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SUMMARY

Extreme wind loads used in design
(e.g., the 50-yr wind load) and

include nominal design wind loads
ultimate wind loads. This paper

briefly reviews the relationship between extreme wind loads and
extreme wind speeds, assessments of epochal versus ‘peak-over-
threshold’ approaches for estimating extreme non-tornadic winds in
areas not subjected to tropical storms, and methods for estimating
extremes from short records. Also reviewed are wind direction
effects, and the estimation of extreme winds due to tropical cyclones
(hurricanes) and tornadoes. We point out uncertainties due to mo,del
shortcomings and insufficient data, safety concerns due to current

inconsistent uses of reliability concepts, and the implications of
these concerns for code writing.

INTRODUCTION

A nominal design wind load is an extreme load with specified
probability of being exceeded during a given time interval. In the
United States that internal is usually 50 years. For example, for the
inland Miami, Florida area, the ASCE Standard 7-93 (1993) specifies
a nominal So-year load based on a specified 50-year nominal design
wind speed of 110 mph (49.17 m/s).

A structure or element thereof ia expected to withstand loads
substantially in excess of a 50- or 100-year wind load without loss
of integrity. The wind load beyond which loss of integrity can be
expected is referred to as ultimate wind load. The nominal ultimate
strength provided for by the designer is based on an assumed ultimate
wind load equal to the design wind load times a wind load fac:tor.
This statement ie valid for the simple case where wind is the
dominant load. It needs to be modified if load combinations are
considered, but for clarity we refer here only to this case.

The load factor should be selected so that the probability of
occurrence of the ultimate load is acceptably small. This

probabilistic cancept is important from an economic or insurance
point of view. To the extent that evacuation or similar measures
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camot be counted on to prevent loss of life, it LS also important,

from a safety point of view.

A probabilistic approach has proven helpful in a number of
cases, particularly for relative assessments of alternative design
provisions, e.g., for mobile homes. However, in moat cases the
difficulties of obtaining wind load factors by probabilistic methods
have proven to be substantial if not prohibitive. For this reasor
code writers have largely relied on wind load factors implicit in
traditional codes and standar&. For example, the ASCE Standard 7-913
specifies a wind load factor of 1.3 (e.g., the nominal ultimate wind
load for the inland Miami area would correspond to a wind speed of
(1.3)1/2110-125.4mph (56.06m/s)).

Reliance on traditional code values ia sometimes referred to as
“calibration against existing practice.” Tradltlonal codes were
generally adequate for many types of structures, but questions remain
on whether safety margins implicit in those codes may be applied to
modem structures, which can differ substantially from their
predecessors in their materials and design/construction techniques.
Llediscuss later an example involving wind direction effects,

Much effort has been and is bsing axpended in an attempt to
develop a practical probabilistic methodology for design.
Probabilistic studies aimed at improving estimates of extreme WiIld
loada are part of this effort. In this paper we review the relation
between extreme wind loads and extreme wind speeds, and briefly
discuss turbulence and wind direction effects on loads that don’t
entail si~ificant dynamic amplification or aeroelastic effects. We
also review the estimation by epochal and ‘peaks-over threshold’
methods of non-tornadic extreme winda Ln areas not subjected to
tropical’storms. To our knowledge this last topic has not yet been
the object of a wind engineering state-of-the-art review. Its
treatment in this paper is therefore more extensive than for such
topics as the estimation of extreme winds from short records or the
estimation of extreme winds due to tropical cyclones and tornadoes,
that have been covered in some detail elsewhere (e.g., Simiu and
ScanIan (1986), ASCE Committee on Wind Effects state-of-the art
review (1987), Sill and Sparka (1991), and Marshall (1993), which

contain numerous relevant references)

RELMTON BEIWEEN ExlREME wlNDsPEEDs AND ExTREME wn~
LOADS

Assume that the wind velocity is known at a particular location :ind
elevation near a structure, where it is unaffected by any

obstructions and is therefore indicative of the ambient wind
environment. The wind pressure at a point on the building surface, or
the wind force on a member, is a function of that wind speed and can
be determined from results of wind tunnel or full-scale tests.



Turbulence and Flow Separation Effects.

The wind load on a particular member is obtained by integrating the
pressures over the member’s tributary area. Since, owhg to
turbulence and flow separation effects, pressurea are time-dependent
and imperfectly correlated spatially, with generally unknown
correlation, the integration cannotbe performed analytically; except
for a very few simple cases, and is performed instead by a variety of
techniques in wind tunnel or full-scale tests. When the tributary
area is small correlation effects are relatively small, and the
fluctuating force excursions may be many times larger th,an the
standard deviation of the fluctuations. The magnitude of the force
fluctuation tobe specified for design purposes is an issue for which
no clear and consistent reliability-based solution appears to be
available at this time. This issue is complicated Oy questions on the
extent to which loads measured on small scale models can lprovide
satisfactory indications on the magnitude of their prototype
counterparts, particularly if the results of interest involve large
fluctuating pressure excu~sions.

Vind Direction Effects.

Pressures (and therefore forces) depend on both
direction. The dependence is of the form

p(e)-kpc(o)v(e)z

where p, c, p, v and 0 denote air density,
coefficient, pressure (or force), wind velocity,

wind spe:ed and

(1)

the aerodynamic
and direction,

respectively. ‘Two methods have been proposed for ‘obtaining extremes
of the vector p(fl). The first method relies on techniques for
estimating the rate of uncrossing by p(0) of a limit state s(e)
(Davenport, 1977). The second method is based on the creation of a
set of i (i-1,2,..,8 or i-1,2,..,l6) time series

Pj(@i)-bPc(oi)vj(~i)2* j-1,2,..,N (2)

based on a set of i recorded time series Vj(@i), Where ~i are the

eight or sixteen directions for which directional wind speeds are
measured. From these sets of tima series the single time series

Wj-(lUaX~[pj(#i)])l/2 (3)

is extracted. In Eq. 3 maxi denotes the maximum over all :i’s.To
within a dimensional constant, Wj may be interpreted as an equivalent
wind speed. The time series Wj consists of the largest equivalent wind
speeds affecting the structure during the intervals [tj.l, tj]

(j-1,2,..N). It is subjected to a statistical analysis and yields the
extreme values w, and therefore the extreme pressures (forces) acting
on the structure, ~, for the mean recurrence intervals of interest.
For a numerical example, see Simiu and Scanlan (1986). For brevity we
refer to the pressures p-~ as actual eXEIWIte pressures.
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Extromo

Extreme

I#nds Calculated Without Regard for Wind Direction Effects.

load estimation is simplified if the idealized time series

Wj - %l(mq[c(oj)) msxi[vj(oi)zl)l’z, (4)

obtatned by ignoring direction effects, is considered in lieu of the
time .seriesw+. For any given mean recurrence internal, depending upon
the directio~l dependence of the aerodynamic coefficient an-d the
wind climate, the extreme values of the variable P-W2 are in general
larger — in many instances much larger — than the actual extreme
pressuree p=I#. We refer here to the pressures P as %dealized extreme
pressures. Past experience shows that idealized extreme pressures P
(based, say, on a 50- or 100-year extreme wind estimated without
regard for direction), used in conjunction with a load factor of 1.3,
normally result in acceptably small failure probabilities. However,
use of the smaller actual extreme pressures p (with a 50- or 100-.year
mean return period) in conjunction with a load factor of 1.3 will
result in higher failure probabilities that could well prove to be
unacceptable and cannot be justified by invoking paat experience.

This issue has not yet been adequately addressed by standard-
writlng bodies. For example, the ASCE Standard 7-93 as well a!sthe
draft ASCE Standard 7-95 aIlow nominal wind loads to be estimated on
the baais of ad-hoc wind tunnel tests. For many special structures
estimates of nominal wind loads based on such tests account for wind
direction effects. However, the standard fails to indicate that the
use of those estimates in conjunction with the wind load factor
specified by the standard generally results in higher failure
probabilities than those implicit in the provisions for ordinary
structures. In this writer’s opinion, which was duly communicated to
the ASCE Subcommittee on the ASCE 7-95 Standard, this omission could
have serious safety repercussions and deserves careful scrutiny!

A similar failure to address the reliability problem in a
consistent fashion led recently to a strong increase in effective
safety margins for window glass design, which in the writer’s view is
largely unwarranted. This issue is discussed in detail by Simiu and
Hendrickson (1987).

ESITMM70N OF EXTREME WIND SFEEDS WITHOUT REGARD FOR
DIRECIION

To within a ~onstant dimensional factor, the time series Wj is the
same as the time series max,[v,(0,)]=V3 (j-1,2,,. ,N). Extreme

idealized wind loads can therefore be obtained from estimates of the
extreme variate V inferred from this time series.

The vast majority of structural engineering calculations for wind
are based on idealized extreme pressures, rather than actual extreme
pressures. ~is state of affairs is due to: (1) the difficulty of
codifying the estimation of actual extreme wind loads for most
ordinary structures, (2) the generally inadequate availability of

112



.

directional aerodynamic and wind climatological data, and (3)
computational inconvenience. This last factor carries less weight in
the age of personal computers, and it may be that in the near future
expert systems with adequate data bases will increasingly allow
directional effects to be accounted for in the estimation of wind
loads (Simiu et al. 1993). Nevertheless, for the time being,
estimating extremes wind speeda without regard for direction remains

an @ortant structural engineering problem.

The estimation of nominal design wind speeds (e.g., wind speeds
with, say, a 50-year return period) is in general not unduly
sensitive to the choice, within reasonable limits, of the statistical
estimation procedure and the distributional form assumed to underlie
the data. For example, the method of moments is inferior CO the
probability plot correlation coefficient (ppcc), but using it,
instead of the ppcc, to estimate 50-year wind speeda entails errors
of about 3 to 5 percent. Similar errors are inherent in the use of
the assumption that a Fr6chet distribution with tail length parameter
7-9, rather than a Gumbel distribution, best fits the data. Howewer,
if ultimate loads (or load factors) are of interest, the results can
be sensitive to the choice of estimation procedure and distribution.

Extrema largest value distributione are, strictly speaking, valid
only in che asymptotic limit of large extremes. It is nevertheless
reasonable to assume that extreme winds are described
probabilistically — at least approximately — by extreme largest
value distributions. There are exactly three such distributions. In
order of increasing tail lengths, they are the reverse Weibull
distribution, the Gumbel distribution, and the Fr6chet distribution.
(The reverse Weibull and Fr6chet are more properly referred to as
families of distributions, each distribution being characterized by
a particular value of the tail length parameter.) A remarkable
feature of the reverse Weibull distribution is its finite upper tail.

The American National Standard A58.1-1972 (a predecessor of the
current ASCE Standard 7-1993) was based on the assumption that
extreme wind speeds are describedby a Fr6chet distribution with tail
length parameter 7-9. As shown by subsequent studies, it may be
confidently assumed that the Gumbel distribution—which is shorter-
tailed than the Fr6chet distribution with 7-9 — is a better
probabilistic model of the extreme speeds (Simiu and Scanlan, 1986).
However, even studies based on the Gumbel model result in apparently
unrealistically high estimates of failure probabilities (Ellingwood
et al., 1980). This may be explained in part by the fact that those
studies do not adequately account for wind direction eff~:cts.
However, an additional explanation may be that the extreme speeds are
best fitted not by Gumbel distributions, which have infinite upper
tails, but ratherby reverse Weibull distributions which— like wind
speeda in nature — have finite upper tails.
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extreme wind speeda and, consequently, more realistic wind load
factors. This is likely to be true in spite of difficulties such as



the limited availability of long-term data, the current insufficiency
of comprehensive meteorological models available to the extreme wind
analyst, and limitations inherent in statistical procedures. We
describe some recent contributions to these efforts.

Classical Extreme Value Theory and ‘Peaks over Threshold Methods.’

Classical extreme value theory is based on the analysis of data
consisting of the largest value in each of a number of basic
comparable acts called epochs (a set consisting, e.g. , of a year of
record, or of a sample of data of given size; in wind engineering, it
has been customary to define epochs by calendar years). For
independent, identically-distributed variates With cumulative
distribution function F, the distribution of the largest of a set of
n values is simply P. With proper choice of the constants ~ and bn,
and for reasonable F’s, ~(~ + bnx) converges to a limiting
distribution, known as the asymptotic distribution. As mentioned
earlier, a notable result of the theory ia that there exist only
three types of asymptotic extreme largest value distributions, known,
in order of decreasing tail length, as the Fr6chet (or Fisher-Tippett
Type II), Gumbe1 (Type I), and reverse Weibull (Type III)
distributions (Lechner et al., 1993” Gross et al., 1994).

In contrast to classical theory, the theory developed in recent
years makes it possible to analyze all data exceeding a specified
threshold, regardless of whether they are the largest in the
respective sets or not. An asymptotic distribution — the Generalized
Pareto Distribution (GPD) — has been developed using the fact that
exceedances of a sufficiently high threshold are rare events to which
the Poisson distribution applies. The expression for the GPD is

G(y) - Prob[Y< y] - l-([l+(cy/a)]-llc) *O, (l+(cy/a))>O (5)

Equation 5 can be used to represent the conditional cumuli~tive
distribution of the excess Y - X - u of the variate X over the
threshold u, given X > u for u sufficiently large (Pickands, 1975).
C>o, c-O and c<O correspond respectively to Frechet, Gumbel, and
reverse Weibull (right tail-limited) limiting distributions. For c-O
the expression between braces is understood in a limiting sense as
the exponential exp(-y/a) (Castillo, 1988, p. 215).

The peaks over threshold approach reflected in Eq. 5 can extend
the size of the asmple being analyzed. Consider, for example, two
successive years in which the respective largest wind speeds were 30
m/s and 45 m/s, and assume that in the second year winds with speeds
of 31 m/s, 37 m/s, 41 m/s and 44 m/s were alao recorded, at dates
separated by sufficiently long intenals (i.e., longer than a week,
say) co view the data as independent. For the purposes of threshold
theory the two years would supply six data points. The classical
theory would make use of only two data points. In fact it msy be
argued that, by choosing a somewhat lower threshold, the number of
&ta points used to estimate the parameters of the GPD could be
considerably larger than six in our example.
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Description of CHE, Pickands and Dekkers-Einmahl-De liaanUethods.

Several methods have been proposed for estimating GPD parameters: the
Conditional Mean Exceedance method (CME), the Pickands method, and
the Dekkers-Einmahl-de Haan method (or, for brevity, the de Haan
method).

Conditional Mean Exceedance (CME) Method, The CME (or mean residual
life — MRL - as it it usually termed in biometric or reliability
contexts) is the expectation of the amount by which a value exceeds
a threshold u, conditional on that threshold being attained. If the
excee&nce data are fitted by the GPD model and c < 1, u > 0, and
a+uc > 0, then the CME plot (i.e., CME vs. u) should follow a line
with intercepc a/(1-c) and slope c/(1-c) (Davisson and Smith, 1990).
The linearity of the CME plot can thus be used as an indicator of the
appropriateness of the GPD model, and both c and a can be estimated
from the CME plot.

Pickands Method. Following Pickands’ (1975) notation, let X(l)2 ...
> Xfn)denote the order statistics (ordered sample valuea) of a sample

of size n. Fors-1, 2, ... [n/4] ([] denoting largest integer part
of), one computes F.(x), the empirical estimate of the exceedance!CDF

F(x;s) - Prob(X-X(t.)< xIX > x(~,)) (6)

and
by

&-

a-

One

G,(x), the Generalized Pareto distribution, with aandc estimated

log((x(.,- x(2. ))/(x(2. ) - x(4.)) )
(7)

log(2)

c (x(~’) - X(4*))
(8)

2e-1

takes for Pickands estimators of c and a those values which
minimize (for 1 c s < [n/4]) the maximum distance between the
empirical exceedance CDF and the GPD model.

Following a critique of an earlier implementation of the Pickands
method (Pickands, 1975, Castillo, 1988), an alternative
implementation was developed (Lechner et al., 1991), .which entailed
the following steps: (1) choose as threshold u an order statistic of
the sample; (2) compute the empirical exceedance CDF for the data
above u; (3) nonlinear least-squares fit the GPD model for the
parameters c and a; (4) plot the resulting c estimates against u for
each order statistic, If the plot of ~ is stable around some
horizontal level for most of the order statistic thresholds plotted,
then the plot is presumptive evidence for the GPD model being

applicable and can be used to yieid numerical estimates of C; the
distribution is Weibull, Fr.4chet or Gumbel according as c. is
negative, positive, or fluctuates around zero. The approach just
described was suggested by Bingham (1990).
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De Haan Method. Recent work by de Haan (1994) and coworkers provides
a moment-based estimator which, like Pickands’ estimator, is
asymptotically unbiased for the true tail parameter and, in addition,
is asymptotically normal. We now describe this estimator, using the
order-statistic notation introduced above.

Let n denote the total number of data and k the number of data
above the threshold u. (Note that u is then the (k+l)-th highest data
point.) Compute, for r-1 and r-2, the quantities

k-1
~(r) .1 z [log2&i,n - 10*,J’

k i-o
(9)

where &_i,n denotes the (i+l)-th highest value in the set (Note that
~,n=u.) The esttmetors of a and c are then

A - ~(l)/pl (pi-l for 620; P1-1/(1-6) for ;<0) (lOa)

1
6-&(l)+l- (lOb)

2(1 - (&(l))2&(2))

The standard deviationof the asymptotically normal estimator of ~ is

s.d.(i) -

s.d.(i) -

Estimation

(1+12)/k]l/2 620 (ha)

l/k[(l-6)2(1-26)(L-8(1-26)/(1-3&)+(5-116) (1-26)/(1-36)/

(1-4:))])1/2 6<0 (llb)

of Variates with Specified Uean Recurrence Intervals.

For wind engineering purposes the estimates of the wind speeds
corresponding to various mean recurrence intervals are of interest.
We give expressions that allow the estimation from the GPD of the
value of the variate corresponding to any percentage point 1 -
l/(AR), where A is the mean crossing rate of the threshold uper year
(i.e., the average number of data points above the threshold u per
year), and R is the mean recurrence interval in years. Set

Prob(Y <y) - 1 - I/(AR) (12)

From Eqs. 5 and 12, we have

1- [1+ cy/a]-lic- 1 - l/(iR) (13)

Therefore

y - -a[l - (~R)cJ/c (13)

The value being sought is
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x~-y+u

where u is the threshold used in the estimacfon of c and a.

(14)

Relations Between Dfstrtbution Parameters and Expected Value and
Standard Deviation.

Relations between distribution parameters and the expectation E(X}
and the standard deviation s(X) for the Gumbel and reverse Weibull
distribution are given belov. (Subscripts G and Wrefer to the Gumbel
and reverse Weibull distributions, FG(x) and FW(X), respectively.)

FG(x) - exp{-exp[-(x-@/uG]) (15)

FM(x) - exp{-[(~ - x)/uw]l), X<pw (16)

UG - (61J2/%)s(x) (17)

k - E(X) - 0.577220G (18)

E[(X-pJ/aw] --r(l + 1/7) (19)

s[(x-pJ/aw] - [r(l+2/7)-[r(l+l/7)]Z)llz (20)

where r is the gamma function (Johnson and Kotz, 1972). For the GI?D,

E(X) - a/(l-c) (21)

s(x) - a/((1-c)(l-2c)liz) ([22)

(Hosking and Wallis, 1987).

Resulta of Monte Carlo Simulations.

Preliminary Monte Carlo studies reported by Gross et al. (1994) led
to the following tentative conclusions:

Comparison of Estimation Methods. The CHE and the de Haan methods are
competitive. Both methods are superior to the Pickands method. The de
Haan method gives better estimatea than the CME method for extremes
with large mean recurrence intervals. Note, however, that the de ‘Haan
method as described in Gross et al. (1994) was based on the de Haan
estimator of the parameter c (Eq. 10b), and on an estimator of the
parameter a less precise than Eq. 10b. For this reason it: is

reasonable to expect that the de Haan method that makes use of both
Eqs. 10a and 10b performs better than the CME method.

Optimal Crossing Rate. A high threshold reduces the bias since it
conforms best with the asymptotic assumption on which the GpD
distribution is based; however, because it results in a small number
of data, it increases the sampling error. It appears that, with no
significant error, an approximately optimal threshold corresponds to
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a mean exceed.snce rate of 5/yr to 15/yr.

(Wa note here a typographical error in Gross et al. (1994): in Table
5 the Modulation value for c shouldbe -0.275. instead of -0.5 -- cf.
p. 142”,

Results

Results
maximum
Lechner

iine 6 of Gross et al. (1996).)
.-

of Rxtreme Wind Speed Analyses.

of analyses performed on sets of about 20 to 45 yearly
wind epeeds recorded at various U.S. sites were reported by
et al. (1992). About one hundred data samples of size 20 to

45 years recorded at stations not affected by hurricanes were
analyzed by the CHE procedure. For more than two-thirds of the
samples the c values estimated by the modified Pickands method were
negative. The same data were recently analyzed by Simiu and Heckert
(1995) by using the de Haan method. These analyses confirmed the
results of Lachner et al (1992). However, because the number of data
available in these samples is small, especially for large thresholds,
the confidence bands for the estimates tend to be relatively w:ide.

Analyses were also done for 48 sets of daily data records with
lengths 15 to 24 years. As explained in Gross et al. (1995), the
number of data in the sets was reduced by a factor of four to
decrease the effect of correlation due to wind speeds recorded in the
same storm. Results based on de Haan’s method (Eq. 10a) — as opposed
to the more inconclusive results based on the CME method reported by
Gross et al. (1995) — showed an unmistakable tendency of the
estimated values of c to be negative Simiu and Heckert, 1995). ‘These
results are significant. They provide evidence that extreme value
statistics reflect the physical fact that wind speeds are bounded.
However, it appears that dependable quantitative information for use
in structural reliability estimates and the development of wind load
factors for building standards would require larger data sets than
are presently available. We note that, using a different approach,
Kanda (1994) also showed that extreme winds are best fitted by
distributions with limited tails. See also Walshaw (1994).

Sampling Errors In Estimation of Extreme Wind Speeds.

Estimates of sampling errors are available under the assumption that
the extreme annual wind speeds have a Gumbel distribution -. see
Simiu and Scanlan (1986, p. 87). Based on that assumption, the
standard deviation of the sampling errors was estimated to be about
5 to 10 percent of the wind speeds obtained from an approximately 30-
year long sample of maximum yearly data. Sampling errors so estimated
are acceptable approximations for use in reliability calculations.

Gust Wind Speeds versus Fastest Mile Speeds.

Peterka (1992) reported results of extreme wind analyses based on
peak gust, as opposed to fastest-mile, records, and used a techxlique
to reduce variability due to sampling error by combining stations
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with short records into “superstations” with long records. The
acceptability of this technique is a function of the degree of mutual
dependence of the storm occurrences at the various stations being
consolidated.

ESIIMATES OF EXTREME WINDSPEEDSFROM SHORTIUZCORDS

A procedure for estimating extreme wind speeds without regard for
direction at locations where long-term data are not available was

reported by Simiu et al. (1982) and Grigoriu (1984). The method,
whose applicability was tested for 36u.s. stations anda total of67
three-year records, makes it possible to infer the approximate
probabilistic behavior of extreme winds from data consisting of the
largest monthly wind spee& recorded over a period of three years or
longer. Estimators of the wind speed with an N-year mean recurrence
interval and of the corresponding standard deviation of the sampling
err~rs are given in Simiu and Scanlan (1986, p. 91). .

Inferences concerning the probabilistic model of the extreme wind
climate have alao been attempted from data consisting of largest
daily or largest hourly wind speeds by the authors just quoted andby
Guaella (1991). Using such data raisea two questions. First, what is
the effect on the analyais of the mutual correlation among daily or
hourly data? According to an estimate by Grigoriu (1982) that effect
is tolerably small. Second, what is the effect of basing the
inferences on data that are overwhelmingly representative of weak
winds having little in common meteorologicallywith the extreme winds
of-lntereat? According to preliminary results by Gross et al. (1995),
weak winds may be viewed as noise obscuring the process of interest,
rather than providing useful information on wind extremes.

ESITMATES OF HURRICAIWTR OPICALCYCLONE WIND SPEEDS

In tropical-cyclone-prone regions the winds of interest to the
structural engineer are primarily those associated with hurricanes
(strong tropical cyclones). Statistical analyses of hurricane winds
would therefore be necessary. However, the number of hurricane wind
speed data at any one location is in most cases small. ‘I’he
confidence limits for predictions based on hurricane wind speed data
at one location would, in general, be unacceptablywide.

For this reason estimates of hurricane wind speeds at a site a:re
obtained indirectly from statistical information on the
climatological characteristics of hurricanes, used in conjunction
with a physical model of the hurricane wind field. Such a model
allows the estimation of maximum wind speeds induced at any given
location by a hurricane for which the following climatological
characteristics are specified:

-- difference between atmospheric pressures at the center and
the periphery of the storm

-- radius of maximum wind speeds



‘

.- speed of storm motion
-- coordinate of crossing point along the coast or on is line

normal to the coast.

The probability distribution of the hurricane wind speeds is then
estimated as follows:

(1) A region is defined such that hurricanes occurring outaiclethat
region have a negligible effect at the site of concern. (In the
United States such a region includes 750 km of coastline, say,,and a
450 km segment over the ocean, normal to the coast.)

(2) The climatological characteristics of the hurricane, including
the frequency of hurricane occurrences in this region, are modeled
probabilistically from statistical data obtained in the region under
consideration.

(3) The values of the climatological characteristics for a number, n,
of hurricanes are obtained by Monte Carlo simulation from these
probabilistic models.

(4) The maximum wind speeds, vi, (1-1,2,..,n) inducedby each of these
hurricanes at the location of concern are calculated on the basis of
the climatological characteristics thus obtained and of the physical
model of the hurricane wind field, including a ❑odel for the decay of
the storm as it travels over land. Thus, a set of n hurricane wind
speeds is calculated , which is consistent with the statistical data
on climatological characteristics of hurricanes in the region of
interest.

(5) A statistical estimation procedure ia applied to the calculated
hurricane wind speeds in order to estimate the probability
distribution of the hurricane wind speeds at the location being
considered.

The procedure just oulined was first developed by Russell (1971),
and was applied with various modifications by, among others, Batts et
al. (1980a) and Georgiou et al. (1983), whose respective estimates
for the Gulf coast and the East coast of the United States are
compared in Simiu and Scanlan (1986). Recent work by Vickery and
Twisdale (1994) was aimed at improving certain aspects of the
estimates by Batts et al. (1980), and resulted in lower estimates of
hurricane wind speeds inland. Models of the ratio between peak gusts
and sustained winds in hurricanes used by Batts et al. (1980]1were
based on data for extratropical storms. Improved models based on
hurricane wind speed data have been proposed by Krayer and Marshall
(1%32). The issue of sampling errora in the estimation of hurricane
wind speeds was examined by means of Monte Carlo simulations (Batta
et al., 1980b), which showed that the standard deviation of the
errors was typically 5 to 10 percent of the estimated speeds. A
computer program for estimating direction effects in hurricanes is
described in Hendrickson and Simiu (1986).
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of hurricanes Hugo and Andrew are the object of studies by Sill and
Sparks (1991), Reinhold et al. (1993), and Marshall (1993). The
latter study reviews in detail, and contains recommendations for the
improvement of, wind load provisions for manufactured hc,me
construction.

ZwtNADO WINIx

The approach to the estimation of hurricane winds discussed in the
preceding section could be described, roughly, as the monitoring of
a billiard game played by nature with balls in the form of hurricanes
having complex physical and probabilistic characteristics, against
various targeta such as towns. A similar approach is used for tornado
winds.

Let ~ be some large reference area, and let n be the estimated
number of tornado occurrences per yaar in area ~. The estimated
probability that a tornado will strike a particular location within
~ in any one yaar is asssumed to be P(H) - n a/~, where a, =
estimktad mean area of individual tornado path. The probability that
a tornado with maximum wind speeds higher than some specified value
V@ will strike a location in any one year can be written as
P(H,VO)-P(VO)P(H), where P(VO) is the probability that the maximum
wind speed is at least VO, given that a tornado has occurred. ‘The
estimation of P(H,Ve) reliaa on relatively few and uncertain data —
inferred mostly from obsemations of damage — on tornado
occurrences, path areas, and wind speeds, and on largely subjective
extrapolations from these data to small probability levels. According
to estimates presented by Harkee at al. (1974), maximum tornado wind
speeds corresponding to a probability P(H,VO)-10-7 in any one year
vary between 400 mph (179 m/s) in Oklahoma and Nebraska to 240 mph
(107 m/s) in Northern California and Oregon. More refined estimates
have subsequently been proposed (see Simiu and Scanlan (1986) for a
summary of codified estimated tornado winds, pressure drops and
pressure drop rates in the United States, and information on
estimated tornado-borne missile speeds, and for additional

references).
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