Effects of Climate Change on the Atmospheric Hydrologic Cycle

Tom Ackerman

Joint Institute for the Study of the Atmosphere and Ocean (JISAO) Department of Atmospheric Sciences University of Washington

Acknowledgements

- IPCC Fourth Assessment Report (Chapters 8 and 10, particularly)
- Phil Mote, Eric Salathe, Lara Whitely Binder (Climate Impacts Group)
- Roger Marchand (JISAO)
- NASA, DOE ARM

It's the WATER!

 Climate change literature tends to focus on surface temperature change, but WATER is the key to understanding climate change impacts

Two key pieces of the water cycle

Clouds

- Global thermostat reflect solar radiation and enhance greenhouse effect
- On average, clouds cool the planet
- How will the amount of cooling change as climate changes

Precipitation

- Regional fresh water => living needs, agriculture, hydropower, fish, etc.
- Timing => monsoons, seasonal cycle
- Enhanced extremes => drought, intense events

Atmospheric Global Climate Model

- Climate model sensitivity = change in average surface temperature for a fixed change in some climate forcing
- Determined by
 - Direct response
 - Feedbacks
- Feedback = additional radiative forcing produced by a change in temperature

IPCC Fourth Assessment Report

Figure 8.14. Comparison of GCM climate feedback parameters for water vapour (WV), cloud (C), surface albedo (A), lapse rate (LR) and the combined water vapour plus lapse rate (WV + LR) in units of W m^{-2} °C⁻¹. 'ALL' represents the sum of all

tropical CRF sensitivity to SST

Limited confidence in cloud change

Change in cloud amount in 21st century: A1B Scenario

Fidelity of meteorological fields

Limited confidence in predicted rainfall

The problem is multiple scales.

Parameterization

- Blends theory with empiricism
- Requires
 - Knowledge of how small scale properties (clouds) depend functionally on large scale predicted fields
 - Data (at cloud and large scale) to constrain functional fits and deduce relationships
- Inherently statistical
- Dang hard work!

So, what we need is a global model running at cloud-scale resolution!

- Issues
 - Computer time
 - Computer storage
 - Analysis tools
 - People

Other options

Multi-scale modeling framework

Nested models

Super-Parameterization

(a.k.a. the Multiscale Modeling Framework, or MMF)

A super-parameterized climate model is about 250 times slower than a conventional GCM with climate resolution.

It is more flexible and less expensive, but also more complicated, than a global cloud-resolving model.

Mesoscale Climate Model

- Based on MM5 Weather Model
- Nested grids 135-45-15 km
- Nudging on outermost grid by forcing global model
- Advanced land-surface model (NOAH) with interactive deep soil temperature

Temperature trends

Loss of Snow cover

Snow Cover Change

Change in fraction of days with snow cover

Temperature Change

Change in Winter Temperature (degrees C)

Snowpack Drop in the Mountains

Streamflow Impacts

Higher winter streamflows

Earlier and lower peak runoff (mid/high basins)

Lower late spring streamflow

Lower, warmer summer streamflow

Projected streamflow changes in the Quinalt and Yakima Rivers

How do we identify model improvement?

- Use of high-resolution data
 - Local surface data
 - ARM, weather radar, etc.
 - CloudSat

- Statistical comparisons
 - Joint probability distributions
 - Classification by atmospheric state

CloudSat

3 mm-wavelength radar deployed as part of the NASA A-train

Provides a 2D "curtain" of cloud properties along the satellite path

Horizontal resolution of a few km

Vertical resolution of 250 m

\overline{JJA} (Diff = MMF – CS)

TWP - June

TWP - July

Summary

- Societal questions require better understanding of
 - Climate sensitivity => cloud feedback
 - Precipitation simulation on the regional scale
- Requires
 - Higher resolution climate models
 - Better use of high resolution data (and more data) for model evaluation and development
- We are heading down this path, but
 - No coordinated national program
 - Limited resources

