DOE Office of Fossil Energy Carbon Sequestration R&D Portfolio

Third Annual Conference on Carbon Sequestration

May 6, 2004 Rita A. Bajura, Director

National Energy Technology Laboratory

Office of Fossil Energy

Presentation Outline

- Project portfolio
- Future opportunities
- Observations

Sequestration: A Dynamic Program

- Diverse project portfolio
 - -\$140M total value
 - -> 60 projects
 - -BP & IEA consortia
- Strong support
 - -Growing DOE budget
 - -36% industry cost share

Sequestration Projects Span Nation

Sequestration Program Goals

By 2012

- Provide commercially ready options that meet cost goals
- Establish measurement, monitoring & verification protocols
- Contribute to Administration's goal of reducing GHG intensity by 18%

Seven Regional Partnerships Network of Partnerships to Determine Technologies, **Regulations, Infrastructure Needs for Each Region**

FutureGen Sequestration & Hydrogen Research Plant

"... the United States will sponsor a \$1 billion, 10-year demonstration project to create the world's first coal-based, zero-emissions electricity and hydrogen power plant ... "

February 27, 2003

Carbon Sequestration Leadership Forum

International Climate Change Initiative

- Facilitate development of cost-effective technologies
- Promote technical, political, and regulatory environments to develop such technology

Charter Signing Ceremony, June 2003 Washington, D.C.

www.cslforum.org

Elements of Core R&D

Separation & Capture of CO₂

Issue

Demonstrated technology is costly

Pathways

- Pre-combustion capture
- Post-combustion capture
- Oxygen-fired combustion
 - Chemical looping
- Optimized engineering

CO₂ Hydrates Technology *Pre-Combustion Capture*

- Removes CO₂ from shifted synthesis gas by forming a hydrate slurry
- Produces a high pressure CO₂ stream
- Preliminary economics promising

CO₂ Hydrate Clathrate Structure

Participants: Nexant, SIMTECHE, LANL

SRS Darebury Laboratory (UK) Annual Report 1994-1995

Measurement, Monitoring & Verification

lssue

Proving CO₂ fate

Pathways

- Surface and subsurface CO₂ leak detection and mitigation tools
- Atmospheric detection systems
- CO₂ fate and transport studies
- Protocols for accounting and permanence

Digital Aerial Imagery to Estimate Carbon Stocks in Above-Ground Vegetation

Soil-Carbon Scanning System

- Rapid measurements of below ground carbon without disturbing soil
- Scan large areas
- Determine changes in soil-carbon with time

Components of Future Field Measurement System

Participant: BNL

Sequestration R&D

Issues

- Health, safety, and environmental risks
- Uncertain regulatory framework
- Site selection

Pathways

- Field experiments / demos
- Protocols for identifying amenable storage sites
- Capacity evaluation studies
- Underlying science

Frio Brine Field Sequestration Experiment

- Drill 5,000-foot well
- Inject 3,000 tons CO₂
- Extensively monitor
- Investigate safety, capacity, permanence

Participants:

- U. Texas Austin BEG
- Texas American Resources
- BP America
- Schlumberger
- Sandia

- LBNL
- LLNL
- ORNL

Non-CO₂ Greenhouse Gas Mitigation

Issue

• Methane a powerful GHG

Pathways

- Technologies to mitigate large fugitive releases
 - Coalbeds
 - Landfill gas
- Collaboration with EPA on bestpractice mitigation options

Yolo County Bioreactor Landfill

- Accelerated landfill biodegradation
- Methane recovered for power production or other use

Filling Bioreactor Landfill

Participants:

- Yolo County (CA)
- Solid Waste Assoc. of N.A.
- Inst. of Envir. Management
 U. of Delaware

Breakthrough Concepts

Issue

 Need revolutionary approaches to meet DOE cost goals

Pathways

- CO₂ conversion to benign, solid forms
- Advanced capture concepts
- Biogeochemical processes

CO₂ Mineralization

- CO₂ can react with minerals to form stable, solid carbonates
 - -In plant
 - –In-situ
 - -Remediation strategy

Atomic Surpentine Structure

Participants: Albany, ASU, LANL, SAIC

Broad Agency Announcement *Anticipate Issuing this Fiscal Year*

• Four areas of interest

- Direct capture technologies
- Indirect capture technologies
- Technologies for mitigating non-CO₂ GHG emissions
- Monitoring, verification, and risk assessment for carbon sequestration
- Anticipate \$1M FY 05 Federal funding
 - -20% minimum non-Federal cost share

Phase II of Regional Partnerships *Details Still Under Development!*

Tasks

Establish and implement

- -Measurement, monitoring & verification protocols
- -Accounting, regulatory & liability action plans
- Implement outreach mechanisms
- Perform proof-of-concept field tests for technology & infrastructure concepts

The Plans

- \$3-5 M/year for each of five regions
- 20% cost share requirement
- Open to all completing equivalent of Phase I

Not a technology development program!

Observation I

The Sequestration Program Is a Serious Effort

A Serious Effort . . .

- Representatives from industry, environmental community, labs, regulators, high-level government engaged
- International in scope
- Significant government and industry investment
- Multitude of projects underway
- Discussions on CO₂ credit trading, regulatory structure, liability

Observation II

Our Understanding of Sequestration Geology, Mechanisms, Capacity Is Improving

Brine Well Locations

Coalbed Methane Deposits

Seismic Potential

Large Potential Worldwide Storage Capacity

Observation III

Our Understanding of Cost of Sequestration Is Improving

Percent Increase in COE Due to CO₂ Capture *Greenfield Plants, Circa 2000*

IEA Greenhouse Gas R&D Programme summary of Canadian Clean Power Coalition (CCPC)

Observation IV

Increased Discussion of Inclusive Pathway to Emission Stabilization

Two Scenarios for U.S. GHG Emissions

NETL/ARI/Energetics 2004

Sequestration Enables Stabilization *Could Account For > 60% of "Gap" in 2050*

DOE/FE/NETL Analysis 2004

Professor Socolow's Stabilization "Wedges"

189489 05/06/04

Observation V

Improved Framing of Our Experience With Sequestration Analogues Could Facilitate Public Acceptance

Active U.S. Waste CO₂ EOR Projects

State	Plant Name(s)	Plant Type	CO ₂ Supply (MMcfd)	EOR Fields	Operator
Texas	Mitchell, Gray Ranch, Puckett, Terrell	Gas Processing	250	SCCROC Crossett	Pennzoil, Altura
Colorado	LaBarge	Gas Processing	150	Rangely	Chevron
Oklahoma	Endid	Fertilizer	35	Purdy	Occidental
Louisiana	Koch	Gas Processing	25	Paradise	Техасо
Total			460		

Barriers to Overcome In Implementation of CO2 Capture and Storage (1) Storage in Disused Oil and Gas Fields. IEA Report PH3/22, February 2000

Kinder Morgan CO₂ Pipeline System

- Cortez, Central Basin, Canyon Reef Carriers Pipelines
- Similar in size to pipeline between Denmark / North Sea
- Compressor stations pump stations, pressure reducing stations, meter stations, two control centers
- Operations began in 1972

Observation VI

We've Come a Long Way!

Themes at Annual Review Meetings

1998-2001	Program justification		
2002	Problem identification, Round 1		
2003	Project initiation		
2004	Project results Problem identification, Round 2		
2005	Information synthesis Outreach status		

Successful Technologies To Sequester Carbon Will

Be effective and cost-competitive

Provide stable long-term storage

Be environmentally benign

Be acceptable to the public

