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1. Introduction

The past two decades have seen the development of a large body of
extreme value theory based on the application of the Generalized Pareto
Distribution (GPD) to the excess of the extreme variate over a fixed
threshold. For sufficiently large values of the extreme variates, the GPD with
tail length parameters ¢ >0 and ¢ <0 is equivalent, respectively, to the Type
IT (Fréchet) and Type III (reverse Weibull) distribution of the largest values.
The Type I (Gumbel) distribution is equivalent to the limit of the GPD as
¢~0. Owing to these equivalences, the GPD can be used to model extreme
data obtained by either the ’peaks over threshold’ approach or the epochal
approach.

The overall purpose of our investigation is to assess and use the potential
of GPD/extreme value theory for improving our knowledge of extreme wind
speed behavior. In particular we are interested in examining the issue of the
extreme distribution tail length. ‘
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This issue has a fairly long history. The 1972 building code requirements
for minimum design loads [1] were based on the assumption that extreme
winds in regions not prone to hurricanes are described by a Fréchet
distribution with tail length parameter y = 9. This assumption was examined
in Ref. [11] which concluded that extreme wind speeds are better modeled by
the Gumbel distribution than by the longer-tailed Fréchet distribution.
However, even estimates based on the Gumbel model lead to failure
probability estimates that appear to be unrealistically high [6]. This also
appears to be the case for safety margins for wind loads ("load factors") [16].
The question was therefore examined whether the extreme wind distribution
is in fact shorter-tailed than the Gumbel distribution [14,17]. Ref. [14], in
which this question was answered affirmatively, compared the goodness of fit
of the Gumbel and the regular Weibull distribution, which has a shorter but
infinite upper tail. For theoretical reasons recalled carlier, the comparison
should be made between the Gumbel and the reverse Weibull distribution,
which has a limited upper tail.

We seek answers to the following questions: (1) how can we use existing
probability and statistics knowledge to improve estimates of extreme wind
speeds, given commonly available lengths of record (i.e., about 3 to 50 years)?
(2) are wind speeds better modeled by the reverse Weibull than by the
Gumbel distribution? and, if so, (3) are data sets of moderate size (say, 50
years) sufficient for estimating with acceptable confidence the length of the
finite distribution tail?

The first phase of this investigation was devoted to preliminary research
on the relative performance of various existing estimation methods, and on
determining whether extreme wind speed data are better fitted by the reverse
Weibull than by the Gumbel distribution. Based on the results of the first
phase we concluded that a second phase was warranted. In this paper we
review the research conducted in the first phase and describe objectives and
approaches for the second, forthcoming phase.

Details on Monte Carlo simulations and analyses of largest yearly data sets
are provided in Sections 2 and 3, respectively. Section 4 outlines the
approach and objectives proposed for the second phase of our investigation.
Section 5 presents our conclusions. An Appendix reviews the Conditional
Mean Exceedance (CME), Pickands and de Haan-Dekkers-Einmahl (de
Haan) methods for estimating GPD parameters, and provides expressions for
estimating variates with specified mean recurrence intervals.
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2. Monte Carlo Simulations

- 2.1 Populations, Data Samples and Numerical Results

Two sets of Monte Carlo simulations, denoted as Set I and Set II, were
run and analyzed. Set I [9] was based on the assumptions that the population
mean and standard deviation are E(X) = 22.35 m/s (50 mph) and s(X) = 2.79
m/s (6.25 mph), respectively (these values are typical of samples of annual
maximum speeds in extratropical storms [12]), and that the population
distributions are: (1) Gumbel (i.e., c=0); (2) reverse Weibull with y=2 (i.e.,
¢=-0.5 [18]; the justification for this assumption is discussed in Section 3), and
(3) the normal distribution. For each of the three population distributions,
250 samples of size N=10,000 were generated. From these samples, 250
samples of size n=1000, 250 samples of size n=250, and 250 samples of size
n=50 were generated by taking from the 10,000 data the largest 1000, 250 and
50 data, respectively. Our purpose in generating large samples (N=10,000)
and analyzing data exceeding relatively high thresholds was to gain insight into
the possible dependence of an estimator’s performance on the magnitude of
the threshold, that is, on how closely the sample being analyzed conforms to
the asymptotic assumption inherent in GPD theory.

The estimate of the mean crossing rate for the sample of size n=50 is
A=50/10,000=0.005/year; for n=250 and n=1000, the estimates are
A=0.025/year and A=0.1/year, respectively. These estimates are reasonable
as long as the population data are interpreted as annual maximum wind
speeds, which is consistent with the assumed values of E(X) and s(X). (In
Ref. [9] the mean crossing rates were arbitrarily assumed to be 1.25/year,
6.25/year and 25/year for n = 50, 250, and 1000, respectively. For any given
probability of occurrence of a variate, the respective nominal mean recurrence
intervals, R, in years were therefore correspondingly smaller in Ref. [9] than
in this paper, see Eq. 8 in the Appendix).

For each of the three crossing rates the CME, Pickands and de Haan
estimation methods were applied to obtain estimates of the GPD parameters
and, based on these parameters, estimates of extreme wind speeds for mean
recurrence intervals of R=250, 5000, and 50,000 years were computed. A
measure of the performance of the estimators is the root-mean-square-error
which is the square root of the sum of the variance and the square of the bias
(the difference between the estimated mean and the population mean). The
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means (M), standard deviations (SD) and root-mean-square-errors (RMSE)
of the estimates based on the sets of simulated 250 samples are shown in
Tables 1, 2 and 3 for the Gumbel, reverse Weibull and normal distributions.

Set II [7] was based on the assumptions that the population mean and
standard deviation were E(X) = 12.96 m/s (29 mph) and s(X) = 2.91 m/s (6.5
mph), respectively. Further, it was assumed that the population distributions
are (1) Gumbel (i.e., c=0); reverse Weibull distribution with y=-1/c=3.64;
and normal. The assumed population parameters were estimated from two
sets of maximum daily data recorded over periods of about 25 years at Boise,
Idaho and Toledo, Ohio. Those sets were censored below, that is, only speeds
larger than 8.05 m/s (18 mph) were used in the estimation of E(X), s(X) and
. This limit was chosen because it was judged that lower wind speeds (e.g.,
morning breezes) are likely not to belong to the same meteorological class as
extreme winds and, if included in the analysis, may vitiate the probabilistic
description of the extremes. The resulting censored samples included about
750 data (i.e., roughly 30 data per year of record). The mean crossing rate
was therefore assumed to be 4=30/year. For each population distribution,
500 samples of size 750 (25 years of data) and 1200 (40 years of data) were
generated. For various crossing rates (4 = 20, 15, 10, 5, 2 and 1 per year),
the CME, Pickands, and de Haan estimation methods were applied to obtain
estimates of the GPD parameters and, based on these parameters, estimates
of extreme wind speeds for mean recurrence intervals of 50, 500 and 5000
years were computed. The means, standard deviations and root-mean-square-
errors based on the 500 simulated samples are shown in Tables 4, 5, and 6 for
the Gumbel, reverse Weibull and normal distributions based on 25-year (750
data) samples.

2.2 Comparison of Estimation Methods

We compare the relative efficiency of the CME, Pickands and de Haan
estimation methods. For both Set I and Set II it is apparent from Tables 1
through 6 that, with insignificant exceptions, the Pickands estimator was
outperformed by the CME and de Haan estimators. We note that the results
given in Tables 1-6 for the Pickands estimator were based on the NIST
implementation (see Appendix). Similar or worse results were obtained for
the original Pickands estimator. For example, for 25-year simulated records
taken from a Gumbel population for 2=10/yr and R=50 yrs, 500 yrs and 5000
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yrs, the original Pickands method yielded root-mean-square-errors of 7.37,
25.58 and 41.47, respectively, whereas the NIST implementation of the
Pickands method yielded 3.53, 6.97 and 11.90.

From the results for Set II, we observe that the de Haan estimator
outperforms the CME estimator for small values of 2 (low crossing rates) and
large mean recurrence intervals, R. Similar results were obtained from the
analyses of 40-year (1200 data) sets. The results we noted appear to be
consistent with those obtained for Set I (Tables 1, 2 and 3).

23  Optimal Crossing Rates

A high threshold reduces the bias since it conforms best with the
asymptotic assumption on which the GPD distribution is based; however,
because it results in a smaller number of data, it increases the sampling error.
An optimal exceedance rate A exists for which the root-mean-square-error is
a minimum. From Tables 4, 5 and 6 it is seen that the optimal 4 depends on
the population distribution and the mean recurrence interval. Results shown
in Tables 1 through 3 are consistent with this observation.

Tables 4 through 6 suggest that, with no significant error, an
approximately optimal threshold may be assumed to correspond to a mean
exceedance rate of 5/yr to 15/yr. The 40-year sets yielded similar results.

24 Comparison of Threshold and Epochal Procedures

Next we compare the epochal procedure, traditionally used in the
estimation of extreme wind speeds, with the threshold procedure. Epochal
extreme wind data were generated by taking the largest variate in each
successive set of 30 (maximum crossing rate) data from the parent populations
with mean E(X) = 12.96 m/s (29 mph) and standard deviation s(X) = 2.91 m/s
(6.5 mph). This resulted in 500 sets of 25 yearly maxima and 500 sets of 40
yearly maxima [7]. The CME, Pickands, de Haan and Probability Plot
Correlation Coefficient (PPCC) [13] estimation methods were applied to the
data. Results are given in Table 7.

For the epochal approach, a comparison among estimation methods, based
on the root-mean-square-error, showed that the CME method performed best
in a majority of the cases.
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Results for the epochal procedure using the CME estimation method were
then compared with results for the threshold procedure using a crossing rate
of 10/yr. It was found that for the Gumbel and reverse Weibull distributions,
the threshold procedure produced better estimates. For the normal
distribution, the epochal method performed better. This may be due to the
fact that, unlike the Gumbel and the reverse Weibull distribution, the normal
distribution is not an extreme value distribution. Consequently, data taken
from a Gumbel or reverse Weibull population that exceed a specified
threshold (with 2=10/yr, say) have an extreme value distribution while
similarly obtained data from a normal population do not. On the other hand,
data consisting of maximum yearly values taken from a normal population may
be characterized more closely by an extreme value distribution.

3. Analyses of Largest Observed Maximum Yearly Data

We summarize results of analyses performed on sets of about 20 to 45
yearly maximum wind speeds recorded at various U.S. sites [8]. The CME
method was used to estimate the tail length parameter c of the corresponding
GPDs. For more than two-thirds of 95 data samples at stations not affected
by hurricanes, the estimated ¢ values were between approximately -0.35 and
-0.80. CME graphs for 32 selected stations are shown in Fig. 1 [8]. The
choice ¢=-0.5 in the Monte Carlo simulations of Section 2 was based on these
results.
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Fig. 1 - Cumulative Mean Exceedance (CME) Plots for Extreme
Wind Speeds at 32 Stations
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Reference [8] also reports simulations from Gumbel, reverse Weibull and
Fréchet distributions intended to provide a framework for interpreting the
results of the observed maximum yearly data. The simulation results tended
to support the view that most of the stations are in fact best fitted by reverse
Weibull distributions. This is also true of analyses of recorded extreme wind
speed data reported in Ref. [19].

4. Approach and Objectives of Current Research

The purpose of the second phase is to verify and refine the work
performed so far by analyzing a relatively large number of sets of daily
maximum fastest mile wind speeds. To this end, we assembled 48 complete
sets of daily maximum fastest mile wind speeds recorded over 15 to 26 years.
For each of these sets the data were reduced to a common elevation using the
procedure of Ref. [12]. For a few of the sets a small number (less than one
percent) of the daily data were missing. We filled in the missing data by
estimating their values from records of wind speeds measured on the
respective days at 3-hour intervals. In most cases the estimated wind speeds
being filled in were relatively small — 13.4 m/s (30 mph) or less — so that
errors in their estimation could not be expected to alter significantly the
estimates of the extremes.

In the second phase of our investigation we intend to address the
following topics:

(a) From the sets of daily data, it is necessary to extract sets of
uncorrelated or weakly correlated wind speeds. The latter must then be
analyzed to determine their best fitting distributions. Monte Carlo simulations
similar to those reviewed in Section 3 will then be performed from
populations described by these best-fitting distributions.

(b) The sets of uncorrelated or weakly correlated data will contain a
number of speeds irrelevant to the estimation of the extremes. These speeds
(e.g., morning breezes) are generated by meteorological processes that differ
from those that generate the extreme winds. We plan to investigate the effect
of eliminating all data below a reasonably selected threshold — say 7 m/s (16
mph). We will also investigate the effect of the choice of the censoring
threshold.

(c) In spite of the elimination of irrelevant data, the resulting data sets will
still be meteorologically inhomogeneous: we are unable in practice — at least
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for the time being — to separate data associated with thunderstorms from data
associated with large-scale extratropical storms. However, we can create
separate sets of data for distinct periods of the year, e.g., for each season, or
even each month. The probability that a given wind speed will not be
exceeded during N years is then estimated as the probability that it will not
be exceeded by wind speeds in any of the segregated categories. Under the
reasonable assumption of independence, that probability will be equal to the
product of the probabilities estimated for each of those categories. The
predominance (or rarity) of thunderstorms among high winds occurring during
certain periods of the year will be reflected by the probability distributions
fitted to the corresponding segregated data sets. Errors inherent in the mixing
of thunderstorms and non-thunderstorm winds in the unsegregated data sets
would thus be reduced, if not altogether eliminated. We plan to compare
results based on data segregated by seasons or months with results obtained
from the unsegregated data sets.

(d) An important practical problem in extreme wind climatology is the
estimation of extreme wind speeds from short-term records (e.g., three-year
records). Epochal estimates based on maximum monthly winds have shown
that 3-year data sets can yield respectable estimates of extreme speeds [15].
However, these estimates raise the question of the effect of seasonality — at
most stations summer winds have considerably lower means than winter winds.
The significance of this effect on the reliability of estimates based on monthly
extremes has not been studied so far. We plan to obtain estimates based on,
say, 3-year records by using the ’peaks over threshold’ approach, which
reduces seasonality effects, since one would expect most low-season winds to
be discarded via the thresholding procedure. We plan to compare estimates
based on the ’peaks over threshold’ procedure applied to short (e.g., 3-year)
data sets with estimates based on the entire (15-year to 26-year) period of
record.

5. Summary and Conclusions

In this paper we reviewed results obtained in a first phase of an
investigation on the application of the GPD-based approach to the estimation
of extreme winds. The results were the following: (1) for data exceeding a
sufficiently high threshold, as well as for epochal data, the Cumulative Mean
Exceedance (CME) and the de Haan-Dekkers-Einmahl (de Haan) estimation
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methods performed significantly better than the Pickands method; (2) for the
threshold approach, the performance of the estimates was optimal for mean
crossing rates of about 10 to 15 per year; (3) for the epochal approach, the
CME method performed better than the Probability Plot Correlation
Coefficient (PPCC) method; (4) for data from Gumbel and reverse Weibull
distributions the threshold approach performed better than the epochal
approach; however, the reverse was true for data from a normal distribution;
(5) most sets of observed largest yearly extratropical wind speed data (not
including tornado winds) were better fitted by reverse Weibull distributions
than by Gumbel distributions.

We also outlined our approach and objectives for a second phase of this
research. This approach uses statistical analyses of data taken from sets of
maximum daily fastest mile speeds and Monte Carlo simulations based on
probabilistic models derived from those analyses. The objectives are to rank
the performances of the CME and de Haan procedures, account for
seasonality and correlation effects, verify whether most extreme speed data
sets are in fact better fitted by reverse Weibull than by Gumbel distributions,
confirm or refine earlier estimates of optimal exceedance rates for ’peaks over
threshold” procedures, confirm or refine earlier conclusions on the relative
performance of 'peaks over threshold’ and epochal procedures, and estimate
confidence levels for ’peaks over threshold’ estimates of extreme winds based
on short records.
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Appendix

Generalized Pareto Distribution

The expression for the Generalized Pareto Distribution (GPD) is:

G(y) = Prob[Y<y] =1—[1+(EX) e
a

a>0, 1+(2)>0 (D
a

Eq. 1 can be used to represent the conditional cumulative distribution of
the excess Y = X - u of the variate X over the threshold u, given X > u for
u sufficiently large [10].

Conditional Mean Exceedance (CME), Pickands and de Haan Methods

1. The CME is the expectation of the amount by which a value exceeds a
threshold u, conditional on that threshold being attained. If the exceedance
data are fitted by the GPD model and ¢ < 1, u > 0, and a+uc > 0, then the
CME plot (i.e., CME vs. u) should follow a line with intercept a/(I-c) and
slope ¢/(Ic) [3]. The linearity of the CME plot can thus be used as an
indicator of the appropriateness of the GPD model, and both ¢ and a can be
estimated from the CME plot.

2. Following Pickands’ [10] notation, let X, >... > X, denote the order
statistics (ordered sample values) of a sample of size n. For s=1,2,..., [n/4]
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(I 1 denoting largest integer part of), one computes F(x), the empirical
estimate of the exceedance CDF

F ) =ProbX-X, <x|X>X o). . ... ()

and G(x), the Generalized Pareto distribution, with a and c estimated by

o= B0 Xao) /Koo X} 3)

log(2)

- ¢ (X9 ~Xas (4)
1 .. .

One takes for Pickands estimators of ¢ and a those values which minimize
(for I <s < [n/4]) the maximum distance between the empirical exceedance
CDF and the GPD model. Pickands’ method can be shown to be consistent.

Following a critique of an earlier implementation of the Pickands method
[2, 10] an alternative implementation was developed [8] which entailed the
following steps: (1) choose as threshold u an order statistic of the sample; (2)
compute the empirical exceedance CDF for the data above u; (3) nonlinear
least-squares fit the GPD model for the parameters ¢ and a; (4) plot the
resulting ¢ estimates against u for each order statistic.

[N

3. Following Dekkers, Einmahl and de Haan, [4, 5] consider an integer-
valued function of n, k(n), such that, as n~e, k(n)~= and k(n)/n-0 (e.g.,
k(n)=[y/n]. Compute the quantities

k(n)
1

MO = _ Y flogX -logX, .} ..oueeniiiin.. 5
n k(n) 1X=1:{ (] (k("))} ( )
M =L bff {logX )~ 108 Xyl - s (6)

k(r) =

The estimator of ¢ is then
é=MP+1- 112 S 7
2(1-(MOY | MP))

The estimator of a is obtained as the CME value for Xainy times 1-¢, whereé
is given by Eq. 7.
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Estimation of Variates with Specified Mean Recurrence Intervals

The estimates of the wind speeds, x,, corresponding to the mean
recurrence intervals, R (in years), are of interest. Let 2 denote the mean
crossing rate of the threshold, u, per year (i.e., the average number per year
of data points above u). We have

Prob[Y<y|=1-1[/(AR). ... ... .. ... (8)
1-[+(cya)] ™ =1-1J(AR)- - - oo 9)
y=-a[l-(AR)[c- oo (10)

The value being sought is

where u is the threshold used in the estimation of ¢ and a.
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