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ABSTRACT

This study investigates the internal structure of marine stratocumulus (Sc) using the spatial fluctuations of
liquid water content (LWC) measured along horizontal flights off the coast of southern California during the
First ISCCP Regional Experiment (FIRE) in summer of 1987. The results of FIRE 87 data analyses are compared
to similar ones for marine Sc probed during the Atlantic Stratocumulus Transition Experiment (ASTEX) in
summer 1992 near the Azores. In this first of two parts, the authors use spectral analysis to determine the main
scale-invariant regimes, defined by the ranges of scales where wavenumber spectra follow power laws; from
there, they discuss stationarity issues. Although crucial for obtaining meaningful spatial statistics (e.g., in climate
diagnostics), the importance of establishing stationarity—statistical invariance under translation—is often over-
looked. The sequel uses multifractal analysis techniques and addresses intermittency issues. By improving our
understanding of both nonstationarity and intermittency in atmospheric data, we are in a better position to
formulate successful sampling strategies.

Comparing the spectral responses of different instruments to natural LWC variability, the authors find scale
breaks (characteristic scales separating two distinct power law regimes) that are spurious, being traceable to
well-documented idiosyncrasies of the Johnson-Williams probe and forward scattering spectrometer probes. In
data from the King probe, the authors find no such artifacts; all spectra are of the scale-invariant form & ~# with
exponents 3 in the range 1.1-1.7, depending on the flight. Using the whole FIRE 87 King LWC database, the
authors find power-law behavior with 8 = 1.36 + 0.06 from 20 m to 20 km. From a spectral vantage point, the
ASTEX cloud system behaves statistically like a scaled-up version of FIRE 87: a similar exponent 8 = 1.43
+ 0.08 is obtained, but the scaling range is shifted to [60 m, 60 km], possibly due to the 2-3 times greater
boundary layer thickness.

Finally, the authors reassess the usefulness of spectral analysis:

¢ Its main shortcoming is ambiguity: very different looking stochastic processes can yield similar, even
identical, spectra. This problem impedes accurate modeling of the LWC data and, ultimately, is why multifractal
methods are required.

* Its main asset is applicability in stationary and nonstationary situations alike and, in conjunction with scaling,
it can be used to detect nonstationary behavior in data.

Having 8 > 1, LWC fields in marine Sc are nonstationary within the scaling range and stationary only at
larger scales. Nonstationarity implies long-range correlations, and we demonstrate the damage these cause when
trying to estimate means and standard deviations with limited amounts of LWC data,
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1. Introduction and overview

Clouds have a first-order effect on the earth’s ra-
diative budget (Ramanathan et al. 1989) and are the
major source of uncertainty in climate modeling
(Cess et al. 1989). Current climate models assume
clouds are plane-parallel, horizontally homogeneous
sheets; at best, a linear combination of cloudy and
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clear portions according to cloud fraction is used to
account for horizontal inhomogeneity when predict-
ing radiative properties. This motivates us to better
understand cloud structure. Marine stratocumulus
(Sc) are a good starting point. They are one of the
most studied cloud types, partly because they exert a
systematic effect on the global radiation budget.
Phase I of the First ISCCP (International Satellite
Cloud Climatology Project) Research Experiment
(FIRE) field program (Albrecht et al. 1988), which
took place over the Pacific Ocean off San Diego in
summer 1987, was entirely devoted to these unusu-
ally persistent and horizontally extended clouds.
Phase II of FIRE, operating in tandem with the At-
lantic Stratocumulus Transition Experiment (AS-
TEX) in summer 1992 over the Atlantic Ocean near
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the Azores, continued and extended the FIRE 87
studies by focusing on the Sc to cumulus transition.

Cahalan and Snider (1989) obtained probability dis-
tributions and wavenumber spectra for vertically inte-
grated liquid water path (LWP) measured by microwave
radiometry during FIRE 87. Cahalan et al. (1994a) de-
veloped a fractal cascade model for the optical depth
field based on these LWP statistics. By way of Monte
Carlo simulations (Cahalan et al. 1994b), this model
enabled them to show that standard plane-paralle]l radi-
ative transfer theory based only on the mean optical
depth leads to serious errors in Sc cloud albedo. Cahalan
et al. thus established that statistics beyond the mean are
necessary to get Sc radiation effects right in models; they
conclude that we also need to know, at the very least,
the variance of log(LWP) and the spectral exponent
(absolute slope f of the wavenumber spectrum in log—
log axes, discussed extensively further on).

We expand upon the data analysis begun by Cahalan
and Snider in a variety of ways. First, we will consider
aircraft LWC data rather than ground-based LWP data,
which are not typically sampled at the high spatial fre-
quencies achieved on aircraft. Our main goal is an im-
proved statistical characterization of internal marine Sc
structure (in terms of LWC distribution ), a prerequisite
for developing better cloud models and, in turn, fur-
thering our understanding of cloud radiation properties.
To this effect, we apply a battery of data analysis tech-
niques to liquid water time series from FIRE 87 and
ASTEX that go far beyond probability distribution
functions (pdf’s) and wavenumber spectra, in the fol-
lowing ways:

¢ Following a well-established tradition in turbu-
lence research, we systematically compile statistical in-
formation on a scale by scale basis. In this first part,
we use primarily spectral analysis, a conventional way
of doing scale by scale analysis in Fourier space, where
the scale parameter is either the wavenumber & or r
= 1/k.

e We seek simple connections that relate properties
at one scale to another. The current paradigm is to seek
‘“‘scaling’’ behavior, that is, power laws in the scale
parameter. The important quantity is then the exponent
of the power law. We take special care in how exponent
values are determined numerically and how uncertain-
ties are assigned to them.

e We assess the practical importance of the statistics
we introduce. In this first part we assess the information
conveyed by spectral analysis and find that, unlike
some techniques implemented in physical space, spec-
tral analysis is applicable to both stationary and non-
stationary regimes. When scaling prevails, this allows
us to empirically differentiate between the two regimes,
measure the degree of nonstationarity, and detect tran-
sitions from one regime to the other. This is important
because stationary and nonstationary regimes call for
rather different statistical treatments. Several theoreti-
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cal and LWC-based examples of stationary and non-
stationary behaviors are discussed.

* We will assess a statistic’s sensitivity to the oc-
currence of a single strong feature in the data. Such a
rare event could be a harbinger of true intermittency or
merely a glitch in the datastream (a short sequence of
corrupted values); it is therefore desirable to have both
insensitive statistical quantities and sensitive ones, to
draw our attention to potential spurious values in the
data.

In the next section, we survey some important scal-
ing concepts and how they have permeated cloud mor-
phology studies in the past decade or so. In section 3,
we define our notations and terminology for scale-in-
variant spectral analysis. The spectral responses of
King, forward scattering spectrometer probe (FSSP),
and Johnson-Williams (J—W) probes to LWC vari-
ability during FIRE 87 are compared in section 4,
where a rationale is presented for retaining only King
data in the remainder of the paper. In section 5, we
describe and visualize the five King LWC datasets, dis-
cuss sampling issues, and compare their individual
spectra, using guidelines for statistical noise reduction
and exponent determination detailed in appendix A.
Ensemble-average spectra for FIRE 87 and ASTEX are
compared in section 6, revealing interesting similarities
and differences that are interpreted in dynamical terms.
Drawing on tutorial material from appendix B, section
7 discusses some important implications in physical
space of scaling in Fourier space in terms of *‘statistical
stationarity’’ and ‘‘stochastic continuity,”” both con-
cepts are illustrated with LWC data. Finally, we sum-
marize our findings in section 8.

In Part 2 (Marshak et al. 1995, submitted to J. Atmos.
Sci. ), we pursue our investigation of the scale-invariant
properties of LWC in marine Sc using the King data
by applying ‘‘multifractal’’ methods that are imple-
mented in physical (rather than Fourier) space. This
enables us to address intermittency issues and thus to
escape the Gaussian paradigm that underlies most stan-
dard statistics, including spectral analysis by itself. We
will show that nonstationarity and intermittency are
complementary features of the atmospheric data. The
multifractal techniques used in Part 2 are also effective
in helping to find the strong events, which are possibly
instrumental glitches.

2. Background

There is a growing awareness of the need to study
atmospheric phenomena at several widely separated
scales at once (e.g., Sui and Lau 1992; Weng and Lau
1994). Geophysical systems in general naturally spawn
structures over a wide range of scales, so the first step
in our search for a physically sound approach to LWC
data analysis is to use statistics based on scale, a key
parameter that we will denote ». We call this scale by
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scale statistical analysis. Our next step is to seek power-
law behavior (or “‘scaling’”) with respect to r. In this,
we are following a method whereby turbulent flows
were successfully investigated over the last few de-
cades.

The physical meaning we can attribute to a statistical
power law in r is that the same physical processes dom-
inate over the associated range of scales [7, R]. Smaller
parts of the system therefore look like scaled-down
larger parts, and vice versa. The connection to fractal
geometry, where the same geometric operation is re-
cursively performed at finer and finer scales, is straight-
forward. Realistic cloud scenes can be artificially gen-
erated merely by adding an element of randomness to
algorithms for generating deterministic fractals (e.g.,
Lovejoy and Mandelbrot 1985; Peitgen and Saupe
1988), which further motivates us to use a combination
of scaling methodology and statistics.

A power-law statistic « r* is invariant under a
change of scale r = Ar in the sense that only the scale
ratio A and the exponent « are required to predict the
new value. This contrasts strongly with a statistic where
one (or more) special scale(s) occur, for example, «
exp(—r/r*), because its value at two arbitrary scales
can only be compared by first comparing the two scales
to the special one(s). Observation of a power law in r
therefore reflects a statistical invariance or symmetry
under change of scale, called scale invariance or just
scaling. If robust (persistent under addition of more
data), breaks in the scaling symmetry are important
since they indicate a change in the dominant physical
process in the system.

Lovejoy (1982) was the first to study the random
fractal structure of clouds and rain. Since then, such
studies in morphology have become quite popular
(e.g., Rys and Waldvogel 1986; Yano and Takeuchi
1987; Cahalan and Joseph 1989; Séze and Smith
1990). In addition, clouds were probed internally by
aircraft, revealing variability over all observable scales.
To the best of our knowledge, the first quantitative ev-
idence of scaling in a cloud LWC field was reported
by King et al. (1981), who argued the quality of their
hot-wire probe using the excellent scaling in the LWC
wavenumber spectrum. Since then, optical Knollenberg
probes or FSSPs have enjoyed an increasing popularity
among cloud physicists because of their ability to mea-
sure the complete droplet size distribution. Using FSSP
data, Duroure and Guillemet (1990) found scaling in
the spatial distribution of clear to cloudy air interfaces,
as defined by a threshold in the total droplet count.
Their results were extended by Malinowski and Za-
wadzki (1993), who applied box-counting as well as
histogram techniques to LWC and to total droplet
count. Baker (1992) found considerable centimeter-
scale inhomogeneity in the Poissonian characteristics
of FSSP droplet arrival times. Malinowski et al. (1992)
and Malinowski and Zawadzki (1993) applied fractal
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analyses to the same type of data and confirmed the
high level of small-scale variability.

3. Scale invariance in Fourier space

Let p(k), —® < k < =, be the Fourier transform of
a stochastic process p(x), 0 < x < L. The energy spec-
trum E (k) of ¢(+) is defined as

1, . ~
E(k)=z(|90(k)|2+|<,0(—k)|2), k>0, (1)

where (-) designates ensemble averaging, that is, av-
eraging over all possible realizations of ¢(-). We will
use the expressions wavenumber spectrum or energy
spectrum interchangeably to designate E(k), noting
that it is also referred to as the power spectrum, vari-
ance spectrum, periodogram, and spectral density.

A common application of spectral analysis is to lo-
cate dominant frequencies, wherever E(k) has a peak
rising unambiguously above the background. Scales r
= 1/k can be special in other ways, for example, the
upper and lower scales bounding a scale-invariant re-
gime; between these bounds the energy spectrum fol-
lows a power law:

E(k) < k™”. (2)

For theoretical models, one can obtain E(k) in (1),
hence 8 in (2), either analytically or numerically. For
data, we generally have only a small number of realiza-
tions or experiments with a finite spatial sampling, as-
sumed uniform: ¢; = (x;), x; =il (i=1, - -, Na),
where [ is the sampling scale and N, is the number of
points. Of these, N, = 2"°t¥eld  [.] meaning integer
part, are used at a time in fast Fourier transform (FFT)
computations, for an overall length L, = N,l.

We now put spectral analysis and the power-law pa-
rameterization of E(k) in Eq. (2) to work in three com-
parative studies: first, of the three LWC instruments
used during FIRE 87 (section 4); then, of the five
flights where the King probe was operational (section
5); finally, of the ensemble-average spectra for FIRE
87 and ASTEX (section 6).

4. Spectral responses of different LWC probes to
natural variability

In all, we investigated 13 LWC datasets, all from the
FIRE 87 database, furnished to us from the National
Center Atmospheric Research (NCAR) through P.
Austin: 3 from the J-W hot-wire probe, all collected
on 30 June by the C-130 aircraft and 5 each from the
Knollenberg FSSP and the King hot-wire probe. Figure
1 shows typical LWC output from J-W and FSSP de-
vices and King data. The FSSP and simultaneous King
data in Figs. 1b and lc were both collected on the 2
July Electra flight. Figure 2 compares the energy spec-
tra in log-log axes for the datasets displayed partially
in Fig. 1.
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Fic. 1. Typical LWC time series from the J—W, Knollenberg
(FSSP), and King probes. (a) A time series 410 s long from the
J—W hot-wire probe, sampled at 16 Hz on board the C-130 aircraft
on 30 June 1987, starting at 2053 UTC. (b) Another time series of
equal length but sampled at 10 Hz, from the FSSP on board the
NCAR Electra on 2 July, starting at 0223 UTC; (c) time-registered
data from the collocated King probe, sampling at 20 Hz. Overall,
these two last instruments deliver comparable values, but noise con-
tamination is obvious in the small-scale variability of the FSSP data.
Spatial sampling scales are indicated, assuming a nominal aircraft
speed of 100 m s™..

Compared to the King data, the FSSP data in Fig. 1b
has a large noise component that overwhelms the deli-
cate small-scale features, particularly, the downward
spikes. Accordingly, the King and FSSP spectra have
similar slopes only for scales larger than ~250 m; below
that the FSSP spectrum flattens out toward a (stationary )
white noise spectrum. To illustrate this, we added Gauss-
ian white noise at the 5% level to the King 2 July dataset
and plotted its energy spectrum in Fig. 2.

The FSSP’s elementary sampling volume is so small
that an accurate droplet distribution, from which LWC

DAVIS ET AL.

1541

is calculated as its third moment, can be captured only
every few hundred meters. Baker (1992) uses FSSP
data nevertheless to detect smaller-scale variability by
(i) focusing on the droplet number concentration
(counting drops is a lot more reliable than sizing them
in an FSSP) and (ii) relying on sophisticated statistical
analyses of the raw signal (arrival and departure times
of individual droplets in the instrument’s laser beam).
Furthermore, Brenguier (1992) describes a ‘‘fast”
FSSP that uses real-time software control to overcome
some of the instrument’s limitations; using this tech-
nique, Rodi et al. (1992) obtain power-law energy
spectra down to the smallest scales.

The J-W instrument suffers from a different prob-
lem at small scales. Its hot wire has more thermal in-
ertia than the King probe’s, hence a tendency toward
more smoothness—and a steeper spectrum—for
scales smaller than ~500 m. Above 500 m, the J-W
spectral exponents roughly match those of the FSSP
and King probe. In Fig. 1a we still see the downward
spikes; they ‘‘hang’’ however from higher baseline val-
ues than in Fig. 1a for the King data. Such large offsets
are not seen between the King and FSSP data.

Summarizing, the King probe is the most reliable and
diverse source of information on small-scale variability
in marine Sc in the FIRE 87 database, so it is used
exclusively in the remainder of this paper and its se-
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FiG. 2. Spectra of J-W, FSSP, and King LWC data. All spectra
consist of 256 wavenumbers but cover somewhat different ranges of
scales due to the different sampling rates: from 10 m to 2.6 km for
the King probe, from 20 m to 5.1 km for the FSSP, and from 12.5
m to 3.2 km for the J-W probe. The three instruments more or less
agree for the largest scales: k¥ < 4 km™', therefore r = 1/k > 250 m.
On the one hand, the J-W hot-wire probe is then effectively oper-
ating at a lower frequency, unaffected by the characteristic smoothing
due to the greater thermal inertia than its King counterpart. On the
other hand, the FSSP is then counting enough droplets throughout
the size distribution to make reasonable estimates of its third moment,
the local large-scale mean LWC. For small scales, the FSSP data is
clearly contaminated by white (uncorrelated) noise of instrumental
origin; an FSSP-type spectrum is simulated by adding white noise to
the King data, but the 5% level used in the figure is far too con-
servative.
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quel. The new PVM-100 liquid water probe has cleaner
optically based physics than hot-wire probes and a sam-
pling volume 10* times larger than a typical FSSP
(Gerber et al. 1994) but it was not available until the
ASTEX experiment in 1992.

5. Statistical variability of King LWC data from
FIRE 87

a. Description and visualization

The LWC measurements we use in the remainder of
this section were obtained during FIRE 87 from a King
probe on the NCAR Electra aircraft. King et al. (1978,
1981) describe the basic design, electronic control, and
calibration of this LWC probe. The power required to
maintain the temperature of a wire on which droplets
are impacting is recorded and eventually converted into
LWC in g m™>. The device has a sensitivity of 0.02
g m™3, a response time of ~0.05 s, and an accuracy of
~5% at1 gm™.

We investigate five different King probe time series,
the longest in-cloud datasets, giving us access to the
largest range of scales. Their more important charac-
teristics are listed in Table 1; for further information,
such as flight tracks, we refer to Kloesel et al. (1988).
Some flight tracks were not straight throughout the
probing, but no leg was less than an integral (correla-
tion) length scale, so the time series can be viewed as
1D transects of the LWC under Taylor’s frozen tur-
bulence hypothesis. The horizontal flight legs used here
were at roughly midcloud or slightly above, as deter-
mined from Austin et al.’s (1995) estimates of cloud-
base height and cloud thickness for the first, third, and
fifth cases. Figures 3a—e display representative frag-
ments consisting of 2'> = 8192 points. The accompa-
nying one-point pdf’s show a pronounced negative
skewness due to the downward spikes in three of the
five cases (a, b, and d). These downspikes are probably
dry air entrained from cloud top and carried by pene-
trating downdrafts.

Figure 3c (14 July) has two striking features: first, a
degree of homogeneity that prevails over the remainder
of this long dataset; second, a sudden dip from over 0.3
g m~? to less than 0.1 g m—>. This dataset accounts for
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~50% of all the King probe record; however, its 330-
km length is still dwarfed by the size of marine Sc sys-
tems, which can extend for thousands of kilometers. We
suspect that the dip is an instrumental glitch but are un-
able to rule out a physical cause since negative fluctua-
tions just as deep, aimost as wide, but not quite as abrupt,
occur in the other datasets. To illustrate this point, Fig.
4a shows a zoom onto the alleged glitch and on another
narrower and less intense dip from the same dataset (not
illustrated in Fig. 3c), while Fig. 4b shows down spikes
of roughly the same width extracted from Fig. 3a. If the
dips in Figs. 3c and 4a are spurious, we must ask our-
selves what would have happened if it failed to be
screened out. We will therefore closely follow the effect
of this dip in the statistics described below.

Figure 3d is like a juxtaposition of the types of data
in Figs. 3a and 3b with that in Fig. 3c, with exaggerated
variability in the left half and almost no variability in
the right half. Finally, the data in Fig. 3e is also intrigu-
ing, its one-point pdf being bimodal and positively
skewed.

b. Sampling issues

‘‘Stationarity’’ is not an attribute one would use in-
tuitively to describe Figs. 3d and 3e. Technically, sta-
tionarity means invariance of statistical properties un-
der translation. In practice, this means that we should
be able to obtain reasonably accurate estimates of (cli-
matological) averages using reasonable amounts of
data. To illustrate this point quantitatively, we define
the running mean over scale r, starting at position x,
of some function ¢(x) defined for 0 < x < L:

1 x+r
my(r,x) = -f o(x")dx’, (3a)
r vy

forO < r=<L,0 =< x < L — r; and similarly the running
variance

1 [+
o (r, x)? = ;f [o(x") — my(r, x))dx’

=1fx " o(x)2dx’ = my(r, )% (3b)
rdyx

TaBLE 1. Characteristics of the FIRE 87 King LWC datasets. The total of 130 804 data points were collected during the FIRE 1987
stratocumulus experiment, off San Diego, California. An aircraft speed of 100 m s™' was used to convert time to space, the sampling rate
being 20 Hz (hence a distance = 5 m). The integer part {log,N,. ] of the fourth column yields N, = 2"#2¥d | the maximum number of points

used in the FFTs; the corresponding length is denoted L, = N,l.

Date Time Nt Length L Altitude
(1987) UuTO) (points) loga N (km) (m) Character Comment
30 June 2241 28672 14.81 143 790 spiky downward
2 July 0223 16 384 14 82 770 spiky downward
14 July 1818 65 536 16 328 700 smooth suspicious dips
16 July 1717 8192 13 41 625 mixed spikes down
16 July 1819 12020 13.55 60 630 mixed spikes up
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FiG. 3. Representative portions of five King LWC datasets from FIRE, June—July 1987. (a) 30 June, (b) 2 July,
(c) 14 July, (d) 1717 UTC 16 July, and (e) 1819 UTC 16 July. The data was collected at constant altitude with the
King probe carried by the NCAR Electra. All portions are roughly 41 km long (exactly 2'> = 8192 points sampled
at 20 Hz). The histograms show the corresponding LWC field’s one-point probability density function, dividing the
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3c. (The leftmost glitch is outside Fig. 3c, hence the negative time
of occurrence.) (b) A cluster of normal downspikes from Fig. 3a.

Figure 5a shows my,(r, 0) for the five LWC datasets
in Table 1. Only three seem to converge—stop varying
as r increases—at all (the data in Figs. 3d and 3e do
not). Only two of these end up close to the overall
mean (LWC) ~ 0.29 g cm™, our estimate of the cli-
matology. Only one of these (30 June) remains close
to (LWC) for all scales. Another dataset (1819 UTC
16 July) ends at almost two (ensemble based) orwc’s
below (LWC). Even the longest dataset (14 July) ends
about oy wc/2 above (LWC). Such lack of convergence
and/or sample to sample variability is typical of non-
stationary processes. We would never be able to esti-
mate (LWC) without all of our five datasets, nor the
sample mean m,( L, 0) with a dataset of length L < 50
km or so. Even with five datasets, we cannot guarantee
0.29 g cm™ as the climatological mean, robust with
respect to the addition of more data from the same type
of cloud.

Running standard deviations o,(r, 0), the other
member of the Gaussian pair of statistical parameters,
for the same five LWC datasets are plotted in Fig. 5b.
We see that only the long/smooth 14 July dataset has
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apparently converged, however to a value that under-
estimates o wc (obtained from all the datasets com-
bined) by a factor of 3. The 1717 and 1819 UTC 16
July datasets give the best single-run estimates for this
second order statistic, precisely the datasets that pro-
duce the worst estimates of (LWC). A striking feature
of the o(r, 0) graphs is the way new levels of variance
are reached by substantial jumps. Clearly, these quasi
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discontinuities are caused by the spikes in data,
whereas the intervening, ever-slower decays and pla-
teaus correspond to the smooth periods. Such strong
localized events are uncharacteristic of processes obey-
ing Gaussian statistics.

If the spatial statistics of a random function ¢(x), 0
< x < L, converge to their ensemble average values
as L becomes large, then (x) is called ergodic. For all
practical purposes, this is not the case for any of our
LWC datasets, either because their running means and
standard deviations have not converged at all or, if they
have, to a different value from one dataset to the next.
From our discussion of m,(r, x) and o,(r, x), we can
see that two kinds of sampling issues must be ad-
dressed:

¢ Can we say that a given dataset is long enough to
yield meaningful (i.e., stable) spatial statistics of a
given kind (e.g., Gaussian)?

* Do we have enough data, all datasets combined,
to sample all the events that we are potentially inter-
ested in?

Ideally, we should ask ourselves these questions before
collecting the data, in the planning stages of a field
experiment. The former question is an issue of station-
arity and it will be addressed in this paper from the
standpoint of Gaussian statistics such as m,(r, x) and
o,(r, x); we return to these, as functions of x, after
examining the spectral properties of LWC fields. The
latter and more open-ended question raises the issue of
ergodicity violation (sample to sample variability ) due
largely to the intermittent occurrence of intense events
(large jumps, strong spikes, etc.).

c¢. Individual spectra in two different representations

The interested reader is referred to appendix A for a
detailed description of two methods of reducing statis-
tical noise in energy spectra that can be used in com-
bination with a variety of ways of determining the spec-
tral exponent §, also described in more or less detail.
The intrinsic spectral properties of the different datasets
are best compared by keeping to the same method of
estimating E(k) and (3; we start in Fig. 6a with noise
reduction method 1 (subdivision) and, for simplicity,
an unweighted least squares regression to a linear func-
tion in the logs. The five spectra in Fig. 6a use N, = 512
data points (256 wavenumbers), which corresponds to
the distance between two minor ticks in Figs. 3a—e
(2.6 km). They show little noise, being averaged
over N, = 32 (30 June, 2 July), N, = 128 (14 July),
or N; = 16 (16 July) subsets; the spectral exponent 8
ranges from 1.45 (1819 UTC 16 July, Fig. 3e) to 1.72
(1717 UTC 16 July, Fig. 3d).

In contrast, the spectra in Fig. 6b are obtained by
noise reduction method 2 (octave binning) and show a
similar but somewhat lower range of 3, from 1.19 (2
July, Fig. 3b) to 1.68 (14 July, Fig. 1c), using the same
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FiG. 6. (a) Energy spectra for FIRE 87 LWC in marine Sc, using
standard noise reduction. All five datasets are treated according to
the subdivision method with N, = 512 points held constant, that is,
averaging over enough subsets to end up with better defined E(k)’s
for exactly 256 wavenumbers covering a range of scales from the
inverse Nyquist frequency 2/ = 10 m to 2.56 km, two minor ticks in
Figs. 3a—e. This is done by varying the input parameter N; = [N,/
N,] in the subroutine SPCTRM according to Table 2. (b) Energy
spectra for FIRE 87 LWC in marine Sc, using octave binning. As in
Fig. 6a except that the method of octave bins is used, yielding only
[logsNiw] — 1 estimates of E(k) but more broadly spaced, almost
equally on the log scale. Notice the different minima in wavenumber
value 1/L,, where L, = N,l (cf. Table 1). At large scales (k < 2%
L, 7n4), three of the five datasets (bold symbols) show a leveling off
in E(k), giving us an estimate R = L,,4/2* = 20 km for the integral
scale of LWC fluctuations in marine Sc during FIRE 87. [In this
stationary regime, the other two datasets contribute one and two E(k)
points, respectively, which are highly uncertain, having only one or
two k values per E(k) value.] At the smallest scales (largest k), the
energy densities show a remarkable agreement for all but the smooth-
est and longest dataset (14 July), which has ~27 = 128 times smaller
E(k). In the average spectrum (cf. Fig. 7), the contribution of this
dataset is small: 4—8 times the weight but less than 1/1op the energy
(1/10 the amplitude). The three encapsulated points are affected by
the 60-pixel glitch visible in Figs. 3c and 4a.

type of regression. Notice the different wavenumber
ranges for the different datasets. An important feature
of this method is that the extreme slopes are closer to
what we expect from a subjective classification: spik-
iness (concentrated energy at small scales) yields a
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smaller 8 than smoothness (more energy in the mean
and large scales). The observed variability of 5 is a
good example of ergodicity violation, traceable in Fig.
6b to the large-scale (hence poorly sampled) behavior
in each case. Clearly, five samples are not enough to
estimate the natural range and relative frequency of
E(k), even for the restricted case of marine Sc; we will
however attempt to estimate its mean in the next sec-
tion.

The 14 July spectrum is worthy of a closer look,
especially in the octave bin representation in Fig. 6b.
First, we notice a small glitch in the scaling at abscissa
~ 10 (k ~ 2"/L or r ~ 25 = 64 pixels); this is trace-
able to the anomalous dip discussed previously that is
~60 pixels wide. Second, we see evidence of E(k)
~ constant for abscissa < 4 (k¥ < 2*/L hence scales r
= L/16 ~ 20 km). We will return to this important
phenomenon, visible also in the 30 June data and, to a
lesser extent, in the 1717 16 July data in the following
sections.

6. Exponents and scaling ranges for average LWC
spectra from FIRE 87 and ASTEX
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tion using subsets with N, = 2" points (2'? = 4095
k’s) as well as with the 12 corresponding octavewide
wavenumber bins. For the binning method, we find 3
= 1.36 = 0.06 with good scaling over more than three
decades; as expected, the ensemble averaging reduces
the uncertainty on § with respect to (most of) the in-
dividual cases. The scaling range goes from 10-20 m
to 20—-40 km. The 40-km (2'? point) limit is set simply
so that each dataset contributes at least one datum at
each scale; effectively, we are using 15 nonoverlapping
sections of LWC data in this ensemble average.

We can better define the lower (1) and upper (R)
limits of the scaling range with the help of the (second
order) structure function, namely;

D(r) =([o(x + 1) — ¢(x)]?), 4)

where the average is taken over space (x) and realiza-
tions (), in other words, the variance of the ‘‘incre-
ment’” p(x + r) — p(x). In theory, there is no new
statistical information in D(r), since it is in a Fourier-
type duality with E(k) (Weiner—Khinchine theorem).
It can be shown that in the scaling range, n < r < R,
we have

a. The FIRE database: Comparison with structure D(r) = r*¥, (52)
function analysis with
Having focused on the striking differences between B -1

the various LWC time series and their 3, we now ex- H= > (1<pg<3) (5b)

amine their average properties. The first five rows in
Table 2 summarize our results for 4 using the King
datasets and a variety of regression and/or noise re-
duction techniques described and compared in appen-
dix A. The entries in the last row are § values obtained
by applying the same techniques to the ensemble-av-
erage spectrum, that is, the lower curve in Fig. 7a
(which is not equivalent to averaging the individual
exponents). This figure shows the average FIRE 87
spectrum for all King data in the standard representa-

and another relation between the prefactors (e.g.,
Monin and Yaglom 1975). The exponent H cannot ex-
ceed 1, which translates (almost everywhere) differ-
entiability in Eqgs. (4) and (5a), nor become negative,
since H = 0 expresses (almost everywhere) disconti-
nuity—hence stationarity according to the classifica-
tion presented in appendix B. In practice, however,
D(r) has advantages over E(k): (i) it enables scale by
scale analysis to go down to the pixel size r = [ (5 m

TABLE 2. Spectral exponents for FIRE 87 King LWC datasets, using different noise reduction and regression methods. The first estimate
of B is obtained by dividing the N, points (see Table 1) into N, = 2 subsets, computing their average spectrum, and using straightforward
linear regression after taking logs in the scaling range. The next column is the result of computing spectra for N, = 512 points at a time and
averaging them over the number N; = [N,,/N,] of different realizations, as indicated in brackets. The last trio of columns use Eqgs. (A3a) and
(A3b) to obtain E(k) at [log,N,,] — 1 different scales (k values) at roughly logarithmic intervals; those that fall in the scaling regime are used
in a linear least squares regression. First, no weights are used (equivalently, oi,gz = const.); then the sum of squares is weighted by 1/oh,z,
as deduced from Eq. (A4a); finally, the dispersion in logk is also accounted for, according to Eq. (A4b). Entries in the last row correspond
to the same methods but applied to the estimate of E(k) using all the datasets, properly registered in k and weighted by the number of points
used in computing each spectrum (namely, N, from Table 1).

B (method 2)
Date Time B (N,)
(1987) (UTC) No variance reduction Method 1 No errors Errors in E Errors in k
30 June 2241 1.58 1.62 (56) 1.39 = 0.03 1.38 = 0.09 1.40 = 0.03
2 July 0223 1.55 1.58 (32) 1.19 £ 0.04 1.10 = 0.06 1.08 = 0.07
14 July 2309 1.63 1.64 (128) 1.68 = 0.04 1.67 + 0.08 1.68 = 0.04
16 July 1717 1.69 1.72 (16) 1.47 = 0.05 1.50 = 0.05 1.45 = 0.08
16 July 1819 1.48 1.45 (23) 1.53 = 0.04 1.49 = 0.06 1.53 = 0.08
Ensemble average 1.6 1.6 (255) 1.37 = 0.03 1.38 = 0.03 1.36 = 0.06
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FiG. 7. Ensemble-average statistical properties for LWC in marine Sc
for FIRE and ASTEX. (a) Energy spectra. The left axis and bottom curve
refer to all five FIRE 87 spectra E(k), weighted by their overall lengths
L, determined from Table 1 and averaged prior to regression. Both the
standard method (dust) and octave binning (boid dots) were used for
wavenumbers sampled by all of the flights, even the shortest. The right
axis and upper curve refer to five ASTEX datasets, described and ana-
lyzed by Davis et al. (1994a). The scale relevant to each wavenumber (r
= 1/k) is indicated on the top axis. (b) Second-order structure functions:
(bottom) FIRE 87; (upper) ASTEX. We have preliminary evidence for
the anticipated scale break at the integral correlation scale: ~20 km for
FIRE 87 and ~60 km for ASTEX.

here), as opposed to the inverse Nyquist frequency 21,
and (ii) it spans a smaller range of values, due to the
smaller numerical values of the exponent H with re-
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spect to S in Eq. (5b). Thus, D(r) provides a better
baseline for the scaling and is less forgiving with de-
viations from power-law behavior, hence more sensi-
tive to scale breaks. [The disadvantage of D(r) be-
comes apparent in higher dimensions; being essentially
a convolution product, it is impractical to compute it in
physical space.]

The results for D(r) presented in log—log axes in
Fig. 7b support n = 41 = 20 m for the lower end of the
scaling range. At the upper end, transition to a flat
structure function is observed at 20—40 km. This is to
be expected at the integral scale, R, of a process; to a
first approximation, the data is correlated at scales r
< R and uncorrelated beyond, hence the scale-inde-
pendent increments (cf. appendix B for an example).
So the structure functions in Fig. 7b support R ~ 20
km for this database. Between these two limits, we find
a slope of 2H = 0.37 #+ 0.02, which is compatible with
B — 1 as expected from Eq. (5b); this would not be
the case if we relied only on the noise reduction and
regression techniques dominated by large k values
(leading to § =~ 1.6, cf. appendix A).

At any rate, the interval [7n, R] includes both the
cloud (200—400 m) and boundary layer thicknesses
(=<1 km), which roughly coincides with the altitude of
the relatively well-defined cloud top in the case of ma-
rine Sc. Both these scales control thermo- and hydro-
dynamical processes unfolding largely in the vertical,
apparently, they do not directly affect the mechanisms
that distribute LWC horizontally in these highly strat-
ified systems. Neither is there any evidence of a scale
break around 200 m in the LWC, as is observed in
Landsat radiance fields emerging from marine Sc (Ca-
halan and Snider 1989; Lovejoy et al. 1993); this de-
coupling of the cloud’s apparent and inherent structures
is explained by Davis et al. (1996, submitted to J. Az-
mos. Sci.) in purely radiative terms.

b. A comparison with ASTEX data and Kolmogorov
scaling

For comparison, Fig. 7a reproduces Davis et al.’s
(1994a) E(k) for transects of LWC obtained inside
marine Sc during ASTEX with a PYM-100 probe (Ger-
ber et al. 1994 ), their spectral data being extended here
to twice larger scales. Five datasets were used, all 2%
= 16 384 points long, sampled at 10 Hz with aircraft
speed ~80 m s ' (overall length L ~ 130 km and res-
olution / =~ 8 m). The spectral exponent (for octave
bins) is Bastex = 1.43 = 0.8, not far from Bgge; the
observed scaling range, however, is clearly shifted. The
(second order) structure function results of Davis et al.
are reproduced also, in Fig. 7b showing  ~ 60 m as
the beginning of the scaling range and preliminary ev-
idence that the integral scale Rjstex =~ 60 km. The
structure function exponent 2H is 0.48 # 0.02 for AS-
TEX, again in numerical agreement with 8 in Eq. (5b).

For ASTEX more than for FIRE 87 spectral data, we
see evidence of a steeper spectrum at scales smaller
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than n =~ 60 m and a hint of white noise contamination,
probably of instrumental origin, at the very smallest
scales ~2[. In contrast with the J-W hot-wire probe
(cf. section 4), the steeper spectrum is not due to an
artificial smoothing caused by an oversampling of the
output of an instrument too slow to respond to natural
variability; indeed, the PYM-100 probe can take data
at 2 kHz (~5 cm resolution) without oversampling.
We suspect that the presence of a few large jumps in
the LWC record at scales < 7, a natural consequence
of intermittency, causes a smooth transition toward
scaling in k2.

For two processes with E(k) « k~” having similar
exponents and prefactors (intercepts on log E axis) but
different scaling ranges, the one with the largest
scales—ASTEX in this case—will have the larger
variability. Judging by the variance levels at r = 1 km
(k= 1km™") in Figs. 7a and 7b, we see that ASTEX
fluctuations are more intense than those of FIRE 87 at
this scale by a factor of ~2* in energy and ~22 in
amplitude. This ratio would lead to negative LWC val-
ues if the mean were not boosted proportionately, and,
indeed, LWC values >1 g m~> were not rare in ASTEX
clouds (Davis et al. 1994a). These differences are
probably due to the boundary layer being at least twice
as deep in ASTEX as during FIRE 87, but there may
be other causes as well. .

In short, we can think of marine Sc in ASTEX as a
scaled-up version of those observed during FIRE 87.
This scaling-up considerably affects the range of scales
involved, the levels of LWC, and its overall variance
but not so much the exponents 8 and H. This argues
for a degree of universality in the complex coupled
thermodynamical and hydrodynamical mechanisms
that determine the internal structure of marine Sc. The
similarity in scaling properties means that the cloud
size, mean LWC, and its overall variance depend
strongly on the local climatological conditions, and on
the way in which the LWC is distributed inside the
clouds only weakly.

Finally, we conclude from an examination of our 8
values that LWC in marine Sc do not, in general, follow
a (Kolmogorov 1941) “‘—5/3"" law, as predicted for
velocity by the (down-scale energy) cascade phenom-
enology in fully developed, homogeneous and isotropic
3D turbulence and generalized to the density fluctua-
tions for a passive admixture (Obukhov 1949; Corrsin
1951). A 5/3 exponent is also obtained for (up-scale
enstrophy) cascades in 2D turbulence (Kraichnan
1967). However, 5/3 is not within even the most gen-
erous error bars on any of our estimates of 5 in Table
2, except for the relatively smooth 14 July case.

7. Stationarity and continuity in LWC fields

It is easy to see why there must be an upper bound
R to the scaling range for any physical process with
E(k) < k™ and B > 1. Such processes have finite
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‘‘energy’’ (variance) in any wavenumber interval
[kmin, ), but as kn, — 0, we get arbitrarily large
amounts of energy cumulating in the large scales. This
so-called infrared catastrophe is avoided by a transition
to E(k) ~ constant for k < 1/R, where R is integral

“scale. If furthermore the variable is, like LWC, non-

negative, then the amplitude (xvE(k)) of its fluctua-
tions must level off at the scale for which it reaches the
mean; otherwise, negative values will occur. This is
precisely what we observed in some individual LWC
spectra (Fig. 6b) and in the ensemble-average structure
functions (Fig. 7b).

In appendix B, we relate the scaling of the energy
spectrum to important properties: stationarity (statisti-
cal invariance under translation) and stochastic conti-
nuity (neighboring data points likely to have close val-
ues), noting that both are tangible descriptions of vari-
ability, being defined in physical, rather than in Fourier,
space. Both stationarity and scaling are essentially sym-
metries possessed by some datasets and not by others.
When asking about scaling, we compare the properties
of small and large portions of data (e.g., in the product
@(x + r)p(x), we change the scale parameter r); for
stationarity, we compare different parts of equal size
(e.g., in p(x + r)p(x), we change the position param-
eter x). Stationarity is critically important because it is
a prerequisite for obtaining meaningful spatial statis-
tics. Stochastic continuity is an issue of correlation be-
tween neighboring points; if, for a small separation r,
p(x + r) and ¢(x) are highly correlated, then the in-
crement |p(x + r) — ¢(x)| is generally small, and the
data is stochastically continuous; if the same increment
is generally large, then the data is discontinuous.

The arguments presented in appendix B tell us that
atmospheric processes with 8 << 1 can be classified as
stationary and discontinuous whereas those with 8 > 1
are nonstationary per se but have continuity; if 8 < 3,
the increments p(x + r) — p(x) are stationary. The
integral scale R that separates scales where § ~ 0 from
those where 8 = 1.5 (for LWC) thus defines the thresh-
old between large-scale stationary and small-scale non-
stationary regimes. In terms of continuity, LWC values
are highly correlated at scales <€ R and essentially un-
correlated at scales > R.

Figures 8a and 8b illustrate the effect of long-range
correlations in LWC, up to R =~ 20-40 km, on the
running estimates of the mean m,(r, x) and standard
deviation o,(r, x) in Egs. (3a) and (3b). Panel a shows
my(r, x) versus r for 15 nonoverlapping intervals, each
2" points (41 km) long in our database (41 km is the
length of the shortest dataset). To a first approximation,
the running means are unstable for 0 < r < 20 km and
tend to level off for 20 km < r < 40 km, albeit at
different levels between (LWC) + o wc (except for
one). Figure 8b shows the 15 independent estimates of
o,(r, x) versus r, in log—log axes. In most, but not all
cases, 0,(r, x) tends to increase with r, often by jumps.
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FiG. 8. Gaussian statistics of LWC as a function of scale » and
realization, revisited. (a) As in Fig. 5a but for independent running
means m,(r, x), that is, taken from different datasets and/or starting
at positions x separated by the maximal r value, 2'* points (~41 km).
The effect of correlations on m,(r, x) does not subside until r exceeds
at least 20 km. The ensemble-mean (LWC) and standard deviation,
*oLwe, are also indicated. (b) As in (a) but for running standard
deviations o,(r, x) in log-log axes. The x, ¢ average of the o,(r,
x)’s, excluding the fifth portion of the 14 July flight (dotted line) that
contains the glitch in Figs. 3c and 2a follows the anticipated scaling
in r* (where 2H = 8 — 1 = 0.36 % 0.03) at least up to r ~ 20 km.

The most dramatic jump occurs for the anomalous 14
July (7/14) case; as r increases, 04,14 (7, 4 X 2'3]) goes
from the minimum in the group of 15 to the maximum
value. Even excluding this realization, there is consid-
erable case to case variability and more so at small
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values of r than large. The root-mean-square (rms) en-
semble average of the 14 remaining cases has been
overlaid in Fig. 8b. The rms o,(r, x) is well approxi-
mated empirically by a power law in  with an exponent
~ 0.175 for r less than 20 km. This is not surprising
since scaling arguments tell us that rms o ,(r, x) should
go as the square root of the second-order structure func-
tion in Eq. (5a); hence, r¥ ~ r®8,

With £ ranging from ~1.2 to ~ 1.7 for octave-binned
E(k), the LWC fields ¢;(i = 0, - -, N), partially il-
lustrated in Figs. 3a—e, are nonstationary per se, and
the problems evoked in connection with Figs. 5a and
5b and 8a and 8b follow. However, we can focus on
the stationary features of this data: either increments y;
— @i (r>0,i=r, -, N)or the gradient field ¢;
— @iy (i = 1, ---, N). For these gradient fields
(8 — B — 2), we would find spectral exponents in the
(stationary) range: [1.2, 1.7] = [-0.8, —0.3]. Figure
9a shows ¢; taken from the second 2'* point section of
the 30 June LWC dataset (the first section of which is
shown in Fig. 1a); Fig. 9b shows the corresponding
absolute gradient field ¢; = |p; — ;i3] =1, ++ -,
N). Figure 10 shows E(k) for the five LWC absolute
gradient fields. Because the absolute value operation
suppresses high frequencies, the spectral exponents oc-
cupy a narrower positive range [0.5, 0.8], and the en-
semble-average spectrum yields § = 0.7. Since these
spectral exponents are <1, gradient fields are stationary.

This classification conflicts somewhat with the con-

" ventional wisdom about statistical stationarity. The gra-

dient fields have transient behavior (sudden strong de-
viations from the background level) and broad vari-
ability (maximum/minimum ratios =~ 100 for datasets
only a few thousand pixel point long); both of these
characteristics are commonly viewed as symptoms of
nonstationarity. However, scale invariance implies dis-
continuity in stationary regimes and a priori allows for
arbitrarily large jumps. Implicit in using only first- and
second-order statistics is a (generally unjustified)
Gaussian assumption, which implies that strong devi-
ations are very unlikely.

8. Summary and discussion
a. Scale invariance of LWC distributions

Using aircraft data obtained during FIRE 87, we
have established that horizontal transects through LWC
fields in marine Sc exhibit power-law spectra, E(k)
x k™2, over scales from 20 m to at least 20 km. This
is one of many possible signatures of statistical scale
invariance. We find 8 = 1.36 + 0.06 for the average
over five datasets collected with the King probe and a
considerable range, 1.1-1.7, going from case to case
(Table 2). Two other LWC instruments were used, an
FSSP and a Johnson—Williams probe, but their outputs
show major deviations from scale invariance as a con-
sequence of well-documented instrumental shortcom-
ings, compare section 4.
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FiG. 9. More FIRE 87 LWC data and the associated small-scale
absolute gradient field. (a) Second 41-km long segment of the 30
June LWC data, an example of a nonstationary data stream with
intermittent bursts of activity. (b) Next-neighbor absolute differences
of the data in (a), normalized to unity, an example of a stationary but
highly intermittent data stream.

It may seem surprising that a collection of LWC tran-
sects as visually disparate as those of FIRE 87 (Figs.
3a—e and Table 1) and/or ASTEX (figures in Davis et
al. 1994a) can yield, as a whole, such simple spectra
as the two in Fig. 7. This figure is nonetheless a robust
statement about the statistical scale invariance of LWC
fluctuations in marine Sc. In conjunction with infor-
mation about stratification, both the ensemble-average
scaling and its flight to flight variability strongly con-
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strain future modeling of internal marine Sc structure,
both dynamic and stochastic. An important application
of the latter type is to provide input into 3D radiative
transfer code (e.g., Cahalan et al. 1994a,b).

Another surprise is that within the scaling range
there are two scales widely believed to be important in
the vertical structure of marine Sc decks: the cloud
thickness (200—400 m) and the boundary layer thick-
ness (<1 km). We find neither is a scale break in LWC
fluctuations at ~200 m where Cahalan and Snider
(1989) and others found one in Landsat radiance fields
from marine Sc scenes captured during FIRE 87, going
from a § ~ 5/3 scaling to a steeper trend (smoother
behavior) at smaller scales; for more details, see Davis
et al. (1996, submitted to J. Atmos. Sci.).

The spectral properties of large unbroken ASTEX
clouds are both similar to and different from those of
FIRE 87. The spectral exponent § = 1.43 + 0.08 is not
far from that in FIRE 87, and the scaling range also
spans three orders of magnitude; this argues for a de-
gree of universality in the processes that shape marine
Sc under different climatological conditions. However,
the scaling range is shifted upward by a factor of ~3
(from 60 m to over 60 km), and LWC means and fluc-
tuations are shifted upward by a similar factor. Both
shifts are probably due to the more vigorous dynamics
in the ASTEX boundary layer, which was at least twice
as thick as that in FIRE 87.

b. Nonstationarity

In data analysis, our need for stationary quantities is
so fundamental that stationarity is usually taken for
granted. This is however a dangerous practice. Many
commonly used statistical procedures produce at best
ambiguous and at worst meaningless results for nonsta-
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Fic. 10. Individual and average energy spectra for absolute gra-
dients in LWC for FIRE 87. As in Figs. 6b and 7a but for the absolute
next-neighbor difference fields, as in Figs. 9b but for all the data.
This illustrates stationarity (with intermittency) in scale-invariant
data: E(k) ~ k~° with 8 < 1 (in the range 0.5-0.8 in this case).
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tionary data. For instance, we have shown how, in LWC
datasets shorter than 20-40 km, means and variances
have little if any meaning, because at these scales the
data are nonstationary. By combining scaling concepts
and spectral analysis, we can classify atmospheric data
as stationary or not and, more importantly, determine
the range of scales where these attributes apply.

There are two broad categories of stochastic pro-
cesses and/or datasets ¢(x) with E(k) x k™%: 8 < 1,
which is stationary with stochastic discontinuity, hence
relatively short range correlations, and 8 > 1, which is
nonstationary per se but stochastically continuous,
hence long-range correlations. This simple way of as-
sessing the stationarity of a time series has been pre-
viously overlooked in favor of more complex proce-
dures in physical space that generally focus on some
specific scales and are therefore somewhat ad hoc.

We note that nonstationarity is ubiquitous but not a
difficult situation to handle. In many cases (including
LWC), we have 1 < § < 3; then increments (over
distances falling within the scaling range) are station-
ary and only these should be the focus of averaging
procedures in physical space. We can have both sta-
tionary and nonstationary behavior in a single dataset
but necessarily within different scaling ranges, gener-
ally large-scale stationarity and small-scale nonstation-
arity with a transition at the integral scale, which we
tentatively set at ~20 km for FIRE 87 and ~60 km for
ASTEX.

¢. Need for analyses beyond energy spectra

It is important to not overemphasize one particular
statistic. In the case of spectral analysis, we have un-
derscored its usefulness in distinguishing and measur-
ing stationary and nonstationary scale-invariant re-
gimes. However, we must bear in mind that very dif-
ferent looking random processes can have similar
E(k). For instance, Gaussian white noises and ran-
domly positioned Dirac é functions both have fiat (8
= 0) spectra; their integrals, Brownian motion and ran-
domly positioned Heaviside steps, both have scaling
spectra with 8 = 2; LWC fluctuations have negatively
skewed pdf’s, while Mandelbrot’s (1977) fractional
Brownian motions are symmetric, yet its spectrum can
be made identical to LWC’s. This inherent ambiguity
of spectral analysis can be resolved only by using more
general approaches such as those described by Davis
et al. (1994a,b) and in the sequel of this study.

Our main motivation for performing statistical anal-
yses of LWC is to constrain new and improved sto-
chastic models of cloud structure, which can, in turn,
be used to simulate cloud radiative transfer. For this
application, the longest possible datasets with the wid-
est possible range of scales is needed. At the smallest
scales, Baker (1992) has found much stronger vari-
ability in droplet concentration at centimeter to meter
scales than anyone previously suspected. If this vari-

DAVIS ET AL.

1551

ability is strong enough, it could modify the exponen-
tial extinction law that underlies all of current radiative
transfer theory (Davis 1992). At the largest scales, we
have seen that we cannot trust even the simplest statis-
tics, like running means, unless taken over at least an
integral scale, which means, at a bare minimum, ~20
km for marine Sc off California and ~60 km for marine
Sc around the Azores. Thus, we need liquid water data-
sets at least ~100-km long, with resolution down to
meters or even centimeters, to properly inform cloud
radiative transfer modeling. So far, we have barely
scratched the surface in acquiring and analyzing such
datasets, and we are far from having any good clima-
tology of liquid water in clouds.
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APPENDIX A

Spectral Noise Reduction and
Exponent Determination

We address here the problem of reducing the statis-
tical noise in FFT-based estimators of E(k) and the
related issue of using regressions to determine the ex-
ponent 3 in E(k) ~ 1/k*,

a. Discrete Fourier transform and spectral
estimation

In a realistic data analysis situation, we generally
have only a small number of realizations or experi-
ments with a finite spatial sampling, assumed uniform:

px), x; =id(i=1,,Na), (Ala)

where N, = L/[ is the total number of points, L the
spatial length of record, and ! the step size. For our
LWC data, we have entered N,,, and L in Table 1, ]
being approximately 5 m (sampling rate 20 Hz and
aircraft velocity ~ 100 m s™'). The discrete Fourier
transform of the data in Eq. (Ala) is denoted by

&(tkj), ikj=—g <j=0’...,&>, (Alb)

2

where N, = 2Ul°s2Mad g the Jargest integer power of two
less than N, ([ -] designates integer part) and L, = N,l.
The associated energy density is
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“2ou (ie1 - el
E(kj)—lqiso(kj)l <J—1» 3 1), (A2)

since o(—k;)) = p(k;)* for real data in Eq. (1). Note
that we are not concerned with E(k;) at the Nyquist
frequency (at j = N,/2) nor the origin component (at
J = 0) in the following.

Ensemble averages call for special care. The natural
unit for x in Eq. (Ala)is Ax = [, whereas its counterpart
for k in Eq. (Alb) is Ak = 1/L,. In our case, the real-
izations have different L,’s and equal sampling scale /,
but different [’s can also occur. In all cases, we must
adopt common units for the wavenumber sequences
when comparing and averaging spectra. (We took Ak
= 1/L; yax Where Ly 0 = 2'°1 =~ 328 km for the 14 July
data.) Then, as required implicitly by Eq. (1), we cu-
mulate E(k)L, < E(k)N, in bins of width Ak.

We now compare different methods of estimating
E(k) from a single dataset and discuss their advantages
and disadvantages.

b. Statistical noise reduction

When dealing with a single dataset with N, points
rather than an ensemble, we simply drop the angle
brackets in Eq. (1) and assume this will give us a rea-
sonable estimate of the spectrum. The standard devia-
tion of this single-run estimate of E(k) is however
equal to its mean (Press et al. 1993). This large statis-
tical noise can be reduced by subdividing the dataset
into a number N, = N,/ N, of subsets of N, points each;
each chunk of data is viewed as a different realization.
Then the spectrum for each subset is computed, and the
results are averaged over the N, subsets with empirical
variances associated to each E(k) (noise reduction
method 1). The cost of this noise reducing procedure
is loss of information at the large scales (low wave-
numbers): k£ now goes from kp, = N/L to kpoy = 1/
(20). To implement this method, we used Press et al.’s
routine SPCTRM, which allows for N, = 2.

In the above estimation of E(k), not only is some
large-scale information lost in favor of noise reduction,
but a least squares fit to the power-law form in Eq. (2)
on a logE versus logk plot will be dominated by the
smallest of the remaining scales (largest wavenum-
bers). The contribution of large scales to the exponent
[ becomes virtually nil. To make all scales contribute
equally, we propose to average E(k) by octaves, that
is, factors of 2 in k (noise reduction method 2). Tem-
porarily adopting units where L, = 1 in Egs. (A1b) and
(A2), we create a sequence of wavenumber bins of

increasing size 2™ (m = 0, , [logoNi] — 2) and
compute an energy estimate for each bin:
-— 1 am+l_q
E.== Y Ek), (A3a)
2" om
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corresponding to average wavenumbers,

1 1
o X k= —2 -5

j=2m

_ 2m+l_y
k, = (A3b)
which are equally spaced on a log scale only in the
limit m > 1. We thus obtain exactly [log,N,} — 1
estimates for E(k). Clearly, the small-scale (large m)
estimates will be more reliable than their large-scale
(small m) counterparts, which suffer from small num-
ber statistics. However, this is a fundamental limitation
of data analysis, remedied only by acquiring a longer
dataset and/or more datasets of the same length. Noise
reduction methods 1 (subdivision) and 2 (octave bin-
ning) can of course be combined, leading to [log,N,]
— 1 improved estimates of E(k).
For future needs, we also compute the variances

E(k])z, m=0
1 1 2m+l 1 _
var[E], = { ——— > E(k)*-E,|,
1-2= jeam
m>0 (Ada)
and
am+l_ 22m_1 _ 1
var[k],, = — Z k2 k= (A4b)
joam 12

from which we deduce standard deviations o and o,
and their counterparts for logE and logk.

c. Exponent estimation

We now wish to estimate J in Eq. (2) and determine
the range of scales over which the power law applies,
the scaling range, which need not encompass all the
observed scales (/ to L). Numerous methods for finding
exponents have been described in connection with
many different types of scaling statistics. Transposed
into our notations, the most popular methods are

* plotting E(k)k” versus k for a number of ‘‘test’’
values of 3, seeking the one that remains the most con-
stant in the scaling range;

¢ plotting A logE(k)/(— A logk), a “‘local’’ value
of B, versus k and estimating [ as its mean over the
scaling range;

¢ anonlinear least squares regression to fit the E(k)
data with the two parameters in Ak ~%; or

* a linear regression of logE(k) in A — B logk.

This last procedure is the easiest to implement and au-
tomate and therefore the most used. However, using a
linear regression in the logs introduces, in principle, a
bias, but latter we show this bias is negligible when the
scaling is good (lines in the log—log plots are straight).

In the restricted framework of linear regression
methods alone, there are still different strategies: k-de-
pendent variances can be optionally assigned to either
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the log E(k) axis only or to both axes, compare Egs.
(A4a) and (A4b). In the former case, we can use any
program that computes the coefficients A and B that
minimize the weighted sum of n squares, x*(A, B)
=21 (A + Bx; — y;)*/0};, for instance, Press et al.’s
(1993) routine FIT. In the latter case, we use their rou-
tine FITEXY that minimizes 2} (A + Bx; — y;)*/(0%
+ B?¢%). FIT and FITEXY return estimates of the
uncertainties in A (the prefactor) and B (the exponent,
—[); the latter are used below whenever we write 8

+ 56.

d. Method comparisons

Various estimations of E(k) described in appendix
A(b) are illustrated with the King 2 July data, one of
the most complex cases (2'* = 16 384 points long,
half of which are graphed in Fig. 3b), keeping the
regression method constant. For simplicity, we use an
unweighted linear least squares fit in logs, the kind of
regression that is done by typical plotting applications
for desktop computers. Figure Al, a plot of logE (k)
versus logk, shows how similar exponents 8 ~ 1.56
for both no noise reduction and method 1 (N, = 32
subdividing) are. The regression lines are controlled
mainly by the small-scale (large k) points due to their
large density on the logarithmic axis, traceable to the
linear discretization of k space. These slopes are hard
to distinguish visually from 5/3 (the lowest line). In
contrast, method 2 (octave binning) yields a noticeably
smaller slope ~ 1.19 with a better fit over the full range
of scales. _

In Fig. A2, we show only logF,, versus logk,, (m = 0,

20 —————————

10 |
= l
luN 0_
o )
° r
-10 [
.20 L~

0 5 10

l°g2(kL7i14)

FIG. Al. Energy spectra for LWC in marine Sc, using different
estimators for the 2 July 1987 King robe data. In these FFT-based
computations, Press et al.’s (1993) subroutine SPCTRM is invoked
for wavenumbers ranging from ky, = N,/L,, with N, = 2, to the
Nyquist frequency, namely, kyax = 1/(20). From bottom to top: k™7,
for reference; followed by the standard method (averaging over N,
= Nio/N, subsets, N, = 2'%), with N, = 2 (kmin = 2/L,) first, then N,
= 32 (knin = 2°/L,) for better variance reduction; followed by the 12
octave-wide bins needed to accommodate the former case. Vertical
displacement is used for clarity in this log—log plot.
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Fic. A2. Different regression methods for E(k) vs k illustrated with
2 July 1987 LWC King data. The 13 data points correspond to the
octave-wide wavenumber bins for the 2 July time series. Four dif-
ferent regressions are performed on this spectral data. The nonlinear
regression of E(k) to Ak is indicated in bold, yielding 8 = 1.12
+ 0.07. The three others are linear regressions of logE(k) to A —
logk: without any error bars (8 = 1.19 = 0.04), with error bars in E
only (8 = 1.10 % 0.06), and with error bars in both E and k (8 = 1.08
+0.07).

5
l°gz( I(L7/14

-+, 12) from Eqgs. (A3a) and (A3b) for the same data-
set, with error bars deduced from Eqs. (Ada) and
(A4b). The four regression lines correspond to three
linear regressions and a nonlinear one. Nonlinear re-
gression of E,, to Ak,,” yields 8 = 1.12 = 0.07, when
okm is obtained empirically from Eq. (A4a), whereas,
using a priori estimates og,, = E,,, we find 8 = 1.18
*+ 0.09 (not indicated in the figure). Turning to linear
regressions, we find § = 1.19 * 0.04 in the simplest
case (hold 0y, constant and neglect oiem), SO
the bias in B due to using logs is small. Using Egs.
(A3a) and (A4a) to obtain oieee » and neglecting oop
yields 1.10 = 0.06. Finally, accounting for the depen-
dence of oy, On m in Eq. (A4b) leads to 8 = 1.08
+ 0.07.

e. Summary

Using a single dataset, we obtain values of 3 ranging
from almost 1.6 for the most simplistic fitting technique
and the most standard representation of E(k) to 1.2 for
octave-binned E (k) and to 1.1 when using furthermore
either a nonlinear regression or a sophisticated linear
one. Results for all five King datasets are presented in
Table 2, showing that the 2 July case used here has the
largest exponent discrepancies and uncertainties. We
conclude that (i) octave binning is a reasonable reso-
lution of the dilemma between spectral noise reduction
and loss of large-scale information and (ii) for expo-
nent determination, straightforward linear regression in
log—log axes is sufficient, at least for our applications.
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APPENDIX B

Statistical Stationarity and Stochastic Continuity
in Scale-Invariant Data

We explore here the consequences in physical space
of scaling in Fourier space. Explicitly, we discuss sta-
tistical stationarity and stochastic continuity, and their
relation to each other and to spectral properties in the
framework of scale invariance. The key issue of sta-
tionarity is widely ignored in analyzing atmospheric
data, but it is perilous to do so. Even the simplest sta-
tistical properties (such as variances and autocorrela-
tions) become at best ambiguous and at worst mean-
ingless if the data are nonstationary.

a. Stationarity and continuity: A second-order
statistical perspective

We are interested in the statistically well-defined
properties of a particular realization ¢(x) of some at-
mospheric time series or transect of a field. One of these
is its pdf or one-point distribution, which views p(x)
merely as a sequence of independent random numbers,
their order being irrelevant. However, the values of
@(x) are generally not independent, with one notable
exception: white noise (cf. Fig. B1). To detect the cor-
relations in the data, we must use two-point statistics
at least, the most popular in time series analysis being
the autocorrelation function:

(p(x)p(x + r)) = G(r,x) = G(r) (Bl)

in situations where (@(x)) = 0. The identity in Eq.
(B1) applies only for ‘‘stationary’’ processes. The gen-
eral, so-called narrow sense, definition of stationarity
is statistical invariance under x translation of all n-point
statistics; the so-called broad sense definition uses only
(p(x)(x + r)) and is sufficient for our present pur-
poses.

Another property of interest is ‘‘stochastic continu-
ity,”” meaning that (e.g., Papoulis 1965)

([p(x+ 1) = @(x)]*) =0 as |[r] 0.

If stationarity prevails, then

(B2)

9,(x)

Fic. B1. White noise: an example of statistical scale invariance
with stationarity and discontinuity. A total of 4096 uncorrelated ran-
dom numbers drawn from a Gaussian distribution with zero mean;
viewed as a time-series, the spectral exponent is 8 = 0.
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FiG. B2. Brownian motion: an example of statistical scale invari-
ance with nonstationarity and continuity. Integral of the data in Fig.
B1; the spectral exponent is now § = 2. In sharp contrast with the
white noise in Fig. B1, zero crossing is a rare occurrence; the set
{x > 0, p(x) = 0} is very sparse, its fractal dimension being only
1/2 (Falconer 1990). This illustrates how infrequently nonstationary
processes take on typical (i.e., most probable) values due to their
propensity to slowly wander off to *c.

([p(x + 1) — @(0)]%) = 2[G(0) = G(n)], (B3)

s0 (x) is stochastically continuous if G(r) is contin-
uous at r = 0. We illustrate (non)stationarity and
(dis)continuity with three examples.

1) White noise, a sequence of independent random
numbers, is the simplest stochastic process. It is sta-
tionary and stochastically discontinuous because

G(r) = 6(r). (B4)

It has trivial statistics beyond its one-point pdf; Fig. B1
gives a realization using normally distributed deviates
with zero mean, so its pdf is Gaussian by construction.

2) Brownian motion, the next simplest example, is
just the integral of white noise. The realization illus-
trated in Fig. B2 is the running sum of the data in Fig.
B1, starting at x = 0 with ¢(0) = 0. This assumption
makes the origin a special point. The pdf is again
Gaussian; its one-point variance {p(x)?) is, however,

A‘PR(X)

Fic. B3. Ornstein—Uhlenbeck process: continuous and stationary
but nonscaling. Intervals of length R = L/8, the integral correlation
scale, are clearly indicated; the process exhibits a statistical ‘‘period-
icity’” in the sense that each ‘‘period’’ of length R is uncorrelated
with the others. We have Eg(k) < 1/[1 + (QnkR)*] and Gg(r)
o« exp(— | r|/R), by Fourier duality. The limits R < L and R > L lead
respectively back to the white noise and Brownian motion cases in
Figs. B1 and B2.
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Start with uniform slab,

transfer fraction f1 of the mass,

%JEL‘:;."..” el

*. Jl-d’t-a.-n...e Hl | v

then transfer fraction fz within each half,

and so on...

F1G. B4. Construction of a mass-conserving multiplicative cascade
model. Starting with a homogeneous slab of material, one first trans-
fers a fraction f; of the mass from one half to the other in a randomly
chosen direction. This is equivalent to multiplying the originally uni-
form density field on either side by a factor of 1 * f;. The same
procedure is repeated recursively at smaller scales using fractions f;
(i =2,3, ---)on segments of size r,_; = 15/, If, independent of i,
wetake f; = 1 — 2p (0 < p < 1/2), we have a singular model originally
proposed by Meneveau and Sreenivasan (1987b) for the highly in-
termittent yet stationary dissipation field in turbulence. If p — 0 and
constant fields if p — 1/, § Dirac generalized functions occur. If f;
= (1 — 2p)rf, with 0 < p < 1/, and H > 0, we obtain Cahalan et
al.’s (1994a) bounded cascade models. Marshak et al. (1994) show
that these models are patently nonstationary for scales r <€ ryy
= 27" which acts as an integral scale (cf. Fig. B3) and stationary,
by construction, at larger scales.

proportional to | x|, and the two-point autocorrelation
function

G(x,r)o |x] + |x+7r] —|rl, (B5)

depends explicitly on x as well as r. So Brownian mo-
tion is nonstationary, {(¢(x)) = 0 notwithstanding; at
the same time, it is stochastically continuous since
([¢(x + r) — @(x)]1*) = r, independently of x. Now
compare the two zero-crossing sets: for white noise, it
is space filling (dimension 1); here, it is sparse (fractal
dimension 1/7). This is typical of nonstationary behav-
ior, most probable values are rarely revisited within
finite time, a characteristic that often leads the unwary
to see trends and oscillations where there are none.

3) Ornstein—Uhlenbeck processes are our third and
last example. They also have Gaussian pdf’s and a
nonscaling autocorrelation function

Gr(r) « exp(—|r|/R), (B6)

where R > 0 is the integral scale mentioned in sections
6 and 7. They are stochastically continuous since Egs.
(B3) and (B6) lead to {[wr(x + ) — @r(x)1%)
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= 2GR(0)[1 — exp(—|r|/R)], which goes to zero as
| 7|. Figure B3 shows a realization of pg(x) with length
L = 8R.

Ornstein—Uhlenbeck processes are solutions of the
stochastic ODE

d
ax PR

with a random initial condition (e.g., Arnold 1974).
We have pg(-) = Brownian motion as parameter R —
o and white noise as R —~ 0. In essence, Fig. B3 shows
eight statistically similar but independent portions of
Brownian motion put end to end. If we extract one
point from each of these portions (e.g., the large dots
in Fig. B3), we would again have white noise. Thus,
we have a process that is nonstationary at small scales
but stationary at large ones.

1
+ - <pR(x) = white_noise(x), (B7)

b. Spectral criterion for stationarity in scale-
invariant datasets: [ < 1

For a stationary scale-invariant process, we have a
power law in | r| for the autocorrelation function in Eq.
(Bl):

G(ry e |r|7*, (B8)

The exponent x must be positive, since we expect less
correlation as |r| increases. The singularity at 7 = 0
automatically implies stochastic discontinuity. The
Wiener—Khinchine theorem states that, under station-
ary conditions, G(r) and E(k) form a Fourier trans-
form pair. (However unlike autocorrelation analysis,
spectral analysis is not restricted to statlonary cases,
since a translation in x leads to a phase shift in <p(k)
that leaves E (k) unchanged.) Fourier transform tables
(e.g., Gradshteyn and Ryzhik 1980) tell us that the du-
ality between Eqgs. (2) and (B8) requires

0<fB=1-u<l

@ > 0.

(B9)

for the exponents. This gives us a simple spectral cri-
terion for stationarity (8 < 1) discussed by, among
others, Mandelbrot (1977).

It is important to note that the exponent relationship
Eq. (B9) applies only when ¢(x) has both power-law
properties Egs. (2) and (B8); otherwise, it is meaning-
less. The white noise limit 8 — 0 yields G(r) « §(r),
not & = 1. On the other hand, the 1/f noise limit 5 —
1 does not lead to p = 0, that is, to G(r) = constant
(all points equally correlated); 8 = 1 is borderline be-
tween stationarity and nonstationarity, and g — O just
means that we anticipate very long range correlations,
not only longer than any exponential law as in Eq. (B5)
but longer than any power law in Eq. (B8) that is still
integrable at r = 0 (Davis et al. 1994b).

In summary, datasets with 8 < 1 are more likely
to yield meaningful results for G(r) in Eq. (B1), at
least in the range of scales where Eq. (2) applies.
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FrG. B5. Spectral exponents and examples of the multiplicative cascade model in Fig. B4. (a) In the station-
ary/singular case H = 0, § is determined by p, going from the é-function case at p = 0 with § = 0 to the
weakly variable limit p — 1/27, where 8 — 1. For the (leftmost) inset we have taken p = 0.35, the value that
best reproduces the statistical properties of Meneveau and Sreenivasan’s (1987a) turbulence data. All these H
= ( cases with § =< 1 are almost everywhere discontinuous since p > 0 in Egs. (B8) and (B9). (b) In the
nonstationary/bounded case H > 0, 3 is given in the small-scale limit by min[2H, 1] + 1 (independently of
D), going from the 1/f noise limit (H — 0%) with 8 — 1* to the extreme (H — =) case of a Heaviside step at x
= 0.5, where 8 = 2, due to the single discontinuity. For the (middle and rightmost) insets, we have taken H

= 1f3, the best fit for Cahalan and Snider’s (1989) LWP data, and H =
= 1/ have a finite number of jumps, leading invariably to 8 = 2.

Conversely, we are likely to find either small values
of u in a fit of G(r) to Eq. (B8) in log—log axis or
R not small with respect to the outer scale L when
fitting G(r) to Eq. (B6) in semilog axes for datasets
with 8 > 1. Both results are spurious in the sense of
dependence on the realization and the amount of data
in each one. In the absence of spectral information,
these findings should be viewed as symptoms of non-
stationarity in the data for the corresponding range
of scales.

¢. Related stationary and nonstationary models and
atmospheric fields

We illustrate the (non)stationarity criterion 8 (>)< 1
with synthetic and physical examples:

e Integration (8 — 8 + 2) can be used to transform
stationary processes (| 3| < 1) into nonstationary ones

1.7. All cases with H

(B > 1) with stationary increments (8 < 3), for ex-
ample, white noise (8 = 0) leads to Brownian motion
(B =2).

¢ Conversely, gradients (nearest-neighbor differ-
ences ) of nonstationary processes are generally station-
ary. As an example, we recall that turbulent velocity
signals are nonstationary in the inertial subrange (f
=~ 5/3), whereas the squared velocity gradients are rep-
resentative of the stationary but highly intermittent dis-
sipation field (Meneveau and Sreenivasan 1987a) and
are currently modeled with singular multiplicative cas-
cades such as Meneveau and Sreenivasan’s (1987b)
““p model’’ in Figs. B4 and B5a. These models are
stationary by construction, and we have p = log,[1
+(1 =2p)?1>0,0 < p < 1/, in Eq. (B8), hence,
B < 1 from Eq. (B9).

¢ In section 7, we show that we can treat the liquid
water content data from FIRE 87 in Figs. 3a—e and 9a
like turbulent velocity in this respect: these time series
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are nonstationary, whereas their absolute gradients (cf.
Fig. 9b) are stationary, suggesting that a singular cas-
cade can be used to model the latter field. A p model
with p =~ 0.25 would fit our ensemble-average spec-
trum with g =~ 0.7 in Fig. 10.

¢ Cahalan and Snider (1989) investigate liquid wa-
ter path ( vertically integrated LWC) retrieved from mi-
crowave measurements of marine Sc during FIRE 87
and observe nonstationary (3 ~ 5/3) behavior. Cahalan
et al. (1994a) proposed a simple generalization of the
p model illustrated in Figs. B4 and B5b. The new pa-
rameter H > 0 is used to “‘tame’’ the singularities that
develop as the p-model cascade proceeds to smaller
scales. It is shown to be bounded and nonstationary
rather than stationary: 8 = min { 2H, 1} + 1 > 1 (Mar-
shak et al. 1994).

We must bear in mind that datasets can be at once
stationary at some scales (typically, the larger ones)
and nonstationary at others (typically, the smaller
ones). This however requires a statistically ‘‘ro-
bust’’ scale break, that is, not traceable to a fluke
observed in a single realization. For instance, in
very long wind tunnel turbulent velocity signals,
one finds qualitatively different behavior for scales
larger and smaller than the outer scale of the sys-
tem (in this case, the tunnel diameter): at large
scales, decorrelation is achieved and stationarity
prevails, whereas at small scales long-range corre-
lations and nonstationarity prevail, maintained by
inertial-range dynamical processes. We observe ev-
idence for a similar transition in our LWC data (cf.
Fig. 7b).
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