5'th INTERNATIONAL CO₂ CAPTURE TEST NETWORK

Capture And Separation Research In The Carbon Sequestration Science Focus Area

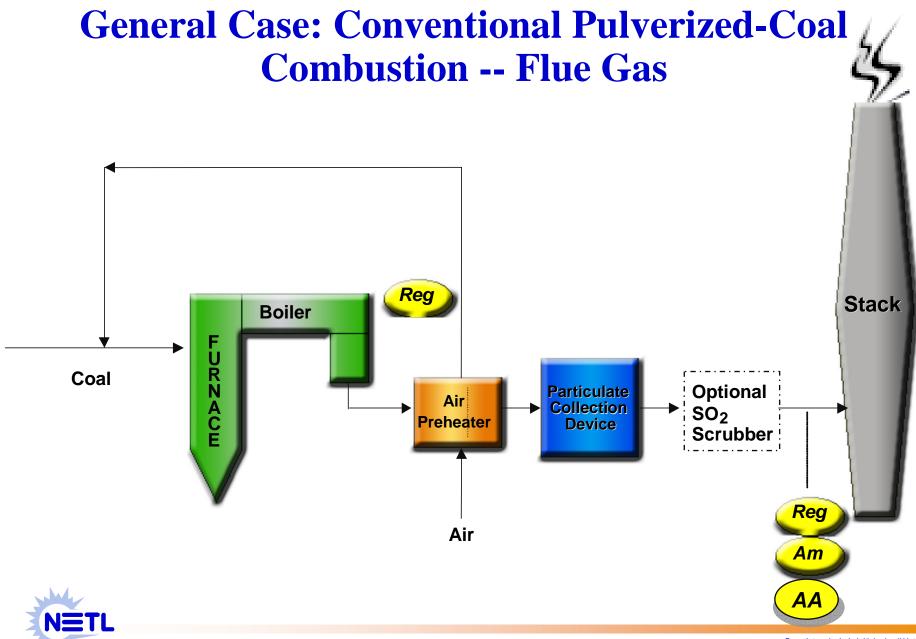
Curt M. White Focus Area Leader Carbon Sequestration Science National Energy Technology Laboratory

June 3, 2003 CMU

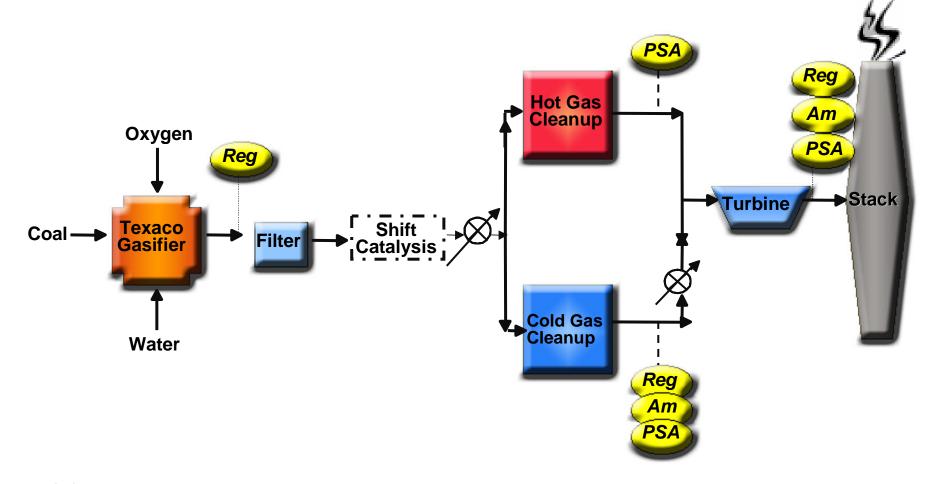
Novel CO₂ Capture Technologies For Power Generation Point Sources

Scrubbing with Regenerable Sorbents

Amine-Enriched Sorbents


Sorbent Development for Pressure Swing/

Aqua Ammonia Process



Reg

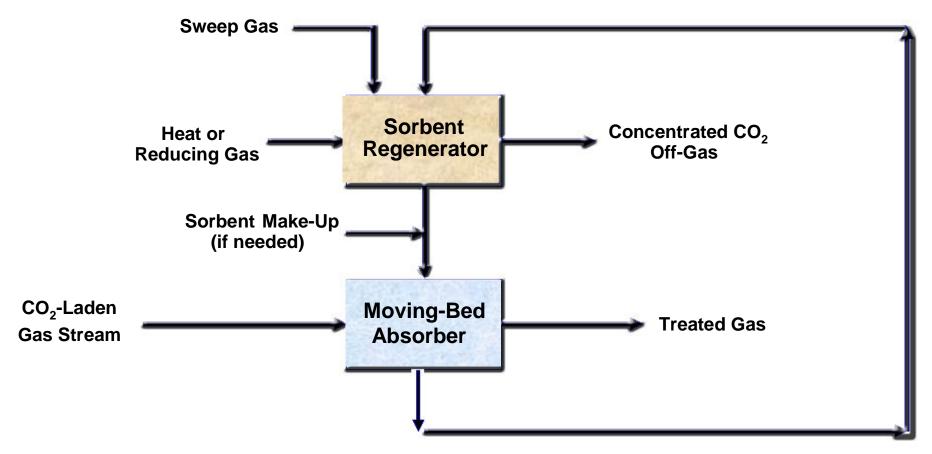
General Case: Advanced Gasification/ IGCC -- Fuel (Synthesis) Gas

General Capture Issues Related To Carbon Sequestration

- Impact of other pollutants on capture scheme (multi-pollutant versus a la carte)
- Composition of final capture product and impact on capture/sequestration interface (pure CO₂, content of other major/minor components)
- Quantity of CO₂ captured

CO₂ Scrubbing With Regenerable Sorbents

Technical Challenge


Provide experimental information with dry, regenerable sorbent processes for CO₂ removal from gas streams.

Technical Approach

- Thermodynamic analysis used to identify potential sorbents for CO₂ capture.
- Sorbents prepared using supports impregnated with alkali- or alkaline-earth metals.
- Lab-scale microbalance (TGA) study of absorption and regeneration chemistry of sorbents.
- Bench-scale packed-bed reactor study of absorption and regeneration chemistry of sorbents.

Conceptual Carbon Dioxide Removal Process

Spent Sorbent (carbonate/bicarbonate)

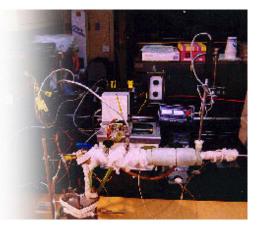
Regenerable CO₂ Capture Process Chemistry

Potassium Carbonate (Low Temperature Application)

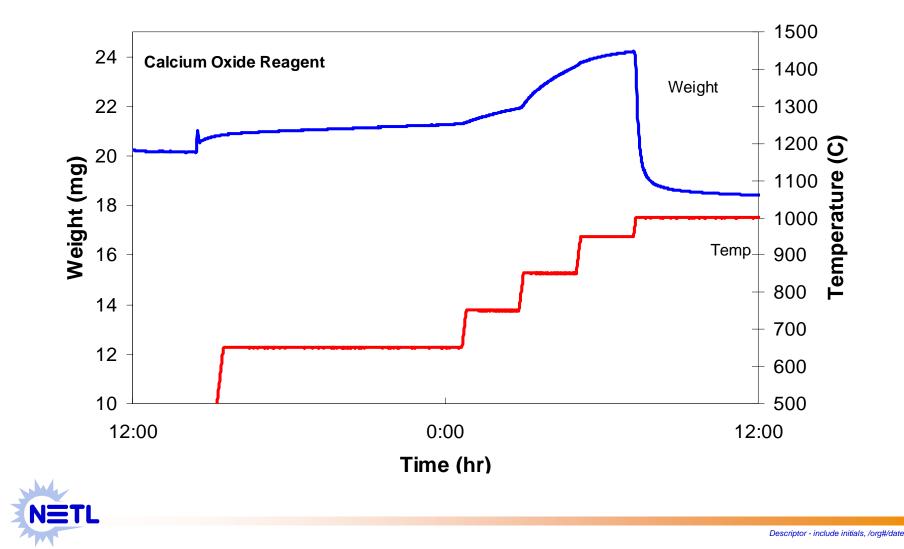
<u>CO₂</u> Removal: $K_2CO_3 + CO_2 + H_2O \rightarrow 2KHCO_3$

<u>Regeneration</u>: 2KHCO₃ + Heat --> K₂CO₃ + CO₂ + H₂O

Calcium Oxide



(High Temperature Application)


<u>CO₂ Removal:</u> CaO + CO₂ \rightarrow CaCO₃

<u>Regeneration:</u> $CaCO_3 + Heat --> CaO + CO_2$

Typical TGA Experiment (Calcium oxide reagent @ 850C absorption)

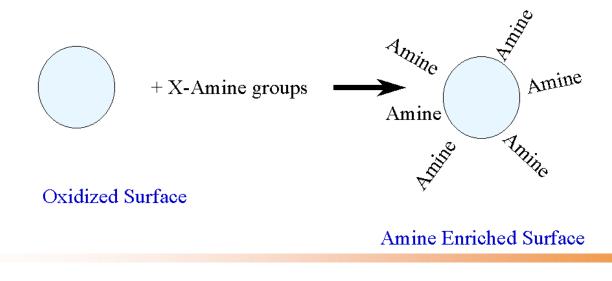
Novel Amine-Enriched Sorbents for CO₂ Capture

Objective

-To develop novel solid sorbents for the capture of CO₂ from flue gas streams

Technical Challenges

- -To reduce the energy intensity of current capture processes (e.g., MEA process)
- -To improve the capture capacity of sorbents
- –To produce affordable solid sorbents for the capture of CO_2
- -To improve the mass and heat transfer parameters
- -To increase the available contact surface
- -To reduce the corrosion problems


Technical Approach

- A typical amine absorption process requires a large amount of liquid to capture a small quantity of gas. Gas/liquid contact surface can be increased by implanting the amine groups on a high surface area material. For example, activated carbon (2.3 g/cm³ with 400 m²/g) has a contact area of 9.19x10⁸ m²/m³, whereas 1/4-inch ceramic intalox saddles have a contact area of 981 m²/m³.
- Chemically treat the high surface area materials with various amine compounds.
- Test the modified materials for CO₂ capture.

Current Solid Treatment

- NETL's chemical alteration of the solid substrate is a low cost technique.
- Performed in aqueous media with simple ionic reactions for the incorporation of the amine into solid matrix.
- Large selection of solid substrates, including waste fly ash, and large selection of amine based compounds.
- Resulting treatment produces a combined CO₂ capture coupling chemical absorption with physical adsorption.

Amine Sorbent Performance in CO₂/He/H₂O

Feed Materials	CO ₂ Capture (umol/g) feed / treated	% CO ₂ Capacity Enhancement
Treated NETL Fly Ash	24.4 / 174.6	615.5
Calgon Carbon (coal based)	8.0 / 48.7	608.2
Silica Gel	4.9 / 31.5	531.2
Sud Chemie Molecular Sieve 13X	13.6 / 15.8	16.1
Sud Chemie Carbon	92.0 / 54.4	(40.8)
Calgon Carbon (coconut based)	43.9 / 25.6	(41.6)

Sorbent Development for CO₂ Separation and Removal: *Pressure Swing and Temperature Swing Adsorption*

Objective

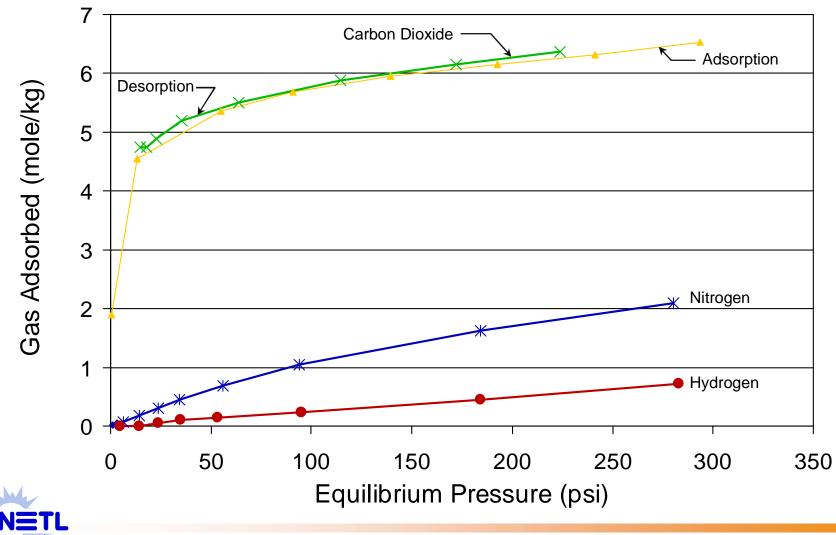
Development of regenerable sorbents for CO₂ adsorption in PSA/TSA processes in collaboration with industrial partners.

Technical Challenges

To apply the technique to both high and low temperature and pressure conditions.

To reduce the energy penalties as defined in earlier PSA studies.

To identify/improve the sorbent adsorption capacity, adsorption/desorption rate, durability, selectivity, and sensitivity to possible contaminants.



Technical Approach

- Utilize prior experience in sorbent development and the expertise from the industrial partners to:
 - Determine equilibrium adsorption/desorption capacity from volumetric adsorption.
 - -Compare the competitive adsorption from gas mixtures using laboratory scale reactors.
- Utilize molecular simulations to determine the impact of fundamental parameters, such as pore structure and chemical/physical interactions, on selective adsorption of CO₂.
- Construct models to optimize the process over a wide range of operating pressures.

Sorption-Desorption Isotherms of Molecular Sieve 13X

Comparison of CO₂ Capture Capacities of Different Sorbents

Sorbents	Moles of CO ₂ /kg at 1 atm	Moles of CO ₂ /kg at 20 atm
MDEA Solution-Commercial	0.68	NA
Selexol Solvent-Commercia	I NA	0.16
Synthetic Zeolite Z10-08	2.5 - 3	7 - 8
Synthetic Zeolite Z10-10	2.5 - 3	6 - 8
Natural Zeolites		
Na Alumino Silicate 1	1 - 1.5	4 - 5
Na Alumino Silicate 2	0.5 - 1	2 - 2.5
Ca K Alumino Silicate	0.1 - 0.2	1 - 1.5
VETL Sorbent	1.0-1.2	2.0-2.5

AQUA AMMONIA PROCESS TECHNICAL CHALLENGE

- There is a paucity of experimentally produced data for low temperature aqueous ammonia scrubbing of CO₂ from flue gas. Regeneration information is non-existent.
- Influence of SO₂ and NO₂ components on the ammonia/CO₂ scrubbing is unknown
- The impact of the experimental information on the proposed multi-component control process needs to be defined.

TECHNICAL APPROACH

- Parametric study in a semi-batch reactor system.
 - -Absorption
 - Temperature
 - Ammonia concentration
 - CO₂, NO_x, SO₂ by themselves and collectively
 - -Regeneration
- Incorporate information into a mathematical model to be used for sensitivity studies and eventual scale-up of system.

- $(NH_4)_2CO_3 + CO_2 + H_2O \longrightarrow 2 NH_4HCO_3$
- $2 \text{ NH}_3 + \text{H}_2\text{O} + \text{CO}_2 \longrightarrow (\text{NH}_4)_2\text{CO}_3$
- $NH_3 + H_2O + CO_2 \longrightarrow NH_4HCO_3$
- $NH_2COONH_4 + H_2O \longrightarrow NH_4HCO_3 + NH_3$
- $NH_2COONH_4 + CO_2 + 2 H_2O \longrightarrow 2 NH_4HCO_3$
- $2 \text{ NH}_3 + \text{CO}_2 \longrightarrow \text{NH}_2\text{COONH}_4$

AQUA AMMONIA PROCESS CHEMISTRY (absorption)

AQUA AMMONIA PROCESS CHEMISTRY (regeneration)

- 2 $NH_4HCO_3(aq) \rightarrow (NH_4)_2CO_3(aq) + CO_2(g) + H_2O$
- $NH_4HCO_3(aq) \longrightarrow NH_3(aq) + CO_2(g) + H_2O$
- $(NH_4)_2CO_3(aq) \longrightarrow 2 NH_3(aq) + CO_2(g) + H_2O$

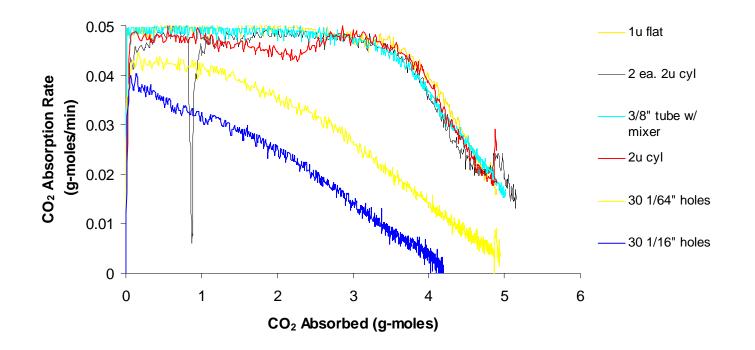
ADVANTAGES OF PROCESS

- Multi-component control of acid gases produced during coal combustion.
- Novel combination of oxidation step with ammonia wet scrubbing.
- Process is regenerable with respect to CO₂ scrubbing.
- Fabrication of a saleable commodity (fertilizer) out of waste materials (acid gases). Serendipitous to the process, the fertilizer may have an impact on terrestrial sequestration.
- Production of a pure CO₂ stream that can further be processed or sequestered.

• Can meet zero pollutant emissions.


ADVANTAGES OF PROCESS

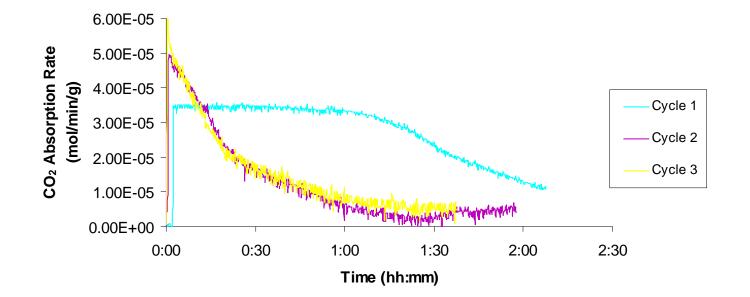
- As compared to MEA scrubbing, the ammonia process :
 - -has a higher loading capacity
 - will not degrade in the presence of other flue gas components
 - -has a lower parasitic power loss
 - -will not corrode equipment



PARAMETRIC SCAN IN REACTOR SYSTEM

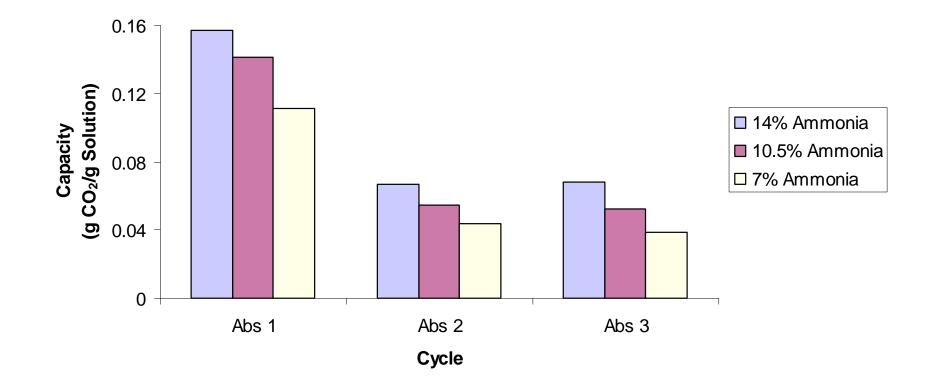
- Ammonia concentration: 7, 14, 21 wt%
- Temperature: 60, 80, 100 °F
- Reactor/solution volume: 3.0/1.5 liter
- Gas flow: 7500 sccm
- CO₂ concentration: 15 vol%
- Pressure: ambient

Effect of Sparger Types (CO₂ absorbed)



IMPACT OF TEMPERATURE

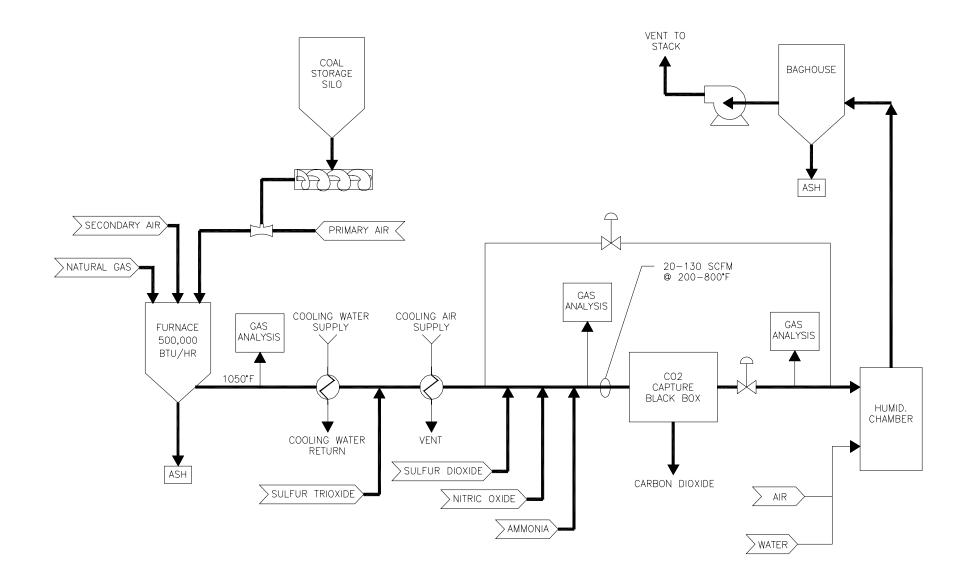
Temperature, ^o F	Initial Rate, mole- CO ₂ /min	Initial Conversion, mole %	CO ₂ Loading, kg-CO ₂ /kg NH ₃
60	0.040	80.1	1.2
60 80 100	.048	96.1	1.1
100	.043	86.1	1.0

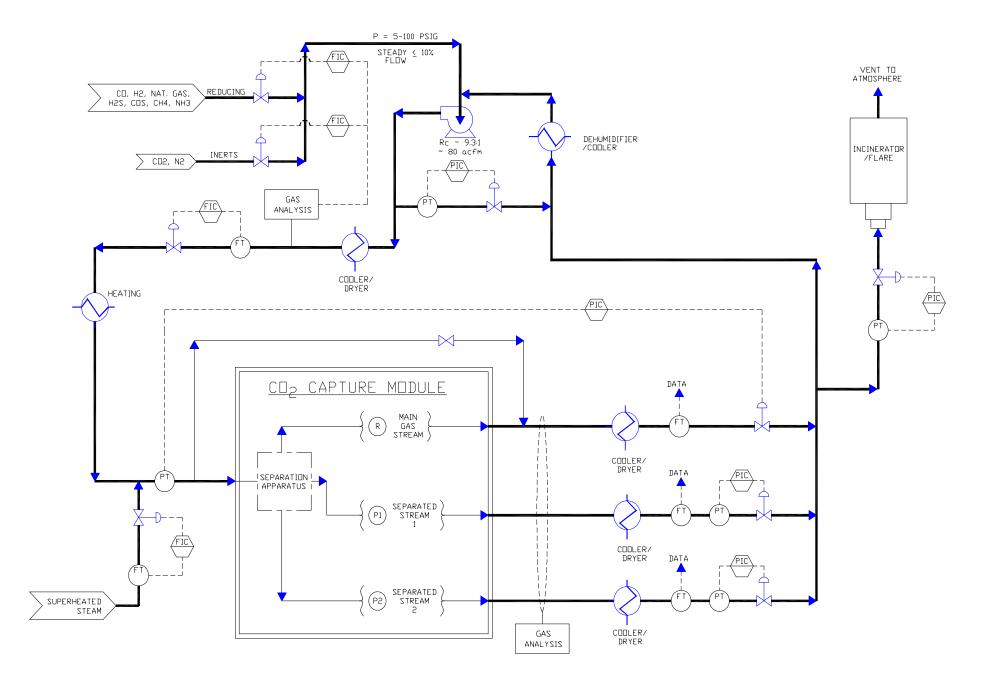

14% Ammonia Concentration

CO₂ Absorption Rate with 14% NH₃ Solution

Effect of Cycling on CO₂ Absorption Capacity

SUMMARY


- Reaction rate information obtained on 7 %, 14%, and 21% ammonia solutions at 60°F, 80°F, and 100°F.
- Thermal regeneration of ammonium bicarbonate and ammonium carbonate solutions demonstrated ability to release up to 60% of carbon in solutions.
- Regeneration energy reductions of >60% over current MEA technology were determined.
- Cycling tests determined the effective loading capacities of ammonia solutions after three absorption/regeneration cycles.


MCCF PAST HISTORY

- Timing appropriate in programmatic scheme of carbon sequestration
- Internal assessment
 - NETL experienced with flue gas and fuel gas cleanup
 - Facility existed in part
 - Air toxics sampling available
- In-house projects screened to determine process parameter ranges
- Ad hoc committee formed of personnel familiar with DOEsponsored research and other outside capture development
- PFDs developed with "black box" technology for either flue gas or fuel gas applications

<u>CO₂ Capture Facility – Flue Gas</u>

