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ABSTRACT

The eddy variance of a meteorological field must tend to zero at high latitudes due solely to the nature of
spherical polar coordinates. The zonal averaging operator defines a length scale: the circumference of the latitude
circle. When the circumference of the latitude circle is greater than the correlation length of the field, the eddy
variance from transient eddies is the result of differences between statistically independent regions. When the
circumference is less than the correlation length, the eddy variance is computed from points that are well
correlated with each other, and so is reduced. The expansion of a field into zonal Fourier components is also
influenced by the use of spherical coordinates. As is well known, a phenomenon of fixed wavelength will have
different zonal wavenumbers at different latitudes. Simple analytical examples of these effects are presented
along with an observational example from satellite ozone data. It is found that geometrical effects can be

important even in middle latitudes.

1. Introduction

It is often useful to divide a global meteorological
field into a zonally symmetric part, usually taken to
be the zonal mean, and a zonally asymmetric part,
referred to as the eddies. Alternatively, the field can be
expanded in zonal harmonics. In this case the wave-
number zero component contains the zonal mean, and
the deviations from zonal symmetry are projected onto
the higher wavenumbers. The harmonic amplitudes
indicate the degree of zonal asymmetry at different
spatial scales.

This formal analysis into zonal-mean and eddy parts
has two main justifications. First, the earth’s atmo-
sphere exhibits a large degree of zonal symmetry. That

_is, the magnitude of the zonal mean is usually much
larger than the magnitude of the eddies. This is es-
pecially true of the time-mean state of the atmosphere,
since time averaging largely removes zonally asym-
metric transient disturbances. The dominant symme-
try, of course, results from the rotation of the earth
and the zonally symmetric forcing by solar radiation
on time scales longer than the diurnal cycle. However,
zonal asymmetries (stationary waves) do exist in the
time-mean field, a result of the asymmetrical distri-
bution of the continents and of topographic features
on the earth.

Second, the division into zonal-mean and eddy parts
can be used to simplify theoretical and numerical
models of the atmosphere. For instance, the transient
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or stationary eddies may be thought of as perturbations
to the zonally symmetric basic state. The basic state
may be an idealized one, or it may be taken from ob-
servations or a more sophisticated model.

The formal division into zonal-mean and eddy fields
allows statistics of the two parts of the field to be com-
puted separately. Statistics from the real atmosphere
can be compared to predictions by theoretical and nu-
merical models. Frequently used statistics of the zonal-
mean field include the time mean and time variance.
A number of different eddy statistics may be computed.
Oort (1983), for example, has presented latitude-height
cross sections of various eddy statistics for different
meteorological variables and selected averaging periods.
One important parameter of the eddy field is the vari-
ance around a latitude circle, or eddy variance, which
measures the total deviation from zonal symmetry at
all spatial scales. (The transient eddy variance defined
by Oort, [z7], includes the time variance of the zonal
mean.) A simple interpretation of the eddy statistics is
that the larger eddy variance in middle latitudes in
winter indicates larger amplitude planetary-scale waves
and active growth and decay of extratropical cyclonic
storms from baroclinic instability.

In this paper we will show that, in the ensemble or
time mean, eddy variances decrease near the pole, even
when the statistics of the field are uniform over the
sphere. In addition, the zonal-harmonic power spec-
trum for the same field depends on the latitude, though
the statistics of the field itself do not. These latitude
dependencies result solely from the choice of coordinate
system. Spherical coordinates introduce a latitude-de-
pendent length scale that is often forgotten when com-
puting zonal averages: the circumference of the latitude
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circle over which the averaging is carried out. Meteo-
rological fields at high latitudes are known to have fairly
well-defined correlation length-scales L. At distances
less than L meteorological variables are well correlated;
at distances greater than L they are poorly correlated.
Qualitatively, the effect on the eddy statistics of a cor-
related field is as follows. When the circumference of
the latitude circle is greater than the correlation distance
L, the eddy variance measures the variation between
independent regions. When the circumference is less
than L, all points on a latitude circle tend to be well
correlated with one another and the eddy variance is
much reduced. Figure 1 illustrates this concept. The
latitude at which this effect becomes important is at a
distance L from the pole.

Historically, the scarcity of meteorological obser-

vations at high latitudes has prevented reliable analysis

into zonal means and eddies. As a result, few such
analyses were done at high latitudes and latitude de-
pendencies in the statistical methods themselves may
not have been important. In the last ten to fifteen years,
however, global general circulation models and polar
orbiting satellites have provided simulations or obser-
vations all the way to the poles. In these newer global
datasets, the use of spherical coordinates to define av-
eraging operators, while formally correct, may create
artificial latitude dependencies of eddy variances and
zonal power spectra in middle and high latitudes.
Hartmann (1976, Fig. 3), for example, shows the eddy
variance of temperature and geopotential height in the
Southern Hemisphere as a function of latitude and
height. Both quantities peak in middle latitudes and
fall to zero at the pole. The atmosphere, of course, is
not devoid of transient disturbances at the pole. Swan-
son and Trenberth (1981, Fig. 4) have also plotted the
eddy variance of the geopotential height in the Southern
Hemisphere. The structure is similar to that found by
Hartmann, with the eddy variance falling to zero at
the pole.
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FiG. 1. If a field is well correlated with itself over a distance L, the
variance around any latitude circle with radius less than L is small
because all points within L of the pole are well correlated. At lower
latitudes many independent regions with dimension L exist around
a latitude circle. As a result the variance around the latitude circle is

larger.
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The length scale implicit in zonal averaging can also
affect the statistics of zonal-mean quantities. North et
al. (1982) have shown that the time variance of zonal
means increases toward the pole as 1/cos(latitude) for
a field with uniform statistics over the globe. This effect
is the converse of that for eddy variances. Zonal means
are computed over fewer independent regions as the
latitude circles grow smaller. Therefore, sampling fluc-
tuations increase at higher latitudes.

In this paper we will derive analytical expressions
for the eddy variance and zonal harmonic spectrum
for the simple case of longitudinally invariant statistical
fields on a sphere. The latitude dependence of the eddy
variance and spectrum are illustrated for several simple
forms of the spatial correlation function. In section 4
the theoretical results are compared with observed eddy -
variance statistics from satellite ozone data.

2. Eddy variance
a. Theory

Because much of the derivation below is analogous
to that of North et al. (1982, appendix B), we have
followed their notation. Given a field F(r), where r is
the position vector (6, ¢), 8 is latitude, and ¢ is longi-
tude, the zonal mean is defined as:

: .
[F(8, ¢)]=2—f K6, $)do. (1
Tdr
The latitude dependence 6 will be implicit in most of
what follows. The deviation from the zonal mean is

F*=F~[F]
and the eddy variance is
[F*?]=[F?]-[F]~
At the pole itself [F?] = [FJ? so the eddy variance,
whether due to stationary or transient eddies, must
vanish there.

The theoretical analysis is simplified by considering
ensemble rather than time averages. We will assume
that we have an infinite ensemble of independent re-
alizations of the state of the earth’s atmosphere. The

ensemble mean is represented here by angle brackets
{ ). The ensemble mean of the eddy variance is

(F*21) =(IF?]) —[FF). 2

The eddy variance can be decomposed into transient
and stationary parts:

F*3)y = ([(F*)*]) + [(F*)3, 3)
where the prime indicates the deviation from the en-
semble mean, F*¥ = F* — (F*}. The behavior of the
second term, the stationary eddy variance, is briefly

discussed at the end of this section. We will be primarily
concerned here with the first term, the transient eddy
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variance, and so for simplicity we will assume that the
ensemble mean (F) is zero everywhere. This imme-
diately removes the stationary eddies.

We will investigate how the transient eddy variance
depends on the spatial correlation of the field. To sim-
plify the discussion we assume that the point variance
(F 2) is independent of longitude, and that the covari-
ance ¢ (or correlation p) is a function only of longitu-
dinal separation A. The theory can be extended to lon-
gitudinally inhomogeneous fields, but since the method
for doing this is analogous to the procedure followed
by North et al. (1982, appendix B) for the variance of
zonal means, we will not present a detailed account of
it here. The only effect of longitudinal inhomogeneity
is that quantities discussed below are replaced by local-
variance-weighted averages over longitude.

The ensemble variance at a point is

c(0) = (F($)F(¢)y = (F?) 4

and the covariance between two points separated by
longitude A is

cN) = F@F(+ M) =(F)p(\) = c(0)p(N).  (5)

Qualitatively the correlation p should have the form
shown in Fig. 2. At low latitudes a given point should
be well correlated with its nearby neighbors, but poorly
correlated with distant points on the same latitude cir-
cle. At high latitudes all points are nearby neighbors,
so the correlation is high all the way around the latitude
circle.

The first term on the right-hand side of (2) can be
rewritten by using (4):

([F?1) = [{F*)] =[c(0)} = c(0). (6)
The second term on the right-hand side of (2) is
l T I
2N o ’ ’
WPy~ || rowrerasas.
Setting A = ¢ — ¢ and using (5) gives
1 T v
([FF)= @) f_, f_ _ (F2p(Ndedh=c(0)f, (7)
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FIG. 2. Expected qualitative form of the correlation p as a function
of longitudinal separation X at three different latitudes. The mathe-
matical form of the correlation function is given in (10). The cor-
relation length along a great circle arc is #/8.
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where

== | sovan ®
TJ—n )

is a nondimensional correlation length. It can be in-

terpreted as the fraction of the latitude circle over which

the field is significantly correlated. Equation (2) can

now be rewritten by using (6) and (7):

- ([F*?1) = c(0)(1 — 1) ®

In the simplest case, in which c¢ is independent of lat-
itude, the eddy variance is proportional to 1 — f. For
meteorological variables there is no reason to expect
¢(0) or the correlation length to vary rapidly near the
pole, in which case the 1 — f term will dominate in
high latitudes and {[F**]) will go to zero. One excep-
tion would be “spatial white noise,” that is, a field for
which the covariance is

(F*) for r=r
0 for r#r.

In this extreme case the correlation length is zero and
the eddy variance is independent of latitude.

Another exception is the eddy variance of a vector
field such as wind velocity. Both the zonal and merid-
ional components of the wind field (if it is reasonably
smooth spatially) are constrained to vary nearly sinu-
soidally (wavenumber 1) with longitude. As a result,
the spatial correlation p()\) is constrained to behave
like cos(\) near the poles, and the integral scale f in
(8) will actually go to zero there (instead of 1, as it does
for scalar fields). The eddy variance of vector quantities
decomposed into zonal and meridional components
are thus not constrained by spherical geometry to van-
ish near the poles. In particular, eddy kinetic energy
need not vanish.

The effect of geometry on the stationary eddy vari-
ance, which also contributes to the eddy variance in
(3), is less easy to generalize. If the mean field (F(r))
has a Taylor series expansion (i.e., is smoothly behaved)
near the poles, then it is easy to show that the stationary
eddy variance must go to zero at least as fast as [(7w/2)
— |6]1%; that is, quadratically with the angular distance
of the latitude circle from the pole.

(FOF®E)) = [

b. Example

The latitude dependence of 1 — fis shown in Fig. 3
for a simple form of the correlation function

[1+cos(mp)]/2 for y<m/n
0 for

The correlation is assumed to be a function only of
great circle distance y. The great circle arc ¥ between
the two points r and v is defined by the relationship
r-r¥ = |r|r| cosy. The half-width of the correlation

p(¥)= [ (10)

v>7/n



2398
1 .
/16
\m
1-f +— 8
T T2
o T T |
1] 30 60 90

Latitude

FIG. 3. Latitude dependence of the quantity ! — f for different

correlation length scales. The correlation length is given in radians
along a great circle arc. The eddy variance is given by (9).

function is w/n. (This artificial correlation function is
not analytic at /n, which may lead to unphysical re-
sults. For example, the power spectrum computed from
the correlation function may have negative spectral
power. In practice, problems with the power spectrum
in this case are negligible.) This is the correlation func-
tion used to make Fig. 2, with n = 8. By defining p in
terms of ¢ instead of A we describe a field whose sta-
tistics are the same everywhere on the earth. At the
equator the great circle distance y is equal to the lon-
gitudinal separation A. At higher latitudes the great cir-
cle distance between two points is less than the longi-
tudinal separation. . )

Examples are shown in Fig. 3 forn = 1, 2, 4, 8 and
16 (half-width of 20 000 km, 10 000 km, etc.). When
the correlation function is wider (small r), the effects
of the spherical coordinates are felt at lower latitudes.
When the half-width is véry small, the geometrical ef-
fects are only important at high latitudes. The latitude
at which the eddy variance begins to depart from the
point variance is approx1mately one half-width from
the pole.

3. Zonal harmonic spectra
a. Theory

In this section we will show that the zonal Fourier
harmonics of a meteorological field will also depend
on latitude, even when the statistics of the field itself
do not. (This effect is well known; see Blackmon and
White, 1982, for just one example.) A field F that is a
function of longitude ¢ can be expanded into zonal
Fourier harmonics as

® ‘ .
> Jme™e.

m=—c0

F¢)=
The harmonic amplitudes are given by

| O .
Jm= gl R (d)e™™d¢.
TJ—7
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Because Fis real, f,, f X, where f* is the complex
conjugate. The power in wavenumber m, p,, i
fnS % The power spectrum can also be calculated from
the covariance function. In the ensemble mean the
power spectrum is -

(om) = <F2>511—r f_ " Ve,

Thus, the average of the correlation function p(\) over
longitudinal separation A, (8), determines the total eddy
variance, while the Fourier transform of p()\) deter-
mines the zonal harmonic power spectrum. If p(y) is
uniform over the sphere as in (10), p()\) will not be.
The Fourier transform of the correlation functions
shown in Fig. 2 will be quite different.

b. Example

Zonal power spectra of a field with the cosine cor-
relation function (10) used in the previous section are
plotted in Fig. 4 for several different latitudes. The half-
width of the cosine curve is 7w/16. The power moves
rapidly to lower wavenumbers at high latitudes as the
size of the latitude circle approaches the correlation
length. However, substantial changes in the power
spectrum are noticeable even in midlatitudes.

4. Example from real data

To illustrate the existence of these geometrical effects
in a real dataset, eddy variance statistics have been cal-
culated for total ozone data from the Total Ozone
Mapping Spectrometer (TOMS) on the Nimbus-7 sat-
ellite (see Bowman and Krueger, 1985, for a more
complete climatology of the first four years of TOMS
data). Since we are dealing with real data, time means
were calculated instead of (the hypothetical) ensemble
means. A subset of the TOMS data was selected, con-
sisting of daily gridded fields of total ozone over the
Northern Hemisphere during the month of June for

0.4
O - 85°
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L. ' /5°
0.0 T T T }
0 10 20

Zonal wavenumber

FIG. 4. Power spectrum of the zonal Fourier components of a field
with the correlation function given in (10) The half-width of the
correlation function is 7/16.



OCTOBER 1987

the five years 1979 to 1983. The resolution of the data
set is approximately 100 by 100 km. Approximately
15 of the possible 150 days in the selected period are
missing at any given location, most of these during the
first year.

Figure 5 shows the time means of the eddy variance
and the zonal mean of the point variance [c(0)]. The
eddy variance is low in the tropics (not shown), rela-
tively constant in middle latitudes, and decreases to-
ward zero at the pole, as expected. The dashed line in
Fig. 6 clearly shows that the point variance of the field
does not decrease at the pole, but remains near the
levels reached in midlatitudes. This can also be seen
in maps of the point variance (not shown).

The correlation as a function of longitudinal sepa-
ration is shown in Fig. 6. The observed shape of p(\)
agrees quite well with the simple model used in sections
2 and 3, though its decrease from 1 for small A may
be closer to linear than quadratic. The correlation
length L can be roughly estimated from Fig. 6 to be
about the same as that used in Fig. 2, =/8 radians (22°)
along a great circle, or about 2500 kilometers. From
the results in Fig. 6, 1 — fwas calculated and is plotted
in Fig. 7. As expected, 1 — frapidly goes to zero near
the pole. Its approach to zero is linear rather than qua-
dratic (cf. Fig. 3) because of the linear behavior of p(\)
for small X (Fig. 6). As a consequence the contribution
of the transient eddy term in (3) dominates that of the
stationary eddy variance (which approaches zero qua-
dratically, as discussed in section 2a) near the pole.

The latitude dependence of the eddy variance of the
January 500 mb height field can be inferred from Fig,
4 in North et al. (1982), in which fis plotted as a func-
tion of latitude. The rapid rise of fat 75°N suggests
that the appropriate correlation length for the 500 mb
height field is ~15° of arc or ~ 1600 km.

800

Latitude

F1G. 5. Time means of the eddy variance (including the stationary
eddy variance, solid line) and the zonal mean of the point variance
(dashed line) of total ozone in the Northern Hemisphere for June.
Total ozone is measured in Dobson units (I DU = 1072 atm cm),
so variances are in (DU)2. Because of the contribution from stationary
eddies, the eddy variance is larger than the zonal mean of the point
variance south of ~55°N, Daily values from 1979 to 1983 were used
to compute the time means. The point variance field is rather flat
near the pole, as indicated by the zonal mean of the point variance
and by maps of the point variance (not shown). The eddy variance
on the other hand goes to zero at the pole, as it must.
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FIG. 6. Zonal-mean correlation p as a function of longitudinal
separation X for the total ozone data used in Fig. 5. At high latitudes
even points on opposite sides of a latitude circle are well correlated
because the actual distance between the points becomes small. Com-
pare with Fig, 2.

5. Conclusions '

We have shown that eddy variances can have strong
latitude dependencies even when the actual statistics
of the field are uniform over the globe. These latitude
variations are purely geometrical and arise from the
use of spherical polar coordinates. Qur results suggest
that care should be taken when interpreting the de-
crease in the eddy variance of many meteorological
fields observed on the poleward side of the midlatitude
baroclinic zone. For the ozone data shown in the pre-
vious section, the point variance is fairly constant north
of 50°N, but the eddy variance goes to zero at the pole.
Maps of the standard deviation of the wintertime 500
mb height (the square root of the point variance) pre-
sented in Oort (1983, Fig. A21) and the latitude profile
of ffrom North et al. (1982) indicate that the same is
true for S00 mb heights. That is, the point standard
deviation of the 500 mb height is greater than 100 m
over the entire polar cap north of 60°N, but, once
again, the eddy variance must decrease to zero at the
pole. Clearly, eddy variance statistics alone should not
be used to argue that significant variability in the at-
mosphere is confined to the middle latitudes. The point
variance and correlation functions, which are inde-

'
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FiG. 7. Latitude dependence of 1 — ffor the total ozone data. As
expected from Fig. 6, this quantity goes to zero at the pole. Compare
with Figs. 3 and 4.
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pendent of the choice of coordinate system, may be
better indicators of the level of variability.

We have also shown that zonal harmonic power
spectra are influenced by the use of spherical coordi~
nates. At higher latitudes a larger fraction of the total
variance can be expected in the low wavenumbers as
the latitude circle includes a smaller and smaller part
of the earth.

Eddy variances and zonal power spectra are math-
ematically well-defined quantities. Care should be
taken, however, when comparing these quantities be-
tween different latitudes.
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