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Abstract. The monthly mean precipitation and temperature at p = 62 stations over the
United States and Canada for N = 91 years (1900-1990) are analyzed in terms of
empirical orthogonal functions (EOFs) and their variances. The eigenvalues and
eigenfunctions are compared with a succession of stochastic noise models: (1) un-
correlated noise, having eigenvalues depending on the ratio p/n, withn = N — 1; (2)
homogeneous noise having spatial correlations which are fit to the observations; and (3)
homogeneous noise having both spatial and temporal correlations fit to the observations.
Individual monthly data for January and July were analyzed as well as a combined data set
of all months. The eigenvalue spectra of the homogeneous noise models are found to be
in close agreement with the observed spectra even when time correlation is excluded from
the model. Time correlations only slightly affect the results for temperature and have less
impact for precipitation. The EOF patterns of the noise models contain inhomogeneities
due only to the distribution of stations, the common correlation length, and the limited
sample but are nevertheless in good agreement with the observed patterns, whose
inhomogeneities may also be affected by secular trends and physical inhomogeneities such
as orography. The observed EOF eigenvectors also show identifiable deviations from the
homogeneous EOFs. Further work will be needed to see if these deviations can be
convincingly associated with true physical inhomogeneities.

1. Introduction

Empirical orthogonal functions (EOFs) were introduced to
meteorology over 40 years ago [Wadsworth et al., 1948; Lorenz,
1956]. EOFs are the eigenvectors of the covariance matrix of a
set of data. The form of the EOFs and the associated eigen-
value spectra are capable of describing coherent variability in
large data sets and, consequently, are a most useful tool in
climate research. Physical interpretation of EOF patterns re-
quires careful determination of the signal in the presence of
background natural variability or “noise” and also sampling
errors [North et al., 1982]. Here we attempt to model the noise
by a succession of stochastic models having a small number of
parameters. The EOF modes estimated from the observations
will be assumed to be described by the stochastic model unless
the estimated eigenvalues (i.e., mode variances) are larger than
the model eigenvalues by an amount that exceeds the expected
statistical error. The data set is assumed to consist of instan-
taneous snapshots of a geophysical field sampled at N equally
spaced intervals of time, and at p locations in space, or stations.
The time average at each station is removed, leavingn = N —
1 samples in time, which may be correlated. For simplicity, it is
assumed that p = n. It is essential to have an adequate
distribution of the p points to resolve the spatial variations of
the geophysical field, and a.sufficiently large number of sam-
ples, n, to reduce the statistical fluctuations of the eigenvalue
spectra so that estimated eigenvalues may be distinguished
from each other and from the noise.
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In the pioneering work of Kutzbach [1967], precipitation,
surface temperature, and sea level pressure over the United
States were considered for 23 regions of roughly equal area
and for January 25 months. In that case none of the precipi-
tation eigenvalues could be distinguished from uncorrelated
noise [Cahalan, 1983], though some modes could be distin-
guished for the other two fields. Waish and Mostek [1980] were
able to obtain improved sampling by employing 78 years of
data at 61 points over the United States. In that case, the first
four or five modes of precipitation become distinguishable
from uncorrelated noise in January. However, in July, because
of the shorter convective length scales in summer, only the first
two eigenvalues are distinguishable from uncorrelated noise,
and these are effectively degenerate [Cahalan, 1983].

For uncorrelated noise the eigenvalue spectrum is known as
an analytic function of the ratio p/n [Cahalan, 1993], and this
result is used as a check on the homogeneous noise model, by
taking the limit of small correlation length. It should be em-
phasized that we are considering “noise” to include not only
measurement error but also any actual physical variability of
the temperature or precipitation consistent with the model
assumptions of homogeneity and isotropy. In fact, most of this
noise is likely due to natural variability. Typical standard de-
viations in this monthly data set are about 40 mm for the
precipitation and 2°C for the temperature. These values exceed
the measurement error as well as secular trends in the data.
This natural variability will be modeled with homogeneous
isotropic models without any secular trend. Aspects of the data
not consistent with these assumptions are considered to be
“signal,” including any trends as well as inhomogeneous spatial
and temporal correlations.

The goal here is to model the homogeneous noise as accu-
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Figure 1. Location of the 62 stations used in the study along
with a vector with length indicating the maximum precipitation
and direction indicating the month of the maximum precipita-
tion. Note the clear distinction between maximum precipita-
tion in the various physical regions of the United States: the
large winter maxima in the northwestern Pacific coast region,
changing to early summer maxima east of the Rockies and
throughout the Great Plains, switching to late summer in the
southeast and Florida, with an intervening corridor of early
spring maxima in “tornado alley.”

rately as possible in order to increase our confidence that
deviations from the noise will represent true physical inhomo-
geneities and not merely limitations in the model, or in the
limited data sample. The approach is: (1) fit the spatial average
correlations, ignoring regional differences, to determine pa-
rameters of the homogeneous model; (2) use the model to
simulate data having the same station locations and time sam-
pling as the observations; (3) apply the same EOF analysis to
both observed and modeled data sets and identify any signifi-
cant differences, considered to be “signal.” We defer the fourth
and final step, which is modeling the signal in terms of inho-
mogeneous and anisotropic processes. The inhomogeneous
“signals” could involve both correlations and secular trends.
Possible secular trends in the signal, which have been omitted
from our analysis, are of particular interest in view of recent
work suggesting that detection of possible global warming (in-
creasing secular trend in temperature) may be formulated in
terms of EOF analysis [e.g., North et al. 1995; Shen et al. 1994].

2. Data Analysis

The data sets consist of 91 years of monthly temperature and
precipitation data from 62 stations in the contiguous United
States and Canada, taken from 1900 to 1990. The station lo-
cations along with the maximum monthly precipitation are
given in Figure 1. These locations were chosen to maximize
both the uniformity and the completeness of the data. The
effect of the seasonal variation may be treated by studying each
set of data for a given month or season separately, or by
considering all the months together and subtracting out the
seasonal pattern. The starting point in the analysis will be the
combined approach. The advantage of the combined approach
is improved statistics, with a factor of 12 increase in the num-
ber of data samples, and the disadvantage is that seasonal
variations in the covariances are averaged out. After sufficient
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understanding of the seasonally averaged EOF results from the
combined data set is achieved, then seasonal differences may
be studied with more confidence.

The annual cycle was subtracted from each month at each
station by subtracting the 91-year mean for that month at that
station. The computed mean annual cycle is summarized in
Figure 1, which shows a clock hand at each station pointing in
the appropriate direction to indicate the month of maximum
precipitation, and with a length indicating the amount of max-
imum monthly precipitation at that location. Note the clear
separation of the well-known climatological regimes of precip-
itation in the United States: wintertime maxima along the west
coastal Cascades region; switching to a wide area of May-June
maxima east of the Rocky Mountains; then a corridor of Mar-
ch-April-May maxima in the “tornado alley” from Texas up
into southwestern Ohio; followed by July-August maxima east
of the Allegheny mountains; and finally some large maxima
during the September hurricane season in gulf coastal areas.
Although these mean values (and the analogous temperature
means) contain well-known inhomogeneities, we will attempt
to model the monthly anomalies in terms of purely homoge-
neous stochastic processes. Comparison of the EOF analysis of
the simple homogeneous models to the EOF analysis of the
data will indicate the necessity of including inhomogeneities in
modeling any “signal” in the observed anomalies.

We will write the meteorological field, F, here either
monthly precipitation or temperature, as

Fy=Ft) (1)

where F is the observed quantity, i is the station index, and &k
is the observation time index. The data are normalized so that
the average is zero and the standard deviation is unity, or

.  Fy—F

Fy=——— (2)
with

= m(i Fi
Fi= Zke @) 4 ik (3)

EkEm(i) 1

EkEm(i) (Fy — F)?

o; = 4
ZkEm(i) 1 ' )

and m (i) equal to the set of all measurements which are not
missing at station i. The covariance matrix will then be written
as

S cemioioncy Fuf
kem@)Ukem(j) L ikt jk
Cyj= P (%)

i

The eigenvalue distribution and the eigenvectors of this matrix
are then evaluated and compared to corresponding quantities
computed from homogeneous stochastic models. The denom-
inator in (5), N;;, is the total number of observations for which
both data points i and j are not missing.

The effect of missing data in this analysis causes two con-
flicting problems: If we use N;; in (5), the positive definite
property will be lost, but the statistically correct form of the
correlation will be used. If we replace each missing F,, by the
mean, F,, and average, which is equivalent to using N, the total
number of observations, in the denominator of (5), with no
change in the numerator, then a statistically incorrect form of
the correlation is used, but the positive definite property is
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restored. The use of N has the effect of slightly underestimat-
ing the magnitude of the covariance, depending upon the
amount of missing data. The use of N;; has the unfortunate
effect, from the loss of the positive definite property, of allow-
ing some of the smallest eigenvalues to become negative, so
that they cannot be meaningfully compared to the variances of
the simulated EOFs. The data analysis was done both ways
(using N;; and N in (5)) and was found to have no effect on all
but a few of the smallest eigenvalues in the individual monthly
data. The larger and more significant eigenvalues were un-
changed. There was no effect at all on the statistically more
significant combined monthly data. In most EOF analysis re-
sults the lowest valued eigenvalues are not shown because they
are not thought to be significant. Here we choose to show the
positive definite results using uniform N, so that we can show
all the eigenvalues for completeness. Disagreement between
the model and the data spectrum, in excess of the expected
statistical error, as the smallest eigenvalues are approached
should be ignored. Alternate approaches are to throw out all
data points for which a point is missing for any other station, or
to replace missing data by spatial interpolation. The first was
rejected because it would greatly increase the sampling error,
and the second because it would tend to minimize inhomoge-
neities in the data, precisely what we are trying to identify by
searching for places where homogeneous models fail.

3. A Stochastic Model With Spatial Correlation

Although the effect of uncorrelated noise alone is not suffi-
cient to simulate the data, for simplicity we first consider the

uncorrelated case and compare spectra determined from sim--

ulation to the analytic result of Cahalan [1993]. This provides

Simulated Data P=30, N=100
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Figure 2. The cumulative distribution for the empirical or-
thogonal function (EOF) eigenvalues of a simulation with un-
correlated Gaussian noise. The dots are from the simulation
and the solid line is the analytic spectrum given by Cahalan
[1983, 1993]. The agreement is so thorough that the two curves
cannot be distinguished. '
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a check on the accuracy of the simulations for a case in which
the exact result is known as a function of p and N. As an
example, N = 100 measurements, consisting of only noise
with a Gaussian distribution of unit standard deviation, were
generated independently at each of p = 30 stations. Then the
eigenvalues of the covariance matrix were evaluated. This pro-
cedure was repeated 40 times and the results averaged to form
the cumulative distribution shown in Figure 2. The analytic
result is also plotted in Figure 2 and is completely hidden by
the simulated eigenvalue distribution, which is thus shown to
be quite accurate. The standard deviation of the simulation is
of the order of the width of the curve.

Homogeneous stochastic simulations having a given spatial
correlation will be generated following North and Cahalan
[1981]. That technique expands the EOF eigenvectors in terms
of spherical harmonics with the form of the expansion con-
strained in a way that allows imposition of any given spatial
covariance function. The exact spherical harmonic expansion is
too computationally intensive for our purposes, so we follow a
simplified approach, using an expansion in terms of the EOF
eigenvectors evaluated only at the given station locations. Al-
though this calculation is greatly simplified, it must be empha-
sized that the main drawback is that it computes the model
values only at the individual station locations or grid points.
Should a model EOF field be required at other locations in
space, the full spherical harmonic expansion or some appro-
priate analogous calculation must be done. A model series is
required that simulates the homogeneous properties of the
measured quantity F(r;, ¢;), where 7, is the spatial position of
the ith station and ¢; is the time of the jth measurement. The
simulated data, F (rl, t;), will consist of a series of random
numbers with the property that the homogeneous correlation
for a given spatial separation will be the same -as that of the
actual data, F(r;, t;). The variance of the simulated data is
assumed to be the same for all stations, consistent with the
treatment of the actual data, but this constraint may be re-
laxed, as discussed in the next section.

We will guess an expansion for F,(r;, ¢;) and check to see if
the correct spatial correlation may be imposed on it. Consider
then the ansatz

F (rn j) 2 an(tj)gn(ri)

n

(6)

where a,,(t;) is a series of random numbers with the index j
taking the role of the time index. The vector g, (r;) is the nth
eigenvector, of the zero error or infinite N' covariance matrix,
evaluated at spatial point, or station index, i. Since the series of
random numbers, a,,(¢;), is assumed independent for different
n, the only degree of freedom affecting the covarience of F will
be the variances 0(a,,). The simulated infinite N covariance
matrix is then ‘

2 Fs(rta t])F(r/O /)

Ay = lim =

N—>0°

@)

In the case of precipitation the spatial correlation will be
assumed to be in the form of an exponential, decreasing with
spatial separation. The goal will then be to force the simulated
covariance matrix to be in the form

Ay = exp (=Bra) (8)

where B is the inverse of the spatial correlation length and r;;
is the great circle distance between stations i and k. The value
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of B is determined by fitting to the data covariance matrix. For
temperature the simple exponential form gives a poor fit and a
third-order polynomial expansion in 7;; performs much better.
So for temperature, the exponential m (8) is replaced by a
cubic polynomial. The one degree of freedom in (6) is fixed by
selectmg the normalization

oX(a,) = A, )]

w1th A,, the nth eigenvalue. The simulated covariance matrix,
(7, may now be evaluated by 1nsert1ng the sxmulated data
expansion, (6), giving

N P

1
Ag=1lim 5 2 | 3 a

N—oxo j=1

P
) 9a(r) 2 anlt) gm(ri)

n=1 m=1

(10)

Since the random numbers a,,(¢;) are independent we have,
after combining together the sum over j

lim &2 @0ant) = duoa) (1)

This result may be placed into (10) and the matrix 4 is then

4

Aij = E Z(an)gn(r)gn(r) - 2 )\ngn(rt)gn( )

n=1 n1

(12)

where the normalization (9) has been used. This last expres-
sion is simply the diagonal form of the matrix given by (8), as
may be verified using the matrix projection operator. The same
result holds when (8) is replaced by the cubic form used for
temperature, as long as the appropriate temperature eigenvec-
tors are also used. Thus the desired goal of forcing the proper
spatial correlation on our simulated data is achieved. Time
correlation may be included by imposing a time correlation on
the random numbers a,(t;). Then both the desired spatial and
the time correlation would be contained in the model. The
drawback of this procedure is that the time correlation would
be the same for all the stations, whereas the actual time cor-
relation varies from station to station.

4. Results

A comparison of the spatial correlation for monthly precip-
itation versus the simulated series is shown in Figure 3. First
the actual correlation length was obtained by fitting to the data,
then this correlation length was put into the stochastic model
through the exponentlal form in (8). We see that the average
form of the spatial correlation agrees well between the model
and the data but that the value of the data correlation varies
over a wider range than that of the stochastic model. This effect
is likely due to the fact the spatial correlation has a significant
variation because it is not homogeneous and isotropic and
these variations are not included in the model. In Figure 4 the
eigenvalue spectrum of the data and model is shown. The ratio
of the individual eigenvalues to the sum of all eigenvalues are
shown and expressed as the individual percent variances. The
effects of homogeneous and isotropic spatial correlation as well
as noise are given by the N finite curve. The model with spatial
correlation alone, without noise, is given by the N infinite
curve. This model was generated by simply not adding in the
effects of noise and is called the N infinite model because with
an infinite number of measurements the noise would have no
effect and the covariance matrix would be given by the spatial
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correlation matrix (8) exactly. The spectrum of the model with
a correlation length of 1% of the correct value is also shown.
This length is so low that the effects of spatial correlation
vanish and only a noise model remains. We see good agree-
ment between the data and the model with spatial correlation
but poor agreement with the noise-only model. With the high
value of N resulting from combining the months together, the
effect of noise is small as indicated by the small dlﬁerence
between the N finite and N infinite model. There is a slight
1rregular1ty in these two curves which is due to the actual
spatial locations of the stations. The N infinite model contains
only the smooth exponential spatial correlation form and no
noise. The only remaining explanation for the stochasticlike
irregular appearance is the quasi- -random spatial posmomng of
the stations. The first four EOFs for the monthly precipitation
are shown in Figure 5, and the first four EOFs for the simu-
lation are shown in Figure 6. There is good qualitative agree-
ment with the data with the differences increasing with increas-
ing mode number.

For temperature the simple exponential law is not valid and
a third-order polynomial fit, constrained to equal unity at zero
spatial lag, was used. The model and data spatial correlation
are shown in Figure 7. As in the case of precipitation, the
model simulates the average value of the spatial correlation
well but the variation is greater in the data. The spectrum of
the data, model, and noise only are shown in Figure 8. Here
the agreement is not so good at the lower value eigenvalues
with deviations exceeding the standard error. The lower values
of the eigenvalues at which there is a deviation, in excess of the
standard error, contain only about 1% of the variance and so,
this deviation is not significant in describing the variations in
the data field. As in the precipitation analysis, the effects of
homogeneous and isotropic spatial correlation as well as noise
are given by the N finite curve, and the model with spatial
correlation alone without noise is given by the N infinite curve.
The first four EOFs of the monthly temperature are shown in
Flgure 9 and the first four EOFs of the simulation are shown
in Figure 10. As in the case of precipitation, there is good
qualitative agreement with the data. '

In the more physically relevant case of data for a specific
month, patterns unique to the selected season will be present
in the data. The spatial correlation model still is fairly accurate
in describing the EOF analysis with the relative effects of noise
having an increased effect, as would be expected. In the case of
precipitation for a given month the standard error of the eig-
envalues increases by V12 with the model still agreeing ap-
proximately with the data. The January and July precipitation
spectrum is shown in Figure 11 and the January and July
temperature spectrum is shown in Figure 12.

Here we see that the spatial correlation model with sampling
errors (N finite) agrees quite well with the observed spectrum,
while the exact spatial correlation model (N infinite) agrees
less well with the observed. This difference is greater than in
the case of the combined monthly precipitation, thus showing
the increased effect of noise on the individual monthly analy-
ses. As with the case of combined monthly precipitation, the
sampling-only curve, generated by selecting a correlation
length too low to allow any spatial correlation effects, does not
agree with the data curve. However, the disagreement is not so
great as in the combined monthly case, because of the in-
creased importance of sampling error in generating the eigen-
value spectrum for a reduced (by a factor of 12) number of
observations.
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Figure 3. (2) The spatial correlation of the monthly precipitation, with the solid line an exponential fit, with
correlation length 443 km. (b) This fit is used to generate the simulated values.
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Figure 4. The spectrum of the combined monthly precipita-
tion with eigenvalues given as a percentage of the total. The
stair step line is the actual data and the dashed lines are from
the model. The N finite model is determined by diagonalizing
the correlation matrix determined from the same amount of
data as for the actual precipitation and thus iricludes the effects
of both homogeneous spatial correlation and sampling error.
The N infinite model results from diagonalizing the exact ex-
ponential spatial correlation matrix. The model with correla-
tion length 1% of the observed (i.e., 4.4 km) is indistinguish-
able from the analytic form for zero correlation length derived
by Cahalan [1993].
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Figure 5. The first four EOFs for the combined monthly precipitation. Note in EOFs 1 and 2 the minimum
in New Mexico and northward along the Rockies and the elongation of the positive region in the East along
the southwest-northeast direction, parallel to the Allegheny mountain range.
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Figure 6. The first four EOFs for the simulated monthly precipitation. The same general pattern of .one,
two, and three east-west oriented extrema are seen in these first three simulated EOFs as occurs in the first
three observed EOFs shown in Figure 5. However, the minimum along the Rockies and the elongation along
the Alleghenies are not captured in the simulation. Also, the north-south pattern seen in simulated EOF 4is
not evident in the first four observed EOFs.
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Figure 7. (a) The spatial correlation of the monthly temperature, with the solid line a cubic polynomial fit.

(b) Simulated values determined from the cubic fit.
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Figure 8. The spectrum of the combined monthly tempera-
ture with eigenvalues given as a percentage of the total. The
stair step line is the actual data and the dashed lines are from
the model. The N finite model is determined by diagonalizing
the correlation matrix determined from the same amount of
data as for the actual temperature and thus includes the effects
of both homogeneous spatial correlation and sampling error.
The N infinite model results from diagonalizing the exact cubic
polynomial spatial correlation matrix shown in Figure 7. The
model with correlation length 1 km is indistinguishable from
the analytic form for zero correlation length derived by Ca-
halan [1993].
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Figure 9. The first four EOFs for the combined monthly temperature. Note the larger spatial scale evident
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Figure 10. The first four EOFs for the simulated monthly precipitation. These are each remarkably similar
to the corresponding observed EOF patterns shown in Figure 9. The main difference is the more localized |
regions seen in the observed EOF 4.
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The effect of time correlation was added to the model for the .

combined monthly data. The time correlation for a 1 month lag
for precipitation and temperature was about 0.06 and 0.2,
respectively. There was no effect on the spectra for precipita-
tion and the effect for temperature was small. For the individ-
ual monthly data, there also was no effect because each data
point was separated by a much longer time (12 months).

5. Summary and Conclusions

An assumed value of EOF analysis, aside from merely com-
pressing the data without losing much of the variance, is that it
will reveal useful information or properties of the geophysical
field being analyzed. The procedure used here was to construct
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Figure 11. The spectrum of the (a) January and (b) July
precipitation with eigenvalues given as the percentage of the
total. The stair step line is the actual data and the dashed lines
are from the model. The N finite model includes the effects of
both homogeneous spatial correlation and sampling, while the
N infinite model is the model resulting from spatial correlation
alone. The noise-only model is shown as a model with corre-
lation length so low that spatial correlation effects vanish. Note
the close agreement of the July precipitation eigenvalue spec-
trum to the purely uncorrelated noise spectrum for all but the
first three eigenvalues, and the second and third are effectively
degenerate, being separated by less than a standard error.
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Figure 12. The spectrum of the (a) January and (b) July
temperature with eigenvalues given as the percentage of the
total. The stair step line is the actual data and the dashed lines
are from the model, with the same three models as in Figure
11. Note the concentration of variance in the first 10 or so
eigenvalues, giving a spectrum much steeper than that of pre-
cipitation. Nevertheless, the homogeneous noise model fits
quite well in this region, even without including sampling er-
rors. It is necessary to include sampling error to fit the smaller
eigenvalues, however.

a homogeneous model of the data, perform EOF analysis of
the model, and compare the eigenvalue spectra and EOFs of
the simulated and real data. If there are statistically significant
deviations between the two spectra, then it is assumed that
there exists some additional physical process that should be
modeled as an inhomogeneous “signal.” The first step of this
procedure, comparing the observed spectrum to that of uncor-
related noise, is standard to most EOF analysis. It is usually
done by performing a Monte Carlo simulation of the uncorre-
lated noise, though it is equivalent to use the simple analytic
result of Cahalan [1983] and Cahalan [1993], which gives a
better idea of the dependence on the number of stations and
observations, p and N. Usual practice is to identify modes
having variance greater than that of uncorrelated noise as
“signal,” which is then interpreted physically, perhaps with the
help of a varimax or other rotation, as described, for example,
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by Richman [1986]. Here we have seen that some of the fea-
tures of these large-scale “signal” modes can be understood by
the addition of homogeneous spatial correlation to the sto-
chastic model, resulting in a significant improvement in the
agreement between the homogeneous model and the data eig-
envalues and spatial patterns. The focus then shifts to model-
ing the deviations from the homogeneous model in terms of
physically inhomogeneous processes. If the deviations are suf-
ficiently small, the inhomogeneous signal may lend itself to a
perturbative treatment. We recommend that this approach be
standard procedure for any EOF analysis of data having sig-
nificant spatial correlation.

The case of monthly temperature and precipitation analyzed
here shows that for such geophysical fields the observed ho-
mogeneous spatial correlation has a significant impact on the
eigenvalue spectra and thus must be included in any noise
model. These correlations, when combined with the limited
spatial and temporal sampling of the data, introduce spurious
inhomogeneities into the EOFs which may be difficult to dis-
tinguish from inhomogeneities in the EOFs that have an inho-
mogeneous physical origin.

The precipitation spatial correlation is described well with
an exponential, while the temperature spatial correlation is
better fit with a third-order polynomial. The simultaneous in-
clusion of noise and spatial correlation yields an eigenvalue
spectrum that agrees well with the data spectrum. For both the
case of the combined monthly data and the January-only data
the deviation of the simulated spectrum from the data spec-
trum is within the standard error for most of the significant
eigenvalues. The greatest deviations occur at eigenvalues that
are less than 1% of the largest value and hence are not signif-
icant in describing the total variance of the data.

This. analysis shows that most of the EOF signal, as mea-
sured by the eigenvalue spectrum for the monthly data, arises
from homogeneous spatial correlation and sampling error. The
good agreement between the homogeneous model and the
data is an indication that it may be difficult to infer properties
of the data in addition to the effects of noise and spatial
correlation. It is, however, clear that inhomogeneous effects
are present. There is an excess, of the order of about a factor
of 2, in the variation in the covariance matrix from the data
over the covariance matrix from the simulation, as evidenced
from Figures 3 and 7. This excess must be due to physical
effects which are not included in the model. Likely candidates
for these effects are spatial anisotropies and inhomogeneities,
combined space and time correlation, and secular trends in
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time. It is not clear if EOF analysis will be useful in diagnosing
these phenomena. )

The observed and simulated EOFs were in qualitative agree-
ment, but differences are evident in the precipitation patterns
in the regions of the major Rocky and Allegheny Mountain
ranges and with deviations increasing for larger mode num-
bers. The requirement of orthogonality causes deviations seen
in the first EOF to propagate to other modes. It will be of
interest to isolate the effects of physical inhomogeneity from
that introduced by the limited station sample by expanding the
first few EOFs in components parallel and perpendicular to the
simulated EOFs.- Studying the perpendicular components
alone will be an interesting topic for further research.
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