CO₂ Mineral Sequestration Studies in US

by

Philip Goldberg and Robert Romanosky

National Energy Technology Laboratory, Pittsburgh, PA, USA

and

Zhong-Ying Chen

Science Applications International Corporation, McLean, VA, USA

at

Fifth International Conference on Greenhouse Gas Control Technologies

Cairns Convention Center, Australia

August 13 - 16, 2000

What is Mineral Carbonation

 Reaction of CO₂ with Mg or Ca containing minerals to form carbonates

Lowest energy state of carbon is a carbonate

and not CO₂

 Occurs naturally in nature as weathering of rock

- Already proven on large scale
 - Carbonate formation linked to formation of the early atmosphere

Global Carbonation Reaction Paths

Generalized reaction:

• $(Mg, Ca)_xSi_yO_{x+2y+z}H_{2z} + xCO_2 \rightarrow x(Mg,Ca)CO_3 + ySiO_2 + zH_2O$

Serpentine:

- $Mg_3Si_2O_5(OH)_4 + 3CO_2 \rightarrow 3MgCO_3 + 2SiO_2 + 2H_2O$
- Exothermic reaction: + 64 kJ/mole
- One ton to dispose of 1/2 ton of CO2

Forsterite:

- $Mg_2SiO_4 + 2CO_2 \rightarrow 2MgCO_3 + SiO_2$
- Exothermic reaction: + 95 kJ/mole
- One ton to dispose of 2/3 ton of CO2

Structural model of Serpentine (Lizardite)

Advantages of Mineral Carbonation

- Long term stability unarguable
 - End product thermodynamically favored
 - No legacy issues
 - Naturally occurring and benign products
- Ultramafic rocks are ubiquitous
- Potential to become economically viable
 - Process is exothermic
 - Potential to produce value-added byproducts
 - Utilization/neutralization of wastes
- Compatible with advanced fossil fuel power generation and coproduction concepts
 - Process configuration and siting flexibility

Carbonation Releases Energy

CO₂ Storage Options

 Many potential sequestration options available with large storage capacities

Worldwide CO ₂ Storage Capacity ¹					
Storage Option	Capacity (billions of ton) .				
Deep Ocean	5,100 - 100,000				
Mineral Sequestration	>>1,000				
Deep Aquifers	320 - 10,000				
Depleted Oil Wells	500 - 1,000				
Depleted Gas Reservoirs	150 - 700				
Coal Seams	150 - ???				
(Fossil Fuel Reserves	3,500)				

¹Based on IEA/GHG & EIA/IEO 2000 ² Est. of US capacity by Goff,et al, 2000

Vast Raw Material Deposits Worldwide

• Vast capacity - readily accessible deposits of ultramafic rocks exceeding even the most optimistic estimate of coal reserves

Mineral Sequestration Concept

Courtesy of Albany Research Center

Major Barriers and Challenges

- Naturally occurring carbonation is a slow process, finding fast reaction routes is the key
- Mining, milling and related environmental issues must be addressed
- Although the carbonation reaction is exothermic, heat recovery may be challenging at low temperature levels

Mineral Carbonation Program Goals

- Generate data to support process development
 - Conduct laboratory- and pilot-scale tests, examining:
 - Reaction pathways, including use of catalysts
 - Alternative feedstocks, e.g., minerals and residues
 - Consider environmental issues
- Operate continuous, integrated small-scale process unit to support design

Partnerships

In order to effectively develop Mineral Sequestration, a multi-laboratory Working Group was formed in the Summer of 1998, participants include:

- Albany Research Center
- Arizona State University
- Los Alamos National Laboratory
- National Energy Technology Laboratory

Status of Research Effort

- Preliminary evaluation of reaction paths
 - Aqueous HCL process employing mineral-derived
 Mg(OH)₂ + H₂O (found expensive)
 - MgCl₂ Molten Salt process (found unreactive)
 - Direct Carbonation using supercritical CO₂ and water at elevated pressures and temperatures (found promising)
- Exploratory tests of direct carbonation run using mineral pretreatment and additives
- Initial mining survey completed
- Preliminary life cycle analysis, sensitivity study and economic assessment initiated

Reaction Rate Increased by 10 Fold

Improvement of reaction rate is achieved by

- Pre-treat serpentine to remove chemically-bonded water and create open structure (600-650 C)
- Add sodium bicarbonate and NaCl solution as additives
- Sodium bicarbonate increases
 HCO₃⁻ concentration
- NaCl may help release Mg ions from silicate
- 78% conversion can be achieved in 30 minutes at 185 bar, and 155 °C

Some Recent Mineral Carbonation Results

Min. Type	H.T	Temp. (C)	Pressure (Atm)	Time (Min)	Conv. (%)
O-40		185	115	360	84
O-112		155	150	60	33
S-83	CO_2	155	150	60	82
S-84	CO_2	155	185	30	78
S-99 ¹	CO_2	155	150	60	79
S-100	¹ Air	155	150	60	79

¹ Tests using nonmagnetic serpentine fraction,

This is why Bill is smiling

O - olivine, S-serpentine, H.T.-heat treatment gas

Issues Related to Mining and Milling Evaluated

- Serpentine mines common
 - road base & asphalt
 - additional capacity would be required
- Scale of mining operations consistent with requirements
 - 1000 tpd avg. (450 MWe, 35%, 24hr)
- Mining costs not a barrier
 - \$3 \$5/ton

Analyzing Molecular Changes in Carbonation Reactions

- In-situ TEM pictures at the Arizona State Univ. reveal that dehydroxylation is intimately associated with carbonation of Mg(OH)₂
- Study is planned to evaluate the structural changes of serpentine
- Use of synchrotron radiation source to monitor real-time structural changes of serpentine/olivine to carbonates in solution is planned

Near-Term Activities

- Improve direct carbonation process
 - Continue autoclave tests, modifying solution chemistry, examine promoters and catalysts
 - Increase support for fundamental lab. studies to identify mechanisms and opportunities
 - Look for tie-ins with geologic sequestration
- Identify and test alternative high volume residues feedstocks such as flyash
- Initiate LCA/economic feasibility studies examining costs and potential environmental impacts
- Increase outreach to industry and the scientific community

Continue Improving Carbonation Reaction Rate

- Examine the roles of additives in helping dissolve CO₂ in solution, and release Mg ions from the mineral crystal structure
- Identify and test new additives and pretreatment methods
- Planned continuous examination of crystal structure changes in reaction cell using synchrotron radiation source

Test Fly Ash and Other Waste Streams

- Some fly ash has high CaO and MgO concentration
- Less processing may be needed
 - Mining minimal
 - Fine particle sizes
- Potential to react with CO₂ at lower pressure than Mg silicates
- Likely to be implemented earlier than olivine/serpentine process if economics are more favorable

Relation with Geological Sequestration

- A thorough understanding of the reaction chemistry of CO₂, water, and minerals under elevated pressure is necessary to understand the long-term behavior of CO₂ injection in geologic formations
- The knowledge gained in this program may help design systems employing direct injection of CO₂ into underground formations to form carbonates

Program Schedule - I

- Pre 2000 Identify most promising mineral carbonation process and focus on process optimization
- 2000 Bring additional autoclave facilities into operation and test coal ash and other residues
- 2001 Initiate advanced carbonation reaction, and by-products studies. Begin system design and integration effort

Program Schedule - II

- 2002 Complete design of flexible pilotscale carbonation and by-product recovery facilities
- 2003 Initiate small pilot-scale testing to produce realistic engineering design data.
- 2005 Complete technical and economic assessment and construct next-generation integrated pilot plant at relevant scale

