Carbon Sequestration

08/2008

U.S. DEPARTMENT OF ENERGY OFFICE OF FOSSIL ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY

R & D

CONTACTS

David Luebke

Project Leader National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4118 david.luebke@netl.doe.gov

Madhava Syamlal

Focus Area Leader Computational and Basic Sciences National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4685 madhava.syamlal@netl.doe.gov

Sean Plasynski

Sequestration Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4867 sean.plasynski@netl.doe.gov

MOLECULAR DESIGN OF CO₂ LIGANDS IONIC LIQUIDS AND POLY (IONIC LIQUIDS)

Justification and Background

The potential for various ionic liquids (ILs) and poly(ionic liquids) (PILs) to capture CO_2 is being investigated. Papers published by Radosz and co-workers indicate that PILs can have very larger CO_2 uptake compared with ILs. One of their most surprising results was that four of the IL monomers they tested had essentially zero uptake capacity for CO_2 , whereas when polymerized, the corresponding PILs showed very large uptake at a temperature of 22 °C and a pressure of about 0.8 bar. Molecular modeling combined with COSMOtherm is being used to gain insights into these surprising findings

Approach

Turbomole ab initio calculations have been used to predict the σ profiles for the following PIL/IL pairs: PVBIH/VBIH, PVBIT/VBIT, PBIMT/BIMT, PVBTMA/VBTMA, PMATMA/MATMA, PVBBI/VBBI and on the [bmim][BF4] and other ionic liquids. In cooperation with an industrial researcher, COSMOtherm calculations using the σ profiles have been used to estimate the Henry's law constants and solubilities for CO₂ in the ILs and PILs at the experimental condition of 22 °C and 0.8 bar. Results from these calculations are summarized in Table 1. Good agreement for some of the PILs and ILs tested have been found but there are discrepancies for several systems. Therefore an experimental program has been initiated to confirm the computational results.

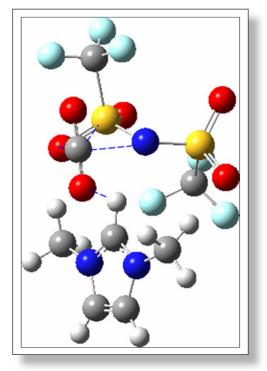
Table I. Experimental and calculated CO₂ solubilities for various poly(ionic liquid)s.

Poly(ionic liquid)s	Experiments	Calculations
PVBTMA+BF ₄	10.2	2.2
PMATMA+BF ₄	8.0	1.2
PVBIH+PF ₆	2.7	3.3
PVBBI+Tf ₂ N	2.2	3.1
VBBI+Tf ₂ N	N/A	3.0
PVBIT+BF ₄	2.2	2.7
PBIMT+BF₄	1.8	1.9
BIMT+BF ₄	1.3	1.8
bmim+BF ₄	1.3	1.7
VBIH+PF ₆	0.0	3.1
VBIT+BF₄	0.0	2.5
VBTMA+BF ₄	0.0	0.7
MATMA+BF,	0.0	1.0

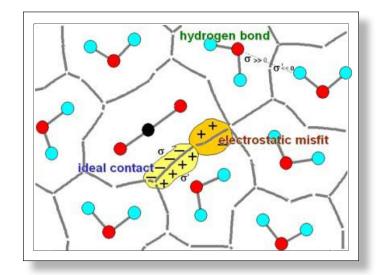
PARTNER

University of Pittsburgh

ADDRESS


National Energy	•
Technology Laboratory	•
1450 Queen Avenue SW	•
Albany, OR 97321-2198	•
541-967-5892	•
2175 University Avenue South	•
Suite 201	
Fairbanks, AK 99709	•
907-452-2559	•
	•
3610 Collins Ferry Road	•
P.O. Box 880	٠
Morgantown, WV 26507-0880	•
304-285-4764	•
626 Cochrans Mill Road	•
P.O. Box 10940	•
Pittsburgh, PA 15236-0940	•
412-386-4687	•
	•
One West Third Street, Suite 1400	•
Tulsa, OK 74103-3519	•
918-699-2000	
	•
CUSTOMER SERVICE	•
I-800-553-768I	•
	•
WEBSITE	•
www.netl.doe.gov	
www.incti.doc.gov	•
	•
	•
	٠
	•
	•
	•

Project Goal


Develop ionic liquids or poly (ionic liquids) to be used as sorbents or membranes which will allow a decrease in the cost of carbon dioxide capture from coal-based power generation to such extent that 90 percent of the carbon dioxide produced may be captured, transported and sequestered at less than a 10 percent increase in the cost of the energy services.

Expected Benefits

Development of an ionic liquid/poly (ionic liquid) model capable of accurately predicting material properties will guide the application of these ionic liquid based materials to membrane and sorbent development for CO₂ capture.

CO, binding with the anion (Tf2N)

COSMO-RS is a theory that describes the interactions in a fluid as local contact interactions of molecular surfaces. The interaction energies are quantified by the values of the two screening charge densities σ and σ' which form a molecular contact.