yl)e-2k’f ’ (17) 

and for conservative scattering (w. = 1) 

7171 F(Q) = ~ 
1 + Y1Tr 

(18) 

5(q) = 1 - F(Q). (19) 

In (16)-( 19), the coefficients y1 and y2 depend on 
the particular two-stream approximation, with the dif- 
fusion exponent k defined as 

k = (7: - Y;)“~. (20) 

Table 1 lists three diffuse two-stream models used 
for this study and the corresponding values of y1 and 
72. The discrete ordinates model is identified as the 
quadrature scheme by Meador and Weaver ( 1980) and 
Toon et al. ( 1989). The hemispheric-mean model de- 
fined by Toon et al. ( 1989) is similar to the Coakley- 
Chylek model II referred to by KH and first introduced 
by Chylek and Coakley ( 1974). The two-stream model 
used by Sagan and Pollack ( 1967) has coefficients sim- 
ilar to those of both of the aforementioned models. 
Instead of the asymmetry parameter g, some two- 
stream models use the average backscatter fraction 
/?, which is defined in KH and readily computed from 
the backscatter fraction p(h), introduced by Coakley 
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and Chylek ( 1975) and Zdunkowski et al. ( 1980) to 
compute the radiative properties of layers for colli- 
mated incident sources. The Eddington model has, of 
course, been used widely (Shettle and Weinman 1970). 
The set of equations ( 16)-( 20) is used to compute the 
diffuse radiative properties for the two-stream approx- 
imations. It should be noted that these expressions have 
fairly simple analytic forms that favor rapid compu- 
tation. 

expressions for y3 used by the two integrated models 
presented here are given in Table 1. 

The integrations in Eqs. ( 1) and (2) required to ob- 
tain the diffuse properties are performed using go-point 
Gaussian quadrature, and the results should be con- 
sidered identical to an analytic solution for all practical 
purposes. The general form of the quadrature sum- 
mation is 

N 

Jt7t) = 2 C rtTt, Pi)Piwi, 

c. Integrated two-stream approximations i=l 

Extensive discussion of two-stream approximations 
for a collimated source can be found in KH as well as 
in earlier work, in particular the comprehensive treat- 
ment by Meador and Weaver ( 1980). Expressions for 
the approximate plane albedo [ i( r,, po)], total trans- 
mission [ t(~(, pO)], and fractional absorption [L?( TV, 
h)] are the set of equations (21)-( 29) in KH. These 
expressions include the transformations that are re- 
quired in the case of delta scaling (Joseph et al. 1976). 
To obtain comparable expressions for the diffuse ra- 
diative properties, i(~,, po) and t(T,, po) must be in- 
tegrated according to Eqs. ( 1) and (2). These expres- 
sions, however, are quite complicated, and thus inte- 
gration in a closed form is not generally practical. 

where pi are the Gaussian quadrature points on the 
half space and wi are the corresponding Gaussian 
weights. This detailed integration, however, is of no 
practical value because the computational burden is 
onerous when applied to a global climate model. We 
have, therefore, also included results for the delta-Ed- 
dington and Coakley-Chylek (I) models integrated us- 
ing two-point and four-point quadrature, respectively. 
The diffuse radiative properties can then be obtained 
with a computational effort comparable to that re- 
quired to compute properties for collimated radiation. 

4. Results 

An analytic expression for the spherical albedo in 
the Eddington and delta-Eddington approximations 
has been obtained by Wiscombe and Warren ( 1980) 
and involves exponential integrals that are not con- 
ducive to rapid computation within a model. For this 
study, i(~(, k) and i( TV, po) obtained by the delta- 
Eddington approximatjon were numerically integrated 
to provide I’( 7,) and t( r!). King and Harshvardhan 
found that the delta-Eddington approximation for col- 
limated illumination conditions is quite accurate over 
a wide range of r, and po, especially when w. is near 
unity. A model that performs well for optically thin 
layers over the limited range of w. studied by KH is 
the plane albedo scheme of Coakley and Chylek 
( 1975), designated Coakley-Chylek model I by KH. 
Two-stream methods for collimated sources require a 
third coefficient, y3, which appears with the source term 
and is thus not included in Eqs. ( 10) and ( 11). The 

We have examined both the absolute and relative 
accuracies of the spherical albedo, global transmission, 
and global absorption as a function of T, and wg for the 
asymptotic approximation, as well as the Eddington, 
discrete ordinates, and hemispheric-mean diffuse two- 
stream approximations. Other diffuse two-stream ap- 
proximations that we have examined generally yield 
somewhat poorer results when compared to our dou- 
bling benchmark calculations. In addition, we have 
considered the integrated delta-Eddington and Coak- 
ley-Chjilek (I) approximations computed using both 
80 points and a limited number of Gaussian quadrature 
points for integration over the solar zenith angle. 

Figure 2 illustrates a 4 X 3 plot composite of results 
for the absolute difference in the spherical albedo, 
global transmission, and global absorption for four of 
these models, where the first row applies to asymptotic 
theory and succeeding rows to the Eddington, discrete 

(21) 

TABLE 1. Summary of y, coefficients in selected two-stream approximations. 

Method YI 72 73 

Diffuse 
Eddington 

Discrete ordinates 
Hemispheric mean 

Integrated 

Delta-Eddington 
Coakley-Chqlek (I) 

w; = (1 - g2)wo/( 1 - wQ$) 

g’=L?/(l +g) 

l/417 - wl(4 + 3g)l -l/411 - wlJ(4 - 3g)] - 
fi/w - wo(l + &I v3/sk4 1 - &I - 

2-wo(l +g) wo(l -g) - 

l/417 - wb(4 + 3g3] -1/4[1 - wb(4 - 3g’)] l/4(2 - 3dd 
11 - 41 - !%4Ja)lVcco %mJvPo Bh30) 
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ordinates, and hemispheric-mean approximations. In- 
dividual plots in the first column of Fig. 1 represent 
absolute errors in the spherical albedo, defined as 

Wrt, wo) = 3% wo> - f(T1, wo), (22) 

with succeeding columns representing corresponding 
errors in global transmission [ At( TV, wo)] and global 
absorption [ AZ( rl, wo)]. With these definitions, posi- 
tive (negative) errors indicate that the radiative transfer 
approximation overestimates (underestimates) the ex- 
act solution, taken as the computational results pre- 
sented in Fig. 1. The relative errors in the spherical 
albedo, global transmission, and global absorption are 
presented in Fig. 3, and are given in percent. It is nec- 
essary to consider the performance of a particular 
model in both a relative and an absolute sense in order 
to delineate a range of acceptability. 

Individual contour plots in Figs. 2 and 3 have been 
shaded to draw attention to those regions of greatest 
accuracy. For example, asymptotic theory is seen to be 
accurate to within 5% in reflection and absorption for 
T( b 2 and for all values of wg . In transmission, relative 
errors exceed 5% for w. < 0.90 and 2 G TV < 8, but the 
absolute errors are so small ((0.03) that the approxi- 
mation could probably still be used without serious 
adverse results. It is evident from Figs. 2 and 3 that the 
asymptotic approximation provides accurate results for 
all three diffuse radiative properties over the entire 
range of w. as long as 71 b 2. 

The three diffuse two-stream models considered here 
are seen to yield unacceptable errors in one or more 
of the radiative properties over regions that would nor- 
mally be encountered in modeling applications. Al- 
though the range of acceptability will depend on the 
particular application, one can consider a 5% error in 
the spherical albedo as a standard for comparison. The 
spherical albedo is usually the parameter of choice in 
estimating the sensitivity of any radiative perturbation. 
When the value itself is small, however, an absolute 
error criterion is more useful. For optically thin layers, 
the absolute errors in spherical albedo are generally 
less than 0.01 for the discrete ordinates and hemi- 
spheric-mean approximations. Errors in global trans- 
mission are similar for all three models, while the Ed- 
dington and hemispheric-mean models are successful 
in estimating the global absorption of a layer when w. 
2 0.99 and 7t 6 10 with errors of less than 1%. If the 
range of acceptability is relaxed to 5%, then the Ed- 
dington and hemispheric-mean models can be used 
for absorption when w. is as low as 0.95 except for 
optically thick layers. This covers the range of single 
scattering albedo encountered in water clouds 
throughout the visible and near-infrared spectrum 
(King et al. 1990). 

The two integrated two-stream methods studied in 
this investigation provide more accurate results for all 
three diffuse radiative properties as shown in Figs. 4 
and 5. The delta-Eddington model was shown by KH 
to be highly successful in estimating the plane albedo 
for conservative scattering. There was a marked deg- 
radation of performance when nonconservative cases 
were considered. The present study shows that this 
model, when integrated over an isotropic diffuse in- 
cident source, provides excellent results for the spher- 
ical albedo and global transmission over most of the 
range of 7, and wo. Errors in excess of 10% in global 
absorption are present for moderate optical depths (0.5 
6 ry 6 5) when o. exceeds about 0.95. It may be seen 
from Fig. 4, however, that the absolute errors in global 
absorption are less than 0.02 throughout this region. 
In addition, the large relative error in global transmis- 
sion for optically thick absorbing layers is irrelevant 
since the global transmission is itself close to zero, as 
is the absolute error. The Coakley-Chjrlek (I) model 
provides results of comparable accuracy for optically 
thin layers. This is not surprising since KH showed 
that it was the most accurate of the two-stream models 
for this case. The delta-Eddington model, however, 
when integrated over all incident angles, is nearly as 
accurate as the Coakley-Chqlek (I) model for optically 
thin layers. Moreover, the accuracy of the integrated 
delta-Eddington model does not degrade as rapidly at 
higher optical depths. 

As mentioned previously, these two models would 
only be of academic interest if a rigorous numerical 
integration were required for every computation of the 
diffuse radiative properties. We have, therefore, also 
presented results obtained using a limited number of 
quadrature points in the integration over solar zenith 
angle [cf. Eq. (2 1 )] . As can be seen from the second 
panel of Figs. 4 and 5, a two-point integration of the 
delta-Eddington models yields accuracies that are 
comparable to the accuracy obtained using an BO-point 
integration. For the Coakley-Ch$lek (I) model, how- 
ever, it is necessary to use a four-point integration to 
obtain results that are of comparable accuracy. 

5. Discussion 

Although the results presented here are not exhaus- 
tive in the sense that all possible approximations have 
not been tested, we feel they are representative of what 
one might expect for any class of model. All the 
schemes are computationally efficient, and it is not 
necessary to perform a rigorous integration for the 
models based on incident collimated sources. The ap- 
proximations presented here can be incorporated into 

FIG. 2. Absolute accuracy of asymptotic theory, Eddington, discrete ordinates and hemispheric-mean approximations to the 
spherical albedo, global transmission and global absorption as a function of optical thickness and single scattering albedo. The 
FWC phase function is assumed throughout. 
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RG. 4. As in Fig. 2 but for the integrated delta-Eddington, two-point-integrated delta-Eddington, integrated 
Coakley-Ch$lek (I), and four-point integrated Coakley-Ch$lek (I) approximations. 
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a multilayer radiative transfer module that may be 
added to the radiation code in a numerical model. 

All computations presented here were obtained for 
a FWC drop size distribution having an asymmetry 
factor g = 0.843. Variations along the w. axis can 
therefore be viewed as representing the effect of altering 
the gaseous absorption in the layer at a particular 
wavelength, or to some extent, variations in the wave- 
length if g does not vary too greatly. This would cover 
the solar near-infrared spectrum over which ( 1 - wo) 
varies by several orders of magnitude, while g generally 
lies between 0.80 and 0.90 (cf. King et al. 1990). 

As found by KH for collimated radiative properties, 
the asymptotic approximation yields consistently ex- 
cellent results for optically thick layers, regardless of 
single scattering albedo and solar zenith angle. Figures 
2 and 3 show that the same is true for the diffuse ra- 
diative properties as long as rt b 2. In a numerical 
model with internally generated cloud optical prop- 
erties, this requirement will not always be met. Errors 
become unacceptably large when 7, < 1. For this rea- 
son, the asymptotic approximation should only be used 
when it is known a priori that 7t 2 2 at all times. This 
is the one serious shortcoming of an otherwise simple 
and accurate model. The method also requires a pre- 
computed table of coefficients m, n, k, I, and fW, or 
analytic forms that compute these quantities within 
the program. Analytic expressions for these coefficients 
in terms of the similarity parameter can be found in 
King et al. ( 1990), which further discusses a remote 
sensing application of asymptotic theory. 

The three diffuse two-stream models presented here 
are the simplest to implement in a numerical atmo- 
spheric model and are the most computationally effi- 
cient, but their accuracy is limited to certain regions 
of the parameter space. They are also not uniformly 
accurate for all three radiative properties. This is es- 
pecially true in the Eddington approximation, where 
the spherical albedo is frequently too inaccurate to be 
of any value in a numerical model. In addition, the 
Eddington model yields unphysical values of the 
spherical albedo and global absorption when absorption 
is very large (King and Harshvardhan 1986b). This 
situation arises occasionally in the water vapor bands 
of the, near-infrared and frequently in the thermal in- 
frared. The problem can be rectified in a computer 
code with the addition of a check for unphysical values 
that could then be forced to the condition of zero re- 
flection. The discrete ordinates model does not suffer 
from this limitation and generally yields better results 
for the spherical albedo than does the Eddington ap- 
proximation. The somewhat poorer results for global 
absorption are not too important since the absolute 
errors are small in this case. The hemispheric-mean 
model yields results very similar to the discrete ordi- 
nates model, except for global absorption. The smaller 
relative errors for weak absorption are an especially 
attractive feature of the hemispheric-mean model, 

which otherwise suffers from the fact that it tends to 
overestimate the spherical albedo by more than 5% for 
the very important case of nearly conservative optically 
thick layers. 

The integrated delta-Eddington model yields excel- 
lent results for all three radiative properties over the 
entire range of optical properties that are encountered 
in the radiation code of a numerical atmospheric 
model. In fact, errors in the diffuse radiative properties 
are generally smaller than the errors found by KH for 
collimated radiative properties, with no unphysical re- 
sults anywhere in the parameter space. There has ob- 
viously been some cancellation of errors in the angular 
integration. As mentioned earlier, the one error-prone 
region is moderate optical thickness and weak absorp- 
tion. This was also true for the errors in fractional ab- 
sorption for a collimated source. Since the direct beam 
is usually handled by a delta-Eddington or similar ap- 
proximation, the coefficients and functions used for 
this model are usually already present in a numerical 
model. There is, however, an extra computational 
overhead in the angular integration, in that planar 
properties need to be computed at several angles and 
then numerically integrated. As seen in Figs. 4 and 5, 
however, these computations need be carried out at 
only two points to yield results comparable to a detailed 
numerical integration. 

The integrated Coakley-Ch$lek (I) model is of lim- 
ited value, except perhaps for optically thin, weakly 
absorbing layers. There is also an added computational 
burden since at least four angular computations are 
required for the phase function used here. For colli- 
mated radiative properties and for optically thin layers, 
KH found that this model was superior to the delta- 
Eddington model. For diffuse radiative properties, on 
the other hand, we find that there is little advantage in 
using the Coakley-Ch$lek (I) model, even for optically 
thin layers. 

6. Summary and recommendations 

In the present study the spherical albedo, global 
transmission, and global absorption computed by var- 
ious radiative transfer approximations have been com- 
pared with doubling computations as a function of op- 
tical thickness and single scattering albedo. Since the 
entire range of w. has been considered for optical depths 
from 0.1 to 100, the results presented here can be uti- 
lized to decide which approximate method is the most 
accurate for a particular application. The results pre- 
sented here should be considered in parallel with the 
findings of KH regarding the plane albedo, total trans- 
mission, and fractional absorption for a collimated in- 
cident source. 

In order to summarize the results of this study, it is 
useful to present composite figures extracted from the 
individual figures to highlight regions of highest’ ac- 
curacy. Following van de Hulst ( 1980), we show in 
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Fig. 6 the regions for which a particular model is ac- properties, and the additional overhead incurred in the 
curate to within 1% and 5%. Only those models that two-point integration should be minimal. If a scheme 
are reasonably accurate in the particular radiative is needed to span the entire domain, the asymptotic 
property have been included. These models include method should not be used since its performance de- 
asymptotic theory, the two-point delta-Eddington teriorates very rapidly for r1 6 3. For this situation, 
method, and the four-point Coakley-Chjlek (I) typical of GCM applications, the integrated delta-Ed- 
method. Although the hemispheric-mean model yields dington scheme should yield acceptable results. 
acceptable results for the global absorption, it is not The overall errors for a multilayer cloud system over 
included here because results for the spherical albedo a reflecting surface will depend on the optical thickness 
are generally poor. and single scattering albedo of the individual layers. 

At the 1% (5%) level, asymptotic theory can be used At present, it is felt that errors in parameterizing the 
for all w. as long as 71 b 3.5 ( 2). For smaller optical band-averaged single scattering albedo of cloud layers 
depths, there is a choice that can be made between the in the near-infrared will dominate errors in approxi- 
delta-Eddington and Coakley-Chjlek (I) models, but mating the radiative properties of individual layers 
our recommendation is to use the delta-Eddington (Fouquart et al. 199 1) . For example, the use of a single 
method. Many general circulation models are already value of w. to represent the entire solar near infrared 
using this method to compute collimated radiative can result in errors in the layer absorption of several 
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hundred percent (Sling0 1989). The sensitivity of all 
radiative properties to w. can be appreciated by in- 
spection of Fig. 1. Since any scheme has to limit the 
number of bands for computational efficiency, the se- 
lection of these bands and the average absorbing prop- 
erties used could determine the overall accuracy. For 
a given set of 71 and wg , however, the results presented 
in this study could act as a guide for choosing an ap- 
propriate model. Finally, it is pertinent to mention that 
these accuracies refer to an idealized plane parallel 
model. There is, of course, the additional problem of 
representing inhomogeneous cloud systems including 
geometric effects (Harshvardhan and Thomas 1984; 
Stephens 1988), a problem not considered in this study. 
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