

Interactive effects of dissolved zinc and orthophosphate on phytoplankton from Coeur d'Alene Lake, Idaho

By James S. Kuwabara, Brent R. Topping, Paul F. Woods, James L. Carter, and Stephen W. Hager

U.S. Department of Interior U.S. Geological Survey Scientific Investigations Report 2006-5091

Internet access at: http://pubs.usgs.gov/sir/2006/5091

Interactive effects of dissolved zinc and orthophosphate on phytoplankton from Coeur d'Alene Lake, Idaho

By James S. Kuwabara¹, Brent R. Topping², Paul F. Woods³, James L. Carter⁴, and Stephen W. Hager⁵

Prepared in cooperation with the Idaho Department of Environmental Quality

Scientific Investigations Report 2006-5091

U.S. Department of the Interior U.S. Geological Survey

- ¹ kuwabara@usgs.gov, U.S. Geological Survey, Menlo Park, CA
- ² <u>btopping@usgs.gov</u>, U.S. Geological Survey, Menlo Park, CA
- ³ <u>pfwoods@usgs.gov</u>, U.S. Geological Survey, Boise, ID
- ⁴ jlcarter@usgs.gov, U.S. Geological Survey, Menlo Park, CA
- ⁵ <u>swhager@usgs.gov</u>, U.S. Geological Survey, Menlo Park, CA

U.S. DEPARTMENT OF THE INTERIOR

P. Lynn Scarlett, Acting Secretary

U.S. GEOLOGICAL SURVEY

P. Patrick Leahy, Acting Director

U.S. Geological Survey, Reston, Virginia: 2006

For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225

For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

TABLE OF CONTENTS

Conversion Factors, Abbreviations and Acronyms	5
Executive Summary	6
Physical and Biological Characterizations	6
Chemical Characterizations	7
Potential Management Implications	
Background	9
Results and Discussion	
Physical Data	
Biological Data	
Chemical Data	
Study Design and Methods	
Physical Data	
Biological Parameters	
Chemical Parameters	
References Cited	
Acknowledgments	
Appendix 1: Comments on the Report Structure	
Appendix 2: List of Figures	
Appendix 3: List of Tables	

Conversion Factors, Abbreviations and Acronyms

Conversion Factors

Multiply	Ву	To obtain
foot (ft)	0.3048	meter
inch (in.)	2.54	centimeter
micromolar (µM)	molecular weight	micrograms per liter
micron (µm)	1,000,000	meter
mile (mi)	1.609	kilometer

Abbreviations and Acronyms

Abbreviations and Acronyms	Meaning
C5	Southern, main-channel, long-term monitoring site
CAEDYM	Computational Aquatic Ecosystem Dynamics Model
CDARI	Coeur d'Alene River inlet site
DCA	Detrended Correspondence Analysis
IDEQ	Idaho Department of Environmental Quality
MC-C	Main-channel sampling site near Carlin Bay
MC-R	Main-channel sampling site near Rockford Bay
MICA	Mica Bay sampling site
SJRI	St. Joe River/Chatcolet inlet site
USGS	U.S. Geological Survey

Interactive effects of dissolved zinc and orthophosphate on phytoplankton from Coeur d'Alene Lake, Idaho

By James S. Kuwabara, Brent R. Topping, Paul F. Woods, James L. Carter, and Stephen W. Hager

Executive Summary

Within the longitudinal chemical-concentration gradient in Coeur d'Alene Lake, generated by inputs from the St. Joe and Coeur d'Alene Rivers, two dominant algal species, *Chlorella minutissima and Asterionella formosa*, were isolated and cultured in chemically defined media to examine growth response to a range of dissolved orthophosphate concentrations and zinc-ion activities representative of the region within- and up-gradient of the Coeur d'Alene River inlet to the lake. Ancillary chemical characterizations of the water column as well as biological characterizations of the benthos were also done to facilitate interpretation of the algal-culturing results and for comparison with similar characterizations performed a decade before (Woods and Beckwith, 1997). Although zinc is an essential micronutrient, the toxicity of algal species to elevated concentrations of uncomplexed zinc has been demonstrated, and affects the metabolism of phosphorus (Kuwabara, 1985a; Kuwabara and others, 1986), the limiting nutrient in the lake. This interaction between solutes could be of management interest. As an extension of field work conducted in August, 1999 (Kuwabara and others, 2003b), the water column and benthos of Coeur d'Alene Lake were sampled in August 2001, June 2004 and June 2005 (Fig. 1; Table 1) to provide the biological characterization in terms of phytoplankton community composition, benthic macroinvertebrate community composition and benthic chlorophyll concentrations, as well as chemical characterizations at six sites (three depths per site) within the lake.

This study provides information in support of developing process-interdependent solute-transport models for the watershed (that is, models integrating physical, geochemical and biological processes), and hence in support of subsequent evaluation of remediation or load-allocation strategies. The following two questions are posed: Are dissolved zinc and orthophosphate concentrations interactively associated with growth parameters of dominant phytoplankton species within the longitudinal concentration gradient of Coeur d'Alene Lake? If so, can these interactions be quantitatively incorporated into a water-quality model for the lake?

During a single sampling event, in June 2004, replicate samples from the lake water column were collected and processed for taxonomic analysis. Dominant species from two locations within- and up-gradient of the Coeur d'Alene River plume were isolated for a series of chemically defined culturing experiments. In all sampling events (August 2001, June 2004 and June 2005), the water column and benthos were also sampled to determine profiles for macronutrients, trace elements and dissolved organic carbon as well as to determine benthic macroinvertebrate community structure and, in 2005, benthic chlorophyll concentrations. This work, in support of the Idaho Department of Environmental Quality and regional tribal organizations, provides the first phytoplankton response models in a format that may be incorporated into a process-interdependent water-quality model like CAEDYM (Fig. 2; Brookes and others, 2004; Centre for Water Research, 2006) as a management tool for the lake.

Physical and Biological Characterizations

1. Vertical gradients in the water column: The lake was thermally stratified throughout the year except for episodic vertical mixing events that typically occur during the fall, mixing hypolimnetic and epilimnetic waters (Woods and Beckwith, 1997). However, as a result of interacting physical transport processes (e.g., seiching, fresh-water inputs, and mixing in lake embayments) transverse heterogeneity in temperature profiles were prevalent in (Fig. 3; Gradients discussion). Biological significance of the heterogeneity was evident as chlorophyll concentrations, representing the abundance of phytoplankton in the water column, were linked to observed thermal stratification,

and peaked in the subsurface with water-column temperatures between 10 to 13 degrees Centigrade (Fig. 4).

- 2. Phytoplankton communities: Phytoplankton were specifically sampled up gradient of the Coeur d'Alene River inlet to the lake as a chemical transitional zone where the longitudinal concentration gradient for zinc-ion activity (that is, uncomplexed zinc) was observed in previous lake-monitoring studies (Woods and Beckwith, 1997). Nearer the river inlet, the phytoplankton community structure exhibited multiple differences relative to the phytoplankton community entering the lake from the Chatcolet inlet (that is, the wetland associated with the St. Joe River to the south of the lake; Table 2; Phytoplankton taxonomy discussion). These differences led to the selection of the following two isolates for bioassay experiments: the chlorophyte, *Chlorella minutissima* that markedly decreased in cell concentration within the concentration-transition zone of the lake, and the bacillariophyte (diatom), *Asterionella formosa* that conversely increased in concentration within that same zone.
- **3. Benthic macroinvertebrate communities**: The growth and subsequent settling of phytoplankton provide a carbon source to the benthos on which microbial and macroinvertebrate populations depend. In addition, the movement and feeding mechanisms of certain macroinvertebrates may significantly enhance the flux of solutes from the bottom sediment to the water column (Kuwabara and others, 1999; Boudreau and Jorgensen, 2001). Because very little work has been done to characterize the benthic macroinvertebrate populations in the lake (Kuwabara and others, 2003b), replicate samples were taken at each sampling site in 2001, 2004 and 2005 to extend the information available on macroinvertebrate communities (Table 3A).

Although not a principal objective of the study, the analysis of macroinvertebrate distributions provided insight into important habitat characteristics and possible growth-limiting factors that should be addressed when a biological evaluation of the effects of metals and nutrients is undertaken for Coeur d'Alene Lake. A strong riverine influence is observed in the southern portion of the lake with the inflow of the St. Joe River. Additionally, taxa present (Tubificidae and Chironomini) indicate the possible influence of high nutrient loading at SJRI and C5, the two most southern sites. Although there was only limited sampling, the densities observed and the species present at most of the sites appeared insufficient to significantly contribute to the mobilization of metals from the sediment to the water column via bioturbation (Table 3B). However, given the presence of *Hexagenia*, a burrowing mayfly, a more temporally and spatially intensive sampling design may identify biotic influences on sediment bioturbation on at least a seasonal basis.

Chemical Characterizations

Note: The dissolved-nutrient and trace-element concentrations discussed in this section refer to samples filtered with 0.2-micrometer polycarbonate membranes. Dissolved organic carbon samples were processed with a glass-fiber filter (Whatman GFF, 0.7-micrometer nominal pore size) pre-combusted at 450 degrees Centigrade for 12 hours.

- Trace elements in the water column: Coeur d'Alene Lake in 2001, 2004 and 2005 consistently
 exhibited elevated dissolved-zinc concentrations at depth relative to surface waters, usually about
 doubling the value (<u>Table 4</u>; <u>Fig. 5</u>; <u>Metals discussion</u>). These data reaffirm the previous
 conclusion of a significant benthic source of zinc (Kuwabara and others, 2000; Kuwabara and
 others, 2003b).
- 2. Dissolved nutrients in the water column: With two exceptions, the concentrations of dissolved inorganic forms of nitrogen (nitrate and ammonia) were consistently elevated near the bottom in 2001, 2004 and 2005 (<u>Table 5</u>; <u>Nutrients discussion</u>). This vertical concentration gradient is

consistent with lake conditions a decade ago, and was also suggested in dissolved-orthophosphate concentrations for both years, although concentrations were routinely at or near analytical detection limits, as one would expect of a phosphorus-limited system like Coeur d'Alene Lake. In addition to surface-water inputs, if vertical mixing events in the fall provide a major hypolimnetic nutrient source to enhance primary production in the lake, nutrient data from this study suggest that such events would contribute to, rather than mitigate, phosphorus limitation.

3. Interactive orthophosphate and zinc effects on phytoplankton: A 3X3 full factorial experimental design (Table 6) was used to examine phytoplankton response to zinc-ion activity and dissolvedorthophosphate concentrations in terms of: (1) lag-phase duration (a calculated approximation of the days from the beginning of the culture to the beginning of the exponential growth phase), (2) growth rate (in doublings per day), and (3) standing crop or maximum biovolume (represented as the logarithm in cubic microns). Although the two isolates used in this study displayed growth inhibition to elevated zinc-ion activity, greater intolerance was exhibited by the chlorophyte, Chlorella minutissima, compared to the diatom isolate, Asterionella formosa (Phytoplankton response discussion; Table 7). This result is not surprising, given the predominance of the chlorophyte near the southern Chatcolet inlet in comparison to the increased presence of the diatom species closer to the Coeur d'Alene River plume with elevated dissolved-zinc concentrations. However, as an extension to previous toxicological studies in the lake, significant differences in response by the phytoplankton isolates in this study suggest that observed longitudinal shifts in phytoplankton community composition may represent a response to longitudinal gradients in solute concentrations. Interactive effects of dissolved orthophosphate and zinc were consistent with previous laboratory studies that demonstrated an inhibition of phosphorus metabolism by increased availability to uncomplexed zinc. Empirical response models were generated to contribute to water-quality models that provide a quantitative understanding and perhaps heightened predictive capability for phytoplankton response in the lake to changing water chemistry over multiple time scales and proposed remediation strategies.

Potential Management Implications

Evaluation of proposed remediation efforts and load allocations in the watershed may be linked to a variety of objectives such as: decreasing concentrations of bioavailable forms of toxic substances or of limiting nutrients, decreasing solute loads to down-gradient systems, and reducing the impacts of toxic substances on biological resources (for example, fish and plants consumed by humans and wildlife). Because dissolved zinc is elevated in the water column of Coeur d'Alene Lake, and because elevated zinc concentrations can inhibit the metabolism of phosphorus in phytoplankton, this study quantifies phytoplankton response to dissolved orthophosphate and zinc-ion activities with associated geochemical information to place the toxicological data into appropriate context. The information is provided as a contribution to an overall water-quality model for the lake that may provide guidance in future evaluations of proposed management or remediation strategies.

Background

Although of critical importance to water-quality management, processes that regulate primary productivity have not been well quantified for Coeur d'Alene Lake. Bioassay results by Barlett and others (1974) indicated that total dissolved-zinc concentrations typical of the range observed in Coeur d'Alene Lake should suppress phytoplankton growth and hence affect biomass production and fisheries resources. This finding was confounded by Wissmar (1972) who did not observe significant suppression of carbon assimilation by natural phytoplanktonic communities from Coeur d'Alene Lake. To clarify this discrepancy, chemically defined media studies were performed on algal isolates from the lake to consider solute speciation effects. Results using three diatom isolates indicated that even at half the computed zinc-ion activity for main-channel site MC-R in the lake down-gradient of the Coeur d'Alene River plume and the Bunker Hill Superfund Site, growth was consistently suppressed (Kuwabara and others, 1994, Woods and Beckwith, 1997). Furthermore, there was virtually a total growth suppression of phytoplankton isolated from up-gradient of the Coeur d'Alene River plume (a so called "digital effect" of either growing in basal media or not growing at all in any of the zinc-augmented culturing media.) The results clearly indicated intolerance for dissolved zinc by certain phytoplankton species entering the lake from the St. Joe River. Although these results highlighted potential toxicological controls on primary production in the lake, they did not provide sufficient resolution to be quantitatively incorporated into a process-interdependent water-quality model describing the physical and biogeochemical interactions controlling phytoplankton dynamics. The work described herein addresses this modeling limitation with the added dimension of orthophosphate interactions that are relevant to this phosphorus-limited aquatic system.

Coeur d'Alene Lake is considered a transitional mesotrophic/oligotrophic system. In an oligotrophic system, the concept of a limiting nutrient is a fragile one because the dissolved-solute concentrations are typically balanced in such a way that minimal (i.e., sub-micromolar) changes in concentration of one solute can alter nutrient limitation. Under oxic, pH neutral conditions, orthophosphate has a high affinity to adsorb onto metal oxide surfaces (Sigg and Stumm, 1981; Goldberg, 1985). Depending on surface characteristics, varying levels of solute competition for adsorption sites can result, including competition by biological surfaces that may repartition solutes from inorganic particles to algal cells (Kuwabara and others, 1986). Without adsorbate competition, only about 10 mg/L of iron-hydroxide particles used by Goldberg in her studies (1985) in suspension would be required to adsorb a 1-micromolar concentration of dissolved orthophosphate. By comparison, dissolved orthophosphate concentrations in oligotrophic lakes are typically tenths of micromolar (Kuwabara and others, 2002; Kuwabara and others, 2003a). Given the ubiquitous surficial distribution of iron oxides in Coeur d'Alene Lake sediments (Horowitz and others, 1993; Kuwabara and others, 2003b), adsorption/desorption reactions are likely to be an important factor in the availability of orthophosphate.

The mechanism of zinc toxicity to aquatic primary producers is a disruption of phosphorus assimilation (in particular, an interference with phosphorylation reactions; Kuwabara, 1985a). As Zn-ion activity increases, cell division is suppressed and phosphorus simply accumulates intracellularly. So as zinc bioavailability increases, phosphate utilization is inhibited, and conversely, when phosphate bioavailability increases, zinc toxicity effects are mitigated. It is this interaction between elevated dissolved Zn and limiting orthophosphate that is of particular management interest in the lake.

Average molar ratios of dissolved nitrogen to orthophosphate benthic flux were determined in lander experiments at two contrasting sites in Coeur d'Alene Lake (Kuwabara and others, 2003b). A nitrogen-tophosphorus (N:P) molar Redfield ratio of 16 represents the approximate ratio of nitrogen-to-phosphorus taken up by freshwater algae for growth (Wetzel, 2001). Benthic-flux ratios, that is the ratio of dissolved nitrogen and phosphorus sources from the lakebed, were considerably higher than the Redfield Ratio (70 ± 20 and 41 ± 13 at MC-R and MICA, respectively) suggesting that the lake sediment could significantly affect orthophosphate availability and hence zinc toxicity in the water-column by sorption/desorption (repartitioning) reactions. In 1999, the year in which benthic-flux experiments were done, it is also noteworthy that the riverine input also generated an elevated N:P molar ratio of about 32, which one might expect for a phosphate-limited system. Consistent with previous observations, dissolved orthophosphate concentrations were undetectable (< 2 micrograms per liter or < 0.1 micromolar) at all sites sampled in 2005. In an effort to develop tools to facilitate science-based management decisions related to water and ecosystem quality in Coeur d'Alene Lake and the associated watershed, the purpose of this study is to provide a quantitative description of the interactive effects of the limiting macronutrient, dissolved orthophosphate, and zinc-ion activity. In addition, associated results from field work in the lake during the period of the bioassays are presented to provide some context with which prior results and future research directions can be assessed.

Results and Discussion

Physical Data

In 2004, a typical depth dependence was observed for temperature using a datalogger deployment at each sampling site (range from 6 to 20 degrees Centigrade) with maximum temperatures at the surface. This depth dependence was consistent with observations reported for 1991 and 1992 lake conditions by Woods and Beckwith (1997), and also bracketed temperature distributions acquired in 2005 by the University of Western Australia (see paragraph below). Despite temperature effects on oxygen solubility, dissolved oxygen in the lake water column at main-channel sites decreased with depth from approximately 90 percent saturation at the surface to less than 60 percent saturation near the lake bottom.

During the June 2005 sampling trip, a physical context (that is, three-dimensional distributions of temperature and other ancillary parameters) was provided from extensive field work conducted by a research team from the University of Western Australia, led by Professor Jorg Imberger, to help interpret the chemical and biological data (http://rtm.cwr.uwa.edu.au/FieldExp/CDAexp05/index.html). Thermal stratification was consistently observed with water-column temperatures in June, 2005, ranging between 5 and 16 degrees Centigrade. Woods and Beckwith (1997) observed this stratification throughout the year except for episodic vertical mixing events that typically occur during the late summer or the fall season. A clear and prevalent transverse heterogeneity in temperature stratification was observed for the first time as a result of the real-time monitoring efforts (Fig. 3; Gradients discussion). In association with this thermal stratification, phytoplankton abundance, as measured by chlorophyll concentrations, displayed a subsurface maximum at about 10 m depth and temperatures between 10 to 13 degrees Centigrade. Between monitoring stations C5, closer to the Chatcolet inlet, and the MC-R coring site, the subsurface maximum migrated both vertically and transversely to include elevated concentrations down gradient at the eastern lake edge and at near-surface depths (less than 5 meters).

Biological Data

Phytoplankton Community: The depth and vertical extent of the chlorophyll-a maximum is highly
variable along a longitudinal transect of the lake (Fig. 4). Furthermore, that variability extends to
the composition of the phytoplankton community as a major shift in dominant species occurs
between the outlet of Chatcolet Lake and the inlet of the Coeur d'Alene River, shown with
samples SJRI and C5 (Table 2). This variability affected the selection of algal species to be
isolated and cultured to represent the compositional shift.

Variability between collection sites is exhibited by both phytoplankton densities and biovolumes (<u>Table 2</u>). For example, the cyanophyte, *Anabaena*, was consistently observed at site SJRI, but was absent at site C5. The converse was observed for the cyanophyte *Synechococcus*. In terms of the species selected for bioassay isolation, the cell numbers for the Chlorophyte, *Chlorella minutissima* decreased from 1505 ± 74 cells per milliliter (n=3) at the Chatcolet inlet site (SJRI) to 258 ± 0 (approximately an 83% reduction) down gradient at monitoring site C5. Conversely, the cell numbers for the diatom, *Asterionella formosa* increased from 8 ± 4 cells per milliliter (n=3) at the Chatcolet inlet site to 877 ± 107 (approximately a two-order-of-magnitude increase) at site C5.

In summary, taxonomic analyses of the two collection sites in 2004 reflect spatial variability, but also temporal variability in structure when compared to phytoplankton community analyses performed a decade ago (throughout 1991 and 1992; Woods and Beckwith, 1997). The temporal restriction of phytoplankton sampling in this study to June 2004, to facilitate the selection of algal isolates for the bioassays, would suggest that species observed in this study would represent a subset of those observed over 24 consecutive months by Woods and Beckwith (1997). Their lake monitoring studies throughout 1991 and 1992 did not observe *Chorella minutissima* at any of their six lake-sampling sites, two of which correspond to the locations sampled in this study for algal

isolates. In contrast, Asterionella formosa was observed at all six sites. Of seven cyanophyte species identified in 2004, only two matching genera were observed throughout 1991 and 1992: Anabaena and Anacystis (also called Synechococcus). In other words, five of seven species reported here just for June 2004 were not seen throughout the lake-sampling network in 1991 and 1992. Perhaps part of this discrepancy can be explained by different taxonomists using different methods to preserve and subsample phytoplankton species for the different studies (for example, the number of cells identified per sample and the fixing solution used). Taxonomic name changes over the past decade do not explain differences in the species list for the cyanophytes. By comparison, after considering recent changes in taxonomic classifications, only two chrysophytes (Salingoeca and Stelexomonas) and one bacillariophyte (diatom) were new to the phytoplankton assemblage relative to the lake a decade ago. This work was scheduled to coincide with physicaltransport studies by other researchers in a concerted effort to develop an initial processinterdependent water-quality model for the lake. It should then be noted that resulting algalgrowth models from this work represent the response of species that currently dominate the phytoplankton community, but that structure may be altered by a variety of processes (natural or anthropogenic) as demonstrated by the changes in the phytoplankton community over the last decade.

- **2. Benthic chlorophyll:** Benthic chlorophyll concentrations represent carbon sources to the sedimentwater interface primarily as a result of settled phytoplankton cells, but, within the photic zone, can also represent the growth of benthic algal species. Both sources provide an electron donor for redox transformations and result in a sediment oxygen demand. In addition, it has been hypothesized that the degradation of algal cells at the sediment surface may release intracellular solutes (including trace elements) to elevate bottom-water concentrations. Initial measurements of benthic-chlorophyll concentrations made in August 1999 were not high enough to support the observed concentrations gradients for trace metals in the lake water column (Kuwabara and others, 2003b). However, additional measurements in June 2005 were made to offer a broader look at the spatial and temporal variability of benthic-chlorophyll concentrations. The mean concentration was 0.9 ± 1.2 micrograms chlorophyll per square centimeter. This was an order of magnitude less than the mean benthic-phaeophytin concentration of 14.4 ± 7.7 micrograms chlorophyll per square centimeter (n= 11; Table 8).
- **3. Benthic macroinvertebrates**: The growth and subsequent settling of phytoplankton provide a carbon source to microbial and invertebrate communities near the lake bed. It has been demonstrated that feeding and foraging mechanisms by certain macroinvertebrates may significantly enhance the benthic flux of solutes (Kuwabara and others, 1999; Boudreau and Jorgensen, 2001). Despite the potential biogeochemical importance of macroinvertebrate populations relative to the internal cycling of solutes within the lake, very little information is available that characterize the benthic macroinvertebrate populations (Kuwabara and others, 2003b). Therefore, while fulfilling the field sampling needs of this study, replicate samples were taken at each sampling site in 2001, 2004 and 2005 to extend the information available on macroinvertebrate distributions (Table 3A).

Benthic macroinvertebrate densities varied substantially both temporally and spatially (Table 3B). Densities were lower during the late summer collections of 2001 than during the early summer collections of 2004 and 2005. Mean site densities ranged from a low of 280 organisms per square meter at MC-R during 2001 to a high of 8033 organisms-m⁻² at SJRI during 2004. Taxon richness also varied temporally and spatially. Richness followed a similar pattern to density, with lowest richness observed in late summer collections of 2001 and higher richness observed during early summer collections of 2004 and 2005. The minimum mean richness of 3 per site was observed at MC-R in 2001, while a maximum mean richness of 42.7 was observed at SJRI during 2004. Even though there was a highly significant relationship between richness and the abundance of macroinvertebrates sorted per sample, the maximum richness far exceeded that predicted by the number of individuals per sample. Higher richness at SJRI was likely a result of numerous factors

including the presence of more lotic taxa (that is, organisms associated with flowing waters like streams), the possible effects of higher nutrients, and minimum sediment and water metal concentrations than found in other portions of the lake. Site CDARI near the outflow of the Coeur d'Alene River did not have similarly high macroinvertebrate densities and richness. The late summer 2001 collections from CDARI were depauperate, having a mean richness of only 4 and mean densities of approximate 714 organisms per square meter. The generally lower densities and richness observed in August compared to June collections, regardless of year, likely represents a seasonal influence of invertebrate life histories and habitat quality. Unfortunately, there were no collections during both seasons in the same year.

Macroinvertebrate assemblage composition also varied temporally and spatially. Seasonal differences in collecting periods between 2001 and 2004/2005 preclude a comparison among all three years. Therefore, we compared macroinvertebrate assemblage structure among sites within-year and between 2004 and 2005. Similarities and differences in macroinvertebrate composition among sites were qualitatively evaluated using the ordination technique, Detrended Correspondence Analysis (DCA; Figure 6). DCA is an ordination method conceptually similar to principal components analysis. Samples that are similar in species composition generally appear closer to one another on a DCA plot than do sites with dissimilar species composition. The location of a site along a derived DCA axis is a function of the site's species composition in relation to the species composition of all other sites included in an analysis. A single analysis was completed for each of the three years. Therefore, the axes of any individual plot are not comparable because a site's position along a plotted axis is analysis specific.

The principal spatial difference in composition within each year was the uniqueness of the most "upstream" site (Figures 6A-C represent ordinations of annual data). In 2001 the most upstream site was CDARI. The benthos at the site was dominated by two groups in the family Chironomidae, the Tanypodinae and Chironomini, which were not found or were rare at the other three sites in 2001 (Table 3A). The Mica Bay site differed from the 2 northern sites because of the presence of high densities of ostracods and Tanytarsini midges.

The dominant spatial gradient in species composition in 2004 was between the St. Joe River inlet and the more northern portion of the lake (Figure 6B). SJRI had the highest densities observed in the study (>10,000 organisms per square meter) and also the greatest number of taxa. It was the only site in which Trichoptera were collected and contained the highest numbers of Ephemeroptera as well. Although low in abundance, the principal mayflies, both of which are associated with fine sediments, were *Hexagenia* sp., a burrowing mayfly commonly found in lakes, and Caenis sp. Also present at SJRI were high densities of Naididae, Tubificidae and Chironomini, taxa frequently associated with high nutrient habitats. The Naididae are often associated with both flowing water and macrophytes, the later of which are present at SJRI. C5 had lower densities of Tubificidae and Chironomini than SJRI, but still higher than other sites. SJRI and C5 are also the only two sites where bivalves were collected. During 2005, the most southern lake-sampling site was C5 rather than SJRI. Regardless, the dominant spatial gradient observed still ran from upstream (represented by C5) to the main lake sites, with C5 collections containing mayflies, and again the nutrient tolerant Tubificidae and Chironomini. In contrast, the main-lake sites sampled in 2004 and 2005 were MC-R, MC-C, and MICA. All three sites were dominated by an Orthocladinae midge that was extremely rare at SJRI and C5.

4. Response of phytoplankton species to interactive orthophosphate and zinc-ion effects:

Phytoplankton response to zinc-ion activity and dissolved orthophosphate concentrations were quantified in terms of three parameters: lag-phase duration (a calculated approximation of the days from the beginning of the culture to the beginning of the exponential growth phase), growth rate (in doublings per day), and standing crop or maximum biovolume (represented as the logarithm in cubic microns). As a general observation, the two isolates used in this study displayed similar relative responses, but greater intolerance to zinc-ion activity was exhibited by the chlorophyte, *Chlorella minutissima*, compared to the diatom isolate, *Asterionella formosa*. This is not surprising, given the predominance of the chlorophyte near the Chatcolet/ St. Joe River inlets in

comparison to the increased presence of the diatom species closer to the Coeur d'Alene River plume with elevated dissolved-zinc concentrations (<u>Table 2</u>; Fig 5).

Lag-phase duration significantly increased with increased zinc-ion activity, but much more so for Chlorella minutissima (> 6 days at the highest zinc-ion activity, Table 7) than for Asterionella *formosa* (consistently <2 days). In fact, at the highest zinc-ion activity, exponential growth was not observed over a culturing period of a week, regardless of the dissolved-orthophosphate concentration. A lag phase was also discernable for Asterionella, but in contrast to Chlorella, the duration was consistently less than 2 days. Although the bulk residence time for the lake is approximately 6 months, the observed lag-phases may have environmental significance because certain strata within the water column move through the lake much more rapidly (that is, in days to weeks; Centre for Water Research, 2006). As zinc-ion activity increased, lag-phase duration for Asterionella increased from zero to 1.2 ± 0.5 days. An important gualification should be made in interpreting the empirical-modeling results. Because the concentration intervals used in the culturing treatments represent lake conditions, the experimental design is not orthogonal (that is, the variables cannot be symmetrically normalized for easy application into a process-integrated model; Box and Draper, 1987). Therefore, the magnitude of the coefficients depends on the format (for example, units) of the independent variables. For example, because the micromolar concentrations for dissolved orthophosphate span one order of magnitude, but the zinc-ion activities are one to five orders of magnitude smaller, the significant modeling coefficients describing the effect of zinc-ion activities can be orders of magnitude greater than those describing the effects of dissolved orthophosphate on a dependent variable. For *Chlorella minutissima*, the model did a poor job of describing the effects of dissolved orthophosphate or zinc-ion activity on lag-phase duration (coefficients of determination of 0.55 and 0.17 based on cell concentrations and biovolumes, respectively). This is because the lag-phase was indeterminate for cultures at high zinc-ion activities because no growth was measurable over the 6-day culturing period. The effect of dissolved orthophosphate on lag-phase duration for Asterionella was not statistically significant, but elevated zinc-ion activities increased the lag-phase duration as either a first or second-order effect.

Growth rates for both algal species were optimal (1.03 + 0.04 per day) at basal zinc-ion activities which was expected for Chlorella, but less expected for Asterionella which was isolated and maintained in waters of elevated zinc-ion activity. An inverse relationship between growth rate and zinc-ion activity was evident, ultimately exhibiting no discernable growth for Chlorella at the highest zinc levels (Table 7). Growth of the diatom, Asterionella, was also adversely affected by elevated zinc-ion activities, but measurable growth was consistently observed. For Asterionella, growth rates ranged from 0.49 + 0.14 per day at the highest zinc-ion activity to 0.70 + 0.14 per day at basal zinc concentrations. The maximum growth rate observed in this study (0.88 + 0.03 per)day) is comparable to that reported in other studies for Asterionella (0.81 + 0.08 per day; Holm)and Armstrong, 1981), despite the fact that the species was isolated from the lake at elevated dissolved zinc concentrations (0.51 + 0.01 micromolar) relative to the Chatcolet inlet (< 0.01 micromolar). At each of the three zinc-ion activities, growth rates for Asterionella were lowest at the basal dissolved orthophosphate concentration. This was true for Chlorella only at the midlevel zinc-ion activity because there was essentially no discernable growth at the highest zinc-ion activity. For *Chlorella*, empirical modeling consistently exhibited a positive effect of dissolved orthophosphate concentration and an adverse effect of zinc-ion activity on growth rate for both first- and second-order terms. Although a positive effect of dissolved orthophosphate was also determined for Asterionella, the adverse effects of zinc-ion activity were not consistently depicted. For example, based on changes in biovolume, the first-order adverse effect of zinc-ion activity on growth rate was significant, but based on changes in cell concentration (that is, the number of cells per volume of culturing suspension), the first-order coefficient for zinc-ion activity was not statistically significant at the 95-percent confidence level.

Maximum biovolume (or standing crop) is typically constrained by a limiting nutrient, which in Coeur d'Alene Lake is considered to be phosphorus (Woods and Beckwith, 1997; Kuwabara and others, 2003b). However, if growth is inhibited by a toxic substance, the maximum biovolume may be limited by that toxic response. At basal zinc-ion activity, both phytoplankton species

exhibited increased maximum biovolumes with increased orthophosphate concentrations (up to a log biovolume of 6.93 + 0.19 and 6.95 + 0.13 in units of cubic microns for *Chlorella* and Asterionella, respectively). This increase was most evident between basal and mid levels of dissolved orthophosphate, as the highest dissolved orthophosphate concentration provided an excess of phosphorus relative to nitrogen (that is, a nitrogen to phosphorus ratio in excess of the Redfield molar ratio of 16). As zinc-ion activity increased, the positive effect of dissolved orthophosphate on maximum biovolume became less pronounced to the point where dissolved orthophosphate concentration had no effect on maximum biovolume of Chorella at the highest zinc-ion activity (the cells simply did not grow). In addition, it should be mentioned that increased zinc-ion activity generated a morphological response in Asterionella that complicated the measurement of cell concentrations. Among other responses, the diatom exhibited a clumping behavior, presumably as a result of exudate (metal-chelate) production or to decrease surface to volume ratios and hence decrease toxicant exposure from the bulk solution. Furthermore, extracellular substances are produced by certain phytoplankton species as biological or chemical protective mechanisms (Fogg, 1983; Carotenuto and Lampert 2004). Subsequent clumping (adhesion) of cells due to the release of mucilaginous compounds may have the indirect morphological effect of increasing particle size and hence increasing settling rate to the lake bottom. Replicate variability in bioassays was evident as sonication of culture aliquots was required to break clumps into individual cells amenable to particle counting (Fig. 7). For both algal species, a positive effect of dissolved orthophosphate concentration and an adverse effect of zinc-ion activity on maximum biovolume was evident in both first and second-order terms.

Chemical Data

- 1. Dissolved nutrients in the water column: With two exceptions, the concentrations of dissolved inorganic nitrogen-species were consistently elevated near the lake bottom in all three years (2001, 2004 and 2005; Table 5). This hypolimnetic enrichment in dissolved nitrogen species is consistent with observations made for the lake in 1991 and 1992 (Woods and Beckwith, 1997). Nitrate concentrations were depleted in surface waters but increased by an order of magnitude or more in bottom waters. This was also true for ammonia concentrations although interannual variability in ammonia concentrations was evident as higher water-column concentrations were routinely observed in 2004 relative to 2005. Despite this shift in nitrogen speciation, dissolved inorganic nitrogen concentrations in bottom waters were temporally and spatially stable for this study (64 + 15 micrograms nitrogen per liter or 4.5 ± 1.1 micromolar dissolved nitrogen), and within the concentration range reported after extensive monitoring activities in 1991 and 1992 (25 to 430 micrograms nitrogen per liter or 2 to 31 micromolar dissolved nitrogen). Elevated bottom-water concentrations were also evident for dissolved orthophosphate concentrations for both years, although concentrations were routinely at or near analytical detection limits, as one might expect of a phosphorus-limited system like Coeur d'Alene Lake (that is, consistently less than 2 microgram dissolved orthophosphate per liter or 0.1 micromolar). For waters overlying the lakebed, where dissolved inorganic nitrogen was consistently measurable, the molar nitrogen to phosphorus ratios (224 + 252) were consistently greater than the Redfield ratio of 16, sometimes by an order of magnitude. If vertical mixing events in the fall provide a major hypolimnetic nutrient source for phytoplankton growth, nutrient data from this study suggest that such events would contribute to, rather than mitigate, phosphorus limitation. Elevated nutrient concentrations in bottom waters can result from nutrient diagenesis, decomposition of settled cellular material in the water column, or a density-driven riverine source (Boudreau and Jorgensen, 2001). Highresolution temperature contours within the lake during our sampling period show no evidence for a riverine source of nutrients directed to the hypolimnion (see temperature contours from monitoring and modeling studies by the Centre for Water Research, 2006).
- **2. Dissolve trace metals in the water column**: Trace elements in the dissolved phase (for example, zinc) can compete for ligands in both dissolved and particulate phases, and hence affect zinc speciation and partitioning. Coeur d'Alene Lake in 2001, 2004 and 2005 consistently exhibited elevated

dissolved-zinc concentrations at depth relative to the shallow and middle depths in the water column (Table 4; the only exceptions are nearly equal middle and deep values at site MC-R in 2001 and site C5 in 2004). The dissolved concentration at depth is usually about double the surface concentration (Fig. 5). This finding indicates a benthic source of zinc, which has been previously found to be significant relative to riverine inputs (Kuwabara and others, 2000; Kuwabara and others, 2003b).

In 1993 and 1994, Woods and Beckwith (1997) found surface water zinc concentrations between 33 and 66 micrograms per liter at two limnetic stations which, while not at the same locations used in this study, provide some basis for comparison with subsequent studies. In 1999 (Kuwabara and others, 2000) and 2001, water-column profiles found surface water concentrations at main-channel sites between 38 and 51 micrograms of zinc per liter. In 2004 and 2005, surface-water zinc concentrations at main-channel sites (C5, MC-R, and MC-C) ranged from 6 to 38 micrograms per liter (Table 4). While the surprisingly low zinc concentrations at C5 drive the low end of this range, the upper bound of the range has decreased over the twelve year comparison. Complete water-column zinc profiles are available for MC-R and MICA in 1999 (Kuwabara and others, 2000), 2001, 2004 and 2005. A comparison reveals an apparent net downward trend in dissolved zinc concentrations over time, mostly driven by the 2005 data (Table 4). However, caution must be exercised in evaluating this trend because the profiles in 1999 and 2004 are nearly identical. It is important to note that temporal variability within each year, not a long-term trend, may be driving these observed differences. Continuous, long-term monitoring would be required to answer this question.

- **3. Dissolved Organic Carbon (DOC) in the water column**: Dissolved organic matter, measured as DOC, is a ligand that can compete for zinc complexation in the water, and hence affect the remobilization and bioavailability of zinc (Kuwabara and others, 1986). For example, Kuwabara and others (1989) noted that spatial trends in dissolved-zinc concentrations in South San Francisco Bay were coincident with DOC. With the exception of site MC-R in June 2005, elevated DOC concentrations were observed nearest the lake bottom (<u>Table 9</u>), as was noted above for dissolved zinc. Concentrations ranged from 117 to 155 micromolar carbon (that is, 1.4 to 1.9 milligrams organic carbon per liter). These concentrations and vertical trends were consistent with previous measurements for DOC and for nutrients and trace elements made during other years and seasons (Kuwabara and others, 2003b; Fig. 5).
- **4. Zinc and other metals in phytoplankton**: Metals biomagnify up the food chain, and the initial transfer from the dissolved, aqueous phase into phytoplankton is by far the largest step. Zinc biomagnification was relatively consistent between sites C5 and MC-R, considering that each sample could contain a different assemblage of phytoplankton species. The log value for zinc biomagnification averaged 4.8 (<u>Table 10</u>), and the log values for copper and cadmium were similar at 5.0 and 5.2, respectively.

In contrast to this continuity, lead biomagnification averaged a log value of 6.5. In other words, lead biomagnification in phytoplankton was more than an order of magnitude larger than the other metals studied. Also unique to lead was a significant difference between sites. At site C5, the log value averaged 6.1, while at site MC-R the average was 6.9. The phytoplankton at site MC-R exhibited lead concentrations about five times higher than C5 phytoplankton, but this difference is not driven by dissolved lead concentrations at the chlorophyll-maximum depth (0.51 nanomolar at MC-R and 0.62 nanomolar at C5; Table 4).

Study Design and Methods

The protocol described in this section focuses on method applications in this sampling of the water column and benthos in Coeur d'Alene Lake. Details (for example, quality control specifications) for each analysis have been previously documented (Woods and others, 1999; Praskins and others, 2001; Kuwabara and others, 2003a).

Within Coeur d'Alene Lake, sampling was performed on August 7, 2001, June 28, 2004 and June 10, 2005, at four locations with contrasting depths, physical transport, and chemical properties (Fig. 1; Table 1). Between sampling years, only MICA and MC-R were always sampled. Otherwise, there were different reasons to sample alternate sites each year. This results in a total of six different lake sites. At each site, the following samples were collected, unless otherwise noted:

Physical Data

Water-column Sampling: After locating and logging the coordinates at each sampling site, a Teflon-line Niskin Bottle (General Oceanics) was then used to collect water-column samples from three depths for dissolved trace-element, macronutrient and organic carbon analyses (Fig. 8A). In all years, the surface sample was taken at 2 meters depth to avoid any surficial films, and the deep sample was taken 2 meters above the bottom to avoid sediment resuspension. The middle depth protocol varies, however. In 2001 and 2004, the mid-depth was based simply on halving the site depth, whereas in 2005, mid-depth corresponds to the chlorophyll maximum.

Biological Parameters

- Phytoplankton Sampling: After water samples were collected at the St. Joe's inlet site and monitoring site C5 (<u>Table 2</u>), phytoplankton samples were collected from the same Niskin bottle sample and preserved with Lugol's Solution for taxonomic and biomass analyses. Phytoplankton cells from the surface Niskin-bottle sample were then peristaltically pumped through an in-line 35-micrometer non-metal prefilter and collected on baked quartz-fiber filters (<u>Fig. 8B</u>) for photomicroscopy, isolation and culturing.
- 2. Benthic Invertebrate Sampling: After water-column sampling was completed at a site, three deployments of a Ponar grab were used to collect replicate samples for macroinvertebrate taxonomic analyses. The sieved samples (500-micrometer mesh) were fixed with 10-percent buffered formalin, later transferred to 70-percent ethanol, then sorted at 10× magnification and identified to the lowest practicable taxonomic level employing the appropriate literature (Fig. 9). Samples were stained with rose bengal to facilitate sorting. No subsampling was used.
- **3. Benthic Chlorophyll-a**: At each of the four sampling sites in 2005, surficial sediment (that is, the top 0.5 centimeters of lakebed material) was collected from a fresh Ponar grab and stored refrigerated in a plastic Petri dish within a sealed plastic bag. Each dish was sub-sampled in triplicate for benthic chlorophyll-*a*. The surficial sediment for each replicate was collected on a glass-fiber filter and buffered with 1 milliliter of magnesium carbonate. Water was removed from the buffered samples by vacuum at less than 5 pounds per square inch to avoid cell lysis. Samples were then frozen in darkness for preservation until spectrophotometrically analyzed by methods described in Thompson and others (1981) and Franson (1985).
- **4. Algal Culturing:** Algal isolates were cultured in chemically defined media as described by Kuwabara and others (1985b) without any addition of defined mineral particulates (that is, a mono-phasic medium; Anderson, 2005). After micromanipulator-controlled pipette isolations of dominant algal species, isolates were maintained in media formulations representative of the sampling site from which they were collected on June 28, 2004. The chlorophyte, *Chlorella minutissima* from the

Chatcolet inlet, and the diatom, Asterionella formosa from the monitoring site C5 were used in these experimental culturing series. During the culturing period, phytoplankton cells were maintained in fluoroethylene polymer (FEP) vessels with FEP aerators to minimize adsorption/desorption effects between wetted culturing surfaces and the bulk solution (Fig. 10). Temperature was regulated sequentially by using culturing-room controls (+ 2 degrees Centigrade) further refined by a water bath (10 + 0.5 degrees Centigrade). Cool-white fluorescent bulbs were used to provide illumination at approximately 64 microeinsteins per square meter per second (or 14 watts per square meter). Nine media formulations were used for the bioassays (Table 6) with three replicate cultures monitored per formulation per isolate. Zinc-ion activities were selected for the cultures to represent the concentration gradient between the Chatcolet inlet (SJRI) and Longterm Monitoring Station 5 (C5) just up gradient of the Coeur d'Alene River plume. Dissolved orthophosphate concentrations were selected to represent: (1) phosphorus-limiting concentrations, a nitrogen to phosphorus molar ratio of 40, as is the case for the lake (Kuwabara and others, 2003b), (2) Redfield-ratio conditions (a nitrogen to phosphorus molar ratio of 16), and (3) an excess of phosphorus (nitrogen to phosphorus molar ratio of 4). In ascending order, the three zincion activities and orthophosphate concentrations selected for the cultures were referred to in tables and discussion as "basal", "mid" and "high" values. On each day of the culturing period, the cell concentration and mean-cell volume were determined by triplicate measurements per treatment using a particle counter (Coulter Multisizer IIe). Daily measurements continued until stationary phase cell density was achieved. Linear regression of culturing data was used to calculate estimates and 95-percent confidence intervals for growth rates (doublings per day) and lag phases (in days). Using the computer program S-Plus (version 7; Insightful Corporation), these estimates were in turn used to develop an empirical response surface model to describe species-growth response to interactive dissolved orthophosphate and zinc-ion effects.

5. Phytoplankton Digestion: In 2005, at two sites (MC-R and C5), and at the depth of the chlorophyll maximum, additional phytoplankton was sampled akin to the method described above using a peristaltic pump and a 35 micrometer non-metallic prefilter. However, instead of quartz-fiber filters, these phytoplankton samples were collected onto pre-weighed, acid-washed, 0.2-micrometer polycarbonate filters. Samples were freeze-dried and weighed. Based on methods described by Croteau and Luoma (2005), the samples were then digested sequential with ultrapure nitric acid and ultrapure hydrogen peroxide. The sample was brought up to a final volume, and the filter was removed and dried for a final weighing. The difference between pre-sampling dry filter weight and post-digestion dry filter through the entire process. When compared with the filter containing the dried sample, the difference in mass was assumed to be the dry phytoplankton weight (Table 10; Calculation Step A).

The digested sample was analyzed by ICP-MS (<u>Table 10</u>; Step B) and a concentration was calculated based on the dry phytoplankton mass and the digestion volume (Step C). The final concentration value accounts for the recovery of the metal in a certified reference material: TORT-2 or NIST-2976 (Step D). Using the dissolved metal concentrations at the depth of the chlorophyll maximum (<u>Table 4</u>; Step E), a dimensionless biomagnification factor was calculated by dividing the phytoplankton concentration by the dissolved concentration (Step F).

Chemical Parameters

1. Dissolved trace elements: Water-column samples were also collected, filtered (0.2-micrometer polycarbonate membrane) and acidified to provide dissolved trace-metal information for the estuary by flow-injection inductively coupled plasma mass spectrometry (ICP-MS; Topping and Kuwabara, 1999; Topping and Kuwabara, 2003).

- 2. Dissolved organic carbon (DOC): Dissolved organic carbon was determined by high-temperature, non-catalytic combustion (Qian and Mopper, 1996). Potassium phthalate was used as the standard. Low-DOC water (blanks less than 40 micrograms organic C per liter) was generated from a double-deionization unit with additional ultraviolet treatment (Milli-Q Gradient, Millipore Corporation).
- **3. Dissolved nutrients**: Nutrient samples were filtered (0.2-micron polycarbonate membranes) and immediately refrigerated in darkness. Unlike trace-metal samples, nutrient samples were not acidified. Concentrations for dissolved (0.2-micron filtered) nitrate, ammonia, orthophosphate and silica were determined by automated spectrophotometry (Franson, 1985).

References Cited

Anderson, R. A., 2005, Algal Culturing Techniques: Elsevier Academic Press, Burlington, Massachusetts, 578 p.

- Bartlett, Larry, Rabe, F.W., and Funk, W.H., 1974, Effects of copper, zinc and cadmium on *Selenastrum capricornutum*: Water Research, v. 8, p. 179-185.
- Boudreau, B.P. and Jorgensen, B.B., 2001, The Benthic Boundary Layer, Transport Processes and Biogeochemistry: Oxford University Press, New York, New York, 404 p.
- Box, G.E.P. and Draper, N.R., 1987, Empirical Model Building and Response Surfaces: John Wiley and Sons, New York, New York, 669 p.
- Brookes, J.D., Antenucci, Jason, Hipsey, Matthew, Burch, M.D., Ashbolt, N.J., and Ferguson, Christobel, 2004, Fate and transport of pathogens in lakes and reservoirs: Environment International, v. 30, Issue 5, p. 741-759.
- Carotenuto, Ylenia, and Lampert, Winfried, 2004, Ingestion and incorporation of freshwater diatoms by *Daphnia pulicaria*: do morphology and oxylipin production matter?: Journal of Plankton Research, v. 26, p. 563-569.
- Centre for Water Research, 2006, Computational Aquatic Ecosystem Dynamics Model (CAEDYM): University of Western Australia (Internet access at: <u>http://www2.cwr.uwa.edu.au/~ttfadmin/model/caedym/</u>).
- Croteau, M.N. and Luoma, S.N., 2005, Delineating copper accumulation pathways for the freshwater bivalve *Corbicula* using stable copper isotopes: Environmental Toxicology and Chemistry, v. 24, p. 2871-2878
- Fogg, G.E. 1983. The ecological significance of extracellular products of phytoplankton photosynthesis. *Botanica Marina*, 26, 3-14.
- Franson, M.A.H., 1985, Standard Methods for the Examination of Water and Wastewater, Sixteenth Edition, Method 1003C.6: American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, D.C., 1268 p.
- Goldberg, S.A, 1985, Chemical modeling of anion competition on goethite using the constant capacitance model: Soil Science of America Journal, v. 49, p. 851-856.
- Holm, N.P., and Armstrong, D.E., 1981, Role of Nutrient Limitation and Competition in Controlling the Populations of Asterionella formosa and Microcystis aeruginosa in Semicontinuous Culture: Limnology and Oceanography, v. 26, p. 622-634.
- Horowitz, A. J., Elrick, K.A., and Cook, R.B., 1993, Effects of mining and related activities on the sediment trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. Part I: Surface sediments: Hydrological Processes, v. 7, p. 403-423.
- Kuwabara, J.S., 1985a, Phosphorus-zinc interactive effects on growth by *Selenastrum capricornutum* (Chlorophyceae): Environmental Science and Technology, v. 19, p. 417-421.
- Kuwabara, J.S., Davis, J.A. and Chang, C.C.Y., 1985b, Culturing *Selenastrum capricornutum* (Chlorophyta) in a synthetic algal nutrient medium with defined mineral particulates: Hydrobiologia, v. 124, p. 23-27.
- Kuwabara, J.S., Davis, J.A. and Chang, C.C.Y., 1986, Algal growth response to particle-bound orthophosphate and zinc: Limnology and Oceanography, v. 31, p. 503-511.
- Kuwabara, J.S., Chang, C.C.Y., Cloern, J.E., Fries, T.L., Davis, J.A. and Luoma, S.N., 1989, Trace metal associations in the water column of South San Francisco Bay, California: Estuarine Coastal and Shelf Science, v. 26, p. 307-325.
- Kuwabara, J.S., Woods, P.F., Beckwith, M.A., Backsen, R.L., and Ashenmacher, D.M., 1994, The effects of elevated zinc concentrations on phytoplankton growth in Lake Coeur d'Alene, Idaho [abs]: EOS, American Geophysical Union Transactions, v. 75(44), p. 237.

- Kuwabara, J.S., Topping, B.R. Coale, K.H. and Berelson, W.M., 1999, Processes affecting the benthic flux of trace metals into the water column of San Francisco Bay, In Morganwalp, D.W., and Buxton, H.T., eds., U.S. Geological Survey Toxic Substances Hydrology Program--Proceedings of the Technical Meeting, Charleston, South Carolina, March 8-12, 1999--Volume 2--Contamination of Hydrologic Systems and Related Ecosystems: U.S. Geological Survey Water-Resources Investigations Report 99-4018B, p. 115-119.
- Kuwabara, J.S., Berelson, W.M., Balistrieri, L.S., Woods, P.F., Topping, B.R., Steding, D.J., and Krabbenhoft, D.P., 2000, Benthic Flux of Metals and Nutrients into the Water Column of Lake Coeur d'Alene, Idaho: Report of an August, 1999, pilot study: U.S. Geological Survey Water Resources Investigations Report 00-4132, 74 p. (Internet access at: <u>http://pubs.usgs.gov/wri/wri004132/pdf/WRIR-00-4132.pdf</u>)
- Kuwabara, J.S., Marvin-Dipasquale, M., Praskins, W., Byron, E., Topping, B.R., Carter, J.L., Fend, S.V., Parchaso, F. and Krabbenhoft, D.P., 2002, Flux of dissolved forms of mercury across the sediment-water interface in Lahontan Reservoir, Nevada: U.S. Geological Survey Water Resources Investigations Report 02-4138, 48 p. (Internet access at: http://water.usgs.gov/pubs/wri/wri024138).
- Kuwabara, J.S., Alpers, C.N., Marvin-DiPasquale, M.C., Topping, B.R., Carter, J.L., Stewart, A.R., Fend, S.V., Parchaso, F., Moon, G.E. and Krabbenhoft, D.P., 2003a. Sediment-water Interactions Affecting Dissolvedmercury Distributions in Camp Far West Reservoir, California. U.S. Geological Survey Water Resources Investigations Report 03-0140 (Internet access at: <u>http://water.usgs.gov/pubs/wri/wri034140/</u>)
- Kuwabara, J.S., Woods, P.F., Berelson, W.M., Balistrieri, L.S., Carter, J.L., Topping, B.R., and Fend, S.V., 2003b, Importance of sediment-water interactions in Coeur d'Alene Lake, Idaho: Management Implications: Environmental Management, v. 32, p. 348-359.
- Praskins, W., Byron, E., Marvin-Dipasquale, M., Kuwabara, J., Diamond, M., and Gustin, M., 2001, Sampling and Analysis Plan: Mercury Dynamics in Lahontan Reservoir: U.S. Environmental Protection Agency, March 22, 2001, 46 p.
- Qian, J.-G., and Mopper, K., 1996, Automated high-performance, high-temperature combustion total organic carbon analyzer: Analytical Chemistry, v. 68, p. 3090–3097.
- Sigg, Laura, and Stumm, Werner, 1981, The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface: Colloids Surfaces, v. 2, p. 101-117.
- Thompson, J.K., Nichols, F.H., and Wienke, S.M., 1981, Distribution of benthic chlorophyll in San Francisco Bay, California, February 1980 – February 1981: U.S. Geological Survey Open File Report 81-1134, 55 p.
- Topping, B.R. and Kuwabara, J.S., 1999, Flow-injection-ICP-MS method applied to benthic-flux studies of San Francisco Bay, In Morganwalp, D.W., and Buxton, H.T., eds., U.S. Geological Survey Toxic Substances Hydrology Program--Proceedings of the Technical Meeting, Charleston, South Carolina, March 8–12, 1999--Volume 2--Contamination of Hydrologic Systems and Related Ecosystems: U.S. Geological Survey Water-Resources Investigations Report 99-4018B, p. 131-134 (Internet access at: http://toxics.usgs.gov/pubs/wri99-4018/Volume2/sectionA/2216 Topping/index.html).
- Topping, B.R. and Kuwabara, J.S., 2003, Dissolved Nickel and Benthic Flux in South San Francisco Bay: A Potential for Natural Sources to Dominate: Bulletin of Environmental Contamination and Toxicology, v. 71, p. 46-51.
- University of Western Australia, 2006, Coeur D'Alene Lake Experiment, 28 May ~ 13 June, 2005: Centre for Water Research (Internet access at: <u>http://rtm.cwr.uwa.edu.au/FieldExp/CDAexp05/ffprobe/contour/159/Aa/Fprobe_cfdcontour_Aa_05159.ht</u> <u>ml</u>).
- Wetzel, R.G., 2001, Limnology (third edition) Academic Press, London, 1006 p.
- Wissmar, R.C., 1972, Some effects of mine drainage on primary production in Coeur d'Alene River and Lake, Idaho: Moscow, University of Idaho, Ph.D. dissertation, 61 p.
- Woods, P. F., and Beckwith, M.A., 1997, Nutrient and trace-element enrichment of Coeur d'Alene Lake, Idaho: U.S. Geological Survey Water Supply Paper 2485, 93 pp.

Woods, P.F., Nearman, M.J., and Barton, G.J., 1999, Quality assurance project plan for U.S. Geological Survey studies in support of Spokane River Basin RI/FS.: U.S. Environmental Protection Agency, Seattle, Washington, and U.S. Geological Survey, Boise, Idaho, 153 p.

Acknowledgments

The authors acknowledge and thank Chris Dallimore and Matthew Hipsey, from the University of Western Australia, and M.A. Beckwith, representing the Coeur d'Alene Tribe, for their scientific interactions that facilitated the preparation of this report. Photomicroscopy by, and discussions regarding phytoplankton cultures with, D.B. Czarnecki and S.V. Fend are greatly appreciated. Critical logistical support by R. Backsen and S. Ball are also acknowledged. This work was undertaken as part of a collaborative effort to develop a process-interdependent water-quality model for Coeur d'Alene Lake with research scientists from the Idaho Water Science Center, the U.S. Geological Survey Geologic Discipline, the University of Western Australia, and the University of Idaho. The Idaho Department of Environmental Quality (Funding Agreement Number 04W4ID02200A) and the U.S. Geological Survey Toxic Substances Hydrology Program are gratefully acknowledged for support of this work.

Appendix 1: Comments on the Report Structure

A major objective of this electronic document is to provide a structure that is easily accessible to a wide range of interest groups. Therefore, pathways within this document have been constructed to be both logical and intuitive. In contrast to typical scientific manuscripts, this report is formatted in a pyramid-like structure to serve the needs of diverse groups who may be interested in reviewing or acquiring information at various levels of technical detail. The report enables quick transitions between the initial <u>summary information</u> (figuratively at the top of the pyramid) and the later details of <u>methods</u> or <u>results</u> (figuratively towards the base of the pyramid) using hyperlinks to supporting figures and tables, and an electronically linked <u>Table of Contents</u>. In addition to hyperlinks within the document to supporting figures and tables, links in Appendices 2 and 3 provide a quick way to directly review and examine all figures and tables.

Although hard copies of this report are available on request, the advantages of the electronic version relative to the hard copy are substantial in many respects, but particularly in the rapid access of information at multiple levels of detail.

Your comments about how this type of Web-based product may be improved to better serve readers are most welcome and may be directed to the major author (<u>kuwabara@usgs.gov</u>) so that they may be compiled for future revisions and reports.

Appendix 2: List of Figures

- Fig. 1 Sampling Locations for this study of Coeur d'Alene Lake, Idaho
- Fig. 2 Schematic of a process-interdependent water-quality model, of which this study is a component
- Fig. 3 Transverse heterogeneity has been observed in the subsurface chlorophyll maximum
- Fig. 4 Subsurface chlorophyll maximum associated with temperatures 10-13°C
- Fig. 5 Water-column dissolved-zinc concentrations
- Fig. 6 Ordinations of macroinvertebrate data by detrended correspondence analysis
- Fig. 7 A morphological response by Asterionella to elevated zinc-ion activities
- Fig. 8 Collection and Characterization of the Phytoplankton Community
- Fig. 9 Benthic Invertebrate Taxonomy
- Fig. 10- Culturing Set Up for Phytoplankton Bioassays

Appendix 3: List of Tables

- Table 1 Locations of water-column and benthic sampling in Coeur d'Alene Lake
- Table 2 Phytoplankton communities in Coeur d'Alene Lake sampled for bioassay isolations, 2004
- Table 3A- Mean site densities of major taxonomic or functional grouping
- Table 3B- Mean density and mean taxon richness of macroinvertebrates collected per year per site
- Table 4 Dissolved metals in the water column of Coeur d'Alene Lake
- Table 5 Dissolved nutrients in the water column of Coeur d'Alene Lake
- <u>Table 6</u> Experimental design for algal bioassay media associated with Coeur d'Alene Lake modeling studies.
- Table 7 Phytoplankton Culturing Data
- Table 8 Benthic chlorophyll and phaeophytin data in Coeur d'Alene Lake, 2005
- Table 9 Dissolved organic carbon (DOC) in the water column of Coeur d'Alene Lake
- Table 10 Trace metal concentrations and biomagnification factor in phytoplankton in Coeur d'Alene Lake

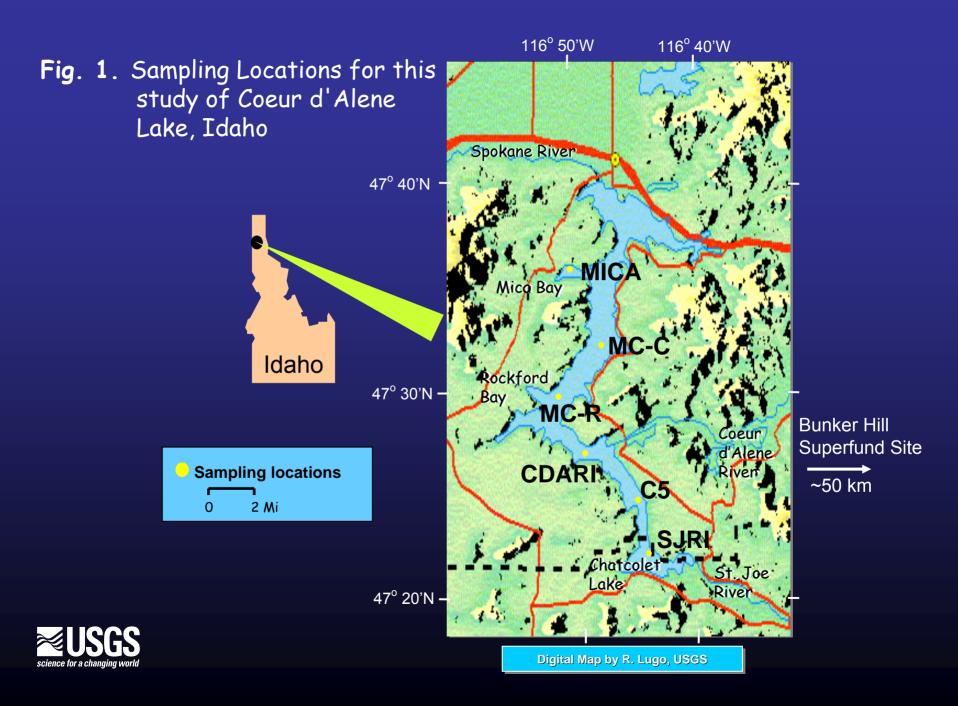
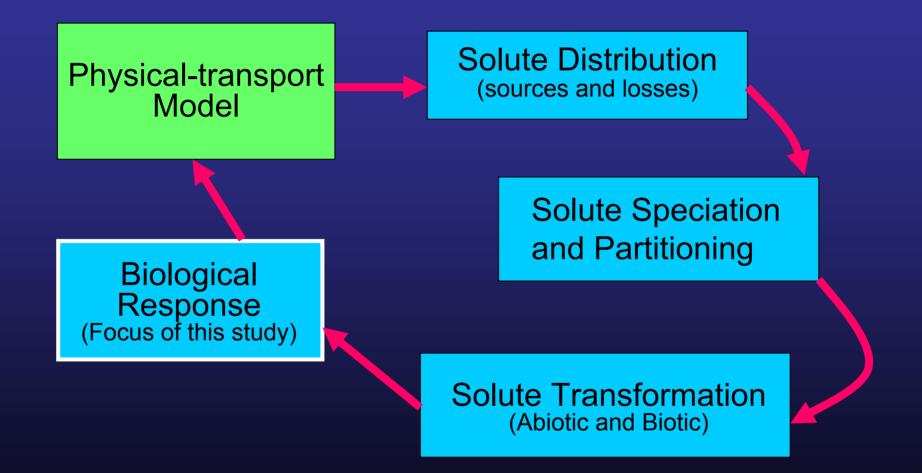
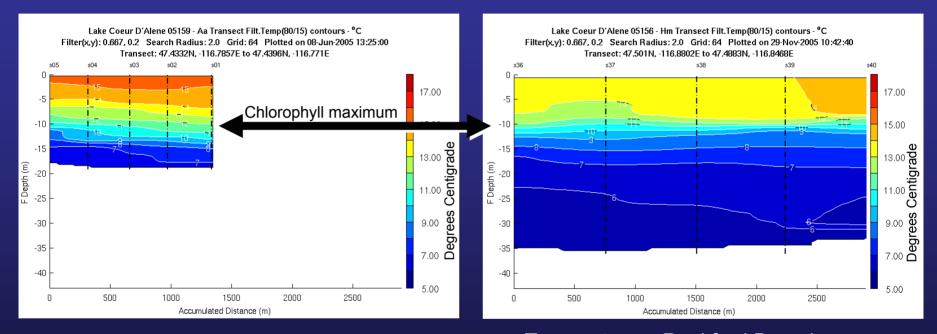
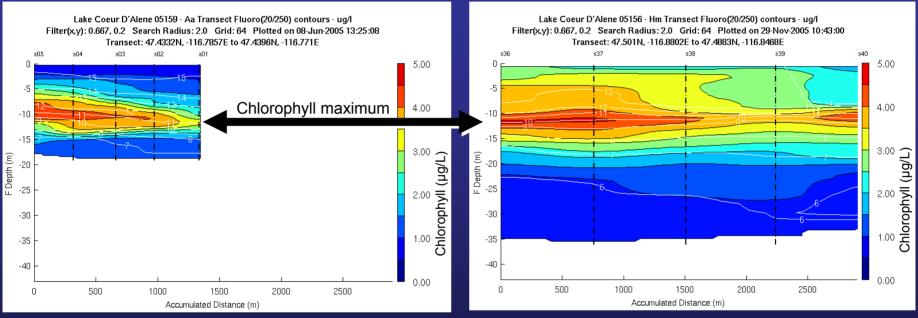




Fig. 2. Schematic of a process-interdependent water-quality model, of which this study is a component


Fig. 3. Temperature gradients with associated subsurface chlorophyll maximum between 10-13°C ^a

Transect near sampling site C5

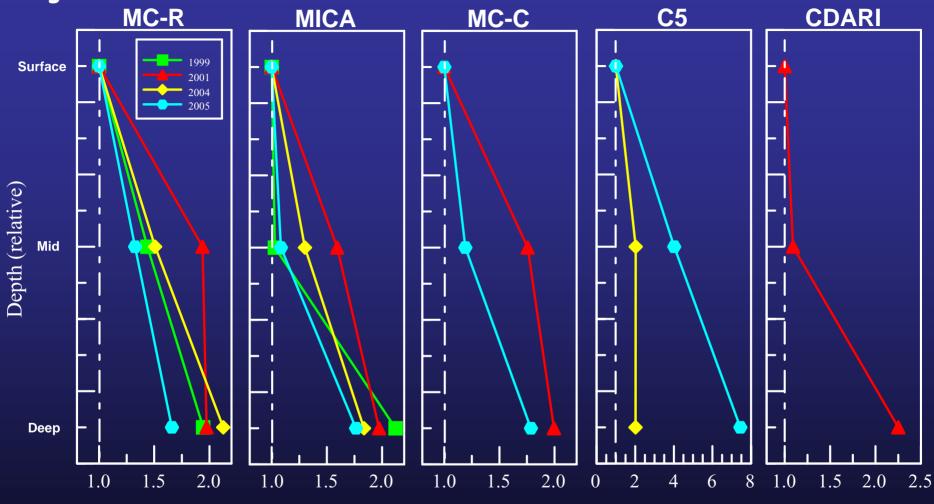

Transect near Rockford Bay, down gradient of the Coeur d'Alene River Plume

Fig. 4. Chlorophyll gradient with transverse heterogeneity observed in the subsurface chlorophyll maximum ^a

Transect near sampling site C5

Transect near Rockford Bay, down gradient of the Coeur d'Alene River Plume

Fig. 5. Water-column dissolved-zinc concentrations

Zinc concentration normalized to surface concentration (unitless) Errors bars are contained within symbols

Analyses by ICP-MS

Fig. 6. Within-year, among-site ordinations of log10(x+1) transformed macroinvertebrate data by detrended correspondence analysis for sampling years 2001, 2004 and 2005 (A,B and C, respectively). The replicate number appears as a subscript to the site code. <u>DCA axes</u> are described in the text.

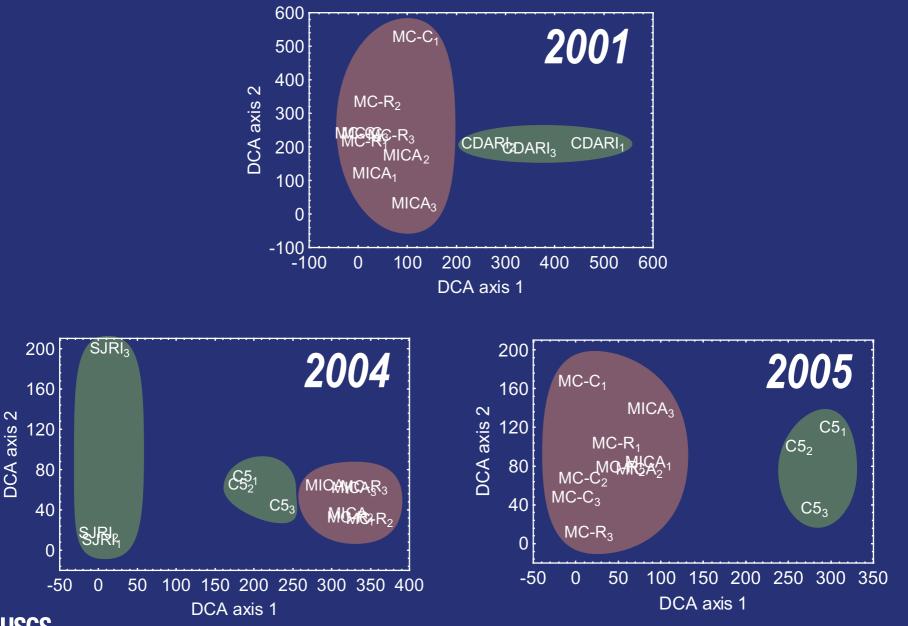
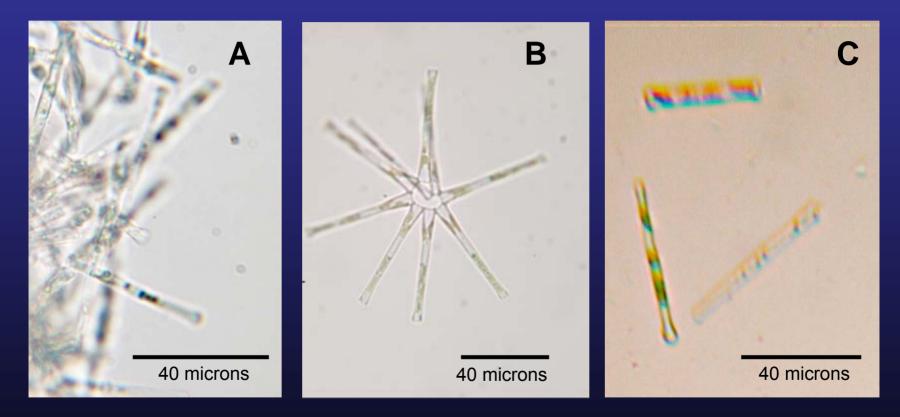



Fig. 7. A morphological response by *Asterionella* to elevated zinc-ion activities was observed. As zinc-ion activities increased, cells exhibited a clumping behavior (A) relative to controls with basal-zinc concentrations (B). To facilitate cell enumeration, sonication was used to break cell clumps apart (C).

Photomicrographs by S.V. Fend

Fig. 8. Collection and Characterization of the Phytoplankton Community

Sampling for Taxonomic and Water-quality Analyses

Sampling for Culturing Isolates

Fig. 9. Benthic Invertebrate Taxonomy

Fig. 10. Culturing Set Up for Phytoplankton Bioassays

Culturing in Chemically Defined Media Close Up of Fluoroethylene Polymer (Teflon) Culturing Vessel

Table 1. Locations of water-column and benthic sampling in Lake Coeur d'Alene (August 2001, June 2004 and June 2005)

August 7, 2001

Sampling Order	Sampling Time (24-hr)	Descriptive Name	Short Name	Latitude (North)	Longitude (West)	Depth (m)	Chl-a Max. Depth (m)	Sediment Texture	Comments
1st	0835	Mica Bay	MICA	47° 35.996'	116º 49.948'	28.5	n/a		
2nd	1000	Coeur d'Alene River Inlet	CDARI	47° 27.733'	116° 50.367'	20.0	n/a		
3rd	1100	Main Channel (near Rockford Bay)	MC-R	47° 30.376'	116º 51.508'	32.0	n/a		
4th	1210	Main Channel (near Carlin Bay)	MC-C	47° 33.425'	116° 47.462'	38.5	n/a		

<u>June</u> 28, 2004

Sampling	Sampling	Descriptive	Short	Latitude	Longitude	Depth	Chl-a Max.	Sediment	Comments
Order	Time (24-hr)	Name	Name	(North)	(West)	(m)	Depth (m)	Texture	
1st	0830	St. Joe River/Chatcolet Inlet	SJRI	47° 23.391'	116 [°] 45.256'	4.0	-	by dense macrophytic growth	Narrowing of the channel for the main transport between Chatcolet and CDA Lakes. At the side of the channel with abundance of submerged macrophytes. Additional phytoplankton samples taken here.
2nd	1000	Southern Main Channel	C5	47° 25.161'	116° 45.400'	17.0	8	(<1 cm thick) overlying silts and	Medial site between sites Chatcolet Lake and Coeur d'Alene River inlet (along the longitudinal concentration gradients where previous lake monitoring has been performed). Additional phytoplankton samples taken here.
3rd	1230	Main Channel (near Rockford Bay)	MC-R	47° 30.376'	116º 51.508'	33.5	13	manganese oxides over anoxic	The 3.5-meter depth discrepancy at this station between 2004 and 2005 can be explained by the precipitous slope of the lake bed in this region in combination with limitations of GPS accuracy and the rotation of the boat on its anchor.
4th	1400	Mica Bay	MICA	47° 35.996'	116 [°] 49.948'	27.3	12	Visibly similar to the MC-R site with unconsolidated, fine- grained oxic material overlying clay layer.	

June 10, 2005

Sampling	Sampling	Descriptive	Short	Latitude	Longitude	Depth	Chl-a Max.	Sediment	Comments
Order	Time (24-hr)	Name	Name	(North)	(West)	(m)	Depth (m)	Texture	
1st	0740	Southern Main Channel	C5	47° 25.161'	116° 45.400'	18.0	10	Flocculant iron-oxide surficial laye (<1 cm thick) overlying silts and clays.	r Medial site between sites Chatcolet Lake and Coeur d'Alene River inlet (along the longitudinal concentration gradients where previous lake monitoring has been performed). Additional phytoplankton samples taken here for Zn analyses.
2nd	1030	Main Channel (near Rockford Bay)	MC-R	47° 30.376'	116º 51.508'	30.0	15	Unconsolidated iron and manganese oxides over anoxic silts and clays	Check on the main-channel coring site. Depth profiling indicated a chlorophyll convergence zone here. Additional phytoplankton samples taken here for Zn analyses.
3rd	1145	Mica Bay	MICA	47° 35.996'	116° 49.948'	27.0	10	Visibly similar to the MC-R site with unconsolidated, fine- grained oxic material overlying clay layer.	
4th	1305	Main Channel (near Carlin Bay)	MC-C	47° 33.425'	116° 47.462'	36.0	12	Similar to MC-R site.	Depth profiling indicated chlorophyll transport and dilution in this strata from the convergence zone (MC-R).

Table 2. Coeur d'Alene Lake phytoplankton communities sampled on June 28, 2004 for bioassay isolations.

CYANOPHYTAAnabaena flos-aquaeAnabaena spiroides var. crassaAphanothece minutissima12Dactylococcopsis sp.Pseudanabaena limneticaSynechococcus capitatusWoronichinia klingaeCHRYSOPHYTA	A Density I 632.3 31.5 2590.4 13.5 1083.6 10.1 4.5 9 7.9 60.8	A Biovolume 74485 7916 8813.3 148.5 148.5 4551.1 1057.5 360.5 589.5	Density 1019.3 29.7 5211.6 31.5 29.3 258 2258 22.5 5.6 4.5	Biovolume 120073.5 11384.8 3648.1 346.5 445.4 1083.6 7087.5 586.3	C Density E 587.3 37.4 7869 36 36 593.4	Biovolume 69183.9 14055 5508.3 396 2492.3	438.6 13.5 12642 51.6	A Biovolume 307 121.5 99871.8 216.7	Density E 516 4.5 6966 180 77.4	Biovolume 361.2 40.5 55031.4 2556	C Density E 1548 4.5 6992	1083.6 40.5 55236.8
CYANOPHYTAAnabaena flos-aquaeAnabaena spiroides var. crassaAphanothece minutissima12Dactylococcopsis sp.Pseudanabaena limneticaSynechococcus capitatusWoronichinia klingaeCHRYSOPHYTAChromulina sp.Dinobryon bavaricumDinobryon cylindricum var. alpinumDinobryon divergensKephyrion sp.Mallomonas akrokomosMallomonas globosaMallomonas sp.Stelexomonas sp.Stelexomonas sp.Stelexomonas sp.Asterionella formosaAulacoseira granulata var. angustissimaAulacoseira sp.Aulacoseira sp.Sitzschia draveillensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	632.3 31.5 2590.4 13.5 1083.6 10.1 4.5 9 7.9	74485 7916 8813.3 148.5 4551.1 1057.5 360.5	1019.3 29.7 5211.6 31.5 29.3 258 2258 22.5 5.6	120073.5 11384.8 3648.1 346.5 445.4 1083.6 7087.5	587.3 37.4 7869 36 593.4	69183.9 14055 5508.3 396	438.6 13.5 12642 51.6	307 121.5 99871.8	516 4.5 6966 180	361.2 40.5 55031.4 2556	1548 4.5 6992	1083.6 40.5 55236.8
Anabaena flos-aquae12Anabaena spiroides var. crassa12Aphanothece minutissima12Dactylococcopsis sp.12Pseudanabaena limnetica12Synechococcus capitatus12Woronichinia klingae12CHRYSOPHYTA1Chromulina sp.1Dinobryon bavaricum1Dinobryon cylindricum var. alpinum1Dinobryon divergens1Kephyrion sp.1Mallomonas akrokomos1Mallomonas globosa1Mallomonas sp.2Stelexomonas sp.2Stelexomonas sp.2Aulacoseira granulata var. angustissima1Aulacoseira sp.3Aulacoseira sp.3Nitzschia draveillensis1Nitzschia sp.3Stephanodiscus agassizensis3Synedra rumpens var. fragilarioides3Synedra ulna var. ulna3Tabellaria fenestrata4Urosolenia eriensis4	31.5 2590.4 13.5 1083.6 10.1 4.5 9 7.9	7916 8813.3 148.5 4551.1 1057.5 360.5	29.7 5211.6 31.5 29.3 258 22.5 5.6	11384.8 3648.1 346.5 445.4 1083.6 7087.5	37.4 7869 36 593.4	14055 5508.3 396	13.5 12642 51.6	121.5 99871.8	4.5 6966 180	40.5 55031.4 2556	4.5 6992	40.5 55236.8
Anabaena spiroides var. crassaAphanothece minutissima12Dactylococcopsis sp.12Pseudanabaena limnetica12Synechococcus capitatus1Woronichinia klingae1CHRYSOPHYTA1Chromulina sp.1Dinobryon bavaricum1Dinobryon cylindricum var. alpinum1Dinobryon divergens1Kephyrion skujae1Kephyrion sp.1Mallomonas akrokomos1Mallomonas sp.2Salpingoeca sp.2Stelexomonas sp.2Stelexomonas sp.2Aulacoseira italica var. angustissima2Aulacoseira sp.3Aulacoseira sp.3Nitzschia draveillensis1Nitzschia sp.5Stephanodiscus agassizensis5Synedra rumpens var. fragilarioides5Synedra ulna var. ulna1Tabellaria fenestrata1Urosolenia eriensis1	31.5 2590.4 13.5 1083.6 10.1 4.5 9 7.9	7916 8813.3 148.5 4551.1 1057.5 360.5	29.7 5211.6 31.5 29.3 258 22.5 5.6	11384.8 3648.1 346.5 445.4 1083.6 7087.5	37.4 7869 36 593.4	14055 5508.3 396	13.5 12642 51.6	121.5 99871.8	4.5 6966 180	40.5 55031.4 2556	4.5 6992	40.5 55236.8
Aphanothece minutissima12Dactylococcopsis sp.IPseudanabaena limneticaISynechococcus capitatusIWoronichinia klingaeICHRYSOPHYTAIChromulina sp.1Dinobryon bavaricumIDinobryon cylindricum var. alpinumIDinobryon divergensKephyrion skujaeKephyrion sp.IMallomonas akrokomosIMallomonas globosaIMallomonas sp.Stelexomonas sp.Stelexomonas sp.IStelexomonas sp.IAulacoseira granulata var. angustissimaIAulacoseira sp.IAulacoseira sp.IAulacoseira sp.INitzschia draveillensisINitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaITabellaria fenestrataIUrosolenia eriensisI	2590.4 13.5 1083.6 10.1 4.5 9 7.9	8813.3 148.5 4551.1 1057.5 360.5	5211.6 31.5 29.3 258 22.5 5.6	3648.1 346.5 445.4 1083.6 7087.5	7869 36 593.4	5508.3 396	13.5 12642 51.6	121.5 99871.8	4.5 6966 180	40.5 55031.4 2556	4.5 6992	40.5 55236.8
Dactylococcopsis sp.Pseudanabaena limneticaSynechococcus capitatusWoronichinia klingaeCHRYSOPHYTAChromulina sp.Dinobryon bavaricumDinobryon cylindricum var. alpinumDinobryon divergensKephyrion sp.Mallomonas akrokomosMallomonas globosaMallomonas sp.Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira sp.Aulacoseira sp.Sitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	13.5 1083.6 10.1 4.5 9 7.9	148.5 4551.1 1057.5 360.5	31.5 29.3 258 22.5 5.6	346.5 445.4 1083.6 7087.5	36 593.4	396	13.5 12642 51.6	121.5 99871.8	4.5 6966 180	40.5 55031.4 2556	4.5 6992	40.5 55236.8
Pseudanabaena limneticaSynechococcus capitatusWoronichinia klingaeCHRYSOPHYTAChromulina sp.Dinobryon bavaricumDinobryon cylindricum var. alpinumDinobryon cylindricum var. alpinumDinobryon divergensKephyrion skujaeKephyrion sp.Mallomonas akrokomosMallomonas globosaMallomonas sp.Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira sp.Aulacoseira sp.Sitzschia draveillensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	1083.6 10.1 4.5 9 7.9	4551.1 1057.5 360.5	29.3 258 22.5 5.6	445.4 1083.6 7087.5	593.4		12642 51.6	99871.8	6966 180	55031.4 2556	6992	55236.8
Synechococcus capitatusWoronichinia klingaeCHRYSOPHYTAChromulina sp.1Dinobryon bavaricum1Dinobryon cylindricum var. alpinumDinobryon divergensKephyrion skujaeKephyrion sp.Mallomonas akrokomosMallomonas globosaMallomonas sp.Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira sp.Aulacoseira sp.Aulacoseira sp.Stephanodiscus agassizensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	10.1 4.5 9 7.9	1057.5 360.5	258 22.5 5.6	1083.6 7087.5		2492.3	51.6		180	2556		
Woronichinia klingaeCHRYSOPHYTAChromulina sp.1Dinobryon bavaricum1Dinobryon cylindricum var. alpinum1Dinobyron divergens1Kephyrion skujae1Kephyrion sp.1Mallomonas akrokomos1Mallomonas globosa1Mallomonas sp.2Salpingoeca sp.1Stelexomonas sp.1BACILLARIOPHYTA1Asterionella formosa1Aulacoseira granulata var. angustissima1Aulacoseira sp.1Aulacoseira sp.1Stephanodiscus agassizensis1Nitzschia draveillensis1Nitzschia sp.2Stephanodiscus agassizensis2Synedra rumpens var. fragilarioides2Synedra ulna var. ulna1Tabellaria fenestrata1Urosolenia eriensis1	10.1 4.5 9 7.9	1057.5 360.5	22.5 5.6	7087.5		2492.3	51.6		180	2556		
Chromulina sp.1Dinobryon bavaricumDinobryon cylindricum var. alpinumDinobyron divergensKephyrion skujaeKephyrion sp.Mallomonas akrokomosMallomonas globosaMallomonas globosaMallomonas globosaMallomonas sp.Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira sp.Aulacoseira sp.Aulacoseira sp.Stephanodiscus agassizensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	10.1 4.5 9 7.9	1057.5 360.5	22.5 5.6	7087.5		2492.3		246.7	77 /			
Dinobryon bavaricumImage: Constraint of the second state of t	10.1 4.5 9 7.9	1057.5 360.5	22.5 5.6	7087.5		2492.3		246 7	77.4			
Dinobryon cylindricum var. alpinumDinobryon divergensKephyrion skujaeKephyrion sp.Mallomonas akrokomosMallomonas globosaMallomonas globosaMallomonas sp.Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira sp.Aulacoseira sp.Aulacoseira sp.Stizschia draveillensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	4.5 9 7.9	360.5	5.6		6.8			210.7	11.4	325.1	258	1083.6
Dinobyron divergensKephyrion skujaeKephyrion sp.Mallomonas akrokomosMallomonas globosaMallomonas globosaMallomonas sp.Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira italica var. angustissimaAulacoseira sp.Aulacoseira sp.Aulacoseira sp.Aulacoseira sp.Aulacoseira sp.StelexononesisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	4.5 9 7.9	360.5	5.6		6.8		5.6	953.1	7.9	1344.6	18	3063.6
Kephyrion skujaeKephyrion sp.Mallomonas akrokomosMallomonas globosaMallomonas globosaMallomonas sp.Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira italica var. angustissimaAulacoseira sp.Aulacoseira sp.Aulacoseira sp.Aulacoseira sp.Aulacoseira sp.StelexononesisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	4.5 9 7.9	360.5		586.3	6.8						9	2835
Kephyrion sp.Mallomonas akrokomosMallomonas globosaMallomonas globosaMallomonas sp.Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira italica var. tenuissimaAulacoseira sp.Aulacoseira sp.Aulacoseira sp.Aulacoseira sp.Aulacoseira sp.Stephanodiscus agassizensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	9 7.9		4.5		0.0	712	30.4	3182.9	25.9	2711.7	18	1884.6
Mallomonas akrokomosMallomonas globosaMallomonas globosaMallomonas sp.Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira italica var. tenuissimaAulacoseira sp.Aulacoseira sp.Aulacoseira sp.Aulacoseira sp.Aulacoseira sp.Aulacoseira sp.Stephanodiscus agassizensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. chaseanaSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	9 7.9		4.5				13.5	884.3	1.5	150.0		
Mallomonas globosaMallomonas sp.Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira italica var. tenuissimaAulacoseira sp.Aulacoseira sp.Aulacoseira sp.Aulacoseira sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	9 7.9		4.5	200 5	5	400 F	4.5	92.7	4.5	150.8		
Mallomonas sp.Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira italica var. tenuissimaAulacoseira sp.Aulacoseira subarcticaFragilaria crotonensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	7.9	589.5		360.5	5	400.5	0.5	52.4	1 1	204.0	0.5	12/
Salpingoeca sp.Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira italica var. tenuissimaAulacoseira sp.Aulacoseira subarcticaFragilaria crotonensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	7.9	589.5							1.1 0.5	294.9 481.7	0.5	134
Stelexomonas sp.BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira italica var. tenuissimaAulacoseira sp.Aulacoseira subarcticaFragilaria crotonensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	7.9	000.0	4.5	294.8	4.5	294.8	36	741.6	45	927	54	92.7
BACILLARIOPHYTAAsterionella formosaAulacoseira granulata var. angustissimaAulacoseira italica var. tenuissimaAulacoseira sp.Aulacoseira subarcticaFragilaria crotonensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis			4.0	234.0	4.0	234.0	30	0.1+1	45 15.8	764.7	J4	52.1
Asterionella formosa Aulacoseira granulata var. angustissima Aulacoseira italica var. tenuissima Aulacoseira sp. Aulacoseira subarctica Fragilaria crotonensis Nitzschia draveillensis Nitzschia sp. Stephanodiscus agassizensis Synedra rumpens var. fragilarioides Synedra ulna var. chaseana Synedra ulna var. ulna Tabellaria fenestrata Urosolenia eriensis									10.0			
Aulacoseira granulata var. angustissimaAulacoseira italica var. tenuissimaAulacoseira sp.Aulacoseira subarcticaFragilaria crotonensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis		1738	12.4	2728	4.5	990	757.1	413830.9	912.4	498717.8	964.1	526977.1
Aulacoseira italica var. tenuissimaAulacoseira sp.Aulacoseira subarcticaFragilaria crotonensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. chaseanaSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	60.8	1738	12.4	2728								
Aulacoseira sp.Aulacoseira subarcticaFragilaria crotonensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. chaseanaSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	00.0	31628.2	28.1	9110	6.8 25	4005.2 13005	33.8	13300.3	22.5	11927.3	1.4	742.1
Aulacoseira subarcticaFragilaria crotonensisNitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. chaseanaSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis		51020.2	4.5	793.4	3.4	599.4						
Fragilaria crotonensisINitzschia draveillensisINitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. chaseanaSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensisI			10	18300	0.4	555.4	3.6	4523.8				
Nitzschia draveillensisNitzschia sp.Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. chaseanaSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis			45	47250			24.8	24180	60.8	59280	15.8	15405
Nitzschia sp.Image: Stephanodiscus agassizensisSynedra rumpens var. fragilarioidesSynedra ulna var. chaseanaSynedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis	4.5	351.5	4.5	351.5	4.5	351.5	2110		0010	00200	2.3	276
Synedra rumpens var. fragilarioides Synedra ulna var. chaseana Synedra ulna var. ulna Tabellaria fenestrata Urosolenia eriensis							0.5	120.2				
Synedra ulna var. chaseana Synedra ulna var. ulna Tabellaria fenestrata Urosolenia eriensis	36	14137.2	4.5	2368	9	4735.8	0.5	125.7			4.5	865.8
Synedra ulna var. ulnaTabellaria fenestrataUrosolenia eriensis							9	2430	7.9	2133	7.9	2465.8
Tabellaria fenestrata Urosolenia eriensis									1.1	4963.8		
Urosolenia eriensis	0.5	1762										
									4.5	7776		
	31.5	11907	18	6804	18	6804	13.5	15506.1	13.5	15506.1	13.5	15506.1
	364.5	10000 7	400 F	11002.0	202 5	10505.2	040 5	40074.0	1710	25220	4054	05770 (
Chrysochromulina sp.	304.5	10096.7	400.5	11093.9	382.5	10595.3	940.5	19374.3	1710	35226	1251	25770.6
СКҮРТОРНҮТА												
Campylomonas marsonii							22.5	9951.8	11.3	4975.9	1.1	486.5
Campylomonas sp.	4.5	1734.3					67.5	86514.8	58.5	74979.5	37.1	47551
Cryptomonas rostratiformis											0.5	2252.4
Plagioselmis nannoplanctica	139.5	25500.6	162	29613.6	121.5	22210.2	94.5	25212.5	58.5	15607.8	94.5	25212.6
Plagioselmis sp.	90	1530	45	765	27	459	36	504	36	504	22.5	315
DINOPHYTA												
Peridinium sp.											0.5	32724
EUGLENOPHYTA												
Trachelomonas hispida var. punctata	0.5	1513.2	0.5	1513.2								
CHLOROPHYTA Ankyra judayi	4.5	174.6	1.1	45.1								
	4.5 154.8	650.2	1.1	45.1	25.8	108.4	4.5	18.9	4.5	18.9	9	37.8
Chlorella minutissima	1548	6501.6	1548	6501.6	1419	5959.8	258	1083.6	258	1083.6	258	1083.6
	567.6	908.2	309.6	495.4	258	412.8	1186.8	1068.1	516	464.4	387	348.3
Crucigenia tetrapedia	9	272.7	18	370.8	4.5	92.7			18	545.4	001	5.00
Crucigeniella apiculata	108	3272.4	18	730.8	36	1090.8	18	424.8				
Dictyosphaerium pulchellum									6.8	769.1		
Euastrum boldtii	4.5	2538.5			1.1	623.5					1.1	620.5
Kirchneriella irregularis	18	151.2			4.5	37.8						
Koliella sp.	1.1	82.9		100								
Monoraphidium minutum			1.1	100			0.0	474.0				
Pediastrum tetras Pseudodictyosphaerium sp.	243	1020.6	414	1738.8	243	1020.6	3.6	471.6			72	302.4
Raphidocelis microscopica	243	67.5	22.5	67.5	40.5	121.5					12	302.4
Scenedesmus arcuatus	22.0	07.5	4.5	326.7	40.0	121.0						
Scenedesmus communis			-1.0	020.1	9	339.3						
Scenedesmus ecornis	18	189			Ŭ	200.0	9	198				
Scenedesmus intermedius	-				3.4	89.1	4.5	169.7				
TOTAL	47044	045050	0745	286492								
TOTAL:	17814	215650	9715		11786	166695	16724	725433	11545	799468	12046	764397

Table 3A. Mean macroinvertebrate site densities (individuals per square meter) of major taxonomic or functional grouping for three sampling years.

		200	1			20	04			20	05	
	CDARI	MC-R	MC-C	MICA	SJI	C5	MC-R	MICA	C5	MC-R	MC-C	MICA
Cnidaria					69							
Platyhelminthes	14		28	14	25	19	176		57	113	76	132
Nematoda		84	70		252	120	95	13	25	50	57	6
Ectoprocta									57			13
Naididae					1462	6						
Tubificidae			140	112	1134	359	13	82	302			6
Hirudinea					252							
Microcrustacea (benthic)				224	139	309	170	592	258	113	50	334
Microcrustacea (planktonic)	154	28	42	154	630	410	2054	1827		384	554	706
Macrocrustacea					246		6	6	13			
Ephemeroptera					82	6	6	19	6			
Trichoptera					50							
Tanypodinae	238				1405	19			32	6		
Prodiamesinae								13				6
Diamesinae	14					25			13	13		57
Orthocladinae		154	14	196	32		3276	2596	6	668	1210	3245
Chironomini	280			14	1499	195	19		214	6	13	63
Tanytarsini	14	14		1121	321		76	25		6	38	
Chaoboridae						6						
Ceratopogonidae					145	6		6				19
Acari					57		32	38		38	38	107
Mollusca					233	38			50			
Mean density (individuals m ⁻²)	714	280	294	1835	8033	1518	5922	5279	1033	1399	2035	4694

Table 3B. Mean density (individuals per square meter) and mean taxon richness of macroinvertebrates collected per site during three sampling years (2001, 2004, 2005)

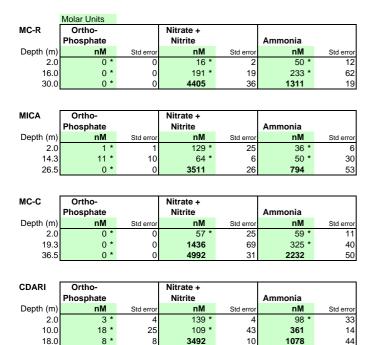
		Mean density					
	Site	(individuals per	Standard	Coefficient	Mean	Standard	Coefficient
Year	Name	square meter)	Deviation	of variation	Richness	Deviation	of variation
2001	CDARI	714	426.5	59.7	4.0	2.00	50.0
	MC-R	280	194.1	69.3	3.0	0.00	0.0
	MC-C	294	168.1	57.1	4.3	2.08	48.0
	MICA	1835	2524.5	137.6	5.7	2.89	50.9
2004	SJI	8033	3733.4	46.5	42.7	9.07	21.3
	C5	1518	1328.0	87.5	12.7	4.04	31.9
	MC-R	5922	1956.5	33.0	11.0	2.00	18.2
	MICA	5279	3660.7	69.3	13.0	3.00	23.1
2005	C5	1033	325.4	31.5	12.0	1.00	8.3
	MC-R	1399	1371.8	98.1	8.3	3.06	36.7
	MC-C	2035	779.8	38.3	8.3	1.53	18.3
	MICA	4694	1524.0	32.5	10.7	0.58	5.4

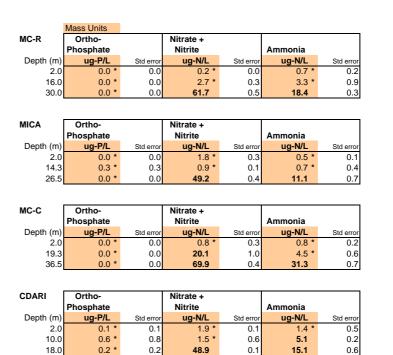
Table 4. Dissolved Metals in the Water Column - Coeur d'Alene Lake (August 2001, June 2004 & June 2005)

2001

MC-R	Mass units													
[95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn ppb	Interval	Cu ppb	Interval	Cd ppb	Interval	Pb ppb	Interval	Fe ppb	Interval	Mn ppb	Interval	Ni ppb	Interval
2.0	48.6	0.2	0.458	0.003	0.207	0.006	0.083	0.001	21.8	0.1	1.573	0.005	0.182	0.007
16.0	94.1	0.3	0.438	0.003	0.232	0.001	0.041	0.001	19.6	0.5	0.493	0.003	0.240	0.021
30.0	95.9	0.4	0.477	0.004	0.276	0.004	0.028	0.001	20.1	0.4	0.220	0.002	0.267	0.018
MICA				1		1								
Denth (m)	7	95% Conf.	Ou much	95% Conf.	0.1	95% Conf.	Dh. and	95% Conf.	E	95% Conf.	Max and b	95% Conf.	MI work	95% Conf.
Depth (m) 2.0	Zn ppb 45.6	Interval 0.1	Cu ppb 0.451	Interval 0.005	Cd ppb 0.175	Interval 0.003	Pb ppb 0.063	Interval 0.001	Fe ppb 20.6	Interval 0.6	Mn ppb 0.774	Interval 0.007	Ni ppb 0.205	Interval 0.007
14.3	45.6	0.1	0.451	0.005	0.175	0.003	0.083	0.001	19.1	0.8	0.849	0.007	0.205	0.007
26.5	89.8	0.0	0.477	0.001	0.262	0.002	0.028	0.000	19.7	0.4	0.247	0.000	0.276	0.003
MC-C														
		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn ppb	Interval	Cu ppb	Interval	Cd ppb	Interval	Pb ppb	Interval	Fe ppb	Interval	Mn ppb	Interval	Ni ppb	Interval
2.0	50.8	0.1	0.455	0.004	0.210	0.003	0.060	0.002	20.2	0.2	1.670	0.001	0.167	0.009
19.3 36.5	89.2	0.2 0.6	0.435 0.484	0.005	0.232	0.004	0.028	0.000	20.0	0.8 0.2	0.290	0.001	0.228	0.016
36.5	101.3	0.6	0.484	0.003	0.279	0.004	0.020	0.000	20.8	0.2	0.154	0.000	0.258	0.010
CDARI														
ODAIN [95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn ppb	Interval	Cu ppb	Interval	Cd ppb	Interval	Pb ppb	Interval	Fe ppb	Interval	Mn ppb	Interval	Ni ppb	Interval
2.0	44.4	0.1	0.473	0.006	0.192	0.001	0.369	0.001	30.0	0.6	2.752	0.026	0.313	0.010
10.0	48.4	0.0	0.434	0.001	0.182	0.002	0.098	0.001	22.1	0.1	0.322	0.000	0.247	0.011
18.0	99.8	0.6	0.498	0.004	0.235	0.005	0.057	0.000	22.0	0.3	11.116	0.040	0.236	0.011
MC-R	Molar units			1		1								
Denth (m)	7	95% Conf.	0	95% Conf.	Cd nM	95% Conf.	DhM	95% Conf.	F	95% Conf.	Mar M	95% Conf.	NI M	95% Conf.
Depth (m) 2.0	Zn nM 743	Interval 4	Cu nM 7.20	Interval 0.05	1.84	Interval 0.05	Pb nM 0.40	Interval 0.00	Fe nM 390	Interval 2	Mn nM 28.64	Interval 0.10	Ni nM 3.11	Interval 0.11
16.0	1439	5	6.90	0.05	2.07	0.03	0.40	0.00	350	8	8.98	0.10	4.09	0.36
30.0	1466	5	7.51	0.07	2.45	0.03	0.13	0.00	361	6	4.01	0.03	4.55	0.30
00.0	1100	°,		0.07	2.10	0.00	0.10	0.00		•	-1101	0.01	-1100	0.00
MICA														
		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn nM	Interval	Cu nM	Interval	Cd nM	Interval	Pb nM	Interval	Fe nM	Interval	Mn nM	Interval	Ni nM	Interval
2.0	697	2	7.10	0.07	1.55	0.02	0.31	0.01	368	11	14.09	0.13	3.50	0.12
14.3	1111	3	6.96	0.08	1.86	0.02	0.15	0.00	343	1	15.45	0.14	4.24	0.09
26.5	1374	0	7.51	0.02	2.33	0.03	0.14	0.00	352	7	4.50	0.07	4.70	0.21
MC-C														
		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn nM	Interval	Cu nM	Interval	Cd nM	Interval	Pb nM	Interval	Fe nM	Interval	Mn nM	Interval	Ni nM	Interval
2.0	777	1	7.15	0.07	1.87	0.02	0.29	0.01	361	4	30.40	0.02	2.84	0.16
19.3	1365	4	6.84	0.08	2.06	0.03	0.14	0.00	358	14	5.28	0.02	3.88	0.27
36.5	1549	8	7.62	0.05	2.48	0.03	0.10	0.00	373	3	2.81	0.00	4.40	0.16
CDARI														
		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn nM	Interval	Cu nM	Interval	Cd nM	Interval	Pb nM	Interval	Fe nM	Interval	Mn nM	Interval	Ni nM	Interval
2.0 10.0	679 740	2 1	7.45 6.83	0.09 0.02	1.71 1.62	0.01 0.02	1.78 0.47	0.01 0.01	537 396	11 2	50.09 5.86	0.48	5.34 4.20	0.17 0.19
10.0	1527	10	6.83 7.84	0.02	2.09	0.02	0.47	0.01	396	2	202.33	0.00	4.20	0.19
10.0	1927	10	7.04	0.06	2.09	0.05	0.27	0.00	393	5	202.33	0.73	4.02	0.19
-														

2004


		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn ppb	Interval	Cu ppb	Interval	Cd ppb	Interval	Pb ppb	Interval	Fe ppb	Interval	Mn ppb	Interval	Ni ppb	Interval
2.0	37.7	0.1	0.340	0.008	0.198	0.002	0.201	0.001	16.6	0.2	0.080	0.001	0.141	0.008
16.8	56.8	0.6	0.384	0.002	0.245	0.004	0.060	0.001	10.9	0.6	0.109	0.000	0.189	0.00
31.5	80.0	0.1	0.484	0.003	0.306	0.002	0.159	0.001	17.2	0.4	0.163	0.002	0.272	0.009
		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn ppb	Interval	Cu ppb	Interval	Cd ppb	Interval	Pb ppb	Interval	Fe ppb	Interval	Mn ppb	Interval	Ni ppb	Interval
2.0	43.2	0.2	0.391	0.007	0.214	0.000	0.082	0.001	11.9	0.3	0.072	0.001	0.160	0.00
13.7 25.3	56.2 79.3	0.4 0.3	0.385 0.493	0.003 0.004	0.236	0.001 0.001	0.042 0.134	0.001 0.001	10.4 16.4	0.1 0.4	0.071 0.169	0.001	0.180 0.267	0.00
25.5	79.5	0.3	0.493	0.004	0.305	0.001	0.134	0.001	10.4	0.4	0.109	0.000	0.207	0.00
5		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn ppb	Interval	Cu ppb	Interval	Cd ppb	Interval	Pb ppb	Interval	Fe ppb	Interval	Mn ppb	Interval	Ni ppb	Interval
2.0	16.6	0.0	0.256	0.001	0.083	0.001	0.182	0.002	20.5	0.2	0.101	0.001	0.101	0.004
8.5	33.7	0.1	0.296	0.002	0.166	0.001	0.128	0.001	12.7	0.2	0.076	0.000	0.124	0.00
15.0	33.5	0.2	0.281	0.001	0.126	0.001	0.094	0.002	17.9	0.5	0.157	0.001	0.119	0.007
JRI														
JRI		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn ppb	Interval	Cu ppb	Interval	Cd ppb	Interval	Pb ppb	Interval	Fe ppb	Interval	Mn ppb	Interval	Ni ppb	Interval
2.0	<dl< td=""><td></td><td>0.214</td><td>0.003</td><td><dl< td=""><td></td><td>0.013</td><td>0.000</td><td>34.9</td><td>0.3</td><td>0.106</td><td>0.003</td><td>0.060</td><td>0.012</td></dl<></td></dl<>		0.214	0.003	<dl< td=""><td></td><td>0.013</td><td>0.000</td><td>34.9</td><td>0.3</td><td>0.106</td><td>0.003</td><td>0.060</td><td>0.012</td></dl<>		0.013	0.000	34.9	0.3	0.106	0.003	0.060	0.012
MC-R	Molar units													
[95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		
Depth (m)	Zn nM	Interval	Cu nM	Interval	Cd nM	Interval	Pb nM	Interval	Fe nM	Interval	Mn nM	Interval	Ni nM	Interval
2.0	Zn nM 576	Interval 2	5.35	Interval 0.12	1.76	Interval 0.02	0.97	Interval 0.01	298	Interval 4	1.46	Interval 0.02	2.40	Interval 0.14
2.0 16.8	Zn nM 576 868	Interval 2 9	5.35 6.05	Interval 0.12 0.03	1.76 2.18	Interval 0.02 0.04	0.97 0.29	Interval 0.01 0.00	298 196	Interval 4 11	1.46 1.98	Interval 0.02 0.00	2.40 3.23	0.14
2.0	Zn nM 576	Interval 2	5.35	Interval 0.12	1.76	Interval 0.02	0.97	Interval 0.01	298	Interval 4	1.46	Interval 0.02	2.40	Interval 0.14 0.02
2.0 16.8 31.5	Zn nM 576 868	Interval 2 9 1	5.35 6.05	Interval 0.12 0.03 0.05	1.76 2.18	Interval 0.02 0.04 0.02	0.97 0.29	Interval 0.01 0.00 0.01	298 196	Interval 4 11 6	1.46 1.98	Interval 0.02 0.00 0.04	2.40 3.23	Interval 0.14 0.02 0.10
2.0 16.8 31.5	Zn nM 576 868 1224	Interval 2 9 1 95% Conf.	5.35 6.05 7.61	Interval 0.12 0.03 0.05 95% Conf.	1.76 2.18 2.73	Interval 0.02 0.04 0.02 95% Conf.	0.97 0.29 0.77	Interval 0.01 0.00 0.01 95% Conf.	298 196 308	Interval 4 11 6 95% Conf.	1.46 1.98 2.97	Interval 0.02 0.00 0.04 95% Conf.	2.40 3.23 4.64	Interval 0.14 0.02 0.10 95% Conf.
2.0 16.8 31.5 MICA	Zn nM 576 868 1224 Zn nM	Interval 2 9 1 95% Conf. Interval	5.35 6.05 7.61 Cu nM	Interval 0.12 0.03 0.05 95% Conf. Interval	1.76 2.18 2.73 Cd nM	Interval 0.02 0.04 0.02 95% Conf. Interval	0.97 0.29 0.77 Pb nM	Interval 0.01 0.00 0.01 95% Conf. Interval	298 196 308 Fe nM	Interval 4 11 6 95% Conf. Interval	1.46 1.98 2.97 Mn nM	Interval 0.02 0.00 0.04 95% Conf. Interval	2.40 3.23 4.64 Ni nM	Interval 0.14 0.02 0.16 95% Conf. Interval
2.0 16.8 31.5 MICA Depth (m) 2.0	Zn nM 576 868 1224 Zn nM 661	Interval 2 9 1 95% Conf. Interval 4	5.35 6.05 7.61 Cu nM 6.15	Interval 0.12 0.03 0.05 95% Conf. Interval 0.12	1.76 2.18 2.73 Cd nM 1.91	Interval 0.02 0.04 0.02 95% Conf. Interval 0.00	0.97 0.29 0.77 Pb nM 0.40	Interval 0.01 0.00 0.01 95% Conf. Interval 0.01	298 196 308 Fe nM 213	Interval 4 11 6 95% Conf. Interval 5	1.46 1.98 2.97 <u>Mn nM</u> 1.31	Interval 0.02 0.00 0.04 95% Conf. Interval 0.02	2.40 3.23 4.64 <u>Ni nM</u> 2.73	Interval 0.14 0.02 0.11 95% Conf. Interval 0.1
2.0 16.8 31.5 MICA	Zn nM 576 868 1224 Zn nM	Interval 2 9 1 95% Conf. Interval	5.35 6.05 7.61 Cu nM	Interval 0.12 0.03 0.05 95% Conf. Interval	1.76 2.18 2.73 Cd nM	Interval 0.02 0.04 0.02 95% Conf. Interval	0.97 0.29 0.77 Pb nM	Interval 0.01 0.00 0.01 95% Conf. Interval	298 196 308 Fe nM	Interval 4 11 6 95% Conf. Interval	1.46 1.98 2.97 Mn nM	Interval 0.02 0.00 0.04 95% Conf. Interval	2.40 3.23 4.64 Ni nM	Interval 0.14 0.02 0.16 95% Conf. Interval 0.14
2.0 16.8 31.5 MICA Depth (m) 2.0 13.7 25.3	Zn nM 576 868 1224 Zn nM 661 860	Interval 2 9 1 95% Conf. Interval 4 5	5.35 6.05 7.61 <u>Cu nM</u> 6.15 6.06	Interval 0.12 0.03 0.05 95% Conf. Interval 0.12 0.04	1.76 2.18 2.73 Cd nM 1.91 2.10	Interval 0.02 0.04 0.02 95% Conf. Interval 0.00 0.01	0.97 0.29 0.77 Pb nM 0.40 0.20	Interval 0.01 0.00 0.01 95% Conf. Interval 0.01 0.00	298 196 308 Fe nM 213 186	Interval 4 11 6 95% Conf. Interval 5 1	1.46 1.98 2.97 Mn nM 1.31 1.28	Interval 0.02 0.00 0.04 95% Conf. Interval 0.02 0.02	2.40 3.23 4.64 Ni nM 2.73 3.06	Interval 0.14 0.02 0.11 95% Conf. Interval 0.11 0.14
2.0 16.8 31.5 MICA Depth (m) 2.0 13.7 25.3	Zn nM 576 868 1224 Zn nM 661 860	Interval 2 9 1 95% Conf. Interval 4 5 4	5.35 6.05 7.61 <u>Cu nM</u> 6.15 6.06	Interval 0.12 0.03 0.05 95% Conf. Interval 0.12 0.04 0.06	1.76 2.18 2.73 Cd nM 1.91 2.10	Interval 0.02 0.04 0.02 95% Conf. Interval 0.00 0.01 0.01	0.97 0.29 0.77 Pb nM 0.40 0.20	Interval 0.01 0.00 0.01 95% Conf. Interval 0.01 0.00 0.00	298 196 308 Fe nM 213 186	Interval 4 11 6 95% Conf. Interval 5 1 7	1.46 1.98 2.97 Mn nM 1.31 1.28	Interval 0.02 0.00 0.04 95% Conf. Interval 0.02 0.02 0.01	2.40 3.23 4.64 Ni nM 2.73 3.06	Interval 0.14 0.00 0.11 95% Conf. Interval 0.14 0.14
2.0 16.8 31.5 MICA Depth (m) 2.0 13.7 25.3	Zn nM 576 868 1224 Zn nM 661 860 1213	Interval 2 9 1 95% Conf. Interval 4 5 4 95% Conf.	5.35 6.05 7.61 <u>Cu nM</u> 6.15 6.06 7.76	Interval 0.12 0.03 0.05 95% Conf. Interval 0.12 0.04 0.06 95% Conf.	1.76 2.18 2.73 <u>Cd nM</u> 1.91 2.10 2.71	Interval 0.02 0.04 0.02 95% Conf. Interval 0.00 0.01 0.01 95% Conf.	0.97 0.29 0.77 Pb nM 0.40 0.20 0.65	Interval 0.01 0.00 0.01 95% Conf. Interval 0.01 0.00 0.000 95% Conf.	298 196 308 Fe nM 213 186 293	Interval 4 11 6 95% Conf. Interval 5 1 7 95% Conf.	1.46 1.98 2.97 <u>Mn nM</u> 1.31 1.28 3.07	Interval 0.02 0.00 0.04 95% Conf. Interval 0.02 0.02 0.01 95% Conf.	2.40 3.23 4.64 Ni nM 2.73 3.06 4.54	Interval 0.1 0.0 0.0 0.1 95% Conf. Interval 0.1 0.1 0.1 95% Conf.
2.0 16.8 31.5 MICA Depth (m) 2.0 13.7 25.3 25 Depth (m)	Zn nM 576 868 1224 Zn nM 661 860 1213 Zn nM	Interval 2 9 1 95% Conf. Interval 4 5 4	5.35 6.05 7.61 <u>Cu nM</u> 6.15 6.06 7.76 Cu nM	Interval 0.12 0.03 0.05 95% Conf. Interval 95% Conf. Interval	1.76 2.18 2.73 Cd nM 1.91 2.10 2.71 Cd nM	Interval 0.02 0.04 0.02 95% Conf. Interval 95% Conf. Interval	0.97 0.29 0.77 Pb nM 0.40 0.20 0.65 Pb nM	Interval 0.01 0.00 0.01 95% Conf. Interval 95% Conf. Interval	298 196 308 Fe nM 213 186 293 Fe nM	Interval 4 11 6 95% Conf. Interval 95% Conf. Interval	1.46 1.98 2.97 <u>Mn nM</u> 1.31 1.28 3.07 Mn nM	Interval 0.02 0.00 0.04 95% Conf. Interval 95% Conf. Interval	2.40 3.23 4.64 <u>Ni nM</u> 2.73 3.06 4.54 Ni nM	Interval 0.14 0.02 0.11 95% Conf. Interval 0.17 0.14 0.11 0.14 0.11
2.0 16.8 31.5 NICA Depth (m) 2.0 13.7 25.3 S5 Depth (m) 2.0	Zn nM 576 868 1224 Zn nM 661 860 1213 Zn nM 254	Interval 2 9 1 95% Conf. Interval 4 5 4 95% Conf. Interval 1	5.35 6.05 7.61 <u>Cu nM</u> 6.15 6.06 7.76 <u>Cu nM</u> 4.03	Interval 0.12 0.03 0.05 95% Conf. Interval 0.12 0.04 0.06 95% Conf. Interval 0.02	1.76 2.18 2.73 Cd nM 1.91 2.10 2.71 Cd nM 0.74	Interval 0.02 0.04 0.02 95% Conf. Interval 0.01 95% Conf. Interval 0.01	0.97 0.29 0.77 Pb nM 0.40 0.20 0.65 Pb nM 0.88	Interval 0.01 0.00 0.01 95% Conf. Interval 0.01 0.00 95% Conf. Interval 0.01	298 196 308 Fe nM 213 186 293 Fe nM 367	Interval 4 11 6 95% Conf. Interval 95% Conf. Interval 3	1.46 1.98 2.97 Mn nM 1.31 1.28 3.07 Mn nM 1.85	Interval 0.02 0.00 0.04 95% Conf. Interval 0.02 0.01 95% Conf. Interval 0.02	2.40 3.23 4.64 Ni nM 2.73 3.06 4.54 Ni nM 1.72	Interval 0.1 0.0 0.0 0.1 95% Conf. Interval 0.1 0.1 95% Conf. Interval 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2.0 16.8 31.5 IICA Depth (m) 2.0 13.7 25.3 5 Depth (m)	Zn nM 576 868 1224 Zn nM 661 860 1213 Zn nM	Interval 2 9 1 95% Conf. Interval 95% Conf. Interval	5.35 6.05 7.61 <u>Cu nM</u> 6.15 6.06 7.76 Cu nM	Interval 0.12 0.03 0.05 95% Conf. Interval 95% Conf. Interval	1.76 2.18 2.73 Cd nM 1.91 2.10 2.71 Cd nM	Interval 0.02 0.04 0.02 95% Conf. Interval 95% Conf. Interval	0.97 0.29 0.77 Pb nM 0.40 0.20 0.65 Pb nM	Interval 0.01 0.00 0.01 95% Conf. Interval 95% Conf. Interval	298 196 308 Fe nM 213 186 293 Fe nM	Interval 4 11 6 95% Conf. Interval 95% Conf. Interval	1.46 1.98 2.97 <u>Mn nM</u> 1.31 1.28 3.07 Mn nM	Interval 0.02 0.00 0.04 95% Conf. Interval 95% Conf. Interval	2.40 3.23 4.64 <u>Ni nM</u> 2.73 3.06 4.54 Ni nM	Interval 0.1 0.0 0.1 95% Conf. Interval 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0
2.0 16.8 31.5 MICA Depth (m) 2.0 13.7 25.3 C5 Depth (m) 2.0 8.5 15.0	Zn nM 576 868 1224 Zn nM 661 860 1213 Zn nM 254 515	Interval 2 9 1 95% Conf. Interval 95% Conf. Interval 1 1	5.35 6.05 7.61 6.15 6.06 7.76 <u>Cu nM</u> 4.03 4.65	Interval 0.12 0.03 0.05 95% Conf. Interval 0.12 0.04 0.06 95% Conf. Interval 0.06	1.76 2.18 2.73 <u>Cd nM</u> 1.91 2.10 2.71 <u>Cd nM</u> 0.74 1.48	Interval 0.02 0.04 0.02 95% Conf. Interval 0.00 0.01 95% Conf. Interval 0.01 0.01	0.97 0.29 0.77 Pb nM 0.40 0.20 0.65 Pb nM 0.88 0.62	Interval 0.01 0.00 0.01 95% Conf. Interval 0.01 0.00 95% Conf. Interval 0.00 0.00	298 196 308 Fe nM 213 186 293 Fe nM 367 227	Interval 4 11 6 95% Conf. Interval 95% Conf. Interval 3 4	1.46 1.98 2.97 <u>Mn nM</u> 1.31 1.28 3.07 <u>Mn nM</u> 1.85 1.39	Interval 0.02 0.00 0.04 95% Conf. Interval 0.02 0.01 95% Conf. Interval 0.02 0.01	2.40 3.23 4.64 Ni nM 2.73 3.06 4.54 Ni nM 1.72 2.10	Interval 0.1 0.0 0.1 95% Conf. Interval 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0
2.0 16.8 31.5 MICA Depth (m) 2.0 13.7 25.3 C5 Depth (m) 2.0 8.5 15.0	Zn nM 576 868 1224 Zn nM 661 860 1213 Zn nM 254 515	Interval 2 9 1 95% Conf. Interval 4 5 4 95% Conf. Interval 1 1 3	5.35 6.05 7.61 6.15 6.06 7.76 <u>Cu nM</u> 4.03 4.65	Interval 0.12 0.03 0.05 95% Conf. Interval 0.12 0.04 0.06 95% Conf. Interval 0.04 0.04 0.02	1.76 2.18 2.73 <u>Cd nM</u> 1.91 2.10 2.71 <u>Cd nM</u> 0.74 1.48	Interval 0.02 0.04 0.02 95% Conf. Interval 0.00 0.01 95% Conf. Interval 0.01 0.01	0.97 0.29 0.77 Pb nM 0.40 0.20 0.65 Pb nM 0.88 0.62	Interval 0.01 0.00 0.01 95% Conf. Interval 0.01 0.00 95% Conf. Interval 0.00 0.00	298 196 308 Fe nM 213 186 293 Fe nM 367 227	Interval 4 11 6 95% Conf. Interval 95% Conf. Interval 3 4 9 9	1.46 1.98 2.97 <u>Mn nM</u> 1.31 1.28 3.07 <u>Mn nM</u> 1.85 1.39	Interval 0.02 0.00 0.04 95% Conf. Interval 0.02 0.02 0.01 95% Conf. Interval 0.02 0.02 0.01	2.40 3.23 4.64 Ni nM 2.73 3.06 4.54 Ni nM 1.72 2.10	Interval 0.1 0.0 0.1 95% Conf. Interval 0.1 95% Conf. Interval 95% Conf. Interval 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2.0 16.8 31.5 WICA Depth (m) 2.0 13.7 25.3 C5 Depth (m) 2.0 8.5 15.0 SJRI	Zn nM 576 868 1224 Zn nM 661 860 1213 Zn nM 254 515	Interval 2 9 1 95% Conf. Interval 95% Conf. Interval 1 1	5.35 6.05 7.61 6.15 6.06 7.76 <u>Cu nM</u> 4.03 4.65	Interval 0.12 0.03 0.05 95% Conf. Interval 0.12 0.04 0.06 95% Conf. Interval 0.06	1.76 2.18 2.73 <u>Cd nM</u> 1.91 2.10 2.71 <u>Cd nM</u> 0.74 1.48	Interval 0.02 0.04 0.02 95% Conf. Interval 0.00 0.01 95% Conf. Interval 0.01 0.01	0.97 0.29 0.77 Pb nM 0.40 0.20 0.65 Pb nM 0.88 0.62	Interval 0.01 0.00 0.01 95% Conf. Interval 0.01 0.00 95% Conf. Interval 0.00 0.00	298 196 308 Fe nM 213 186 293 Fe nM 367 227	Interval 4 11 6 95% Conf. Interval 95% Conf. Interval 3 4	1.46 1.98 2.97 <u>Mn nM</u> 1.31 1.28 3.07 <u>Mn nM</u> 1.85 1.39	Interval 0.02 0.00 0.04 95% Conf. Interval 0.02 0.01 95% Conf. Interval 0.02 0.01	2.40 3.23 4.64 Ni nM 2.73 3.06 4.54 Ni nM 1.72 2.10	Interval 0.14 0.02 0.11 95% Conf. Interval 95% Conf. Interval 0.12 0.12 0.14 0.04 0.
2.0 16.8 31.5 Depth (m) 2.0 13.7 25.3 C5 Depth (m) 2.0 13.7 25.3	Zn nM 576 868 1224 Zn nM 661 860 1213 Zn nM 254 515 513	Interval 2 9 1 95% Conf. Interval 4 5 4 95% Conf. 1 1 3 95% Conf.	5.35 6.05 7.61 <u>Cu nM</u> 6.15 6.06 7.76 <u>Cu nM</u> 4.03 4.65 4.41	Interval 0.12 0.03 0.05 95% Conf. Interval 0.04 0.06 95% Conf. Interval 0.02 0.04 0.02 0.04 0.02	1.76 2.18 2.73 Cd nM 1.91 2.10 2.71 Cd nM 0.74 1.48 1.12	Interval 0.02 0.04 0.02 95% Conf. Interval 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	0.97 0.29 0.77 Pb nM 0.40 0.65 Pb nM 0.88 0.62 0.45	Interval 0.01 0.00 0.01 95% Conf. Interval 0.00 0.00 95% Conf. 0.01 0.00 0.00	298 196 308 Fe nM 213 186 293 Fe nM 367 227 321	Interval 4 111 6 95% Conf. Interval 5 5 1 7 95% Conf. Interval 95% Conf. 9 9 9 9 9	1.46 1.98 2.97 Mn nM 1.31 1.28 3.07 Mn nM 1.85 1.39 2.85	Interval 0.02 0.00 0.04 95% Conf. Interval 0.02 0.02 0.01 95% Conf. Interval 0.02 0.03 95% Conf.	2.40 3.23 4.64 Ni nM 2.73 3.06 4.54 Ni nM 1.72 2.10 2.02	Interval 0.14 0.02 0.16 95% Conf. Interval 0.11 0.14 95% Conf. Interval 0.07 0.02 0.12 95% Conf.


ົ	n	n	F
4	υ	υ	J

MC-R	Mass units													
Ē		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn ppb	Interval	Cu ppb	Interval	Cd ppb	Interval	Pb ppb	Interval	Fe ppb	Interval	Mn ppb	Interval	Ni ppb	Interval
2.0	31.9	0.2	0.266	0.001	0.169	0.001	0.163	0.001	18.4	0.1	0.117	0.003	0.136	0.018
15.0	42.3	0.1	0.303	0.009	0.194	0.004	0.106	0.001	15.0	0.4	0.091	0.002	0.139	0.021
28.0	53.0	0.5	0.342	0.004	0.221	0.002	0.319	0.002	23.4	0.3	0.334	0.002	0.210	0.014
MICA														
		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn ppb	Interval	Cu ppb	Interval	Cd ppb	Interval	Pb ppb	Interval	Fe ppb	Interval	Mn ppb	Interval	Ni ppb	Interval
2.0	30.6	0.0	0.275	0.007	0.159	0.002	0.123	0.001	18.9	0.3	0.217	0.002	0.134	0.011
10.0	33.2	0.3	0.266	0.007	0.156	0.002	0.098	0.001	18.4	0.3	0.049	0.002	0.134	0.012
25.0	54.0	0.2	0.365	0.007	0.221	0.002	0.207	0.003	18.4	0.1	0.193	0.002	0.182	0.001
MC-C														
		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn ppb	Interval	Cu ppb	Interval	Cd ppb	Interval	Pb ppb	Interval	Fe ppb	Interval	Mn ppb	Interval	Ni ppb	Interval
2.0	31.2	0.1	0.274	0.003	0.178	0.001	0.243	0.002	21.8	0.5	1.010	0.007	0.129	0.010
12.0	37.1	0.1	0.277	0.003	0.179	0.004	0.166	0.001	19.5	0.1	0.095	0.001	0.165	0.011
34.0	55.6	1.5	0.347	0.001	0.236	0.010	0.299	0.010	23.7	0.2	0.202	0.008	0.187	0.005
C5														
		95% Conf.	<u> </u>	95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn ppb	Interval	Cu ppb 0.197	Interval	Cd ppb 0.030	Interval	Pb ppb	Interval	Fe ppb	Interval	Mn ppb	Interval	Ni ppb	Interval
2.0 10.0	6.2 24.8	0.0 0.2	0.197	0.003	0.030	0.001 0.000	0.095 0.129	0.001 0.001	39.2 26.6	0.4 0.2	0.380 0.246	0.005	0.098 0.138	0.005
16.0	24.0 45.9	0.2	0.265	0.002	0.102	0.000	0.129	0.001	30.3	0.2	12.750	0.001	0.138	0.005
[Molar units	95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.		95% Conf.
Depth (m)	Zn nM	Interval	Cu nM	Interval	Cd nM	Interval	Pb nM	Interval	Fe nM	Interval	Mn nM			
2.0	488	3	4.19									Interval	NinM	Interval
15.0	647			0.01	1.51	0.01	0.79	0.01	329	1	2.12	0.05	2.31	0.30
28.0		2	4.77	0.15	1.73	0.03	0.79 0.51	0.01 0.00	329 268	1 8	2.12 1.66	0.05 0.04	2.31 2.37	0.30
	810	2 8					0.79	0.01	329	1	2.12	0.05	2.31	0.30
MICA	810	8	4.77	0.15 0.06	1.73	0.03 0.01	0.79 0.51	0.01 0.00 0.01	329 268	1 8 5	2.12 1.66	0.05 0.04 0.03	2.31 2.37	0.30 0.37 0.24
		8 95% Conf.	4.77 5.38	0.15 0.06 95% Conf.	1.73 1.96	0.03 0.01 95% Conf.	0.79 0.51 1.54	0.01 0.00 0.01 95% Conf.	329 268 419	1 8 5 95% Conf.	2.12 1.66 6.08	0.05 0.04 0.03 95% Conf.	2.31 2.37 3.58	0.30 0.37 0.24 95% Conf.
Depth (m)	Zn nM	8 95% Conf. Interval	4.77 5.38 Cu nM	0.15 0.06 95% Conf. Interval	1.73 1.96 Cd nM	0.03 0.01 95% Conf. Interval	0.79 0.51 1.54 Pb nM	0.01 0.00 0.01 95% Conf. Interval	329 268 419 Fe nM	1 8 5 95% Conf. Interval	2.12 1.66 6.08 Mn nM	0.05 0.04 0.03 95% Conf. Interval	2.31 2.37 3.58 Ni nM	0.30 0.37 0.24 95% Conf. Interval
Depth (m) 2.0	Zn nM 469	8 95% Conf. Interval 0	4.77 5.38 <u>Cu nM</u> 4.33	0.15 0.06 95% Conf. Interval 0.10	1.73 1.96 Cd nM 1.41	0.03 0.01 95% Conf. Interval 0.02	0.79 0.51 1.54 Pb nM 0.60	0.01 0.00 0.01 95% Conf. Interval 0.01	329 268 419 Fe nM 338	1 8 5 95% Conf. Interval 5	2.12 1.66 6.08 <u>Mn nM</u> 3.95	0.05 0.04 0.03 95% Conf. Interval 0.03	2.31 2.37 3.58 <u>Ni nM</u> 2.29	0.30 0.37 0.24 95% Conf. Interval 0.18
Depth (m)	Zn nM	8 95% Conf. Interval	4.77 5.38 Cu nM	0.15 0.06 95% Conf. Interval	1.73 1.96 Cd nM	0.03 0.01 95% Conf. Interval	0.79 0.51 1.54 Pb nM	0.01 0.00 0.01 95% Conf. Interval	329 268 419 Fe nM	1 8 5 95% Conf. Interval	2.12 1.66 6.08 Mn nM	0.05 0.04 0.03 95% Conf. Interval	2.31 2.37 3.58 Ni nM	0.3(0.3) 0.24 95% Conf. Interval 0.18 0.20
Depth (m) 2.0 10.0 25.0	Zn nM 469 508	95% Conf. Interval 5	4.77 5.38 Cu nM 4.33 4.18	0.15 0.06 95% Conf. Interval 0.10 0.11	1.73 1.96 Cd nM 1.41 1.39	0.03 0.01 95% Conf. Interval 0.02 0.01	0.79 0.51 1.54 Pb nM 0.60 0.47	0.01 0.00 0.01 95% Conf. Interval 0.01 0.01	329 268 419 Fe nM 338 329	1 8 5 95% Conf. Interval 5 5	2.12 1.66 6.08 <u>Mn nM</u> 3.95 0.90	0.05 0.04 0.03 95% Conf. Interval 0.03 0.03	2.31 2.37 3.58 <u>Ni nM</u> 2.29 2.28	0.3(0.3) 0.24 95% Conf. Interval 0.18 0.20
Depth (m) 2.0 10.0 25.0 MC-C	Zn nM 469 508	95% Conf. Interval 5	4.77 5.38 Cu nM 4.33 4.18 5.75	0.15 0.06 95% Conf. Interval 0.10 0.11	1.73 1.96 Cd nM 1.41 1.39 1.96	0.03 0.01 95% Conf. Interval 0.02 0.01	0.79 0.51 1.54 Pb nM 0.60 0.47 1.00	0.01 0.00 0.01 95% Conf. Interval 0.01 0.01	329 268 419 Fe nM 338 329	1 8 5 95% Conf. Interval 5 5	2.12 1.66 6.08 <u>Mn nM</u> 3.95 0.90	0.05 0.04 0.03 95% Conf. Interval 0.03 0.03	2.31 2.37 3.58 <u>Ni nM</u> 2.29 2.28 3.11	0.30 0.37 0.24 95% Conf. Interval 0.18 0.20
2.0 10.0 25.0 MC-C Depth (m)	Zn nM 469 508 826 Zn nM	8 95% Conf. Interval 0 5 3 3 95% Conf. Interval	4.77 5.38 Cu nM 4.33 4.18 5.75 Cu nM	0.15 0.06 95% Conf. Interval 0.10 0.11 0.11 95% Conf. Interval	1.73 1.96 Cd nM 1.41 1.39 1.96 Cd nM	0.03 0.01 95% Conf. Interval 0.02 0.01 0.02 95% Conf. Interval	0.79 0.51 1.54 Pb nM 0.60 0.47 1.00 Pb nM	0.01 0.00 0.01 95% Conf. Interval 0.01 0.02 95% Conf. Interval	329 268 419 Fe nM 338 329 330 Fe nM	1 8 5 95% Conf. Interval 95% Conf. Interval	2.12 1.66 6.08 <u>Mn nM</u> 3.95 0.90 3.51 Mn nM	0.05 0.04 0.03 95% Conf. Interval 0.03 0.04 95% Conf. Interval	2.31 2.37 3.58 <u>Ni nM</u> 2.29 2.28 3.11 Ni nM	0.30 0.37 0.24 95% Conf. Interval 0.18 0.20 0.02 95% Conf. Interval
Depth (m) 2.0 10.0 25.0 MC-C Depth (m) 2.0	Zn nM 469 508 826 Zn nM 477	8 95% Conf. Interval 0 5 3 3 95% Conf. Interval 1	4.77 5.38 Cu nM 4.33 4.18 5.75 Cu nM 4.31	0.15 0.06 95% Conf. Interval 0.10 0.11 0.11 95% Conf. Interval 0.05	1.73 1.96 Cd nM 1.41 1.39 1.96 Cd nM 1.58	0.03 0.01 95% Conf. Interval 0.02 0.01 0.02 95% Conf. Interval 0.01	0.79 0.51 1.54 Pb nM 0.60 0.47 1.00 Pb nM 1.17	0.01 0.00 0.01 95% Conf. Interval 0.01 0.02 95% Conf. Interval 0.01	329 268 419 Fe nM 338 329 330 Fe nM 390	1 8 5 95% Conf. Interval 95% Conf. Interval 9	2.12 1.66 6.08 <u>Mn nM</u> 3.95 0.90 3.51 <u>Mn nM</u> 18.39	0.05 0.04 0.03 95% Conf. Interval 0.03 0.04 95% Conf. Interval 0.14	2.31 2.37 3.58 Ni nM 2.29 2.28 3.11 <u>Ni nM</u> 2.20	0.30 0.37 0.24 95% Conf. Interval 0.18 0.20 0.02 95% Conf. Interval 0.17
Depth (m) 2.0 10.0 25.0 MC-C Depth (m) 2.0 12.0	Zn nM 469 508 826 Zn nM 477 567	8 95% Conf. Interval 0 5 3 3 95% Conf. Interval 1 1	4.77 5.38 Cu nM 4.33 4.18 5.75 Cu nM 4.31 4.36	0.15 0.06 95% Conf. Interval 0.10 0.11 0.11 95% Conf. Interval 0.05 0.04	1.73 1.96 Cd nM 1.41 1.39 1.96 Cd nM 1.58 1.59	0.03 0.01 95% Conf. Interval 0.02 0.01 0.02 95% Conf. Interval 0.01 0.03	0.79 0.51 1.54 Pb nM 0.60 0.47 1.00 Pb nM 1.17 0.80	0.01 0.00 0.01 95% Conf. Interval 0.01 0.02 95% Conf. Interval 0.01 0.01	329 268 419 Fe nM 338 329 330 Fe nM 390 350	1 8 5 95% Conf. Interval 95% Conf. Interval 9 2	2.12 1.66 6.08 <u>Mn nM</u> 3.95 0.90 3.51 <u>Mn nM</u> 18.39 1.73	0.05 0.04 0.03 95% Conf. Interval 0.03 0.03 0.04 95% Conf. Interval 0.14	2.31 2.37 3.58 Ni nM 2.29 2.28 3.11 Ni nM 2.20 2.81	0.3(0.3; 0.2 95% Conf. Interval 0.11 95% Conf. Interval 0.11 0.11
Depth (m) 2.0 10.0 25.0 MC-C Depth (m) 2.0	Zn nM 469 508 826 Zn nM 477	8 95% Conf. Interval 0 5 3 3 95% Conf. Interval 1	4.77 5.38 Cu nM 4.33 4.18 5.75 Cu nM 4.31	0.15 0.06 95% Conf. Interval 0.10 0.11 0.11 95% Conf. Interval 0.05	1.73 1.96 Cd nM 1.41 1.39 1.96 Cd nM 1.58	0.03 0.01 95% Conf. Interval 0.02 0.01 0.02 95% Conf. Interval 0.01	0.79 0.51 1.54 Pb nM 0.60 0.47 1.00 Pb nM 1.17	0.01 0.00 0.01 95% Conf. Interval 0.01 0.02 95% Conf. Interval 0.01	329 268 419 Fe nM 338 329 330 Fe nM 390	1 8 5 95% Conf. Interval 95% Conf. Interval 9	2.12 1.66 6.08 <u>Mn nM</u> 3.95 0.90 3.51 <u>Mn nM</u> 18.39	0.05 0.04 0.03 95% Conf. Interval 0.03 0.04 95% Conf. Interval 0.14	2.31 2.37 3.58 Ni nM 2.29 2.28 3.11 <u>Ni nM</u> 2.20	0.3(0.3; 0.2 95% Conf. Interval 0.11 95% Conf. Interval 0.11 0.11
Depth (m) 2.0 10.0 25.0 MC-C Depth (m) 2.0 12.0 34.0	Zn nM 469 508 826 Zn nM 477 567	8 95% Conf. Interval 95% Conf. Interval 1 1 23	4.77 5.38 Cu nM 4.33 4.18 5.75 Cu nM 4.31 4.36	0.15 0.06 95% Conf. Interval 0.10 0.11 0.11 95% Conf. Interval 95% Conf. Interval 0.04 0.02	1.73 1.96 Cd nM 1.41 1.39 1.96 Cd nM 1.58 1.59	0.03 0.01 95% Conf. Interval 0.02 95% Conf. Interval 0.03 0.03 0.09	0.79 0.51 1.54 Pb nM 0.60 0.47 1.00 Pb nM 1.17 0.80	0.01 0.00 0.01 95% Conf. Interval 0.01 0.01 0.02 95% Conf. Interval 0.01 0.02	329 268 419 Fe nM 338 329 330 Fe nM 390 350	1 8 5 95% Conf. Interval 95% Conf. Interval 9 9 2 4	2.12 1.66 6.08 <u>Mn nM</u> 3.95 0.90 3.51 <u>Mn nM</u> 18.39 1.73	0.05 0.04 0.03 95% Conf. Interval 0.03 0.03 0.03 0.04 95% Conf. Interval 0.14 0.14	2.31 2.37 3.58 Ni nM 2.29 2.28 3.11 Ni nM 2.20 2.81	0.3(0.3) 0.24 95% Conf. Interval 0.1(0.2(0.0) 95% Conf. Interval 0.1(0.1) 0.1(0.0)
Depth (m) 2.0 10.0 25.0 MC-C Depth (m) 2.0 12.0 34.0 C5	Zn nM 469 508 826 Zn nM 477 567 850	8 95% Conf. Interval 0 5 3 95% Conf. 1 1 23 95% Conf.	4.77 5.38 Cu nM 4.33 4.18 5.75 Cu nM 4.31 4.36 5.46	0.15 0.06 95% Conf. Interval 0.10 0.11 95% Conf. Interval 0.05 0.04 0.02 95% Conf.	1.73 1.96 Cd nM 1.41 1.39 1.96 Cd nM 1.58 1.59 2.10	0.03 0.01 95% Conf. Interval 0.02 0.01 0.02 95% Conf. 1nterval 0.01 0.03 0.09 95% Conf.	0.79 0.51 1.54 Pb nM 0.60 0.47 1.00 Pb nM 1.17 0.80 1.44	0.01 0.00 0.01 95% Conf. Interval 0.01 0.02 95% Conf. 0.05 95% Conf.	329 268 419 Fe nM 338 329 330 Fe nM 390 350 424	1 8 5 95% Cont. Interval 95% Cont. 10terval 9 2 4 9 5% Cont.	2.12 1.66 6.08 Mn nM 3.95 0.90 3.51 Mn nM 18.39 1.73 3.68	0.05 0.04 0.03 95% Conf. Interval 0.03 0.03 0.04 95% Conf. 0.14 0.14 0.14	2.31 2.37 3.58 Ni nM 2.29 2.28 3.11 Ni nM 2.20 2.81 3.18	0.30 0.37 0.22 95% Conf. Interval 0.17 0.17 0.17 0.19 0.17 0.19 95% Conf.
Depth (m) 2.0 10.0 25.0 MC-C Depth (m) 2.0 12.0 34.0 C5 Depth (m)	Zn nM 469 508 826 Zn nM 477 567 850 Zn nM	8 95% Conf. Interval 0 5 3 95% Conf. Interval 95% Conf. Interval	4.77 5.38 Cu nM 4.33 4.18 5.75 Cu nM 4.31 4.36 5.46 Cu nM	0.15 0.06 95% Conf. Interval 0.11 0.11 0.11 95% Conf. Interval 0.05 0.04 0.02 95% Conf. Interval	1.73 1.96 Cd nM 1.41 1.39 1.96 Cd nM 1.58 1.59 2.10 Cd nM	0.03 0.01 95% Conf. Interval 0.02 95% Conf. Interval 0.01 0.03 0.09 95% Conf. Interval	0.79 0.51 1.54 Pb nM 0.60 0.47 1.00 Pb nM 1.17 0.80 1.44 Pb nM	0.01 0.00 0.01 95% Cont. Interval 0.01 0.02 95% Conf. Interval 0.05 95% Conf. Interval	329 268 419 Fe nM 338 329 330 Fe nM 390 350 424 Fe nM	1 8 5 95% Conf. Interval 95% Conf. Interval 95% Conf. Interval	2.12 1.66 6.08 Mn nM 3.95 0.90 3.51 Mn nM 18.39 1.73 3.68 Mn nM	0.05 0.04 0.03 95% Conf. Interval 0.03 0.03 0.04 95% Conf. Interval 0.14 0.14	2.31 2.37 3.58 Ni nM 2.29 2.28 3.11 Ni nM 2.20 2.81 3.18 Ni nM	0.30 0.37 0.24 95% Conf. Interval 0.18 0.20 0.02 95% Conf. Interval 95% Conf. 95% Conf.
Depth (m) 2.0 10.0 25.0 MC-C Depth (m) 2.0 12.0 34.0 C5 Depth (m) 2.0	Zn nM 469 508 826 Zn nM 477 567 850 Zn nM 94	8 95% Conf. Interval 0 5 3 95% Conf. 1 1 1 2 3 95% Conf. Interval 0 0	4.77 5.38 Cu nM 4.33 4.18 5.75 Cu nM 4.31 4.36 5.46 Cu nM 3.09	0.15 0.06 95% Conf. Interval 0.10 0.11 0.11 0.05 0.04 0.05 95% Conf. Interval 0.05	1.73 1.96 Cd nM 1.41 1.39 1.96 Cd nM 1.58 1.59 2.10 Cd nM 0.26	0.03 0.01 95% Conf. Interval 0.02 0.01 0.01 0.03 0.09 95% Conf. Interval 95% Conf. Interval 0.03	0.79 0.51 1.54 Pb nM 0.60 0.47 1.00 Pb nM 1.17 0.80 0.1.44 Pb nM 0.46	0.01 0.00 0.01 95% Conf. Interval 0.01 0.02 95% Conf. Interval 0.01 0.05 95% Conf. Interval 0.05	329 268 419 768 338 329 330 769 390 350 424 Fe nM 702	1 8 5 95% Conf. Interval 9 5% Conf. Interval 9 95% Conf. Interval 9 95% Conf. Interval 7 7 7	2.12 1.66 6.08 3.95 0.90 3.51 18.39 18.39 18.39 18.39 18.39 1.73 1.73 1.73 1.73 1.73 1.73 1.75 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.6	0.05 0.04 0.03 95% Conf. Interval 0.03 0.04 95% Conf. Interval 0.14 0.14 95% Conf. Interval 0.14 0.01	2.31 2.37 3.58 Ni nM 2.29 2.28 3.11 2.20 2.81 3.18 3.18 Ni nM 1.68	0.30 0.37 0.22 95% Conf. Interval 95% Conf. Interval 95% Conf. Interval 0.02 95% Conf.
Depth (m) 2.0 10.0 25.0 MC-C Depth (m) 2.0 12.0 34.0 C5 Depth (m)	Zn nM 469 508 826 Zn nM 477 567 850 Zn nM	8 95% Conf. Interval 0 5 3 95% Conf. Interval 95% Conf. Interval	4.77 5.38 Cu nM 4.33 4.18 5.75 Cu nM 4.31 4.36 5.46 Cu nM	0.15 0.06 95% Conf. Interval 0.11 0.11 0.11 95% Conf. Interval 95% Conf. Interval	1.73 1.96 Cd nM 1.41 1.39 1.96 Cd nM 1.58 1.59 2.10 Cd nM	0.03 0.01 95% Conf. Interval 0.02 95% Conf. Interval 0.01 0.03 0.09 95% Conf. Interval	0.79 0.51 1.54 Pb nM 0.60 0.47 1.00 Pb nM 1.17 0.80 1.44 Pb nM	0.01 0.00 0.01 95% Cont. Interval 0.01 0.02 95% Conf. Interval 0.05 95% Conf. Interval	329 268 419 Fe nM 338 329 330 Fe nM 390 350 424 Fe nM	1 8 5 95% Conf. Interval 95% Conf. Interval 95% Conf. Interval	2.12 1.66 6.08 Mn nM 3.95 0.90 3.51 Mn nM 18.39 1.73 3.68 Mn nM	0.05 0.04 0.03 95% Conf. Interval 0.03 0.03 0.04 95% Conf. Interval 0.14 0.14	2.31 2.37 3.58 Ni nM 2.29 2.28 3.11 Ni nM 2.20 2.81 3.18 Ni nM	0.30 0.37 0.24 95% Conf. Interval 0.17 0.17 0.19 0.08 95% Conf.

Note: For 2005 samples, depth of middle water-column sampling selected to coincide with chlorophyll maximum Table 5. Dissolved Nutrients in the Water Column - Coeur d'Alene Lake (August 2001, June 2004 & June 2005)

2001

273 604

Bottom-wate

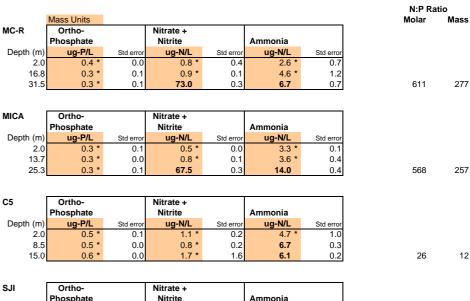
Bottom-water

123 122 7

269

16

Bottom-water N:P Ratio


Molar

Mass

* Value is below method detection limit reported by analyst.

	Phosphate		Nitrite		Ammonia
Depth (m)	ug-P/L	Std error	ug-N/L	Std error	ug-N/L
2.0	1.0 *	0.0	1.1 *	0.1	5.1

* Value is below method detection limit reported by analyst.

2005

MC-R	Ortho-		Nitrate +			
	Phosphate		Nitrite		Ammonia	
Depth (m)	nM	Std error	nM	Std error	nM	Std error
2.0	30 *	0	65 *	5	74 *	17
15.0	38 *	4	201	165	275 *	144
28.0	44 *	3	4238	54	133 *	0
	h					
MICA	Ortho-		Nitrate +			
	Phosphate		Nitrite		Ammonia	
Depth (m)		Std error	nM	Std error	nM	Std error
2.0	31 *	0	71 *	20	55 *	22
10.0		0	87 *	10	84 *	23
25.0	39 *	3	3104	83	224 *	39
мс-с	Ortho- Phosphate		Nitrate + Nitrite		Ammonia	
	Filospilate					
Depth (m)		Std error	nM	Std error	nM	Std error
2.0	nM 31 *	1	162 *	14	177 *	Std error 55
2.0 12.0	nM 31 * 31 *	1 2		14 2		55 12
2.0	nM 31 * 31 *	1	162 *	14	177 *	55
2.0 12.0	nM 31 * 31 *	1 2	162 * 53 *	14 2	177 * 104 *	55 12
2.0 12.0 34.0	nM 31 * 31 *	1 2	162 * 53 *	14 2	177 * 104 *	55 12
2.0 12.0 34.0	nM 31 * 31 * 38 *	1 2	162 * 53 * 4596	14 2	177 * 104 *	55 12
2.0 12.0 34.0 C5	nM 31 * 31 * 38 * Ortho- Phosphate nM	1 2	162 * 53 * 4596 Nitrate + Nitrite nM	14 2	177 * 104 * 129 * Ammonia nM	55 12 6
2.0 12.0 34.0	nM 31 * 31 * 38 * Ortho- Phosphate	1 2 3	162 * 53 * 4596 Nitrate + Nitrite	14 2 10	177 * 104 * 129 *	55 12 6 Std erro
2.0 12.0 34.0 C5	nM 31 * 31 * 38 * Ortho- Phosphate nM 38 *	1 2 3 Std error	162 * 53 * 4596 Nitrate + Nitrite nM	14 2 10 Std error	177 * 104 * 129 * Ammonia nM	55 12

MC-R Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 0.9 * 0.0 0.9 * 0.1 1.0 * 0.2 15.0 1.2 * 0.1 2.8 2.3 3.8 * 2.0 28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia 100 45 Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 0.0 1.0 * 0.0 1.2 * 0.1 1.2 * 0.3 2.0 1.0 * 0.0 1.2 * 0.1 1.2 * 0.3 2.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39	Mass Units Molar Mass MC-R Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Stid error Molar Mass Depth (m) 0.9 * 0.0 0.9 * 0.1 1.0 * 0.2 15.0 1.2 * 0.1 2.8 2.3 3.8 * 2.0 28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error ug-N/L Std error 0 1.0 * 0.0 1.0 * 0.3 0.3 0.3 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0	Mass Units Molar Mass MC-R Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error Molar Mass Depth (m) 0.9 * 0.0 0.9 * 0.1 1.0 * 0.2 2.0 0.9 * 0.1 2.8 2.3 3.8 * 2.0 100 45 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error		
MC-R Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 0.9 * 0.0 0.9 * 0.1 1.0 * 0.2 15.0 1.2 * 0.1 2.8 2.3 3.8 * 2.0 28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia 100 45 Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 0.0 1.0 * 0.0 1.2 * 0.1 1.2 * 0.3 2.0 1.0 * 0.0 1.2 * 0.1 1.2 * 0.3 2.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39	MC-R Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error 0.9 0.0 0.9 * 0.1 1.0 * 0.2 15.0 1.2 * 0.1 2.8 2.3 3.8 * 2.0 28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error 28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 100 45 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error ug-N/L Std error 0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.5 0.3 0.5 0.3 0.4 0.5	MC-R Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error Depth (m) 0.9 * 0.0 0.9 * 0.1 1.0 * 0.2 15.0 1.2 * 0.1 2.8 2.3 3.8 * 2.0 28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 0.3 0.0 100 45 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error ug-N/L 50 86 35 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error ug-N/L Std error 0.3 36 35 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error 123 56 C5 Ortho- Phosphate	N:P Ra	tio
Phosphate Nitrite Ammonia Depth (m) 0.9 * 0.0 0.9 * 0.1 1.0 * 0.2 15.0 1.2 * 0.1 2.8 2.3 3.8 * 2.0 28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 100 45 MICA Ortho- Phosphate Nitrite Nitrite Ammonia Depth (m) 2.0 1.0 * 0.1 59.4 0.8 1.9 * 0.0 100 45 MICA Ortho- Phosphate Nitrite + Nitrite Ammonia 100 45 0.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 0.3 0.5 86 39 2.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39	Phosphate Nitrite Ammonia Depth (m) 0.9 * 0.0 0.9 * 0.1 1.0 * 0.2 15.0 1.2 * 0.1 2.8 2.3 3.8 * 2.0 28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 MICA Ortho- Phosphate Nitrite Ammonia ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.1 59.4 0.8 1.9 * 0.0 100 45 MICA Ortho- Phosphate Nitrite Ammonia ug-N/L Std error	Phosphate Nitrite Ammonia Depth (m) 0.9 * 0.0 0.9 * 0.1 1.0 * 0.2 15.0 1.2 * 0.1 2.8 2.9 2.0 10.0 2.0 1.0 10.0 2.8 1.2 2.8 1.2 2.3 1.2 2.3 1.2 2.3 1.2 2.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	Molar	Mass
Openth (m) ug-P/L Std error ug-N/L	Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 0.9 * 0.0 0.9 * 0.1 1.0 * 0.2 15.0 1.2 * 0.1 2.8 2.3 3.8 * 2.0 28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia 123 56 C5 C 0.1 0.7 * 0.0 1.5 * 0.2 <td< th=""><th>Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L<</th><th></th><th></th></td<>	Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L<		
Openth (m) ug-P/L Std error ug-N/L	Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 0.9 * 0.0 0.9 * 0.1 1.0 * 0.2 15.0 1.2 * 0.1 2.8 2.3 3.8 * 2.0 28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia 123 56 C5 C 0.1 0.7 * 0.0 1.5 * 0.2 <td< th=""><th>Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L<</th><th></th><th></th></td<>	Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L<		
Ortho- Nitrate + Ammonia Depth (m) 0.9 * 0.0 1.0 * 0.2 100 1.4 * 0.1 2.8 2.3 3.8 * 2.0 MICA Ortho- Nitrate + Nitrate + <td>Depth (m) Ortho- 1.0 * Nitrate + Nitrate + Ni</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td> <td></td>	Depth (m) Ortho- 1.0 * Nitrate + Nitrate + Ni	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
15.0 1.2 * 0.1 2.8 2.3 3.8 * 2.0 28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 100 45 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia Std error ug-P/L Std error ug-N/L ug-N	15.0 1.2* 0.1 2.8 2.3 3.8* 2.0 28.0 1.4* 0.1 59.4 0.8 1.9* 0.0 100 45 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia 100 45 Depth (m) ug-P/L Std error ug-N/L Std error 1.2* 0.3 10.0 0.9* 0.0 1.2* 0.1 1.2* 0.3 10.0 0.9* 0.0 1.2* 0.1 1.2* 0.3 25.0 1.2* 0.1 43.5 1.2 3.1* 0.5 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia 100 123 56 02 1.0* 0.1 0.7* 0.0 1.5* 0.2 12.0 1.2* 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia 123 56	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 100 45 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 0.3 0.8 * 0.3 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 0.3 0.8 * 0.3 0.3 0.5 86 39 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39	28.0 1.4* 0.1 59.4 0.8 1.9* 0.0 100 45 MICA Ortho- Phosphate Nitrite + Nitrite Ammonia ug-N/L Std error ug-N/L Std error 0.3 0.8* 0.3 2.0 1.0* 0.0 1.0* 0.3 0.8* 0.3 0.8 0.3 0.8* 0.3 0.3 0.8* 0.3 0.3 0.8* 0.3 0.3 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error ug-N/L Std error 3.4.0 1.2* 0.1 1.2* 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia ug-N/L Std error ug-N/L Std error 3.4.0 1.2* 0.1 64.4 0.1 1.8* 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Mitrate + Ammonia 123 56	28.0 1.4 * 0.1 59.4 0.8 1.9 * 0.0 100 45 MICA Ortho- Phosphate Nitrate + Nitrite Ammonia Std error ug-N/L Std error 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.0 * 0.0 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.5 86 35 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia Mug-N/L Std error ug-N/L Std error 0.1 1.5 * 0.2 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Std error ug-N/L Std error 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0		
MICA Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39	MICA Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error 0.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia Ammonia Mitrate + At error ug-N/L Std error ug-N/L	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	45
Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39	Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 MC-C Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error 12.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56	Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 35 MC-C Ortho- Phosphate Nitrite + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Mitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error		10
Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39	Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 MC-C Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error 12.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56	Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 35 MC-C Ortho- Phosphate Nitrite + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Mitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error		
Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39	Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error 0.3 0.8 * 0.3 0.3 0.8 * 0.3 0.1 0.1 0.1 0.1	Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 10.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 35 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia Memoria 12 * 0.1 43.5 1.2 * 0.1 5.0 86 35 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia 12 * <t< th=""><th></th><th></th></t<>		
Uppeth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39	Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Armonia Armonia Age (1) Std error 123 56 0.1 0.1 0.7 * 0.0 1.5 * 0.2 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Armonia Armonia 123 56	Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia Ammonia Std error ug-N/L Ug-N/L Std error ug-N		
2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39	2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia Ammonia 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia	2.0 1.0 * 0.0 1.0 * 0.3 0.8 * 0.3 10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 1.2 * 0.3 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39 MC-C Phosphate Nitrate + Nitrite Ammonia 10 * 0.1 0.7 * 0.0 1.5 * 0.2 1.5 * 0.2 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 C5 Ortho- Nitrate + Nitrite Ammonia 123 56 C5 0.1 0.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1 0.5		
10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 36	10.0 0.9* 0.0 1.2* 0.1 1.2* 0.3 25.0 1.2* 0.1 43.5 1.2 3.1* 0.5 86 39 MC-C Ortho- Phosphate Nitrate + ug-P/L Nitrate + Nitrite Ammonia 43.5 1.2 3.1* 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia 43.5 1.2 3.1* 0.5 86 39 MC-C Ortho- 1.0* 0.0 2.3* 0.2 2.5* 0.8 0.2 3.4.0 1.2* 0.1 64.4 0.1 1.8* 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Ammonia 123 56	10.0 0.9 * 0.0 1.2 * 0.1 1.2 * 0.3 25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia 51d error 90 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 * 0.1 1.2 *		
25.0 <u>1.2 * 0.1 43.5 1.2 3.1 * 0.5</u> 86 36	25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 39 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia	25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 86 36 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia 5 5 5 Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L 5 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error 0.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 0.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		
	MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia	MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Ammonia 123 56 C5 0.0 1.2 * 0.0 0.9 * 0.0 5 * 0.5 0.1 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 0.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		
MC-C Ortho- Nitrate +	Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56	Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	86	39
MC-C Ortho- Nitrate +	Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56	Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	86	39
	Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia	Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Std error Std error 2.0 1.2 * 0.0 0.9 * 0.0 2.5 * 0.5 0.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	86	39
Phosphate Nitrite Ammonia	Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Ammonia	Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Std error Std error 0.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 0.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	86	39
	2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia	2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia 0.1 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	86	39
	34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5	34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	86	39
12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2	34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia	34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	86	39
	Ortho- Nitrate + Phosphate Nitrite Ammonia	Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	86	39
	Ortho- Nitrate + Phosphate Nitrite Ammonia	Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		
C5	Phosphate Nitrite Ammonia	Phosphate Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error Ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		
Ortho- Nitrate +		Uppeth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		
Phosphate Nitrite Ammonia		2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		
	Depth (m) ug-P/L Std error ug-N/L Std error	2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		
Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error				
ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5	2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5			
Upperth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		123	56
Upperth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		123	56
Uppeth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1 16.0 2.0 * 0.1 43.8 0.5 3.2 * 0.0 52 24	2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1 16.0 2.0 * 0.1 43.8 0.5 3.2 * 0.0 52 24	Molar Mass	123	56 24
12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 123 56	Ortho- Nitrate + Phosphate Nitrite Ammonia	Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	86	39
	Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error	10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		
	Depth (m) UG-P/L Std error UG-N/L Std error UG-N/L Std error	10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		
		10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		
Depth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error				
ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5	2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5	16.0 <u>2.0 UI 43.8 U.5 3.2 U.0</u> 52 24		
Upperth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1	2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		123	56
Uppeth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1 16.0 2.0 * 0.1 43.8 0.5 3.2 * 0.0 52 24	2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1 16.0 2.0 * 0.1 43.8 0.5 3.2 * 0.0 52 24		123	56
Uppeth (m) ug-P/L Std error ug-N/L Std error ug-N/L Std error 2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1 16.0 2.0 * 0.1 43.8 0.5 3.2 * 0.0 52 24	2.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 10.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1 16.0 2.0 * 0.1 43.8 0.5 3.2 * 0.0 52 24		123 52 Molar	56 24 Mass
25.0 <u>1.2 * 0.1</u> <u>43.5</u> <u>1.2</u> <u>3.1 *</u> 0.5	25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1	25.0 1.2 * 0.1 43.5 1.2 3.1 * 0.5 MC-C Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error 2.0 1.0 * 0.0 2.3 * 0.2 2.5 * 0.8 12.0 1.0 * 0.1 0.7 * 0.0 1.5 * 0.2 34.0 1.2 * 0.1 64.4 0.1 1.8 * 0.1 C5 Ortho- Phosphate Nitrate + Nitrite Ammonia Depth (m) ug-P/L Std error ug-N/L Std error 0.0 1.2 * 0.0 0.9 * 0.0 0.5 * 0.5 0.0 1.2 * 0.0 0.9 * 0.0 2.4 * 0.1		Molar

All analyses included only two sample replicates, so standard error is given instead of 95% confidence interval For 2005 samples, depth of middle water-column sampling selected to coincide with chlorophyll maximum

Average N:P ratio = Standard deviation of N:P ratios = Redfield N:P ratio =

Std error 0.2

 Table 6. Experimental design for algal bioassay media associated with Coeur d'Alene Lake modeling studies.

 Computed free-zinc (Zn) ion concentrations and total orthophosphate (P) concentrations are separated by a slash.

 Comparative molar concentrations in parentheses are from bioassays a decade ago using other lake isolates (Kuwabara and others, 1994).

Treatments	Basal P	Mid P	Elevated P
(9 total)	N:P molar ratio = 40	N:P molar ratio = 16	N:P molar ratio = 4
Basal Zn	$5 \times 10^{-12} / 1 \times 10^{-7}$	$5 \times 10^{-12} / 2.5 \times 10^{-7}$	$5 \times 10^{-12} / 1 \times 10^{-6}$
	$(5x10^{-12} / 1x10^{-7})^{a}$		
Mid Zn	1x10 ⁻⁸ / 1x10 ⁻⁷	1x10 ⁻⁸ / 2.5x10 ⁻⁷	1x10 ⁻⁸ / 1x10 ⁻⁶
	$(1x10^{-7} / 1x10^{-7})$		
Elevated Zn	3x10 ⁻⁸ / 1x10 ⁻⁷	3x10 ⁻⁸ / 2.5x10 ⁻⁷	3x10 ⁻⁸ / 1x10 ⁻⁶
	$(4x10^{-7} / 1x10^{-7})^{b}$		

^a The basal medium formulation/speciation is unchanged from the previous 1993 experimental series.

^b In contrast to previous algal bioassays, the uncomplexed-zinc concentrations are consistently lower than the orthophosphate concentrations that extend well beyond the range of phosphorus limitation (that is, an nitrogen to phosphorus ratios >16).

Table 7. Phytoplankton Culturing Data

	Isolate:	Chlorella I	minutissima	r					- ··				Log	
			I - .				1		Growth				Maximum	
			Regressior	n Days					Rate		Lag time		Biovolume	
Ortho-P	Zinc	Basis	Start	End	Slope	<u>+</u> Cl ^a	Intercept	<u>+</u> CI	(d-1)	<u>+</u> CI	(d)	r²	(µm3)	<u>+</u> CI
Basal	Basal	Cell Conc.	0	4	0.31	0.01	4.33	0.00	1.02	0.03	0.02	0.99	6.48	0.09
		Biovolume	0	4	0.30	0.01	5.21	0.00	0.99	0.04	0.50	0.98		
Mid	Basal	Cell Conc.	0	4	0.38	0.00	4.28	0.01	1.27	0.02	0.09	1.00	6.83	0.03
		Biovolume	0	5	0.33	0.01	5.22	0.03	1.08	0.03	0.33	0.99		
High	Basal	Cell Conc.	0	6	0.30	0.01	4.36	0.05	1.00	0.05	0.00	0.96	6.93	0.19
		Biovolume	0	7	0.25	0.01	5.28	0.03	0.84	0.03	0.34	0.98		
Basal	Mid	Cell Conc.	2	6	0.05	0.01	4.25	0.02	0.15	0.02	1.77	0.87	5.62	0.23
		Biovolume	0	7	0.04	0.00	5.35	0.02	0.12	0.01	1.98	0.76		
Mid	Mid	Cell Conc.	1	7	0.19	0.00	4.10	0.02	0.64	0.02	1.45	0.99	6.40	0.03
		Biovolume	1	8	0.15	0.00	5.25	0.02	0.50	0.02	1.43	0.98		
High	Mid	Cell Conc.	1	8	0.21	0.01	4.22	0.03	0.69	0.02	1.05	0.98	6.70	0.33
		Biovolume	1	9	0.16	0.01	5.34	0.03	0.52	0.02	1.12	0.97		
Basal	High	Cell Conc.	0	6	0.00	0.01	4.28	0.02	0.00	0.02	> 6	0.01	5.28	0.16
		Biovolume	0	6	0.00	0.01	5.33	0.03	0.01	0.03	> 6	0.00		
Mid	High	Cell Conc.	0	6	0.00	0.01	4.26	0.02	0.00	0.02	> 6	0.00	5.41	0.25
		Biovolume	1	6	0.00	0.01	5.42	0.04	0.01	0.03	> 6	0.01		
High	High	Cell Conc.	0	6	0.01	0.00	4.23	0.01	0.02	0.01	> 6	0.16	5.40	0.07
		Biovolume	1	6	0.00	0.01	5.38	0.02	0.00	0.02	> 6	0.00		

Modeling Coefficients^b

Regression Model: $z = a_0 + a_1x + a_2y + a_3x^*y + a_4x^2 + a_5y^2 + a_6xy^2 + a_7x^2y + a_8x^2y^2$

	Based on Cell Conce	entration	Based on Biovolume)	Log Maximum
Model	Growth	Lag Time	Growth	Lag Time	Biovolume
Term	Rate (d ⁻¹)	(d)	Rate (d ⁻¹)	(d)	(µm³)
a ₀	0.80	NS	0.90	NS	6.20
a ₁	2.40	NS	1.00	NS	3.30
a ₂	-147.0	NS	-151.8	NS	-165.3
a ₃	357.8	NS	396.3	NS	608.4
a ₄	-2.20	NS	-1.10	NS	-2.50
a ₅	4012	NS	4066.00	NS	4382
a ₆	-14595	NS	-14253	NS	-22528
a ₇	-241.3	NS	277.4	NS	-452
a ₈	10517	NS	10361	NS	16739
a ₈ r ²	0.99	0.55	0.99	0.17	0.99

	Isolate:	Asterionel	lla formosa						Growth				Log Maximum	
			Regressior	Days					Rate		Lag time		Biovolume	
Ortho-P	Zinc	Basis	Start	End	Slope	<u>+</u> Cl ^a	Intercept	<u>+</u> CI	(d⁻¹)	<u>+</u> CI	(d)	r ²	(µm3)	<u>+</u> CI
Basal	Basal	Cell Conc.	0	3	0.16	0.01	3.41	0.02	0.53	0.04	0.00	0.96	6.57	0.03
		Biovolume	0	2	0.17	0.01	6.22	0.01	0.56	0.02	0.12	0.99		
Mid	Basal	Cell Conc.	0	3	0.27	0.01	3.42	0.02	0.88	0.03	0.00	0.99	6.85	0.16
		Biovolume	0	3	0.22	0.01	6.25	0.02	0.73	0.03	0.00	0.98		
High	Basal	Cell Conc.	0	3	0.21	0.02	3.48	0.04	0.69	0.06	0.00	0.91	6.95	0.13
		Biovolume	0	3	0.25	0.01	6.28	0.02	0.82	0.03	0.00	0.98		
Basal	Mid	Cell Conc.	2	5	0.11	0.01	3.15	0.03	0.37	0.03	1.91	0.95	6.46	0.09
		Biovolume	1	4	0.09	0.01	3.24	0.03	0.30	0.04	0.39	0.84		
Mid	Mid	Cell Conc.	1	5	0.16	0.01	3.06	0.03	0.54	0.03	1.15	0.97	6.77	0.14
		Biovolume	1	4	0.22	0.02	5.71	0.04	0.72	0.05	1.42	0.95		
High	Mid	Cell Conc.	1	4	0.17	0.01	3.29	0.03	0.56	0.04	1.29	0.95	6.81	0.07
		Biovolume	1	5	0.18	0.01	5.98	0.03	0.59	0.03	1.23	0.96		
Basal	High	Cell Conc.	2	5	0.08	0.01	3.20	0.03	0.26	0.03	1.75	0.89	6.46	0.11
		Biovolume	2	5	0.11	0.01	5.88	0.03	0.37	0.03	1.62	0.93		
Mid	High	Cell Conc.	1	3	0.15	0.02	3.23	0.04	0.51	0.06	0.82	0.90	6.48	0.12
		Biovolume	1	3	0.18	0.03	5.97	0.06	0.59	0.10	0.57	0.84		
High	High	Cell Conc.	1	4	0.18	0.01	3.12	0.02	0.59	0.02	0.82	0.98	6.71	0.18
		Biovolume	1	4	0.18	0.01	5.94	0.03	0.61	0.03	0.95	0.97		

Modeling Coefficients^b

Regression Model: $z = a_0 + a_1x + a_2y + a_3x^*y + a_4x^2 + a_5y^2 + a_6xy^2 + a_7x^2y + a_8x^2y^2$

Model	Based on Cell Conce Growth	entration Lag Time	Based on Biovolume Growth	e Lag Time	Log Maximum Biovolume
Term	Rate (d ⁻¹)	(d)	Rate (d ⁻¹)	(d)	(µm ³)
a ₀	0.17	NS	0.40	NS	6.30
a 1	3.68	NS	1.60	NS	2.86
a ₂	NS	341.9	-67.7	-114.6	-12.4
a ₃	-227.9	-926.6	353.8	1602	NS
a ₄	-3.16	NS	-1.10	NS	-2.22
a ₅	NS	-8579	2004.00	6623	570.6
a ₆	5216	21373	-11290	-64369	-3005
a ₇	209.4	764.8	-317.3	-1319	NS
a ₈	-4703	-17884	10092	53197	2590
r ²	0.92	0.98	0.91	0.98	0.96

^a The 95-percent confidence intervals for growth rate and lag time are based on the number of culturing days used for the linear regression times three (3 replicate cultures) minus two (2 parameters estimated). The coefficients of determination (r^2) are tabulated for each set of parameters estimates. The 95-percent confidence intervals for the maximum biovolumes are based three replicates of the logarithm of the greatest biovolume in the culture.

^b With a 3X3 full-factorial experimental design, the regression model takes the form: $z = a_0 + a_1x + a_2y + a_3x^*y + a_4x^2 + a_5y^2 + a_6xy^2 + a_7x^2y + a_8x^2y^2$ where z is the dependent variable, x is the dissolved orthophosphate concentration in micromolar units, y is the zinc-ion activity in micromolar units, and the "a" values are the modeling coefficients. The description "NS" denotes that the coefficient was not significant at the 95 percent confidence level. **Table 8.** Benthic chlorophyll and phaeophytin data (n=3) - Coeur d'Alene Lake (June 2005)

	June 2005			
	Chloro	phyll-a	Phaeo	phytin
Station	ug/cm ²	Std. dev.	ug/cm ²	Std. dev.
C5	1.8	2.5	24.9	6.0
MC-R	0.9	1.0	10.2	3.7
MICA	0.8	1.1	17.7	3.6
MC-C	0.4	0.2	8.4	6.9

 Table 9. Dissolved organic carbon (DOC) in the water column - Coeur d'Alene Lake (August 2001, June 2004 & June 2005)

2001

MC-R		
		95% Conf.
Depth (m)	DOC uM	Interval
1.0	118.2	3.8
13.7	140.2	1.7
27.3	133.2	0.5

MICA		
		95% Conf.
Depth (m)	DOC uM	Interval
1.0	134.8	1.8
8.5	129.5	2.8
17.0	137.0	3.9

MC-C

		95% Conf.	
Depth (m)	DOC uM Interval		
1.0	117.0	1.4	
	134.3	5.4	
	134.8	2.0	

CDARD

	95% Conf.		
Depth (m)	DOC uM Interval		
1.0	120.8	3.9	
16.8	120.4	1.0	
33.5	132.7	3.9	

2004

MC-R		
		95% Conf.
Depth (m)	DOC uM	Interval
1.0	133.6	2.4
16.8	143.6	2.0
33.5	154.7	7.7

MICA

	95% Conf.	
Depth (m)	DOC uM Interval	
1.0	130.9	0.6
13.7	137.0	2.8
27.3	141.1	4.0

C5

	95% Conf.	
Depth (m)	DOC uM	Interval
1.0	124.3	0.2
8.5	146.7	3.1
17.0	144.3	6.8

SJRI

		95% Conf.
Depth (m)	DOC uM	Interval
1.0	136.4 2.3	

2005

MC-R		
		95% Conf.
Depth (m)	DOC uM	Interval
1.0	122.1	0.9
15.0	124.8	1.0
30.0	118.1	3.8

MICA		
		95% Conf.
Depth (m)	DOC uM	Interval
1.0	124.3	1.8
10.0		0.6
27.0	136.3	1.2

MC-C		
		95% Conf.
Depth (m)	DOC uM	Interval
1.0	124.9	3.6
12.0	123.3	2.5
36.0	137.4	2.0

C5

05		
		95% Conf.
Depth (m)	DOC uM	Interval
1.0	116.8	1.0
10.0	128.3	4.1
18.0	137.8	0.3
•		

Summary of phytoplankton concentrations and biomagnification factors for selected metals

Sample	Site	Corrected Phyto conc. Zn (ug/g)	Biomag. Factor for Zn	Biomag Factor Zn (log)	CRM* recovery averages
1A 1B 1C 2A 2B 2C	C5 C5 C5 MC-R MC-R MC-R	1360 1432 1335 2708 4487 2663 Corrected Phyto conc.	54858 57750 53825 64008 106069 62958 Biomag. Factor	4.7 4.8 4.7 4.8 5.0 4.8 Biomag Factor	62%
1A 1B 1C 2A 2B 2C	C5 C5 C5 MC-R MC-R MC-R	Cu (ug/g) 32 29 28 26 48 24 Corrected Phyto conc. Cd (ug/g)	for Cu 121562 107707 104687 87042 158539 79323 Biomag. Factor for Cd	Cu (log) 5.1 5.0 5.0 4.9 5.2 4.9 Biomag Factor Cd (log)	83%
1A 1B 1C 2A 2B 2C	C5 C5 C5 MC-R MC-R MC-R	13 15 45 21 35 20 Corrected Phyto conc. Pb (ug/g)	122633 144234 442496 106753 180063 104852 Biomag. Factor for Pb	5.1 5.2 5.6 5.0 5.3 5.0 Biomag Factor Pb (log)	78%
1A 1B 1C 2A 2B 2C	C5 C5 C5 MC-R MC-R MC-R	128 181 193 744 1242 742	994993 1400580 1499420 7023224 11715300 6995911	6.0 6.1 6.2 6.8 7.1 6.8	90%

* CRM = Certified reference materials (TORT-2 and NIST-2976)

Calculation Step							Α	В		С	D	Е		F
Complete calculations for Biomagnification of Zn in phytoplankton											Table 4			
											Phyto conc.	Diss. metal		Ratio of
			Weighing #1		Weighing #2			Conc. in		Calculated	corrected for	conc in	Conv to	phyto conc.
		Tare	Mass inc.		Mass inc.		Dry phyto	digested	Digestion	Conc in.	CRM* recovery	site water	matching	to water conc.
		filter mass	dry phyto. Dry phyto		dry phyto. D	ry phyto	mass (mg)	solution	volume	dry phyto	of 62% for Zn	at chl-a max	units	Biomag.
Sample	Site	(mg)	(mg) mass (mg)		(mg) mass (mg)		average	Zn (ug/L)	(mL)	Zn (ug/g)	Zn (ug/g)	Zn (ug/ L)	Zn (ug/g)	Factor
1A	C5	5.083	5.335	0.252	5.347	0.264	0.258	43.24	5	837.9	1360	24.8	0.025	54858
1B	C5	4.965	5.290	0.325	5.300	0.335	0.330	58.22	5	882.1	1432	24.8	0.025	57750
1C	C5	5.023	5.397	0.374	5.388	0.365	0.370	60.76	5	822.1	1335	24.8	0.025	53825
2A	MC-R	5.064	5.337	0.273	5.338	0.274	0.274	91.22	5	1667.6	2708	42.3	0.042	64008
2B	MC-R	5.156	5.290	0.134	5.293	0.137	0.136	74.89	5	2763.4	4487	42.3	0.042	106069
2C	MC-R	5.165	5.314	0.149	5.332	0.167	0.158	51.83	5	1640.2	2663	42.3	0.042	62958