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ABSTRACT

This is the second of two papers analyzing the internal liquid water content (LWC) structure of marine
stratocumulus (Sc) based on observations taken during the First ICCP (International Commission on Cloud
Physics) Regional Experiment (FIRE) 1987 and Atlantic Stratocumulus Transition Experiment (ASTEX) 1992
field programs. Part I examined wavenumber spectra and the three-decade scale range (tens of meters to tens
of kilometers) over which scale invariance holds; the inability of spectral analysis to distinguish between different
random processes was also underscored. This indetermination is removed in this part by applying multifractal
analysis techniques to the LWC fields, leading to a characterization of the role of intermittency in marine Sc.

Two multiscaling statistics are computed and associated nonincreasing hierarchies of exponents are obtained:
structure functions and H(q), singular measures and D(q). The real variable q is the order of a statistical moment
(e.g., q 5 1.0 yields a mean); D(q) quantifies intermittency, H(q) nonstationarity. Being derived from the slopes
of lines on log(statistic) versus log(scale) plots, these exponents are only defined when those lines are reasonably
straight and where this happens defines the scale-invariant range. Being nonconstant, the derived H(q) and D(q)
indicate multifractality rather than monofractality of LWC fields.

Two exponents can serve as first-order measures of nonstationarity and intermittency: H1 5 H(1) and C1 5
1 2 D(1). For the ensemble average of all FIRE and all ASTEX data, the authors find the two corresponding
points in the (H1, C1) plane to be close: (0.28, 0.10) for FIRE and (0.29, 0.08) for ASTEX. This indicates that
the dynamics determining the internal structure of marine Sc depend little on the local climatology. In contrast,
the scatter of spatial averages for the individual flight around the ensemble average illustrates ergodicity violation.
Finally, neither multiplicative cascades (with H1 5 0) nor additive Gaussian models such as fractional Brownian
motions (with C1 5 0) adequately reproduce the LWC fluctuations in marine Sc.

1. Introduction

In this second paper of a two part series, we continue
to investigate the statistical properties of liquid water
content (LWC) spatial structure in marine stratocumulus
(Sc) and enlarge the data analysis toolbox beyond the
usual Gaussian moments, autocorrelation functions, var-
iograms, and/or power spectra. Davis et al. (1996a),
hereafter referred to as Part I, emphasized scale-invari-
ant (‘‘scaling’’) ranges and addressed stationarity issues
from the standpoint of Gaussian statistics and spectral
analysis. This part emphasizes multifractal statistics and
the role of intermittency.

Our database consists of LWC time series collected
by aircraft during the First ICCP (International Com-
mission on Cloud Physics) Regional Experiment (FIRE)
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and Atlantic Stratocumulus Transition Experiment (AS-
TEX) field programs. FIRE (phase I) was conducted in
summer 1987 (hereafter FIRE 87) off the coast of
Southern California (Albrecht et al. 1988), largely in
solid stratocumulus; ASTEX (FIRE phase II) was con-
ducted in summer 1992 in a broad area around the
Azores Islands, in conditions varying from solid to bro-
ken stratocumulus (Albrecht et al. 1995). The ASTEX
LWC data was described by Davis et al. (1994a); the
FIRE 87 LWC data in Part I. Figures 1a–e illustrate
representative portions of this data and Table 1 itemizes
the important parameters of the five FIRE 87 datasets,
reproduces selected results from Part I, and summarizes
some of our findings.

In Part I we found that both FIRE 87 and ASTEX
LWC are statistically ‘‘scale invariant’’ in the sense that
their ensemble-average wavenumber spectra follow
power laws: E(k) } k2b where the spectral exponents b
were found to be very close; 1.36 6 0.06 for FIRE and
1.43 6 0.08 for ASTEX. The corresponding ‘‘scaling’’
ranges are both three decades long but offset: 20 m to
at least 20 km for FIRE, 60 m to at least 60 km for
ASTEX. The lower end of the scaling range for FIRE
is nearly at the resolution of the data and so may not
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FIG. 1. Typical portions of five LWC datasets from FIRE 87. Small-
scale absolute gradient fields are illustrated along with the LWC fluc-
tuations; these are the subject of study in section 3. (a,a9) 30 June:
Strong down spikes, possibly related to cloud-top instabilities. (b,b9)
2 July: similar to panels a,a9. (c,c9) 14 July: Very smooth cloud apart
from the 300-m long dip, probably spurious. (d,d9) 1717 UTC 16 July:
A mixture of the two previous types. (e,e9) 1819 UTC 16 July: Another
mixture, this time some spikes are going up.
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TABLE 1. Characteristics and statistical properties of the FIRE ’87 (King probe) LWC datasets. Measurements were made during the FIRE
1987 stratocumulus experiment, off San Diego, California. A nominal aircraft speed of 100 m s21 was used for the time-to-space conversion,
the sampling rate being 20 Hz. Results for the spectral exponents (bLWC and be) are being reproduced from Part I; the other exponents are
obtained by the methods explained in the text. Arrows indicate columns that are constrained by Wiener–Khinchine relations. For the
nonstationary LWC data itself, b 5 z(2) 1 1 is verified in every case, generally well within the typical uncertainties on the exponents (0.03–
0.08). The wavenumber spectra of the small-scale absolute gradient fields eLWC do not scale well enough individually to define exponents
but their ensemble average does; cf. Part I (Fig. 10).

Date
(1987)

Time
(PDT)

Ntot

(points) log2Ntot

L
(km)

Type z(1)
5 H1

K9(1)
5 C1

z(2)
↓

K(2)

b

LWC
↓

eLWC

30 Jun
2 Jul
14 Jul
16 Jul
16 Jul

2241
0223
2309
1717
1819

28 672
16 384
65 536

8192
12 020

14.81
14
16
13
13.55

143
82

328
41
60

spiky
spiky
smooth
mixed
mixed

0.29
0.22
0.34
0.31
0.34

0.14
0.15
0.03
0.08
0.07

0.41
0.22
0.67
0.42
0.55

0.25
0.25
0.06
0.19
0.12

1.39
1.19
1.68
1.47
1.53

Totals 130 804 654
Ensemble averages 0.28 0.10 0.37 0.21

↑
1.36 ø0.7

↑

be meaningful, but for ASTEX the instrumentation had
better spatial resolution and the scale break at 60 m is
not only robust but an as yet unexplained result.

The main advantage of spectral analysis is that a
wavenumber spectrum can be defined for any stochastic
process w(x), whether statistically stationary or not.
‘‘Stationarity’’ is statistical invariance property, in this
case, under translation in x. More precisely, stationarity
requires that the autocorrelation function ^w(x 1 r)w(x)&
should be a function of r only. We use ^·& to designate
an ensemble or w average, but in practice we always
compute statistics by using a spatial or x average. This
means that we end up postulating some form of ‘‘er-
godicity,’’ that is, the convergence of the two types of
average for large samples. Since ergodic processes are
a subclass of stationary ones, it is convenient to have
an operational criterion for stationarity. In Part I we
show that this is possible in the framework of scale
invariance: b , 1 (for more details, see Davis et al.
1996b). As an illustration of nonstationary behavior, we
showed that such common statistics as mean and stan-
dard deviation are highly unstable for LWC. Only at
scales outside of the nonstationary scaling regime is
some degree of convergence observed.

This strength of spectral analysis is offset by its am-
biguity as an indicator of structure; we recall that very
different looking processes can have identical spectra.
For instance, white noise (a sequence of uncorrelated
random numbers) has E(k) 5 constant but so do ran-
domly positioned d functions. The role of the multi-
fractal approaches used here is to extract more structural
information from the data by importing the notion of
intermittency from turbulence. Spectral analysis was de-
veloped largely for engineering-type problems, such as
signal processing with linear circuitry. In this context,
being only a second-order statistic is not a major lim-
itation; the signals of interest are assumed to be Gauss-
ian, defined entirely by their means, variances, and co-
variances. In contrast, multifractal analysis is rooted in

the nonlinear physics of natural phenomena. By con-
sidering higher-order statistics, it complements the spec-
tral approach.

Hardly a decade after their inception (Grassberger
1983; Hentschel and Procaccia 1983; Parisi and Frisch
1985), multifractal concepts have proven invaluable in
nonlinear science. Their better-known applications are
deterministic chaos (Ott 1993) and turbulence (Sreen-
ivasan 1991). As a general framework for statistical
analysis and stochastic simulation of natural phenom-
ena, new applications of multifractals are appearing on
a regular basis. Also, it is important to note that mul-
tifractal analysis can be reformulated (Davis et al. 1994b
and references therein) and generalized (Muzy et al.
1993) within the framework of wavelet transforms.

Multifractals have been used in several areas of me-
teorological interest, rain rate variability being the most
successful application to date (Gupta and Waymire 1993
and references therein). Professor Lovejoy’s group at
McGill University is making steady progress on the
earth’s radiation fields at various wavelengths (Gabriel
et al. 1988; Tessier et al. 1993). Recent theoretical cloud
radiation studies have involved both fractal models (Ga-
briel et al. 1990; Davis et al. 1990; Barker and Davies
1992) and multifractal models (Cahalan 1989; Davis et
al. 1991a,b; Evans 1993a,b; Cahalan et al. 1994a,b;
Marshak et al. 1995a,b; Davis et al. 1997).

This paper is organized as follows. Section 2 de-
scribes structure functions in the framework of scale
invariance considering statistics of all orders. In section
3 we turn to singular measures, the simplest incarnation
of singularity analysis. In section 4 structure functions
are interpreted as a means of quantifying and qualifying
nonstationarity in cloud structure; singular measures
play the same role for intermittency. For both multi-
fractal approaches, we discuss spurious scaling and/or
breaks in scaling due to glitches in the data and/or in-
sufficient sampling, detail the scaling of the results for
FIRE 87 data, and compare their end products (expo-



1426 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

nents, prefactors, and scaling ranges) with those of AS-
TEX. In section 5 we use the ‘‘bifractal plane,’’ a simple
two-parameter representation of nonstationary and/or
intermittent geophysical data, to discuss ergodicity vi-
olations in FIRE 87 marine Sc and the status of sto-
chastic cloud modeling. We draw our conclusions and
outline some developments and applications in section
6. Interpretation of selected multifractal statistics in
terms of fractal geometry is discussed in the appendix.

2. The qth-order structure functions of LWC in
marine Sc

a. Generalities and practicalities of structure
functions

Although our focus is the variability of LWC in ma-
rine Sc, the techniques we use are applicable to any
dataset representative of a geophysical field. In an effort
to make multifractal statistics more palatable, we will
describe them in general terms. We assume, given at
least one large one-dimensional sequence of scalar
quantities,

wi 5 w(xi), xi 5 i, (i 5 1, · · ·, Ntot), (1)

a discretized version of the random process w(x), 0 # x
# L (with Ntot 5 L/, k 1). We first assume this field is
scale invariant; its energy spectrum follows a power law,

E(k) } k2b, (2)

over a large range of k from which a range of scales (r
5 1/k) can be deduced. We further assume it is non-
stationary (b . 1) with stationary increments (b , 3).
The statistical properties of the increments

Dw(r; x) 5 w(x 1 r) 2 w(x), 0 # r # L,

0 # x # L 2 r (3)

will therefore be independent of position x. This applies
in particular to ^zDw(r; x)zq& [ ^zDw(r)zq&, the structure func-
tion of order q. Due to the scale invariance, we expect

^zDw(r)zq& } rz(q), q $ 0, (4)

where ^·& denotes an ensemble average. Extension of
this statistic for q , 0 is discussed by Muzy et al. (1993).
Finally, we assume that there is a large range of r-values
where the power law relations (4) apply for all the q of
interest.

Some general statements can be made about ^zDw(r)zq&
and z(q) as functions of q. First, proper normalization
in (4) requires z(0) 5 0. Furthermore, z(q) is a concave
function (Parisi and Frisch 1985) and it is also nonde-
creasing if the increments in Eq. (3) are bounded (Frisch
1991; Marshak et al. 1994). We can therefore define the
hierarchy of exponents:

z(q)
H(q) 5 , q $ 0. (5)

q

By ‘‘hierarchy’’ we mean a monotonic function, in this

case, nonincreasing. Narrowly distributed increments,
‘‘short-tailed’’ according to Waymire and Gupta’s
(1981) classification, are a special but important case:
we have ^zDw(r)zq& ø ^Dw(r)2&q/2. Equations (4)–(5) then
yield z(q) 5 qz(2)/2, hence H(q) [ H(2); one exponent
determines the scaling of all the moments of the incre-
ments. This is called ‘‘monoscaling’’; if z(q) is not linear
in q, we talk about ‘‘multiscaling.’’

At least two z(q) are well known. For nonstationary
scaling processes with stationary increments, the Wie-
ner–Khinchine theorem reads as (Monin and Yaglom
1975)

1 , b 5 z(2) 1 1 5 2H(2) 1 1 , 3. (6)

Structure-function analysis at all orders is therefore a
complement to spectral analysis, applicable primarily to
nonstationary signals. Furthermore,

0 , H1 5 H(1) 5 z(1) , 1 (7)

is the ‘‘roughness’’ or Hurst exponent that we will use
to characterize the nonstationarity of the data. The upper
limits in Eqs. (6)–(7) corresponds to nonconstant ev-
erywhere differentiable signals, which yield zDw(r; x)z
} r for almost all x and w [see Eq. (4) with q 5 1, as
well as the appendix].

b. Test case

What if our specific dataset does not lead to the simple
straight line when plotting ^zDw(r)zq& versus r in log–
log axes? What if it is easier to see two or more scaling
regimes? Can we conclude that there is a break in the
scaling?

Before assigning z(q) to marine Sc LWC, we address
these basic issues with the help of a short time series
(N 5 210 points, L 5 N,, , 5 1) borrowed from the 14
July 1987 FIRE LWC dataset rearranged for tutorial
purposes (Fig. 2a). A priori, here are three special scales,
r1, r2, and r3. The first two (r1 ø 24 and r2 ø 26) cor-
respond to the widths of the first (deepest) and second
(shallower) dips, while the third (r3 ø 28) is the distance
between them. The latter actually belongs to the dataset
(Fig. 1c), the former is artificial. We now show why the
corresponding structure functions (Fig. 2b) cannot be
described by a single power law in r.

Consider the largest q (q 5 5, reproduced from Fig. 2b
in Fig. 2c); this choice emphasizes the most intense events.
As r increases, the fifth-order structure function first in-
creases sharply because the increments from the top to the
bottom of the deeper dip (width r1) dominate and there
are more and more of these. Then ^zDw(r)z5& is ‘‘saturated’’
with respect to this dip; for all r $ r1, zDw(r)z5 contributes
a fixed number of events to the spatial average. Further
on, we see the secondary dip (width r2) at work in a similar
way. It allows ^zDw(r)z5& to keep growing but at a slower
rate because smaller increments are spawned by this struc-
ture. For r $ r2, the fifth-order structure function has again
become saturated. We can thus retrieve two of our special
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scales, r1 and r2, from a close look at log^zDw(r)zq& (for
large q), looking for r values where the slopes change.
The last remarkable scale is r3. We see the deficit in
^zDw(r)z5& at this point. However, for the purposes of this
tutorial, r3 was set to 28 so that our sampling of the pa-
rameter r by powers of 2 would not miss it.

The slopes of z(q) can be predicted only in some
simple theoretical cases. As shown above, Heaviside-
type step functions

produce straight lines over all scales with z(q) equal to
unity for q . 0. For a piece-wise constant hat function

of width r*, the slopes are equal to unity for all r # r*
and 0 otherwise (q . 0). Imagine a weakly variable
function superimposed on the hat function

then, instead of being independent of q, the slopes are
equal to unity for large q only, when the increments due
to the small fluctuations become statistically negligible
with respect to those caused by the anomaly. Further-
more, if the signal around the bump goes up or down
gradually

then the large q slopes emphasize the details of the rise
to and descent from the high part of the dataset. This
is qualitatively what we see in Figs. 2b,c.

Looking back to Fig. 2b, we can focus on typical rather
than extreme increments by choosing q 5 1. Since we see
no more break in the scaling at r1, we know that these
numerous lesser but more average increments overwhelm
the contributions, however large, due to the first dip. Spe-
cifically, we find a slope, H1 ø 0.7, which tells us that,
ignoring the dips, this signal is rather smooth. The local-
ized effect of r3 is also imperceptible. If the break in scal-
ing, say, at r1 had persisted down to q 5 1, our conclusions
would be quite different. We would have grounds to say

that structures at scale r1 are frequent enough to influence
the mean behavior and, in all likelihood, these would be
visually prominent in the data. However, there is no guar-
antee that such a break in scaling will survive averaging
over several datasets collected in conditions similar enough
to view them as a statistically homogeneous whole. Ex-
amples will follow.

Still focusing on q 5 1, the second dip (width r2 ø
26) cannot break the scaling for the same reasons in-
voked at r1; the saturation of ^zDw(r)z& at log2r ø 6 occurs
for another reason. In this case we observe that the mean
increments no longer increase because the portion of
data chosen for this exercise is relatively flat (apart from
the two dips, inconsequential at q 5 1). For large enough
r, we always expect stationary-type (r-independent)
structure functions. We simply have nonstationary be-
havior for r & 26 and stationary behavior for r * 26;
the crossover defines the integral correlation scale R.

As we will see, 26 turns out to be an underestimate of
the crossover scale R and this small portion of 14 July
data can only be viewed as pseudostationary at scales 26

& r & 29. This last value marks the transition to scale
independence for ^zDw(r)zq& using the whole dataset. At
the same time, H1 ø 0.7 is a gross overestimate with
respect to the complete dataset. This is a good example
of how nonstationary data are also nonergodic, that is,
how single spatial averages cannot be representative of a
whole atmospheric process. In this case, R is underesti-
mated and H1 is overestimated because the data is locally
smoother than average; apart from the dips, the data in
Fig. 2a is stationary over the relatively wide range of scales
that we can assess visually.

All of the above statistical idiosyncrasies are traceable
to sampling problems and occur for some of the LWC
datasets in section 2c. We would draw erroneous con-
clusions if we were to consider the longest dataset (14
July) as the most representative since it also happens to
be the smoothest of the set.

c. Results for LWC in marine Sc for FIRE 87

Let us summarize:

R However random data may look, it generally has rec-
ognizable patterns or structure; qth-order structure
functions provide us with a simple statistical tool to
study these recurrent patterns.

R If only one dataset is available, we must make an
ergodicity assumption to estimate ensemble averages.
This assumption is generally not valid for extreme
events, however, and related breaks in scale invariance
cannot be considered robust or physical without fur-
ther confirmation.

R If several datasets that form a statistically homoge-
neous whole are available, then the influence of the
ergodicity assumption can be minimized by averaging
the statistics over all of them.

We recall from Part I that there are three types of
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FIG. 2. Test data and qth-order structure function analysis. (a) LWC data w(x), 0 # x # 1024,
extracted from the 14 July run, partially reproduced in Fig. 1c. This data contains the suspicious
glitch described in Part I and a narrower, stronger dip has been added in front of it for tutorial
purposes. Three characteristic scales are highlighted. (b) Scaling of the structure functions ^zw(x
1 r) 2 w(x)zq& for log2r 5 0(1)9 with , 5 1 and q 5 1(1)5, displaced for clarity. The leveling
off at r ø 26 is a manifestation of ‘‘pseudo-stationarity’’ in this small portion of nonstationary
data (see text). (c) Same as (b) but for q 5 5 in order to single out the most intense events,
allowing us to identify three special scales in the data.

data in our collection. The 30 June and 2 July flights
(Figs. 1a,b) exhibit interesting variability with deep spo-
radic downward spikes. The 14 July flight (Fig. 1c)
appears to be through a very homogeneous cloud layer
but contains an anomaly, a deep dip lasting 3 s, or 60
pixels (300 m) long. The two flights on 16 July (Figs.
1d,e) are a mixture of the previous two types. Figures
3–5 show our estimates of ^zDw(r)zq& versus r in log–
log (base 2) axes for 1 # q # 5; r is reckoned in 5-m
pixels so its range is from , 5 1 to the largest power
of 2 less or equal to L/2 5 Ntot/2 (cf. Table 1). For all
of these r values, at least Ntot/2 two-point events con-

tribute to the spatially averaged structure functions. Our
aim is to obtain the individual and ensemble z(q) and
associated scaling range [h, R] if different from [,,L].
First we consider each flight separately.

Figure 3 is devoted to the 14 July data. In (a) the second
half of the dataset is used (half of which is illustrated in
Fig. 1c). There is a clear break in scaling for q $ 2 around
log2(r/,) 5 6, the size of the conspicuous dip in Fig. 1c.
In (b) the dip is avoided by starting the average after the
dip; the scaling is indeed restored, up to r/, 5 212 where
the increments no longer increase; equivalently, stationary
behavior sets in. This gives us an estimate of the integral
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FIG. 3. Structure functions for the ‘‘smooth’’ 14 July LWC dataset from FIRE 87, with and
without anomalies. (a) First panel shows log2^zDw(r)zq& vs log2(r/,) for the second half of the
flight for q 5 1(1)5, top to bottom. Notice the saturation at r ø 26,, the width of the dip visible
in Fig. 1c. (b) The same statistics after moving the beginning of the sample to after the dip.
Saturation now occurs at the integral scale (ø212 pixels, 20 km), where stationary behavior sets in.

scale in marine Sc during FIRE 87 of 20 km. The slopes
z(q) are determined by regression without the largest and
more stationary scales and are plotted in Fig. 6. They
follow closely z(q) ø qH1 with H1 ø 1/3. This gives us
Kolmogorov (1941) scaling for the energy spectrum: b ø
5/3 from Eq. (6), consistent with the direct Fourier trans-
form estimate.

The 30 June and 2 July datasets’ structure functions are
plotted in Figs. 4a and 4b, respectively. The traceable
breaks in the scaling are due to extreme events in both
cases, although this time there is no question of being
anomalous. The average ^zDw(r)zq&s for the two flights in
Fig. 4c scale well from log2(r/,) 5 2 (20 m) to log2(r/,)
5 10 (5 km). Figure 4d shows the average for the two
16 July flights where the upper bound of the scaling range
extends to log2(r/,) 5 12 (20 km). The exponents asso-
ciated with moments of order 0 # q # 5 for the first (30
June, Fig. 1a) and last (16 July, 1819 UTC, Fig. 1e) flights
are plotted in Fig. 6. In Table 1 we show that b ø z(2)
1 1 in all cases, an independent confirmation of the hy-
pothesis of nonstationarity with stationary increments.

In sharp contrast with the exponents for 14 July (without
the anomalous dip), we notice the nonlinearity of z(q) with
respect to q. Given the large range of scales involved,
these LWC fields are endowed with multifractality. Not
surprisingly, the intermittent, spiky 30 June is the most
multifractal. All of the general features of the z(q) function
described in section 2a are observed, including monoton-
icity. Notice the increase in fractal graph dimension (cf.
the appendix), hence more jumpiness, and the decrease in
spectral exponent in Eq. (6), hence more high-frequency

energy, with the multifractality of the cloud, as measured
by the curvature in its z(q) function.

d. Comparison of average structure functions for
FIRE 87 and ASTEX

In Fig. 5 we show ^zDw(r)zq& averaged over all five
datasets for the first five integer values of q and r up
to 40 km (213 pixel), after which the shorter datasets (30
June, 2 July, and 16 July) no longer contribute and the
longest (14 July) shows evidence of stationary behavior.
The scaling is fairly good from 20 km down to 20 m;
the corresponding exponents are highlighted in Fig. 6.
For small q, the exponents z(q) corresponding to the
average over all five datasets are close to the weighted
average over the exponents. For example, the H1 5 z(1)
for each dataset is displayed in Table 1. Their average,
weighted by L, is 0.31 while the H1 from the scaling of
^zDw(r)zq& averaged over all datasets (Figs. 5 and 6) is
0.28. Increasing q, the situation becomes quite different:
rougher datasets (30 June and especially 2 July) dom-
inate the average. This is because, in spite of their large
number, the smaller increments (smoother data) con-
tribute little to higher-order moments.

Finally, we have reproduced in Fig. 6 the z(q) values
obtained by Davis et al. (1994a) for an average over five
LWC datasets captured by H. Gerber during ASTEX in
June 1992. These datasets were selected from among many
others to be ‘‘in cloud’’ for as long as possible (L ø 130
km) to make the comparison with FIRE 87 data mean-
ingful. A slightly slower sampling rate was used than in
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FIG. 4. Structure functions for the ‘‘rougher’’ LWC datasets from FIRE 87, before and after averaging.
Same as Fig. 3 except (a) for the 30 June flight and (b) for the 2 July flight (Figs. 1a,b). (c) The
average of the two datasets in (a) and (b). (d) The average of the 1717 UTC and 1819 UTC 16 July
datasets (Figs. 1d,e).

FIRE 87 (10 Hz for an aircraft speed of ø80 m/s, , ø 8
m). The two z(q) functions agree for the smallest q, rep-
resentative of ‘‘typical’’ increments: relatively small and
well sampled. The agreement of the exponents up to q ø
1.5 argues for common features in the internal distributions
of liquid water in marine Sc; their corresponding statistical
properties depend little on local climatology. The FIRE
87 and ASTEX exponents differ for larger q; the more
pronounced curvature in z(q) for FIRE 87 indicates a
broader spectrum of increments, relative to their mean. We
also note that the scaling range for the ASTEX data is

shifted compared with that of the FIRE 87 data: h ø 60
m to R ø 60 km. The factor of 3 between the FIRE 87
and ASTEX scaling ranges, the size of the structures in
the respective Sc layers, coincides roughly with the ratio
of boundary layer depths during the two experiments.

3. Singular measures for absolute small-scale
LWC gradients

In section 2 we characterized the nonstationarity mul-
tifractal structure of marine Sc with the help of structure
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FIG. 5. Ensemble-averaged structure functions for FIRE 87 data. Struc-
ture functions ^zDw(r)zq&, q 5 1(1)5, vs r/, on a log–log plot for the
average over all five flights from FIRE. Notice the good scaling from
20 m to 20 km, all q’s considered.

FIG. 6. Exponent function z(q) for LWC during FIRE 87 and ASTEX.
Plain symbols: z(q), q 5 0(0.2)5, for three representative datasets with
different ranges of scaling: from 20 m to 5 km for 30 June (cf. Fig. 4a);
from 20 m to 20 km for 1819 UTC 16 July, (Fig. 4d); from 5 m to 10
km for 14 July, without conspicuous dip (Fig. 3b). Bold symbols: z(q)
for the average over all the FIRE 87 data and comparable ASTEX results
reproduced from Davis et al. (1994a). Comparing z(5) for 14 July, 30
June, and the FIRE 87 average, this last one is the smallest because of
the contribution of 2 July dataset (not illustrated here), the roughest of
all five. The exponents and the associated error bars (for averages only)
were estimated using least squares.

functions. It would be interesting to remove this non-
stationarity from the LWC data in order to analyze the
statistical properties of the remaining stationary field.

An expedient way of obtaining a stationary field from
a nonstationary one with stationary increments (1 , b
, 3) is to take derivatives (b → b 2 2). In moderately
nonstationary cases such as ours with H1 ø 0.2–0.4 and
b ø 1.2–1.7 , 2, this leads to irregular gradient fields
with b , 0. Alternatives include fractional differenti-
ation, which is a power law filtering in Fourier space
with an exponent greater than zero but less than one
(Schmitt et al. 1992). However, this complication does
not make a difference with respect to first- or even sec-
ond-order derivatives in the outcome of singularity anal-
ysis (Lavallée et al. 1993; Tessier et al. 1993).

Currently, a large amount of turbulence research is
focused on the role of intermittency. Multiplicative cas-
cades are now widely accepted as models for intermit-
tent dissipation fields in turbulent flows. We briefly dis-
cussed these models in Part I and the appendix. These
models are characterized by spikiness and nonnegativ-
ity. This last feature suggests that we look at the absolute
values of the gradients, taken at the smallest scale still
in the scaling regime of the structure functions and/or
energy spectrum; in turbulence studies, squares of ve-
locity gradients are considered (Meneveau and Sreeni-
vasan 1987a). For the samples of nonstationary LWC
w(x), we have illustrated nonnegative stationary fields
ew(x) in Figs. 1a–e. We note the intermittent but tightly
correlated episodes with spikes of different widths and
heights.

Our last question is what to do with these spiky ew(x)
fields. Generally speaking, we wish to characterize their
singularity properties. Singularity analysis comes in sev-
eral variants, some of which bear multiple names in the
literature: t(q) analysis (Meneveau and Sreenivasan
1987a), trace moments (Schertzer and Lovejoy 1987),
canonical measures (Chhabra et al. 1989), f(a) analysis

(Meneveau and Sreenivasan 1989), probability distri-
bution multiple scaling (Lavallée et al. 1991), etc. We
will use the simplest form and refer to it as ‘‘singular
measures.’’

a. Generalities and practicalities of singular
measures

Given a nonstationary random atmospheric process
w(x), 0 # x # L with stationary increments that is scale
invariant from some outer scale R down to some inner
scale h, we take the absolute value or square the gradient
field at that last scale, namely, zDw(h; x)zm in the no-
tations of the previous section with m 5 1, 2. The scales
R and h are physical quantities, independent of the in-
strumentally determined scales L (the total length) and
, (the sampling step). Recall that for the energy spec-
trum (Part I) scaling prevails down to the inverse Ny-
quist frequency (2, 5 10 m), and for structure functions
(section 2), we have scaling down to h 5 4, 5 20 m.

Defining e(h; x) as a nonnegative measure of the h-
scale gradient field, normalized by its mean,

mz Dw(h; x) z
e(h; x) 5 , 0 # x , L 2 h, (8a)

m^ z Dw(h; x) z &

for either m 5 1 (our choice, for simplicity) or m 5 2
(as in turbulence studies); the two options can and will
be compared after the analysis. Equation (8a) shows
how the data w(x) enters the singular measures approach;
in the following, we will focus on spatially degraded or
coarse-grained versions of the above field. We will pa-
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rameterize these by the scale r (h , r # L) over which
the spatial averaging is performed:

x1r1
e(r; x) 5 e(h; x9) dx9, h # x # L 2 r.Er x

(8b)

The quantities e(r; x) are referred to as measures because
they are nonnegative and defined only by integrals over
‘‘boxes.’’ The basic postulate of mathematical measure
theory is therefore verified: the measure associated with
the union of two disjoint sets is the sum of the measures
for each set.

Based on small-scale increments of w(x), these e(r;
x) fields are presumably stationary and their statistical
properties are independent of x. This opens the possi-
bility of using spatial averaging again, this time over x
in Eq. (8b), in order to estimate the statistical properties
of e(r; x). The simplest properties of e(r; x) are their
one-point moments ^e(r; x)q& [ ^e(r)q&. We will seek the
exponent K(q) in

^e(r)q& } r2K(q), q $ 0, (9)

adopting the notation of Schertzer and Lovejoy (1987).
The condition on q in Eq. (9) is required only when
vanishing e(h; x)s occur in the data; other restrictions
can apply (Mandelbrot 1974; Kahane and Perièyre 1976;
Schertzer and Lovejoy 1987, 1992; Gupta and Waymire
1993).

Some general results follow directly from Eq. (9).
First, normalization of the pdf for e(r; x) implies K(0)
5 0; furthermore, using Eq. (8a) we find ^e(r)& [ 1
hence K(1) 5 0. Analogous with 2z(q) in Eq. (4), K(q)
will be a convex function. Since K(0) 5 K(1) 5 0,
convexity requires K(q) # 0 for 0 , q , 1 and K(q)
$ 0 elsewhere; we will also have K9(1) $ 0, a fact we
will soon exploit. As for structure functions, a hierarchy
of exponents can be defined, this time nondecreasing:
C(q) 5 K(q)/(q 2 1), which is related to the well-known
nonincreasing hierarchy of ‘‘generalized dimensions,’’

K(q)
D(q) 5 1 2 C(q) 5 1 2 , (10)

q 2 1

first introduced by Grassberger (1983) and Hentchel and
Procaccia (1983) with dynamical systems and strange
attractors in mind. If D(q) [ const, we are dealing with
a monoscaling (or ‘‘uniform’’) measure; otherwise, we
talk about multiscaling (or ‘‘multifractal’’) measures.
Examples of both types are presented in the appendix.

As for increments and structure functions, it is im-
portant to know what to expect for weakly variable e(r;
x) fields. In this case, we can anticipate ^e(r)q& ø ^e(r)&q

(i.e., the mean can be used to estimate all other mo-
ments); Eqs. (9)–(10) then yield K(q) 5 qK(1) [ 0, thus
D(q) [ 1, which is a ‘‘trivial’’ form of monoscaling.
Otherwise, D(q) , 1 for q . 0, we are dealing with
highly singular (hence skewed) e distributions where,
at the smallest scales, the most frequent e values are

very small but now and then intense spikes occur. This
is why we talk about singular measures.

We need the whole family of exponents in either (9)
or (10) to characterize the intermittency in LWC, but it
is convenient to define an intermittency index. Since
K(0) 5 K(1) 5 0, there is no linear trend in K(q) such
as we found for z(q) and parameterized with z(1). It is
still desirable to dwell on the case q 5 1, being one of
the least affected by sampling problems. In congruence
with our use of H1 5 z(1) for nonstationarity, we use

0 # C1 5 1 2 D(1) 5 C(1) 5 K9(1) # 1 (11)

as a first-order intermittency parameter. When C1 . 0,
we have D(1) , 1; this ‘‘information dimension’’ is the
fractal dimension of the sparse set where the e that
contribute most significantly to their (unit) mean are
concentrated, thus making C1 the information codimen-
sion. In the appendix we illustrate graphically the ideas
of concentration, sparseness, and fractality, conveyed
with C1.

b. Test case, continued

Before applying the above recipes to the LWC da-
tasets, we will have a last look at the test data concocted
in section 2b for tutorial purposes from a small portion
of the 14 July run. In Fig. 7a, we have taken h 5 , 5
1 for simplicity and plotted the e(1; x) 5 zDw(1; x)z field
derived from w(x) in Fig. 2a. This dataset is clearly
singular (maxxe(1; x)/^e(1)& ø 63) and correspondingly
intermittent. This field is stationary since its spectral
exponent is be ø 0.6.

Figure 7b shows ^e(r)q& versus r for integer q 5 1,
. . . , 5 on a double log plot. The scaling is remarkably
good, except for the largest r and q. Having only one
sample, the large-scale values of ^e(r)q& are based on a
small number of boxes, and experimentation shows that
they depend highly on the precise location of the peaks.
This artificial sensitivity can be tamed by using a re-
dundant sampling of x in Eq. (8b) instead of disjoint
boxes when computing the averages.

It follows from our definitions that ^e(r)& 5 1 for all
scales r, and that ^e(L)q& 5 1 for all q at the largest
scale (r 5 L). Linear regressions were used to obtain
the exponents 2K(q) leading to a nonnegligible inter-
mittency parameter, C1 ø 0.2. Since the regression lines
in Fig. 7b have a common intercept on the horizontal
axis, their intercepts with the vertical axis are approx-
imately proportional to K(q). Now, for higher values of
q, the intercepts are equally spaced, indicating that we
are in a regime where K(q) is quasi-linear in q. This is
to be expected when sampling problems occur. Indeed,
for q sufficiently large, the estimator of ^e(r)q& becomes
dominated by a single intense event, maxxe(1; x). We
therefore have maxxe(r; x) ø maxxe(1; x)/r, hence ^e(r)q&
ø r[maxxe(1; x)/r]q, that is, ^e(r)q& } r12q and K(q) ø
q 2 1 for q → `.

We will observe the onset of this linear behavior in
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FIG. 7. Test data and singularity analysis. (a) Absolute gradient field e(1; x) } zw(x 1 1) 2 w(x)z
derived from the tutorial dataset in Fig. 2a for feeding the approach based on singular measures. (b)
Same as Fig. 2b but for the averaged singular measures ^e(r)q&, log2r 5 0(1)9 with , 5 1 and q 5
1(1)5. The multiscaling observed for r # 28 is traceable to the artificial features in w(x).

K(q) for LWC in section 3c. This tells us that high
enough q values have been considered. This asymptotic
behavior in exponent space, D(q) → constant for q →
`, is the counterpart for singular measures of the struc-
ture function’s saturation (flattening) due to poor sam-
pling and/or violations of ergodicity observed for the
structure functions with respect to scale, prior to defin-
ing exponents.

Finally, were it not for the two glitches in the test
data, the outcome would have been C1 ø 0. Recall that
we introduced one of the two dips artificially and that
the other is probably not related to natural LWC fluc-
tuations either. This means that singularity analysis can
easily lead to wrong conclusions about the prevailing
intermittency since we are not always forewarned by
breaks in the scaling as is the case with qth-order struc-

ture functions. Since important structural information is
lost when generating the absolute gradient field, the use
of singular measures alone, without careful scrutiny of
the raw data, is not recommended, especially when a
single dataset is involved.

c. Results for LWC in marine Sc for FIRE 87

Figures 1a9–e9 show the absolute small-scale gradient
fields for the representative samples of our LWC data
from FIRE 87. Figure 8 illustrates ^e(r)q& (q 5 1, · · · ,
5) for three of these datasets: (a) 30 June in Figs. 1a,a9,
one of the two cases deemed spiky or intermittent; (b)
14 July in Figs. 1c,c9, the smooth case (with an anom-
alous dip); and (c) 1819 UTC 16 July in Figs. 1e,e9,
one of the two intermediate cases. The scale parameter
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FIG. 8. Singular measures for various LWC datasets from FIRE 87.
(a) Log2^e(r)q& for q 5 1(1)5, vs log2(r/,), 4 # r/, # L/, 5 214 for the
‘‘spiky’’ 30 June data. See Fig. 1a for the LWC time series, denoted
w(x); here we take e(h; x) 5 zDw(h; x)z, not unlike Fig. 1a9 but for h/,
5 4 pixels rather than in h/, 5 1. (b) Same as in (a) except for the
‘‘smooth’’ 14 July data (Figs. 1c,c9) and using h 5 ,. (c) Same as in
(a) but for one of the ‘‘intermediate’’ 16 July datasets (1819 UTC, Figs.
1e,e9). The multiscaling (^e(r)q& k 1 for r K L and q . 1) behavior
observed for r/, , 27 in (b) is traceable to the presence of an anomaly
in the 14 July data (the dip ø 26 pixels wide that is possibly artificial);
the quasi-trivial (^e(rq)& ø 1) behavior obtained for r/, $ 27 is probably
more representative of this flight. In (a) and (c) there is no break in the
scaling and the multiscaling is not believed to be spurious.

r goes from h 5 4, 5 20 m to L 5 214, ø 82 km (for
30 June) and to L 5 213, ø 41 km (for 16 July); finally,
for 14 July, it goes from h 5 , 5 5 m to L 5 216, ø
330 km.

Figure 1a9 (30 June) is reminiscent of a reasonably
intermittent multifractal cascade model; thus, the cor-
responding log2^e(r)q&s are linear in log2r over the full
range of scales (from h 5 20 m to L 5 84 km). The
absolute slopes defining the K(q) exponents are dis-
played in Fig. 10 and are sampled more frequently. We
notice the anticipated convexity and the predetermined
values K(0) 5 K(1) 5 0. The important C1 parameter
is computed by numerical differentiation of K(q) at q
5 1, yielding 0.14.

In contrast, Fig. 1c9 (14 July) is unlike a cascade
process: the two spikes are as anomalous as the dip in
Fig. 1c, marking its beginning and end. For scales larger
than the dip (8 # log2(r/,) # 15), the singular measures
are characteristic of homogeneity (roughly constant
^e(r)q&). For smaller scales, the probably spurious spikes
induce an intense multiscaling. Avoidance of the dip
reduces the range of scales but almost completely elim-
inates the multiscaling. The scaling is not illustrated,
but the new slopes are plotted in Fig. 10 and the as-
sociated C1 is very small, ø0.03. This is ‘‘residual’’ or
‘‘spurious’’ multifractality, namely a multiscaling as-
sociated with weak variability but entirely traceable to
the finite amount of data (hence range of scales) in-
volved. Spurious multiscaling is discussed for specific
models by Aurell et al. (1992), Marshak et al. (1994),
Eneva (1994), and in general terms by Davis et al.
(1996b).

The singularity properties of the data in Fig. 1e9 (1819
UTC 16 July) are illustrated in Fig. 8c. The quality of
the scaling is degraded but, as expected, the degree of
multiplicity (range of slopes) is intermediate between
the first case (30 June) and the second case (14 July)
without the presumably artificial glitch in the data. The
exponents obtained for 2 # log2(r/,) # 11 are plotted
in Fig. 10. Unsurprisingly, C1 is also intermediate
ø0.07. Note that in all three cases above, the K(q)
curves in Fig. 10 become straight for the largest q due
to the dominance of a single event, as explained in sec-
tion 3b for the test data.

d. Comparison of average singularity properties for
FIRE 87 and ASTEX

In Fig. 9, ^e(r)q&, cumulated over all five FIRE 87
datasets, shows good scaling over the full range of avail-
able scales: 2 # log2(r/,) # 13. As for structure func-
tions, we do not go further in order to have at least one
contribution per dataset to the average. The correspond-
ing exponents are carried over to Fig. 10. The most
intermittent datasets (30 June and 2 July) dominate the
average for large q. For small q, the K(q) obtained by
averaging ^e(r)q& over all five datasets is closer to those
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FIG. 9. Ensemble-averaged singular measures for FIRE 87 data. Same
as Fig. 8 except for the average of all five datasets. No break of scaling
is observed from 20 m to 40 km.

FIG. 10. Exponent function K(q) for LWC during FIRE 87 and ASTEX.
Plain symbols: K(q), q 5 0(0.2)5, for the three datasets used in Fig. 8;
for 14 July, however, the suspicious dip was avoided and the new K(q)
are all much smaller. Bold symbols: K(q) for the overall average of the
FIRE 87 data (using the results in Fig. 9 from 20 m to 40 km) and
comparable ASTEX data.

of the intermediate datasets. We find C1 ø 0.10 for the
ensemble average.

We have reproduced in Fig. 10 Davis et al.’s (1994a)
results for K(q) obtained from LWC fluctuations inside
marine Sc during ASTEX. The agreement with the FIRE
87 data is good for small values of q, those associated
with the well-sampled values of e(r; x); for instance, C1

ø 0.08 for ASTEX. At any rate, the large ranges of
scales and of associated K(q) confirm the multifractal
nature of marine Sc, this time in connection with the
singularity properties of LWC’s absolute gradients. Also
confirmed is the first-order independence with respect
to the local climatology of the nonlinear dynamics gov-
erning the structure of these clouds, this time in con-
nection with their intermittency properties.

4. Utility of multifractal analyses

a. Removing spectral ambiguity

In Part I we used spectral analysis to study LWC in
marine Sc but also reassessed its utility at large, beyond
being the standard procedure for characterizing spatial
correlations in data. We found that E(k) is a rather poor
discriminator between different models and/or datasets
but also that, in conjunction with scale invariance, it
has the power to separate two broad classes of process:
stationary, or nonstationary. This is extremely useful
since the two categories call for different treatments in
physical space statistics. For instance, running means
are, at best, difficult to interpret in nonstationary re-
gimes; it is better to focus on spatial averages using
increments.

In sections 2 and 3, we have proposed multifractal
analysis in physical space as a means to overcome the
fundamental ambiguity of a purely spectral approach.
In the remainder of this section, we go beyond this
necessary exercise and address the same question as for
E(k) and b: what is the real utility of structure functions

and z(q), singular measures and K(q)? The answer is
first registered in some carefully selected examples and
then stated in general words.

b. Quantifying/qualifying nonstationarity with
structure functions

In Part I, stationary behavior was mapped to b , 1
for scale-invariant processes and, from Eq. (5), we see
that in the stationary limit b → 11 as z(2) → 01, im-
plying z(q) [ 0 because of its analytical properties listed
in section 2a. This reflects the fact that stationarity per
se (all statistical properties are invariant under trans-
lation) implies stationary increments. However, baring
finite-size effects (Davis et al. 1996b), increments have
trivial statistics, that is, z(q) [ 0 in Eq. (4), since in-
variance by translation over arbitrary distances implies
statistically scale-independent increments.

So nontrivial structure functions imply a degree of
nonstationarity. Can we actually measure nonstation-
arity? Is it not an ‘‘on–off’’ attribute? This is indeed
possible as soon as we have a well-defined scale-in-
variant regime, not a strong constraint for LWC or other
atmospheric data. The complete z(q) or H(q) is clearly
required to describe the data’s nonstationarity in general.
However, we only need a single exponent to quantify
the amount of nonstationarity. We have singled out H1

for this purpose, essentially for historical reasons but
its robustness with respect to glitches, as demonstrated
in section 2b, is welcome. With this quantification in
mind, we can perceive the remainder of the exponent
as a means to qualify the nonstationarity. Consider the
following examples.

R Different amounts of monoscaling nonstationarity.
Figure 11 shows a progression of increasingly non-
stationary processes. The upper case is a sample of
1/f noise that is marginally stationary according to our
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FIG. 11. Different amounts of the same kind of nonstationarity. Samples
of fBm w(x) on the interval 0 # x # L 5 1024, for H1 5 0, 1/3, 1/2,
2/3 and 1, from top to bottom. The nonstationarity parameter H1 increases
from the marginally stationary case (1/f or flicker noise at H1 5 0) to
the extreme case of a noiseless linear trend (w(x) 5 x/L). This one-
parameter (0 # H1 # 1) family of processes are all nonstationary (b 5
2H1 1 1 . 1) with stationary increments (b , 3) and can be said to
have the same kind of nonstationarity, namely, the monoscaling kind:
z(q) 5 qH1 or H(q) [ H1.

spectral criterion (b 5 1); it has H(q) [ 0, and H1 5
0 in particular. The middle case is Brownian motion
(Bm), the prototypical nonstationary signal that has
H(q) [ H1 5 1/2 (hence b 5 2). The lower case is
a noiseless linear trend (H1 5 1) representative of
differentiable functions (b $ 3). The two remaining
cases are samples of Mandelbrot’s (1977) fractional
Brownian motion (fBm) equally distant from Bm on
the nonstationarity scale defined by H1: respectively,
H1 5 1/3 (the more stationary and rough) and H1 5
2/3 (the less stationary and more smooth). A char-
acterizing property of fBm is its monoscaling, namely,
H(q) [ H1. So all the examples in Fig. 11 differ in
the amount of nonstationarity present (as measured
by H1), but they all have the same kind of nonsta-
tionarity in the sense that no other parameter than H1

is needed to describe it; more precisely, they are all
of the monoscaling type.

R Qualitatively different but equally extreme cases of
nonstationarity. We can conjure up two situations of
extreme nonstationary behavior. First consider w(x) 5
ax 1 b (as in Fig. 11, bottom case) where a and b
are random. The definitions in (6)–(7) lead to
^zDw(r)zq& 5 ^zazq&rq, hence z(q) 5 q and H(q) [ 1 for
any q. Now take w(x) 5 aLQ(x 2 c) 1 b where Q(·)
is the Heaviside step function and c is uniformly dis-
tributed on [0, L]; a and b are unchanged, so w(0) and
w(L) are the same as in the previous example. The
probability of c falling in any segment of length r is
r/L; in this case the increment is aL, otherwise is null.
So this model yields ^zDw(r)zq& 5 ^zazq&Lq 3 (r/L) 1
0 3 [1 2 (r/L)] for 0 , r # L, hence z(q) [ 1 and
H(q) 5 1/q for q . 0. The structure functions tell us
that these two models may both be of extreme non-
stationarity (the same H1 5 1 arises) but, as expected,
they differ qualitatively (different H(q)s for q ± 1).

R Qualitatively different cases of moderate nonstation-
arity. In Part I, we used Cahalan et al.’s (1994a) fractal
cloud models based on bounded cascades to illustrate
nonstationarity; Marshak et al. (1994) showed these
models to be multiscaling with H(q) 5 min{H, 1/q},
H $ 0 being a free parameter, hence H1 5 min{H,
1}. Bounded cascades are therefore statistically dis-
tinguishable, in the sense of structure functions, from
fBm (with the same H1 5 H , 1), provided moments
of order q . 1/H are considered.

c. Quantifying/qualifying intermittency with singular
measures

Unlike stationarity, intermittency is a rather fuzzy
concept a priori. Nevertheless, it plays the same role for
singular measures as nonstationarity does for structure
functions. In this case, the quantifier of intermittency is
C1; indeed, C1 5 0 implies K(q) [ 0 (no intermittency
whatsoever) because of its analytical properties listed
in section 3a. The remainder of K(q) or D(q), q ± 1, is
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FIG. 12. Different amounts of the same kind of intermittency. Log-
normal cascades e(x) on the interval 0 # x # L 2 1 with L 5 1024,
for C1 5 (sln W)2/2 ln 2 with, from bottom to top, sln W 5 0, 0.25, 0.5,
and 1. The procedure is repeated nine more times, using ever smaller
intervals down to a single pixel. This one-parameter (0 # C1 # 1) family
of cascade processes have the same kind of intermittency, namely, log-
normal: K(q) 5 C1q(q 2 1); hence D(q) 5 1 2 C1q for q , 1/C1. They
are all stationary (be 5 1 2 K(2) 5 D(2) , 1) and the intermittency
index C1 increases as we move from the flat field case (C1 5 0), via C1

ø 0.045 and C1 ø 0.18, to C1 ø 0.72. For C1 . 1 (sln W . 2 ln 2 5Ï
1.177···), the cascade is ‘‘degenerate’’: most realizations would be es-
sentially empty (e(x) ø 0) but now and then a huge spike would occur
somewhere. The theory quoted here was developed largely by Kolmo-
gorov (1962), Obukhov (1962), Mandelbrot (1974), Kahane and Perièyre
(1976), and Schertzer and Lovejoy (1987, 1992).

needed to qualify the intermittency. The following ex-
amples clarify this statement.

R Similar multiscaling with different C1. Figure 12
shows a progression of more and more intermittent
processes from top to bottom using multiplicative cas-
cade models e(x) 5 PiWi with random weights W .
0 such that ^W& 5 1. These processes have multi-
scaling singular measures: K(q) 5 log2^Wq& for q such
that ^e(r)q& , `; thus, C1 5 ^W log2W& $ 0 where
‘‘5’’ corresponds to flat fields (W 5 1, with no dis-
persion) from Eq. (11). If C1 . 0, these models are
referred to as multifractals and indeed their different
level or exceedance sets have different fractal dimen-
sions (cf. the appendix). In this case, we took log-
normally distributed W that give D(q) 5 1 2 C1q
(Kolmogorov 1962; Monin and Yaglom 1975) for q
, 1/C1 (Mandelbrot 1974; Schertzer and Lovejoy
1987). Thus we have a sequence of qualitatively sim-
ilar models with an increasing amount of intermitten-
cy (as measured by C1).

R Monoscaling intermittency models, different C1. A
dramatic example of intermittency is given by ran-
domly positioned Dirac d functions (actually mea-
sures): e(x) 5 Ld(x 2 c) where c is uniformly dis-
tributed on [0, L). In this theoretical model, integrals
of e(x) over [x, x 1 r] yield either 0 or L, depending
on whether c is between the bounds (probability r/L)
or not. Taking the qth power, then averaging both sides
of Eq. (8b), yields ^e(r)q& 5 [L/r]q 3 (r/L) 1 0q 3 [1
2 (r/L)], hence ^e(r)q& } r12q for q . 0. Identifying
with Eq. (9), we obtain K(q) 5 q 2 1, thus D(q) [
0 and C1 5 1 from Eqs. (10)–(11). Another example
of intermittency is the famous ‘‘middle-third’’ Cantor
set and its associated measure discussed in the ap-
pendix; with its D(q) [ 1 2 C1 where C1 5 log2/
log3 , 1, it has the same (monoscaling) type of in-
termittency as the Dirac measure but in a lesser
amount (as measured by C1).

R Different kinds of multiscaling, same C1. In the ap-
pendix we illustrate intermittency with the log-bino-
mial p model (Meneveau and Screenivasan 1987b).
Like the lognormal models in Fig. 12, these are gen-
erated with a multiplicative cascade. However, their
D(q) hierarchy is very different from that of the log-
normal model, reflecting the fact that the p model’s
multiplicative weights obey a discrete Bernoulli law.
Nonetheless, by varying the log-binomial model’s free
parameter p in [0,1/2], its C1 5 1 1 p log2p 1 (1 2
p)log2(1 2 p) can take on any value in [0, 1] and
match the value for a lognormal model.

d. Separating nonstationarity (b . 1) from
intermittency (C1 . 0)

The Gaussian notion of an ‘‘outlier,’’ a rare but in-
tense event, can be mistaken for a manifestation of non-
stationarity. For instance, conventional wisdom tells us
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that the random occurrence of a strong spike in the midst
of low-amplitude uncorrelated fluctuations is the sig-
nature of nonstationarity, the argument being that vari-
ance in the spike perturbs significantly standard second-
order statistics such as the wavenumber spectrum E(k)
(which ignore event localization). In contrast, we view
this situation as the superposition of two stationary pro-
cesses. Indeed, both have vanishing b (hence , unity).
However, one process is nonintermittent (the white
noise), the other extremely intermittent (the d function).
The (generally tentative) Gaussian dichotomy between
typical or normal events and outliers, flukes, or anom-
alies is absorbed naturally into the more productive mul-
tifractal framework for data analysis where intermitten-
cy, rather than nonstationarity, is the key concept.

This does not mean that intermittency and nonsta-
tionarity are always easy to separate. Actually, one can
question the degree of independence of the families of
exponents z(q) and K(q). Are we not looking at the
system’s multifractality in two different ways? If so,
how are they related? This open issue is surveyed by
Davis et al. (1993, 1994b). At any rate, one new ex-
ponent at least is needed to go from singular measures
and K(q) to structure functions and z(q); let us assume
this extra parameter to be H1. If such a one-to-one z(q)
↔ K(q) connection exists, then one can spell out a pro-
cedure to obtain K(q) from the deviation of z(q) from
a straight line; consequently, singular measures would
become redundant.

e. Relaxing Gaussian assumptions about data

In the turbulence literature (e.g., Monin and Yaglom
1975), K(2) in Eq. (9) is designated as ‘‘the’’ intermit-
tency parameter, recalling that m 5 2 is used in Eq. (8a)
to derive the dissipation field from velocity. By the same
token, the structure function for q 5 2, namely, D(r) 5
^[w(x 1 r) 2 w(x)]2& used in Part I, is sometimes still
referred to as ‘‘the’’ structure function. At any rate, D(r)
plays a central role in geostatistics where it is known
as the ‘‘semi-variogram’’ (Christakos 1992). This em-
phasis on the second-order moments is a natural con-
sequence of Gaussian thinking that variability is gen-
erally amenable to variance and covariance. This frame-
work proves too narrow for cloud LWC variability: out
of the five FIRE 87 datasets, only one (14 July) exhibits
approximately Gaussian behavior.

Gaussian statistics have developed to a high level of
mathematical sophistication, primarily in response to
issues in psychometrics and signal processing. A new
statistical paradigm is clearly required to deal properly
with variability in large physical systems such as clouds,
or the atmosphere as a whole. Wavelets with (Muzy et
al. 1994) or without (Lau and Weng 1995) multifractal
formalism seem to be fulfilling this need.

5. Marine stratocumulus in the bifractal plane

In many applications, the two continuous exponent
functions z(q) and K(q) may be too much to deal with;
for instance, in stochastic modeling we like to keep the
number of free parameters to a strict minimum. As a
way of narrowing the possibilities, we have underscored
previously the importance of the values at q 5 1 of the
monotonic exponent hierarchies H(q) and D(q).

a. Introducing the bifractal plane

Choosing a single exponent to represent a whole mul-
tifractal approach is not a simple matter. It even seems
counterproductive until one realizes that quantifying
nonstationarity with H1 5 H(1) and intermittency with
C1 5 C(1) is already a big step in both data analysis
and numerical modeling tasks. The selected coordinates
(H1, C1) are indices of nonstationarity and intermittency:
H1 and C1 vanish in stationarity cases and in the absence
of intermittency, respectively. So H1 measures nonsta-
tionarity and C1 intermittency naturally, starting at zero,
ending at unity. As a first-order description of structure
in atmospheric data, the (H1, C1) plane is likely to find
many applications. Here we will use it as a graphic tool
to summarize our results. Figure 13 shows such a plot,
and we have highlighted it with theoretical and empir-
ical results from this paper and from the literature.

It is difficult to fully appreciate the multiscaling of
an atmospheric process or model without leaving the
(H1, C1) plane. Another approach to multifractal char-
acterization of data with a minimal number of param-
eters has been devised by Schertzer and Lovejoy (1987).
It is based on the concept of ‘‘universal’’ multifractality
where an exponent a, the Lévy index, describes various
kinds of intermittency and runs between 0 (monofrac-
tality) and 2 (lognormality). Lavallée et al. (1993) use
‘‘double trace moments,’’ a variant on singularity anal-
ysis, to obtain C1 but their estimate is subordinated to
a prior one of a. Their ‘‘nonconservation’’ parameter
is derived from b knowing both a and C1.

b. Atmospheric fields and models in the bifractal
plane

Five points (with error bars around the size of the
dots) plotted on the multifractal plane in Fig. 13 cor-
respond to the various LWC datasets from FIRE, illus-
trated in Figs. 1a–e and analyzed in sections 2 and 3.
The black asterisk shows H1 and C1 for the average of
all five flights, which are obtained from Figs. 5 and 9.
The scatter of the individual spatial averages around the
ensemble average illustrates ergodicity violation, a
strong argument in favor of nonergodic models. This
dispersion also stresses our need for vast amounts of
data and this data should be collected as systematically
as possible, without looking for any special type of
event.
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FIG. 13. Marine Sc, turbulence, and stochastic models in the bifractal plane. The index of
nonstationarity H1 increases horizontally and refers to the signal increments. The intermittency
index C1 increases vertically and refers to the absolute h-scale gradient field. In both cases the
accessible range goes from zero to unity; situations where C1 . 1 [note the information dimension
D(1) is negative] correspond to degenerate gradient fields that vanish almost everywhere in almost
every realization. The horizontal and vertical axes are hosts respectively to nonstationary and
nonintermittent additive models (fractional Brownian motions) in Fig. 11 and their intermittent and
stationary multiplicative counterparts (turbulent cascade models) in Fig. 12. Atmospheric data lives
inside the unit square and cannot be matched by either type of model. This underscores the need
for new hybrid models.

Davis et al.’s (1994a) results for H1 and C1 from AS-
TEX have been added to Fig. 13 (white asterisk). They
are also based on five different flight sections, selected
to be inside cloud and relatively long, as is the case for
the FIRE 87 data. Their ensemble-average mean mul-
tifractal parameters, (H1, C1) ø (0.29, 0.08), are very
close to their FIRE 87 counterparts, ø(0.28, 0.10). This
remarkable proximity can be interpreted as a conse-
quence of the common nature of the nonlinear physical
processes that determine the internal structure of marine
Sc. However, the scaling range involved depends on the
locale, roughly in proportion with the thickness of the
boundary layer (BL): 20 m–20 km off the coast of south-
ern California (BL thickness ø 0.5 km) versus 60 m–
60 km in the mid-Atlantic (BL thickness ø 1.5 km).

A clear message of the (H1, C1) plot in Fig. 13 is that

neither the additive- nor the multiplicative-type cascade
processes, plotted, respectively, in Figs. 11 and 12, are
satisfactory models for LWC fluctuations. Indeed, ad-
ditive processes (fBms) are nonstationary (0 , H1 ,
1) but nonintermittent (C1 5 0), while their multipli-
cative counterparts (turbulent cascades) are intermittent
(0 , C1 , 1) but stationary (H1 5 0). These models
are therefore inadequate to represent either turbulent
velocity or LWC in marine Sc. There is a need for hybrid
stochastic models with both additive (nonstationary)
and multiplicative (intermittent) features for turbulent
velocity, LWC in clouds, and probably other atmo-
spheric fields.

We have indicated approximate locales on the (H1,
C1) plane of turbulent velocity data. The abscissa H1

ø 1/3 reflects approximately Kolmogorov’s (1941)
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scaling law: z(2) 5 2/3, b 5 5/3. The ordinate C1 ø
0.25 6 0.05 was estimated by Schmitt et al. (1992).
They used the definition of e(h; x) as zDw(h; x)z2 [m
5 2 in Eq. (8a)]. To compare it with the C1 values of
our LWC data, we find its counterpart for the measure
e(h; x) as zDw(h; x)z, that is, m 5 1 in Eq. (8a). Using
Lavallée et al.’s (1993) formulas for universal multi-
fractals, one can show that C1

(m51) 5 22aC1
(m52) where

0 # a # 2. Finally, taking into account the estimated
range of parameter a for the turbulent velocity data as
a 5 1.3 6 0.1 (Schmitt et al. 1992), we find C1 5
C1

(m51) ø 0.11 6 0.04, not unlike the values we obtain
for LWC.

Whether dynamic or stochastic, a realistic cloud mod-
el should be mapped to an (H1, C1) point as near as
possible to the one that represents the data. This would
constitute a statistically robust, simple yet comprehen-
sive test for structural congruence that treats model out-
put and data on an equal footing. Atmospheric field
retrievals from remotely sensed imagery operate on a
per pixel basis, often making invalidated homogeneity
assumptions for subpixel scales for operational reasons.
Retrieved fields should therefore be treated in the same
way as model output and compared with in situ probings
for compatibility in H1 and C1; steps in this direction
are taken by Marshak et al. (1995b).

6. Conclusions

We have shown that the internal horizontal structure
of marine stratocumulus (Sc) clouds during FIRE is
scale invariant over a large range of scales: 20 m–20
km. By scale invariant, we mean that the two-point sta-
tistics of all orders associated with LWC can be param-
eterized with power laws in r, the distance between the
two points of interest. The scaling range straddles the
typical thickness of such clouds (ø300 m) as well as
that of the whole boundary layer (ø0.5 km) Previously
reported breaks of scaling (ø200 m) in Landsat radiance
fields associated with the same FIRE 87 marine Sc (Ca-
halan and Snider 1989) are not observed in the LWC
field, which argues for a radiation transport-based ex-
planation.

Davis et al. (1997) study the scaling properties of
numerically simulated Landsat cloud scenes and find
that there is a characteristic ‘‘radiative smoothing’’ scale
proportional to the harmonic mean of transport-mean-
free path and geometrical cloud thickness (Marshak et
al. 1995b). This scale measures the effect of net hori-
zontal radiative fluxes: for scales larger than it, cloud
liquid water and radiation fields fluctuate together, while
for small scales, radiation fields are much smoother.

Following a well-established tradition in turbulence
studies, we have complemented the spectral analysis
used in Part I (E(k) ; k2b, b ø 1.4), which is second
order, with two physical space multiscaling techniques:
qth-order structure functions and singular measures,
both of which are explained in general terms and then

applied to LWC data. Each multifractal approach yields
a whole family of exponents. The statistical nonstation-
arity of the LWC distribution is captured by the structure
functions and its intermittency is targeted by the singular
measures. Structure functions use the stationary incre-
ments of the nonstationary data, whereas singular mea-
sures use a nonnegative stationary field derived from
the data by taking the absolute values of the small-scale
gradients. In both cases we find nontrivial multiscaling
that, given the wide range of scales involved, establishes
the nonstationary multifractal nature of marine Sc.

The connection between intermittency and nonsta-
tionarity remains an open question where deviations
from Gaussian behavior play a key role. Following Da-
vis et al. (1994a), we advocate the bifractal plane to
characterize these basic scale-invariant properties for
any atmospheric signal recorded in time and/or space.
Both coordinates are exponents: H1 measures the non-
stationarity and C1 the intermittency, both on a scale
from zero to unity. Nonstationarity and intermittency
are probably the most difficult aspects of atmospheric
dynamics to capture with numerical models, and we
generally resort to stochastic approaches instead. Quan-
tifying these concepts is a preliminary step toward meet-
ing this challenge.

Having applied a comprehensive spectral–multifrac-
tal analysis to marine Sc LWC fields sampled during
FIRE 87 and ASTEX, we find the two corresponding
points in the (H1, C1) plane to be close: (0.28, 0.10) for
FIRE 87 and (0.29, 0.08) for ASTEX. This is another
indication that the dynamics determining the internal
structure of marine Sc depend little on the local cli-
matology; this echoes our spectral argument in Part I
(bFIRE 87 ø bASTEX ø 1.4) for a degree of universality in
the thermo–hydrodynamical processes that shape ma-
rine Sc. To first order, ASTEX Sc behave statistically
like scaled-up versions of FIRE 87 Sc, in a ratio ap-
proximately equal to that of the boundary layer thick-
nesses. We also note that both the H1 and C1 for LWC
are comparable to those of velocity, temperature, and
admixture fluctuations in turbulence. Finally, the (H1,
C1) plot shows that neither multiplicative cascades (with
H1 5 0) nor additive Gaussian models such as fractional
Brownian motions (with C1 5 0) adequately reproduce
the LWC fluctuations in marine Sc or, for that matter,
turbulent velocity signals. So there is a pressing need
for a new class of hybrid stochastic cloud models that
will likely find their first applications in the next round
of radiation transport simulations.
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FIG. A1. Construction of Cantor’s ‘‘middle-third’’ fractal set with Df 5
log32 ø 0.63.

guier, C. Duroure, H. Gerber, H. Isaka, D. Lavallée, S.
Lovejoy, C. Meneveau, R. Pincus, D. Schertzer, F.
Schmitt, Y. Tessier, and T. Warn for fruitful discussions.

APPENDIX

Geometrical Interpretations of Multifractal
Properties

In this appendix, we survey the geometrical inter-
pretation of both singular measures and structure func-
tions, thus justifying usage of the terms ‘‘fractal’’ and
‘‘multifractal.’’

a. From fractal sets to mono- and multifractal
measures

Let N(r) be the number of r-sized boxes needed to
cover some subset S of d-dimensional Euclidean space,
d 5 1, 2, 3. Then consider the simplest way of covering
S: count the number N(r) of cells of a d-dimensional
grid of constant r that intersect S. The set’s fractal di-
mension DT(S) is then defined by

N(r) ; ,2D (S)Tr (A1)

where ‘‘;’’ means we are disregarding proportionality
constants and slowly varying terms such as powers of
logr.

A deterministic monoscaling example: The prototyp-
ical fractal known as Cantor’s ‘‘middle-third’’ set (de-
noted C in the following) is illustrated in Fig. A1; its
simple construction leads to Df(C) 5 log1/rN(r) 5 log32
5 0.631 . . . from Eq. (A1). A measure eC(x) can be
associated with this sparse subset of [0, 1] using the
following cascade procedure. Start with eC(x) [ 1, 0 #
x # 1 and recursively multiply it by zero in the middle
third of every threefold subdivision. In the first and last
thirds, eC(x) is multiplied by 3/2, thus maintaining the
spatial average of eC(x) at unity for all stages of the
construction. Other moments of eC(x) are easily com-
puted. After n steps there are 3n intervals and the scale
of interest is r 5 rn 5 1/3n, however, only N(rn) 5 2n

of these cells are still ‘‘alive’’ and each one carries a
value eC(rn; x) 5 (3/2)n; all the others are ‘‘dead’’ with
eC(rn; x) 5 0. So we have

q n q n q n^e (r ) & 5 [(3/2) ] 3 (2/3) 1 0 3 [1 2 (2/3) ]C n

n (q21)log (3/2)1/35 (1/3 ) , q . 0. (A2)

Identifying with rn
2K(q), we find KC(q) 5 [1 2 log32](q

2 1), hence CC(q) 5 KC(q)/(q 2 1) [ 1 2 log32, and

DC(q) [ log32, q . 0. (A3)

This is a case of monoscaling, since a single exponent
defines all the ‘‘statistical’’ properties of this model; in
particular, we retrieve the fractal dimension Df(C) 5
log32 of the Cantor set from any DC(q). The constancy
of DC(q) reflects the fact that the measure eC(x) is uni-
formly distributed over its support.

A stochastic monoscaling example: Randomly posi-
tioned d functions can be generated by a similar cas-
cading procedure: divide intervals in 2 rather than 3 and
multiply right and left, or vice versa (with equal prob-
ability), by 0 and 2. The same calculation as above for
^ed(rn)q& yields Dd(q) [ 0, q . 0; so we again find
monoscaling. In particular, we have Df(S) 5 0, meaning
that the measure is entirely concentrated onto a single
point.

A stochastic multiscaling example: We repeat the
above procedure simply by changing the multiplicative
weights (denoted W) from 0 and 2 to 2p and 2(1 2 p),
0 # p # 1/2, yielding ep(rn; x). This so-called p model
(Meneveau and Sreenivasan 1987b) is illustrated in Fig.
A2 on a log scale for p 5 0.3 and n 5 10. All realizations
of the field ep(rn; x) have the same nth-order binomial
distribution of values: ei

(n)(p) 5 (2p)i(2 2 2p)n2i with
probability ( )/2n for i 5 0, . . . , n. As n increases, moren

i

positively skewed log-binomial distributions arise that
maintain ^ep(rn)& [ 1 for all n. The box-counting al-
gorithm described in connection with Eq. (A1) can be
applied to the level set Li(p, n) 5 {x ∈ [0, 1], ep(rn; x)
5 ei

(n)(p)} with n k 1, at least for scales r $ rn; Fig.
A2 shows that different values of Df[Li(p, n)] will be
obtained for different i. These fractal dimensions range
from 1 (space-filling) at the most probable level i 5 n/2
to 0 (single points) for i 5 0, n. The associated field
ep(rn; x) is called multifractal. Halsey et al. (1986) show
how a Legendre transform can be used to obtain the
multiple fractal dimensions from the D(q) hierarchy,
equivalently K(q). For the p model we have Kp(q) 5
log2^Wq& 5 log2[(2p)q/21(2 2 2p)q/2], hence

21
q qD (q) 5 log [p 1 (1 2 p) ], (A4)p 2q 2 1

for any q (as long as 0 , p # 1/2). This is a case of
multiscaling since many exponents are needed to de-
scribe the statistics; in particular, we can extract from
the hierarchy Dp(q)

R Dp(2`) 5 2log2p . 1;
R Dp(0) 5 1 (as long as p . 0) is the ‘‘capacity’’ di-

mension;
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FIG. A2. Log-binomial multifractal measure on a log scale. Meneveau
and Sreenivasan’s (1987b) p model ep (rn; x) with n 5 10 cascade steps
(1/rn 5 2n 5 1024 grid points) and p 5 0.3. On either side of the mean
^e& 5 1 level, we indicate the most probable level emp 5 2n[pi(1 2 p)n-

i] with i 5 n/2 and the one that contributes most to the mean, namely
e1 5 2n[pi(1 2 p)n-i] with i 5 np; in this case, we have emp ø 0.42 and
e1 ø 2.3. The dimension of the level set of emp is unity: it fills the interval.
For e1, we find a smaller (fractal) value: D0.3(1) 5 20.3log20.3 2
0.7log20.7 ø 0.88, the information dimension; notice that e1 5 D (1)210.3rn

5 2C1rn

R Dp(1) 5 2[plog2p 1 (1 2 p)log2(1 2 p)] , 1 is the
‘‘information’’ dimension, hence C1(p) 5 1 2 Dp(1);

R Dp(2) 5 2log2[1 2 2p(1 2 p)] , D1(p) is the ‘‘cor-
relation’’ dimension; and

R Dp(`) 5 2log2(1 2 p) , D2(p).

There are two monoscaling limits for this tutorial model:
a trivial one for p → 1/22 that leads to flat fields, K1/2(q)
[ 0 and D1/2(q) [ 1 for all q, and a nontrivial one for
p → 01 that leads to d functions, K01(q) [ q 2 1 and
D01(q) [ 0 for q . 0.

b. From self-affine graphs to multiaffine random
processes

Of all the scaling structure functions in Eq. (4), the
first-order case

^zw(x 1 r) 2 w(x)z& ; , H1 5 z(1)H1r (A5)

has attracted a lot of attention but under a rather different
guise. Indeed, it is related to the fractal dimension Dg(w)

of the graph of w(x), viewed as a random self-affine
geometrical object ‘‘g(w)’’ in two-dimensional space
(Mandelbrot 1977; Falconer 1990; Higuchi 1988). It can
be shown that definitions (A1) and (A5) lead to

Dg(w) 5 2 2 H1, (A6)

which necessarily lies between unity(a rectifiable curve)
and two (a measurable area), inclusive. The codimen-
sion of g(w), 2 2 Dg(w) 5 H1, can go from zero to unity
and thus provides a direct and natural measure of
smoothness; Dg(w) 2 1 5 1 2 H1 is a measure of rough-
ness. Furthermore, the recent introduction of the ‘‘can-
cellation exponent’’ k in the physics and turbulence lit-
erature has generated new interest in the roughness and/or
nonstationarity properties described by H1; indeed, k 5
1 2 H1 is used to describe the rate at which the fluc-
tuations of w(x) change direction, equivalently, how of-
ten a ‘‘signed’’ measure, meaning essentially the deriv-
ative of w(x), changes sign (Ott et al. 1992; Vainshtein
et al. 1994; Bertozzi and Chhabra 1994).

Illustration with monoscaling random functions: Sta-
tionary scaling processes have scale-independent incre-
ments (H1 5 0) and their graphs fill space (Dg(w) 5 2);
this is true for white noise, 1/f noise (Fig. 11, upper
curve), and all multiplicative cascades (e.g., Fig. 12).
Space-filling graphs are a geometrical consequence of
the characteristic discontinuity of these processes, dis-
cussed in Part I. The H1 values chosen for fBm in Fig.
11 are 1/3 in the rougher case, Dg(w) 5 5/3, and 2/3 in
the smoother case, Dg(w) 5 4/3. Graphs of standard Bm
with H1 5 1/2, such as the intermediate case in Fig. 11,
have fractal dimension 3/2. Random linear trends and
Heaviside steps were introduced in section 4b as ex-
treme examples of nonstationary behavior; they are
equally smooth, being almost everywhere differentiable,
so Dg(w) is unity in both cases, leading to H1 5 1.

The cases of fBm discussed above constitute a very
special kind of statistical self-affinity. They are best re-
ferred to as ‘‘monoaffine,’’ adopting Viscek and Bara-
bási’s (1991) expression ‘‘multiaffinity’’ for the more
geophysically relevant situations where z(q) is not linear
in q.

Multiscaling random functions, a brief survey: De-
spite its direct relevance to data, multiaffine modeling,
with controllable values of H1 in particular, is only be-
ginning. Barabási and Vicsek (1991) describe a variant
of the midpoint displacement algorithm for fBm used
in Fig. 11 that yields a multiscaling random function;
Arnéodo et al. (1993) use integrals of multiplicative
cascades with negative weights to obtain the same ef-
fect. Aurell et al. (1992) show that the solutions of Bur-
ger’s equation have z(q) 5 min{q, 1}. Benzi et al. (1993)
describe a wavelet-based algorithm that delivers a ran-
dom process with any prescribed z(q). In order to model
the multiscaling properties of an admixture in a tur-
bulent plume, Sykes et al. (1995) use a standard mul-
tiplicative cascade to modulate the scale-dependent var-
iances in a midpoint displacement procedure. At least
two early models have proved to be multiaffine. Schertz-
er and Lovejoy (1987) propose multiplicative cascades
and ‘‘fractional’’ integration of order 0 , H , 1. Ca-
halan et al.’s (1994a) ‘‘bounded’’ cascade models (used
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to illustrate nonstationarity in Part I) generalize the sin-
gular p models (discussed above) simply by making the
multiplicative weights tend to unity as the cascade pro-
ceeds; they have z(q) 5 min{qH, 1} with H . 0 being
a smoothing parameter (Marshak et al. 1994). These two
last multiaffine models were originally developed to
simulate clouds with realistic internal distributions of
LWC.

The fractal geometrical interpretation of z(q) using
local Hölderian properties and Legendre transforms is
outside the scope of this introduction; the interested
reader is referred to the seminal paper by Parisi and
Frisch (1985), the first to use the term multifractal.
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