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Probabilistic models for directionless wind
speeds in hurricanes

Mircea Grigoriu
Cornell University, Ithaca, NY 14853

1 Introduction

Extensive records of simulated hurricane wind speeds for 16 azimuth directions are
available at, for example, the NIST web site http://www.nist.gov/wind. These records
cover time periods of the order 2,000 years so that may not be sufficient for estimating wind
speeds with average return periods of the order 1,000 years. Probabilistic models are needed
to predict extreme wind speeds corresponding to such return periods.

Our objectives are to (1) develop probabilistic models for hurricane wind speeds recorded
irrespective of direction, referred to here as directionless wind speeds, (2) calibrate these mod-
els to wind records, and (3) provide a Monte Carlo algorithm for generating data sets over
long time periods that are consistent with a site statistics. Four models are considered for
extreme wind speeds, the Gumbel, the shifted Gamma, the reverse Weibull, and the Pareto
distributions. The study uses extreme wind speeds irrespective of direction, referred to as
directionless wind speeds.

2 Probabilistic models for hurricanes

Hurricanes arrive at a site at random times and are characterized by random extreme
wind speeds. Records can be used to estimate the mean number v of hurricanes per year
at a site. Records can also be used to construct the distribution F' of extreme wind speeds
under the assumption that wind speeds recorded in different hurricanes belong to the same
statistical population, that is, they are independent samples of F'.

2.1 Hurricane time model and design wind speeds

Let 77 < Ty < --- be a random sequence denoting the arrival times of hurricanes at a
site, and let X7, X5, ... be hurricane wind speeds irrespective of direction.

It is assumed that (1) the random sequences Ti,T5,... and X;, Xs,... are mutually
independent, (2) the random variables X7, X5, ... are independent and have the same dis-
tribution F', (3) the hurricane season begins on June 1 and ends November 30, and (3) the
random variables T, T, — T}, ... are independent and follow an exponential distribution with



mean 1/v, v > 0, so that T}, T5, ... are points of a Poisson process N with intensity v. The
Poisson process N is on only during the hurricane season.

Consider a time interval [0, 7], 7 > 0, and note that N(7) gives the random number of
hurricanes in [0, 7]. The distribution F, of the largest extreme wind speed in [0, 7], that is,
the random variable max;<;<n(-){X;}, is

Fy(a) = exp [~ v (1 - F(x) 1)

since the probability of n hurricanes occurring in [0, 7] is P(N(7) = n) = (v 7)" exp(—v 1) /n!
and the probability that the conditional random variable maxi<;<n ) {X;} | (N(7) = n) does
not exceed x is equal to F(x)™.

Suppose we retain from the sequence Xi, Xy, ... of wind speeds at a site only those
values exceeding a threshold z, so that the resulting process describes hurricanes with wind
speeds larger than z. The mean arrival rate of these hurricanes is v(z) = v (1 — F(z)), so
that 1/v(x) gives the average time between consecutive wind speeds larger than x. Hence,
the design wind speed that is exceeded on average once in r years, that is, the r-year wind
speed, results by setting 1/v(z) equal to r and is

2" = p1 (1 - i). (2)

vr

We consider four models for F', the Gumbel, the shifted Gamma, the reverse Weibull,
and the generalized Pareto distributions. The method of moments and other methods are
used in the following two subsections to estimate the parameters of these models from wind
records. The uncertainty in the estimates of the parameters of F' and the corresponding
r-year wind speeds is quantified in a subsequent section.

2.2 Hurricane intensity. Gumbel distribution

A random variable X is said to a Gumbel or extreme type 1 variable with parameters
(e, u) if it has the distribution

F(x)zexp{—exp(—a(m—u))}, —00 < T < 00, (3)
and density
f(x):aexp{—a(x—u)—exp(—a(:p—u))}, 00 < T < 00 (4)

We use the notation X ~ EX1(«a,u) to indicate that X is a Gumbel variable with parameters
(c,u). The parameters (a, u) are denoted by (al_gumbel, u_gumbel) in the MATLAB code
hurr_nd_mc.m.

The mean p and standard deviation o of X are related to the parameters (o, u) by

~ 0.577216
o)

= — (5)
o \/6

These relationships with o and o replaced by their estimates i and ¢ are used in hurr_nd_mc.m

to obtain estimates of («, u).

(0%



2.3 Hurricane intensity. Shifted Gamma distribution

Let X be a Gamma random variable with parameters (k,\), k > 0, A > 0, and density

fay = M (©)

Tk = =

where T'(+) denotes the Gamma function. The distribution of X is

Flz) = /0 Flu) du = /OM ka;]:)z dz, >0, (7)

and is given by, for example, the MATLAB function cdf(’Gamma’,z, k,1/)). The solution
x, of F(z,) = p € [0,1], that is, the p-fractile of F' can be obtained from the MATLAB
function icdf(’Gamma’p, k,1/\).

Consider the random variable X = a 4+ X, where a is a real constant. Since P(X <
x) = P(X <z-— a), the density and distribution of X are given by Eqs. 6 and 7 with x —a
in place of x, and are valid for © > a. The mean pu, variance o2, skewness 73, and kurtosis
~v4 of X are

p=a+k/\
o? =k/\?
V3 =2/ vk
va=3(1+4+2/k). (8)
Suppose that the sequence of extreme wind speeds X7, X, ... follows a shifted Gamma
distribution and that a record (zi,...,xz,) of this sequence is available. Our objective is

to estimate the parameters (a, k, \) of this distribution. The maximum likelihood method
and the method of moments are commonly used to calculate estimates (@, k, A) of (a, k, \).
Maximum likelihood estimates have smaller variance that those obtained by the method of
moments but can be unstable for some values of k ([3], Section 7.1). To avoid such difficulties,
the method of moments is used to estimate (a, k, ). Suppose that estimates (fi, 7, Vs, V4)
of the moments (u, 0,73, 74) of Xy, Xs,... have been calculated from the available record
(1,...,2,). Then k can be estimated from the expression of the coefficient of skewness or
kurtosis and the estimates of these coefficients. For example, k= 4/ 752 if the relationship
between k and 73 is used. Alternatively, k can be determined from the relationship between
k and 4. The MATLAB code hurr_nd_mc.m uses the relationships

4/75"

Vi/o (9)

to find estimates of k and A, and calculates estimates a of the shift a by two options. The first
option sets & = minj<;<,{2;}. The second option calculates a from a = fi—k /. If the result-
ing estimate of a is such that ¢ > min;<;<,{x;}, we set & = min;<;<,{x;}. The parameters
(a, k, \) are denoted in hurr_nd_mc.m by (shift1, kql, lamql) and (shift2, kq2, lamq2)
for options 1 and 2, respectively.

ki

ps
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2.4 Hurricane intensity. Reverse Weibull distribution

Let Y be a Weibull random variable with parameters a > 0, £ € R, and ¢ > 0,

distribution .
1—e —(=2) ], v>
Fly) = Xp{ (H y>¢ (10)
0

y <§,

fly) = 2 (yT_g)c—l exp [— (%)] y> & (11)

Values of distribution F(y) and solutions of F(y,) = p € [0,1] can be calculated by, for
example, the MATLAB functions F'(y) = cdf('wbl’, y—¢, , ¢) and y,—& = icdf('wbl’, p, o, ¢).

Moments of any order of Y can be obtained from moments E [f/q} =T(1+ q/c) of the
scaled random variable Y defined by Y = & + 'Y ([3], Chapter 20). For example, the mean
[y, Variance 05, and skewness 7,3 of Y are

and density

py =&+ al'(1+1/c)
or=a’ (T(1+2/c) = T(1+1/c)?)

_D(1+3/¢) =3T(1+1/¢) D(1+2/c) +2T(1+1/¢)?
(T(1+2/¢) = T(1 + 1/c)2)*? '

Vy,3 (12)

The properties of the random variable X 4 —Y, called reverse Weibull variable, result
from those of Y. For example, the distribution of X, that is, the probability P(X < x) =
P(Y > —z), is equal to exp [ — (=2)¢] for # < = —¢ and 1 for z > 7.

Suppose that the sequence of extreme wind speeds Xi, X», ... follows a reverse Weibull
distribution and that a record (zi,...,z,) of this sequence is available. Our objective is
to estimate the parameters (a,n = —¢, ¢) of the reverse Weibull distribution. The method
of moments, the method of maximum likelihood, the method of probability-weighted mo-
ments, and other methods can be used to estimate the parameters of this distribution ([4],
Chapter 22). Extensive numerical studies suggest that the method of moments delivers
satisfactory estimators for the unknown parameters of F', in contrast to, for example, the
maximum likelihood method that can produce unstable estimators [6]. These features of the
method of moments and its simplicity are the reasons for selecting the method for our anal-
ysis. The following 3 step algorithm can be used to estimate the parameters (o, n = —¢,¢)
by the method of moments.

Step 1. Construct the record (v, = —21,...,yn = —2,). Since the record (z1,...,x,)
is assumed to consist of independent samples of a reverse Weibull distribution with
parameters (a,n = —&, ¢), the record (y1,...,y,) consists of independent samples of a
Weibull distribution with parameters (€, ¢).

Step 2. Calculate estimates fi,,, 62, and 4, 3 for the mean p,,, variance o2, and skewness
Iu’y Yy 'Vy, Ny Yy
coefficient 7, 3 from the sample (yi,...,y,). For example, i, = >0  vi/n, m, =
" (y; — f1,)?/n are estimates of the central moments of order ¢ > 2, 62 = 1y, and
i=1 Fy y

Ag = 1hg /68 for q = 3,4.



Step 3. Estimates the parameters (o, &, ¢) from Eq. 12. First, find an estimate ¢ for
c from the last equality in Eq. 12 with 4, 3 in place of 7, 3. This nonlinear equation
needs to be solved by iterations. Second, find an estimate & for o from the second
equality in Eq. 12 with (07, ¢) replaced by (&7, ¢). Third, find an estimate ¢ for ¢ from
the first equality in Eq. 12 with (4, o, ¢) replaced by (fi, &, €). If £ > ming <;<,{vi},
then set £ = min;<;<,{y;} and calculate (&, ¢) from the first equalities in Eq. 12 with
(f1y,0) in place of (py,07).

The estimates (&, é ,¢) of the parameters (a, &, ¢) delivered by the above algorithm are
denoted in hurr nd_mec.m by (alw, xiw, cw).

2.5 Hurricane intensity. Generalized Pareto distribution

Let X be a (maximal) generalized Pareto variable with distribution

F(z) = 1—(1—kx/a)1/k’ l—kzx/a>0, k#0, a>0 (13)
l—exp(—z/a), >0, k=0, a>0,
and density
oy = { Q) (=ka/o) " 1 —kafaz0,k#£0, a>0 14)
(1/a) exp (—z/a), x>0, k=0, a>0,

depending on the scale and shape parameters « and k, respectively. The range of the
argument = of F' is [0,00) and [0,a/k] for £ < 0 and k > 0, respectively. We denote the
distribution F' in Eq. 13 by GPD(a, k). The parameters (a, k) of F' and the mean p and
variance o2 of this distribution are related by

a="1 (1?/o® +1)

ol \V)

k=< (1/o*—1). (15)

(\V]

The p-fractile z, of F' ~ GPD(a, k), that is, the solution of F'(x,) = p, has the expression

a(l—(1-p*)/k, k#0
:Cp:{ —éz ln(l—pl)), ) k=0. (16)

A notable property of generalized Pareto random variables is that, if X follow a
GPD(a, k) distribution, then the conditional random variable (X —a) | (X > a)is GPD(a—
ka,k) for any a € R. This invariance property simplify significantly the construction and
analysis of peaks over threshold sequences associated with generalized Pareto series.

Suppose that a record (xy,...,z,) of independent values of X with distribution F' in
Eq. 13 is available. Our objective is to estimate the parameters (a, k) of F' from the record
(1, ...,2,). The maximum likelihood, probability-weighted moments, moments, and other

methods can be used to estimate the parameters of F' ([1], Section 10.3 and 10.8). Extensive
simulation studies indicate that estimates of («, k) delivered by the method of moments are

5



generally reliable unless k£ < —0.2 and that the method of probability-weighted moments is
adequate for k < 0 [2]. Other studies found the method of moments to be satisfactory for
a broader range of values of £ [5]. The MATLAB code hurr_nd_mc.m uses three methods
for estimating the parameters («, k) from data, the method of moments, the method of
probability weighted moments, and the method of DEHAAN.

2.5.1 The method of moments

Estimates of the parameters («, k) can be calculated from

(17)

where 7 = > x;/n and s* = > | (x — x) /n denote the sample mean and variance of
(x1,...,x,), respectively.

Suppose we construct from the original record (zy,...,x,) a new record (yi,...,Ym),
m < n, consisting only of those readings x; exceeding a specified threshold a. The relation-
ships in Eq. 17 with (m, {zj = y; — a}) in place of (n, {x,}) can be used to estimate the
parameters of the Pareto variable Y — a.

2.5.2 The method of probability weighted moments

Let {z;.,} be the data set {z;} sorted in increasing order, that is, 1., < @9, < -+ <
o Set pup = (1 —0.35/n), i = 1,...,n, and t = (1/n) Zl (I = pip) i The the
estimates of a and k are given by ([1], Section 10.8.3)

A t—2x
-
Tr—2t
“ 27t
A= . 18
Tr—2t (18)
Similar estimates can be constructed for a record (y1,...,Ym), m < n, consisting of
values of (z1,...,x,) above a threshold a.
2.5.3 The method of DEHAAN
Let (y1,...,Ym), m < n, a record consisting of values of (z1,...,z,) above a threshold

a. Denote by {y;.,} the data set {y;} sorted in increasing order, that is, y1., < yom < -+ <
Ym:m, and consider the statistics

m—1
ln y+1m ln(ylzm)]r, r=1,2,..., (19)
m—1 JZQ !



for some ¢ < n. The DEHAAN estimates of o and k are defined in the NIST web site
http://www.nist.gov/wind and are given by

R 1/2
k= _:ugzl) -1+ / 2
1 — (M(l)) /Iu(z)
a=ap)/p, (20)

where p=1for k< 0and p=1/(1 —k) for k > 0.

The estimates of the parameters («, k) delivered by the methods of moments, probability
weighted moments, and DEHAAN are denoted in hurr_nd_mc.m by (al_paretol, k_paretol),
(al_pareto2, k_pareto2), and (al_pareto3, k_pareto3), respectively. The threshold be-
low which wind speed readings are disregarded is denoted by a_pareto for all estimation
methods.

3 Monte Carlo algorithm

The hurricane hazard at a site during a time interval [0, 7] is completely specified by
— The arrival times 0 = Ty < Ty < Ty < --+ < T of hurricanes and
— The extreme speeds X, Xy, ..., Xy recorded during each hurricane.

We have assumed that (1) the sequences {7;} and {X;} are independent of each other,
(2) the arrival times {7;} define a Poisson process N with intensity v hurricanes/year, and
(3) the random variables X, X5, ... are independent and follow either a reverse Weibull
distribution or a shifted Gamma distribution.

A two-step Monte Carlo algorithm has been developed to generate samples of extreme
wind speeds recorded during hurricane at a site. The input to the algorithm consists of a
reference time interval [0, 7], the hurricane mean arrival rate v, the distribution shape F' of
wind speeds X7, Xs, ..., and the parameters of this distribution.

Step 1. Generate a sample 0 = Ty < T} < Ty < --- < Ty, of hurricane arrival
times in [0,7]. As previously stated, it is assumed that hurricane can only occur
from June 1 to November 30. Denote this time interval by 7,. The generation of
hurricane arrival times can be based on the observation that the inter-arrival times
Ty —Ty—1, k=1,..., N(7) are independent exponential random variables with mean
1/v. Hence, the time intervals T}, — Ty_; are equal in distribution with the random
variables — In(Uy) /v, where Uy, are independent random variables uniformly distributed
in [0,1]. The MATLAB function rand can be used to generate samples of Uy. First,
we generate a sample of T3 = —In(U;)/v. If this sample is larger than 7,, there will
be no hurricane at the site in this sample during a yearly hurricane season so that
N(7,) = 0. Otherwise, the sample of T} gives the time of the first hurricane and
N(r,) > 1. Second, we generate a sample of T, — 77 = —In(U,)/v. If the sample
of Ty = (I — T1) + T} is larger than 7, then N(1,) = 1. Otherwise, N(7r,) > 2 and
we generate a sample of the following inter-arrival time. This process ends when an
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arrival time exceeds 7, for the first time. A hurricane sample in [0, 7] consists of the
sequence of hurricanes generated in each hurricane season of [0, 7]. Denote by N (1)
the number of hurricanes in [0,7]. A similar procedure applies for the arrival times
of hurricanes with wind speeds larger than a threshold at,,. The only difference is
that the mean rate v is replaced with the mean rate v, equal to v scaled by the ratio
#{hurricanes with speed > ag, }/#{all hurricanes}.

Step 2. Generate a sample & = (71, %2, ..., Tn(r)) of the wind speeds X1, X, ..., Xy
corresponding to the sample of 0 = Ty < T} < T < -+ < Tn(r) generated in the
previous step. Let w = (uy,us,...,un(r)) be independent samples of a uniformly
distributed random variable in [0, 1], which can be produced by, for example, the
MATLAB function v = rand(1, N(7)). MATLAB functions have also been used to
generate samples x of directionless hurricane wind speeds from w under various as-
sumptions on the distribution of wind speed. For example, the sample x is given by
T =— (f + icdf('wbl’, u, «, c)) for the reverse Weibull distribution.

MATLAB function

A MATLAB function hurr_nd_mc.m has been developed for estimating the parameters

of the Gumbel, shifted Gamma, reverse Weibull, and generalized Pareto distribution from
hurricane wind speed records.

The input consists of:
(1) A record at a specified milepost (see lines 50-56),

(2) A range [cmin, cmax] for possible values of the tail parameter ¢ in Egs. 10-11 of
the reverse Weibull distribution and the number nc of intervals to be considered in this
range,

(3) A threshold a_pareto for used for the generalized Pareto distribution,

(4) A number nyr of years selected for Monte Carlo simulation and a seed nseed for
generating hurricane wind speeds, and

(5) A specified tail parameter cws for the reverse Weibull distribution.
The output consists of:
(1) A vector thurr with entries counting the number of hurricane in nyr years,

(2) Vectors of simulated hurricane wind speeds: x_gumbel_mc corresponding to the
Gumbel distribution; x_shgl mc and x_shg2 mc corresponding to the shifted Gamma
distribution under option 1 and option 2; x_rw_mc corresponding to the reverse Weibull
distribution; and x_parl_mc, x_par2_mc, and x_par2_mc corresponding to the gener-
alized Pareto distribution with parameters estimated by the methods of moments,
probability weighted moments, and DEHAAN.



(3) Plots showing (7) histograms of the input wind record and Gumbel, shifted Gamma,
reverse Weibull, and generalized Pareto densities fitted to this record, (iz) wind speeds
of average return periods in the range [50,1000] years predicted by the Gumbel, shifted
Gamma, reverse Weibull, and generalized Pareto distributions fitted to the record using
estimated parameters of these distributions and similar wind speeds derived directly
from data, and (7i7) wind speeds of average return periods in the range [50,1000] years
predicted by the reverse Weibull distribution with estimated and imposed tail param-
eter and similar wind speeds derived directly from data.

5 Conclusions

A MATLAB code has been developed for estimating parameters of the hurricane wind
speeds described by Gumbel, shifted Gamma, reverse Weibull, and generalized Pareto dis-
tributions. Several estimation methods have been applied to calibrate these distributions
to wind speeds records obtained from the NIST site http://www.nist.gov/wind. The result-
ing models have been used to generate synthetic hurricane wind speeds and estimate wind
speeds with return periods in the range [50,1000] years. The code produces numerous figures
showing data and model statistics.
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Appendix. MATLAB function hurr_nd_mc.m

f

%

unction [thurr,x_gumbel_mc,x_shgl _mc,x_shg2 mc,x_rw_mc, ...
X_parl _mc,x_par2_mc,x_par3 mc] = ...
hurr_nd_mc(cmin,cmax,nc,cws,a_pareto,nyr,nseed)

It estimates parameters of the distribution of

hurricane wind speeds using records from the

NIST site http://www.nist.gov/wind, and

uses the resulting calibrated distributions to

generate synthetic hurricane wind speeds and

estimate wind speeds with return periods in

the range [50,1000] years

(cmin,cmax) = selected range for parameter c>0 of

the reverse Weibull dsitribution

nc = # of intervals in (cmin,cmax)

cws = a slected value for the tail parameter of the
reverse Weibull distribution

a_pareto = threshold used to define Pareto model

nyr = # of years considered for MC simulation

nseed = MC seed

Distributions and their estimated parameters:

Gumbel distribution:
[al_gumbel u_gumbel]

Shifted Gamma distribution:
[shift=min{q(:,17)} kqq lamqq] and pdf fqq
[shift2 kg2 lamg2] and pdf fg2

Reverse Weibull distribution:

[alw cw xiw] and pdf fw

Pareto distribution:

[npar k _paretol al_paretol] by MOM
[npar k pareto2 al_pareto2] by PMM
[npar k pareto3 al_pareto3] by DEHAAN
npar = # of readinds larger than a_pareto

NOTE: mgnd, sgnd, g3nd, g4nd = first 4 moments

of the wind record
OUTPUT:

thurr = a vector with entries counting the number

of hurricane in nyr years

x_gumbel _mc, x_shgl mc, x shg2 mc, x rw_mc, X parl mc,
X_par2_mc, X_par3_mc = hurricane wind speeds generated
by Gumbel, shifted Gamma (two options), reverse
Weibull, and generalized Pareto (3 estimation methods)
models

Estimates of the parameters of the Gumbel, shifted Gamma,
reverse Weibull, and generalized Pareto distributions
(shown in the command window)

%

Load record = a (999,17)-matrix for each Milepost

10



%

%
q
n
n
%
%

The directionless wind speed is in column 17
NEED TO MODIFY FOLLOWING INSTRUCTION
TO SELECT THE DESIRED MILEPOST #
oad milepost600;
load milepost400;
=matrix;
r=length(q(:,1));

u=mean_rate; % nu = the average number of hurricane/year

also in hppt://www.nist.gov/wind

%
%

STATISTICS OF DIRECTIONLESS WIND SPEEDS

%
%

m
S

q
g

First 4 moments and histogram
gnd=mean(q(:,17));
gnd=std(q(:,17));
nds=(q(:,17)-mgnd)/sqgnd;
3nd=mean(gnds."3);

g4nd=mean(gnds."4);

d

[
d

L
%
%
%

isp(“Mean Std - directionless®)
mgnd sqgnd]

isp("Skewness Kutosis - directionless®)
g3nd g4nd]

figure

hist_est(q,17,30)
title(["Directionless wind speed:",

Std=", int2str(sgnd)])

%
%
%

xlabel (*Wind speed (mph)*®)
ylabel (*Normalized histogram®)

Mean=",int2str(mgnd),

%

a

GUMBEL DISTRIBUTION

1_gumbel=pi/sqrt(6)/sqgnd;

u_gumbel=mgnd-0.577216/al_gumbel;

q
L

L
f
h
t
X

y
h

p
d

L
%

g=min(q(:,17)):1:max(q(:,17));
qg=al_gumbel*(qg-u_gumbel);
qgq=al_gumbel*exp(-fqq-exp(-fqq));
igure

ist_est(q,17,30)
itle(["Directionless wind speed:",

Mean=",int2str(mgnd), "

label ("Wind speed (mph)*™)

label ("Histogram & Gumbel model™)

old

lot(qq,fqq)

isp("Gumbel al_gumbel u_gumbel®)

al_gumbel u_gumbel]

%

S
S

q
m

SHIFTED GAMMA DISTRIBUTION

hift=min(q(:,17));
hiftl=shift;
gmin=q(:,17)-shift;
ggnd=mean(qgmin);

11

Std=", int2str(sgnd)])



sqgnd=std(qgmin);

lamgl=mqgnd/sqqnd”"2;

kgl=mggnd*lamql;

qg=min(q(:,17)):1:max(q(:,17));

qam=qqg-min(q(:,17));

fgl=lamgql”™kql*(qgm.”(kgl-1)) -*exp(-lamgl*qgm)/gamma(kql) ;

figure

hist_est(q,17,30)

title(["Directionless wind speed:"," Mean=",int2str(mgnd),” Std=",int2str(sqgnd)])
xlabel ("Wind speed (mph)*®)

ylabel ("Histogram & Shifted Gamma (Options 1/2: solid/dotted lines)")

hold

%plot(qq, fqq)

e — = — o

% Option 2: Calculate shift from

% the first 3 moments

O — — — -
kg2=4/9g3nd"2; % Calculated from skewness

% kq2=2/(g4nd/3-1); % Calculated from kurtosis

lamg2=sqrt(kg2)/sqnd;
shift2=mqgnd-kqg2/l1lamg2;
0 e
% Correct calculated shift if does not satisfy
% the conditions shift2<min{q(:,17)} & shift2>=0
0 e -
if shift2>shift,

shift2=shift;

kqg2=kq1;

lamg2=lamq1l;
elseif shift2<0,

shift2=0,

lamg2=mgnd/sqnd”2;

kg2=mgnd*lamg2;

end,

disp(“Gamma (01) shift k lambda*™)
[shift kql lamgl]

disp("Gamma (02) shift k lambda*)
[shift2 kg2 lamg2]

qgq2=qq-shift2;
fg2=lamg2”kg2*(gqq2-~(kg2-1)) . *exp(-lamg2*qg2)/gamma(kq2) ;
%Figure

%hist_est(q,17,30)

%title(["Directionless wind speed:*," Mean=",int2str(mgnd), "
Std=", int2str(sgnd)])

%xlabel ("Wind speed (mph)*™)

%ylabel ("Histogram & Shifted Gamma model ™)

%hold

5lot(qq,fql,qq,fq2,':')

0
% WEIBULL DSITRIBUTION for [-RECORD]

% (Method of moments)

Y — = — — -
% Estimated moments

ww=-q(:,17);
mw=mean(ww) ;
sw=std(ww) ;
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wws=(ww-mw)/sw;

gw3=mean(wws ."3);

% [mw sw gw3]

% ______________________________________________
% Calculation of skewness coefficients
% for values of c>0 in [cmin,cmax]

dc=(cmax-cmin)/nc;
cc=cmin:dc:cmax;

Ic=length(cc);
gl=gamma(l./cc+1);
g2=gamma(2./cc+1);
g3=gamma(3./cc+1);
skew=(g3-3*gl.*g2+2*g1.73)./(92-9g1.-72) .~(3/2);
% figure

% plot(cc,skew)

% xlabel ("coefficient c7)

%  ylabel("skewness®)
cw=interpl(skew,cc,gw3, "spline™)

ggwl=gamma(l./cw+1);
ggw2=gamma(2./cw+1);
ggw3=gamma(3./cw+1);
alw=sw/sqrt(ggw2-ggwl”2);
xiw=mw-alw*ggwl;

disp(“alpha o Xi [-RECORD] ")
[alw cw xiw]

y=Xxiw:.1:50;

yw=(y-xiw)/alw;
fw=Ccw/alw)*(yw.~(cw-1)) . *exp(-yw.-"cw) ;
cdfw=exp(-yw."cw) ;

v Figure

t hist_est(ww,1,30)

% hold

o plot(y,fw)

© o

XXX

Std=", int2str(sgnd)])
v xlabel ("Wind speed (mph)*®)

X

% ylabel("Histogram & Weibull model for [-RECORD]")
% %title(*Weibull fit and histrogram for -RECORD®)
% axis([min(ww) max(ww) O max(fw)+.01])

m — — — — -

% REVERSE WEIBULL pdf and

% histogram for [RECORD]
ey

figure

hist _est(-ww,1,30)

hold

plot(-y,fw)

%  title("Reverse Weibull fit and histrogram for RECORD®)
axis([min(-ww) max(-ww) 0 max(fw)+.01])

title(["Directionless wind speed:"," Mean=",int2str(mgnd), "

xlabel ("Wind speed (mph)*®)
ylabel ("Histogram & Reverse Weibull model*)
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%
% PARETO DISTRIBUTION (a_pareto,al_pareto,k pareto)

npar=0;
for i=1:nr,
if q(i1,17)>a_pareto,
npar=npar+1;
gpar(npar)=q(i,17);

end,
end,
% __________________________________________________________
% Method of moments, based on
% "Extreme Value ...," by E. Castillo, et.al., p. 271

gpar=qpar-a_pareto;

mpar=mean(gpar) ;

spar=std(gpar);

k_paretol=((mpar/spar)”2-1)/2;
al_paretol=mpar*((mpar/spar)”2+1)/2;

disp(“Sample size k _paretol al_paretol™)
[npar k_paretol al_paretol]

% Probability weighted moments method, based on
% "Extreme Value ...," by E. Castillo, et.al., p. 272

gpars=sort(qgpar);

ppars=1:1:npar;

ppars=(ppars-0.35)/npar;

tpars=sum((1-ppars) .*qpars)/npar;
k_pareto2=(4*tpars-mpar)/(mpar-2*tpars);
al_pareto2=2*mpar*tpars/(mpar-2*tpars);
disp(“Sample size k_pareto2 al_pareto2*)
[npar k_pareto2 al_pareto2]

% DEHAAN estimate
% (from NIST site hppt://www.nist.gov/wind)

nparl=npar-1;
mparl=sum(log(gpars(2:npar)+a_pareto)-log(gpars(l)+a pareto))/nparl;
mpar2=sum((log(gpars(2:npar)+a_pareto)-log(gpars(l)+a_pareto)).”2)/nparl;
k_pareto3=-(mparl+1-0.5/(1-mparl”™2/mpar2));
%++++++++++++++++H+H++H+H
k _pareto3=0.1;
%++++++++++++++++H++ A
if k pareto3<=0,

al_pareto3=a_pareto*mparl;

else,
al_pareto3=a_pareto*mparl*(1+k_pareto3);
end,
disp(“Sample size k _pareto3 al_pareto3*)
[npar k_pareto3 al_pareto3]
m — — — — -
% PLOTS OF HISTOGRAM AND PARETO DENSITIES
% Pareto 1: Method of moments
% Pareto 2: Probability weighted moments
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% Pareto 3: De Haan method (NIST)

figure
hist_est(q,17,30)
title(["Directionless wind speed:"," Mean=",int2str(mgnd),” Std=",int2str(sqgnd)])
xlabel ("Wind speed (mph)~®)
ylabel("Histogram & Pareto~1%)
it k paretol>0,
Xparl=a_pareto:1:al_paretol/k paretol+a pareto;
xxpar=xparl-a_pareto;
T _paretol=(1-k_paretol*xxpar/al_paretol) .~(1/k_paretol-1)/al _paretol;
hold
plot(xparl,f paretol)
elseif k _paretol<O0,
Xxparl=a_pareto:1:max{qgpar);
xxpar=xparl-a_pareto;
T _paretol=(1-k_paretol*xxpar/al_paretol) .~(1/k_paretol-1)/al _paretol;
hold
plot(xparl,f paretol)
else,
Xparl=a_pareto:1:max{qgpar);
XXpar=xparl-a_pareto;
T_paretol=exp(-xxpar/al_paretol)/al_paretol;
hold
plot(xparl,f paretol)

figure
hist_est(q,17,30)
title(["Directionless wind speed:"," Mean=",int2str(mgnd),” Std=",int2str(sqgnd)])
xlabel ("Wind speed (mph)~®)
ylabel("Histogram & Pareto~2%)
it k pareto2>0,
Xpar2=a_pareto:1:al_pareto2/k_pareto2+a_pareto;
Xxxpar=xpar2-a_pareto;
T _pareto2=(1-k_pareto2*xxpar/al_pareto2) .~(1/k_pareto2-1)/al_pareto2;
hold
plot(xpar2,f _pareto2)
elseif k _pareto2<0,
Xpar2=a_pareto:1:max(qgpar);
xxpar=xpar2-a_pareto;
T _pareto2=(1-k_pareto2*xxpar/al_pareto2) .~(1/k_pareto2-1)/al_pareto2;
hold
plot(xpar2,f _pareto2)
else,
Xpar2=a_pareto:1:max(qgpar);
XXpar=xpar2-a_pareto;
T_pareto2=exp(-xxpar/al_pareto2)/al_pareto2;
hold
plot(xpar2,f _pareto2)

figure

hist _est(q,17,30)

title(["Directionless wind speed:"," Mean=",int2str(mgnd),” Std=",int2str(sqgnd)])
xlabel ("Wind speed (mph)*®)

ylabel("Histogram & Pareto~3%)

15



if k paretol>0,
Xxpar3=a_pareto:1:al_pareto3/k pareto3+a pareto;
xxpar=xpar3-a_pareto;
T_pareto3=(1-k_pareto3*xxpar/al_pareto3) .~(1/k_pareto3-1)/al_pareto3;
hold
plot(xpar3,f _pareto3)
elseif k pareto3<0,
Xpar3=a_pareto:1:max(gpar);
xxpar=xpar3-a_pareto;
T_pareto3=(1-k_pareto3*xxpar/al_pareto3) .~(1/k_pareto3-1)/al_pareto3;
hold
plot(xpar3,f _pareto3)
else,
Xpar3=a_pareto:1:max(gpar);
xxpar=xpar3-a_pareto;
T _pareto3=exp(-xxpar/al_pareto3)/al_pareto3;
hold
plot(xpar3,f_pareto3)
end,
%
%
%  MONTE CARLO GENERATION OF HURRICANE HAZARD
% AT THE INPUT MILEPOST
%
%
%  HURRICANE ARRIVAL TIMES (No distinction is made between
% the hurrican and non-hurricane seasons)

rand("seed” ,nseed)

time=0;

ktime=0;

while time<=nyr,
ktime=ktime+1;
time=time-log(rand(1,1))/nu;
thr(ktime)=time;

end,

nhurr=ktime-1;

thurr=thr(1:nhurr);

% HURRICANE SPEEDS under Shifted Gamma, Reverse

% Weibull, and Pareto distributions

0/0 _______________________________________________________________
%

% Generate nhurr iid U(0,1)

x_shgl_mc=shiftl+icdf("Gamma® ,uu,kqgl,1/lamgl);
x_shg2_mc=shift2+icdf("Gamma” ,uu,kqg2,1/lamg2);

% Reverse Weibull
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%
if k paretol==0,
X_parl_mc=a_pareto-al_paretol*log(uu);
else,
X_parl_mc=a_pareto+al_paretol*(1-(uu) .~k _paretol)/k_paretol;
end,
%
if k _pareto2==0,
X_par2_mc=a_pareto-al_pareto2*log(uu);
else,
X_par2_mc=a_pareto+al_pareto2*(1-(uu) .~k _pareto2)/k_pareto2;
end,
%
if k pareto3==0,
X_par3_mc=a_pareto-al_pareto3*log(uu);
else,
X_par3_mc=a_pareto+al_pareto3*(1-(uu) .~k _pareto3)/k_pareto3;
end,
%
% ESTIMATES OF WIND SPEEDS FOR AVERAGE RETURN
% PERIODS IN THE RANGE [50,1000] years based
%  ON EMPIRICAL DISTRIBUTION

tau=50:1:10000;
nutau=nu*tau;
xq_nd=q(:,17);

% NIST record

[cdf nd,xq_nd, loc,upc] = ecdf(xq_nd);

%  figure

% stairs(xq_nd,cdf_nd);

% hold

%  stairs(xg_nd,loc,":");stairs(xq_nd,upc,":");
x_emp=interpl(cdf_nd,xq_nd,1-1./nutau, “spline®);

% plot(-y,cdfw)

% xlabel ("wind spped (mph)*)

%  ylabel("Empirical cdf and confidence intervals®)

%  title("Directionless wind speed®)

m — — — —
%  Generated Gumbel, shifted Gamma, Reverse Weibull,
% and Pareto records

Y = — = —
%  Gumbel

[cdf nd,xq _nd, loc,upc] = ecdF(x_gumbel _mc);
x_gumbel=interpl(cdf nd,xq_nd,1-1./nutau, "spline”);

[cdf nd,xq_nd,loc,upc] = ecdf(x_shgl mc);
Xx_shgaml=interpl(cdf nd,xq_nd,1-1./nutau, "spline®);
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[cdf nd,xq_nd,loc,upc] = ecdf(x_shg2 mc);
x_shgam2=interpl(cdf_nd,xq_nd,1-1./nutau, "spline®);

%  x_shgaml=shiftl+icdf(*Gamma®,1-1./nutau,kql,1/lamql);
%  x_shgam2=shift2+icdf(*Gamma® ,1-1./nutau,kq2,1/1amg2);
m — — — —

% Reverse Weibull

% NOTE: Here the thinning consists in retaining

% values smaller than a threshold

[cdf nd,xq_nd, loc,upc] = ecdf(x_rw_mc);
x_rw=interpl(cdf _nd,xq _nd,1-1./nutau, "spline”);

% [alw cw xiw]

%  x_rw=-xiw-icdf("wbl*®,1_/nutau,alw,cw);

%  Figure

% plot(tau,x_shgam,tau,x _shgam2,tau,x _rw,":%)

% xlabel("Average return period (years)")

% ylabel (*Wind speed (mph)*)

%  title("Gamma~solid line; Reverse Weibull~dotted line%)
e
% Pareto. Options 1, 2, and 3

[cdf_nd,xq_nd, loc,upc] = ecdf(x_parl_mc);

x_parl=interpl(cdf _nd,xq_nd,1-1./nutau, "spline®);

[cdf_nd,xq_nd, loc,upc] = ecdf(x_par2_mc);
X_par2=interpl(cdf_nd,xq_nd,1-1./nutau, “spline”);

[cdf nd,xq_nd,loc,upc] = ecdf(x_par3_mc);
x_par3=interpl(cdf_nd,xq_nd,1-1./nutau, “spline”);

%if k_paretol==0,

% X_parl=a_pareto-al_paretol*log(1l./nutau);

%else,

% X_parl=a_ pareto+al paretol*(1-(1./nutau) .k _paretol)/k paretol;
%end,

%if k_pareto2==0,

% X_par2=a_pareto-al_pareto2*log(1./nutau);

%else,

% X_par2=a_pareto+al pareto2*(1-(1./nutau) .~k _pareto2)/k pareto2;
%end,

%if k_pareto3==0,

% X_par3=a_pareto-al_pareto3*log(1./nutau);

%else,

% X_par3=a_pareto+al pareto3*(1-(1./nutau) .k _pareto3)/k pareto3;
%end,

%
%  PLOT WIND SPEEDS WITH RETURN PERIODS OF [50,1000] years
% DELIVERED BY SHIFTED GAMMA (x_shgam, x-shgam2),

%  REVERSE WIBULL (x_rw), and PARETO (x_pareto) MODELS

% x_emp = ESTIMATE BASED ON DATA ONLY

figure

plot(tau,x_gumbel,”:",tau,x_rw, " --",tau,x_par3,tau,x_emp,"-.")

xlabel ("Average return period (years)"®)

ylabel ("Wind speed (mph)*)

title("Gumbel (dotted); Reverse Weibull(dashed); Pareto-DEHAAN (solid);
Empirical (dashdot) ")

figure
plot(tau,x_shgaml, 0o",tau,x_parl,"--",tau,x_par2,":",tau,x_par3,tau,x_emp,"-.")
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xlabel ("Average return period (years)"®)

ylabel ("Wind speed (mph)*)

title("Gammal(o); Reverse Weibull(dashdot); Paretol;2;3(dashed;dotted;solid);
Empirical (dashdot) ")

X_rws_mc=-xiw-icdf("wbl~" ,uu,alw,cws);

[cdf_nd,xg_nd, loc,upc] = ecdf(x_rws_mc);
x_rws=interpl(cdf_nd,xq_nd,1-1./nutau, “spline®);

figure

plot(tau,x_rw,"--",tau,x_rws,tau,x_emp,"-.")

xlabel ("Average return period (years)®)

ylabel ("Wind speed (mph)*®)

title("Reverse Weibull: estimated(dashed) & imposed(solid) tail parameter;
Empirical (dashdot) ")

%
%
[thurr,x_gumbel_mc,x_shgl mc,x _shg2 mc,x_rw_mc,x _parl mc,x _par2_mc,X_par3_mc]=hurr_
% nd_mc(.5,30,1000,cws,a_pareto,10000,123);
% a_pareto = 30; 40; 50;
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