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ABSTRACT 

Columnar aerosol size distributions have been inferred by numerically,inverting particulate optical depth 
measurements as a function of wavelength. An inversion formula which explicitly includes the magnitude 
of the measurement variances is derived and applied to optical depth measurements obtained in Tucson with 
a solar radiometer. It is found that the individual size distributions of the aerosol particles (assumed spher- 
ical), at least for radii 20.1 pm, fall into one of three distinctly different categories. Approximately SOT0 
of all distributions examined thus far can best be represented as a composite of a Junge distribution plus 
a distribution of relatively monodispersed larger particles centered at a radius of about 0.5 em. Scarcely 
20% of the distributions yielded Junge size distributions, while 30% yielded relatively monodispersed 
distributions of the log-normal or gamma distribution types. A representative selection of each of these 
types will be presented and discussed. The sensitivity of spectral attenuation measurements to the radii 
limits and refractive index assumed in the numerical inversion will also be addressed. 

1. Introduction 

A relationship between the size of atmospheric 
aerosol particles and the wavelength dependence of 
the extinction coefficient was first suggested by Ang- 
strijm (1929). Since that time AngstrGm’s (1929) 
empirical formula for the wavelength dependence of the 
extinction coefficient has been directly related to a 
parameter of a Junge size distribution when the radii 
extend from 0 to C.U (van de Hulst, 1957; Junge, 1963). 
Curcio (1961) used the wavelength dependence of the 
particulate extinction coefficient in the visible and 
near-infrared regions to infer the aerosol size distri- 
butions existing above water in the Chesapeake Bay 
area. He determined that the majority of aerosol size 
distributions could best be represented by a two- 
component size distribution consisting of a Junge-type 
distribution plus a small component of larger particles. 
This type of composite distribution was the most 
capable of explaining the wavelength dependence of the 
attenuation measurements he observed. 

Yamamoto and Tanaka (1969) were the first to 
apply a numerical inversion algorithm to spectral 
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measurements of extinction coefficient in order to 
determine an aerosol size distribution. These authors 
applied the linear inversion techniques developed by 
Phillips (1962) and Twomey (1963) to the problem of 
numerically solving the Fredholm integral equation of 
the first kind which arises in this problem. Although 
they clearly demonstrated that these numerical pro- 
cedures are quite successful for obtaining size distri- 
butions by remote sensing, other investigators more 
recently have still continued to estimate parameters 
of model size distributions from spectral attenuation 
measurements (e.g., Quenzel, 1970; Shaw et al., 1973). 
Although these fitting procedures are reasonably satis- 
factory, they are more restrictive than inversion pro- 
cedures in that they assume that the atmospheric 
particulates follow one of several possible analytical 
distributions. 

Grass1 (1971) presents an iterative method for 
numerically inverting spectral attenuation data. After 
demonstrating the success of this algorithm on spectral 
attenuation coefficients generated for three model size 
distributions, the size distributions obtained by inver- 
sion of two real data cases are presented. In order to 
accurately determine aerosol size distributions from 
spectral optical depth measurements obtained from 
direct solar observations, it is necessary to collect 
optical depth measurements over a sufficient number 
of wavelengths to obtain a good estimate of both the 
ozone absorption and particulate optical depths 
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separately. In making these corrections, Grass1 (1971) 
used tabulated values for a model atmosphere in lieu of 
alternative observations. 

In the present investigation an earlier theoretical 
study (Herman et al., 1971) of angular scattering 
intensities has been extended to the problem of inferring 
columnar aerosol size distributions by inversion of 
spectral optical depth measurements. An inversion 
formula which explicitly includes the magnitudes of 
the measurement variances is derived and applied to 
optical depth measurements obtained in Tucson with 
a solar radiometer. Aerosol size distribution results 
have been obtained for 57 days and the results of a 
representative selection are presented, together with a 
discussion of the relative frequency of occurrence of 
various types of distributions. Some of the practical 
difficulties to be considered when inverting spectral 
attenuation measurements will be discussed. The most 
important of these are the radii limits of maximum 
sensitivity and the particulate refractive index assumed 
in the inversion. 

2. Method of solution 

From wavelength measurements of the directly 
transmitted solar flux density as a function of solar 
zenith angle, one can obtain spectral values of the 
particulate (Mie) optical depth (Shaw et uI., 1973; 
King and Byrne, 1976). The spectral variation of Mie 
optical depth, designated TM(X), is produced through 
attenuation by aerosol and is primarily determined by 
the aerosol size distribution. Assuming that the atmo- 
spheric particulates can be modeled by equivalent 
spheres of known refractive index to a sufficient degree 
of accuracy, the integral equation which relates optical 
depth to an aerosol size distribution can be written as 

where n(r,z)dr is the height-dependent aerosol number 
density in the radius range Y to r+dr; m the complex 
refractive index of the aerosol particles ; X the wave- 
length of the incident illumination ; and Q,,t(r,X,m) the 
extinction efficiency factor from Mie theory. The effects 
of possible variations of the particulate refractive index 
with wavelength and particle radius will be discussed in 
Section 4. In the present formulation, the aerosol is 
assumed to consist of homogeneous spherical particles 
which are nondispersive over the wavelength range of 
the observations. Performing the height integration, 
Eq. (1) can be rewritten as 

where n,(r) is the unknown columnar aerosol size 

distribution, i.e., the number of particles per unit area 
per unit radius interval in a vertical column through the 
atmosphere. 

To determine n,(r), the transform of (2) must be 
obtained. Since an expression for n,(r) cannot be 
written analytically as a function of the 7,u(X) values, 
a numerical approach must be followed. Therefore, 
the integral in (2) is replaced by a summation over 
coarse intervals in r, each of which is composed of 
several subintervals as described by Herman et al. 
(1971) for the case of the angular distribution of 
scattered light of one wavelength. In order to examine 
the specific kernel functions which result if that pro- 
cedure is applied to the present problem, we let n,(r) 
=h(r)f(r), where h( r is a rapidly varying function of Y, ) . 
while f(r) is more slowly varying. With this substi- 
tution, Eq. (2) becomes 

= g i”” 
~r2Qext(y,X,m)h(r)f(r)dy, (3) 

j=l ‘i 

where the limits of integration have been made finite 
with Y~=Y~ and rp+r=rb. If f(r) is assumed constant 
within each coarse interval, a system of linear equa- 
tions results which may be written as 

g= Af+z, (4) 

where E is an unknown error vector whose elements ei 
represent the deviation between measurement (gi) and 
theory (C, Aijjj). This deviation arises from quadrature 
and measurement errors, as well as any uncertainties 
as to the exact form of the kernel function [in this case, 
~r*Q,t (r,M)l. 

Returning to (3), it follows that the elements of (4) 
are given by 

gi = TM(Xi), i=l, 2, . . ., p, 

/ 

ri+1 
A,j= ?FrZQeLt(r,Xi,m)h(r)dr, j= 1, 2, . . . , q, (5) 

ri 

fj=f(vj), 

where ?? are the midpoints of the coarse intervals. 
Writing (5) as a quadrature results in an expression 
similar to that obtained by Herman et al. (1971) where 
their weighting functions Wkj(rkj) = h(rkj)Aykj in the 
terminology used here and rkj are the midpoint radii 
of the subintervals. 

In terms of an integral over ~=logr, Eq. (5) may be 
rewritten as 

I 

zj+t 
Aij= ~Wi)~~, (6) 

%j 
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where defined by Twomey (1963) as 

K(x,X)=n103”Q,,t(10z,X,m) h(lO”)lnlO. (7) 

Eqs. (6) and (7) are those obtained by Yamamoto 
and Tanaka (1969) if h(r) takes the form of a Junge 
(1955) size distribution, 

h(r)=r-b*+l)) 

with u* assumed to have a value of 3.0. 

03) 

Phillips (1962) and Twomey (1965) have discussed 
the instability in the solution vector f which results if 
(4) is directly solved by minimizing Ci ei*. Phillips 
suggested that, due to ever-present error, a constraint 
be added that discriminates against such instability. 
In order to select a physical solution among the family 
of solutions which satisfy (4), Phillips introduced a 
smoothing constraint such that the sum of the squares 
of the second derivatives of the solution points is 
minimized. For a quadrature of equal division, the 
solution vector f is obtained by minimizing a perform- 
ance function Q, defined as 

r l-2 1 0 0 
-2 5 -4 100 

l-4 6 -4 1 0 
H= 0 1 -4 6 -4 1 0 . 02) 

. . . 
0 l-4 5 -2 

0 l-2 1 J 

The series of equations in (11) can be written in matrix 
form as 

-ATC-‘s+rHf = 0, (13) 

where AT is the transpose of A. Eliminating E between 
(4) and (13) leads to the solution 

Q= $I G*+Y zl (fj-l-2fj+fj+l)*, (9) 

f = (ATC-‘A+yH)-lATC-l& (14) 

For the case in which the statistical errors in the 
measurements are assumed equal and uncorrelated, C 
reduces to ?I, where s represents the constant rms 
error and I is the identity matrix. With this assumption, 
Eq. (14) reduces to the form derived by Twomey 
(1963). 

where y is some non-negative Lagrange multiplier. 
Minimizing Q with respect to the unknown fk coeffi- 
cients, when y equals zero, is equivalent to making 
an unweighted least-squares fit to the data. 

Since it is further known that some of the TM(&) 
measurements are more precise than others, it is de- 
sirable to include that a priori information in the mathe- 
matical formalism. For the case in which the 
measurements are correlated with known covariances 
aiigj, a more general form of (9) would be 

For the attenuation problem considered here, the 
statistical errors in the measurements are assumed 
uncorrelated but known to be unequal (King and 
Byrne, 1976). As a consequence of this, the covariance 
matrix becomes diagonal with elements given by 
Cij=g?, (hi)6ijy h w ere 6,j is the Kronecker delta func- 
tion. This gives a relative weighting to each of the 
measurements, placing greater emphasis on those 
measurements which have the smallest error bars. 
With C defined in this manner, Eq. (14) is equivalent 
to making a weighted least-squares fit to the data 
subject to a constraint. 

where Ci, is an element of the measurement covariance 
matris C whose elements are given by C’<~=U~~~,. This 
follows from the Gauss-Markov theorem in the absence 
of a constraint (see, e.g., Liebelt, 1967), and thus the 
minimum value of Q represents the statistically opti- 
mum estimate of f. 

Following the method suggested by Twomey (1963) 
whereby the performance function is differentiated 
with respect to each of the fk coefficients, a set of 
simultaneous equations results which may be written as 

Initially, a zeroth-order weighting function h(O) (r) 
is assumed in (5) from which first-order f(l) (?j) values 
are computed with the aid of (14). Since the solution 
vector f(r) represents a modifying factor to the assumed 
form of h(‘)(r), the f(r) (Fj) values are then used to 
calculate a first-order weighting function, ho)(r), which 
better represents the size distribution than the initially 
assumed weighting function. The first-order weighting 
function is then substituted back into (5) from which 
a second-order fez) is obtained through (14). This 
iterative procedure is continued until a stable result 
is obtained (Herman et al., 1971). 

Two advantages result from separating the size 
distribution function into two parts as described above. 
The most obvious advantage is that the quadrature 
error which results from (3), when f(r) is assumed 
constant in each coarse interval, will be less the better 
h(r) comes to describing the size distribution. In fact, 
if the weighting function represents the size distri- 
bution exactly, f will be a vector whose elements are 
unity (Herman et al., 1971). The second advantage, 
though less obvious, is equally important. Since the 
smoothing constraint minimizes the second derivatives 

+Y 5 Hkjfj=o, k=l, 2, . ..) q, (11) 
j=l 

where Hkj is an element of the smoothing matrix H 
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of the solution points on a linear scale, it is a much 
more appropriate constraint in cases in which f(Fj) is 
nearly constant. Since the columnar size distribution 
typically varies over many orders of magnitude, a 
direct inversion for n,(r) would consist of minimizing 
curvature of a function which implicitly has large 
curvature. A Junge distribution, for example, is 
nearly a delta function for large values of v* on a linear 
scale and hence has large curvature, even though it has 
zero curvature on a log scale (Twomey, personal 
communication). 

For the results presented in this paper, the initial 
weighting functions were assumed to have the form of a 
Junge size distribution given by (8). In practice, several 
different values of u* are used to calculate the zeroth- 
order weighting function and the final results after 
successive iterations are intercompared. One test of 
the procedure is the similarity- of the results obtained 
when different values of Y* are used. This point will 
further be addressed in the next section. 

In performing the inversion described above, it is 
necessary to select a value for y. Since y enters (14) 
in a manner such that elements of -rH are to be added 
to ATPA to produce the desired smoothing, the 
magnitude of -rHkl/(ATC-lA)kl is of importance, not 
the magnitude of y alone. In selecting y, therefore, 
Y~~~=~YH~J(A~C?A)I~ is allowed to varv in the range 
10e3 to 1 until a minimum value of Yretsis reached for 
which all elements of the solution vector f are positive 

(’ i.e., negative values of the elements of f constitute 
an unphysical solution). 

3. Aerosol size distribution results 

The method for determining the columnar aerosol 
size distribution described in the preceding section 
has been carried out at the University of Arizona 
since August 1975. The Mie optical depth measure- 
ments have been determined by the method described 
by King and Byrne (1976). In this procedure the ozone 
absorption optical depths, and hence total ozone con- 
tent of the atmosphere, are inferred from the spectral 
variation of total optical depth in the visible and near 
infrared wavelength regions. Using the O3 absorption 
optical depths determined in this manner, the values 
of the Mie optical depth are obtained by subtracting 
the molecular scattering and estimated O3 absorption 
contributions from the total optical depth. At the 
present time inversions have been carried out for 57 
different days, of which the results of a representative 
selection are presented below. For consistency of 
presentation, all inversions were performed assuming 
the complex refractive index of the aerosol particles 
was wavelength and size independent and given by 
m= 1.45-O.OOi. Although this value was arbitrarily 
selected, there is considerable evidence that the real 
part of the index of refraction lies somewhere between 
1.33 (pure water) and 1.54 (silicate particles) as 

discussed by- Yamamoto and Tanaka (1969) and others. 
The results of a combined direct sampling and remote 
sensing experiment over Tucson in November 1974 
are suggestive of a real index between 1.40 and 1.45 
for the aerosol particles (Reagan et al., 1977). This 
refractive index is in good agreement with the refrac- 
tive index of H2SOa.b Hz0 droplets which comprised 
about 3Oyo of the particles analyzed bp the electron 
microscope in this experiment (Reagan et al., 1977). 
The effect of varying the refractive index assumed in 
the inversion procedure was addressed by Yamamoto 
and Tanaka (1969) where it was shown that the inverted 
size distribution maintains its shape under various 
values of refractive index when m= 1.0. The validitv of 
this result for indices of refraction between 1.45 and 
1.54 will be examined in Section 4. 

Optical depth measurements made at between six 
and eight different wavelengths ranging between 0.4400 
and 1.0303 pm have been used in the size distribution 
determinations to be presented below. Due to both the 
extinction cross sections (which increase significantly- 
with radius) and the number densities of the natural 
aerosol particles (which normally decrease with radius), 
this spectral region of the attenuation measurements 
limits the radius range of maximum sensitivity to the 
large and giant aerosol particles only (O.l<r<-l.O 
Mm). Although this matter has been considzez by 
Yamamoto and Tanaka (1969) for both Junge- and 
Woodcock-type aerosol size distributions, it is very 
important to realize that there is no absolute rule which 
determines the radii limits having the most significant 
contribution to the attenuation measurements. As 
will be shown in the next section, this radius range is 
dependent on both the form of the size distribution 
function and the values of the Mie extinction cross 
sections over the radius range. Since the size distri- 
bution function is not known in advance, it is apparent 
that occasional trial and error is required in order to 
determine the radius range over which the inversion 
can be performed. 

It is convenient, for purposes of illustration, to 
categorize the inversion results according to both the 
form of the columnar aerosol size distribution and the 
spectral dependence of the Mie optical depths. In lieu 
of n,(r) or, equivalently, dS,/dr, the size distribution 
results are presented in terms of d:V,/d logr, represent- 
ing the number of particles per unit area per unit log 
radius interval in a vertical column through the atmo- 
sphere. In most cases the columnar aerosol size distri- 
butions can be classified in terms of three different 
types of distributions (although gradations between 
two different types are occasionally observed making 
this classification somewhat arbitrary). An example 
of the first type is illustrated in Fig. 1 for 13 August 
1975, a day for which the spectral Mie optical depth 
measurements very nearly follow Angstrom’s (1929) 
empirical formula given by 7,~ (h) = /3Xea. The observed 
Mie optical depths and corresponding standard devia- 
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FIG. 1. Observed Me optical depths and estimated size distributions for 13 August 1975. The three distribution curves on 
the right represent the results using different initial weighting functions (see text) while the curve on the left indicates the 
regression fit to the data using the inverted size distributions. 

tions are shown in the left portion of the figure while 
the size distributions obtained by inverting these data 
for three initial V* cases are shown in the right portion. 
The solid curve in the left portion indicates how the 
inverted size distributions are able to reproduce the 
T,v((~) measurements (i.e., the direct problem g=Af). 

In applying the inversion procedure described in the 
preceding section, several different initial Junge 
distribution parameters I/* are assumed in formulating 
the zeroth-order weighting functions h(O)(r) so that 
the results after subsequent iterations can be inter- 
compared. In practice, a best-fit value for the Angstr6m 
turbidity coefficient (Y is determined from the observed 
values of ~.~~(X) by linear least-squares methods, from 
which a corresponding v* value is determined from the 
well-known relationship ~*=a+2. Inversions are then 
performed for three different values of the Junge 
parameter about this value (viz., v*-0.5, V* and 
v*+O.5). For the data case illustrated in Fig. 1 LY= 1.55, 
and thus inversions were performed using the initial 
values Y*= 3.05, 3.55 and 4.05 as indicated in the right- 
hand figure. It is readily apparent that all initial values 
of the weighting functions h(O’(r) were able to be 
perturbed such that the results after subsequent 
iterations yielded solutions quite independent of the 
initial “guess.” 

The aerosol size distributions illustrated in Fig. 1 

can best be described as constituting either Junge or 
two-slope types of size distributions. They have been 
observed on approximately 20% of all days examined 
thus far. Fig. 2 illustrates the spectral optical depth 
measurements and corresponding size distributions for 
three additional days (7 and 29 August and 29 October, 
1975) where only one distribution function is shown 
for each day. In all instances the sensitivity to the 
initial weighting function h(O)(r) was negligible. The 
Mie optical depth data for cases of this type always 
tend to exhibit linear or slightly positive curved 
spectral dependences of logT.vf(X) vs 1ogX with relatively 
steep slopes (a= 1.2) and relatively high turbidities 
[7,~(0.6120 pm) -O.OS]. The one-to-one correspondence 
between the slope of the data (cy) and the slope of the 
inverted size distribution (v*) is readily apparent on 
examination of Fig. 2. 

On occasions when the Mie optical depths are small, 
TM(X) tends generally to increase with wavelength 
(i.e., cr<O.OO). On most of these occasions the spectral 
Mie optical depth measurements exhibit negative 
curvature. An esample of this type is illustrated in 
Fig. 3 for the data of 24 October 1975. In a similar 
manner to the method described above, an Angstriim 
turbidity coefficient was estimated from the data to be 

.- ---_--____ 
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FIG. 2. Observed Mie optical depths and estimated size distributions for 
7 August, 29 August and 29 October, 1975. 

cy= -0.27, and thus inversions were performed using 
weighting functions having initial Junge parameters 
v*= 1.23, 1.73 and 2.23. It is readily apparent on 
ekamination of Fig. 3 that distinctly non-Junge size 
distributions result from data of this type. This is not 
unexpected since the tendency for negative curvature 
on the part of the data suggests an absence of both 
small and large particles. 

The three different size distributions illustrated in 
Fig. 3 indicate a relative insensitivity to the choice 
of the Junge parameter in the initial weighting functions 
except in the radius range where little retrievable 
information exists. The inversion result presented here 
was specifically selected because it clearly demonstrates 
that the inversion procedure is capable of perturbing 
the initial guess as required. Most data (but not all) 
do not necessitate such a drastic alteration of the initial 
weighting function h@)(r). All days for which the Mie 
optical depths exhibit negative curvature while in- 
creasing with wavelength produce inverted size distri- 
butions which are relatively monodisperse, as is the 
case with the data of Fig. 3. These types of distributions 
have been observed on approximately 30% of all days 
examined thus far. 

Fig. 4 illustrates the spectral optical depth measure- 
ments and corresponding size distributions for 12 
November 1975 and 6 and 15 May 1977, da)-s for 

which the TM(X) data increase with wavelength. In all 
instances the inverted size distributions are relatively 
monodisperse in character with very little sensitivity 
to the initial weighting function Iz(~‘(~). Data of this 
type are often difficult to invert due to the problems 
associated with determining the radius range having 
the major contribution to the attenuation measure- 
ments. For this reason it is frequently necessary to 
invert a data set several different times with slight 

alterations in the radius range. To this end, the agree- 
ment between distributions having different initial 
weighting functions affords a ver!’ convenient subjec- 
tive test of stability. None of the attenuation measure- 
ments over the Chesapeake Ba\- (Knestrick ef al., 
1962) which were considered by lTamamoto and 
Tanaka (1969) showed any spectral dependencies 
similar to Figs. 3 and 4. The large Junge parameter 
(v*=3.0) used in their weighting functions would 
probably have made it more difficult to invert an> 
data of this type had they occurred. 

Not all spectral optical depth measurements which 
exhibit negative curvature or negative Angstriim 
turbidity coefficients [i.e., T.,~ (A) increases as a function 
of A] show quite as dramatic a monodisperse character 
to the size distributions as the data of Figs. 3 and 1. 
Fig. 5 illustrates the spectral optical depth measurements 
and corresponding size distributions for 10 October 
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FIL 3. As in Fig. 1 except for measurements collected on 24 October 1975. 

I I I I I I I I 
04 05 06 07 08 09 IO II 

X+?l) 

IO% 

lo* - 

lee - 

IO’ - 

106 - 

IOS- 

I04 - 

IO'- 
006 

- I2 NOV 1975 
*------Q 6 Mpy 197-f 

.-.- -+ 15 MAY IW? 

I I ! 
! 01 

I 
IO 50 

d,wm) 

FIG. 4. As in Fig. 2 except for measurements on 12 November 1975, 6 May 1977 and 15 May 1977. 
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FIG. 5. As in Fig. 2 except for measurements on 10 October 197.5,30 March 1976 and 15 June 1977. 
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FIG. 6. As in Fig. 1 except for measurements collected on 20 November 1975. 
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FIG. 7. As in Fig. 2 except for measurements on four consecutive days from 3 to 6 November 1975. 

1975, 30 March 1976 and 1.5 June 1977. On these days 
(as well as several others) the TM(X) measurements had 
characteristic negative curvature resulting in size 
distributions which tended to be peaked but quite 
broad and asymmetric. There appears to be corre- 
spondence between the slope of the Q-M(X) measure- 
ments at the short wavelengths and the radius at 
which the distribution attains a maximum. The Mie 
optical depth measurements which produce this second 
class of distributions (type II) are typically very small 
C~~(O.6120 pm)-0.031 with Angstrom turbidity 
coefficients which are typically negative (a = -0.23). 
The single data case of 30 March 1976 (see Fig. 5) 
deviates the most from these values, and the corre- 
sponding size distribution could equally well be cate- 
gorized as a type I (Junge-type) distribution, thus 
making classification according to three distinct types 
somewhat arbitrary. 

Perhaps the most interesting distribution type which 
has been observed thus far is one for which the spectral 
optical depth values are intermediate between the large 
turbidities of type I and the small turbidities of type 
II. On occasions when the Mie optical depths are 
intermediate in magnitude [TM (0.6120 Mm) = 0.051, 
TM(~) tends generally to decrease with wavelength 
(~~-0.5) but with positive curvature. An example of 
this type (which will be referred to as type III) is 
illustrated in Fig. 6 for the data of 20 November 1975. 

On this day’ the Angstrom turbidity coefficient was 
estimated to be 0.21, and thus inversions were per- 
formed using Junge distribution initial weighting 
functions with v*=1.71, 2.21 and 2.71. Fig. 6 clearly 
demonstrates that not only do non-Junge aerosol size 
distributions result but that the inversion procedure 
‘is quite capable of perturbing the initial weighting 
functions h@)(r) as required. All days for which the Mie 
optical depths exhibit relatively small, but positive, 
Angstrom turbidity coefficients with positive curvature 
imply aerosol size distributions which can be repre- 
sented as a combination of a power law (type I) and a 
relatively monodisperse (type II) distribution, as is the 
case with the data of Fig. 6. These types of distributions 
have been observed on about 50% of the days examined 
thus far. It is consistent with the present results, 
however, to consider types I and II to be subsets of 
the more general type of distribution shown in Fig. 6 
since all distributions can be represented by a combina- 
tion of types I and II where the relative concentrations 
of these two types vary in space and time. 

Fig. 7 illustrates the spectral optical depth measure- 
ments and corresponding aerosol size distributions for 
an episode of four consecutive days in November 1975. 
Note in particular that T,\~(X) for the three longest 
wavelengths is very similar in shape for all four days 
as is the size distribution function for the larger par- 
ticles. However, the slopes of the T,M(X) measurements 
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at the shorter wavelengths are directly correlated 
with the slopes of the Junge part of the aerosol size 
distributions at the smaller radii. 

The resulting two-component size distributions shown 
in Figs. 6 and 7 are consistent with the production 
mechanisms of atmospheric aerosol particles. Those 
particles with radii SO.5 pm are produced by a com- 
bination of nucleation from the gas phase and subse- 
quent coagulation. Particles having radii 2 1.0 pm are 
principally the result of mechanical and wind stresses 
at the earth’s surface. It is known from aerosol physics 
that these production mechanisms are not very effective 
in the 051.0 pm range, and thus it is not surprising 
that a separation of two regions might sometimes be 
observed. ,4 more complete discussion of aerosol physics 
can be found in Twomey (1977). A review of the 
multimodal nature of size distributions and their 
physical characteristics is given by Whitby (1978). 

Curcio (1961) assumed that the atmospheric particu- 
lates were composed of such a two-component system 
with the smaller particles given by a Junge distribution 
and the larger ones by a Woodcock or Gaussian distri- 
bution. Most of the spectral attenuation measurements 
he presented, as well as theoretical computations using 
this model, have wavelength characteristics similar to 
those presented above for wavelengths in the visible 
and near-infrared regions. Curcio similarly found that 

I 

I? ( 

C 

the higher attenuation data cases tended to be domi- 
nated by Junge-type aerosol size distributions in 
essential agreement with the results presented above. 

Although Yamamoto and Tanaka (1969) inverted 
data with wavelength characteristics similar to those 
in Figs. 6 and 7, their inversions show none of the 
bimodal characteristics which we have observed. This 
may be partly due to their representing the size distri- 
butions on a scale of ~z(r) or &Vi&, rather than 
&V/d logr, which tends to stretch the appearance of the 
distributions. 

As pointed out earlier, gradations between clear-cut 
distribution types occasionally occur, making classifi- 
cation into three distinct categories somewhat arbitrary. 
Fig. 8 illustrates the spectral optical depth measure- 
ments and corresponding size distributions for 1 and 
3 November 1976 and 18 May 1977, days for which the 
aerosol size distributions are very similar and the 
optical depth data show very subtle curvature differ- 

ences. In estimating the relative frequencies of 
abundance, the size distribution for 3 November 1976 

was considered to be partly type I and partly type III, 
while that for 18 May 1977 was considered to be type I. 
The distribution on 18 May 1977, in particular, could 

have been placed with some justification in any of the 
three categories. 
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FIG. 8. As in Fig. 2 except for measurements on 1 November 1976, 3 November 1976 and 18 May 1977. 
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4. Practical considerations 

Some of the practical difficulties associated with 
obtaining satisfactory size distribution determinations 
from inversion of attenuation coefficients as a function 
of wavelength or angular scattering intensities as a 
function of scattering angle have been discussed by 
various investigators (e.g., Yamamoto and Tanaka, 
1969; Dave, 1971). Two aspects of the remote sensing 
determination of aerosol size distributions, namely, 
the radii limits of maximum sensitivity and the assumed 
index of refraction of the atmospheric aerosol particles, 
are worth reexamining in the context of the present 
investigation. The necessity of weighting the kernel 
by a modifying function h(r), as well as the need to 
scale the Lagrange multiplier y according to the 
magnitude of one of the elements of the matrix ATC-‘A, 
has been discussed previously. 

In Section 3 it was pointed out that the radius range 
of the atmospheric particulates which contributes the 
most significantly to the Mie optical depth measure- 
ments is itself a function of the aerosol size distribution 
to be determined. In order to see why this should be 
the case, consider the contribution function I’(r,h) 
defined as 

dNC 
r (r,Q = ?n2Qext (~,x,m>--- 

d logr’ 
(15) 
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FIG. 9. Contribution function r(r.k) as a function of log r and 
X for (a) the aerosol size distribution of 24 October 1975 (see 
Fig. 3) and (b) the aerosol size distribution of 20 November 1975 
(see Fig. 6). 

With this definition, 

s 

log rlJ 

TM (A> = r (r&d logr, (16) 
lw3 ?a 

and thus the integral under a curve of I’(y,X) vs logr 
represents the regression fit to the r.tf(X) measurement 
for the spectral band which is centered at X. The 
contribution function defined here is similar to the 
probability density function defined by Fraser (1975). 
However Fraser uses a unit volume particle size 
distribution based on dLY/‘dr, and normalizes the 
extinction cross section by the resulting attenuation 
coefficient. 

Fig. 9a illustrates the contribution function I’(r,X) 
as a function of logr for the columnar aerosol size 
distribution of 24 October 1975 (v*= 2.23 case of Fig. 3) 
and for four different wavelengths (0.4400, 0.6120, 
0.8717 and 1.0303 pm) on this day. Fig. 9a indicates 
that the radii which contribute to the spectral Mie 
optical depth measurements on 24 October 1975 are 
restricted to lie in the range 0.15 pmsr,<3.0 pm. With 
this type of distribution (i.e., type II where 741 increases 
with wavelength), it generally follows that the radius 
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FIG. 10. Inversion solutions obtained for simulated qw(X) data 
computed for an aerosol size distribution having a combination 
of Junge plus log-normal composites and a refractive index of 
?u= 1.54-O.OOi. The refractive indices assumed in the inversions 
are indicated in the figure. 

range for which there is significant contribution to the 
optical depth measurements is more restricted than 
for other distribution types. Attempting to perform 
an inversion for radii beyond this sensitive region 
results in an unstable, highly oscillatory and hence 
unphllsical solution. As a consequence, some trial and 
error 1s usually required in order to isolate the proper 
radius interval. Therefore, for a set of optical depth 
measurements over a given spectral range, it does not 
necessarily follow that the upper and lower limits for 
sensitivity are fixed as implied by Yamamoto and 
Tanaka (1969) but instead vary, depending on the 
form of the unknown size distribution. 

As an esample of this, a very different contribution 
function is obtained for the more typical composite 
size distributions having both Junge- and log-normal 
type components (t\-pe 1111. Fig. 9b illustrates the 
contribution function for the size distribution of 20 
November 1975 (v*=2.71 case of Fig. 6). The contri- 
bution function in the radius interval 0.4 pm<r<l.O NN 
I.trn is primarily produced by the log-normal part of 
the aerosol size distribution and therefore has a form 
similar (although shifted to larger radii) to the contri- 

bution function of Fig. 9a. This demonstrates that a 
distribution with a greater abundance of large particles 
can have the benefit of extending the range of maximum 
sensitivity to somewhat larger radii than would other- 
wise be detectable were the distribution simply Junge 
with measurements extending only to X= 1.0 Frn. The 
contribution function at the shorter radii is due pri- 
marily to the Junge part of the aerosol size distribution 
and therefore depends on both the effective V* value 
and the constant of the Junge distribution at these 
radii. Since the inverted aerosol size distributions for 
20 November 1975 (and in fact most distributions of 
type III) were obtained by assuming a minimum radius 
of 0.1 pm, the contribution function below 0.1 pm 
represents only what would be observed were the slope 
of the Junge part of the size distribution extended to 
smaller radii. As Fig. 9b illustrates, significant contri- 
bution to the optical depth measurements could be 
produced below 0.1 pm at the shorter wavelengths. 
However, an integral over the extended radius range 
of I’(r,X) would produce a wavelength dependence of 
~,M(X) which no longer has the gentle slope with well- 
developed positive curvature that is observed. This 
implies that the aerosol size distribution cannot 
continue with such a large slope (v*) for radii <O.l pm 
but must decrease at some point not far below 0.1 Mm. 
The aerosol size distributions of type III are therefore 
bimodal with the radius of the first maximum being 
SO.1 pm, but with the specific radius being undetectable 
with spectral attenuation measurements at visible and 
near-infrared wavelengths. 

The bimodal size distributions of type III are not 
normally as difficult to invert as those of type II but 
they do have certain idiosyncrasies of their own. If 
inversions are attempted using an upper radius which 
is too large (or occasionally too small), instabilities 
develop such that subsequent iterations produce more 
and more particles at the larger radii. When this 
occurs, the number of particles in the region between 
the Junge and log-normal parts of the size distribution 
are typically at a minimum. The inversion result 
within this intermediate region is intrinsically unstable 
if the number densities are small enough so that little 
contribution is made to the resultant optical depths. 
Both instabilities were found to be critically dependent 
on the value of the upper radius limit. A radius range 
of 0.1 pm<r<a.O pm is normally the most stable for 
data of this type (when inverting with YE= l.G-O.OOi). 
When the proper radius range is isolated, all cases 
having different initial Junge distribution weighting 
functions, as well as all iterations within each case, are 
stable and similar as seen upon examination of Fig. 6. 

The sensitivity of the inverted size distribution 
to index of refraction has been treated analytically 
by Yamamoto and Tanaka (1969). Using van de Hulst’s 
(1957) anomalous diffraction theory, Yamamoto and 
Tanaka showed that the inverted aerosol size distri- 
butions maintain their shape under various indices of 



NOVEMBER 1978 KING, BYRNE, HERMAN AND REAGAN 2165 

refraction (shifting slightly in both magnitude and 
radius). Representing the refractive index as a complex 
number m=fl-Ki and extending Yamamoto and 
Tanaka’s (1969) results to a scale of dN,(r)/d logr, it 
can be shown that 

0.54r 
dN, - 

( > n-1 n-l 2 dN,(r) 

d logr -( ) 0.54 d logr . 
(17) 

In this expression &VC(r),‘d logr represents the size 
distribution obtained for n= 1.54 and d:VC[0.54r/ 
(n- l)]/d 1 g o r re p resents the size distribution obtained 
for a different real refractive index n where the radius 
is scaled as indicated. [Within the limits of applicability 
of the anomalous diffraction approximation, this 
expression is strictly applicable when K/ (PZ--- 1) is held 
fixed for both inversions.] 

In order to see how well this performs for refractive 
indices between 1.45 and 1.54, we considered an aerosol 
size distribution consisting of a combination of Junge 
and log-normal components for radii between 0.02 and 
10.0 pm. Assuming that this distribution function is 
applicable for m= 1.54-O.OOi, Mie optical depths were 
then computed at each of seven wavelengths between 
0.4400 and 1.0303 pm. These values of TIM were 
used without the addition of random error to determine 
particle size distributions by the method described in 
Section 2 for m=1.54-O.OOi, 1.45-O.OOi and 1.45 
-0.03i. For these inversions, the radii limits differed 
from that of the true distribution as described by the 
discussion on radius sensitivity. The results are pre- 
sented in Fig. 10 where the solid curve represents the 
assumed model distribution and the broken curves are 
the results of computation (inversron) for the refractive 
indices indicated. The spectral optical depth calcula- 
tions, although not explicitly illustrated, exhibit the 
characteristic wavelength dependence expected for this 
type of size distribution (i.e., little wavelength depen- 
dence but with positive curvature). 

It can be seen on examination of Fig. 10 that the 
inversion result for the refractive indes m= 1.54-O.OOi 
agrees very well with the model distribution, particu- 
larly for ~220.16 pm. This is due to the fact that the 
refractive index assumed in the model distribution 
when generating the data is the same as that used in 
the inversion. The deviation which does occur between 
the true and computed distribution is due primarily 
to truncating the lower radius assumed in the inversion 
(in this case ra= 0.07 pm and rb= 3.5 pm). Extension 
of the lower radius much less than that used in this 
example, however, would lead to instabilities in the 
inversion. 

Fig. 10 suggests that the inverted size distributions 
obtained when n= 1.45 (for r,=0.08 pm, rb=4.00 pm) 
are quite similar regardless of the imaginary part of 
the complex refractive indes (at least when ~50.03). 

It is similarly apparent that the shapes of the size 
distributions for n= 1.45 and n= 1.54 are similar as 
suggested by Yamamoto and Tanaka (1969). The 
reduction in magnitude and the shift to larger radii 
which does occur as the real part of the refractive index 
decreases is in essential agreement with that of (17). 

Although no random error was added to the simu- 
lated measurements, the same set of data was used 
in performing inversions with all three refractive indices. 
This type of analysis has been performed for several 
other types of aerosol size distributions, including 
Junge and log-normal, and the results indicate that 
(17) is able to explain the major differences in the 
inversion for all three refractive indices considered. 
Additional sensitivity analysis using real data and a 
wider range of aerosol refractive indices is required to 
fully examine the problem of potential refractive 
index biases in the retrieval of aerosol size distribution 
from spectral attenuation measurements. 

The effect of variations of the refractive index with 
wavelength and/or particle size has not been considered 
in the present investigation. Although these effects 
are not expected to be significant for most aerosol 
systems, one can imagine situations in which these 
effects can be large. Gillespie et al. (1978) considered 
the effects of an atmospheric aerosol consisting of small 
particles with one refractive index (m= 1.8-0.5) and 
large and giant particles with another refractive index 
(m= 1.5-O.Oi). They computed the volume extinction 
coefficient at three wavelengths between 0.55 and 
1.06 wrn and compared the results with those of a 
model with the same size distribution and a single 
refractive index (m= 1.50-0.00%). Their results 
indicate that the difference in the extinction coefficient 
between the models is small with differences of 1.5% 
at 0.55 pm and only 2yo at 1.06 I.tm. This effect would 
alter slightly the inverted size distribution result of the 
large aerosol particles (O.lLrs 1.0 pm) while having 
little effect on the size distribution of the giant particles 
(rzl.0 pm). For a less dramatic difference in the 
particulate refractive index with size range the differ- 
ences in the extinction coefficient (or optical depth) 
computed with a mean refractive index will be even 
further reduced. 

. 

5. Summary and conclusions 

An inversion solution to the linear svstem of equa- 
tions g=Af has been derived which explicitly considers 
the magnitude of the standard deviations in a set of 
measurements g. This formula [Eq. (14)] has been 
applied to the problem of determining the columnar 
aerosol size distribution from spectral measurements of 
the particulate (Mie) optical depth in the wavelength 
region 0.4400 pm < X < 1.0303 pm. An iterative method 
of solution is described whereby an estimate of the size 
distribution is included in the elements of the A matrix. 
With this procedure, the inverted solution vector f 
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amounts to a modifying function to the assumed form 
of the size distribution. 

As demonstrated by the family of curves in the right 
portion of Figs. 1, 3 and 6, this iterative algorithm 
is quite capable of perturbing the initial estimates of 
the size distribution as required. In all instances 
three different Junge size distributions had been initially 
assumed so that the results after subsequent iterations 
could be intercompared. Tests with both real and 
generated spectral measurements of the Mie optical 
depth indicate that this method of solution is quite 
capable of inverting a wide variety of observation types. 
The only difficulty which normally arises is in selecting 
the radius range having the major contribution to the 
measurements. 

The subject of radii limits has been discussed in some 
detail in Section 4 where it was shown that the radii 
which contribute most significantly to the magnitude 
of the Mie optical depth measurements vary somewhat 
with the type of the size distribution to be retrieved. 
Satisfactory size distribution determinations can norm- 
ally be obtained for the radii range 0.10 pm<r<4.0 pm 
when measurements are available for wavelengths 
throughout the visible and near-infrared regions. The 
greatest difficulty arises when the size distribution is a 
relatively monodisperse distribution contained in a 
narrow radius interval around 0.5 pm. Uncertainties 
in the complex refractive index have been found to 
have little effect on the spectral attenuation problem, 
particularly with regard to absorption, as illustrated 
by the family of curves in Fig. 10. 

Columnar aerosol size distributions have been deter- 
mined by inversion of spectral Mie optical depth 
measurements for 57 days in Tucson, Arizona. The 
optical depth measurements and corresponding aerosol 
size distributions are illustrated in Figs. 1-8 for a few 
of these days. The results generally indicate (at least 
for rkO.1 pm) that the aerosol size distribution on a 
particular day can be represented either as a Junge 
distribution (type I), a relatively monodisperse distri- 
bution such as a log-normal or gamma distribution 
(type II), or as a two-component system consisting of 
a combination of both of these types (type III). 

Type I distributions have been observed on 20% of 
the days examined thus far while types II and III have 
been observed on approximately 30 and SOY0 of the 
days, respectively. The type I distributions occur 
mainly in the fall and late spring in Tucson when the 
optical depths are the largest [~,~,(0.6120)-0.081 and 
when the spectral optical depth measurements exhibit 
linear or slightly positive curvature on a logT,v vs 1ogX 
scale with relatively steep slopes (LY= 1.2). Type II 
distributions, on the other hand, occur in the late fall 
and early summer when the optical depths are the 
lowest [7,~ (0.6120) =0.03]. Under these circumstances 
7,11(h) tends generally to increase with wavelength 
(a--0.2) while exhibiting negative curvature on a 
log7M vs 1ogX scale. The size distributions of type III 

occur throughout the winter months when virtually 
no distributions of types I and II occur. These distri- 
butions occur when the optical depths are intermediate 
in magnitude [~,~(0.6120) =O.OS], the Angstrom slope 
a-0.5, and the logTAv measurements show positive 
curvature as a function of 1ogX particularly at the longer 
wavelengths. Both the distributions and the optical 
depths of this type appear to be combinations of types 
I and II. 

Curcio (1961) found that the majority of his obser- 
vations of attenuation coefficient along a horizontal 
path in the Chesapeake Bay area could best be described 
as resulting from a combination of type I and type II 
distributions (i.e., type III). He also determined that 
larger optical depths resulted from Junge-ty-pe size 
distributions. This is in support of the results obtained 
in the present investigation for vertical attenuation at 
a different location. Rangarajan (1972) investigated 
the Angstrom wavelength exponent for 520 observations 
at Poona, India. His results are in agreement with 
those reported here in that the lowest (near zero) ty 
values occurred on occasions of lowest turbidity. 
Rangarajan’s (1972) median value of 0.5 is the same 
as our type III distributions, those found to occur the 
most frequently. 
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