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SUMMARY

We use ‘peaks over threshold’ approach to estimate extreme wind loads calculated by taking into account
the directional dependence of both the aerodynamic coefficients and the extreme wind climate. Our interest
is focused primarily on ultimate wind loads, that is, loads that are sufficiently large to cause member failure.
For non-hurricane regions (1) we comment on issues raised by the fact that directional data published by
the National Weather Service are incomplete, and (2) note that, owing to the relatively small sizes of the
data samples, results on directional effects for mean recurrence intervals longer than a few hundred years
are inconclusive. For hurricane-prone regions we show that, on average, the common practice of disregard-
ing wind directionality effects is conservative for 50-year wind loads. However, according to our results, the
degree of conservatism decreases as the mean recurrence interval increases. While individual estimates of
speeds with very long mean recurrence intervals are unreliable, statistics based on estimates obtained from
large numbers of records can provide useful indications of average trends and suggest that, for mean
recurrence intervals associated with ultimate wind loads, the favorable effect of wind directionality tends to
be marginal. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Two types of method for estimating wind forces are currently in use. The non-directional method
is one in which the wind forces are calculated by replacing the set of aerodynamic coefficients
measured for each wind direction by a single aerodynamic coefficient, equal to the maximum
value in this set. We are interested in the conservatism inherent in non-directional calculations,
particularly for ultimate wind loads, that is, loads with long mean recurrence intervals which
cause structural failures. Unlike the non-directional method, directional methods account
explicitly for the dependence upon direction of both the wind speeds and the aerodynamic
coefficients. A description and assessment of existing directional methods is available in Simiu
and Scanlan (1996, p. 308).

In the following sections we review briefly the non-directional method and a directional
method appropriate for the estimation of wind loads or linear functions thereof (Simiu and
Scanlan, 1996, p. 311; Simiu and Filliben, 1981). Methods for estimating extreme wind speeds
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differ according to whether the site of concern is located in a non-hurricane or a hurricane-prone
region (Simiu and Scanlan, pp. 95, 102). We analyze data sets in both types of region. We then
present results of our analyses, comment on the results, and present our conclusions.

2. ESTIMATION METHODS

2.1. Directional method

So that the paper be self-contained, we review briefly the directional estimation method proposed
in Simiu and Filliben (1981). The method is applicable provided that the wind effects depend on
wind speed and direction in the form

p(0) = (p/2)C(O)x(6) e

where p =air density, C = aerodynamic pressure or force coefficient (or other wind effect
coefficient independent of wind speed), p = pressure or force (or other wind effect), x = wind
speed, and § = wind direction, respectively. The estimation method is based on the analysis of the
set of N time series

P(0)) = C(0)x,(6,)" /max,[C(6,)] ¢

where /= 1,2, ..., N denotes the direction, j=1,2, ..., M, M is the number of years or, for
hurricane-prone regions, of hurricane events, max[C(6)] is the largest of the values ((8)), and
max, denotes the maximum over all is. For non-hurricane regions data are available for a number
of directions N = 8. For hurricane-prone regions N = 16. From these time series we form the
single time series

P, = max {[P,(6))]}. (3a)

To within a constant factor, P; is the largest wind effect in year (or hurricane) j. Rather than
analyzing the time series P, we analyze the time series of equivalent wind speeds

Yo = (P (3b)

The analysis yields the extreme values x . , where R denotes the mean recurrence interval (MRI).
The extreme wind effect for the MRI of interest is

Py = (p/2)imax,[CON(Xgeq)’- )

2.2. Non-directional method

We now discuss the non-directional method, which is used in most codes and standards. First
form the time series

% = max;[x,(6,)] (5)

of the largest wind speed in year (or hurricane) j, regardless of its direction. Next, from the
analysis of this time series, obtain the estimate xp, that is, the non-directional estimate of the
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R-year speed, where R now denotes a nominal MRI. The corresponding non-directional estimate
of the wind effect with an R-year nominal MRI is

PR,nom = (p/2)max,[c(91)]\fi (6)

In other words, P is obtained by following exactly the same steps used in the preceding
subsection to estimate P, except that in equation (2) the factor C(8) is replaced by the factor
max,[C(8))]. Each of the terms of the time series X" s equal to or larger than its counterpart in
the time series Xegi- Therefore, if the MRI and the nominal MRI have the same value, one might
expect pp < Pruoms i Pr = P nom the MRI may be expected to be larger than the nominal MRI.
This explains the common belief that non-directional estimates of wind effects are conservative
from a design viewpoint. However, as is shown subsequently, even if the conservatism can in
certain instances by substantial for 50 year loads, it decreases as the MRI increases and can be
marginal for loads corresponding to the large MRIs associated with member failure.

2.3. Extreme value statistical estimation procedure

For information on the ‘peaks over threshold’ approach to estimating extremes, see Castillo
(1988). Our analyses are based on de Haan’s estimation procedure, described in some detail in de
Haan (1994) (see also Appendix 1 of Simiu and Scanlan, 1996). On account of the form of
equations (4) and (6), it is sufficient to compare the estimated values of X peg and X, rather than
the respective wind effects. (In this paper we omit the circumflex used in the statistical literature to
denote estimated values.) The performance of the de Haan estimation procedure was compared
in Gross et al. (1994) with the performance of other estimation procedures and was found to be
satisfactory for the purposes of our analyses. In addition, we note that analyses of the hurricane
data used in this paper were made by using the de Haan procedure and the maximum likelihood
techniques. The differences between the respective estimates were found to be insignificant for
practical purposes (Coles, 1996).

3. ANALYSES AND RESULTS FOR NON-HURRICANE REGIONS

3.1. Aerodynamic coefficients and wind speed data

The wind effect coefficients were assumed to have the values shown in Table 1.

Table 1. Direction-dependent aerodynamic coefficients (after Peterka and Cermak, 1978)

, N NE E SE S SW W NW
c®) 11 1-0 0.7 09 33 11 06 02

The data represent an envelope of absolute values of aerodynamic coefficients obtained for a
large number of wind directions for a corner location of a tall building roof (Peterka and Cermak,
1978). Note that, as is commonly the case for corner pressures, for one of the directions the
coefficient is much larger than for the others. Seven additional sets of aerodynamic coefficients
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were used. These were obtained from the set just listed via rotation of the building by 45°,90°, ...,
270°, 315°.

The directional wind speed data, which do not include tornado speeds, were taken from
Changery et al. (1984). They consist of 22 sets of largest annual directional fastest-mile speeds at
10 m above ground in open terrain for eight azimuths, recorded over periods of 19-30 years at
stations where hurricanes do not occur. These data were extracted from original National
Weather Service records. In addition, for the same stations and periods, annual directional data
for the eight azimuths were extracted from published Local Climatological Data (LCD) monthly
summaries. All data listed in Changery et al. (1984) are fastest-miles in mph. In our calculations
the data were converted to fastest-miles in m/s. The data are listed in electronic data files (see
Appendix for instructions on accessing the data).

3.2. Effect of ‘hidden’ values on estimated percentage points

Most of the data from original records coincide with those from the published records. However,
for some data this is not the case owing to the “hidden’ values problem. The data in the LCD
summaries for the periods we used consist of the largest daily speed and the associated direction.
On the date this largest speed occurred, another (lower and therefore unpublished) value from a
different direction could have exceeded the published extreme for that direction. Since that value
would not appear in the LCD summaries, it is referred to as *hidden’. We compared directional
estimates based on data from original records on the one hand and on the corresponding pub-
lished data on the other. For example, for Omaha, Nebraska, for 1950, W direction, the ‘hidden’
value was 27 m/s, while the published value was 21 m/s; in 1953, S direction, the respective data
were 25 m/s and 19 m/s; in 1957, SE direction, they were 24 m/s and 17 m/s. We show in
Figures 1(a) and (b), respectively, estimates of X peq for Omaha based on 1950- 1076 data taken
from original records (i.e., including the ‘hidden’ data) and data taken from LCDs (i.e., data from
which the ‘hidden’ data are missing) for the period 1950-1976. For small MRIs the differences
between equivalent wind speed estimates based on the two sets are relatively small. It is only for
large MRISs that the differences become significant, that is, about 10% or more. Since loads are
proportional to the squares of the equivalent wind speeds, this translates into differences of the
order of, say 20% or more between the respective load estimates. Similar results were obtained
for other stations.

However, the fact that our estimates for low (25-100 year) MRIs did not exhibit significant
errors associated with ‘hidden’ data does not exclude the possibility that such errors do occur in
some instances. Given this possibility, consideration may be given to a change in current National
Weather Service data publication policy, so that data of interest be no longer ‘hidden’. An
opportunity for such change exists at this time, as the National Oceanic and Atmospheric
Administration is attempting to respond more effectively to the needs of the design professions.
In the meantime, for structural engineering purposes, methods of analysis may be used that
account for the incompleteness of the directional data published so far by the National Weather
Service.

Note that Figure 1 contains estimates of speeds with MRIs of up to 100,000 years. Sampling
errors increase as the MRI increases. Therefore, in view of the small size of the observed wind
speed data samples, sampling errors inherent in individual wind speed estimates with very large
MRISs can be too large for individual estimates to be useful. To show this we consider the simple
expression (based on the method of moments) for the sampling errors in the estimation of
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Figure 1. Estimates X peq with 25 year (bottom curve) to 100,000 year (top curve) MRIs based on (a) original record and
(b) on published record, Omaha, Nebraska (1950-1976)

extremes, available for the case of the Type I Extreme Value distribution (Simiu and Scanlan,
1996, p. 98):

SD(x) = 0.78[1-64 + 1.46(InR — 0-577) + 1-1(InR — 0-577)°]s/n'"? (7

where SD denotes sampling error, X is the estimate of the variate with an R-year MRI, s is the
standard deviation of the extreme value sample, and n is the sample size. Assuming a typical
value s =3 m/s (corresponding to a typical sample mean X = 15 m/s) (Changery et al., 1984),
and a sample size n = 25, equation (7) yields SD(x4,) = 2-0 m/s and SD(x,4 49p) = 5-7 m/s. The
estimates of x, based on the method of moments are given by the expression (Simiu and Scanlan,
1996, p.97):

Xp =X +078(InR — 0-572)s (8)
From equation (8), x5, =22-8 m/s and x40 = 40-6 m/s. 95% confidence intervals for the
50 year and 100,000 year speeds are {18-8 m/s 26-8 m/s} and {30-2 m/s, 51-0 m/s}, respectively.

If we divide these values by x5, and x4 o99. respectively, the intervals are {0-82, 1-18} for the
50 year speed and {0-74, 1-26} for the 100,000 year speed. The corresponding interval for the
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ratios [x,05 099 = 2SD(X 49 g0p))/ x50 + 2SD(x50)] is {1-61, 1:90} or, if we divide these values by the
ratio X,q9 gg0/ X5 = 178, the interval is {0-90, 1-07}. This typical example shows that, for large
MRIs, 95% confidence intervals of the estimated wind speeds can be quite wide. It is therefore
emphasized once more that, for large MRIs, individual estimates are generally unreliable. On the
other hand, for ratios of estimated wind speeds with higher MRIs to 50 year speeds, if a large
number of records are examined, appropriate statistics can provide useful indications on average
trends, as will be seen in the section on estimates for hurricane-prone regions.

3.3, Comparison of estimates by the directional and non-directional methods for various MRIs

We attempted to effect such comparisons by using our directional data based on the complete
original records (i.e., the records without ‘hidden’ values). However, owing to large sampling
errors we feel it would be imprudent to use our results as a basis for assessing directionality
effects, except for relatively small MRIs. To illustrate this point some representative results are
shown in Figures 2 and 3. For Portland, Oregon, and the set of eight aerodynamic coefficients
listed earlier, Figures 2(a) and (c) show, as functions of threshold (in m/s), the tail length para-
meters of the best fitting extreme value distributions and their 95% confidence bounds. (The
larger the parameter ¢, the longer the distribution tail is.) Figures 2(b) and (d) show the estimates
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Figure 2. Estimates of: (a), (c) tail length parameter ¢ and 95% confidence bands corresponding to (b) and (d),
respectively; (b) speeds x, with 50 year (bottom curve) to 100,000 year (top curve) nominal MRlIs; (d) speeds x,,, with
50-100,000 year MRIs, for largest pressure coefficient C(8) = 3'3 in S direction (Portland, Oregon, 19507—197%)
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Figure 3. Estimates of: (a), (c) tail length parameter ¢ and 95% confidence bands corresponding to (b) and (d),
respectively; (b) speeds x,, with 50 year (bottom curve) to 100,000 year (top curve) nominal MRIs; (d) speeds X peq With
50~100,000 year MRISs, for largest pressure coefficient C(f) = 3-3 in S direction (Madison, Wisconsin, 1950--1979)

xp and X peq respectively. For the type of graphs of Figure 2, a roughly horizontal portion
is judged to correspond to a reasonable approximate estimate of the variate of concern see
(Castillo, 1988 or Simiu and Heckert, 1996). Similar results are shown in Figure 3 for Madison,
Wisconsin. As a first step toward attempting to obtain more reliable estimates, data sets should be
obtained from existing records for longer periods than those covered by the sets of Changery et al.
(1984). In addition, the sets should include all speeds in excess of specified thresholds, rather than
Just the largest annual directional speeds.

4. ANALYSES AND RESULTS FOR HURRICANE-PRONE REGIONS

4.1. Hurricane wind speed data and aerodynamic data

The directional hurricane wind speed data were obtained by simulation (Batts et al., 1980;
Heckert et al., 1998), are available in electronic files for 16 azimuths for 55 mileposts along the
Gulf and Atlantic coasts (for milepost definition see Simiu and Scanlan, 1996, Ch. 3), and may be
accessed as indicated in the Appendix. The data stored electronically represent nominal fastest-
minute speeds in knots. The nominal fastest-minute speeds were obtained from the hourly speeds
via multiplication by a factor of approximately 1-24 (Batts et al., 1980). To transform the data
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Table I1. Direction-dependent aerodynamic coefficients (after Peterka and Cermak, 1978)

0 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW

i

Set 1 C(@) 11 0 05 06 07 06 05 09 18 33 1.1 06 01 02 02 08
Set2 C(8) 09 08 05 04 12 07 06 05 05 06 06 09 14 08 08 04

into hourly mean speeds we multiplied the data stored electronically by the factor [0-447 m/s/
mph x 1-15 mph/nmi x (1/1-24)]. The sample sizes are 999 hurricanes per milepost.

For this case we considered two sets of aerodynamic (wind effect) coefficients, shown in
Table II. Set 1 corresponds to a roof corner location. Set 2 corresponds to a location at the
approximate center of a facade. Note that the ratios between the largest aerodynamic coefficient
(shown in bold type) and the other coefficients are on average much smaller for set 2 than for set 1.

From each of these two sets, seven additional sets of aerodynamic coefficients were used, which

were obtained from those listed above table via rotation of the building by 45°, 90°, ..., 270°,
315°.

For example, for a 45° rotation, for the N, NNE, NE ..., NW, NNW directions, the
aerodynamic coefficients for set [ are 0-2, 0-8, I-1, ..., 0-1, 0-2.

4.2, Comparisons of estimates by the directional and non-directional methods for various MRIs

Because the data samples have larger sizes than for the non-hurricane region records, it is
possible to attempt comparisons between directional estimates X peq for MRIs of 50, 2000, 10,000
and 100,000 years on the one hand, and non-directional estimates x p for nominal MRIs of 50,
2000, 10,000 and 100,000 years, on the other. As an example, for milepost 250, located on the
coastline near Corpus Christi, Texas, Figure 4 shows the mean and the maximum wind speeds for
each of the 16 azimuths (minima are in many instances zero for certain directions and were not
accounted for in calculating means). For set 1 of aerodynamic coefficients listed earlier,
Figures 5(a) and (c) show estimated tail length parameters ¢ of the best fitting extreme value
distributions, and their 95% confidence bounds, for x, and X peq» Tespectively. Figures 5(b) and
(d) show estimates x , and X peq» TEspectively, as functions of thres(ixold. From Figures 5(b) and (d)
we estimate, roughly, xg, =~ 34 m/s, X5peq ~ 20 m/s and Xy00.000 < 43 m/s, and X100.000eq > 0 m/s.
Note that, for the milepost being considered, while the estimates of the 50 year speeds vary slowly
as a function of threshold, for the 100,000 year speeds the variability is large. Therefore, we
emphasize again that individual estimates for long MRIs are unreliable. However, as noted
earlier, statistics of such estimates obtained from a large number of cases can provide useful
indications of average trends. Overall, conditional on the errors in the estimation of the climato-
logical parameters used in the simulations being small, the estimates of the equivalent speeds are
more useful than those based on our non-hurricane wind speed records.

Table ITI. Mean and standard deviation of ratios e

T's0 2000 710,000 "'100,000
Mean 0-71 (0-82) 0-85 (0-88) 0-90 (0-90) 0-96 (0-95)
Standard deviation 0-12 (0-04) 0-11 (0-05) 0-12 (0-09) 0-18 (0-10)

Note: Values not between parentheses (between parentheses) correspond to aerodynamic coefficients set 1 (set 2).
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Figure 4. Directional mean and maximum hurricane mean hourly wind speeds, milepost 250

Note in Figure 5 that the 50 year estimates are significantly smaller for xp,  than for x.
A similar example, for milepost 600, is given in Simiu and Heckert (1997). However, in many
cases, including the case of Figure 5, this is not true for estimates with large MRIs. We list in
Table IIT sample statistics of the 55 milepost estimates of rg = X, o/xg.

We stress again that these values are based on the very approximate estimates made possible
for large MRIs by plots similar to those of Figures 5(b) and (d). Note that, for both sets of
aerodynamic coefficients, for very large MRIs the estimated ratios are, on average, close to unity,
although owing to statistical variability individual estimates can be larger than unity, as is clearly
the case in Figure 5.

To understand these results qualitatively, consider the simple example of the time series
x{(0)i=12; j=123) x(0,) = {52,41,47}, and x/(0,) = {48,46,39}. Let us assume C(f))=0-5
C(6,) = 1. By equation (3), the time series of the equivalent wind speeds x,_. is then identical to
the time series x,(6,). Its mean and standard deviation are 44-33 and 4-33, respectively. On the
other hand, using equation (5), we obtain the time series x = {52,46,47}, with mean and
standard deviation 48-33 > 44-33 and 3:21 < 4-33, respectively. From the fact that the mean is
larger and the standard deviation is smaller for the time series x}“a" than for the time series Xegjs
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Figure 5. Estimates of: (a), {b) tail length parameter ¢ and 95% confidence bands corresponding 1o (¢) and (d),
respectively; (c) speeds x, with 50 year (bottom curve) to 100,000 year (top curve) nominal MRIs; (d) speeds X peq with
50-100,000 year MRIs, for largest pressure coefficient C(8) = 3.3 in SSW direction (Milepost 250)

and from typical expressions of percentage points as functions of population means and standard
deviations, it follows in many situations that, for very short MRIs, x can be significantly larger
than xp_ ., while for very long MRIs this is not longer the case.

Designs are governed by loads with large MRIs, rather than by the 50 year loads. Therefore,
our results appear to indicate that, contrary to common belief, ultimate loads obtained by the
non-directional method (i.¢., from the time series x"%) may be only marginally conservative. It
would be of interest in this context to perform studies on penultimate distributions, as opposed to
asymptotic extreme value distributions, and to attempt the development of practical criteria for
ascertaining whether the use of asymptotic extreme value distributions is warranted for various
types of wind speed data sets.

4.3. MRIs of ultimate wind loads

In accordance with ASCE (1993), for hurricane-prone regions near the coastline, wind loads
inducing the design strength are defined as the loads with a 50 year nominal MRI multiplied by
an effective wind load factor (1-3 x 1-052). The MRIs of those loads were found to be, on average,
of the order of 500 years (see Whalen (1996)). For Figure 5 (milepost 250), the nominal MRI and
the MRI of the ultimate wind load are estimated as follows. The speed inducing the design
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strength is (1-05)(1-3)'"2xg, &~ 1-2 x 34 m/s = 40-8 m/s. From Figure 5(b), the nominal MRI of
that speed is about 300 years (see also Simiu and Heckert, 1997). From Figure 5(d), the MRI of
the 40-8 m/s speed (and, therefore, the MRI of the ultimate wind load) is about 3000 years.
Similar estimates were made for 55 mileposts with eight distinct building orientations at each
milepost. It was found that estimated MRIs were larger than nominal MRIs by a factor of about
3-15. A rough estimate of the average MRI for these 55 x 8 situations is 3500 vears. However, as
was the case for milepost 250, MRIs considerably smaller than 3500 years can occur in some
cases. We note that these estimates are conditional on the uncertainties pertaining to the estima-
tion of the aerodynamic, micrometeorological, and climatological parameters that determine the
wind loads being small. Unconditional estimates would lead to smaller estimates of the MRIs.
The small estimated MRIs of the wind loads inducing the design strength may explain, at least in
part, the large losses caused by many hurricane events. In light of these results it appears that the
standard specification of wind load factors in hurricane-prone regions needs to be reassessed and
revised. Efforts to this effect are currently being pursued by the ASCE 7 Standard Committee.

5. SUMMARY AND CONCLUSIONS

In this paper we presented estimates of wind loads which take into account the dependence of
direction of both the aerodynamic coefficients and the extreme wind climate. Estimates were
based on time series of the square root of the largest annual wind load for non-hurricane regions,
and of square root of the largest load induced by each simulated storm for hurricane-prone
regions. The times series were analyzed by the ‘peaks over threshold’ approach for the estimation
of extremes. For any given load, the nominal mean recurrence interval (nominal MRI) was
estimated for that load by ignoring the variation of the aerodynamic coefficients and the extreme
wind climate with direction. The mean recurrence interval (MRI, without the qualifier ‘nominal’)
was estimated for that same load by accounting for that variation.

For non-hurricane regions results pertaining to ultimate loads were not conclusive owing to the
relatively small size of the available samples. An improvement can be attempted by obtaining
from longer records than those used in this paper directional wind speed data exceeding specified
thresholds, rather than largest annual directional data, as was done in the present work. We
noted that directional data sets extracted from Local Climatological Data (LCD) summaries
published by the National Weather Service are incomplete owing to the omission of so-called
‘hidden’ directional values. By comparing load estimates based on such sets on the one hand, and
on complete sets on the other, we fond that for very long mean recurrence intervals differences
between the respective estimates of the wind forces can be as high as 20%. Such errors can be
reduced by performing analyses of incomplete sets based on methods that take the incompleteness
into account.

For hurricane-prone regions our results confirm the well-known result that loads with a
relatively short MRI (50 years, say) are generally smaller than loads whose nominal MRI is equal
to that MRI. However, according to our results this is not necessarily true for large MRIs, that is,
contrary to common belief, method for estimating extreme wind loads that do not take direc-
tionality into account may be only marginally conservative from a structural engineering point of
view.

We also found that, for hurricane-prone regions near the coastline, MRIs of loads inducing the
design strength, as specified by the 1993 ASCE 7 Standard, vary between less than 1000 years to
more than 10,000 years, the average being, roughly 3500 years. This suggests that the 1993 ASCE
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7 Standard provisions for hurricane-prone regions may result in unsafe designs in need of
revision. This suggestion becomes even stronger if it is recalled that our estimates are conditional
on uncertainties pertaining to various relevant parameters (e.g., the terrain roughness parameter)
being small. Unconditional mean recurrence intervals of the wind loads inducing the design
strength can therefore be expected to be even lower than those we estimated.
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