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ABSTRACT

We seek to ascertain whether the reverse Weibull distribution is an appropriate
extreme wind speed model by performing statistical analyses based on the 'peaks
over threshold' approach. We use the de Haan method, which was found in previous
studies to perform about as well or better than the Pickands and Cumulative Mean
Exceedance methods, and has the advantage of providing estimates of confidence
bounds. The data are taken principally from records of the largest daily wind
speeds obtained over periods of 15 to 26 years at 44 U.S. weather stations in
areas not subjected to mature hurricane winds. From these records we create
samples with reduced mutual correlation among the data. In our opinion, the
analyses provide persuasive evidence that extreme wind speeds are described
predominantly by reverse Weibull distributions, which unlike the Gumbel
distribution have finite upper tail and lead to reasonable estimates of wind load
factors. Instructions are provided for accessing the data and attendant
programs.

Key words: Building technology; building (codes); climatology; extreme value

theory; load factors; structural engineering; structural reliability; threshold
methods; wind (meteorology).
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1. INTRODUCTION

A fundamental theorem in extreme value theory states that sufficiently large
values of independent and identically distributed variates are described by one
of three extreme value distributions: the Fréchet distribution (with infinite
upper tail), the Gumbel distribution (whose upper tail is also infinite, but
shorter than the Fréchet distribution’s), and the reverse (negative) Weibull
distribution, whose upper tail is finite (Castillo, 1988).

The wind loading provisions of the American National Standard ANSI A58.1-1972
were based on the assumption that a Fréchet distribution best fits extreme wind
speeds blowing from any direction in regions not subjected to mature hurricane
winds. An extensive study concluded, however, that the Gumbel distribution is a
more appropriate model (Simiu, Filliben and Biétry, 1976). It is a physical fact
that extreme winds are bounded. Their probabilistic model should reflect this
fact. To the extent that an extreme value distribution would be a reasonable
model of extreme wind behavior, one would intuitively expect the best fitting
distribution to have finite tail, that is, to be a reverse Weibull distribution.

In addition to the certainty that wind speeds are bounded, there is at least one
other indication — albeit indirect — that the Gumbel model might be an
inappropriate model of extreme wind behavior. Estimated safety indices for wind-
sensitive structures based on the Gumbel model imply unrealistically high failure
probabilities (Ellingwood et al., 1980). This may be due, at least in part, to
the use in those estimates of a distribution with an unrealistically long —
infinite — upper tail.

In this report we seek to ascertain whether the reverse Weibull distribution is
an appropriate extreme wind speed model by performing statistical analyses based
on the 'peaks over threshold’ approach. This approach enables the analyst to use
all the data exceeding a sufficiently high threshold, and is more effective than
the classical approach, which uses only the largest value in each of a number of
basic comparable sets called epochs (typically, for extreme wind analysis an
epoch consists of one year). To illustrate this point, consider, for example, two
successive years in which the respective largest wind speeds are 30 m/s and 45
m/s. Assume that in the second year winds with speeds of 31 m/s, 37 m/s, 41 m/s
and 44 m/s were also recorded (at dates separated by sufficiently long intervals
to view the data as independent). For the purposes of threshold theory, for a 30
m/s threshold the two years would supply six data points. The classical theory
would make use of only two data points. It may be argued that, by choosing a
somewhat lower threshold, the number of data points used in the analysis could
be considerably larger than six in our example. However, in view of the theory’s
basic assumption that the threshold is high, excessive lowering of the threshold
would introduce a strong bias. Simulations reported by Gross et al. (1994)
suggest that, in samples taken from normal or extreme value populations, optimal
results are obtained if the threshold is chosen so that the number of exceedances
is of the order of ten per year.

Given a sample of data exceeding a sufficiently high threshold, the analyst using
the ’'peaks over threshold' approach must choose an appropriate estimation method.
In this report we use the estimation method proposed by de Haan (1994). Our
choice is based on two reasons. First, Monte Carlo simulations suggest that the
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de Haan method performs about as well or better, than two available alternative
methods, the Pickands method and the Cumulative Mean Exceedance method (Gross et
al, 1994). Second, the de Haan method has the advantage of providing estimates
of confidence bounds.

Data used in this report are taken principally from records of the largest daily
wind speeds obtained over periods of 15 to 26 years at 44 U.S. weather stations
in areas not subjected to mature hurricane winds. A storm system usually affects
a given location for longer than one day, so that wind speed data recorded on two
or even more consecutive days are not necessarily independent. We describe the
data samples and our procedure for creating, from the samples of largest daily
speeds, samples with reduced mutual correlation among the data, In addition to
samples of daily data we describe and analyze 115 samples consisting only of
largest yearly speeds recorded over periods of 18 to 54 years at locations not
subjected to mature hurricane winds. To our knowledge no tornado winds have
affected any of our data. All the data samples used in our analyses are available
in an anonymous data file. Instructions for accessing that file and attendant
programs are available in Appendix 4.

In our opinion, the results presented in this report provide persuasive evidence
that extreme wind speeds of extratropical origin and excluding tornadoes are
described predominantly by reverse Weibull distributions. This result is in
itself useful from a structural engineering viewpoint, and we discuss its
potential implications for the estimation of load factors for wind-sensitive
structures. Our analyses also suggest that estimates of extreme wind speeds based
on the reverse Weibull model may not be obtainable with sufficient confidence
from the information and by the method used in this report. This suggests the
need for (i) data samples based on longer recording periods and (ii) more
efficient estimation methods.

The report is organized as follows. Basic theoretical results pertaining to the
'peaks over threshold’ approach are briefly reviewed in Section 2. The de Haan
method is reviewed briefly in Section 3. The data used in the analyses are
described in Section 4. Section 5 includes the main results of our investigation.
Section 6 discusses the load factors issue. Section 7 presents our conclusions.



2. 'PEAKS OVER THRESHOLD® APPROACH

2.1 Generalized Pareto Distribution. The Generalized Pareto Distribution (GPD)
is an asymptotic distribution whose use in extreme value theory rests on the fact
that exceedances of a sufficiently high threshold are rare events to which the
Poisson distribution applies. The expression for the GPD is

G(y) = Prob[Y =< y] = 1-{[1l+(cy/a)]™V/°) a>0, (1+(cy/a))>0 (1)

Equation (1) can be used to represent the conditional cumulative distribution of
the excess Y = X - u of the variate X over the threshold u, given X > u for u
sufficiently large (Pickands, 1975). The cases c¢>0, ¢=0 and c<0 correspond
respectively to Fréchet (Type II Extreme Value), Gumbel (Type I Extreme Value),
and reverse Weibull (Type III Extreme Largest Values) domains of attraction. For
c=0 the expression between braces is understood in a limiting sense as the
exponential exp(-y/a) (Castillo, 1988, p. 215).

Given the mean E(Y) and standard deviation s(Y) of the variate Y,

a

¥ E(Y)(1 + [E(Y)/s(Y)]1%) (2)

c = %{1-[E(Y)/s(Y)]?} 3

(Hosking and Wallis, 1987).

2.2 Gumbel and Reverse Weibull Distributions. We recall that the expressions for
the Gumbel and reverse Weibull distributions for maxima are, respectively,

Fe(x) = exp{—exp[=(x—pg)/og]}  —o<x<ew (4)

Fu(x) = exp(~[(uy = x)/0y]"}, X = py (3)

For the Gumbel distribution, the relations between distribution parameters and
the mean E(X) and standard deviation s(X) are

(61/2/m)s(X) (6)

i

fe}

pe = E(X) — 0.57722(6Y2/m)s(X) (7N

For the Weibull distribution,
oy = s(X)/(T(142/7)~[T(1+1/v) %) V/? (8)
by = E(X) + 0, (1 + 1/7) (9)
where I' is the gamma function (Johnson and Kotz, 1972). For example, for E(X) =
50, s(X) = 6.25, and v = 2, oy = 13.49 and py; = 61.96. The tail length parameter
v is related to the parameter ¢ in the GPD distributions as follows:

y = -1/c (10)

(Smith, 1989).



2.3 Mean Recurrence Intervals of Variate X as Functions of GPD Parameters and
Exceedance Rate. The mean recurrence interval R of a given wind speed, in years,
is defined as the inverse of the probability that that wind speed will be
exceeded in any one year (see, e.g., Simiu and Scanlan, 1986, p. 525). In this
section we give expressions that allow the estimation from the GPD of the value
of the variate corresponding to any percentage point 1 -1/(XR), where X is the
mean crossing rate of the threshold u per year (i.e., the average number of data
points above the threshold u per year). Set

Prob(Y < y) =1 - 1/(AR) (11)
Using eq (1)
1 - [1+ cy/a]™¥e =1 - 1/(AR) (12)
Therefore
y = —a[l - (AR)°}/c (13)

(Davison and Smith, 1990). The value being sought is
Xg =y +u (14)

where u is the threshold used in the estimation of ¢ and a.



3. DESCRIPTION OF DE HAAN ESTIMATION METHOD

Let the number of data above the threshold be denoted by k, so that the threshold
u represents the (k+l)-th highest data point(s). We have A = k/n,,,, where ny,
denotes the length of the record in years. The highest, second,..., k-th, (k+l)-
th highest variates are denoted by X, ., Xp-1,n, Xn-(k+1),n» Xn-k,n=U, respectively.
Compute the quantitites

1 k-1
My = —— T (log(Xp1n) ~ log(Xpyn))®  r=1,2 (13)
k i=0

The estimators of ¢ and a are then

1
& =MW 4+ 1 - (16)
2{1 - M, )2/(M,(2))

a=ul,®M/p (17)

1 c=0
p1 = o (18)
1(1-c) c=<0
The standard deviation of the asymptotically normal estimator of c is

~

s.d. (&)=[ (1+&2) /k]1/2 620 (19a)

8(1-2¢) (5-11c)(1-2¢c)
s.d.(c) = {[(1-¢)?(1-2c)[4 - + 1/k)¥?  ¢c<0 (19b)
(1-3c) (1-3c) (1-4c)

(de Haan, 1994).



4. WIND SPEED DATA

4.1 Uncorrelated Samples Obtained from Largest Daily Data Records. Sets of daily
fastest mile wind speeds for winds blowing from any direction were obtained from
the National Climatic Data Center, National Oceanic and Atmospheric
Administration. In most samples a number of daily fastest miles were missing. The
speeds on days with missing fastest mile data were estimated from speeds recorded
on the respective days at 3-hour intervals, using observations of the approximate
relation between these speeds and daily fastest mile speeds. Wind speeds so
estimated exceeded 15.6 m/s (35 mph) only at the following stations and dates:
Boise (4/26/87, 16.1 m/s); Portland, OR (11/14/81, 19.7 m/s), Salt Lake City
(2/1/87, 16.1 m/s) and Toledo (2/6/86, 18.8 m/s). Forty—four samples were used
in the analyses. For fourteen of these samples corrections based on the largest
yearly records were effected.! The influence of these corrections on the results
of the analyses is discussed in Section 5.5. The length of the records ranged
from 15 to 26 years, the average length being about 18.5 years.

The anemometer elevations were changed during the period of record at the
following stations: Duluth (16.2 m to 10/15/75; 6.4 m thereafter), Dayton (6.1
m to 2/4/64; 6.7 m/s thereafter), Missoula (6.1 m to 6/24/82; 9.8 m thereafter),
Oklahoma City (16.8 m to 10/21/65; 6.1 m thereafter), Portland, OR (7.6 m to
3/1/73; 6.1 m thereafter), San Diego (6.4 m to 8/13/69, 6.1 m thereafter),
Toledo, OH (6.1 m to 11/1/68; 10 m thereafter) and Winnemucca (10.4 m to 4/22/66;
6.1 m thereafter). For these stations the daily data were corrected to correspond
to a common 10 m elevation using the logarithmic law for open terrain. For all
other stations the anemometer elevations did not change during the period of
record and (except for Denver, where the data were also corrected to correspond
to a 10 m elevation), the original recorded data were used, that is, no elevation
correction was effected.

From samples of largest daily wind speeds we obtained as follows samples that
have reduced mutual dependence among the data. Partition the sample of daily
maxima into small periods of size equal to or larger than the duration of typical
storms in days. (A reasonable choice of the length of the period is four to eight
days.) Pick the largest value in each period. If the maxima of two adjacent

1 The following discrepancies between records of yearly maximum fastest
miles and daily maximum fastest miles were found: Cheyenne (6.1 m-elevation), 69
vs. 75 (72/3/6), 61 vs. 66 (1/18/75), 65 vs. 70 (6/14/76); Dayton (10 m), 44 vs.
49 (6/27/66), 61 vs. 86 (2/16/67), 52 vs. 67 (5/14/70); Fort Wayne (6.1 m), 51
vs. 55 (8/27/65); Greenville (6.1 m), 57 vs. 52 (7/15/66); Lander (6.1 m), 49 vs.
61 (4/12/68); Louisville (6.1 m), 57 vs. 61 (2/15/67); Milwaukee (6.1 m), 52 vs.
56 (6/16/73); Minneapolis (6.4 m), 52 2vs. 56 (7/10/66); Missoula (6.1 m), 67 vs.
61 (7/31/83); Portland, ME (6.1 m), 38 vs. 57 (12/24/70); Portland, OR (10 m),
48 vs. 42 (12/11/69); Pueblo (6.1 m), 65 vs. 70 (5/12/75); Richmond (6.1 m), 47
vs. 42 (7/11/73); Sheridan (6.1 m), 52 vs. 57 (3/2/74). For these stations the
corrections were effected by replacing the recorded daily maximum by the yearly
maximum recorded on the same day. The yearly maxima were checked for correctness
against the original charts —— see Section 4.2.



periods are less than half a period apart, replace the smaller of the two maxima
by the next smaller value in the respective period which is at least half a
period apart from the larger maximum. A data sample is thus obtained in which
adjacent data are one period apart on the average and never less than half a
period apart. We show below the daily maximum fastest miles at Boise, Idaho in
the first six eight—day periods of the year 1965. The periods are separated by
vertical bars. The data selected by the procedure just described are in bold
type. In the sixth period we underlined the period maximum (26), discarded and
replaced by the next largest value (18) because of the proximity to the larger
maximum (31) of the adjacent period.

23,32,35,20,26,24,24,14 | 13,16, 5,11, 5,12,12, 7 | 6, 6, 9, 9,11,12,25,26 |
15,12,12, 7,15,12,29,10 | 7,10,15,20,20,17,24,31 | 26,9,16,14,18,16,14,12|

In spite of our selection procedure, small correlations among data might subsist.
Nevertheless, we refer to a sample obtained by the selection procedure just
described as an uncorrelated data sample based on eight—day (four-day) intervals
or, for short, an eight—-day (four—day) interval sample. An assessment was made
of differences between results of analyses based on four—day and eight—day
interval samples at the same station. Since in all cases the differences were
insignificant, we present in this report only results based on four—day interval
samples.

Appendix 1 contains histograms of the full samples of daily data and of the four-
day interval samples obtained from them for each of the 44 stations. Owing to the
small scale of the graphs, in some cases high wind data are not perceptible on
the daily data histograms; however, they can be seen clearly on the four-day
interval data histograms. A comparison between the histograms of the full daily
data samples and the histograms of the four—-day interval samples shows that our
selection procedure considerably reduces the number of lowest wind speed data.
The selection procedure also results in a shifting of the highest ordinate of the
histogram toward higher wind speeds.

4,2 Largest Yearly Data Samples. Also available were samples of largest yearly
fastest miles for winds blowing from any direction, recorded over periods of 18
to 54 years at 115 U.S. stations not subjected to mature hurricane winds. The
data in those samples were obtained and checked against original charts by M.J.
Changery, Chief, Applied Climatology Branch, National Climatic Center, National
Oceanic and Atmospheric Administration (letter to E. Simiu of December 20, 1988)
and are an update of the information included in Simiu, Changery and Filliben
(1979).

As noted earlier, all the data samples used in our analyses are available in an
anonymous data file. Instructions for accessing that file and attendant programs
for creating sets of uncorrelated data are available in Appendix 4.



5. ANALYSES AND RESULTS

5.1 Analysis of Uncorrelated Data Sets by the Probability Plot Correlation
Coefficient Method. Before applying the 'peaks over threshold’ approach, we
estimated the best-fitting distributions for the four—day samples from among a
set of seven distributions or families of distributions (normal, double
exponential, lognormal, Gumbel, Fréchet, Weibull, and reverse Weibull). This
analysis was viewed as a tentative step toward understanding the probabilistic
structure of the populations from which the threshold exceedances were taken. The
estimation of the best fitting distribution was based on the probability plot
correlation coefficient (PPCC) (Filliben, 1975). As an example, Figure 1 shows
the PPCC plots for the Albany, New York four—day interval samples. For this
sample the mean and standard deviation were E(X)=10.5 m/s (23.5 mph) and
s.d.(X)=3.14 m/s (7.03 mph); for the full sample of daily data E(X)=7.8 m/s (17.5
mph) and s.d.(X)=3.1 m/s (6.98 mph). The analyses were repeated for the eight—day
samples, and the results were found to differ insignificantly from those based
on the four—day samples.

The reverse Weibull distribution was found to best fit the data in the majority
of the cases. Even in the cases where other distributions fitted the data better,
the reverse Weibull was typically very close to being the best fitting
distribution, that is, its PPCC differed only in the fourth or even fifth
significant figure from the PPCC of the best fitting distribution. We therefore
re—analyzed the eight-day interval samples by assuming that the populations for
all stations have reverse Weibull distributions with a single, site-independent
value of the tail length parameter, and site—dependent location and scale
parameters. For each station we calculated the PPCC's by assuming that the shape
parameter y was 1,2,3,...50., For samples of data based on eight—day intervals the
mean and median of the PPCC's, taken over all the stations, were largest for y=11
and y=13, respectively. If it were true that a reverse Weibull distribution with
a single tail length parameter characterized the extreme winds at all sites, then
our analyses would indicate that the value of that parameter is y=12,

The assumption that there exists a universal tail length parameter for extreme
wind distributions is implicit in current practice, except that it is applied to
the Gumbel distribution (for which y=x). To see whether that assumption is
tenable if applied to the reverse Weibull distribution with =12, 44 samples
corresponding to 18-year record lengths based on 8-day intervals were generated
from reverse Weibull populations with (1) y=8, (2) v=12, and (3) y=16. The number
of simulated samples for which the best fitting reverse Weibull distribution had
shape parameters with y<12, 13<y<20, and 4221 are shown in Table 1. Also shown
in Table 1 are the numbers of observed samples based on 8-day intervals for which
the analysis yielded <12, 13<y<20, and ¥y=21. The results of Table 1 would
suggest that a reverse Weibull distribution with y=~12 is an appropriate model for
the populations of extreme winds representing data based on 8-day intervals,
except for the larger number of samples with 7220 among the observed samples than
among the simulated samples. We interpret this larger number as reflecting the
relatively frequent presence of outliers among the observed samples. This may
suggest that, because wind speed populations are mixed (in addition to extremes
they include ordinary winds whose meteorological structure may differ from that
of the extremes), a sample taken from such a population is likely not to be a
sound basis for inferences on extremes. It is therefore desirable to "let the
tails speak for themselves." The application of the GPD-based 'peaks over
threshold’ approach is an attempt to do just this.
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Table 1. Comparison of Results for Simulated and Observed Samples

y=<12 13=y<20 ¥y=21
Simulated samples, y= 8 44 0 0
Simulated samples, =12 26 15 3
Simulated samples, =16 7 22 15
Observed samples¥® 25 10 9

*Stations for which 7221 were: Green Bay, Greensboro, Huron, Lansing, Louisville, Macon, Moline, Portland,
OR, San Diego. Those for which 135v£20 were: Binghamton, Fort Smith, Fort Wayne, Grenville,
Milwaukee, Minneapolis, Springfield, Topeka, Tucson, Yuma.

5.2 Estimation of Tail Length Parameter by ’'Peaks Over Threshold’ Analyses of
Uncorrelated Data Samples. We applied the de Haan estimation method (Section 3)
to the four—day interval samples using, for each sample, a highest threshold such
that the number of its exceedances be equal to, or larger than and as close as
possible to, 16; any higher threshold was deemed to result in data sets too small
to yield useful statistics. Denoting a sample’s maximum threshold by uy.,, the
next higher thresholds we considered were up.,~1, Up.x=2, ...,Up—~24. The
estimated values (point estimates) of c are shown for each station in the plots
of Fig. 2. Also shown on the plots are 95 percent confidence bounds (i.e., lines
corresponding to ¢ * 2s.d.(c)). On the horizontal coordinate axis of each plot
we indicate the thresholds, in miles per hour, and the size of the data samples
(i.e., the number of exceedances) for each threshold.

Figure 3 is an example of a similar plot (¢ versus number of threshold
exceedances) presented for a different type of extreme value problem by de Haan
(1990). Like the plots of Fig. 2, this plot exhibits fairly strong fluctuations
in the region of the highest thresholds where the sample size is relatively
small. In the region of the smaller thresholds the 95 percent confidence bounds
become narrower — a result of the increasing sample size — but a bias sets in,
which is due to the inclusion in the data samples of data not properly belonging
to the tails. In de Haan's judgment, "it looks from the graph as if the value c=0
is not a bad choice in this case."

We propose to apply this type of qualitative judgment to the plots of Fig. 2. For
example, it would appear that, for Abilene, ¢<0, perhaps c=-0.25. The plots of
Fig. 2 indicate that c<0 for most, though not all, stations. This in itself is
an interesting result, insofar as it would indicate that in most cases extreme
wind distribution tails are indeed finite.

Let us again assume for a moment that extreme wind speeds in regions not
subjected to mature hurricanes are described by a reverse Weibull distribution
with site—dependent location and scale parameters and site—independent tail
length parameter c¢. The weighted mean of ¢ may be written as a function of
threshold order q as (Gross et al., 1995):

44 44
Cuq = { Z Cyq/5iq%}/ T 1/si (20)
i=1 i=1
where the index q = 1,2,.,.25 1s the order of the highest, second highest,..,25-

the highest threshold for the 44 samples being analyzed, and éiq, sjq are the
estimated value of ¢ and the estimated standard deviation of ¢ for station i,
based on the threshold of order q. (Recall that the threshold corresponding to
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FIGURE 3. Point estimates of tail length parameters and 95% confidence bounds
versus number of exceedances (de Haan, 1990).

q = 1 for each station was so chosen that at least 16 data points exceed that
threshold.) The plot of cy is shown in Fig. 4 and, in our opinion, tends to
confirm the view that, at most if not all stations, the estimated value of ¢ is
negative, perhaps c=~0.2 or c=~0.25. We note that, as suggested by Monte Carlo
simulations (Gross et al., 1994), for sample sizes not exceeding about 10 percent
of the total number of data, the bias in the estimation of ¢ is about -0.05, that

is, sufficiently small not to invalidate our judgement that, predominantly,
c<0.2

5.3 Estimation of Tail Length Parameter by ’'Peaks Over Threshold’ Analyses of
Largest Yearly Data Samples. Appendix 2 includes point estimates of ¢ for each
of the 115 stations for which largest yearly speeds were available. Also shown
on the plots are 95 percent confidence bounds (i.e., lines corresponding to ¢ *
2s.d.(c)). The estimates are plotted against the threshold speed and the number
of exceedances of the threshold, as in Fig. 2. For these plots the larger samples
are not likely to be affected by bias, since the lowest wind speed in those
samples is itself a largest yearly wind, and hence it will be within or close to
the distribution tail. Though the plots are not always easy to interpret, in our
opinion they confirm the view that at most stations ¢ is negative. Figure 5,
which shows the weighted average of the estimated tail length parameter for the
115 data samples (eq (20)), lends further credence to this view.

%We note a typographical error in Table 5, p. 147 of Gross et al. (1994).
In the last line of the Table the population value of the parameter c should be -
0.275 (as in line 7 of p. 142), rather than -0.50.
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FIGURE 5. Mean of tail length parameter estimates weighted over 115 largest
yearly data samples versus order of threshold.



5.4 Estimation of Speeds with Specified Mean Recurrence Intervals by ’'Peaks over
Threshold’ Analyses of Uncorrelated Data Samples. Appendix 3 contains plots of
point estimates of the extreme winds with mean recurrence intervals of 100, 1,000
and 100,000 years. The estimates were based on four-day interval samples at each
of the 44 stations. They are plotted against the threshold speed and the number
of exceedances of the threshold, as in Fig. 2.

We reproduce in Fig. 6 an example of a plot where the quantile fluctuates
strongly as a function of threshold (de Haan, 1990). De Haan comments: "if one
would be forced to give a point estimate a value of 5.1 m... would not be
unreasonable." The comment is indicative of the spirit in which results based on
the ‘peaks over thresholds’ method must be interpreted in cases where fairly
large fluctuations are present, as is the case for Fig. 6 and many of the plots
in Appendix 3. We do not attempt in this report to estimate extreme wind speeds
for various mean recurrence intervals. Rather, having found that the tail length
parameter c¢ of the GPD is negative for the majority of the stations, we assess
in the next section the potential implications of this finding for the estimation
of load factors.
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FIGURE 6. Quantiles: point estimates and 95% confidence bounds
versus number of exceedances (de Haan, 1990).

5.5 Influence of Data Errors on Analysis Results. The footnote to Section 4.1
lists errors in the recorded daily data found at fourteen stations, and the
respective corrected values. Figures 2 and 4 and Appendix 3 are based on the
corrected data sets (these are marked in Fig. 2 and Appendix 3 by the suffix
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"corr"). Figures 7 and 8 include, respectively, plots of estimated tail length
parameters and speeds with various mean recurrence intervals for twelve of these
stations and are based on the uncorrected data. Comparisons between these plots
and their counterparts in Fig. 2 and Appendix 3 show that estimates of speeds
corresponding to various mean recurrence intervals are in some cases affected
fairly significantly by the errors in the data. This is true to a much lesser
extent for the tail length parameters. The plot of the weighted mean over all 44
stations, computed from results obtained by using the uncorrected data, was
indistinguishable from Fig. 4.
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6. LOAD FACTORS FOR WIND-SENSITIVE STRUCTURES

Extreme wind loads used in design include nominal basic design wind loads (e.g.,
the 50-yr wind load) and nominal ultimate wind loads. A basic design wind load
is an extreme load with specified probability of being exceeded during a basic
time interval. In the United States that interval is usually 50 years. A basic
design load with a 50-year mean recurrence interval has a probability of almost
two thirds of being exceeded during a 50-year period.

A structure or element thereof is expected to withstand loads substantially in
excess of a 50— or 100-year wind load without loss of integrity. The wind load
beyond which loss of integrity can be expected is referred to as the nominal
ultimate wind load. The nominal ultimate strength provided for by the designer
is based on a nominal ultimate wind load equal to the design wind load times a
wind load factor. This statement is valid for the simple case where wind is the
dominant load. It needs to be modified if load combinations are considered, but
for clarity we refer here only to this case.

The load factor should be selected so that the probability of occurrence of the
nominal wultimate load is acceptably small. This probabilistic concept is
important from an economic or insurance point of view. To the extent that
evacuation or similar measures cannot be counted on to prevent loss of life, it
is also important from a safety point of view.

A probabilistic approach has proven helpful in a number of cases, particularly
for relative assessments of alternative design provisions, for example for mobile
homes. However, in most cases the difficulties of obtaining wind load factors by
probabilistic methods have proven to be substantial if not prohibitive. For this
reason code writers have largely relied on wind load factors implicit in
traditional codes and standards. For example, the American Society of Civil
Engineers Standard A7-93 (1993) specifies a wind load factor of 1.3. In a very
large number of applications the wind load is proportional to the square of the
wind speed, so that a basic design wind speed and a nominal ultimate wind speed
may be defined that are proportional to the square root of the basic design wind
load and the square root of the nominal ultimate wind load, respectively. For
example, for Lander, Wyoming, the American Society of Civil Engineers Standard
A7-93 (1993) specifies a basic design 50-year design speed of 35.8 m/s (80 mph
fastest-mile) at 10 m (33 ft) elevation. The corresponding nominal ultimate wind
speed would then be 1.3%/235,8=40.8 m/s (91.2 mph).

Reliance on traditional code values is part of the process sometimes referred to
as "calibration against existing practice." Traditional codes were generally
adequate for many types of structures, but questions remain on whether safety
margins implicit in those codes may be applied to modern structures, which can
differ substantially from their predecessors in their materials and
design/construction techniques. For this reason an assessment of wind load
factors used in codes and standards would be desirable. For example, one would
wish to answer the question: what is the approximate mean recurrence interval of
the nominal ultimate wind speed?

The answer to this question depends strongly upon the probability distribution
assumed to best fit the extreme wind cpeeds. For example, a PPCC analysis of
largest yearly fastest-mile speeds recorded at Denver between 1951-1977, based
on the assumption that the best fitting distribution is Gumbel, yielded a 27.9
m/s (62 mph) estimate of the 50-year wind speed at 10 m above ground. The
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corresponding nominal ultimate wind speed would be 1.3%/227,9=31.8 m/s (71.0
mph), to which there would correspond, under the Gumbel assumption, a mean
recurrence interval of about 500 years (Simiu, Changery and Filliben, 1979). If
taken at face value this would be an alarmingly short recurrence interval, since
it would entail an unacceptably large probability of exceedance of the nominal
ultimate wind load during the life of the structure.

However, the 500 years mean recurrence interval is based on the Gumbel model.
Since our results support the assumption that, predominantly, the appropriate
model is a reverse Weibull distribution, rather than a Gumbel distribution, we
wish to answer the question: what is the mean recurrence interval corresponding
to 1.3Y2 times the wind speed with a 50-year mean recurrence interval? For
Denver, if one had to estimate the tail length parameter ¢ from the plots of Fig.
2 and Appendix 2, and the 50-year speed from the plot of Appendix 3, one might
choose, say, ¢=—0.2 (a conservative choice: according to the plots ¢ is likely
to be somewhat lower, that is, the distribution tail is likely to be somewhat
shorter than that corresponding to ¢=-0.2), and xs=26.8 m/s (60 mph). For a
threshold of 16.5 m/s (37 mph) — a value that is roughly consistent with these
choices, see Denver plot, Fig. 2 — we have A=139/15=9.27/year. Assuming xs5,=26.8
m/s (60 mph), it would follow from eqs (13) and (14) 4=2.5 m/s (5.6 mph). The
estimated maximum possible wind speed corresponding to the parameters ¢=-0.2 and
4=2.5 m/s (5.6 mph) is obtained by letting R -+ « in eqs (13, 14). Its value is
Kpax=U—4/¢ = 16.542.5/0.2 = 29.0 m/s (65 mph). The estimated mean recurrence
interval of the nominal ultimate wind speed 1.3%2x=1.3%/2x26.8=30.6 m/s (68 mph)
is therefore infinity (i.e., such a wind speed is estimated to never occur). This
estimate is of course subject to sampling errors: the actual maximum possible
wind speed may be higher than 29.0 m/s (65 mph), and the mean recurrence interval
of the 30.6 m/s (68 mph) speed may in fact be finite, though likely much longer
than 500 years. In spite of the uncertainty inherent in our estimates, our result
suggests that a load factor of 1.3 —— specified in the ASCE A7-93 Standard on the
basis of practical experience — is in fact adequate from a probabilistic point
of view., This is contrary to what would be concluded if the analysis were based
on the assumption that the Gumbel distribution holds.3

3In this instance code writers attended to the apparent insufficiency of the
nominal ultimate design speed by substantially inflating the value of the 50-year
wind speed: the ASCE A7-93 Standard specifies for Denver a 35.8 m/s (80 mph) 50-
year speed at 10 m above ground. Since the estimated standard deviation of the
sampling error for the estimated 50-year wind is sg; o= 1.3 m/s (3.0 mph) (Simiu,
Changery and Filliben, 1979), the specified 35.8 m/s (80 mph) value differs from
the estimated 27.9 m/s (62 mph) value by almost six standard deviations. One may
view the actual load factor implicit in the ASCE A7-93 Standard as being equal
to (1.3)(80/62)2=2 .14, rather than just 1.3. The mean recurrence interval for the
40.7 m/s (91 mph) (i.e., 1.3Y280 = 2.14'/2x62) nominal ultimate load inherent in
the ASCE A7-93 Standard provisions for Denver, based on the Gumbel model, would
be about 80,000 years (Simiu, Changery and Filliben, 1979), which is much more
acceptable than 500 years.
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7. CONCLUSIONS

In this report we presented estimates of the tail length parameters of extreme
wind distributions for non-tornadic winds blowing from any direction in regions
unaffected by mature hurricanes. In our opinion, these estimates support the view
that the reverse Weibull distribution is an appropriate probabilistic model in
most if not all cases. They also suggest that load factors for wind sensitive
structures specified by current standards provide for reasonable safety margins
against wind loads, and that the adoption of the Gumbel model likely results in
an unrealistic assessment of structural reliability under wind loads.

However, owing to fluctuations of our estimates with the threshold value, it is
difficult to provide reliable quantitative estimates of the tail length
parameters. This difficulty is even more pronounced for quantile estimates.

We tentatively ascribe these difficulties to the relatively small size of our
samples (15 to 26 years). It would therefore be desirable to assemble data for
longer records than those used in this report. In addition, more efficient
estimation methods should be developed. Efforts to develop such methods are
currently in progress (Coles, 1994).
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APPENDIX 1
Histograms of daily largest wind speeds (top) and

histograms of four-day interval uncorrelated wind
speeds (bottom)
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APPENDIX 2

Plots of parameter ¢ and 95% confidence bounds
versus threshold and number of threshold exceedances
(based on samples of largest yearly wind speeds)
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AUSTIN, TX (37 YEARS)
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APPENDIX 3

Plots of point estimates
for 100-year, 1000-year and 100 000-year speeds
versus threshold and number of threshold exceedances
(based on four-day interval data samples)
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SALT_LAKE_CITY.UT (26 YEARS)

—— 100,000
- —1,000
- - 100

30

TTT I T T I T T I T T I T T ITI I T T T TS
44 41 38 35 32 29 26 20 MPH
20 52 92 184 380 614 B67 1183 1391

OKLAHOMA_CITY.OK (16 YEARS)

70

—— 100,000

40

TT T I T T I T r I T Y I I T LT T ITT LTI
45 42 39 36 33 30 27 24 MPH
21 42 74 120 234 378 586 763 943

PUEBLO_CORR.CO (17 YEARS)

TT T I T T I T TI T T I TT IS T T TrTTY
56 53 50 47 44 41 38 35 32 MPH
18 31 44 79 122 215 303 435 655

SAN_DIEGOQ.CA (17 YEARS)

500

— 100,000
— —1,000
- - 100

T T T I T T I T T T T I T T I oY
34 31 28 25 22 19 16 13 10 MPH
21 36 60 117 224 504 952 1290 1423
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100

400

SHERIDAN_CORR.WY (17 YEARS)

— 100,000
- —1,000

- - 100

43' 45 42 ‘39’ ‘36 33 30 27 24 MPH

16 26 47 91 144 252 367 542 751

TOPEKA.KS (25 YEARS)

—— 100,000
— ~1,000
- 100

YTrTTITTIYTY T

42 '39' 36 33 30 27 24 21 18 MPH

21 48 78 138 234 373 590 772 940

SPOKANE. WA (23 YEARS)
100 100,000
— —1,000
9 4 - - 100

WV TTTITTITT LT T IT T I T T LT IT %
44 41 38 35 32 29 26 23 20 MPH
18 51 69 121 210 351 523 855 1117

TUCSON.AZ (15 YEARS)

300 —— 100,000

— —1,000
- - 100

O T T T I TTIT I I TP I T TT.Y

42 ‘39 '35 ‘33 |30 '27' '24 ‘21 18 MPH
17 39 66 157 253 434 675 B75 1015

SPRINGFIELD.MO (24 YEARS)

300

250

200

100,000
— —1,000
- = 100

LINLINL IR SN I O 0 0 B 5 L L 00

40’ ‘96 33 30 27 24 21 18 15

23 37 88 140 257 467 670 878 1111
WINNEMUCCA.NV (15 YEARS)
——- 100,000
- —1,000

- - 100

TT T T I T I T T I T I TTIT LT T I TTY
45 42 38 36 33 30 27 24 21
17 27 44 92 177 355 487 744 979

MPH

MPH

200

°

TOLEDOQ.OH (15 YEARS)

— 100,000
- —1,000

- - 100

TITTITT IV Vv VT I T I IV T TITTITITITT
45 42 39 36 33 30 27 24 21 MPH
18 39 63 115 235 325 502 B49 1162
YUMA.AZ (19 YEARS)
—— 100,000
— —1,000
- - 100

TTTJ
42 39
20 38

TTT I T T I T T LTI TTITTY
36 33 30 27 24 21 18 MPH
57 135 270 523 1008 1472 2001



APPENDIX 4
Inistructions for accessing data sets and attendant programs

NOTE. Only corrected data are included in the data files.

ftp enh.nist.gov (or: ftp 129.6.16.1)
>user anonymous

enter password >guest

>cd emil/datasets (to access data)

>cd emil/programs (to access programs)
>prompt off

>mget * (this copies all the data files)
>dir (this lists the available files)
>get <enh name> <local name> (this copies a specific file; example: get boise.id
boise.id)

>quit
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