US DOE's Carbon Sequestration Program

New Initiatives for U.S. Climate Change

Geological Sequestration

North American Coalbed Methne Forum

Charles W. Byrer National Energy Technology Laboratory

Sequestration Sinks for CO₂ Emissions Geological Sinks 1111 **Unminable Coal Seams** Forestation Enhanced **Natural** CO Sinks **Emissions Separation** Depleted Oil / Gas Wells; and Capture Saline Reservoirs Enhanced Photosynthesis; **Biomimetics** Novel Concept **Ocean Storage**

CO₂ Sequestration in Geologic Formations

- Related industrial experience
- Potential capacity ?
- Beneficial use of CO₂
- Natural analogues for sequestration
- Safety and cost analysis
- Performance assessment and prediction
- Monitoring

Range of Estimates for CO₂ Sequestration in U.S. Geologic Formations

Geologic Formation	Capacity Estimate (GtC)	Source
Deep saline reservoirs	1-130	Bergman and Winter 1995
Natural gas reservoirs in the United States	25 ^a 10 ^b	R.C. Burruss 1977
Active gas fields in the United States	0.3 / year ^c	Baes et al. 1980
Enhanced coal-bed methane production in the United States	10	Stevens, Kuuskraa, and Spector 1998

- a. Assuming all gas capacity in the United States is used for sequestration
- b. Assuming cumulative production of natural gas is replaced by CO₂
- c. Assuming that produced natural gas is replaced by CO₂ at the original reservoir pressure

Sequestration in Geologic Formations Builds on a Strong Industry Experience Base

- Active and depleted oil and gas reservoirs
- Deep brine formations (saline reservoirs)
- Deep coal seams and coalbed methane formations
- Devonian shale and other formations

What the Gas Industry Knows Now

- Dynamic flow properties of oil, gas, and coal formations
- Storage capacity of oil and gas formations
- Monitoring technologies for pressure, volume, water saturation
- Fairly complete geologic characterization of formations

Drivers for Geologic Sequestration R&D

- Monitoring developing reliable and costeffective systems for monitoring / tracking CO₂ in subsurface
- Stability assessing and ensuring long-term stability of sequestered CO₂ (>100 years)
- Cost- reducing the cost and energy requirements of CO₂ sequestration in geologic formations
- Public perception gaining public acceptance for geologic sequestration of CO₂

Ongoing Natural Gas Storage and Natural CO₂ Analogs in Geologic Formations

- Provides experience and demonstrates the feasibility of the geologic trapping mechanisms for use in sequestering CO₂ emissions
- Reservoir *Examples:*
 - Mt. Simon Sandstone reservoir
 - Natural CO₂ reservoirs in the western and gulf coast regions of U.S.

CO₂ Sequestration in Geological Formations Can Have Auxiliary Benefits

- Injection of CO₂ into oil reservoirs can recover residual oil by two primary mechanisms:
 - CO₂ displaces oil and brine
 - CO₂ dissolves in oil and reduces viscosity and swelling of oil
- Injection of CO₂ into coalbeds could enhance coalbed methane (CBM) production:
 - Pilot program of CO₂-assisted CBM in San Juan Basin has been underway since 1996:
 - Injects 4 million cubic feet / day of CO_2 in nine injection wells
 - Preliminary results: CBM recovery could be boosted to 75-90%
 - Over 2.5 Bcf of CO₂ injected CO₂ breakthrough very slight

Geologic Sequestration *Coordination of Efforts with a Strategy*

- DOE facilitated a 9-month roadmapping exercise focused on Carbon Sequestration R&D
- Collaborating on-going R & D strategy and priority efforts with stakeholders (industry, government agencies, academia, and environmental organizations (NGOs)
- DOE-NETL is the lead National Laboratory for geologic CO₂ sequestration

Geological Sequestration FY 2002 Participants and Activities

- Oklahoma State Penn State
- Univ. Texas -Bureau of Economic Geology
- Battelle Columbus
- Lawrence Berkeley National Lab
 - Lawrence Livermore N.L.
 - Oak Ridge N.L.
 - ARC, academia partners
 - Industry partners

• ORNL -

- Adsorption assessments of CO_2 , N_2 , and CH_4 on targeted coal samples
- Coal characterization of coal samples
- Assessment of characteristics of saline reservoirs in U.S.
- Geochemical Assessment of Mt. Simon Reservoir: Lab, modeling & economic effort
- Multiple R&D areas with industry: EOR, ECBM, and saline reservoirs (Reservoir modeling and monitoring)
- Measuring kinetics, equilibrium densities, and sorption relations for CO₂ -CH modeling validation

Geological Sequestration: FY 2002 Participants and Activities (Cont'd)

• Texas Tech –	CO ₂ injectivity and capacity studies / modeling
• Ala. Geological Survey –	Geologic screening for coalbeds in Alabama
• ARI –	Natural CO ₂ Analogs for Geologic CO ₂ Sequestration
 Sandia National Lab ⁻ 	Field demo for EOR-CO ₂ monitoring/storage; Los Alamos and Industry partner
• ARI/BP –	Field Demonstration: Enhanced coalbed methane recovery - CO ₂ sequestration
• CONSOL -	CO ₂ -CBM field demo associated with mining operations
• Battelle - AEP [–]	Pilot field demonstration in Mt. Simon saline reservoir
• UT - BEG	Pilot field demonstration of CO ₂ into Frio Formation

CO ₂ Sequestration in R&D Priorities				
2000-2005	2005-2010	2010-2015		
Understand Adsorption/ Desorption Processes	Develop Modeling Tools	Obtain Full-Scale Demo Cost & Performance Data		
Assess Porposity/ Permeability & Expansion/ Contraction Effects	Assess Flue Gas-Coal Interactions	Develop Low-Permeability & Deep Formation Injection Technologies		
Increased Gas Production Pilot Test	Flue Gas Injection Pilot Tests	Evaluate Water-Saturated versus Dewatered CO ₂ Injections		
Develop Reservoir Screening Criteria	Test Drilling Technologies versus Injection/Production Dynamics	Test/Monitor Long-Term CO₂ Sequestration on Various Coal Seams		
Develop Injection Engineering & Design Techniques	Develop Methods for Monitoring CO ₂ Migration			
Understand Seismic Wave Propagation Responses	Understand Microorganism-CO ₂ -Matrix Interactions			

Summary

- Storage / disposal of fluids in deep formations is a widely accepted industry practice
- There is enormous potential capacity on a regional basis for CO₂ storage in coal deposits
- The key issues are local capacity, long-term fate, engineering, cost, safety, public acceptance, and industry's level of interest in concept
- These issues are presently being explored using computer simulations and laboratory experiments
 - then validate with pilot-scale demonstrations

