JUNE 1996

BELL AND KUNDU

1251

A Study of the Sampling Error in Satellite Rainfall Estimates
Using Optimal Averaging of Data and a Stochastic Model

THOMAS L. BELLT AND PrasuN K. KUNDU *
Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, Maryland

(Manuscript received 28 April 1995, in final form 20 September 1995)

ABSTRACT

A method of combining satellite estimates of rainfall into gridded monthly averages suitable for climatological
studies is examined. Weighted averages of the satellite estimates are derived that minimize the mean squared
error of the grid-box averages. A spectral model with nonlocal, scaling, diffusive behavior at small distances,
tuned to tropical Atlantic (GATE) statistics, is developed to study the optimal weighting method. Using it, the
effect of optimal weighting for averaging data similar to what will be provided by the Tropical Rainfall Measuring
Mission (TRMM) satellite is examined. The improvement in the accuracy of the averages is found to be small
except for higher-latitude grid boxes near the edges of the satellite coverage. The averages of data from a
combination of TRMM and a polar orbiting instrument such as SSM/I, however, are substantially improved
using the method. A simple formula for estimating sampling error for each grid box is proposed, requiring only
the local rain rate and a measure of the sample volume provided by the satellite.

1. Introduction

Climate models are unable to represent all of the
physical laws governing the behavior of the atmo-
sphere, oceans, and land surfaces at the level of detail
necessary to describe them exactly. Many physical pro-
cesses must be approximated using simplified, parame-
terized equations. The values of the parameters can
sometimes be determined from the basic physical laws
or estimated from analysis of field experiments, but not
infrequently they must be adjusted based on compari-
sons of the climate model behavior with climatological
statistics. [ See Peixoto and Oort (1992), for example.]

Some of the most important and yet most difficult of
processes to represent involve precipitation. They are
important because much of the heating of the atmo-
sphere occurs through latent heat release accompany-
ing precipitation, but their complexity requires severe
simplifications of the equations used to describe them
in the models. For this reason climate modelers are par-
ticularly interested in comparing the performance of
their models with observed precipitation.

The Tropical Rainfall Measuring Mission (TRMM)
satellite is planned for launch in 1997 as a joint venture
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of the United States and Japan (Simpson et al. 1988)
with the participation of many other countries. Because
it will include the first satellite-borne meteorological
radar, its rainfall estimates are expected to be more ac-
curate than estimates obtained from earlier satellite sys-
tems. Its orbit will enable it to provide coverage from
latitudes 38°S to 38°N.

The problem of converting the satellite observations
into a gridded product convenient for comparison with
climate models is not straightforward because the sat-
ellite views any one grid box only occasionally and, in
general, partially. These fragmentary observations
must somehow be combined into as accurate an esti-
mate of the time-averaged rain rate over the grid box
as is possible.

"A method of doing this will be explored here that is
a step beyond simply adding up the observations and
dividing by their number. It attempts to take advantage
of the spatial and temporal cortelations of rain in order
to extrapolate from observed areas and times into the
unobserved areas and times. The method is closely re-
lated to Kriging (e.g., Cressie 1993) or optimal inter-
polation (e.g., Gandin 1963) adapted to the satellite
estimation problem. Its framework can in principle ac-
commodate the corrections needed when there is a di-
urnal cycle and the problem of combining estimates
from several instruments on one satellite or from sev-
eral satellites. The addition of estimates from geosyn-
chronous satellites is particularly attractive since the
high sampling rate of the geosynchronous satellites re-
duces sampling error considerably (Atlas and Bell
1992; Adler et al. 1993). Geosynchronous satellite es-
timates are, however, in general much less accurate
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than the TRMM estimates are expected to be, and an
optimal strategy for combining the two will require
knowledge of the statistics of the errors of the two sys-
tems.

In the following section the method of combining
the satellite estimates will be developed, allowing for
the possibility of correcting the gridded results for the
presence of a diurnal cycle and for combining estimates
from different instruments or satellites with different
error characteristics. In section 3 some simplifying sta-
tistical assumptions for the study will be described.
Section 4 develops a stochastic model spectrum to rep-
resent the GATE (Global Atmospheric Research Pro-
gram Atlantic Tropical Experiment) covariance statis-
tics. The model is used to study the optimal weighting
approach. Section 5 obtains the parameter values of the
spectral model that fits the GATE data well, and an
empirical fit to the covariance behavior of the model
useful for the numerical calculations. In section 6, the
optimal weighting for gridding TRMM data at various
latitudes is obtained using the GATE statistics. Since
rain statistics vary somewhat from place to place, the
true optimal weights for various locations may differ
from those suggested by the GATE statistics, and so
the results here should be considered as exploratory in
nature. To improve on the weights obtained here, one
will have to use the local statistical properties as they
become available.

The usefulness of optimal weighting methods for
TRMM data is discussed in section 7, and the conse-
quences of neglecting longer-timescale fluctuations in
the data are considered. The impact of adding data from
a second satellite instrument like the polar orbiting
SSM/1 is briefly examined, showing increased effect-
iveness of optimal weighting methods. In section &, a
simple method of estimating sampling error is devel-
oped, and a generalization of the method to estimate
sampling errors easily in areas with different statistics
is proposed. Section 9 offers some concluding remarks.
Two appendices supply some algebraic and numerical
details.

2. Optimal weighting method

The problem posed in this section is to produce a
gridded map of rainfall on a monthly timescale using
satellite observations. If R(x, t) is the rain rate at point
x at time ¢ and A is the area of a particular grid box,
then the monthly averaged rain rate can be written

E—lrﬁlfdkmxn
—T()AA s b )

where T = 1 month. In the examples studied here the
size of the grid box will be taken to be of order 500
km on a side. Note that the rain volume (per unit area)
that falls in the month is just RT.

During the course of one month, the grid box A will
be visited by satellites at times #;, i = 1,---, n. The

(2.1)
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TRMM microwave instrument (TMI), for example,
will see grid boxes centered at 0° and at 30° latitudes,
with a pattern of observing times like those shown in
Fig. 1, assuming a 760-km swath width for the instru-
ment and a circular orbit at 350-km altitude and 35°
inclination and using an approximate orbital calculation
suggested by Brooks (1977). [ A description of the or-
bital approximation may also be found in Shin and
North (1988).] Grid boxes near the equator are visited
at fairly regularly spaced intervals, whereas grid boxes
at 30° are seen four or five times in a row at intervals
of about 1.5 h, followed by an 18-h gap.

The swath of the TMI generally covers only part of
the area A, as in Fig. 2, for example. Denote by A; the
area of the portion of the box observed by the satellite
instrument at time ¢;. Figure 3 shows the histogram of
the fractions A;/A for a box at 30° seen by the TMI
during one month. Partial observations are common.
Geosynchronous satellites, in contrast, can supply ob-
servations of a grid box every half hour over its entire
area—but with much less accuracy.

Denote by R; the true area-averaged rain rate over
the observed portion of the grid box; that is,

1
R, = —f d’XR(X,1;). (2.2)
A; Vg,

Estimates R; of this average will be generated from the
satellite measurements, with unpredictable random er-
rors ¢; expressed as

R =R +¢. (2.3)

It will be assumed that the estimates have been cor-
rected for biases, so that

() =0. (2.4)

Here the angular brackets indicate the expected value
over the climatological distribution of occurrences of
rain in the area of the grid box and also over the dis-
tribution of instrument noise. The distribution of errors
¢; may depend on the fraction of the area observed and
the time ¢, (if, for instance, there is a diurnal cycle); it
could depend on how much and what types of rain are
occurring at the time (e.g., stratiform, convective, etc.);
it could also depend on the estimation method and the
satellite used.

A method of combining the estimates R; to produce
the best possible estimate of R [Eq. (2.1)] is needed.
It is proposed here to estimate R with a linear combi-
nation of the individual estimates R;, that is, with

Wiléi > (2.5)

=1
1l
S [m=
I

[

i=1

where the weights w; are chosen to optimize the esti-
mate R and the factor 1/n has been introduced so that
the weights w; are of order 1 in size. The weights are
constrained to produce an unbiased estimate, so that
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FIG. 1. Visiting times during one month of 512 km X 512 km box
centered at latitudes (a) 0° and (b) 30° for TRMM microwave instru-
ment swath width 760 km. Satellite in 350-km altitude circular orbit
with 35° inclination.
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FIG. 2. Example of partial overlap of TMI swath with box A. Box
dimensions are 512 km X 512 km with sides lying along meridian
and latitude lines.

(R) =(R). (26)

This is by no means the only approach possible. Sat-
ellite estimates can be made at the resolution of the
footprints of the instruments (~10 km). The estimate
(2.5) makes very little use of this higher resolution
information since it starts from simple area averages R;
of the high-resolution retrieved rain rates. Optimal
strategies could in principle be devised that use
weighted averages of the individual footprint estimates,
which amounts in effect to optimal interpolation (or
extrapolation ) of the rain rates where they are measured
to the unmeasured portions of the space—time volume

25

Average Number of Observations / Month 1
20 612 km Box, Latitude 30° ok
(Total = 134)

Number

Fraction Observed

FiG. 3. Average number of occurrences during one month of
fractional observations by TRMM of a 512-km box located at 30°
latitude.
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for which the average (2.1) is desired. This is com-
putationally much more difficult and depends sensi-
tively on the space and time correlations of point rain
rates, which are generally only imperfectly known. The
approach taken here is comfortably intermediate be-
tween doing ‘‘nothing at all,”’ that is, using straight-
forward averages, and optimal interpolation in its most
detailed application. It differs from the optimal weight-
ing approach explored by North et al. (1993) for com-
bining estimates from multiple satellites in that here the
weights given to the observations from each overflight
of a satellite are individually optimized, whereas North
et al. (1993) obtain monthly averages for each satellite
with straightforward averaging and then combine the
various satellite monthly averages with optimized
weights. The weighting method (2.5) includes the
North et al. (1993) weighting as a special case but is
more complicated to implement.

The estimate (2.5) is special in that it does not in-
clude a constant (R, independent) term in the estimate,
which is commonly used in optimal interpolation strat-
egies. That is, we have not written

2 12 A
ni=1

If such a constant term b were included, and no rain
were observed by the satellite during the month, such
an estimate would in effect supply the climatological
mean instead of zero as its estimate of the grid-box
average. This is felt to be undesirable because it is easy
to imagine long-term shifts in the large-scale rain pat-
terns, such as those that accompany El Nifio—Southern
Oscillation (ENSO) events (e.g., Rasmusson and Wal-
lace 1983; Lau and Chan 1986), and a weighting strat-
egy that permits the grid-box averages to drop to zero
when the rain systems move away from the grid box
seems preferable to one that only drops to the prior
climatological mean.

The weights w; in (2.5) will be chosen to minimize
the mean squared error

o} = (R - B)?),
subject to the normalization constraint (2.6). Because

of the constraint (2.6), expression (2.7) can be re-
written as

(2.7)

o} = ((R' = R")?), (2.8)
where primes on random variables denote deviations
from the ensemble mean. Note that for each month and
grid box, the weighted averages (2.5) will not in every
case be closer to the true mean R than a simple average
of the observations. They are only more accurate in the
average sense that they will have a lower mean-squared
error ¢ 2 than the simple-average estimates.

The TRMM satellite will not sample all times of the
day equally often during a month (see Fig. 1, for ex-
ample). Monthly averages of the satellite observations
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will therefore favor some parts of the day over others,
leading to a possible bias in R if there is a significant
diurnal cycle. The weights in (2.5) can reduce this po-
tential bias if enough data has been collected so that
the climatological mean rain rate as a function of the
time of day is known. If this mean is denoted by u(t),
so that (R;) = u(t;), then the constraint (2.6) can be
written
12’1‘, (%) lfrdt (1) (2.9)
- w; i) == . .
n.; a TJo # :
If there is no appreciable diurnal cycle [u(2) = y], the
constraint (2.9) reduces to the simpler form
Zwi=n,

Lu(t) = p]. (2.10)

The weights w; are obtained by minimizing (2.8)
subject to the normalization constraint (2.9). This can
be accomplished by minimizing (2.8) with a Lagrange
multiplier times the constraint added, that is, by mini-
mizing

) 2
<(%2W1Rf _E') >‘27\2Wi#(fi), (2.11)

where \ is the Lagrange multiplier. We will omit spec-
ifying the range of the sum (1 to n) from now on. The
factor of 2 has been introduced for convenience.

The weights that minimize (2.11) are obtained by
setting its derivatives with respect to each w; equal to
zero. The linear equations for the weights that result
are :

nT! Y (Rl + &)(R] + )w;

=((R! + &)R"Y + Mu(2;). (2.12)

These equations and the constraint (2.9) fix the weights
w; and the multiplier A. They are easy to solve once the
coefficients are known since they are linear in the w;.
They provide a general framework for combining the
partial observations of the satellite into a best estimate
of the grid-box averages.

The results derived here apply equally well to the
problem of combining data from several instruments or
satellites. In that case the index i in the weighted av-
erage (2.5) is used to label both the time of observation
and from which instrument or satellite the estimate is
obtained. The equations are unchanged. What is
changed is the level of difficulty in obtaining the op-
timal weights since a reasonable statistical model of the
errors ¢; of the different satellite estimates must be de-
veloped in order to evaluate the terms in (2.12).

3. Statistical assumptions for calculations

In order to gain experience with the optimal-weight-
ing approach, a simplified version of the problem is
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examined here. It is based on realistic sampling char-
acteristics of the TRMM satellite; that is, the observa-
tion times and coverage of the grid boxes are represen-
tative of what the TRMM satellite is expected to pro-
vide. The statistical behavior of the rain observed by
the satellite is taken to be similar to what was observed
in GATE.

We shall neglect the effect of retrieval errors in the
TRMM estimates here. This is a reasonably good ap-
proximation if the root-mean-square (rms) error
(€?)'"? of the estimates is less than perhaps 30% of the
rms area-averaged rain rate ((R/)?)'/?. This assump-
tion is probably valid (except for cases where the area
A; observed contains only a few satellite footprints) if
the estimation errors for each footprint are independent,
as discussed by Wilheit (1988) and Bell et al. (1990).

We shall also neglect the effect of the diurnal cycle.
This is not an unreasonable approximation in cases
where the amplitude of the diurnal cycle is relatively
weak compared with ((R])?)"?, as in GATE (see Bell
and Reid 1993, for example). With these two assump-
tions, (2.12) for the optimal weights simplifies to

nT' Y (RIR]Yw; = (RIR") + \, 3.1)

J

with Z; w; = n. _

The covariances (R/ R/) and (R/R’) must be cal-
culated from a statistical model of the rain-rate fields
encountered by the satellite. The left-hand side covari-
ance in (3.1), when written out explicitly in terms of
the rain-rate field R(x, t), becomes

1 f
dzxf d’ye(x, t:5y,8), (3.2
AA y ye( Y. 1), (3.2)

with the point covariance function defined as
c(x, 8,5, u) =(R'(x, )R’ (y, u)).
The covariance on the right-hand side of (3.1) is

_ 1 T
RR') = —— 2fd2f y 43y, 1),
{ > AAT Aidx ) y 0altc(x Ly, 1)

(3.4)

In order to proceed, a representation of the covariance
c(x, t; y, u) is needed. The model used here is de-
scribed in the following section. Readers who wish to
skip the details of representing the space—time covari-
ance may proceed directly to section 6.

(R/Rj) =

(3.3)

4. Model of rain rate covariance

As was emphasized in the sampling error calcula-
tions of Bell et al. (1990), rain rate fields (and many
other geophysical fields as well) have spatial and tem-
poral correlations with the property that spatial aver-
ages have longer timescales as the averaging area in-
creases. Such behavior is commonly encountered in
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turbulent fluids. It is a simple consequence of the fact
that the variability on larger scales is governed by mo-
tions that require more time to span the larger distances
and thus occur more slowly. See Batchelor (1953), for
example. We wish to construct a model of the space—
time correlations of rain with this property. This phe-
nomenon is relatively easy to represent in terms of the
Fourier spectrum of the field, but calculations of the
covariances in (3.2) and (3.4) are awkward to carry
out using Fourier expansions. We have therefore
elected to deal with this problem in two stages. In the
first stage, a simple Fourier spectral representation with
as few parameters as possible is adjusted until it repro-
duces the essential aspects of GATE space—time cor-
relations. In the second stage, a more complicated em-
pirical fit to the space—time correlations implied by the
spectral model is used for the actual calculations of
(3.2) and (3.4). These two stages will now be de-
scribed in more detail.

The rain field statistics are taken to be homogeneous
and isotropic. That is, within the grid-box area A the
statistics are assumed not to depend on location or ori-
entation. This is certainly not true in reality, but be-
cause the only quantities that matter to the optimal-
weighting procedure are the statistics of (generally
large) area averages, this approximation is probably
adequate for our purposes. Moreover, because the op-
timal weights minimize the mean-squared error, the lat-
ter is insensitive to small deviations of the weights from
their optimal values. It is expected that the weights ob-
tained by minimizing an approximate expression for
the error are still close enough to being optimal with
respect to the exact mean-squared error as long as the
departure from homogeneity and isotropy is not too
large. '

The rain statistics will also be assumed not to vary
during the course of a day or of a month; that is, they
will be assumed to be stationary. Homogeneity and sta-
tionarity imply that the lagged covariance (3.3) of the
rain-rate field at points X and y at the instants ¢ and u
has the simple form

c(x,t;5,u)=c(p, 1), (4.1)

with p =y — x and 7 = u — t. Isotropy implies that
c(p, 7) = c(p, ), where p = |p|. We can express
c(p, 7) in terms of the Fourier integral

c(p, 1) = (27r)‘3’2f dwfdzkei(“"’““’)c“(k,w),

(4.2)

where integration is over the entire wavenumber k
plane and the Fourier transform ¢(k, w) represents the
(unnormalized) power spectrum of the random field.
As a consequence of isotropy, ¢(k, w) = &k, w),
where k = |K]|.

A simple model of the power spectrum will be used
here that is suggested by the discrete version employed
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by Bell et al. (1990) in constructing a gridded rainfall
model. The rain rate field R(x, ¢) is written as a sum
of spatial Fourier modes with amplitudes a(k, #). Each
amplitude is assumed to be described by a linear sto-
chastic equation of the form

da(k, 1) _

” (4.3)

1
- —a(k, n) + fi(D),
Tk
where fi is a white-noise forcing and the timescale 7,
of the process is taken to have the form

To

Y @4

Tk

where 7, and L, are characteristic time and length
scales. The form (4.4) assumed here is suggested by
(18) of Bell et al. (1990). In effect, the timescale 7,
decreases at small spatial scales (large k) as a power
law but at large spatial scales (small k) approaches 7.
The forced diffusion model considered by North and
Nakamoto (1989) corresponds to the special case v
= 0. With v # 0, (4.3) represents a randomly forced
field with a kind of nonlocal diffusion; the diffusion
scales at small distances differently from ordinary dif-
fusion. The timescales associated with various length
scales also vary with areal size differently from the way
they do with ordinary diffusion. A nonzero value of v
was found to be particularly helpful in fitting the spatial
correlations of the model to the GATE correlations.
Although (4.3) is written as a full dynamical model for
rainfall, it should be emphasized that only its predic-
tions for the second-moment statistics (the spectrum)
are actually used here. .

Using standard techniques of time series analysis
(Jenkins and Watts 1968, for example), the power
spectrum implied by (4.3) is found to be

Fo

e =

(4.5)

where Fj is a constant and, upon substituting (4.4),
Fotd
Tiw? + (1 + k2L3)*%

é(k,w) = (4.6)
The model spectrum thus has four parameters, Fy, 7,
Ly, and v, that must be determined from the data.

S. Fitting the spectral model to GATE data

In fitting a parameterized statistical model to data,
one’s first choice might be to determine the values of
the parameters using maximum likelihood methods. In
the case of a spectral model, this would normally lead
to fitting the model spectrum to the space—time spec-
trum of the data. There is, however, a difficulty with
this approach. The area covered by the GATE data is
a square 280 km on a side, and it is required that the

spectral model reproduce the statistics of area averages
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on this scale (and extrapolate to scales nearly twice
that) as faithfully as possible. It is notoriously difficult
to estimate the spectral power of a series at scales sim-
ilar in magnitude to the length of the series, the reason
being that ordinary spectral analysis implicitly intro-
duces spurious periodicity in the series on these scales.
[See Jenkins and Watts (1968) for discussion of some
of these problems.] Although there are techniques for
attempting to reduce the distortions in the spectral es-
timates at large scales, it was decided to determine the
parameters of the model by fitting the model behavior
directly to the statistics of area averages of the data on
the scales of most interest to us. In effect, the fitting
process is skewed so that the statistics of the largest
scales are reproduced best.

The GATE dataset consists of a series of radar-de-
rived rain-rate maps on a 4-km grid. The maps are 400-
km diameter circles centered at 8°30'N latitude and
23°30’ W longitude in the Atlantic Ocean about 1000
km west of the African coast in the intertropical con-
vergence zone (ITCZ). The maps are generally spaced
15 min apart, with occasional large gaps. The radar data
were collected during the summer of 1974. The meth-
ods used in producing this dataset are described by
Hudlow and Patterson (1979). Only the data from a
280-km square box inscribed within the 400-km circle
are used in the statistical analysis. Spatial correlations
of gridpoint rain rates, variances of area-averaged rain
rates for a range of areal sizes, and lagged autocorre-
lations of area-averaged rain rate are obtained from the
dataset.

Let us first list the steps we shall follow in obtaining
the model parameters before going into the details.

1) Since the GATE data is gridded on a 4-km grid,
the spatial correlation of 4-km box averages implied by
the model spectrum is calculated, and the spectrum pa-
rameters L, and v are adjusted until the calculated
model correlations fit the GATE spatial correlations
well. ‘ :

2) The overall normalization Fy of the spectrum is
obtained by fitting the model variances of area-aver-
aged rain rate to the same variances determined from
the data.

3) Finally, the correlation timescale 7, is obtained
from fitting the lagged autocorrelation of area-averaged
rain rate.

It is interesting, before doing this, to examine the
spatial covariance c(p, 7) of point rain rate implied by
the spectral model. This is obtained from (4.2). The
integration over w is easily done and gives

c(p, ) =2n)"" f d2ke““>"c(k, ), (5.1)

ck,7)= \/g Fore™ Ve,

with

(5.2)
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Carrying out the angular integration in the k plane then
yields

c(p,7)= fo dkkly(kp)c(k, T), (5.3)

where J,(x) is the Bessel function of the first kind of
order zero. At zero lag (7 = 0), the & integral can be
done (Abramowitz and Stegun 1970, section 11.4.44),
with the result

54
L (54)

where vy, is a constant related to Fy in the spectrum

c(p,0) = w@(ﬁ),

(4.6) by
2 L}
Fo=,—-TA+v)— ]y (5.5)
m To
and where we have introduced the function
C(2) = <§> K(2), (5.6)

with K,(z) denoting the modified Bessel function of
order v (Abramowitz and Stegun 1970, section 9.6).
From the behavior of K,(z) near the origin it follows
that for v > 0, C(z) = I'(v)/2 as z — 0, and in this
case the point variance ¢(0, 0) is finite and well de-
fined. However, for v < 0, which fits the GATE data

best,
—-2|v|
o (2)

as p — 0, and the point variance is infinite. This is also
the case for v = 0, for which c(p, 0) diverges loga-
rithmically, as mentioned by North and Nakamoto
(1989). It has sometimes been hypothesized that the
statistics of instantaneous point rain rates may be nearly
singular as a consequence of scaling behavior (Lovejoy
and Mandelbrot 1985, for instance ). Averages over any
nonzero area have finite variance, however, and so this
phenomenon causes no problem with fitting the model
to the data, which consist only of area-averaged mea-
surements. '

The behavior of ¢(p, 7) for p = 0 can likewise be
obtained by returning to (5.1). After doing the angular
integral in k space and making a few judicious integra-
tion variable changes, an expression for ¢(0, 7) can be
obtained with limiting behavior

(5.7)

L(=g)(rl/T0)?, 70,

_)1"(1 +v)
exp(—|7|/7¢)

c(0, 1) 2~(—1TV—)%><

] ’

|7]/70
(5.8)
where g = v/(1 + v) < 0.
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a. Obtaining the spectral model parameters

Let us turn now to the calculation of the model spa-
tial correlation between two areal averages of the rain-
rate field. Denote by 4, B two boxes each of area L?
with their centers separated by s, as depicted in Fig. 4.
The covariance of these two box averages is

Cas(s, 7) = (RL(ORHT + 7)), (5.9)

where R, and R; are the area-averaged rain rates over
the respective boxes 4 and B. The covariance can be
written in terms of the point covariance (3.3) as

1
Cls, 7) = Ff d*x J; d*ye(y —x, 7). (5.10)
oA

The correlation of box averages is just the ratio of the
covariance to the variance of the box averages,

@{-A‘B ”
B s, ) = (& T) (5.11)
(2w}
0% = €,,(0,0). (5.12)

Model spatial correlations ®_4(s, 0) with L = 4 km
were computed for various choices of v and L,. Alge-
braic and numerical details are described in appendix
A. Using trial and error, values of v and L, were found
for which the model spatial correlations agree well with
the spatial correlation of the GATE Phase I data (cov-
ering the 18-day period 28 June to 16 July 1974 ). Fig-
ure 5 shows the GATE spatial correlations (dots) for
various spatial separations, as reported by Bell et al.
(1990), and the model correlation (smooth curve) for
v = —0.11 and Ly = 104 km. Bell et al. (1990) estimate
that the 95% confidence limits for the GATE spatial
correlations at separations >80 km are approximately
+0.1. Considering the estimated level of sampling er-
ror, the agreement is perhaps better than would have
been expected.

Next, the variances of area-averaged rain rate 2, are
used to set the overall normalization of the spectrum,
Yo, which is related to F,, by (5.5). Figure 6 shows the
variances computed from GATE Phase I data (A.

B

[—L—] el

=P

FiG. 4. Diagram of boxes 4 and Bin (5.9).



1258

1.0 ] —
e GATE Phase | 7
0.3 || Spectral model |
c L _
82 05 .
- o -

~

g I ]
S 04l ]
o T ]
0.2 S . -1
- . - . -
o L) 4
0.0 L T 3

[} 50 100 150 200

Separation (km)

FIG. 5. Comparison of the spatial correlations of 4-km gridded rain
rate found from Phase I of GATE and for the spectral model with v
= —0.11 and Ly, = 104 km. : ’

McConnell and L. S. Chiu, personal communication,
1987) and o2 from the spectral model, with y, = 1.0
mm?” h~2, for various box sizes L = 4'/2. (The data
point at L = 354 km was obtained using the full 400-
km diameter area covered by the GATE data.) The 95%
confidence limits on the point at L = 280 km are based
on the assumption that R, is normally distributed with
an 8-h correlation time and may be underestimated.
Finally, the parameter 7, was determined by fitting
the autocorrelation of box-averaged rain rate for L
= 280 km, obtained by setting s = 0 in (5.10), to the
GATE autocorrelations for the same sized box. Details
of the algebra and numerical techniques are given in
appendix A. The quality of the fit is shown by Fig. 7.
Although the spectral model captures the overall decay
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F1G. 6. Variance of area-averaged rain rate versus the square root
of the area, ranging from the grid box size 4 km to the effective size
‘of the GATE area. The error bar at L = 280 km is explained in the
text.
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FIG. 7. Lagged autocorrelation @, (0, 7) of area-averaged rain rate
for L = 280 km, comparing GATE data and spectral model behavior.

of correlations, and beyond about lag 7 h agrees quite
well, it underestimates the correlation at smaller lags.
To improve the fit would require going to an autore-
gressive model higher in order than the first-order
model used in (4.3). Bell and Reid (1993) were, in
fact, able to fit this behavior to a second-order model.
The underestimate of lagged correlation for small lags
causes the spectral model to underestimate slightly the
effectiveness of the optimal weighting and to overes-
timate sampling error when compared with what a bet-
ter-fitting model would give. The numerical difficulties
in dealing with a higher-order model would be much
greater, however.

The parameter values for the spectral model are sum-
marized in Table 1.

b. Some characteristics of the spectral model fit

As one check of the quality of the fit, the lagged
correlations of box averages for L = 64 km are com-
pared in Fig. 8 to the GATE Phase I statistics for four
boxes in the GATE area. The NE-quadrant box’s au-
tocorrelation is stronger than the other three boxes’ and
is evidence for some inhomogeneity in the statistics in
the area. We have been unable to discover a physical
explanation for the anomaly. The spectral model agrees
reasonably well with the autocorrelations in three of

TaBLE 1. Parameters of spectral model fit to GATE Phase I data.
Note that Fj, is related to these parameters by (5.5).

Parameter Value
Yo 1.0 mm? h~?
v —0.11 —
Ly 104 km

To 13 h
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Fic. 8. Lagged autocorrelations of area-averaged rain rate for L
= 64 km, comparing the behavior of the spectral model and of GATE
data averaged over four boxes centered 100 km northwest, southwest,
northeast, and southeast of the center of the GATE area.

the quadrants except that, as in the 280-km box case,
it slightly underestimates autocorrelations for small
lags. ,

Note the presence for both sized areas of a long
“‘tail’” in the model autocorrelations that would be
missed by simple exponential fits to the autocorrela-
tions. The model’s lagged autocorrelation for 4-km box
averages drops to 1/e at 7 ~ 0.2 h, rather smaller than
the 0.9-h correlation time estimated for a box at the
center of the GATE area (from Laughlin 1981). How-
ever, the integral correlation time, defined as

Tine(L) = J:o ®,.,(0, T)dT, (5.13)

which would be identical to the lag at which the auto-
correlation drops to 1/e if the autocorrelation were a
simple exponential exp(—7/7;, ), ranges from 1.5 h at
L =4kmto 10 h at L = 280 km, reflecting the sub-
stantial nonexponential tails in the autocorrelation. The
integral correlation time generally exceeds the GATE
correlation times (estimated from the lag at which the
autocorrelation has dropped to 1/e) by a factor of about
1.7. It is well described by the power-law form 7, (L)
~ 0.67 L°* h.

Some asymptotic properties of the spectral model are
derived in appendix A.

¢. Empirical space—time correlation fit to spectral
model

In order to carry out the calculation of the covari-
ances in (3.2) and (3.4), required in order to get the
optimal weights, the covariance c(x, t;y, u) is needed.
It is computationally too expensive to carry out the
spectral transform (4.2) for each separation (s, 7)
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- needed. An empirical interpolation formula to represent

the covariance has therefore been developed.

It was assumed that the spatial integrals in (3.2) and
(3.4) would be done numerically using an 8-km grid,
twice as coarse as the GATE data grid. The spectral
model was used to calculate the space—time covari-
ances of L = 8-km boxes from (5.10) and the methods
described in appendix A. These covariances were fitted
to a form

Cas(s, T) = 0i®o(s)exp{ —[|7|/7(s)]*"}, (5.14)

with factorizable time dependence, for a set of values
of s ranging between 0 and 400 km. The exponential
dependence on 7 was suggested by (5.2). Algebraic
tractability of time integrals over the covariance was
also a factor in the choice of the time dependence. In
(5.14) the zero-lag spatial correlation ®,(s) and the
characteristic timescales and exponents 7(s) and u(s)
depend on the separation s and, implicitly, on the size
L of the grid boxes a and b. The forms of the functions
were taken to be

(ays + a)) @e™™%, s=1L,

Dy (s) = {1 (5.15)

, s =0,

which is the same as was used successfully in Bell et
al. (1990) and

bis2+ by, s=1L,
T(s) = (5.16)
7(0), s =0;
(s) ci5?+ ¢, s=1L, (5.17)
7 w0y, s=0. '

The coefficients a,, ..., a4, by, ba, b3, 1, C3, C3 Were
determined by standard nonlinear least squares fitting
procedures. The specific forms in (5.15)-(5.17) are
chosen primarily to allow efficient machine computa-
tion without appreciable loss of accuracy. It should be
emphasized that although a large number of parameters
are needed in order to represent the model covariance
function €,,(s, 7) to sufficient accuracy, they are not
all independent: the covariance €, (s, 7) is completely
determined by the box size L and by the model spec-
trum, which depends on only the four independent pa-
rameters listed in Table 1.

The quality of the fit of ®y(s) to the spatial corre-
lation is as good as or better than that of the spectral-
model spatial correlation to the GATE data shown in
Fig. 5 and is not shown. The fits of €,,(s, 7) to (5.14)
as a function of lag T are shown in Fig. 9 for separations
s = 0, 129, and 400 km. (Fits at several dozen other
separations were examined but are not shown here.)
The quality of the fits is excellent for s < 100 km and
s 2 300 km but decreases somewhat in the range 100
km = 5 = 300 km. The movement of the inflection
point to larger 7 with increasing spatial separation s is
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F1G. 9. Fits of the empirical interpolation formula (5.14) to spectral
model covariances for L = 8 km boxes at separations s = 0, 129, and
400 km. Plots are normalized to one at 7 = 0 for each separation.
Spectral model results are shown as dots; empirical fits as solid lines.

an interesting phenomenon but might be difficult to es-
tablish with radar data because of the low level of cor-
relations at these separations and lags.

The parameters p(s) and 7(s) obtained from the
above fits at many separations s are then themselves
fitted to the forms (5.16) and (5.17) using a nonlinear
least squares procedure. These latter fits are shown in
Fig. 10. Because these calculations are done for a rec-
tilinear grid, there is a possibility for anisotropic effects
to enter, especially for small separations s. However,
there was little evidence of this in the cases checked,
and the isotropic forms independent of the direction of
s used here appeared to work well.

The parameters obtained following the procedures
outlined above are shown in Table 2 for two box sizes,

T 40
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Fii. 10. Fits of (5.16) and (5.17) to the characteristic times and
exponents obtained from fits like those shown in Fig. 9. The values
at s == 0 are excluded from the fit. See Table 2 for these values.
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TABLE 2. Parameter values used in the empirical interpolation
formulas (5.14)~(5.17) for two grid-box sizes with areas a = L2
Assumes separation s in kilometers. The original values used in
formula (5.15) by Bell et al. (1990) are shown for comparison.

Spectral model Bell et al.
(1990)
L=4%km L =8 km L =4 km
a? [mm? h™?] 75 57 7.0
a 0.8244 0.6968 1.193
a, —1.0208 —3.0495 ~2.165
a, 0.3146 0.2611 0.2902
a 70.12 71.40 78.11
b, 0.2548 0.3476
b, 0.8043 0.7446
by -0.2724 —0.6877
7 (0) [h] 0.2285 0.4543
< 0.1313 0.0629
c 0.4814 0.6070
cs 0.1345 0.2994
w1 (0) 0.3307 0.3840

L = 4km and L = 8 km, as well as the parameters used
for fitting the spatial correlation form (5.15) directly
to the GATE data, which are given in Bell et al. (1990).
Note that only the empirical fits for L = 8 km were
used in the optimal weighting calculations. For the
larger areas that matter most to the calculations here,
the model generally reproduces GATE correlations
quite well for lags 0—24 hours, though at some inter-
mediate lags it underestimates correlations. These un-
derestimates would tend to overestimate sampling error
and to underestimate improvements possible with op-
timal weighting when compared with what would be
calculated using a more accurate model. Given the level
of sampling uncertainty in the statistics due to the size
of the GATE dataset itself, however, it is difficult to
justify a more elaborate modeling effort.

6. Optimal weights

With a model of the rain rate covariance in hand, we
are now ready to calculate the optimal weights from
the linear equations (3.1), which have the simple form

n_IZP,-jwj=Q,~ +)\, (61)
J
where the coefficient matrix
P, = (RIR}) (6.2)
and the vector
Q. = (R/R") (6.3)

are given by the integrals (3.2) and (3.4) over the point
covariance c(X, ¢; ¥, u). The spatial integrals are done
numerically on an 8-km grid using the approximation
for the covariance (5.14) with the parameter values in
Table 2 for L = 8 km. Algebraic and numerical details
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may be found in appendix B. Once the matrix P; and
vector ; have been computed, numerical solution of
(6.1) for the weights w; is straightforward.

As a point of reference to aid in understanding the
optimal weights, it is helpful to consider a limiting sit-
uation in which rain rates at slightly different times and
places are uncorrelated with each other. In this situa-
tion, the matrix (R/ R]) becomes diagonal, and after a
small amount of algebra, (3.1) simplifies to

2
g
— ]+ N\
where o is the “‘point” variance of the rain-rate field
in this limiting situation. These equations can be easily

solved for w{® and \ with the help of the constraint
Z:w® = n, and one obtains

n (o2 A)w® = (6.4)

w® = a% (¢‘simple weights’’),  (6.5)
where A;/A is the fraction of the grid-box area A
viewed by the satellite instrument at time ¢;, and & = n/
(Z; A;/A) is a normalization factor.

We refer to these as the simple weights since they
are a plausible choice for averaging the satellite data in
the absence of any information about the statistics of
the rain within the grid box. It is easy to show that if
the satellite instrument footprints are uniformly distrib-
uted within the swath and the monthly average of the
satellite data is estimated using a simple arithmetic av-
erage of all the footprint estimates that fall within the
grid box during the month, the weighting (6.5) is ex-
actly equivalent to such an average. This kind of av-
eraging of satellite data is commonly used in gridding
satellite estimates of rainfall, although satellite foot-
prints are sometimes nonuniformly distributed in the
swath.

Another possible approach to the problem of adding
up the satellite data to obtain gridded monthly averages
might be to treat the satellite observations as a time
sequence of estimates and to attempt to approximate
the time integral of rain rate (2.1) as a kind of numer-
ical integration using the time sequence of observations

A

R;. A possible candidate might be

2 1 oA + At 4
R==yY—"L_—1ip
Tzl‘ 2 19

with At; = ., — t;, Aty = At, = 0. From this per-
spective, observations that are close together (small
At;) would get less weighting than widely spaced ob-
servations (large A¢;). This approach would be plau-
sible when the satellite observations are frequent
enough that rain rates change very little from one ob-
servation to the next and if most of the grid-box area
is observed each time. This is unfortunately not the
case for low earth-orbiting satellites carrying the more
accurate microwave instruments, and so weightings
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that attempt to implement a kind of ‘‘time integra-
tion’” will generally perform much worse than the
simple weighting.

To investigate the behavior of the optimal weighting
scheme, optimal weights were calculated for 512 km
X 512 km grid-box monthly averages using the GATE
statistics. The satellite observation pattern is what is
expected for TRMM as discussed in section 2, and the
swath width is assumed to be 760 km (side to side),
corresponding to the TRMM microwave instrument
(TMI). Optimal weights for boxes centered at latitudes
0° and 30° are shown in Figs. 11 for one month of
observations. Also shown is the straight line the
weights would fall on if the simple weighting (6.5)
were optimal (i.e., if there were no correlations).

These plots give the impression that there is a unique
optimal weighting associated with each box fraction
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Fic. 11. Optimal weights calculated for 512-km grid box centered
at latitudes (a) 0° and (b) 30° for one month of observations by the
TRMM microwave instrument. There are 58 observations in (a) and
134 observations in (b). Here A;/A is the fraction of the area observed
by the satellite. The optimal weights would lie along the straight lines
if there were no correlations.
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seen by the satellite. There is a good reason for this.
The optimal weighting assigned to each observation
depends on the overall sequence of observations in
which it is embedded. Since correlations are quite small
for time separations greater than 15 or 20 hours, most
of the weights are determined almost entirely by the
character of nearby observations and not by their place-
ment relative to the beginning and end of the month.
The orbit is highly predictable, and if the longitude at
which the satellite crosses the equator (moving north-
ward) is known, the fraction of the grid box that will
be seen during the orbit can be predicted from the orbit
of the satellite and the instrument scanning pattern.
Moreover, the equatorial crossing points of the satellite
are themselves highly predictable; they move westward
23.3° with each orbit in the orbital approximation used
here. It can thus be seen that each fraction observed is
associated with a unique, predictable pattern of obser-
vations before and after it. The TRMM satellite sam-
ples areas with a ‘‘typical sequence’’ occurring many
times during a month. This is the reason for the simple
pattern emerging in the plots of the weights. The more
complex pattern occurring for the 30° latitude box can
be “‘unwrapped’’ by plotting the weights as a function
of the equatorial crossing longitude associated with
each observation (not shown).

By examining the observational sequence in detail,
it is possible to understand some of the qualitative be-
havior seen for the weights. There are a few ‘‘outliers’’
visible in these plots, for example. These correspond
to the observations at the beginning and end of the
month. Each observation R; can be considered to have
a certain information content concerning the monthly
total rainfall. Observations at the beginning and end of
the month contain unneeded information about what
happened before and after the month (due to time cor-
relation) and, possessing this ‘‘excess’’ information,
tend to be weighted less than observations in the inte-
rior of the month. The reason for the two ‘‘branches’’
in Fig. 11b for the 30° latitude box can likewise be
understood. Referring to Fig. 1b, it can be seen that
satellite observations at this latitude occur in *‘bursts’
of four or five at slightly less than 24-h intervals. It is
found that the lower branch corresponds to the weight-
ings of the two or three interior observations in the
bursts. The upper branch with higher weights corre-
sponds to the two outermost observations in the bursts,
whose information is less redundant, because they are
bordered by 18-h gaps.

The optimal weights calculated for the cases in
which only a tiny fraction A;/A of the area is seen are
always substantially larger than the simple weights.
This is because of the spatial correlation. If rain is seen
in a small corner of the area A, it can be inferred that
there is probably rain occurring in nearby regions. The
optimal weighting takes advantage of this by giving
these observations extra weight. The effect, propor-
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tionally speaking, is largest for the very smallest ob-
served areas.

How much difference does the optimal weighting
make? The weights for the 0° latitude box (Fig. 11a),
for example, are not very different from the simple
weights, except for small A;/A, which do not contribute
much to the averages. As one measure of the impact of
the choice of weights, the sampling errors computed
from (2.8) for the optimal and simple weighting can
be compared. Figure 12 shows the sampling errors, ex-
pressed as the ratio of the rms error to the mean rain
rate (R) = 0.445 mm h ™! for GATE Phase I. Generally
speaking, the degree of improvement of optimal
weighting over the simple weighting is not large. The
simple weighting is near to being optimal for TRMM
data. Only for boxes near latitude 30° does the optimal
weighting reduce sampling error significantly, amount-
ing to a 15% reduction in the error variance o%.

There is a perhaps surprising amount of variation in
the sampling error from one latitude to another. This is
due to real changes in the satellite sampling with lati-
tude. The sampling errors shown in Fig. 12 are some-
what larger than were estimated in Bell et al. (1990),
largely due to the reduced swath width of the micro-
wave instrument presently planned for the satellite.

7. Discussion of sampling error results

Except near latitude 30°, the amount of improvement
in the TRMM grid-box estimates using optimal weight-
ing of the data is small and (except near 30°) would
not justify the effort of obtaining the optimal weights,
in our opinion. The reason for the smallness of the re-
duction in sampling error is that the TRMM observa-
tions are generally too regularly spaced and/or are not
very correlated. It is only when the observations be-

TRMM Sampling Error
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FIG. 12. Percent sampling error computed from modeled GATE
statistics for optimal and simple averaging of the TRMM satellite
observations.
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come significantly correlated that the optimal weight-
ing begins to differ from the simple weighting and acts
to reduce the error.

It is anticipated that the TRMM measurements will
eventually be used to calibrate the rain estimates from
microwave instruments on other satellites and that the
observations of several satellites can be combined to
reduce sampling error in the gridded rain products.
Such a scenario can be explored using the methods de-
scribed here. As an example, the calculations in the
previous section were done assuming that microwave
estimates are available from two satellites, one TRMM-
like and the other in a sun-synchronous orbit with the
characteristics of the SSM/I (Special Sensor Micro-
wave/Imager) on the DMSP (Defense Meteorological
Satellite Program) F11 satellite. The latter satellite was
assumed to be in a circular orbit at 833-km altitude and
98.7° inclination, with average observation times of
0530 Aa.M. and 1730 p.M. local time and a swath width
of 1400 km. The ratios oz/(R) for each satellite alone
and for the combined data are given in Table 3.

Not surprisingly, the addition of the SSM/I obser-
vations reduces the sampling error. Optimal weighting
is more effective in reducing sampling error for the
combined data than for either satellite alone and lowers
the error variance by 15% when applied to the com-
bined data. As mentioned above, optimal weighting
methods become more effective as the satellite obser-
vations become more correlated with each other and
when the sampling pattern is irregular, as is the case
“here with the combination of two satellite observational
patterns. The optimal weights are no longer simply re-
lated to the fraction of the grid box seen, as they were
in Fig. 11. Since the pattern of time intervals between
the observations of one satellite and those of the other
satellite change during the course of the month, the
optimal weights vary accordingly.

This optimal weighting calculation ignores the effect
of the retrieval error terms in (2.12). When data from
several satellites are combined and the sampling error
becomes smaller, the justification for neglecting the re-
trieval error terms becomes weaker, especially when
different instruments have different levels of retrieval
error. When the observations of two instruments over-
lap, the more accurate instrument’s estimates should be
favored. The optimal weighting computed from (2.12),
including retrieval error statistics, would accomplish
this. However, the estimation of retrieval error statistics
is not easy, especially if correlations in the retrieval
errors become important, as discussed in Atlas and Bell
(1992). Sampling error can be largely eliminated by
addition of data from geosynchronous satellites, but the
issue of adjusting the weights according to the retrieval
errors and diurnal biases for the various satellite esti-
mates becomes even more pressing.

The model calculations carried out here have sim-
plified the statistical behavior of the observed rain by
assuming that it is homogeneous and isotropic over the
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TaBLE 3. SSM/I data combined with TMI data. Sampling errors
for monthly averages over a 512-km box at the equator. Columns 2
and 3 give the rms sampling errors divided by the mean rain rate,
0.445 mm h™', for simple and optimal averaging.

Percent error

Satellite instruments Simple average Optimal average

T™I 12.5 12.2
SSM/I 10.8 10.7
TMI + SSM/T 83 7.6

grid-box area. The temporal behavior of the model has
also been simplified in that the presence of a diurnal
cycle has been ignored, as well as lower-frequency phe-
nomena such as is associated with the easterly waves
with periods of 2 to 5 days that are strong in this part
of the Tropics (see, for example, Thompson et al.
1979). The easterly wave activity can be clearly seen
in the lagged correlations in the GATE data at lags of
2 to 5 days (not shown). How much do the results here
depend on having ignored this longer-timescale vari-
ability? Since the satellite sampling is relatively good
on the timescales of the easterly waves, it seems likely
that the neglect of variability at these frequencies
should not be so important, and in fact it is possible to
show that the contributions from these frequencies to
the optimal weighting and to sampling error tend to be
much reduced compared to the impact of the higher
frequencies, using arguments along the lines of North
and Nakamoto (1989) and expressing the optimal
weights as a filter acting on the rain-rate power spec-
trum.

We have experimented with introducing a 5-day
wave somewhat artificially into the calculations. The
optimal weights are changed very little, and the rms
sampling error estimates increase by a factor of order
1.1. The increase can be understood as resulting from
the negative correlations at lags of several days: sam-
pling error is smallest when the rain at the sampled
times is representative of the unsampled rain. Negative
correlations imply that the sampled rain is in fact very
different from the unsampled rain at certain unsampled
times, and so introduction of wave activity at longer
timescales while keeping the shorter-timescale corre-
lations relatively unchanged leads to an increase in
sampling error. Our sampling error estimates are thus
slightly smaller than they would be if the longer-time-
scale statistics of the rain were better represented, but
probably not by a significant amount, based on these
calculations.

8. A simple estimate of the sampling error

Because of the lack of correlation in rain from one
TRMM observation to the next (at lower box lati-
tudes), the sampling errors can be rather well estimated
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by assuming that they decrease as the inverse of the
square root of the sample size. This is also true of the
error dependence on areal coverage since areas that are
sufficiently well separated are uncorrelated, as is evi-
denced by the model behavior in which the variance of
area-averaged rain rate decreases inversely with area
[(A.14)] when the areas are large. As a measure of the
sample size for a month of satellite observations, con-
sider the quantity

S=Y AJ/A. (8.1)

It is the sum of the box fractions observed by the sat-
ellite during the month. If rain events in a large area
and over a long time span are statistically somewhat
similar and uncorrelated, we would expect the rms sam-
pling error o defined in (2.7) to depend on S as

op ~ §V2,

(8.2)

Figure 13 shows a plot versus S of the rms sampling
error (with the simple weighting ) for monthly averages
of TMI data for a number of box locations and, in ad-
dition, the sampling errors calculated for the anticipated
swath width (220 km) of the precipitation radar (PR)
on the TRMM satellite for various box latitudes. A fit
to an inverse square root behavior is superimposed. It
can be seen that by simply calculating the satellite in-
strument’s sampling volume S (8.1) one can estimate
the sampling error to within a percentage point or so
using (8.2), provided one has representative sampling-
error calculations to extrapolate from. It should be
noted that the coefficient of the fit indicated in Fig. 13
depends on the size of the grid box and to some extent

.on the TRMM orbit. It depends a great deal on the
rainfall statistics. The possibility that this dependence
can be made explicit will be discussed next.

The error estimates here have all been derived as-
suming the observed rain is statistically similar to the
rain measured in GATE. To estimate sampling error
for each grid box in a gridded global dataset, account
will have to be taken of the changes in the statistics
with geographical location and season. In Bell et al.
(1990), a formula for sampling error was derived for
regularly spaced observations at intervals At suffi-
ciently large that the observations are uncorrelated,
which, in the notation of this paper, can be written

ﬂ__'\1—1_ aa(r>0) Lt?;orr 1/2 g 1/2
<R>~p"2<Ra(r>0)><A> <T> - B

Here p is the probability of rain occurring in the in-
strument-footprint area a; o,(r > 0) is the rms rain
rate in area a, where the average is over events with
nonzero rain; {R,(r > 0)) is likewise the average rain
rate in the area a conditional on nonzero rain; and L,
may be thought of as being the typical spatial dimen-
sion of a rainy event. It is a kind of correlation
length associated with the spatial correlation function

JOURNAL OF CLIMATE

VOLUME 9
0.25 — — T
g | ]
g i e PR
c L o ™I E
& 020 =
- i .
[} F i
O
E - -
~ + -
A
S oi5 -
5 ! .
g) I 4
é [ 88x (3, A /A2
G 0.10
(2 L
Q L
=
= ! ]
0.05 PR (NSO T EY WO U I [T

0 i0 20 30 40 50 60 70 80
3, A/A

FiG. 13. Sampling error for 512-km boxes at latitudes 0°, 5°, ...,
35°, and at longitudes 0°, 30°, 60°, and 90°, viewed by the TRMM
microwave instrument (TMI), and boxes at the same latitudes and 0°
longitude viewed by the TRMM radar (PR), plotted versus the sum
of the box fractions observed by the instruments during the month.
Simple averaging is assumed. The smooth curve shows a least
squares fit to an inverse square root dependence of the error on sam-
ple size.

®,,(s, 0) defined in (5.11). Formula (8.3) suggests an
approximate method of extrapolating the GATE-based
sampling error estimates to other climatologies.

The quantity 7/ At in (8.3) is the number of samples
taken during the period T (one month, in our case). It
can be generalized to the quantity S in (8.1). Short et
al. (1993) suggest that the ratio o,(r > 0)/{(R,(r > 0))
is relatively constant over a range of areas a, averaging
times, types of data (rain gauge or radar), and climates.
Variations in area-averaged rain rate (R) can be largely
accounted for by changes in the probability of rain p,
as evidenced by the success of predicting rain amount
in an area from the fraction of area covered by rain,
which has been improved on by the introduction of
threshold methods (e.g., Kedem et al. 1990; Atlas et al.
1990). Taking advantage of this fact and using (R)
= p{(R,(r > 0)), we can recast (8.3) in the form

O

—= o« ((R)AS)™'"

(R)
since the variation in the terms in (8.3) that are omitted
in (8.4) are less important than the ones kept. Based
on Fig. 13, we can extract the proportionality constant
in (8.4) to write '

o (R) A —-1/2
(R) 0‘68[<0.445 mm h“><(512 km)2>S] ’

(8.5)

(8.4)
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where the numerical values 0.445 mm h™' and (512
km)? are the mean rain rate and grid-box area for the
points in Fig. 13. The numerical coefficient in (8.5)
can vary slightly from one satellite to another because
the sampling volume S is only an approximate measure
of the effective coverage by the satellite. The coeffi-
cient changes to 0.66 for sampling by a single SSM/I
instrument, for example.

The inverse square root dependence on the local
mean rain rate in (8.4) is particularly striking. It can in
fact be used to interpret the TRMM sampling error re-
sults of Oki and Sumi (1994). They sampled hourly
rain-rate fields from radar data calibrated with the
AMeDAS (Automatic Meteorological Data Acquisi-
tion System) rain gauge network over southern Japan
using the predicted orbit of the TRMM satellite and
assuming instrumental coverage over a 700-km swath.
Monthly averages of rain over 5° X 5° grid boxes cen-
tered near latitude 33.5°N were obtained with the sim-
ulated satellite sampling and compared with the actual
monthly averages to obtain estimates of the mean
squared error of the sample estimates. Figure 14 shows
the ratio oz/(R) for each of 12 months given in Table
3 of Oki and Sumi (1994 ). Each point is obtained from
three to four years of data, five (overlapping) grid
boxes at similar latitudes, and four staggered sampling

Sampling Error over Southern Japan
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FiG. 14. Relative sampling error oz/(R), in percent, for a TRMM-
like satellite viewing 5° X 5° grid boxes centered near latitude 33.5°N
over southern Japan for each of 12 months (from Table 3 of Oki and
Sumi 1994). Error bars are estimated 95% confidence limits. Also
shown (X) is the sampling error calculated using GATE statistics
(from Fig. 12), appropriately scaled.

0.5

BELL AND KUNDU

1265

patterns. The error bars represent 95% confidence lim-
its based on the chi-squared distribution and an estimate
of the number of independent experiments entering into
the error calculation. The (R) "2 behavior, shown as
a least-squares fit to the points, is consistent with this,
although the size of the error bars does not place very
stringent demands on the fit. A point corresponding to
what GATE statistics at these latitudes would give
(from Fig. 12) is shown on the same plot, scaled to
take into account the differing swath width and grid-
box size in their study.

Equation (8.4) can also be used to understand the
sampling error results of Seed and Austin (1990). It
appears to explain at least qualitatively the error distri-
bution seen in the study by Weng et al. (1994) and
seems to be remarkably successful in describing sam-
pling errors inferred for gridded SSM/I results. This
topic will be examined in greater detail in a subsequent

paper.

9. Conclusions

The optimal weighting method investigated here of-
fers a framework for combining satellite rainfall esti-
mates into gridded products suitable for climatological
studies. It can take advantage of prior knowledge of
diurnal and seasonal changes in the statistics to correct
for biases that might enter into averages of satellite
data, and it provides a way to combine overlapping
datasets taking into account their different levels of ac-
curacy. To make use of the method, however, requires
knowledge of the statistical characteristics of estima-
tion errors for the various satellite instruments.

When data from a single satellite such as TRMM or
SSM/I are averaged, the reduction in errors for the
gridded product may not be big enough to warrant the
extra labor involved in determining the optimal
weights, except perhaps for grid boxes near the turn-
around latitude of the TRMM satellite. The benefits of
using the method become substantial when TRMM
data are combined with one or more polar-orbiting sat-
ellites, however.

It is suggested that a good estimate of mean squared
sampling error can be rather simply obtained by assum-
ing that it is proportional to the average rain rate and
inversely proportional to a measure of the sample size
obtained by the satellite during the averaging period.
This offers the chance that the gridded satellite product
can provide the user with sampling error estimates for
each grid point adjusted to the local sampling charac-
teristics and climate.
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APPENDIX A
Details of Spectral Model Covariance Calculations

The variances and spatial and temporal correlations
implied by the spectral model (4.6) will be derived here
for box-averaged rain rates. Equation (5.10) for the
covariance of the average rain rate in boxes 4 and B,
with a translation of the integration variables, can be

written
f dxlf dxzf dylf dy,c(s +y — x, 7).

C.(s,
(A.1)
Setting u = y — x and making use of the identity

f:dx f:dX’f(x —x) = f du(L — |u)f(u),

(A.2)
expression (A.1) for € 4 becomes
1 L 1
Co(s, T) =Ff duxf duy(L — |u, )
-L ~L
X (L= |ux])e(s +u, 7). (A3)

For 7 = 0, substituting the explicit expression (5.4)
into (A.3) and changing variables to & = u/L, one
obtains

1 1
€.s(s, 0) = %o f dt, f_l dg (1= &1~ |&D)

L
C /L —}. A4
V(|§+sL|LO) (A4)

These integrals were evaluated using the numerical in-
tegration package in Mathematica by Wolfram Re-
search, Inc. (1988) for various separations s.

For 7 # 0, it proved easier to return to the Fourier
integral representation of the correlation [(5.1)]. Upon
substituting this into (A.1) and carrying out the spatial
integrals, one obtains

Cw(s, )= (27)" ‘fdzk ks <k‘2 )

XG( 2 ) (k, 7)), (AS5)

where G2(x) = (sinx/x)? is the Bartlett filter function
familiar from time series analysis and c(k, 7) is given
in (5.2). In the isotropic case, (A.5) becomes

5 [ (=
Cu(s, T) = ;J; f dkidk; cos(k;s;) cos(kys,)

ki ks
< o4 o (5

>c(k 7). (A.6)
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The lagged covariance of area-averaged rain rate
(s = 0) has the still simpler form

€0, 7) = —J. f dk,dk,G? (kzL)

ks
X
G(2

2 [ L
=\/:F0f f dkldk2G2<kl—)
s 0 0 2

kL
XG2<%>Tke“T|’”. (A.8)

)c(k 7) (A7)

Numerical integration was done using the IMSL
(1991) routine QAND on a Cray Y-MP computer.
The integral autocorrelation time introduced in
(5.13) can be calculated more directly from the inverse
Fourier transform of (A.7), which can be written

e w) = (27r)_”2f dr€,.,(0, T)e™"

2 * '
2 [ i [ gk oot
T Vo 0 2 2

X ¢k, w). (A.10)

From the definition of Time(L) in (5.13) and (A.9) for
w = 0, it follows that

e, (w=0)
nm<L>=\[5~”‘£az—-
oA

We conclude with a few remarks about some as-
ymptotic properties of the spectral model. As is sug-
gested by Fig. 6, the variance of area-averaged rain rate
o% in the spectral model diverges as the area size de-
creases. The divergence is dictated by the singular be-
havior of (5.7) noted for the point covariance. Substi-
tuting the first two terms in the expansion of (5.4) for
small p into (A.4) gives the behavior (using numerical
integration), for L — 0,

02~ 16.80 L2 —

(A9)

(A11)

489 mm*h™2, (A.12)

which is already quite accurate at L = 4 km.

For large areas, however, we expect the variance to
decrease as L2, since rain rates become rapidly un-
correlated beyond separations s > L,. This can be ver-
ified from (A.8), since for large L the factors G are
highly peaked at k£ = 0 and the integrals can be done
neglecting large-k behavior to obtain

2

,2,,%27rr(1+1/)70%, (L> Ly). (A.13)
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Finally, for large lag 7, the integrals over &, and &,
in (A.8) can be done neglecting large k behavior, which
is strongly damped by the exponential term, to obtain

T(1 + v)y, e |7V

Cnls, 7) = 2(L +v) |7l/7e
2
X exp d ek T > 7o, (A.14)
4(1 + I/)L%—T—
(1]

which reduces to (5.8) for s = 0. The above formula is
valid for L/Ly and (s%/L3)7,/7 less than or of order 1.

APPENDIX B
Calculation of the Optimal Weights

The values of the matrix P; and vector Q; needed for
computing the optimal weights w; from (6.1) are cal-
culated using numerical integration on a grid to ap-
proximate the spatial integrals in (3.2) and (3.4). The
expression (3.2) for the covariance matrix Py
=(R/R])is approximated by

z ~ @ab(s It I ,
7 A A] agﬁ bgftj
where €,,(s, | 7|) is the covariance (5.10) of rain rate
averaged over grid boxes a and b, with areas L* sep-
arated by distance s and lag 7 and where the notation
“‘a € A;”’ means that the sum is taken over those grid
boxes a whose centers lie within the satellite-observed
area A; . Here, €, (s, |7]) is approximated by the em-
pirical formula (5.14).
Likewise, the vector Q; = (R!R') given in (3.4) is
approx1mated by

(B.1)

Qi ~

(s, [t —1]). (B.2)

AAT

a€ bEA

Substituting the empirical formula (5.14) for €,,(s, 7)
after rewriting the time integral as

-1

= (J:_ti + f)d’r@b(s, ) (B.3)

and carrying out the time integrals, one obtains

_ L3 7(s)
AA aEZA bEA $o(5) u(s)

t; u(s)
{ [M(S) (T(S) ) ]
1 ti ©(s)
oo ()]} o

T
J. dt@b(ss |t
0
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where y(v, x) = f; t“" e 'dt is the incomplete gamma
function. The functions were computed numerically using
the formulas given in Press et al. (1986, section 6.2).
The calculation of the mean- squared error o%
needed to obtain the rms errors plotted in Fig. 12 re-

quires calculating ((R")?) in addition to ((R )?) and
the cross term (R R'), since from (2.8)

o2 = ((R")?) — 2{R'R") + ((R")?)
=Y Y Pww; — 23 Qw; + ((R")?).

(B.5)

The last term is given by

drt | dt' (s, |t—1t']).
AL zafae
(B.6)

The double integral can be simplified using identity
(A.2) to obtain

(R ~ 25

((R)>~——

7 y oy f dr(1 — 7/T)Cu(s, T).

a€A bEA

(B.7)

After substituting empirical formula (5.14) for €,(s,
7) and expressing the time integral in terms of the in-
complete gamma function, one obtains

2L% 2 T By(s )'r(s)

T acA bEA (S)

1 T\
X%[E’(ﬂs)) ]

T(s) 2 T ’“’]}
- . (B.8
T y[M(S) ' <T(S)) (B8)

However, for the case T = 1 mo studied here, T > 7(s)
for all s encountered in the sums, so that the incomplete
gamma functions can be well approximated by the or-
dinary gamma function and (B.8) becomes

2L%
=2 2 Qo(s)7(s)

A T a€A bEA

1 7(s) 2
T ALY, N )
x{ [1+ (s)] r[1+u(s)]} (B.9)

2T

For a given optimal weighting calculation, the sat-
ellite orbit is used to generate a description of the se-
quence of area shapes A; and times #; when the satellite
instrument views the specified area A. The sums in
(B.1), (B.4), and (B.9) are then done, taking advan-
tage of the fact that the summands depend only on the
spatial separation s of the grid-box locations of a and
b to reduce as much as possible the number of times
the empirical functions have to be evaluated.

((R")?) ~

(R")?) ~
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