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1. PUBLIC HEALTH STATEMENT

This Statement was prepared to give you information about 4,4’-methylenebis(2-
chloroaniline) (MBOCA) and to emphasize the human health effects that may result from
exposure to it. The Environmental Protection Agency (EPA) has identified 1,350 hazardous
waste sites as the most serious in the nation. These sites comprise the “National Priorities
List” (NPL): Those sites which are targeted for long-term federal cleanup activities.
MBOCA has been found in at least 4 of the sites on the NPL. However, the number of
NPL sites evaluated for MBOCA is not known. As EPA evaluates more sites, the number
of sites at which MBOCA is found may increase. This information is important because
exposure to MBOCA may cause harmful health effects and because these sites are potential
or actual sources of exposure to MBOCA.

When a substance is released from a large area, such as an industrial plant, or from a
container, such as a drum or bottle, it enters the environment. This release does not always
lead to exposure. You can be exposed to a substance only when you come in contact with
it. You may be exposed by breathing, eating, or drinking substances containing the
substance or by skin contact with it.

If you are exposed to a substance such as MBOCA, many factors will determine whether
harmful health effects will occur and what the type and severity of those health effects will
be. These factors include the dose (how much), the duration (how long), the route or
pathway by which you are exposed (breathing, eating, drinking, or skin contact), the other
chemicals to which you are exposed, and your individual characteristics, such as age, gender,
nutritional status, family traits, life-style, and state of health.

1.1 WHAT IS MBOCA?

MBOCA is a synthetic chemical used in industry primarily to produce castable polyurethane
parts. It also has a coating application in chemical reactions to “set” glues, plastics, and
adhesives. Since plastics have many uses, MBOCA is used very widely. Other names for
MBOCAinclude 4,4’-methylenebis(2-chloroaniline), bis amine, DACPM, MCA, methylenebis
ortho chloroaniline, and MOCA. The name MBOCA comes from methylene bis ortho chloro
aniline. Pure MBOCA is a colorless solid, but MBOCA is usually made and used as yellow,
tan, or brown pellets. If MBOCA is heated above 205°C it may decompose. MBOCA has
no odor or taste. Chapter 3 contains more information on the chemical and physical
properties of MBOCA. Chapter 4 contains more information on its production and use.

1.2 WHAT HAPPENS TO MBOCA WHEN IT ENTERS THE ENVIRONMENT?

MBOCA may enter the ENVIRONMENT through disposal of solid waste from manufacturing
plants that use MBOCA in castable polyurethane processing. MBOCA is not likely to
evaporate from the soil or water into the air. However, it may enter the air as dust when
it is made at production plants or during mixing and grinding operations at polyurethane
plants. It may enter surface waters from the waste streams of these plants. Some of the
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MBOCA may be broken down by sunlight or by microscopic organisms. Chapter 4 contains
more information on the production, use, and disposal of MBOCA, while Chapter 5 has
information on the release of MBOCA to the environment.

1.3    HOW MIGHT I BE EXPOSED TO MBOCA?

Most exposure to MBOCA occurs in the workplace. If you work with MBOCA, you may
breathe small particles of it in the air or get it on your skin if you brush against a surface
covered by MBOCA dust. There are several ways to be exposed to MBOCA outside of the
workplace. For example, you may be exposed to MBOCA if you live in an area where the
soil is contaminated with MBOCA. You may also be exposed if you eat foods grown in soils
that contain MBOCA. However, you are unlikely to drink water contaminated with
MBOCA because it does not dissolve in water. Chapter 5 contains more information on the
potential exposure of humans to MBOCA.

1.4    HOW CAN MBOCA ENTER AND LEAVE MY BODY?

MBOCA can enter your bloodstream if you breathe it in the air, eat it, or get it on your
skin. Results of studies in humans and animals show that MBOCA can enter your body very
quickly through the skin or lungs. Once MBOCA is in your body, most of it leaves your
body quickly. MBOCA and its breakdown products leave the body through urine and feces.
Results of studies in humans and animals show that most MBOCA leaves the body within
a few days of exposure. The small amount of MBOCA that may remain in your body after
you are exposed is likely to break down or leave your body at a slower rate. Chapter 2
contains more information on how MBOCA can enter and leave the body.

1.5    HOW CAN MBOCA AFFECT MY HEALTH?

Studies of human exposure suggest that the small amounts of MBOCA usually found in the
air or on surfaces in or near factories do not cause toxic effects. However, it is possible that
acute exposure to a large amount of MBOCA, such as an industrial accident, may produce
effects that we do not know very much about. Information on how MBOCA can affect your
health is very limited, and we do not know if there are any other long-term human health
effects of exposure to MBOCA. MBOCA is suspected of causing bladder cancer and is
considered a probable human carcinogen. Information is being gathered to determine
whether bladder cancer in humans may result from short-, medium-, or long-term exposures
to MBOCA. We do not know if MBOCA causes birth defects in humans. Chapter 2
contains more information on the human health effects of MBOCA.

Studies in animals show that MBOCA can be harmful to the blood cells and livers of dogs
and rats. MBOCA also causes lung, liver, breast, and bladder cancers. The Department of
Health and Human Services, the International Agency for Research on Cancer, and EPA
consider MBOCA to be a probable human carcinogen.
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1.6   IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN
        EXPOSED TO MBOCA?

Your urine can be tested for MBOCA within a few hours of exposure. This test, however,
will not detect MBOCA days after exposure has ceased. This test may not be readily
available in your doctor’s office. Chapters 2 and 6 contain more information on testing for
MBOCA in humans.

1.7   WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO
         PROTECT HUMANHEALTH?

The government has developed regulations and guidelines for handling MBOCA. They are
designed to protect the public from the potential harmful health effects of this chemical.
EPA has classified MBOCA as a hazardous waste that must meet specific disposal
requirements.

The Occupational Safety and Health Administration (OSHA) regulates MBOCA in the
workplace. The maximum allowable amount of MBOCA in workroom air, assuming an 8-
hour workday and a 40-hour workweek, is 0.22 milligrams per cubic meter. However, the
court has suspended such regulations for the present. Chapter 7 contains more information
on international, national, and state regulations and guidelines for handling MBOCA in air,
water, and other environments.

1.8 WHERE CAN I GET MORE INFORMATION?

If you have any more questions or concerns, please contact your community or state health
or Environmental quality department or:

Agency for Toxic Substances and Disease Registry
Division of Toxicology
1600 Clifton Road NE, E-29
Atlanta, Georgia 30333
(404) 639-6000

This agency can also provide you with information on the location of occupational and
Environmental health clinics. These clinics specialize in the identification, evaluation, and
treatment of illness resulting from exposure to hazardous substances.
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2. HEALTH EFFECTS

2.1   INTRODUCTION

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and
other interested individuals and groups with an overall perspective of the toxicology of 4,4’-
methylene-bis(2-chloroaniline) (MBOCA). It contains descriptions and evaluations of toxicological
and epidemiological investigations and provides conclusions, where possible, on the relevance of
MBOCA toxicity to public health.

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile.

MBOCA is an aromatic diamine that is used as a curing agent for polyurethane and epoxy resins.
It has some of the general toxicity characteristics of aromatic amines. However, methemoglobinemia
and the resulting cyanosis, hallmark symptoms of exposure to aromatic amines, are reported with
much less frequency after exposure to MBOCA (Linch et al. 1971).

The majority of studies on MBOCA were undertaken to investigate its potential to cause cancer in
different animal species because MBOCA was suspected of being a human carcinogen. A large
number of studies focused on tumor incidence and did not investigate other toxic effects of MBOCA.
Another limitation of the animal studies is the information on acute toxicity. An acute effect of
MBOCA in the dog was marked methemoglobinemia after a single oral dose (Barnes 1964).
Information on intermediate and chronic exposure, however, indicates that MBOCA is carcinogenic
in animals.

2.2    DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE

To help public health professionals and others address the needs of persons living or working near
hazardous waste sites, the information in this section is organized first by route of exposure -
inhalation, oral, and dermal; and then by health effect -death, systemic, immunological, neurological,
reproductive, developmental, genotoxic, and carcinogenic effects. These data are discussed in terms
of three exposure periods -acute (14 days or less), intermediate (1.5-364 days), and chronic (36.5 days
or more).

Levels of significant exposure (LSE) for each route and duration are presented in Table 2-1 and
illustrated in Figure (2-l). The points in the figure showing no-observable-adverse-effect levels
(NOAELs) or lowest-observable-adverse-effect levels (LOAELs) reflect the actual doses (levels of
exposure) used in the studies. LOAELs have been classified into “less serious” or “serious” effects.
“Serious” effects are those that evoke failure in a biological system and can lead to morbidity or
mortality (e.g., acute respiratory distress or death). “Less serious” effects are those that are not
expected to cause significant dysfunction or death, or those whose significance to the organism is not
entirely clear. ATSDR acknowledges that a considerable amount of judgment may be required in
establishing whether an end point should be classified as a NOAEL, “less serious” LOAEL, or
“serious” LOAEL, and that in some cases, there will be insufficient data to decide whether the effect
is indicative of a significant dysfunction. However, the Agency has established guidelines and policies
that are used to classify these end points, which can be found in Tables 2-1, 2-2, 2-3, and 2-4.
ATSDR believes that there is sufficient merit in this approach to warrant an attempt at distinguishing
between “less serious” and “serious” effects. The distinction between “less serious” and “serious” effects
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is considered to be important because it helps the users of the profiles to identify levels of exposure
at which major health effects start to appear. LOAELs or NOAELs should also help in determining
whether or not the effects vary with dose and/or duration, and place into perspective the possible
significance of these effects to human health.

The significance of the exposure levels shown in the LSE tables and figures may differ depending on
the user’s perspective. Public health officials and others concerned with taking appropriate actions
to take at hazardous waste sites may want information on levels of exposure associated with more
subtle effects in humans or animals (LOAELs) or exposure levels below which no adverse effects
(NOAELs) have been observed. Estimates of levels posing minimal risk to humans (Minimal Risk

Levels of MRLs) may be of interest to health professionals and citizens alike.
Levels of exposure associated with carcinogenic effects (Cancer Effect Levels, CELs) of MBOCA
are reported in Table 2-1 and Figure 2-1. Because cancer effects could occur at lower exposure
levels, Figure 2-1 also shows a range for the upper bound of estimated excess risks, ranging from a
risk of 1 in 10,000 to 1 in 10,000,000 (10m-4 to 10-7), as developed by EPA.

Estimates of exposure levels posing minimal risk to humans (Minimal Risk Levels of MRLs) have
been made for MBOCA. An MRL is defined as an estimate of daily human exposure to a substance
that is likely to be without an appreciable risk of adverse effects (noncarcinogenic) over a specified
duration of exposure. MRLs are derived when reliable and sufficient data exist to identify the target
organ(s) of effect or the most sensitive health effect(s) for a specific duration within a given route
of exposure. MRLs are based on noncancerous health effects only and do not consider carcinogenic
effects. MRLs can be derived for acute, intermediate, and chronic duration exposures for inhalation
and oral routes. Appropriate methodology does not exist to develop MRLs for dermal exposure.

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA
1989a), uncertainties are associated with these techniques. Furthermore, ATSDR acknowledges
additional uncertainties inherent in the application of the procedures to derive less than lifetime
MRLs. As an example, acute inhalation MRLs may not be protective for health effects that are
delayed in development or are acquired following repeated acute insults, such as hypersensitivity
reactions, asthma, or chronic bronchitis. As these kinds of health effects data become available and
methods to assess levels of significant human exposure improve, these MRLs will be revised.

A User’s Guide has been provided at the end of this profile (see Appendix A) to aid in the
interpretation of the tables and figures for Levels of Significant Exposure ant the MRLs.

2.2.1 Inhalation Exposure

The studies presented in the section on inhalation exposure address occupational or accidental
exposures. In occupational settings, dermal, inhalation and oral exposures often occur simultaneously.
Therefore, many of the effects described in this section may be partially due to dermal or oral
exposures to MBOCA. Exact levels of occupational and accidental exposures are not known. For
this reason, the results in this section are not presented in table or figure form.
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2.2.1.1 Death

No studies were located regarding death in humans or animals after inhalation exposure to MBOCA.
A literature search did not reveal any human or animal studies that reported death due to MBOCA
inhalation.

2.2.1.2 Systemic Effects

No studies were located regarding respiratory, cardiovascular, hematological, musculoskeletal, or
hepatic effects in humans or animals after inhalation exposure to MBOCA. Other systemic effects
observed following inhalation exposure are discussed below.

Gastrointestinal Effects. Information on the gastrointestinal effects of MBOCA following
inhalation exposure is extremely limited. In a case study of accidental occupational exposure, a
worker complained of feeling ill in the stomach after he was sprayed in the face with molten MBOCA
(Hosein and Van Roosmalen 1978). Some of the MBOCA entered his mouth. He was wearing
overalls, gloves, and safety glasses, but no respirator or face shield. He washed his face and eyes
immediately. no follow-up information was given about his condition. There was no information on
the dose to which he was exposed.

No studies were located regarding gastrointestinal effects in animals after inhalation exposure to
MBOCA.

Renal Effects. Five hours after a worker was accidentally sprayed in the face with molten MBOCA,
his urine contained 220 mg/L of protein, indicating damage to the renal tubules (Hosein and Van
Roosmalen 1978). However, 11 hours after the accident, there was only a trace of protein in the
urine. Two urine specimens collected within 24 hours after the accident had low specific gravities,
suggesting that damage to the renal tubules was transitory. The level of exposure was not reported.

In a retrospective bladder cancer incidence study conducted with 532 workers exposed to MBOCA
from 1968 to 1979 and 20 workers who were first employed in 1980 and 1981, 385 participated in a
urine screening test (Ward et al. 1990). Exfoliative cytology revealed that the morning urine samples
obtained from 21 workers contained atypical cells. no cytology readings were positive for cancer.
Urine samples obtained from 16 workers were positive for heme (Ward et al. 1990). Almost 90%
of the exposed workers were males, and the median duration of exposure was greater than 3 months.
This study gathered information on a relatively large group of workers exposed solely to MBOCA
(and not to benzidine and P-naphthylamine, which can confound exposures in other occupational
settings) and because it alerted medical professionals to the limitations of follow-up procedures
generally used after MBOCA exposure. In the course of screening, one participant who was negative
for cytology and heme impairment was diagnosed with bladder cancer. Cystoscopy was introduced
as a part of the follow-up procedure, and two additional low-grade papillary tumors of the bladder
were detected. Data on MBOCA in urine from workers in companies belonging to the Polyurethane
Manufacturers Association (PMA) confirmed the importance of biological monitoring (Lowry and
Clapp 1992). The percentage of urine samples with <25 µg MBOCA/L increased from 77% in 1985
to 86% in 1990. The percentage of urine samples with >5 µg MBOCA/L decreased from 12% in
1985 to 8% in 1990.

No studies were located regarding renal effects in animals after inhalation exposure to MBOCA.
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Dermal/Ocular Effects. Very limited information is available regarding dermal/ocular effects after
inhalation exposure to MBOCA. When a worker was accidentally sprayed with molten MBOCA, he
experienced burning of the face and eyes shortly thereafter (Hosein and Van Roosmalen 1978). The
worker was wearing gloves and safety glasses but no respirator or face shield, so the exposure may
have occurred by ingestion or dermal absorption as well. The limitations of this study are: (1) no
further follow-up information was provided on the worker’s condition; (2) the dose of MBOCA was
not known; (3) exposure involved mixed routes; and (4) only one exposed individual was described.

No studies were located regarding dermal/ocular effects in animals after inhalation exposure to
MBOCA.

No studies were located regarding the following health effects in humans or animals after inhalation
exposure to MBOCA:

2.2.1.3 Immunological Effects

2.2.1.4 Neurological Effects

2.2.1.5 Reproductive Effects

2.2.1.6 Developmental Effects

2.2.1.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans after inhalation exposure to MBOCA.
The sex-linked recessive lethal (SLRL) test in Drosophiki melunoguster was used to monitor the air
in the vulcanizing, weighing, calendaring, and molding areas of a rubber plant (Donner et al. 1983).
Male flies that were exposed in the molding area exhibited a small but significant increase (p<0.05)
in SLRL genotoxicity. Exposure data were not provided, but high ambient exposures were expected
to occur in the tested areas. Acute lethality to fruit flies in the molding area was 50%; sterility was
not reported. Concomitant exposures to other chemicals may also have occurred.

Other genotoxicity studies are discussed in Section 2.4.

2.2.1.8 Cancer

MBOCA is suspected of being a human carcinogen because its chemical structure is similar to a
known human bladder carcinogen, benzidine, and to that of a potent animal carcinogen, 3,3’-
dichlorobenzidine (Osorio et al. 1990; Ward et al. 1990). A limited number of epidemiological studies were
found that examined the incidence of cancer in workers exposed to MBOCA. Workers who were
exposed to MBOCA for a median duration of employment of 3.2 months (between 1968 and 1981)
were examined for bladder cancer (Ward et al. 1990). Of the 200 workers examined, 3 men were
diagnosed with bladder tumors by cystoscopy: 1 with a papillary tumor, and 2 with low-grade papillary
transitional cell tumors. Two of the men were less than 30 years old. The interval between the time
of first exposure and diagnosis was 11.5 years; the latency period for most bladder carcinogens is
about 20 years (Ward et al. 1990). Since bladder carcinoma in young men is very uncommon, this
finding increases the concern that MBOCA may cause bladder tumors in humans. A limitation of
this study is that there were no controls (there were no data on the incidence of bladder tumors
diagnosed by cystoscopy in an unexposed population). The study did not provide statistical evidence
for an association between bladder tumor incidence and MBOCA exposure in workers. The statistical
significance of three cases of bladder tumors could not be evaluated. There is no information on the
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daily amount of MBOCA to which workers were exposed, and a possibility exists of coexposure to
other chemicals such as 4,4’-methylenedianiline, 4-chloro ortho-toluidine, aniline, and otiho-toluidine
(Hogan 1993; Ward 1993). MBOCA may not be solely responsible for the observed carcinogenic
effects.

No studies were located regarding cancer in animals after inhalation exposure to MBOCA.

2.2.2 Oral Exposure

Very little information on acute oral toxicity of MBOCA in humans or animals is available.
Information on the long-term health effects of MBOCA in humans is also limited. However, several
chronic oral exposure studies in mice (Russfield et al. 1975), rats (Kommineni et al. 1979; Stula et
al. 1975) and dogs (Stula et al. 1977) clearly demonstrate the carcinogenic potential of MBOCA in
these species. These studies are discussed in Section 2.2.2.8.

2.2.2.1 Death

No studies were located regarding increased mortality in humans from any cause following exposure
to MBOCA.

Decreased lifespan has been noted in rats after chronic exposure to MBOCA (Kommineni et al.
1979). Male Sprague-Dawley rats were fed a standard diet (with 27% protein) containing 0, 12.5, 25,
or 50 mg/kg/day of MBOCA or a protein-deficient diet (with 8% protein) containing 0, 6.25, 12.5,
or 25 mg/kg/day of MBOCA for 18 months. Decreased lifespan was observed in the rats fed 25
mg/kg/day of MBOCA in either the standard or protein-deficient diet. Rats fed the standard diet
containing the highest concentration of MBOCA, 50 mg/kg/day, also experienced a shortened lifespan.
Similar decrease in lifespan was observed in Wistar II rats fed an average dose of 54 mg/kg/day of
MBOCA for 500 days in a low-protein diet (Grundmann and Steinhoff 1970). The first death in
females occurred on day 200 of treatment and in males on day 390 of treatment; the mean lifespan
in control females was 535 days and in males 565 days.

In another study, one of six female beagle dogs died after 3.4 years of oral administration of an
average dose of 10 mg/kg/day of MBOCA (Stula et al. 1977). However, the report concludes that
the death was not MBOCA-related, because the dog died from pyelonephritis. The report did not
discuss any possible connection between MBOCA administration and pyelonephritis. no additional
deaths were reported for the five remaining dogs that were part of the same 9-year study (Stula et
al. 1977).

The LOAEL value for death in rats for chronic exposure is reported in Table 2-1 and Figure 2-l.

2.2.2.2 Systemic Effects

No studies were located regarding cardiovascular or musculoskeletal effects in humans or animals
after oral exposure to MBOCA. The systemic effects observed after oral exposure are discussed
below.

The highest NOAEL values and all LOAEL values from each reliable study for systemic effects in
each species for chronic duration are presented in Table 2-1 and Figure 2-1.
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Respiratory Effects. no studies were located regarding respiratory effects in humans after oral
exposure to MBOCA.

Lung adenomatosis was found in rats fed 2.5 (low dose) or 50 (high dose) mg/kg/day of MBOCA for
18 months. Three of 22 rats from the low-dose group and 4 of 19 from the high-dose group
developed this preneoplastic condition (Russfield et al. 1975). Although this finding was not
statistically significant, it is important because exposure to MBOCA induces preneoplastic lesions in
the lungs.

Gastrointestinal Effects. Extremely limited information is available regarding gastrointestinal
effects of MBOCA after oral exposure. In a case study of an accidental occupational exposure, a
worker complained of feeling ill in the stomach after his face was sprayed with molten MBOCA that
also entered his mouth (Hosein and Van Roosmalen 1978). He wore overalls, gloves, and safety
glasses but no respirator or face shield. He washed his face and eyes immediately after the exposure.
no further information was given about his condition. As with other occupational exposure studies,
there was no information on the dose to which he was exposed. Another limitation of this study is
the possibility that some of the MBOCA was inhaled or dermally absorbed.

No studies were located regarding gastrointestinal effects in animals following oral exposure to
MBOCA.

Hematological Effects. No studies were located regarding hematological effects in humans after
oral exposure to MBOCA.

No changes in hemoglobin, hematocrit, erythrocyte count, or mononuclear leukocyte count were
noted in female beagle,dogs after 9 years of exposure to MBOCA. Dogs were fed MBOCA at a
concentration of 10 mg/kg/day, 3 days/week, for the first 6 weeks of the study and then an average
of 10 mg/kg/day, 5 days/week, for the remaining 9 years (Stula et al. 1977). The analyses were
performed only twice a year, so the reported observations may not be meaningful.

Hepatic Effects. No studies were located regarding hepatic effects in humans after oral exposure
to MBOCA.

While no information is available on acute or intermediate exposure, evidence of adverse hepatic
effects was seen in rats and dogs after chronic exposure to MBOCA. Several adaptive changes
occurred in the livers of rats fed 50 mg/kg/day of MBOCA for 2 years. These changes included
hepatomegaly, fatty change, necrosis, fibrosis, and bile duct proliferation (Stula et al. 1975). Similar
changes were seen in dogs fed 10 mg/kg/day of MBOCA 3 days/week for the first 6 weeks and then
an average of 10 mg/kg/day, 5 days/week, for 9 years (Stula et al. 1977). Histopathology revealed
nodular hepatic hyperplasia and disruption of liver architecture in three of six MBOCA-treated dogs
but not in controls. Another indication of liver damage was a statistically significant increase in serum
glutamic-pyruvic transaminase (SGPT) in MBOCA-treated dogs. The highest levels of SGPT
occurred during the first 2 years and after 7.5-8 years of treatment (Stula et al. 1977).

Based on the occurrence of hepatic effects in dogs exposed to MBOCA, a chronic-duration MRL of
0.003 mg/kg/day has been calculated from the LOAEL of 10 mg/kg/day (Stula et al. 1977) as
described in the footnote on Table 2-1.

Renal Effects. There is very limited information regarding renal effects in humans after oral
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exposure to MBOCA. Five hours after an acute exposure to molten MBOCA, in which MBOCA
was accidentally sprayed over the worker’s face and some entered his mouth, a urine sample from the
exposed worker contained 220 mg/L of protein indicating an immediate, transient effect on tubular
reabsorption of low molecular weight proteins (Hosein and Van Roosmalen 1978). However, 11
hours after the accident, there was only a trace of protein in the urine of this worker. The urine
specimens collected in the course of 24 hours after the accident had low specific gravity, indicating
possible transient damage to the renal tubules and an attendant inability to concentrate urine.

Dermal/Ocular Effects. There is very little information on dermal/ocular effects after oral exposure
to MBOCA. In one occupational exposure study, a worker was accidentally sprayed with molten
MBOCA, and some of the compound entered his mouth. The worker complained of burning face
and eyes shortly after exposure (Hosein and Van Roosmalen 1978). At the time of the accident the
worker was wearing gloves and safety glasses, but he had no respirator or face shield. It is therefore
likely that exposure also occurred by inhalation and dermal absorption. This study is limited because
only one exposed individual was described, and no further information was given regarding the
worker’s condition, the dose of MBOCA, or the precise exposure route.

No studies were located regarding dermal/ocular effects in animals after exposure to MBOCA.

Other Systemic Effects. No studies were located regarding other systemic effects in humans after
oral exposure to MBOCA.

In rats fed 25 or 50 mg/kg/day of MBOCA-hydrochloride for 18 months, the average body weight was
50 g and 100 g lower, respectively, than the body weight of controls at the end of the treatment
period. The study does not provide the body weights for experimental animals at either dose level.
During the first 20-25 weeks of the experiment, however, there was no difference in food
consumption between MBOCA-treated animals and control animals (Russfield et al. 1975). The
major limitation of this study is that data on weight changes are incomplete, which makes the
interpretation difficult.

2.2.2.3 Immunological Effects

No studies were located regarding immunological effects in humans or animals after oral exposure
to MBOCA.

2.2.2.4 neurological Effects

No studies were located regarding neurological effects in humans after oral exposure to MBOCA.

Cystic hyperplasia of the pars intermedia of the anterior pituitary gland was found in one of five
female beagle dogs after 8.3 years of treatment with an average dose of 10 mg/kg/day of MBOCA
(Stula et .al. 1977). This change was not present in other treated dogs or in controls and was not
considered to be treatment related. The dog also had a papillary transitional cell carcinoma of the
urinary bladder. The limitations of this study are the lack of correlation between pituitary hyperplasia
and transitional cell bladder carcinoma and the small number of animals used.
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2.2.2.5 Reproductive Effects

No studies were located regarding reproductive effects in humans or animals after oral exposure to
MBOCA.

2.2.2.6 Developmental Effects

No studies were located regarding developmental effects in humans or animals after oral exposure
to MBOCA.

2.2.2.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans after oral exposure to MBOCA.

D. melanogaster larvae, heterozygous for visible wing mutations, were fed a medium made with a
5-millimolar aqueous solution of MBOCA for 48 hours (Kugler-Steigmeier et al. 1989) to determine
whether MBOCA exposure could induce recombinations and somatic mutations in fruit flies. The
resulting adults exhibited a small but statistically significant increase in small single wing spots. Higher
concentrations could not be tested because of MBOCA’s extremely limited solubility. Because the
number of large single spots was not increased, the authors concluded that the somatic mutations
occurred late in development. Similarly, the authors concluded, because of the absence of induced
twin spots, that MBOCA did not exhibit strong recombinogenic activity. In an SLRL test, adult
D. melanogaster were fed diets containing MBOCA at a concentration of 3.75 or 7.5millimoles for
3 days (Vogel et al. 1981). A statistically significant increase in SLRL test values was observed at the
7.5-millimolar concentration in one of two tests. The experiment was incomplete because mating was
attempted only once after exposure; therefore, germ cells were sampled at only one stage of
development. The method of feeding makes concomitant dermal exposure possible in both
experiments. However, MBOCA is expected to be too non-polar to penetrate through the larval
integument.

Radioactive deoxyribonucleic acid (DNA) adducts were identified in rats administered 75 mg/kg of
MBOCA labeled with 14C at the methylene carbon by gavage (Cheever et al. 1990). The highest
level of radioactive adducts was found in the liver (49.11 µmol/mg DNA at 24 hours). Covalent
binding to bladder and lymphocyte DNA was also observed (about 7 and 0.9 pmol/mg DNA,
respectively, at 24 hours). In a separate experiment, in which rats were exposed to 1.4-30 mg/kg
[ 14C-methylene]-MBOCA by gavage. Significant quantities of DNA adducts were found in the liver
and lung, marginal amounts were found in the kidney, and no adducts were detected in the bladder
(Kugler-Steigmeier et al. 1989). Enzymatic hydrolysis of the DNA showed that two DNA adducts
were generated in the liver and two different adducts were found in the lung. Kugler-Steigmeier et
al. (1989) did not observe significant binding to kidney or bladder DNA because the quantity of DNA
isolated from these tissues was too small to measure the amount of covalently bound MBOCA to
DNA in these tissues. The research results suggest that oral exposures to MBOCA induce vascular
and liver neoplasms in mice (Russfield et al. 1975) lung and liver tumors in rats (Kommineni et al.
1979; Russfield et al. 1975; Stula et al. 1975), and bladder tumors in dogs (Stula et al. 1977) as
discussed in Section 2.2.2.8.

Other genotoxicity studies are discussed in Section 2.4.
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2.2.2.8 Cancer

MBOCA is suspected of being a human carcinogen because its chemical structure is similar to that
of a known human bladder carcinogen, benzidine, and to that of a potent animal carcinogen,
3,3’-dichloro-benzidine (Osorio et al. 1990).

One epidemiological study examined the incidence of cancer in workers exposed to MBOCA.
Workers who were occupationally exposed to MBOCA for a median employment period of
3.2 months (between 1968 and 1981) were examined for bladder tumors (Ward et al. 1990).
Although the route of exposure was not specified in the report, the most likely exposure pathways
were inhalation and dermal. The oral route cannot be excluded, however, since some of the inhaled
dust to the lungs could be subsequently swallowed. Low-grade papillary transitional cell tumor of the
urinary bladder was diagnosed by cystoscopy in 2 out of 200 examined workers, and 1 was diagnosed
with a full-blown papillary bladder tumor. Two of the men were less than 30 years old. The interval
between the time of first exposure and the initiation of the study averaged 11.5 years, while the
latency period for most bladder carcinogens is about 20 years (Ward et al. 1990). Since bladder
carcinoma in young men is very uncommon, this finding increases the concern that MBOCA has a
potential for causing bladder cancer in humans. A limitation of this study is that there were no
controls (there are no data on the incidence of bladder tumors diagnosed by cystoscopy in an
asymptomatic nonexposed population). There was also no evidence for statistical associations
regarding bladder tumor incidence in exposed workers. There is also no information on the daily
dose of MBOCA to which the workers were exposed or about the route of exposure. Further
investigations of this occupational exposure revealed the possibility of coexposure to other chemicals
such as 4,4’-methylenedianiline, 4-chloro ortho-toluidine, aniline, and ortho-toluidine (Hogan 1993;
Ward 1993). The dose and duration of exposure to these chemicals is not known. It is therefore
difficult to estimate the exact contribution of MBOCA to the observed carcinogenic effects in the
occupationally exposed workers.

No studies were located on cancer in animals after acute or intermediate oral exposure to MBOCA.
Several studies in rats, mice, and dogs reported finding a carcinogenic response after chronic exposure
to MBOCA. Lungs, liver, breast, and urinary bladder were the main target organs for cancer in these
species.

A dose-dependent increase in lung tumors was observed in Sprague-Dawley rats fed 12.5, 25, or
50 mg/kg/day of MBOCA for 18 months; the incidence of lung tumors was 23%, 37%, and 70%,
respectively (Kommineni et al. 1979). A similar observation (presence of lung adenocarcinomas) was
made in Charles River rats fed 50 mg/kg/day of MBOCA for 2 years (Stula et al. 1975). In another
study, male Charles River CD-1 rats were fed 25 or 50 mg/kg/day of MBOCA for 18 months. The
authors reported finding lung adenocarcinoma in 1/22 and 1/19 animals, respectively (Russfield et al.
1975) although this finding was not statistically significant. In addition, 3 of 22 and 4 of 19 rats
receiving 25 or 50 mg/kg/day of MBOCA, respectively, developed adenomatosis, which is a
preneoplastic lesion (Russfield et al. 1975). A limitation of this study is the small number of animals
on which the tumor incidence was based. All these studies were done with animals fed standardprotein
diets. In contrast, the incidence of lung tumors in rats was lower if animals were fed
MBOCA in a protein-deficient diet. In rats fed 6.25, 12, or 25 mg/kg/day of MBOCA in a lowprotein
diet for 18 months, the incidences of lung tumors were 6%, 15%, and 26%, respectively, while
no tumors were found in control animals (Kommineni et al 1979). These numbers are less than half
of the incidences reported for comparable doses of MBOCA given to rats fed a standard diet. Similar
observations were made in rats fed a higher dose of MBOCA (50 mg/kg/day for 2 years); the
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incidence of lung tumors in rats fed a protein-deficient diet was roughly one-half of that observed in
rats fed a standard-protein diet (Stula et al. 1975). In Wistar II rats fed an average of 54 mg/kg/day
of MBOCA in a low-protein diet for 500 days, 32% of males and 12% of females developed lung
tumors (Grundmann and Steinhoff 1970). These results indicate that, in general, rats given MBOCA
in a low-protein diet, have a decreased incidence of lung adenocarcinomas when compared to rats
given MBOCA in a standard-protein diet. Some exceptions to this generalization occur. Species,
strain, and gender may also play a role.

MBOCA also induces liver tumors in rats. An increase in the incidence of hepatomas was found in
Charles River CD rats fed 25 or 50 mg/kg/day of MBOCA in a standard-protein diet for 18 months;
the incidences were 5% and 21%, respectively (not statistically significant) (Russfield et al. 1975)
compared to 4% and 36% found in Sprague-Dawley rats fed the same diet and the same amount of
MBOCA (Kommineni et al. 1979). Similar findings were made in random-bred female albino mice
(derived from HaM/ICR mice in 1959) fed 130 or 260 mg/kg/day of MBOCA for 18 months and then
observed for an additional 6 months while on a control diet. They had a significantly increased
incidence of hepatomas, 43% in the 130-mg/kg/day group and 50% in the 260-mg/kg/day group
(Russfield et al. 1975). The incidence of hepatomas in treated random-bred male albino mice
(derived from HaM/ICR mice in 1959) was not significantly different from that in controls. These
results indicate that in mice there is a gender difference regarding MBOCA-induced hepatomas;
female mice are affected, and male mice are not affected. The effect of standard- and low-protein
diets on the incidence of MBOCA-induced hepatocellular carcinomas was investigated in Sprague-
Dawley and Charles River rats (Kommineni et al. 1979; Stula et al. 1975). The results are
inconclusive. In Sprague-Dawley rats fed 12.5 or 25 mg/kg/day of MBOCA in a standard-protein diet
for 18 months, the incidences of hepatocellular carcinomas were 3% and 4%, respectively; in rats fed
the same amounts of MBOCA in a protein-deficient diet, the incidences were 0% and 18%,
respectively (Kommineni et al. 1979). These results indicate that a protein-deficient diet did not
reduce the MBOCA-induced incidence of hepatocellular carcinoma in Sprague-Dawley rats. When
male Charles River rats were fed 50 mg/kg/day of MBOCA for 2 years, however, the incidences of
hepatocellular carcinomas were 7% in rats fed a standard-protein diet and 52% in rats fed a lowprotein
diet (Stula et al. 1975). This observation, that the protein-deficient diet accentuates the
carcinogenic effects of MBOCA, was not seen in female rats that had 7% and 5% hepatocellular
carcinomas when fed standard-protein and low-protein diets, respectively (Stula et al. 1975).
However, in Wistar II rats fed an average dose of 54 mg/kg/day of MBOCA in a low-protein diet for
500 days, liver cancer was present in 88% of males and 72% of females (Grundmann and Steinhoff
1970). The results suggest that gender and strain of rats play a role in the effect of low-protein diet
on MBOCA-induced incidence of hepatocellular carcinomas. Furthermore, the possible contrasting
effects of a protein-deficient diet on MBOCA-induced lung and liver tumors suggests different
induction mechanisms for the formation of these two tumors by MBOCA (Kommineni et al. 1979).

Another target organ for MBOCA carcinogenesis is the urinary bladder. Six female beagle dogs were
fed an average of 10 mg/kg/day of MBOCA for 9 years. One beagle died approximately 3.4 years of
pyelonephritis unassociated with MBOCA exposure. Of the five surviving dogs, three developed
papillary transitional cell carcinomas of the urinary bladder; and one dog had a combined urethral
adenocarcinoma and transitional cell carcinoma (Stula et al. 1977). Despite the small number of
animals used, this study demonstrates that ingestion of MBOCA over 9 years was associated with the
appearance of carcinomas of the urinary bladder and urethra in dogs.

A statistically significant increase of malignant mammary tumors was found in female Sprague-Dawley
rats fed 50 mg/kg/day of MBOCA in a low-protein diet for 2 years (Stula et al. 1975). A similar
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finding was made in male rats fed 25 mg/kg/day of MBOCA in a low-protein diet for 18 months; the
incidence of mammary tumors was 6% (Kommineni et al. 1979). When rats were fed a standard diet,
the incidence of mammary adenocarcinoma was 28% at 50 mg/kg/day of MBOCA and 11% at 25
mg/kg/day (Kommineni et al. 1979). Zymbal’s gland carcinomas were found in 12% of rats fed a low-
protein diet and in 7% of rats fed a standard-protein diet; both diets contained 25 mg/kg/day
MBOCA (Kommineni et al. 1979). The results in rats fed MBOCA in low- and standard-protein
diets indicate that there is a dose-related increase in the incidence of lung and mammary carcinomas,
while the incidence of hepatocellular carcinoma is not dose related (Kommineni et al. 1979).

Other tumor types were also found after chronic oral administration of MBOCA. The incidence of
hemangiosarcomas was 4% and 8% in Sprague-Dawley rats fed 25 mg/kg/day of MBOCA in
standardprotein or low-protein diets, respectively (Kommineni et al. 1979). In another study, vascular
tumors (generally subcutaneous hemangiomas and hemangiosarcomas) were present in randomly bred male
albino mice (derived from the HaM/ICR strain in 1959) fed 130 or 260 mg/kg/day of MBOCA for
18 months; the incidences were 23% and 40%, respectively (Russfield et al. 1975). In female mice,
vascular tumors (43% ) were present only in the group treated with the high dose of 260 mg/kg/day
of MBOCA.

The incidence of pituitary adenomas (including adenocarcinomas) in Sprague-Dawley rats fed a
standard-protein diet was reduced, especially in animals treated with high doses of MBOCA
(Kommineni et al 1979). Rats fed 12.5, 25, or 50 mg/kg/day of MBOCA for 18 months had 36%,
25% (statistically significant), and 4% (statistically significant) incidences of pituitary adenomas,
respectively. The incidence of pituitary adenomas in the control group was 42% (Kommineni et al.
1979). A statistically significant decrease in pituitary tumors was also observed in female, but not
male, ChR-CD rats (Charles River Cesarean Delivered, Sprague-Dawley origin, random-bred albino
rats) fed a standard-protein diet with 50 mg/kg/day of MBOCA for 2 years (Stula et al. 1975). This
decrease in incidence of pituitary tumors was not as consistent in Sprague-Dawley rats fed a lowprotein
diet; the incidences were 16%, 12% (statistically significant), and 20% in animals fed 6.25,
12.5, and 25 mg/kg/day, respectively, for 18 months (Kommineni et al. 1979). In the control group,
the incidence of pituitary adenomas was 23%. neither the certainty of these findings nor the
mechanism by which they could occur are known at the present time.

The precise mechanism of chemical carcinogenesis is not known, but it is thought that in some
instances it involves the formation of chemical adducts in the genetic material through covalent
binding of nucleophilic sites by electrophilic parent compounds or their activated electrophilic
metabolites (Cheever et al. 1991). Therefore, it seems that the capacity of MBOCA to form adducts
with tissue DNA (Cheever et al. 1990) hemoglobin (Cheever et al. 1991; Sabbioni and neumann
1990) and globin and serum albumin (Cheever et al. 1991) in rats may play a role in its toxicity and
carcinogenicity.

The lowest doses that produced tumors (CELs) are presented in Table 2-1 and plotted in Figure 2-l.
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2.2.3 Dermal Exposure

2.2.3.1 Death

No studies were located regarding death in humans or animals after dermal exposure to MBOCA.

2.2.3.2 Systemic Effects

No studies were located regarding respiratory, cardiovascular, hematological, musculoskeletal, or
hepatic effects in humans or animals after dermal exposure to MBOCA. The systemic effects
observed after dermal exposure are discussed below.

Gastrointestinal Effects. Extremely limited information is available regarding gastrointestinal
effects of MBOCA after dermal exposure. In a case study of an accidental occupational exposure,
a worker complained of feeling ill in the stomach after his face was sprayed with molten MBOCA
that also entered his mouth (Hosein and Van Roosmalen 1978). He wore overalls, gloves, and safety
glasses but no respirator or face shield. He washed his face and eyes immediately after the incident.
no further information was given about his condition. As with other occupational exposure studies,
there was no information on the dose to which he was exposed. Another limitation of this study is
the likelihood that some of the MBOCA was inhaled or ingested.

No information was located regarding gastrointestinal effects in animals after dermal exposure to
MBOCA.

Renal Effects. In a retrospective bladder cancer incidence study conducted among 532 workers
exposed to MBOCA from 1968 to 1979 and 20 workers who were first employed in 1980 and 1981,
385 participated in the urine screening test (Ward et al. 1990). Exfoliative cytology revealed that 21
urine samples contained atypical cells. no cytology readings were positive for cancer. Sixteen urine
samples were positive for heme (Ward et al. 1990). Almost 90% of the exposed workers were males,
and the median duration of exposure was 3.2 months. This study is important because it gathered
information on a relatively large group of workers exposed to MBOCA and alerted medical
professionals to the limitations of follow-up procedures used after MBOCA exposure. In the course
of the screening, one of the participants who had negative cytology and was negative for the presence
of heme in the urine was diagnosed with a tumor of the urinary bladder. Because of this
development, cystoscopy was introduced as a part of the follow-up procedure, and two additional lowgrade
papillary tumors of the bladder were detected. The analysis of data on free urinary MBOCA
from workers in companies of the PMA confirmed the importance of biological monitoring (Lowry
and Clapp 1992). Cumulative results for 1985-1990 show an increase in percentage of urinary
samples containing below 25 µg/L of MBOCA (from 77% in 1985 to 86% in 1990) and a decrease
in percentage of samples with over 5 µg/L of MBOCA (from 12% in 1985 to 8% in 1990). These
findings indicate that wearing protective clothing, using MBOCA in pellets not powder, monitoring
indoor air for MBOCA, and other protective measures may play an important role in controlling
occupational exposures.

Five hours after an acute exposure in which a worker was accidentally sprayed in the face with molten
MBOCA, a urine sample contained 220 mg/L of protein, indicating possible damage to renal tubules
(Hossein and Van Roosmalen 1978). There was only a trace amount of protein in the urine of this
worker 11 hours after the accident. The two urine specimens collected over the course of 24 hours
after the accident had low specific gravity indicating possible transient damage to the renal tubules.
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No studies were located regarding renal effects in animals after dermal exposure to MBOCA.

Dermal/Ocular Effects. Very limited information is available regarding dermal/ocular effects after
dermal exposure to MBOCA. In a case study, one worker was accidentally sprayed in the face with
molten MBOCA. Some of the compound entered his mouth. The worker complained of burning
face and eyes shortly after exposure (Hossein and Van Roosmalen 1978). The worker was wearing
gloves and safety glasses but no respirator or face shield. Therefore, it is likely that the exposure may
have also occurred by inhalation or oral absorption. The limitations of this study are that no further
information was provided regarding the worker’s condition, the dose of MBOCA, or the precise
exposure route, and that only one exposed individual was described. In another case of accidental
exposure to approximately 11.3 L of molten MBOCA, the worker described a burning sensation on
his skin. He was sprayed over his chest, abdomen, and extremities (NIOSH 1986a; Osorio et al.
1990). Some exposure by inhalation and ingestion was also likely in this case.

No studies were located regarding dermal/ocular effects in animals after dermal exposure to MBOCA.

No studies were located regarding the following health effects in humans or animals after dermal
exposure to MBOCA:

2.2.3.3 Immunological Effects
2.2.3.4 Neurological Effects
2.2.3.5 Reproductive Effects
2.2.3.6 Developmental Effects
2.2.3.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans following dermal exposure to
MBOCA. Radiolabeled MBOCA was applied to a 36-cm2 shaved skin patch on the dorsal side of
rats at a dose of 75 mg/kg. DNA adduct formation was determined for various tissues at intervals
ranging from 1 to 29 days after exposure (Cheever et al. 1990). Throughout the study, less than 14%
of the applied dose was absorbed. Adduct formation was about 100-fold less than after oral exposure
to the same dose, but adducts were found in the same tissues with the same order of binding (liver
> bladder > lymphocytes). This indicates that MBOCA was absorbed through the skin to react with
DNA in target organs. Two studies of the genotoxicity of MBOCA in D. melanogaster also involved
concomitant oral and dermal exposure and were discussed under oral exposure in Section 2.2.2.7.

Other genotoxicity studies are discussed in Section 2.4.

2.2.3.8 Cancer

A limited number of epidemiological studies were located that examined the incidence of cancer in
workers exposed to MBOCA. Workers who were exposed to MBOCA for a median employment
period of 3.2 months (between 1968 and 1981) were examined for bladder tumors (Ward et al. 1990).
After cystoscopy revealed a papillary cell tumor in one worker, a low-grade papillary transitional cell
tumor of the urinary bladder was diagnosed by cystoscopy in 2 of the remaining 200 workers
examined. Two of the men were less than 30 years old. The interval between the time of first
exposure and the initiation of the study averaged 11.5 years, while the latency period for most bladder
carcinogens is about 20 years (Ward et al. 1990). Since bladder tumors in young men are very
uncommon, this finding increases the concern that MBOCA has a potential for causing bladder
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cancer in humans. A limitation of this study is that there were no controls (there are no data on the
incidence of bladder tumors diagnosed by cystoscopy in an asymptomatic nonexposed population).
The daily dose of MBOCA to which workers were exposed, was only estimated by assigning an
exposure score of 0-20. Further investigation of this occupational exposure raised a possibility of
coexposure to other chemicals such as 4’,4-methylenedianiline, 4-chloro o-toluidine, aniline, and o-
toluidine (Hogan 1993; Ward 1993). The dose and duration of exposure to these chemicals could
only be estimated on the basis worker recollection. It is therefore difficult to estimate the exact
contribution of MBOCA to carcinogenic effects observed in occupationally exposed workers.

No studies were located regarding cancer in animals after dermal exposure to MBOCA.

2. 3    TOXICOKINETICS

Limited information is available regarding absorption of MBOCA. Following acute inhalatiomdermal
exposure to very low concentrations of MBOCA, absorption appears to be rapid, based on the
presence of MBOCA in the urine of occupationally exposed workers (Ichikawa et al. 1990). The
urine of a worker accidentally exposed to molten MBOCA, contained 1,700 ppb of MBOCA 9 hours
later indicating absorption and distribution following dermal and/or inhalation exposure (NIOSH
1986a; Osorio et al. 1990).

The distribution of MBOCA in laboratory animals is relatively uniform. In rats, the highest amount
of MBOCA and its metabolites (total 14C-radioactivity) was found in the liver following an acute P.O.
injection or intermediate, gavage, exposure (Cheever et al. 1991). The tissue distribution of
radioactivity following the acute exposure, was as follows: liver > kidney > lung > spleen > urinary
bladder > testes > brain > lymphocytes (Cheever et al. 1991). The highest concentration of
radioactivity in dogs following acute dermal exposure to radiolabeled MBOCA was in the bile (Manis
et al. 1984). Detectable concentrations were also found in the liver, kidney, and fat. These results
suggest that the distribution of MBOCA is similar in rats and dogs following oral and dermal
exposures. A distribution study in rats following a single intravenous exposure to MBOCA, further
support to these observations (Tobes et al. 1983).

MBOCA metabolism can proceed via several pathways: N-acetylation, N-hydroxylation, which may
be followed by n-oxidation, and ring hydroxylation (see Figure 2-2). Some of these processes may
be followed by conjugation. These are considered important pathways with regard to carcinogenicity
(as cited in Cheever et al. 1991). Results of in vitro studies suggest that MBOCA rapidly penetrates
the skin but is not metabolized in the process (Chin et al. 1983).

After inhalation of low levels, excretion of MBOCA has been monitored by measuring the amount
in urine. Excretion occurs rapidly during the first 48 hours (NIOSH 1986a). Following an accidental
exposure to 11.34 L of molten MBOCA, 1,700 ppb of MBOCA was found in the worker’s urine four
hours later (NIOSH 1986a; Osorio et al. 1990). This result suggests the rapid excretion of MBOCA
after acute dermal and/or inhalation exposure. It is not clear, however, if urine is indeed the primary
route of excretion in humans, since no information was presented on the amount of MBOCA
contained in the feces. In rats that received a single oral dose of 10 mg/kg of radiolabeled MBOCA,
60% of the radioactivity was found in the feces (Farmer et al. 1981; Groth et al. 1984).

Little information is available on the kinetics of urinary MBOCA excretion in humans. One study
found that 23 hours after an acute occupational exposure to MBOCA, 50% of this material was
excreted in the urine (Osorio et al. 1990). However, other work (NIOSH 1986b) indicates that
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clearance may be much slower, especially at higher exposures. The duration of exposure may also
be a factor.

The precise mechanism of carcinogenicity for MBOCA is not completely understood. Some evidence
suggests, however, that the ability to form adducts with tissue DNA (Cheever et al. 1990; Sabbioni
and neumann 1990) hemoglobin (Cheever et al. 1988, 1990, 1991; Chen et al. 1991; Sabbioni and
neumann 1990) and globin and serum albumin (Cheever et al. 1991) in rats following MBOCA
exposure may play a role in its carcinogenicity.

2.3.1 Absorption

2.3.1.1 Inhalation Exposure

Studies that directly measure absorption in humans following inhalation exposure to known
concentrations of MBOCA were not located. However, absorption was indirectly estimated in five
male factory workers by measuring urinary MBOCA levels over a 5-day period (Ichikawa et al. 1990).
Personal air exposure levels were obtained by continuously monitoring the breathing zone of each
worker for 6-7 hours every other day. The air MBOCA levels ranged from 0.0002 to 0.0089 mg/m3.
The results showed that the preshift and postshift urine MBOCA levels of the exposed workers,
including the worker with the highest level of exposure, did not significantly differ. Forty-eight hours
after the exposure, urinary MBOCA levels were still similar to preshift levels; the authors interpreted
this finding as evidence that the biological half-life of urinary MBOCA is relatively long (Ichikawa
et al. 1990). The amount of MBOCA measured in the urine was much higher than the amounts of
inhaled MBOCA as estimated from personal exposure measurements. This observation suggests that
a certain amount of MBOCA exposure occurs in the workplace by some additional route(s). The
limitations of this study include the small sample size and the probability that dermal exposure
occurred as well.

In another study, 13 urine samples were collected from workers occupationally exposed to MBOCA
on a Monday morning after 2 days away from work. The results showed that there was no detectable
MBOCA in the urine of workers who had low MBOCA exposure(s) during the previous week. Only
the urine from the worker with the highest MBOCA urine concentration (30 µg/L) the week before
had detectable MBOCA. In most cases, this clearance of MBOCA after the weekend suggested that
MBOCA had a relatively short retention time in the body (Clapp et al. 1991). As in the previous
study, the exposure route(s) probably included inhalation and dermal. In another study of
occupational exposure (combination of inhalation and dermal exposures), levels of MBOCA in the
urine were determined in workers over a period of 22 months. The mean concentrations of MBOCA
during that time ranged from 5.3 to 43.8 µg/L (NIOSH 1986b). Further analysis of the data revealed
that urine samples with highest levels of MBOCA came from workers that are in direct daily contact
with MBOCA, such as mixers and molders (NIOSH 1986b). One of the samples from a mixer was
analyzed during the week (average urine MBOCA level was 29.9 µg/L) and after a 2-day weekend
(average urine MBOCA level was 8.9 µg/L). This demonstrated that MBOCA was not cleared from
the urine of a worker who had relatively high levels of MBOCA during the previous week (NIOSH
1986b). The reasons for the different clearance rates observed in the studies described (Clapp et al.
1991; Ichikawa et al. 1990; NIOSH 1986b) are not clear. Since relatively small numbers of workers
were observed, the results may merely reflect individual differences. Alternatively, MBOCA may be
excreted at different rates depending upon exposure conditions including both the rate and duration
of exposure. This question needs further examination.
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No studies were located regarding absorption in animals after inhalation exposure to MBOCA.

2.3.1.2 Oral Exposure

No studies were located regarding absorption in humans after oral exposure to MBOCA.
Several studies in animals following oral MBOCA exposure, detected MBOCA or its metabolites in
body tissues, urine, and feces (Cheever et al. 1988; Farmer et al. 1981; Groth et al. 1984). When
rats were given a single oral dose of 14C-MBOCA by gavage, 16.5% of the dose was excreted in the
urine within 72 hours, while 13.7% was retained in the tissues (Groth et al. 1984). These data
indicate that some MBOCA is absorbed after oral exposure in animals. Approximately 60% remains
unabsorbed in the feces (Groth et al. 1984).

2.3.1.3 Dermal Exposure

Studies that directly measure MBOCA absorption in humans following dermal exposure to known
concentrations of this compound were not located. However, absorption was measured in five male
factory workers by measuring urinary MBOCA levels over a 5-day period (Ichikawa et al. 1990).
Personal air exposure levels were obtained by continuously monitoring the breathing zone of each
worker for 6-7 hours every other day. The air levels of MBOCA ranged from 0.0002 to 0.0089
mgim”. The results showed that the preshift and postshift urine MBOCA levels did not significantly
differ among exposed workers. Forty-eight hours after the exposure, the urinary MBOCA levels were
similar to preshift levels suggesting that the biological half-time of MBOCA is relatively long
(Ichikawa et al. 1990). The amount of MBOCA measured in urine was much higher than the
amount(s) of inhaled MBOCA. The authors concluded that occupational exposures occur by other
routes in addition to inhalation (in this case dermal exposure) and are important contributors to total
body burdens of MBOCA. The limitations of this study include the small sample size and the
probability that dermal exposure had occurred as well.

In another study, 13 urine samples were collected from workers occupationally exposed to MBOCA
on a Monday morning after 2 days away from work. The results showed that there was no detectable
MBOCA in samples that had low MBOCA levels during the past week. Only the sample that came
from the worker who had the highest average MBOCA urine concentration (30 µg/L) the week
before had detectable MBOCA (Clapp et al. 1991). These results suggest that the higher initial dose
of MBOCA the longer it takes to be excreted. In another occupational study the exposure resulted
from a combination of inhalation and dermal routes. The levels of MBOCA in the urine of exposed
workers were determined over a period of 22 months. The mean concentrations of MBOCA ranged
from 5.3 to 43.8 µg/L (NIOSH 1986b). A detailed data analysis revealed that the urine samples with
the highest MBOCA levels were obtained from mixers and molders, i.e., workers that are in direct
daily contact with MBOCA (NIOSH 1986b). Urinary measurements of MBOCA were obtained for
one worker a mixer over a 5-day work week and over a 2-day weekend. The average urine MBOCA
level during the week was approximately 30 µg/L; the level dropped to 8.9 µg/mL over the weekend.
This finding suggests that MBOCA was not completely excreted via urine in a worker who had
relatively high levels of MBOCA during the preceeding week (NIOSH 1986b). The reasons for the
different clearance rates reported in the studies described (Clapp et al. 1991; Ichikawa et al. 1990;
NIOSH 1986b) are unclear. It is possible that due to the small sample size the results may merely
reflect individual differences. It is also possible that MBOCA may be removed at different rates
depending on the length and rate of exposure.
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Differential absorption rates of 14C-MBOCA were investigated following dermal and intravenous
exposures in beagle dogs (Manis et al. 1984). By comparing the levels of MBOCA excreted via the
urinary and biliary systems, following percutaneous and intravenous (100% absorption) administration,
the investigators calculated that, after 24 hours, only 2.4% of the applied MBOCA was absorbed
through the skin. In another study in rats, 11.5-21.9% of MBOCA applied to the skin was calculated
to have been absorbed within 72 hours of application (Groth et al. 1984).

Using radiolabeled MBOCA and fresh human neonatal foreskin organ cultures, the absorption and
penetration of MBOCA through a 7 mm x 7 mm area was evaluated over 4 hours (Chin et al. 1983).
One hour after application, 46% of the radiolabeled MBOCA was detected on the skin and 0.5% was
detected on the underlying membrane (the remaining radioactivity was unabsorbed and stayed on the
coverglass). Four hours later, 61% was detected in the skin, 26% had passed through and was on
the underlying membrane filter, while 12% remained unabsorbed. The absorption process was
optimal at 37°C and decreased sharply at 0°C. These findings indicate that MBOCA penetrates the
neonatal foreskin readily without being metabolized, and that the absorption process is temperature
dependent (Chin et al. 1983).

2.3.2 Distribution

2.3.2.1 Inhalation Exposure

No studies were located regarding distribution in humans or animals after inhalation exposure to
MBOCA.

2.3.2.2 Oral Exposure

No studies were located regarding distribution in humans after oral exposure to MBOCA.

Twenty-four hours after oral administration of 28 µmol/kg of radioactive [methylene-14C-]MBOCA
to male Sprague-Dawley rats, the highest level of radioactivity was in the liver. The tissue distribution
of total radiolabels (i.e., MBOCA plus its metabolites) was as follows: liver > kidney > lung >
spleen > urinary bladder > testes > brain > lymphocytes (Cheever et al. 1991). In another study,
the distribution in female Wistar rats 24 hours after gavage with radioactive MBOCA was similar:
liver > intestine > lung > kidney > blood > stomach > spleen > uterus (Sabbioni and neumann
1990). The remaining radioactivity was recovered in urine and feces. After 28 consecutive oral doses
of radioactive MBOCA, the radioactivity accumulated more rapidly in the liver than in the blood
(1,455 femtomoles/mg versus 122 femtomoles/mg tissue, respectively) (Cheever et al. 1991). The
results show that, after either acute or intermediate oral administration, the highest amount of
MBOCA and its metabolites accumulates in the liver. The results also show that after 28 doses,
accumulation in the liver increased more than 100-fold.

Similar findings in terms of liver accumulation were found in a study in which two female LAC:Porton
rats were fed 10 mg/kg of 14C-MBOCA, and MBOCA’s distribution was measured 48 hours later
(Farmer et al. 1981). Again, liver had the highest amount of radioactivity, followed by white fat,
blood, and kidney. This study is limited because it used only two animals. In another acute study,
radiolabeled MBOCA was administered by gavage to rats by gavage (Morton et al. 1988). Forty-eight
hours later, 64-87% of the administered radioactivity was recovered in the urine and feces. Excretion
occurred primarily in the first 24 hours with feces containing 1.5-3 times the radioactivity of the
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urine. These results are consistent with previous reports that in rats MBOCA is extensively
metabolized and rapidly excreted.

2.3.2.3 Dermal Exposure

Although no studies were located regarding distribution in humans after dermal exposure to MBOCA,
it appears that it is rapidly eliminated from the body following dermal exposure. Nine hours after
an accidental spill, the urine of a worker exposed to 11.34 L of molten MBOCA contained 1,700 ppb
of the chemical (NIOSH 1986a; Osorio et al. 1990). The biological half-life of MBOCA in the
human body based on the amount excreted into the urine was estimated to be 23 hours (Osorio et
al. 1990). The authors assumed a one-compartment model and estimated that about 94% of the
initial MBOCA would be eliminated within 4 days. They concluded that urinary excretion of
MBOCA was rapid, a finding that is consistent with the observations made by Hosein and Roosmalen
(1978). Although this study is limited because only one case was presented, it is important because
it indirectly demonstrates that after dermal exposure of humans a large portion of MBOCA is
distributed by the circulatory system to the kidneys (Osorio et al. 1990).

In a study using beagle dogs dermally exposed to 0.4 mg of radioactive MBOCA/cm2, no measurable
radioactivity was detected in blood or plasma up to 24 hours later (Manis et al. 1984). The highest
concentration of radioactivity 24 hours post-exposure was found in the bile. no unmetabolized
MBOCA was present in the bile. Detectable concentrations of radioactivity were found in the liver,
kidney, fat, and lung. Urinary excretion of unmetabolized MBOCA was a small but consistent
fraction, 0.4-0.5%, of the total urinary radioactivity, and the authors concluded that this may be a
useful index of acute exposure. These results support the hypothesis that dermal absorption is a
viable entry for MBOCA. They also demonstrate that the circulatory system distributes MBOCA to
the liver, kidneys, fat, and lungs. In this study, intravenously exposed animals were used as controls
in order to obtain a 100% absorbed dose baseline for comparison with the pharmacokinetic data
obtained for dermal exposure.

2.3.2.4 Other Routes of Exposure

One hour after a single intravenous dose of 0.49 mg/kg of radiolabeled MBOCA to rats, radioactivity
was found in the tissues in the following order: small intestine > liver > fat tissue > lungs > kidneys
> skin > adrenals (Tobes et al. 1983). Similar results in terms of liver accumulation were obtained
in rats 48 hours after an intraperitoneal injection of 1 mg/kg of radioactive MBOCA (Farmer et al.
1981). However, only l-2% of MBOCA and 95-97% of radiolabeled metabolites were found in the
urine indicating rapid and extensive MBOCA metabolism in the rat. The finding that liver has the
highest amount of radiolabel 24 hours after a single exposure is consistent with the findings from
other intraperitoneal exposure studies (Cheever et al. 1991). Similar results were obtained in dogs
after intravenous administration of MBOCA (Manis et al. 1984).

2.3.3 Metabolism
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2.3.3.1 Inhalation Exposure

Analysis of 23 urine samples from workers occupationally exposed to MBOCA showed that all
contained MBOCA, but only 10 of 23 contained N-acetyl MBOCA. The ratio of N-acetyl MBOCA
to parent MBOCA ranged from 0.005 to 0.09 indicating that N-acetyl MBOCA is a relatively minor
urine metabolite in humans (Cocker et al. 1988). Further analysis shows that the urine of MBOCAexposed
workers also contains a major hydrolysis-labile metabolite, probably β-N-glucuronide (Cocker
et al. 1990). This metabolite, upon hydrolysis, yields two to three times more MBOCA than the
amount of parent compound present in urine after exposure to MBOCA. Another metabolite
detected in the urine is a heat-labile conjugate of n-acetyl MBOCA (Cocker et al. 1990). In another
study of occupational exposure, 35% of the MBOCA metabolites were excreted as conjugates in the
urine (Osorio et al. 1990).

No studies were located regarding metabolism in animals after inhalation exposure to MBOCA.

2.3.3.2 Oral Exposure

No studies were located regarding metabolism in humans after oral exposure to MBOCA.
MBOCA is extensively metabolized in experimental animals (Morton et al. 1988), and its metabolism
can follow several pathways: N-acetylation, N-hydroxylation/ N-oxidation, and ring hydroxylation.
These are important pathways with respect to the carcinogenicity of MBOCA (Cheever et al. 1991).
Some of these metabolic conversions can be followed by conjugation. Carcinogenicity probably
involves activation and adduct formation by MBOCA. A scheme of MBOCA metabolism and
excretion in animals is presented in Figure 2-2. The microsomal P-450 enzyme system is involved in
n-hydroxylation of MBOCA, which is considered to be an activation step related to adduct formation
(Morton et al. 1988). Microsomes from phenobarbital-treated rats had an increased rate of MBOCA
hydroxylation (Morton et al. 1988). Such effects were not obtained after treatment with
methylcholanthrene. These findings were confirmed using human liver microsomes and purified rat
liver cytochrome P-450 monooxygenases showing that the activation of MBOCA is catalyzed by the
phenobarbital-inducible enzymes (Butler et al. 1989). More recently, it was shown that much higher
binding of MBOCA to hemoglobin occurred in phenobarbital-treated rats (Cheever et al. 1991).
These results suggest that enzymatic induction by phenobarbital leads to increased capacity of
MBOCA and/or its metabolites to covalently bind to proteins and probably to DNA.

After acute intragastric exposure of male rats to radiolabeled MBOCA, the levels of MBOCA and
its metabolites were determined in the urine. The level of MBOCA was higher when urine was
treated with exogenous glucuronidase or sulfatase, indicating the presence of conjugates (Morton et
al. 1988). The conjugates, which are highly polar, can be digested with a sulphatase-glucuronidase
mixture leading to 30-50% of deconjugation. When glucuronidase alone was tested it had a small
effect on conjugates (Farmer et al. 1981). These findings suggest that a large proportion of the
conjugates consists of sulfates (Farmer et al. 1981).

The metabolism of MBOCA was also investigated in vitro by incubating human and rat liver
microsomes with 14C-MBOCA. The formation of metabolites was quantified using appropriate
chemically synthesized standards (Morton et al. 1988). The rate of n-hydroxylation of MBOCA, an
obligatory step in metabolic activation of aromatic amines, was higher in rat than in human
microsomes (Morton et al. 1988). Rat liver microsomes were also found to be more efficient in o-
hydroxy-MBOCA formation when compared with human microsomes (see Figure 2-2). The same in
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vitro microsomal system was used to elucidate the role of hepatic cytochrome P-450 monooxygenases
in metabolic oxidation and detoxification of MBOCA (Butler et al. 1989). The analysis of 22 human
liver microsome preparations showed that there was variation in N-oxidation of MBOCA by different
preparations, and analysis of metabolism catalyzed by different rat isozymes showed that the process
was catalyzed by phenobarbital-inducible cytochrome P-450 species. Since MBOCA is considered a
potential human carcinogen, this result indicates that individual profiles of cytochromes P-450 may
be important determinants of an individual’s susceptibility to MBOCA carcinogenesis (Butler et al.
1989). Hydroxylation by liver microsomes results in two major metabolites, n-hydroxy- and o-hydroxy-
MBOCA (Chen et al. 1989; Morton et al. 1988) ( see Figure 2-2). The formation of these two
metabolites was evaluated using canine, guinea pig, and rat liver microsomes (Chen et al. 1989).
These results indicate that there are species differences in the oxidation of MBOCA. The major
metabolite in the guinea pig liver microsome system was N-hydroxy MBOCA, while dog microsomes
oxidized MBOCA to the o-hydroxylated metabolite with significant amounts of hydroxylamine. In
the rat liver microsome system, other polar metabolites were predominant, while there were fewer
n- and o-hydroxylated MBOCA derivatives (Chen et al. 1989).

2.3.3.3 Dermal Exposure

MBOCA metabolites were investigated in urine samples from workers occupationally exposed to
MBOCA (Cocker et al. 1988, 1990). Of 23 urine samples, small amounts of N-acetyl MBOCA were
present in only 10 samples, even after heat treatment, while MBOCA was present in all of the
samples (Cocker et al. 1988). A similar observation was made by Ducos et al. (1985) who found that
the level of n-acetyl MBOCA in urine was less than 10% of the level of MBOCA recovered in urine
of exposed workers. Skin absorption of MBOCA was considered an important factor in both these
studies. In a further attempt to identify the heat-labile MBOCA urine metabolites, Cocker et al.
(1990) compared them to the chemically synthesized glucuronide. The results indicate that the major
heat-labile conjugate of MBOCA in the urine of exposed workers is probably the β-N-glucuronide
of the unmetabolized compound. MBOCA glucuronide spontaneously decomposes at 37°C within
24 hours to yield the unmetabolized MBOCA (Cocker et al. 1990).

Studies in dogs (Manis et al. 1984) and rats (Groth et al. 1984) indicate that MBOCA is rapidly
metabolized following dermal exposure to 14C-MBOCA and that urinary levels of unmetabolized
MBOCA represents only a small fraction of the total (MBOCA plus metabolites) excreted in urine.
Twenty-four hours after exposure, 1.3% of the dose applied to the skin of dogs was excreted in the
urine as total radioactivity, of which only 0.005% represented unmetabolized MBOCA. Similarly, in
rats after 72 hours, 2.54% of the amount applied to the skin was excreted in the urine as total
radioactivity, while only 0.008% represented unmetabolized MBOCA.

The major DNA adduct of MBOCA was identified by a combination of in vivo and in vitro studies
(Silk et al. 1989). Male rats derived from a Wistar strain were exposed intraperitoneally to
89 µmol/kg of radioactive MBOCA or 141 µmol/kg of acetyl-MBOCA. Twenty-four hours later,
animals were sacrificed, and their liver DNA was extracted and analyzed for the amount of bound
radioactivity and DNA adduct formation. Results showed that the cleavage of the bond between the
methylene bridge and one aromatic nucleus of MBOCA resulted in the formation of
N-(deoxyadenosine-8-yl)-4-amino-3-chlorobenzyl alcohol, the major in vivo adduct. Two other adducts
were also formed but were not characterized.
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2.3.4 Excretion

2.3.4.1 Inhalation Exposure

MBOCA has been analyzed and detected in the urine of exposed humans. nine hours after an
accidental spill, the urine of a worker exposed to 11.34 L of molten MBOCA contained 1,700 ppb
of MBOCA (NIOSH 1986a; Osorio et al. 1990). The biological half-life of MBOCA in the urine was
estimated to be approximately 23 hours (Osorio et al. 1990). This was determined by measuring the
levels of MBOCA in urine 2 weeks after exposure ceased. Assuming a one-compartment model,
about 94% of the initial dose of MBOCA would be eliminated within 4 days. In another report, after
an acute occupational exposure to molten MBOCA, a worker complained of burning eyes and face.
Hot, liquid MBOCA was sprayed over his face and some entered his mouth (Hosein and Van
Roosmalen 1978). The worker was monitored and his urine was analyzed for MBOCA over a 3-week
period. Five hours after the spill, the level of MBOCA in the urine was 3.6 mg/L (3,600 ppb).
MBOCA was rapidly excreted during the first 18 hours after exposure. Twenty-four hours after
exposure, urine MBOCA level was down to 0.03 mg/L (30 ppb), and 3 weeks later it was below that
level (Hosein and Van Roosmalen 1978). It was unclear from this study whether urine was the
primary route of MBOCA excretion in humans following dermal exposure since no information was
presented on the amount of MBOCA measured in feces.

Analysis of urine samples from 34 exposed workers showed that the urine levels of MBOCA were
proportional to the exposure levels. Workers exposed to the highest levels of MBOCA (MBOCA
mixers) had the highest level of the compound in the urine (NIOSH 1986b). Ten out of 10 mixers
had a urinary MBOCA level of >5 µg/L and 5 of 10 had >50 µg/L of MBOCA in their urine. Urine
samples from workers in the molding department (intermediate exposure) had levels of MBOCA
ranging Erom <5 to 50 µg/L. All trimmers and supervisors (the lowest exposure group) had no
detectable levels of MBOCA in the urine. The body clearance of MBOCA was tested in 13 urine
samples from workers who were absent from exposure for 48 hours. Only one of the 13 workers, an
MBOCA mixer, had a detectable MBOCA urine level (average: 8.9 µg/L) (NIOSH 1986b). The
level of MBOCA in the air was <3 µg/m3 most of the time, and the results of the wipe test ranged
from 0.035 to 53 µg. The limitations of this study are that precise exposure levels and the exact
routes of exposure were not given and that there were too few data points for any general
conclusions to be made. In another study on five male workers exposed to MBOCA for 3-27 years,
MBOCA levels in preshift (before starting work) and postshift (after work) urine samples were not
significantly different (Ichikawa et al. 1990). Also, the MBOCA urine levels 48 hours after exposure
were similar to preshift levels. The study authors concluded that the biological half-time of urina
MBOCA is relatively long.  The breathing zone levels of MBOCA were 0.0002-0.089 mg/m3.
Limitations of this study include a small sample size and lack of controls.

The MBOCA levels in urine have been used to assess occupational exposure of workers engaged in
the manufacture of polyurethane elastomers (Thomas and Wilson 1984). The objective of the study
was also to identify areas that could be improved in order to reduce the exposure. Between 12 and
15 workers were followed over a 5-year period, and the exposure levels were reported as the monthly
average amount of nmol MBOCA/mmol creatinine. The results of this biological monitoring program
indicated that urine levels of MBOCA slowly but steadily decreased. Between July and September
of 1978, the average level was 50 nmol MBOCA/mmol creatinine. Although the individual variations
were present, by February 1980 the average level had fallen to 5 nmol MBOCA/mmol creatinine.
Some of the measures that helped reduce the exposure to MBOCA were improved ventilation system,
use of protective clothing, dry cleaning of clothing, improvement of the general hygiene in the factory,
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and special attention to workers with consistently high urinary MBOCA levels (Thomas and Wilson
1984).

N-acetyl MBOCA is a minor metabolite that was found in the urine of occupationally exposed
workers (Cocker et al. 1988). Also present was a major labile metabolite, probably β-N-glucuronide
(Cocker et al. 1990). After hydrolysis, this conjugate yields unmetabolized MBOCA. In an
occupational exposure study of 122 workers from 19 different plants (one MBOCA manufacturer,
18 MBOCA users) urine MBOCA levels were determined in 215 samples collected mainly at the end
of the shift (Ducos and Gaudin 1983). The highest urine levels of MBOCA were found in workers
from the manufacturing plant: the highest mean urinary MBOCA level among the 12 workers was
600 µg/L or 450 µg/g relative to creatinine. This level was greatly reduced (to an average of 62 µg/g
of creatinine) following manufacturing and processing modifications related to increased workers
protection and good manufacturing practices. The levels of urinary MBOCA in workers of the other
18 businesses varied greatly and were highest in workers who had the greatest contact with MBOCA.
The individual urinary MBOCA levels ranged from undetectable to a maximum of 940 µg/L (510 µg/g
of creatinine). However, if the values outside of the detection limits (l-1400 µ/L) are excluded from
the calculation, the urinary MBOCA averages are low varying from 4 to 318 µg/L (2-174 µg/g of
creatinine) (Ducos and Gaudin 1983). The results indicate that the urinary MBOCA levels greatly
depended on the frequency of MBOCA use, the quantities used, the form of MBOCA (granules,
solid, or in solution), methods of manufacturing, and from work practices in general. Individual
factors also affect the excretion levels. The predominant metabolite in urine was monoacetylated
MBOCA present at low concentration of <1/10 of the total. Another metabolite, N,N’-diacetyl
MBOCA was also identified in one of the workers. This was an unexpected finding because of the
poor water solubility of diacetyl MBOCA. The identification of diacetyl MBOCA is important
because it is possible that from N,N’-diacetyl MBOCA, N-hydoxy-N,N’-diacetyl MBOCA can be
formed, using benzidine metabolism as a model. N-hydoxy-N,N’diacetyl MBOCA is important
because it can directly bind to nucleic acids. If the existence of N-hydoxy-N,N’-diacetyl MBOCA is
confirmed it would provide a plausible biochemical basis for adduct formation that has been proposed
as one of the mechanisms involved in carcinogenesis.

One proposed mechanism of MBOCA excretion suggests that very little MBOCA is excreted into the
bladder as the free amine since most of the MBOCA in the renal perfusate may be present in the
form of the β-N-glucuronide conjugate (Cocker et al. 1990). Urine contains β-glucuronidase, and
therefore, β-N-glucuronide may undergo some hydrolysis in the bladder. This is proposed as the
source of free MBOCA in the urine.

2.3.4.2 Oral Exposure

No detailed studies were located regarding excretion in humans following oral MBOCA exposure.
After an acute occupational exposure to molten MBOCA, one worker complained of burning eyes
and face. Hot, liquid MBOCA was sprayed over his face and some entered his mouth (Hosein and
Van Roosmalen 1978). The worker’s urine was monitored for MBOCA excretion over a 3-week
period. MBOCA was found to be rapidly excreted during the first 18 hours following exposure,
reaching a maximum concentration of 3.6 mg/L; 6 hours later, (24 hours post-exposure), the urine
MBOCA level was down to 0.03 mg/L. At 3 weeks, only trace amounts of MBOCA were detected
in urine (Hosein and Van Roosmalen 1978).

A single oral dose of 10 mg/kg of radiolabeled MBOCA was administered to female LAC:Porton rats.
Forty-eight hours later, the majority of the radioactivity was excreted in the feces (60%), while the
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liver retained the most radioactivity (2%) (Farmer et al. 1981). Similar observations were made in
Sprague-Dawley rats given 12 mg/kg of radiolabeled MBOCA (Groth et al. 1984). When male
Sprague-Dawley rats were exposed to a single oral dose of 50 mg/kg/day of MBOCA, urinary
MBOCA excretion is maximal on the 1st day and steadily decreases up to day (Ducos and Gaudin
1983). The quantity of free urinary MBOCA is very small, approximately 0.5 parts per 1,000. The
most abundant MBOCA metabolite in urine was identified as a monoacetylated compound in
comparison to the N-acetyl-4,4-methylenebis(2-chloroaniline) and N,N-diacetyl-4,4-methylenebis(2-
chloroaniline) forms (Ducos and Gaudin 1983). The biological half-life of MBOCA was 4.4 and
16.7 days in rat liver and blood, respectively, after a single oral exposure to 75 mg/kg of 14C-MBOCA
(Cheever et al. 1988). The biological half-lives of MBOCA in adducts with globin and DNA were
14.3 and 11.1 days, respectively (Cheever et al. 1988). After chronic exposure to MBOCA (in either
standard-protein or low-protein diets), urine of tumor-bearing rats contained a significantly higher
level of MBOCA than urine from animals without tumors (Kommineni et al. 1979).

2.3.4.3 Dermal Exposure

Nine hours after an accidental spill, the urine of a worker exposed to 11.34 L of molten MBOCA
contained 1,700 ppb of MBOCA (NIOSH 1986a; Osorio et al. 1990). The biological half-life of
MBOCA in the urine was approximately 23 hours (Osorio et al. 1990). This was evaluated by
monitoring the MBOCA urine levels for 2 weeks after exposure. Assuming a one-compartment
model, about 94% of the initial dose of MBOCA would be eliminated within 4 days. In another
report, after an acute occupational exposure to molten MBOCA, one worker complained of burning
eyes and face. Hot, liquid MBOCA was sprayed over his face and some entered his mouth (Hosein
and Van Roosmalen 1978). The worker was monitored and his urine analyzed for MBOCA over a
j-week period. MBOCA was rapidly excreted within the first 18 hours following exposure, reaching
a maximum concentration of 3.6 mg/L. Six hours later, (24 hours post-exposure), the MBOCA level
in urine was down to 0.03 mg/L, dropping to trace amounts 3 weeks later (Hosein and Van
Roosmalen 1978). In another report on occupational exposure, 340 analyses were performed on
urine samples from 150 workers from 19 factories (Ducos and Gaudin 1983; Ducos et al. 1985).
Samples were usually collected at the end of the shift. The levels of MBOCA ranged from
undetectable (<0.5 µg/L) to 1,600 µg/L. The highest urine MBOCA levels were present in 12
workers from a factory that handled crystallized MBOCA. In a similar study, pre- and post-work
urine samples from 11 employees of a polyurethane manufacturing plant and 10 control subjects were
evaluated for MBOCA and thioether levels (Edwards and Priestly 1992). There was no information
on the levels of MBOCA that employees were exposed to, on the duration of exposure, or on the
route. Based on the type of work, it is likely that the main route of exposure was dermal. The
urinary output of thioether was evaluated because thioethers are metabolic end products of the
pathway involving mercapturic acid. The thioethers, therefore, were thought to be potential, nonspecific,
markers of exposure to electrophilic xenobiotics such as rubber monomers or petroleum.
They have not been used as markers for MBOCA exposure. The urinary thioether levels were similar
in pre- and post-work samples (p>0.05) and did not correlate with urinary MBOCA levels, indicating
that they are not useful for estimating occupational MBOCA exposure. Although there were no
significant differences in urinary MBOCA levels between the three groups of employees (supervisors,
laboratory personnel, process workers), the results reflect the potential exposure levels. The median
values of MBOCA in the post-work urine of process workers and supervisors were 9.33 and 1.05
µmol mol-1 of creatinine, respectively. There was no MBOCA in the urine samples from 10 control
workers. The small amount of urinary MBOCA in occupationally exposed workers suggests that
other major metabolites, such as β-N-glucuronide conjugate (Cocker et al. 1990) may be present in
the urine. From the results of all of the exposure studies it is not clear, however, if urine is the
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primary excretion route in humans after dermal exposure to MBOCA since no information was
provided regarding the amount of MBOCA in the feces.

Male Sprague-Dawley rats were treated with a single dermal dose of 2.5 mg MBOCA or
14C-MBOCA; within 72 hours, 2.54% of the administered radioactive MBOCA was excreted as 14C,
while only 0.008% was excreted as the parent compound (Groth et al. 1984). Similar results were
obtained in dogs. Twenty-four hours after a single dermal application of 0.4 mg/kg of 14C-MBOCA
to beagle dogs, the highest concentration of radioactivity was found in the bile (Manis et al. 1984).
no unmetabolized MBOCA was present in the bile. The results support the hypothesis that dermal
absorption is a viable mode of entry and that MBOCA is rapidly metabolized and excreted after it
enters the body regardless of the route of entry. Urinary excretion of unmetabolized MBOCA was
a small but consistent fraction, comprising 0.4-0.5% of the total urinary excretion of radioactivity
(Manis et al. 1984).

2.3.4.4   Other Routes of Exposure

Feces and urine were major excretion routes in rats after acute exposure to radiolabeled MBOCA
by stomach intubation (Morton et al. 1988) or intravenous injection (Tobes et al. 1983). At 48 hours
after exposure to 44-58 mg/kg of radiolabeled MBOCA by intubation, 64-87% of radioactivity was
recovered in the urine and feces (Morton et al. 1988). A similar observation was made in rats 48
hours after a single intravenous dose of 0.51 mg/kg; feces contained 73% of the total cumulative dose
of radiolabeled MBOCA (Tobes et al. 1983). These results indicate that total elimination of 14C
following intubation or intravenous injection of 14C-MBOCA to rats was similar to that observed
following oral dosing, which also occurred primarily in the feces (Farmer et al. 1981; Groth et al.
1984). After a single intraperitoneal injection of 1,13, or 100 mg/kg of MBOCA, the compound was
excreted most rapidly within the first 24 hours. Rats receiving the highest concentration of MBOCA
produced three times more urine during the first 24 hours than did controls (Farmer et al. 1981).
Studies with intravenous administration of MBOCA in the dog found that the major route of
excretion was through the urine (Manis et al. 1984). Within 24 hours after intravenous injection of
14C-MBOCA, 46% of the dose had been excreted in the urine and 32% in the bile, accounting for
78% of the total dose. This indicates that often substantial differences occur between species and
that route of exposure determines the route of elimination of MBOCA.

In an attempt to use thioether as a potential urinary indicator for MBOCA exposure, male Wistar
rats were exposed intraperitoneally to 125 or 250 mg/kg/day of MBOCA in peanut oil (vehicle) daily
for 5 days, while the control received peanut oil only (Edwards and Priestly 1992). Urine was
collected for 24 hours prior to and following exposure. Urinary MBOCA levels were significantly
higher in the treated groups compared to controls. There were no significant differences noted
between the two experimental groups. As in the study with occupationally exposed workers, the
urinary thioether levels were not affected by MBOCA treatment indicating that thioether was not a
useful indicator for MBOCA exposure (Edwards and Priestly 1992).

The in vivo formation of MBOCA-hemoglobin adducts was determined in blood samples of male
Sprague-Dawley rats intravenously injected with 0.04, 0.2, or 1.0 µmol/kg of n-hydroxy-MBOCA
(Chen et al. 1991). The injection of the lowest dose of N-hydroxy-MBOCA resulted in formation of
0.9 ng/50 mg of MBOCA-hemoglobin adducts 24 hours after the injection. This level remained
almost unchanged (0.8 ng/50 mg) 1 week after exposure indicating a relatively long half life of this
adduct. A similar observation was made in guinea pigs injected subcutaneously with 4, 20, or
100 mg/kg of MBOCA. Detectable levels of MBOCA-hemoglobin adducts were still present
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10 weeks after exposure to the lowest dose of MBOCA. In guinea pigs, the life span of MBOCA-
hemoglobin adducts was similar to that of red blood cells, 60-80 days.

2.3.5   Mechanisms of Action

The precise mechanism of action of MBOCA is not completely understood. However, the capacity
of MBOCA to form adducts with hemoglobin (Cheever et al. 1988, 1990, 1991; Chen et al. 1991;
Sabbioni and neumann 1990) tissue DNA (Cheever et al. 1990) and globin and serum albumin
(Cheever et al. 1991) in rats may play a role in its carcinogenicity. The adduct formation is especially
important in elucidating the carcinogenicity of MBOCA. Two metabolites were identified in the
urine of one occupationally exposed worker: n-acetyl MBOCA and N,N’-diacetyl MBOCA (Ducos
and Gaudin 1983). The finding of n,n’-diacetyl MBOCA was unexpected (because of its poor water
solubility) and important. It can be assumed, using benzidine metabolism as a model, that from N,N’-
diacetyl MBOCA, N-hydroxy-N,N’-diacetyl MBOCA can be formed. N-hydroxy-N,N’-diacetyl
MBOCA is important because it can directly bind to nucleic acids. Therefore, the confirmation of
its existence would elucidate the biochemical basis for adduct formation. This finding is in agreement
with a recently proposed mechanism for chemical carcinogenesis that may involve the formation of
chemical adducts in DNA through covalent binding. This proposition was based on the fact that
MBOCA produces DNA adducts in rat liver at levels characteristic of genotoxic carcinogens (Kugler-
Steigmeier et al. 1989). Since it is known that MBOCA can bind to rat liver DNA (Cheever et al.
1990), and that liver is one of the primary target organs for development of tumors after exposure
of rats to MBOCA (Kommineni et al. 1979; Russfield et al. 1973, it may be assumed that MBOCADNA
adducts play a role in the development of tumors. The mechanism of hemoglobin adduct
formation by N-oxidized MBOCA metabolites was recently investigated in viva and in vitro using
human and rat hemoglobin (Chen et al. 1991). Male Sprague-Dawley rats were injected
intraperitoneally with 0.5-50 mg/kg of MBOCA, and male English short hair guinea pigs were
injected subcutaneously with 4-100 mg/kg of MBOCA. In the same study, treatment of rats with
either phenobarbital or β-naphthaloflavone (BnF) resulted in induction of cytochrome P-450 as
evidenced by increased enzymatic activity of two P-450 isozymes. This induction caused increased
ortho-hydroxylation of MBOCA that was not statistically significant and resulted in the formation of
various metabolites. Two of those MBOCA metabolites, n-hydroxy MBOCA and mononitroso-
MBOCA, formed measurable amounts of adducts with both human and rat hemoglobin, while the
amount of adducts formed by the parent compound itself was very small. This in vitro binding
occurred in a dose-related manner and could be inhibited by cysteine and glutathione but not by
oxidized glutathione or methionine (Chen et al. 1991). Therefore, the administration of MBOCA
to rats resulted in a dose-related formation of hemoglobin adducts that were detectable 24 days after
treatment. Similar observa tions were made in guinea pigs; the life span of MBOCA-hemoglobin
adducts followed that of re cells in the guinea pig and was approximately 60-80 days.

One of the major DNA adducts of MBOCA was identified by a combination of in vivo and in vitro
studies (Silk et al. 1989). Male rat derived from a Wistar strain were injected intraperitoneally with
89 µmol/kg of radioactive MBOCA or 141 µmol/kg of acetyl-MBOCA. Twenty-four hours later,
animals were sacrificed, and their liver-DNA was extracted and analyzed for the amount of bound
radioactivity and nature of adducts. Results,showed that the cleavage of the bond between the
methylene bridge and one aromatic nucleus of MBOCA resulted in the formation of the major in vivo
adduct N-(deoxyadenosine-8-yl)-4-amino-3-chlorobenzyl alcohol. Two other adducts also formed after
intraperitoneal injection were not identified. In an attempt to further elucidate the DNA adduct
formation, DNA was isolated from liver, lung, and kidney of 14C-MBOCA-treated Charles River CD
rats and compared to in vitro N-hydoxy-MBOCA-treated rat DNA (Segerback and Kadlubar 1992).
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Rats were orally treated with 95 µmol/kg body weight of radiolabeled MBOCA and sacrificed 1, 3,
7, and 21 days later. In both in vivo and in vitro experiments, two major peaks were identified
containing two adducts: N-(deoxyadenosine-8-yl)-4-amino-3-chlorobenzyl alcohol and n-
(deoxyadenosine-S-yl)-4-amino-3-chlorotoluene. These two major peaks were present in both liver
and kidney DNA samples. The results confirmed the existence of one adduct found in a similar study
(Silk et al. 1989) and identified the second one. The study found that the binding of N-hydroxy-
MBOCA to DNA can be inhibited by ascorbic acid, glutathione, nitrosobenzene, and methyl viologen
but not by nitromethane,p-nitrobenzylpyridine or methionine. The precise mechanism of single-ring
MBOCA DNA adduct formation is still not completely understood because of the indication that
there is an unstable intermediate formed prior to the formation of the two major identified DNA
adducts and that single-ring MBOCA adducts were not readily detectable (Segerback and Kadlubar
1992).

There is some evidence that MBOCA itself may be a tumor promoter. MBOCA caused a statistically
significant dose-dependent inhibition of gap-junctional cell communication (GJC) at doses ranging
from 7.5 nmol/mL (noncytotoxic) to 15.5 nmol/mL (cytotoxic) (Kuslikis et al. 1991). Since GJC is
important in controlling cell proliferation, and many known tumor promoters inhibit GJC, GJCinhibition
assays have been proposed as short-term screens for promoters.

2.4 RELEVANCE TO PUBLIC HEALTH

Exposure to MBOCA contaminated soil or water at hazardous waste sites is possible via the oral or
dermal routes. Inhalation and dermal exposure to this compound in air are less likely because
MBOCA is not volatile. There is no information regarding the level that would be of concern to a
population living in the vicinity. Occupational or accidental exposure may occur in industries using
MBOCA as a curing agent in manufacturing processes. It is not known if MBOCA and/or its
metabolites can be released from polyurethane (MBOCA is used as a curing agent for castable liquid
polyurethane elastomers) (HSDB 1991; IARC 1974; Sax and Lewis 1987).

Acute-duration exposure to high levels of MBOCA may cause eye and skin irritation in humans
(Hosein and Van Roosmalen 1978). Intermediate and chronic exposures to MBOCA may lead to
tumors of the urinary bladder. Of 200 occupationally exposed workers, 3 were found to have urinary
bladder tumors (Ward et al. 1990). This finding is supported by results obtained in dogs (Stula et al.
1977). Results in other animal species also show that MBOCA is a potential carcinogen and that
other target organs include the lung, liver, breast, and Zymbal’s gland in rats (Kommineni et al. 1978;
Russfield et al. 1975; Stula et al. 1975) and lung, liver, and vascular system in mice (Russfield et al.
1975). It is not possible to estimate if these tumors would be of concern to humans since there is
no information available.

Limited information indicates that MBOCA is rapidly absorbed in humans and that the amount
absorbed through skin and inhalation is in proportion to the dose (Chin et al. 1983; Cocker et al
1988, 1990; Ichikawa et al. 1990; NIOSH 1986b). No information is available regarding distribution
and rate of metabolism in humans. However, toxicokinetic data obtained in animals indicate that
MBOCA is rapidly absorbed, distributed, and excreted within 24-48 hours (Farmer et al. 1981; Groth
et al. 1984). The bioaccumulation of MBOCA is unlikely because of its rapid metabolism and urinary
excretion. Of potential concern, however, is the fact that MBOCA readily forms adducts with body
proteins and DNA. Studies in rats and guinea pigs suggest that MBOCA-hemoglobin adducts have
a biological life similar to that of red blood cells and may remain in the body for many weeks.
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No information was located regarding reproductive or developmental effects in humans or animals.

There is no information in humans regarding MBOCA retention or any delayed effects. Information
on the effects of exposure to MBOCA in humans comes from case reports of accidentally or
occupationally exposed workers in manufacturing facilities. In one such study, low-grade papillary
tumors of the urinary bladder were observed in 3 out of 200 workers more than 8 years following
occupational exposure to MBOCA (Ward et al. 1990). Studies in progress include assessing the
incidence of bladder carcinomas in workers occupationally exposed to MBOCA and the role of
adducts in MBOCA-induced carcinogenicity (see Section 2.93). Animal studies support the
hypothesis that MBOCA and/or its metabolites have carcinogenic potential. MBOCA metabolites
bound to DNA were found following oral (Cheever et al. 1990; Kugler-Steigmeier et al. 1989) or
dermal (Cheever et al. 1990) exposures in rats.

No studies were located regarding the genotoxicity of MBOCA in humans in vivo. Results from in
vivo animal studies support the conclusion that MBOCA is a mutagen; mixed results from some assays
can probably be attributed to incomplete testing.

Minimal Risk Levels for MBOCA

Inhalation MRL3

No inhalation MRLs have been derived for any duration of exposure because of lack of data.

Oral MRL8

No acute-duration oral MRL has been derived because of lack of data.

No intermediate-duration oral MRL has been derived because of lack of data.

An MRL of 0.003 mg/kg/day has been derived for chronic-duration oral exposure to MBOCA. This
is based on a LOAEL of 10 mg/kg/day for hepatic effects in dogs (Stula et al. 1977).

Death. no increased mortality from any cause has been reported in humans who have been exposed
to MBOCA. Decreased lifespan was observed in rats following chronic oral exposure to MBOCA
(Kommineni et al. 1979). Data are insufficient to assess the effects that prolonged exposure to
MBOCA may have on populations that are potentially at risk.

Systemic Effects

Respiratory Eflects. no data are available regarding adverse effects of MBOCA on the respiratory
tract in humans.

Lung adenomatosis, a preneoplastic lesion, was observed in rats following chronic oral exposure to
25 or 50 mg/kg/day of MBOCA (Russfield et al. 1975). MBOCA may induce changes in the lungs
that can progress to cancerous lesions. Since information on respiratory effects following exposure
to MBOCA is limited, the impact of findings in animals on public health is difficult to assess. For
more information, see the discussion of Cancer, below, in this section.

Gastrointestinal Eficts. Extremely limited information is available regarding adverse gastrointestinal
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effects in humans after exposure to MBOCA. A worker complained of feeling ill in the stomach
after being sprayed in the face with molten MBOCA (Hosein and Van Roosmalen 1978). No further
information was given on his condition or the level of exposure. Evidence is insufficient to assess the
relevance of this finding to public health.

Hematological Eflcts. no information is available regarding adverse hematological effects in humans
after exposure to MBOCA.

However, no changes in hemoglobin, hematocrit, erythrocyte, or mononuclear leukocyte counts were
observed in beagle dogs following 9 years of exposure to MBOCA (Stula et al. 1977). This study is
of limited usefulness because blood analysis was done only twice a year, so that changes between
analyses were probably not recorded. The significance of this finding with regard to human health
cannot be assessed.

Hepatic Eficts. no information was located in humans regarding adverse hepatic effects following
exposure to MBOCA.

Hepatic effects such as elevated liver enzyme levels, nodular hepatic hyperplasia, fatty changes,
necrosis, fibrosis, and bile duct proliferation were observed in rats and dogs following chronic
exposure to MBOCA (Stula et al. 1975, 1977). Chronic exposures to high levels of MBOCA at
hazardous waste sites may induce similar adverse hepatic effects.

Renal Effects. Following an acute exposure in which a worker was sprayed in the face with molten
MBOCA, protein was detected in the urine within the first 5 hours after exposure, suggesting that
damage to renal tubules occurred (Hosein and Van Roosmalen 1978). Damage to the renal tubules
was also indicated by a decrease in specific gravity of the urine collected the next day. Although the
amount of MBOCA to which the worker was exposed was not known, it may have been substantial,
since the urine MBOCA level was 3.6 mg/L 5 and 11 hours after the incident. It is unknown whether
exposure to these high levels would occur at hazardous waste sites. In another study, exfoliative
cytology revealed that 21 out of 385 urine samples collected from workers exposed to MBOCA
contained atypical cells in urine sediment (Ward et al. 1990). None of the cytology readings were
positive for cancer. Sixteen out of the 385 urine samples were positive for heme (Ward et al. 1990).
The median duration of employment was 3.2 months. Although this study is limited because it lacks
information on exposure levels, it is important because it alerted the medical community to the
inadequacies of the procedures normally used following MBOCA exposure. Since one of the
participants (who had negative cytology and was negative for heme) was diagnosed with a low-grade
papillary tumor of the bladder, cystoscopy was introduced as a part of the follow-up procedure for
workers exposed to MBOCA, and two additional cases of bladder tumors were detected subsequently.
Therefore, exposure to MBOCA at hazardous waste sites may cause renal damage that may lead to
cancer.

Studies on chronic exposure of dogs to MBOCA support the findings in humans (Stula et al. 1977).
In dogs treated orally with an average of 10 mg/kg/day of MBOCA for 9 years, urine sediment
cytology revealed dysplastic changes indicative of neoplasia of the genitourinary system.

Dermal/Oculur Effects. Burning of the face and eyes developed shortly after a worker was accidentally
sprayed with molten MBOCA (Hosein and Van Roosmalen 1978). He was wearing gloves and safety
glasses but no respirator or face shield. A similar burning sensation was described by a worker who
was also accidentally sprayed over his upper body and extremities with molten MBOCA (Osorio et
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al. 1990). The general population is not likely to be involved in such exposures at hazardous waste
sites. However, in cases of occupational accidents, exposure to MBOCA may cause adverse
dermaliocular effects.

Immunological Effects. no studies were located in humans or animals regarding immunological
effects following exposure to MBOCA.

Neurological Effects. no studies were located regarding adverse neurological effects in humans
after exposure to MBOCA by any route.

Cystic hyperplasia of the pituitary gland was found in one out of six dogs after 8.3 years of MBOCA
exposure (Stula et al. 1977). This change was considered to be unrelated to chronic MBOCA
treatment. It is difficult to predict if analogous effects would occur in individuals or populations living
near hazardous waste sites.

Reproductive Effects. no studies were located regarding reproductive effects in humans or animals
following exposure to MBOCA.

Developmental Effects. no studies were located regarding developmental effects in humans or
animals after exposure to MBOCA.

Genotoxic Effects. no studies were located regarding the genotoxicity of MBOCA in humans in
vivo.

In vivo animal studies provide direct and indirect evidence that MBOCA is a mutagen; MBOCA
metabolites were bound to DNA following oral (Cheever et al. 1990; Kugler-Steigmeier et al. 1989)
or dermal (Cheever et al. 1990) exposure in rats. Small increases in the SLRL values were observed
in D. melanogaster adults fed a 7.5millimolar MBOCA solution for 3 days (Vogel et al. 1981).

MBOCA induced gene mutations at the thymidine kinase (TK) locus in mouse lymphoma cells
(Caspary et al. 1988; Myhr and Caspary 1988). Unscheduled DNA synthesis (UDS) was induced in
HeLa cells (Martin and McDermid 1981), in rat primary hepatocytes at >10 µmol (McQueen et al.
1981; Mori et al. 1988; Williams et al. 1982) and in hamster (McQueen et al. 1981) and rabbit
(McQueen and Williams 1987) hepatocytes. The concentration that tested positive in the mouse was
50 µmol (McQueen et al. 1981). Sensitivity to MBOCA showed species-specific variations: rat >
mouse > hamster > rabbit (McQueen et al. 1981, 1983). Because hepatocytes have their own
metabolic activation systems, no exogenous metabolic activation is needed. In assays using attachment
independence as an end point, MBOCA, at concentrations near the LC50, transformed baby hamster
kidney (Daniel and Dehnel 1981; Styles 1981), rat embryo (Dunkel et al. 1981; Traul et al. 1981), and
Balb/3T3 cells (Dunkel et al. 1981). Transformation assays have not been evaluated as thoroughly
as some other genotoxicity assays. In an interlaboratory comparison, one laboratory found equivocal
evidence that nonactivated MBOCA induced sister chromatid exchange in Chinese hamster ovary cells
at a dose of 5.0 µg/mL. The response is considered equivocal because the dose-response curve was
inconsistent. The result was not confirmed by the second laboratory. In the presence of S9
activation, positive results were obtained by one laboratory at 50 µg/mL. The other laboratory
observed the beginning of a dose-response curve, but the high-dose (30 µg/mL) results did not meet
the testing laboratory’s criterion for a positive response. In a chromosome aberration assay testing
activated and nonactivated concentrations up to 5 and 30 µg/mL, respectively, neither laboratory
found a positive result (Galloway et al. 1985). Another study (Perry and Thomson 1981) found no
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evidence of sister chromatid exchange at up to cytotoxic doses (100 µg/mL), but no doses were tested
in the probable sensitive range (>10 and <100 µg/mL). Thus, MBOCA is clastogenic in some
systems but not others.

In another study, MBOCA was classified as a clastogen on the basis of results from an in viva
micronucleus bone marrow assay (Katz et al. 1981). Evaluations using a two-phase micronucleus
assay and intraperitoneal dosing of B6C3F1 hybrid mice were incomplete, but the results suggested
that MBOCA is an in viva clastogen at doses of >32 mg/kg ( Sa amone et al. 1981) or 50% of the 1
LD50 (Katz et al. 1981). Results were inconclusive because of toxicity during the first phase of
testing in which mice were dosed at 0 and 24 hours with 80% of the LD50 (51 mg/kg), and results
were evaluated at 48 hours. In the second phase of testing, mice were dosed with 32 or 51 mg/kg
and sampled 48 hours later, or in a separate test, dosed with 32 or 48 mg/kg and sampled 36 hours
later. Results were negative at 32 mg/kg when sampled at 48 hours but positive at the same dose in
a separate assay when sampled at 36 hours. Results were positive at the higher dose for both
sampling times. Multiple sampling times were not performed in any assay (Salamone et al. 1981).
In another study, results in the micronucleus test were negative at doses up to 50% of the LD50 (32
mg/kg) using CD-1 mice (dosing was done intraperitoneally at 0 and 24 hours and sampling at
30 hours) (Tsuchimoto and Matter 1981). Results from in viva testing are summarized in Table 2-2.

There is some evidence that MBOCA itself may be a tumor promoter. MBOCA caused a statistically
significant dose-dependent inhibition of gap-junctional cell communication (GJC) at doses ranging
from 7.5 nmol/mL (noncytotoxic) to 15.5 nmol/mL (cytotoxic) (Kuslikis et al. 1991). Since GJC is
important in controlling cell proliferation, and many known tumor promoters inhibit GJC, GJCinhibition
assays have been proposed as short-term screens for promoters.

There is some evidence that MBOCA itself may be a tumor promoter. MBOCA caused a statistically
significant dose-dependent inhibition of gap-junctional communication (GJC) at doses ranging from
7.5 nmol/mL (noncytotoxic) to 15.5 nmol/mL (cytotoxic) (Kuslikis et al. 1991). Since GJC is
important in controlling cell proliferation, and known tumor promoters inhibit GJC, GJC-inhibition
assays have been proposed as short-term screens for promoters. The use of GJC-inhibition assays
in individuals living in the vicinity of hazardous waste sites would provide needed information for
better understanding of potential control of the tumor initiation process.

In vitro testing has provided clear and convincing evidence that MBOCA is mutagenic in the
Salmonella typhimurium/mammalian microsome mutagenesis assay and that the mutagenic effect
requires exogenous metabolic activation (Baker and Bonin 1981; Cocker et al. 1985; Dunkel et al.
1984; MacDonald 1981; Martire et al. 1981; McCann et al. 1975; Messerly et al. 1987; Rao et al.
1982). Although not all investigators used each tester strain, the general result is that MBOCA is
mutagenic only in strains TA98 and TA100, at 250 µg/plate, with some inconsistency regarding strain
TA98. MBOCA and its metabolites are not mutagenic in S. typhimurium strains TA1535, TA1537,
or TA1538. This suggests that the mutagenic effect of MBOCA metabolites in some bacteria is
dependent on the plasmid pKM101; strains TA98 and TA100 contain this plasmid, but strains
TA1535, TA1537, and TA1538 do not (Ames et al. 1975). This hypothesis is supported by the finding
that S9-activated MBOCA is mutagenic in Escherichia coli strain WP2uvrA only in the presence of
the plasmid pKM101 (Matsushima et al. 1981). The plasmid carries genes involved in an “errorprone”
DNA repair system that introduces mutations as it removes DNA damage (Walker 1984). S9
derived from dog and human liver could activate MBOCA to a form mutagenic to strain TA100 but
only in a protocol using a fluctuation assay (Cocker et al. 1985). These data are presented in Table
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Most of MBOCA’s mutagenic activity appears to be due to the N-hydroxy metabolite, which caused
dose-dependent increases in mutations of S. typhimurium strains TA100 and TA98 in a pre-incubation
assay using nonactivated doses of ≥5 µg/plate (Kuslikis et al. 1991). This metabolite is produced by
several species, including dogs and humans (Butler et al. 1989; Chen et al. 1989; Morton et al. 1988).
The mononitroso derivative appears to be direct-acting mutagen but is much less potent, causing a
statistically significant revertant increase in the pre-incubation assay at the highest tested nontoxic
dose (50 µg/plate). neither the o-hydroxy nor the dinitroso derivatives were direct-acting mutagens
at up to 50 or 500 µg/plate, respectively. neither chemical was tested to cytotoxic levels (Kuslikis et
al. 1991). N-acetylation is a deactivating step. neither n-acetyl nor N,N-diacetyl derivatives were
mutagenic in S. typhimutium in the absence of activation (Hesbert et al. 1985). In the presence of
S9 activation, the mutagenic activity of the acetylated derivatives is less than that of the parent
compound (Cocker et al. 1986; Hesbert et al. 1985).

DNA adducts have been found following oral (Cheever et al. 1990; Kugler-Steigmeier et al. 1989;
Segerback and Kadlubar 1992) and dermal (Cheever et al. 1990) administration of radiolabeled
MBOCA to rats, following the incubation of radiolabeled MBOCA with explants of dog and human
bladder urothelium (transitional cell epithelium) (Stoner et al. 198) and incubation of rat DNA and
radiolabeled N-hydroxy-MBOCA (Segerback and Kadlubar 1992). The level of binding increased
with dose, but the increase was not linear. Considerable individual variation in binding levels, varying
over at least a 10-fold range, was found in both dogs and humans. At least six adducts were found
in dog bladder epithelium; four adducts were found in human bladder epithelium, three of which
appeared to be the same as those found in dogs. DNA adduct formation in dog bladder tissue is of
particular note, since MBOCA has been found to cause bladder tumors in dogs (Stula et al. 1977).
The in vivo and in vitro studies identified two other major rat DNA MBOCA adducts, n-
(deoxyadenosin-8-yl)-4-amino-3-chlorobenzyl alcohol and N-(deoxyadenosin-8-yl)-4-amino-3
chlortoluene (Segerback and Kadlubar 1992). The finding of DNA adducts in human bladder tissue
suggests similar processes may occur in humans.

Intraperitoneal injection into rats of ring-labeled MBOCA, or ring-labeled N-acetylated MBOCA,
resulted in the generation of three DNA adducts (Silk et al. 1989). Two of these adducts were also
produced by the in vitro reaction of the N-hydroxy derivative of MBOCA with rat liver slices. The
major product of this reaction was also formed following incubation of DNA with n-hydroxy-4-amino-
3-chlorobenzyl alcohol, the compound resulting from cleavage of the methylene bridge of N-hydroxy
MBOCA. While the single ring species appears to be an intermediate in the formation of the DNA
adduct, it is not known whether N-hydroxylation or bridge cleavage occurs first in the formation of
the reactive species. The DNA adduct was analytically identified as N-(deoxyadenosin-8-yl)-4-amino-
3-chlorobenzyl alcohol.

Cancer. Since MBOCA has been suspected of being a human carcinogen, epidemiological studies
have examined the incidence of cancer in workers exposed to MBOCA. Three out of 200 examined
workers exposed to MBOCA for an average of 3.2 months were found to have low-grade papillary
tumors of the urinary bladder (Ward et al. 1990). The latency period for most bladder cancers is
about 20 years; therefore, the detection of bladder tumors in this study 11.5 years (mean latency
period for the entire cohort) after first exposure to MBOCA provides suggestive evidence that
MBOCA is a suspected human carcinogen. Two of the men affected with bladder tumors were less
than 30 years old. Since it is known that the occurrence of bladder tumors in young men is very
uncommon, this finding increases the concern that MBOCA has a potential for causing bladder
tumors in humans. However, there was no evidence of recurrent bladder lesions in the above cases
after the initial discovery. It is also difficult to estimate the biological and statistical significance of
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these bladder lesions because of the small sample size. One important outcome of this study is the
introduction of cystoscopy as a part of the monitoring protocol for workers exposed to MBOCA. The
limitation of the study is that there are no data on bladder cancer incidence diagnosed by cystoscopy
in an asymptomatic nonexposed (control) population. The importance of biological monitoring
programs was also evident in the occupational study/review of urinary free MBOCA levels in workers
from PMA member companies (Lowry and Clapp 1992). The data have been collected for over 15
years, and the study summarized them for 1985-1990. The analysis of 7,844 urine samples confirmed
that after the introduction of biological monitoring it was possible to reduce the urinary MBOCA
levels by using effective exposure control and protection in the workplace. The reduced percentage
of samples containing >50 µg/L of MBOCA (from 12% in 1985 to 8% in 1990) and increased
percentage of urine samples with <25 µg/mL (from 77% in 1985 to 86% in 1990) further supported
the importance of biological urinary MBOCA monitoring.

The probable carcinogenicity of MBOCA has been a concern for some time. In 1972, the British
rubber industry imposed upon itself a ban on the use of MBOCA because it was a suspected human
carcinogen (Parkes 1979). The initiation of a biological monitoring program that would examine
exposure levels and help establish Environmental or other pertinent controls as preventive measures
has also been suggested (Ward et al. 1986). This biomonitoring program would also maintain a
system to follow the workers exposed to MBOCA in order to detect possible neoplastic changes and
initiate treatment.

Chronic exposure studies in animals support the findings in humans. The main target organs for
cancer development were the urinary bladder, lungs, liver, and breasts. The urinary bladder was a
target organ in beagle dogs fed MBOCA for 9 years; three of the five surviving dogs developed
papillary transitional cell carcinoma of the urinary bladder; another dog had a combined urethral
adenocarcinoma and transitional cell carcinoma (Stula et al. 1977). This study, in spite of the use of
a small number of animals, shows that the ingestion of MBOCA over 9 years was associated with the
incidence of carcinomas of the urinary bladder and urethra. Several other chronic exposure studies
in rats demonstrate the ability of MBOCA to cause lung cancer (Kommineni et al. 1979; Stula et al.
1975). A significant increase in the incidence of liver tumors after chronic exposure to MBOCA was
found in rats (Kommineni et al. 1979; Russfield et al. 1975) and in female mice (Russfield et al.
1975). The rats fed MBOCA for 2 years had an increased incidence of mammary adenocarcinomas
(Kommineni et al. 1979). Other tumor types were also observed after chronic oral administration of
MBOCA. The incidence of hemangiosarcomas was 8% in rats (Kommineni et al. 1979); vascular
tumors were present in male random-bred albino mice (Russfield et al. 1975); and hemangiosarcomas
were present in both male and female mice (Russfield et al. 1975). Tumor incidence was affected
by gender in mice; no data regarding gender specificity are available for rats or dogs.

The precise mechanism of action of MBOCA is not completely understood, but it is thought that in
some instances it involves the formation of chemical adducts in the genetic material through covalent
binding of nucleophilic sites by electrophilic compounds or activated metabolites (Cheever et al.
1991). Therefore, it seems that the capacity of MBOCA to form adducts with tissue DNA (Cheever
et al. 1990), hemoglobin (Cheever et al. 1990, 1991; Sabbioni and neumann 1990) and globin and
serum albumin (Cheever et al. 1991) in rats may play a role in its toxicity and carcinogenicity. The
adduct formation is especially important in elucidating the carcinogenicity of MBOCA. It was
recently proposed that chemical carcinogenesis may involve the formation of chemical adducts in
DNA through covalent binding based on the fact that MBOCA produces DNA adducts in rat liver
at levels characteristic of genotoxic carcinogens (Kugler-Steigmeier et al. 1989). Since it is known
that MBOCA can bind to rat liver DNA (Cheever et al. 1990) and that liver is one of the primary
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target organs for development of tumors after exposure of rats to MBOCA (Kommineni et al. 1979;
Russfield et al. 1975), it may be assumed that MBOCA-DNA adducts play a role in the development
of tumors. Further support for the carcinogenic potential of MBOCA comes from the study showing
that MBOCA binds to DNA from human and dog urinary bladder tissue (Shivapurkar et al. 1987).

The mouse skin assay was used in one study to evaluate the carcinogenicity of MBOCA in the
presence of 12-o-tetradecanoylphorbol-U-acetate (TPA) as a tumor promoter (nesnow et al. 1985).
SEnCAR mice were exposed to 0, 0.1, 1, 10, 100, or 200 mg of MBOCA and 1 week later to 2 µg
of TPA biweekly for 26 weeks. No mouse skin papillomas were observed at any dose level, but the
authors stressed that this finding was based on the limited dose levels tested in the study. There are
several limitations to this study; it was not clear if TPA was administered to control animals, if
MBOCA was applied to shaved skin, or if was the area was protected after treatment; in addition,
no other parameters aside from tumor initiation were examined during the 26-week period.

There is some evidence that MBOCA itself may be a tumor promoter. MBOCA caused a statistically
significant dose-dependent inhibition of GJC at doses ranging from 7.5 nmol/mL (noncytotoxic) to
15.5 nmol/mL (cytotoxic) under in vitro conditions (Kuslikis et al. 1991). Since GJC is important in
controlling cell proliferation, and known tumor promoters inhibit GJC, GJC-inhibition assays have
been proposed as short-term screens for promoters. The use of GJC-inhibition assays in individuals
living in the vicinity of hazardous waste sites would provide needed information for better
understanding of potential control of the tumor initiation process.

2.5   BIOMARKERS OF EXPOSURE AND EFFECT

Biomarkers are indicators of events in biologic systems. They have been classified as markers of
exposure, markers of effect, and markers of susceptibility (NAS/NRC 1989).

A biomarker of exposure is a xenobiotic substance or its metabolite(s), or the product of an
interaction between a xenobiotic agent and some target molecule(s) or cell(s) that is measured within
a compartment of an organism (NAS/NRC 1989). Preferred exposure biomarkers are either the
substance proper or substance-specific metabolites in readily obtainable body fluid(s) or excreta.
Several factors may confound the use and interpretation of exposure biomarkers: (1) the body
burden of a substance may represent more than one exposure; (2) the substance being measured may
be the metabolite of another substance (e.g., high levels of phenol in urine can result from exposure
to several different aromatic compounds). Depending on the substance’s properties (e.g., biologic
half-life), and exposure conditions (e.g., duration and route of exposure), the substance and
metabolites may have left the body by the time samples are collected. Individuals exposed to
hazardous substances that are commonly found in body tissues and fluids (e.g., essential mineral
nutrients such as copper, zinc, and selenium) may be difficult to identify. Biomarkers of exposure to
MBOCA are discussed in Section 2.5.1.

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration
within an organism that, depending on magnitude, can be recognized as an established or potential
health impairment or disease (NAS/NRC 1989). Biochemical or cellular signs of tissue dysfunction
and physiologic alterations are included within this definition. note that these markers are often not
substance specific. Biomarkers of effect(s) may indicate potential health impairment(s) (e.g., DNA
adducts). Biomarkers of effects caused by MBOCA are discussed in Section 2.5.2.
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A biomarker of susceptibility may indicate an inherent or acquired limitation of an organism’s ability
to respond to the challenge of exposure to a specific xenobiotic substance. It can be either an
intrinsic genetic characteristic, a preexisting disease that results in greater absorbed dose, a decrease
in the biologically effective dose, or a target tissue response. If biomarkers of susceptibility exist, they
are discussed in Section 2.7, Populations That Are Unusually Susceptible.

2.5.1   Biomarkers Used to Identify or Quantify Exposure to MBOCA

Exposure to MBOCA has commonly been determined by measuring levels of MBOCA or its
metabolites in urine. no information on quantifiable dose threshold levels in humans was located.
Since MBOCA is rapidly metabolized, its presence in urine indicates recent exposure. MBOCA is
rapidly biodegraded and converted to its glucuronide conjugates. Since varying levels of
β-glucuronidase are present in urine, it may be difficult to determine accurate levels of MBOCA in
the urine. Following administration of radiolabeled MBOCA to rats (Farmer et al., 191; Groth et
al., 1984) and dogs (Manis et al. 1984b), less than 2% and l%, respectively, of the radioactivity
recovered in urine was unmetabolized MBOCA. The biologic half-life of MBOCA in blood following
intravenous exposure was estimated to be 0.70 hours; the levels of MBOCA found in various organs
24 hours after dermal exposure were relatively small (Manis et al. 1984). Measuring the metabolites
of MBOCA, therefore, would be useful surrogate exposure biomarkers.

Male and female CD rats treated with 44 or 58 mg/kg of radiolabeled MBOCA by gavage had
o-glucuronide and o-sulfate MBOCA conjugates in urine; the mono-N-glucuronide was the major
biliary metabolite 24 hours after treatment (Morton et al. 19SS). After a single oral dose of 75 mg/kg,
MBOCA formed adducts with globin and liver DNA in Sprague-Dawley rats (Cheever et al. 1988).
The half-lives for rat globin and liver DNA were estimated to be 14 and 11 days, respectively. An
o-hydroxysulfate,identifiedas5-hydroxy-3,3’-dichloro-4,4’-diamino-diphenylmethane-5-sulfate,wasthe
major metabolite found in dog urine. This metabolite also formed adducts with DNA in vitro in a
time-dependent manner (Manis and Braselton 1984). Studies in rats and guinea pigs have
demonstrated MBOCA adducts to hemoglobin (Chen et al. 1991; Sabboioni and newmann 1990),
with a disappearance rate that approximates the life of a red blood cell. These study results suggest
that MBOCA adducts may be useful biomarkers to monitor MBOCA exposure.

The levels of MBOCA have not been determined in chronic animal studies. It is unknown if chronic
sequestering and low-level release of MBOCA, resulting in steady state levels, occur.

2.5.2   Biomarkers Used to Characterize Effects Caused by MBOCA

The available information suggests that the bladder is a target organ for MBOCA-induced
carcinogenesis. Medical surveillance of occupationally exposed workers, currently in progress, may
help to ascertain the incidence of MBOCA-induced bladder cancer. Cystoscopy may help identify
new biomarkers and characterize early preneoplastic changes in the bladder.

The ability of MBOCA to covalently bind to body proteins has been less frequently used to estimate
exposure to MBOCA. MBOCA is known to bind to globin (Cheever et al. 1991). Therefore
measurement of MBOCA-globin adducts could be used to monitor MBOCA exposure since the halflife
of MBOCA-globin adducts is greater than the half-life of MBOCA. Section 2.2 contains more
detailed information on adverse effects of MBOCA. Additional information can be obtained from
the CDC/ATSDR (CDC/ATSDR 1990) and Office of Technology Assessment (OTA 1990) reports
listed in Chapter 8.
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2.6 INTERACTIONS WITH OTHER CHEMICALS

Limited information was located on the interactive effects of other chemicals on MBOCA toxicity.
MBOCA metabolism is influenced by phenobarbital (Chen et al. 1991; Morton et al. 1988). In vivo
treatment with phenobarbital induced cytochrome P-450 enzymes which resulted in a slight increase
in MBOCA hydroxylation (Chen et al. 1991). Rats treated with phenobarbital had a 4-8-fold
increased metabolic rate for MBOCA (Morton et al. 19%). Phenobarbital did not, however, affect
adduct formation (Chen et al. 1991). In vivo treatment with P-naphthoflavone did increase the rate
of MBOCA-hemoglobin adduct formation in rats treated subcutaneously with either 100 or
500 mg/kg/day (Chen et al. 1991). MBOCA metabolism is NADPH-dependent. Moreover, MBOCA
hydroxylation is inhibited by 2,4-dichloro-6-phenylphenoxyethylamine, an inhibitor of microsomal
mixed function oxidases (Chen et al. 19S9). Cysteine and glutathione inhibit in vivo hemoglobin
adduct formation by N-hydroxy-MBOCA and mononitroso-MBOCA (Chen et al. 1991). The most
recent findings suggest that binding of N-hydroxy-MBOCA to DNA in rat tissues can be inhibited by
ascorbic acid, glutathione, nitrosobenzene, and methyl viologen but not by nitromethane, p-
nitrobenzylpyridine, or methionine (Segerback and Kadlubar 1992).

2.7 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE

A susceptible population may have a heightened response to MBOCA compared with the general
population. A population’s susceptibility may be determined by their genetic make-up, developmental
stage, age, health and nutritional status (including dietary habits that may increase susceptibility, such
as inconsistent diets or nutritional deficiencies), and substance exposure history (including smoking).
These unique characteristics could result in a decreased ability to detoxify and excrete the xenobiotic
material and metabolites (mainly hepatic, renal, and respiratory). We expect that the elderly, (with
declining organ function), and infants and children with immature and developing organs, may be
more susceptible to the effects of toxic substance exposure(s) than healthy adults. Populations at
greater risk because of their atypically high exposures are discussed in Section 5.6, Populations With
Potentially High Exposure.

Differences in species sensitivity to MBOCA have been explored in vitro and in vivo studies. In
one study examining the DNA adduct formation in human bladder explant cultures, there was a
distinct difference in the sensitivity to MBOCA (Stoner et al. 198%). Results showed that some
cultures had much higher levels of MBOCA binding to bladder epithelium than did others. These
findings suggest that some individuals are likely to develop more damage from MBOCA exposure
than others. This could be an important consideration in cases of occupational exposure to
MBOCA. Another observation concerns the cytochrome P-450 family of enzymes. It is known that
profiles of cytochromes P-450, enzymes that play an essential role in detoxification of MBOCA, vary
from one individual to another (Butler et al. 1989). Consequently, the rates of MBOCA metabolism
may vary significantly among the population because of these differences in individual profiles of
cytochrome P-450. The ability of a person to acetylate may also be of importance since it is well
established for benzidine that this ability is directly related to the genotoxicity and carcinogenicity of
the compound.

An indication of DNA adduct formation following acute exposure to MBOCA was found in
autoradiographs of postlabeled liver DNA from exposed rats (Endo and Hara 1991). Compared to
control, the relative adduct level (RAL) was considerably higher in experimental samples than
controls. However, further studies are needed to identify these rat liver DNA adducts. In an attempt
to elucidate the DNA adduct formation, DNA was isolated from liver, lung, and kidney of 14C-
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MBOCA-treated rats and compared to in vitro N-hydoxy-MBOCA-treated rat DNA (Segcrback and
Kaclluhar 1992). In both casts, two major peaks wcrc identified containing two adclucts: n-
(deoxyadenosinc-8-yl)-4-amino-3-chlorobenzyl alcohol and N-(deoxyadenosine-8-yl)-4-amino-3-
chlorotoluene.   Although the study found that the binding of N-hydroxy-MBOCA to DNA can be
inhibited by ascorbic acid, glutathione, nitrosobenzcne, and methyl viologen (but not by nitromethane.
p-nitrobcnzylpyridine, or met hionine), the precise mechanism of single-ring MBOCA DNA adduct
formation is not completely understood. Gluthatione (GSH) has also been shown to protect against
hemoglobin adduct formation with oxidized MBOCA metabolites (Chen et al. 1991). Individuals with
lowcrcd GSH levels brought about by oxidative stress or excessive exposure to GSH depleting
xenobiotics (such as acetaminophen) could also be at increased risk following MBOCA exposure.
More studies are needed to understand the mechanism and the intermediaries in the DNA adduct
formation. In the cast of MBOCA, acetylation was not related to genotoxicity (McQueen et al.
1983). In a study performed in rabbits, the genotoxic response to MBOCA varied considcrnbly; the
net number of radioactive grains per nucleus in individual rabbits ranged from 0 to 13.7.

Factors such as these may partially inlluence individual susceptibilities to MBOCA-induced
carcinogcnicity. Other populations that may show increased sensitivity include very young children
who have an immature hepatic detoxification system and individuals with impaired liver or kidney
function.

Workers in MBOCA manufacturing facilities have a higher risk because of their higher-level
exposures to MBOCA. Worker exposure occurs primarily through inhalation and dermal contact.
Other populations with higher risk are those that live near these facilities (if releases are not
controlled) and family members of exposed workers (because contamination of the household occurs
as a result of clothing) (Willams 1979).

2.8   METHODS FOR REDUCING TOXIC EFFECTS

This section will describe clinical practice and research concerning methods for reducing toxic effects
of exposure to MBOCA. However, because some of the treatments discussed may be experimental
and unproven, this section should not be used as a guide for treatment of exposure to MBOCA.
When specific exposures have occurred, poison control centers and medical toxicologists should be
consulted for medical advice.

2.8.1  Reducing Peak Absorption Following Exposure

No information has been located regarding specific treatment of humans or animals following
exposure to MBOCA other than removal from the source of exposure. However, as in cases of most
toxic exposures, supportive therapy dealing with symptoms is recommended. These supportive
therapies include the monitoring of vital functions, as well as electrocardiographic monitoring,
observation of vital signs, the intake and output of fluids, body temperature, and possibly pulmonary
wedge pressure if indicated (HSDB 1991). Of special importance in minimizing absorption is the
selection of protective clothing and gloves. The permeability of tight commercially available glove
materials to methanolic solutions of aromatic amines was tested (Weeks and Dean 1977). The results
indicate that there are considerable differences in the permeability of tested materials. Natural latex
seemed to be most protective for 9.8 mg/mL MBOCA (1.0 weight percent) in methanol (Weeks and
Dean 1977). The recommendation of how frequently the gloves should be changed will depend on
the specific situation. The results of the study show that penetration of the glove material by the
MBOCA solution was concentration dependent, and that highly concentrated MBOCA (9.8 mg/mL)
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penetrated the gloves within 2 hours, while MBOCA at a relatively low concentration did not
penetrate for 35 hours (Weeks and Dean 1977). Biological monitoring of workers occupationally
exposed to MBOCA is a preventive measure that can reduce potential toxic and carcinogenic effects.
Among the other recommended procedures are monitoring MBOCA air levels and urinary MBOCA
levels, doing wipe tests to check surface contamination that can potentially lead to skin exposure
(Clapp et al. 1991; Lowry and Clapp 1992), and considering the performance of cystoscopy in exposed
workers for early detection of bladder tumors (Mason and Volger 1990; Ward et al. 1990).
Continued education of the work force about potential work hazards is also important (NIOSH
1986b).

2.8.2  Reducing Body Burden

MBOCA is not retained by the body since the majority of the compound is excreted within
24-48 hours after exposure (Hosein and Van Roosmalen 1978). The biological half-life of MBOCA
in the urine was estimated at approximately 23 hours in a case of an accidental exposure (NIOSH
1986a). The same study assumed a one-compartment excretion model that would take 4 days to
eliminate about 94% of MBOCA from the body. Similar results were obtained in rats after a single
dose of radioactive MBOCA; 64-87% of the radioactivity was recovered in the urine and feces within
48 hours after exposure (Morton et al. 1988). It is not known if MBOCA metabolites are retained
in the body and for how long. no information was located regarding reduction of body burden in
humans or animals following exposure to MBOCA.

Because phenobarbital induces the microsomal cytochrome P-450 enzyme system responsible for
MBOCA hydroxylation (Chen et al. 1991), phenobarbital treatment might increase the breakdown
of MBOCA and speed its removal from the body. However, because MBOCA’s metabolites are more
toxic than the unmetabolized moiety, this intervention must be used with caution. Such treatment
could also affect MBOCA adduct formation. While phenobarbital did not increase in. Go
hemoglobin adduct formation in one study in rats (Chen et al. 1991), Cheever et al. (1991) found an
increase in globin adduct formation (radioactivity) following phenobarbital induction. The major
DNA adduct of MBOCA was identified in another study by a combination of in vivo and in vitro
experiments (Silk et al 1989). Male rats derived from a Wistar strain were intraperitoneally exposed
to either 89 µmol/kg of radioactive MBOCA or 141 µmol/kg of acetyl-MBOCA. Twenty-four hours
later, animals were sacrificed and their liver DNA was extracted and analyzed for the amount of
bound radioactivity and nature of adducts. Results showed that the cleavage of the bond between
the methylene bridge and one aromatic nucleus of MBOCA resulted in the formation of the major
in vivo adduct identified as N-(deoxyadenosine-8-yl)-4-amino-3-chlorobenzyl alcohol. Two other
adducts also formed after intraperitoneal injection were not identified. These findings were
confirmed and extended when DNA was isolated from liver, lung, and kidney of 14C-MBOCA-treated
rats and compared to in vitro N-hydoxy-MBOCA-treated rat DNA, and two major adducts were
identified: N-(deoxyadenosine-8-yl)-4-amino-3-chlorobenzyl alcohol and N-(deoxyadenosine-8-yl)-4-
amino-3-chlorotoluene (Segerback and Kadlubar 1992). Although the results showed that the adduct
formation (binding of N-hydroxy-MBOCA to DNA) can be inhibited by ascorbic acid, glutathione,
nitrosobenzene, and methyl viologen but not by nitromethane, P-nitrobenzylpyridine, or methionine,
the precise mechanism of single-ring MBOCA DNA adduct formation is not completely understood.
Therefore, more information on DNA adduct formation especially in human bladder, and possibly
in liver, is needed since DNA adducts are considered to play a major role in MBOCA-induced
carcinogenesis.
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2.8.3 Interfering with the Mechanism of Action for Toxic Effects

Existence of an antidote capable of reducing or alleviating MBOCA-induced toxicity has not been
reported. Available information indicates that most harmful effects of MBOCA in humans come
from its metabolites. Once the detailed mechanism of action of MBOCA is known, and more
Information is gathered on the potential adduct inhibitors, it may be possible to interfere with DNA
adduct formation and reduce the adverse effects.

2.9   ADEQUACY OF THE DATABASE

Section 104(i)(S) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation
with the Administrator of EPA and agencies and programs of the Public Health Service) to assess
whether adequate information on the health effects of MBOCA is available. Where adequate
information is not available, ATSDR, in conjunction with the national Toxicology Program (NTP),
is required to assure the initiation of a program of research designed to determine the health effects
(and techniques for developing methods to determine such health effects) of MBOCA.

The following categories of possible data needs have been identified by a joint team of scientists from
ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met
would reduce the uncertainties of human health assessment. This definition should not be interpreted
to mean that all data needs discussed in this section must be filled. In the future, the identified data
needs will be evaluated and prioritized, and a substance-specific research agenda will be proposed.

2.9.1  Existing Information on Health Effects of MBOCA

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals
to MBOCA are summarized in Figure 2-3. The purpose of this figure is to illustrate the existing
information concerning the health effects of MBOCA. Each dot in the figure indicates that one or
more studies provide information associated with that particular effect. The dot does not imply
anything about the quality of the study or studies. Gaps in this figure should not be interpreted as
“data needs.” A data need, as defined in ATSDR’s Decision Guide for Identifying Substance-Specific
Data needs Related to Toxicological Profiles (ATSDR 1989), is substance-specific information
necessary to conduct comprehensive public health assessments. Generally, ATSDR defines a data
gap more broadly as any substance-specific information missing from the scientific literature.

With regard to human health effects of MBOCA, the few available studies were either case reports
of acute occupational exposure or involved intermediate or chronic epidemiological studies. Acute
exposures to MBOCA were by the inhalation, oral, or dermal routes, although in some studies it was
difficult to clearly define the exposure route. Intermediate exposures were by either inhalation and/or
dermal contact; no intermediate oral exposure studies were located. Chronic exposure in humans
occurred by inhalation and/or dermal contact; no chronic oral studies were located. no information
is available regarding immunological, neurologic, reproductive, developmental, or genotoxic effects
in humans by any route of exposure. Studies on cancer incidence in humans after inhalation and/or
dermal exposure to MBOCA were located.

Virtually all of the data regarding the health effects of MBOCA in animals were obtained from
studies in which MBOCA was administered orally. Extremely limited information is available
regarding health effects in animals following inhalation or dermal exposure.
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2.9.2 Identification of Data Needs

Acute-Duration Exposure. Populations close to hazardous waste sites that contain MBOCA would
be exposed to MBOCA for short periods of time, most likely be through the dermis, although
inhalation and ingestion exposure(s) cannot be excluded. Limited information on acute exposure in
humans comes from reports on accidental exposure by skin absorption and inhalation (Hosein and
Van Roosmalen 1978). In this case, eyes and skin were affected since the worker was sprayed on the
face with molten, liquid MBOCA. A small amount of protein in his urine indicated that the kidney
was a target organ for MBOCA toxicity. Insufficient information was available to calculate an
acuteduration MRL for MBOCA.

No information was located regarding toxic effects in animals following acute exposure to MBOCA.
Studies addressing toxic effects of MBOCA in animals after skin application and inhalation (since
these are the most likely routes of exposure for human populations in the vicinity of hazardous waste
sites) could provide needed information for estimation of possible acute toxicity of MBOCA in
humans.

Intermediate-Duration Exposure. Limited information is available in humans regarding toxic
effects of MBOCA following intermediate exposure by inhalation and/or dermal contact, and no
information was located regarding oral exposure. In one study, exposure most likely occurred as a
result of combined inhalation and dermal exposures, and the exposure duration was averaged at 3.2
months. The results showed that the urinary bladder is the major target organ in humans after
intermediate-duration exposures to MBOCA. Papillary neoplasms (one carcinoma) of the urinary
bladder were found in 3 out of 200 occupationally exposed workers (Ward et al. 1990). No studies
of intermediate-duration exposure in animals were located to support this finding. However, results
from chronic animal studies clearly support the findings in humans after intermediate exposure to
MBOCA. Lung, liver, and mammary tumors were found in rats (Kommineni et al. 1979; Stula et al.
1975). Hepatomas and vascular tumors were present in mice (Russfield et al. 1973, while transitional
cell carcinoma of the urinary bladder was found in dogs (Stula et al. 1977) after chronic exposure to
MBOCA. Insufficient information is available to calculate an intermediate-duration MRL for
MBOCA.

Animal studies examining the effects of intermediate-duration exposure to MBOCA via the inhalation
and dermal routes are necessary to evaluate the likelihood of urinary bladder carcinoma in humans
after intermediate exposure to MBOCA.

Chronic-Duration Exposure and Cancer. Epidemiological studies in humans following chronic
exposure to MBOCA are very limited. No information is available regarding toxic effects in humans
following chronic exposure to MBOCA.

One study of chronic occupational exposure in humans found low-grade papillary tumors of the
urinary bladder in 3 out of 200 workers (Ward et al. 1990). This result suggests that the urinary
bladder is the major target organ in terms of tumor incidence in humans following chronic exposure.
This finding is supported by results obtained in dogs (Stula et al. 1977). Data in other animal species
following oral exposure also support the finding that MBOCA is a potential carcinogen and show that
other target organs include lungs, liver, breast, and Zymbal’s gland in rats (Kommineni et al. 1979;
Russfield et al. 1975; Stula et al. 1975) and lungs, liver, and vascular system in mice (Russfield et al.
1975). Although the animal data support those in humans following an occupational exposure (Ward
et al. 1990) the report in humans is limited in that it is a case report without controls to allow the
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determination of a dose-response relationship and statistical significance of data. There was also
potential of co-exposure to other chemicals. Further occupational exposure studies are needed to
establish the carcinogenic potential of MBOCA in humans.

Currently, there are several studies in progress sponsored by NIOSH that are investigating different
aspects of human exposure to MBOCA (FEDRIP 1991; also Section 2.93). One of the studies is
involves the worker population exposed to MBOCA between 1969 and 1979. The principal
investigator is E.M. Ward, and the objective of the study is to see if the occurrence of cancer can be
linked to exposure to MBOCA. The second study concerns biomonitoring for populations
occupationally exposed to aromatic amines (of which MBOCA is one). F.B. Daniel is the principal
investigator for this study entitled “Biomonitoring for Populations Occupations Exposed to Aromatic
Amines.” Hemoglobin and DNA adduct formation by MBOCA will be analyzed in order to propose
a methodology for monitoring workplace exposure. Also sponsored by NIOSH is a third study which
involves on developing and evaluating biological monitoring methodologies for detecting the presence
and uptake of MBOCA by urine. L.L. Lowry is the principal investigator for this project entitled
“Biological Monitoring Methods Research and Evaluation.” This investigator will also evaluate the
effectiveness in predicting worker uptake of MBOCA and two other compounds. The NTP also has
a study in progress on “At-y1 Amine Adducts in Blood as Indicators of Exposure.” In this study, blood
samples from 100 workers will be analyzed for hemoglobin o-toluidine adducts. MBOCA will be used
to develop a high-performance liquid chromatography (HPLC) method for separation and isolation
of mitochondrial or total aryl amine-DNA adducts. In addition, the in vitro activation of potential
carcinogens will be studied, and a mathematical model for MBOCA distribution, metabolism, and
adduct formation will be prepared. The overall objective of the project is to develop a more sensitive
adduct isolation procedure to be used for biological monitoring. The contact person for this project
is K. Cheever (NTP 1991a). A grant was awarded in September 1991 to the Michigan Department
of Public Health to conduct an epidemiologic study under the title “Analytic Epidemiologic Study of
MBOCA” (ATSDR 1991). The objective of the study is to determine if there is an association
between exposure to MBOCA and occurrence of bladder cancer in workers, their family members,
and residents who live near three NPL sites. Cystoscopy will be used in all cases with positive
screening results. The information on all MBOCA-exposed members of the cohort will be maintained
in a registry. A case-control study will be conducted to assess the association of MBOCA exposure
and bladder cancer incidence. The contact person for this project is H. Humphrey from the Michigan
Department of Public Health. Thus, there are sufficient on-going studies on biomonitoring of
humans exposed to MBOCA.

Genotoxicity. There is considerable evidence that MBOCA metabolites are mutagenic in
S. typhinurium strains TA98 and TA100 (Cocker et al. 1985; MacDonald 1981; Matsushima et al.
1981; Messerly et al. 1987; Kuslikis et al. 1991) and in mouse lymphoma cells (Caspary et al. 1988;
Myhr and Caspary 1988) and induce UDS in HeLa cells (Martin and McDermid 1981) and in
hepatocytes from rats (McQueen et al. 1981; Moriet al. 1988; Williams et al. 1982) mice, hamsters
(McQueen et al. 1981), and rabbits (McQueen and Williams 1987). However, nonactivated MBOCA
is not a mutagen. In vitro evidence indicates that human liver (Cocker et al. 1985) and bladder
epithelium (Stoner et al. 1988) contain enzymes that can activate MBOCA to genotoxic derivatives.
It is less clear whether MBOCA is a clastogen. Mixed results have been obtained in the in vivo
micronucleus assay (Katz et al. 1981; Salamone et al. 1981; Tsuchimoto and Matter 1981) and in the
in vitro assays for sister chromatid exchange (Galloway et al. 1985; Perry and Thomson 1981) while
data regarding chromosome aberrations were negative (Galloway et al. 1985; Perry and Thomson
1981). Micronucleus assays done with multiple sampling times, and in vivo and in vitro chromosome
aberration assays performed near cytotoxic levels would be useful in assessing the clastogenic
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potential of MBOCA. MBOCA metabolites bind to DNA in rat (Cheever et al. 1990; Kugler-
Steigmeier et al. 1989), dog, and human (Stoner et al. 1988) bladder and liver tissues. Wide
variations in the amount of material bound were observed in dog and human tissue explants (Stoner
et al. 1988). Identifying the source of this variability might help in identifying sensitive populations.
One study reported that MBOCA itself may be a promoter (Kuslikis et al. 1991); confirmation or
negation of this result might be useful in evaluating the interactions of MBOCA with other chemicals.

Reproductive Toxicity. No studies were found regarding reproductive effects in humans or animals
following exposure to MBOCA by any route. Thus, studies examining the effects on reproduction
by any route of exposure would be useful.

Developmental Toxicity. No human or animal studies are available on developmental effects for
any exposure route. Studies assessing postnatal survival after maternal exposure to MBOCA by all
three routes would be very informative.

Immunotoxicity. No information on immunotoxicity after exposure to MBOCA by any of the three
routes is available in humans or animals. Studies in laboratory animals following acute inhalation,
oral, and dermal exposure to MBOCA would help define possible effects on antibody production and
cellular immunity. This information would be useful for determining sensitive populations.

Neurotoxicity. No studies on neurotoxicity in humans following exposure to MBOCA were located.
In one out of six female beagle dogs, cystic hyperplasia of the pars intermedia of the anterior pituitary
gland was found after 8.3 years of treatment with MBOCA (Stula et al. 1977). Although this change
was not present in any of the control dogs, it was not considered to be treatment related. Studies
in animals following acute, intermediate, or chronic exposure to MBOCA by any route would be
useful in establishing if the central nervous system is one of the target organs for MBOCA toxicity.
These studies should include neurobehavioral screening tests such as a functional observation battery
of tests, tests for motor activity, and schedule-controlled operant performance tests. neuropathology
data from MBOCA-exposed animals would also be helpful.

Epidemiological and Human Dosimetry Studies. Human studies on MBOCA consist of either
case reports of accidental exposure or follow-up studies of workers previously exposed to MBOCA.
Exposures in both cases are mainly inhalation and dermal. Since MBOCA is a potential human
carcinogen, the follow-up studies focused on monitoring the possible development of bladder
carcinomas in workers exposed to MBOCA (Ward et al. 1990). At the present time, there are three
studies in progress sponsored by NIOSH that are investigating different aspects of MBOCA exposure
in humans (FEDRIP 1991) ( see Section 2.93). One of the studies involves workers exposed to
MBOCA; the second involves biomonitoring for populations occupationally exposed to aromatic
amines (including MBOCA); and the third involves the development and evaluation of biological
methodologies for monitoring the presence and uptake of MBOCA in urine. Thus, at the present
time, there are sufficient studies on biomonitoring of humans exposed to MBOCA.

Biomarkers of Exposure and Effect

Exposure. Sensitive methods for evaluation of MBOCA in urine are available. Since MBOCA can
bind to body proteins and DNA, the presence of MBOCA adducts is an indication of exposure.
Although information on some MBOCA metabolites and adducts is available, the development of
sensitive methods for their determination is needed. Further identification of those two classes of
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biomarkers in humans would be helpful in assessing MBOCA exposure levels in high-risk populations.

Studies in rats showed that intraperitoneal injection of ring-labeled MBOCA, or ring-labeled
n-acetylated MBOCA, resulted in the generation of three DNA adducts (Silk et al. 1989). These
adducts were also produced by the in vitro reaction of the N-hydroxy derivative of MBOCA with rat
liver slices. The major product of this reaction was also formed following incubation of DNA with
N-hydroxy-6amino-3-chlorobenzyl alcohol, the compound resulting from cleavage of the methylene
bridge of N-hydroxy MBOCA. While the single ring species appears to be an intermediate in the
formation of the DNA adduct, it is not known whether N-hydroxylation or bridge cleavage occurs first
in the formation of the reactive species. The DNA adduct was analytically identified as n-
(deoxyadenosin-8-yl)-4-amino-3-chlorobenzyl alcohol. Since MBOCA adducts can be used as
biomarkers of exposure additional information regarding their characteristics such as half-life would
be useful in estimating MBOCA exposures.

Effect. The urinary bladder is a target organ for MBOCA-induced carcinogenicity (Ward et al. 1990).
Retrospective biological monitoring using cystoscopy would help identify new biomarkers necessary
to characterize the preneoplastic state of the urinary bladder.

Absorption, Distribution, Metabolism, and Excretion. Quantitative data on the absorption of
MBOCA in humans and animals following all routes of exposure are very limited. Human studies
indicate that MBOCA is absorbed rapidly and that the amount absorbed is proportional to the dose
for the inhalation (Cocker et al. 1988, 1990; Ichikawa et al. 1990; NIOSH 1986b) and/or dermal
routes (Chin et al. 1983; NIOSH 1986b). Data on absorption rates for all three routes are needed.
Additional quantitative absorption data in animals via all three routes would be useful because they
could be used to estimate absorption in humans.

No studies were located regarding distribution in humans following inhalation, oral, or dermal
exposures to MBOCA. Animal kinetic studies (following intraperitoneal or intravenous exposure)
in rats and dogs indicate that MBOCA is distributed in the blood to liver, bile, kidney, lung, and fat
(Cheever et al. 1991; Farmer et al. 1981; Manis et al. 1984; Morton et al. 1988; Sabbioni and
neumann 1990). It is not known if MBOCA reaches a steady state after repeated exposures.
Additional inhalation and dermal exposure studies regarding distribution would be useful because of
the potential for human exposure via those two routes.

No information was located regarding metabolism in humans after oral exposure to MBOCA.
Limited information is available regarding metabolism in humans following inhalation or dermal
exposure (Cocker 1988, 1990; Ducos et al. 1985; Osorio et al. 1990) to MBOCA. Metabolism has
been partially characterized in animals following oral exposure. In vitro studies investigating the
capacity of MBOCA to form adducts characterized one of its metabolites, a product of cleavage
between the methylene bridge and one of the aromatic nuclei, as a DNA adduct-forming metabolite,
N-hydroxy-MBOCA (MBOCA-NHOH) (Silk et al. 1989). Several MBOCA metabolites were
identified following N- and o-hydroxylation of MBOCA by the canine, guinea pig, and rat liver
mixed-function oxidase systems (Chen et al. 1989). Because differences in metabolism may occur with
differences in the route of exposure, more data on metabolism following inhalation and dermal
exposures would be useful. Also needed is information on MBOCA metabolites in terms of their
potential carcinogenic capacities.

No human data were located regarding excretion following oral exposure to MBOCA. There is,
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however, limited information on excretion in humans after inhalation and/or dermal exposure showing
that the metabolites (N-acetyl MBOCA, β-N-glucuronide of MBOCA) and very limited amounts of
parent MBOCA are excreted in the urine (Cocker et al. 1988; Ichikawa et al. 1990; NIOSH 1986b).
Studies in rats show that, after acute oral exposure to radioactive MBOCA, the majority of the label
is in the feces (Farmer et al. 1981; Groth et al. 1984). More information is needed on excretion rate
in animals after exposure to MBOCA via all three routes in order to establish which is the major
route of excretion.

Comparative Toxicokinetics. Studies using rats (Farmer et al 1981; Groth et al 1984; Morton et
al 1988; Tobes et al 1983) and dogs (Manis et al 1984b) indicate that the kinetics of MBOCA do not
differ significantly across species and that the differences are primarily quantitative. Since the kinetic
data alone do not allow for the identification of target organs common to humans and animals,
additional studies on the distribution and toxicity may allow for identification of similar target organs.
Additional studies in dogs would be helpful since they are similar to humans in that they develop
bladder cancer following exposure to MBOCA. No animal data on toxicokinetics were located
regarding interspecies differences or sex-related differences. The limited amount of animal data as
well as a relative lack of data across different routes of exposure indicate that it may be difficult to
compare the kinetics of MBOCA in animals with that in humans. Additional studies using several
species and all three exposure routes are needed in order to determine similarities and differences
between humans and animals.

Methods for Reducing Toxic Effects. Protocols need to be developed to abolish or alleviate
adverse effects following exposure to MBOCA. As in most cases of toxic exposures, supportive
therapy dealing with symptoms is recommended. Biological monitoring of workers occupationally
exposed to MBOCA is a preventive measure that can reduce potential toxic and carcinogenic effects.
Among the other recommended procedures are monitoring MBOCA air levels and urinary MBOCA
levels, doing wipe tests to check surface contamination that can potentially lead to skin exposure
(Clapp et al. 1991), and considering the performance of cystoscopy in exposed workers for early
detection of bladder tumors (Mason and Volger 1990; Ward et al. 1990). Also important in
minimizing absorption is the selection of protective clothing and gloves. The permeability of eight
commercially available glove materials (with regard to methanolic solutions of aromatic amines)
differed considerably, and the penetration of MBOCA was dependent on the concentration (Weeks
and Dean 1977). Therefore, the recommendation for how frequently the gloves should be changed
depends on the specific situation. Continued education of the work force about potential work
hazards is also important (NIOSH 1986b).

2.9.3 On-going Studies

On-going studies regarding the health effects of MBOCA were reported in the Federal Research in
Progress (FEDRIP 1991) database. The national Institute for Occupational Safety and Health
(NIOSH) is the sponsoring institution of three studies involving MBOCA currently in progress. One
project is entitled “Investigation of Workers Exposed to MBOCA” and the principal investigator is
E.M. Ward from NIOSH. The main objective of this study is to see if the occurrence of cancer can
be linked to exposure to MBOCA. To achieve this, the study will use biological markers (MBOCA
in the urine and urinary bladder cytology) to develop more effective, sensitive, and specific early
markers for occupationally related health conditions. F.B. Daniel from NIOSH is the principal
investigator of the study on “Biomonitoring for Populations Occupations Exposed to Aromatic
Amines.” The investigator will analyze hemoglobin and DNA adduct formation by MBOCA in order
to propose a methodology for monitoring workplace exposure. L.L. Lowry from NIOSH is the
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principal investigator of the project entitled “Biological Monitoring Methods Research and
Evaluation.” This study will develop and evaluate biological monitoring methods in urine for their
effectiveness in predicting worker uptake of MBOCA and two other compounds. The NTP has a
study in progress on “Aryl Amine Adducts in Blood as Indicators of Exposure.” In this study, blood
samples from 100 workers will be analyzed for hemoglobin o-toluidine adducts. MBOCA will be used
to develop a high-performance liquid chromatography (HPLC) method for separation and isolation
of mitochondrial or total aryl amine-DNA adducts. In addition, the in vivo activation of potential
carcinogens will be studied, and a mathematical model for MBOCA distribution, metabolism, and
adduct formation will be prepared. The overall objective of the project is to develop a more sensitive
adduct isolation procedure to be used for biological monitoring. The contact person for this project
is K. Cheever (NTP 1991a). A grant was awarded in September 1991 to the Michigan Department
of Public Health to conduct an epidemiologic study under the title “Analytic Epidemiologic Study of
MBOCA” (ATSDR 1991). The objective of the study is to determine if there is an association
between exposure to MBOCA and occurrence of bladder cancer in workers, their family members,
and residents who live near three NPL sites. The screening regimen includes urine dipstick selftesting
(using Hemastix kits) and collection of specimens for cytology. Cystoscopy will be used in all
cases with positive screening results. The information on all MBOCA-exposed members of the cohort
will be maintained in a registry. A case-control study will be conducted to assess the association of
MBOCA exposure and bladder cancer incidence. The contact person for this project is H. Humphrey
from the Michigan Department of Public Health.
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3.1 CHEMICAL IDENTITY

Information regarding the chemical identity of MBOCA is located in Table 3-1.

3.2 PHYSICAL AND CHEMICAL PROPERTIES

Information regarding the physical and chemical properties of MBOCA is located in Table 3-2.
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4.1 PRODUCTION

MBOCA is a man-made chemical and has not been found in nature (IARC 1974). It is produced
commercially by reacting formaldehyde with o-chloraniline (HSDB 1991; IARC 1974). Pure MBOCA
is a colorless crystalline solid (Smith and Woodward 1983). The technical grade of MBOCA that is
available in the United States comes mainly from Japan in the form of tan/yellow fused prills or
pastilles. The diamine purity is 99.8%, typically with 0.2% free o-chloroaniline (monomer). Isomers
are produced as side reactions such as trimers and tetrameres-diamines with three- and four-ring
structures joined by methylene groups. Isomers constitute up to 8-10% of MBOCA. The dimer
makes up to 90-92% of the MBOCA produced today for coatings and cast polyurethanes. There is
no commercial use for pure dimer MBOCA other than for laboratory work.

MBOCA has been produced commercially in the United States for some time. The first reported
production was in 1956 (IARC 1974). U.S. production of MBOCA was estimated to be
3.3-5.5 million pounds in 1970 and 7.7 million pounds in 1972 (IARC 1974). In 1982, production
of MBOCA in the United States was reported to have ceased (HSDB 1991).

MBOCA has been manufactured in the United States by two companies E.I. Du Pont de nemours
and Company (Deepwater, new Jersey) and Anderson Development Company (Adrian, Michigan).
However, E.I. Du Pont de nemours and Company ceased MBOCA production in 1978, and
Anderson Development Company ceased production in 1979. Presently, all MBOCA used in the
United States is imported. As of 1985, there were at least four production sites in the United States
that use imported MBOCA: Polyester Corporation (Southampton, new York), American Cyanamid
Company (Bound Brook, new Jersey), E.I. Du Pont De nemours and Company (Deepwater, New
Jersey), and Anderson Development Company (Adrian, Michigan) (OHM/TADS 1985). However,
in 1992, Allchem Industries, Inc. (Gainesville, Florida), Maypro Industries, Inc. (Harrison, New York),
and Miki Sangyo (USA), Inc. (New York, New York), were also reported to produce MBOCA for
commercial sale (Van et al. 1992).

Eighteen industrial sites (Table 4-l) were listed in the 1990 Toxics Release Inventory (TRI) as
producers and/or users of MBOCA (TRI90 1991). However, since not all producers of MBOCA are
required to report to TRI, the companies listed on the inventory cannot be considered the exclusive
producers of MBOCA in the United States. This is not an exhaustive list.

4.2 IMPORT/EXPORT

In 1978, approximately 0.4 million pounds of MBOCA were imported into the United States (HSDB
1991). The amount of MBOCA imported into the United States increased in 1983 to 1.51 million
pounds. In 1991, approximately 2.0 million pounds of MBOCA were imported into the United States.
The MBOCA was manufactured by two Japanese producers and a Taiwanese producer.

4.3 USE

The majority of MBOCA consumed in the United States has been used as a curing agent for
isocyanate-containing polymers, and only about 1% is used in epoxy/epoxy-urethane resin blends
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(IARC 1974). These cured polymers have many commercial and military uses. MBOCA was
reported to be the most widely used agent for curing castable liquid polyurethane elastomers (HSDB
1991; IARC 1974; Sax and Lewis 1987). Commercially, these MBOCA-cured polyurethanes have
been used to produce shoe soles, rolls for postage stamp machines, cutting bars in plywood
manufacturing, rolls and belt drives in cameras, computers, and reproducing equipment, and wheels
and pulleys for escalators and elevators (NRC 1981). MBOCA has also been reported to be
formulated with other aromatic diamines and sold under trade names as a curing agent (IARC 1974).
MBOCA has also been used in the manufacture of gun mounts, jet engine turbine blades, radar
systems, components in home appliances (HSDB 1991), and as a wiring patting and curing agent
(Cowles 1978). Military applications of MBOCA-cured polyurethanes include ball seals on nuclear
submarines, positioning strips in Poseidon missiles, and encapsulation of electric components (NRC
1981).

4.4  DISPOSAL

Because MBOCA is defined as a “hazardous waste,” companies that generate wastes containing 100
kg or more of MBOCA are required to conform with EPA regulations (EPA 1989; HSDB 1991).
For more information on the regulations and guidelines that apply to MBOCA, see Chapter 7.

No universal method exists for the disposal of carcinogenic compounds such as MBOCA (HSDB
1991). Product residues and sorbent media containing MBOCA have been packaged in epoxy-lined
drums and disposed of at EPA-approved sites (OHM/TADS 1985). Destruction via chemical reaction
is another method that has been used to dispose of small amounts of MBOCA (HSDB 1991). This
method, in which MBOCA is oxidized with potassium permanganate, is generally used for laboratory
wastes containing small amounts of MBOCA.

Incineration technologies have been investigated for the disposal of MBOCA. MBOCA has been
considered a good candidate for rotary kiln incineration at a temperature range of 820-1,600°C, with
residence times of seconds for liquids and gases and hours for solids (EPA 1981b; HSDB 1991).
MBOCA is also listed as a good candidate for fluidized bed incineration at temperatures ranging from
450°C to 980°C and residence times similar to those for rotary kiln incineration (EPA 1981).
Disposal of MBOCA contained in waste waters using activated carbon adsorption has been studied
(HSDB 1991). Saturated filters used to remove MBOCA from waste water via carbon absorption
can subsequently be destroyed by rotary kiln or fluidized bed incineration (EPA 1979).
Biodegradation treatment of MBOCA using continuous flow reactors that are designed to remove
potential hazardous chemicals from water and waste water may be also useful in clean-up operations.
Similarly, activated carbon processes and ozone oxidation provide effective disposal treatment (EPA
1979). There is, however, no information on the availability of MBOCA residues from polyurethanes
and other plastics.
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5.1 OVERVIEW

MBOCA may be discharged to the ENVIRONMENT as a result of an uncontained, open cycle,
manufacturing process. Such a discharge could constitute a release to the atmosphere as a fugitive
dust or as a spill of MBOCA pellets or heated liquid MBOCA. Otherwise non-hazardous solid wastes
may become contaminated by MBOCA in the manufacturing process thus, making such wastes
hazardous. The dust can settle to soil or surface waters where it will be strongly adsorbed to the
organic matter in the soil or water column; therefore, it is unlikely to contaminate groundwater.
Microbial degradation is a potentially significant degradation process and may be quite rapid if
appropriate organisms are present in the soil or water. In air or surface waters, MBOCA may
undergo photooxidation by alkoxyradicals.

Members of the general population are unlikely to be exposed to MBOCA unless they live in an area
that has been contaminated. Workers in plants that manufacture or use MBOCA have the potential
to be highly exposed by inhalation or dermal contact.

MBOCA has been identified in at least 4 of the 1,350 NPL hazardous waste sites (HAZDAT 1993).
However, the number of sites analyzed for MBOCA is not known. The frequency of these sites
within the United States can be seen in Figure 5-1.

5.2 RELEASES TO THE ENVIRONMENT

5.2.1 Air

MBOCA may be released to the atmosphere in the exhaust emissions of facilities that manufacture
it or use as a curing agent in the manufacture of diisocyanate-based polymers (Keeslar 1986) (Table
5-l).

According to TR191 (1993) a total of 1,362 pounds of MBOCA was released to the atmosphere in
1991, from manufacturing and processing facilities in the United States (see Table 5-l). The TRI
data should be used with caution, however, since only certain types of facilities are required to report.

5.2.2 Water

Of the 1,362 pounds of MBOCA released to the ENVIRONMENT from TRI facilities in 1991, no
discharges to surface waters were reported. One pound was reported to be transferred to a publicly
owned treatment facility works (TR191 1993). The TRI data should be used with caution since only
certain types of facilities are required to report.

5.2.3 Soil

Of the 1,362 pounds of MBOCA released to the atmosphere in 1991 from TRI facilities, no releases
of MBOCA to land or through underground injection were reported. An additional 5,228 pounds
were reported to have been transferred to off-site waste treatment, storage, and
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disposal facilities (TRI91 1993). The TRI data should be used with caution since only certain types
of facilities are required to report.

5.3 ENVIRONMENTAL FATE

5.3.1 Transport and Partitioning

Volatilization of MBOCA from soil or surface waters is unlikely to be a major factor for
Environmental fate because of its very low vapor pressure (1x10-5 mmHg at 25°C) (Keeslar 1986;
NIOSH 1978b) and its strong adsorption to organic matter.

MBOCA partitions to soil rather than water as a result of its relatively low solubility in water (13.9
mg/L) and its amine groups, which have an affinity for soil organic matter. This binding is rapid and
very tight and results in virtually no movement of MBOCA through soil (Voorman and Penner
1986a).

The partitioning of MBOCA in the soil affects the uptake of the compound by plants grown in
contaminated soil and its subsequent ingestion by humans. MBOCA is bioaccumulated by food plants
(e.g., carrots, orchard grass, beans, cabbage, beet, sorghum, cucumber), but movement of the
compound within the plant is extremely limited. MBOCA applied to leaf surfaces resulted in
adsorption to the leaf cuticle but no movement beyond the application site. Exposure of roots of
bean, sorghum, and carrots to aqueous solutions of 5 mg/L of MBOCA for 8 days resulted in
relatively high concentrations on the root surfaces of these plants (37 mg/kg, 2,000 mg/kg, and
20 mg/kg, respectively), demonstrating bioconcentration at that site but limited translocation to plant
shoots (1.7 mg/kg, 2-5 mg/kg, and virtually undetectable, respectively). MBOCA applied to soils at
a concentration of 5 mg/kg again showed an uptake in the roots of cucumbers and beans (up to 17
mg/kg MBOCA); the shoots of these plants contained less than 0.2 mg/kg. This limited translocation
may be due to the low water solubility of MBOCA (Voorman and Penner 1986b). This may be of
concern in cases of accidents (or even during routine operations) in which MBOCA is released to
the air.

5.3.2 Transformation and Degradation

5.3.2.1 Air

The photooxidation half-life of MBOCA in air is estimated to be between 0.290 and 2.90 hours based
on reactions with hydroxyl radicals (Howard et al. 1991) suggesting that this may be a significant fate
process.

5.3.2.2 Water

Studies examining the biodegradation of MBOCA, using activated sludge microorganisms, suggested
that MBOCA was readily degraded (from 2.02 mg/L to 0.09 mg/L) in a continuous biological reactor
within 24 hours, but not during a 7-day static incubation test (EPA 1979; Tabak et al. 1981). Other
degradation processes were also effective in reducing the concentrations of MBOCA present in
simulated waste water. Ozone oxidation reduced an initial concentration of 1.52 mg/L MBOCA to
nondetectable levels within 5 minutes. Between 21 and 35 mg of carbon per liter, depending on the
type of carbon, were required to reduce 1.0 mg/L MBOCA to 0.1 mg/L (EPA 1979). MBOCA was
not susceptible to oxygen stripping (EPA 1979).
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The estimated photooxidation half-life of MBOCA in surface water is between 1.3 and 72 days; while
in groundwaters, MBOCA may have a half-life of 8 weeks to 1 year (Howard et al. 1991). The
estimated hydrolysis half-life of MBOCA in water at 25°C and pH 7 is more than 800 years (EPA
1988c).

Studies of microbial degradation of MBOCA showed several biodegradation products, including
nmonoacetyl MBOCA and N,N’-diacetyl MBOCA (Yoneyama and Matsumura 1984). 4,4’-Diamino-
3,3’-dichlorobenzophenone was produced from metabolic conversion of MBOCA by soil
microorganisms (Voorman and Penner 1986a).

5.3.2.3  Sediment and Soil

Carbon dioxide production from soil samples treated with MBOCA was less than 1% of the total
applied, suggesting that aromatic rings are resistant to microbial degradation and oxidation (Voorman
and Penner 1986a). These investigators did detect a metabolite with the methylene carbon oxidized
to a carbonyl. Microbial degradation of MBOCA has been shown to occur using Bacillus megatetium
and nocardiopsis sp. isolated from soil. These microorganisms readily metabolize MBOCA with 39%
and 24%, respectively, of the original concentration remaining after 3 hours of incubation. The major
degradation pathways were: (1) acetylation of MBOCA to N-monoacetyl MBOCA and then to
N,N’-diacetyl MBOCA, and (2) hydroxylation of N-monoacetyl MBOCA to N-hydroxy-N-acetyl
MBOCA with the final metabolite being N-hydroxy-N,N’-diacetyl MBOCA (Yoneyama and
Matsumura 1984). Also present was a metabolite with the methylene carbon oxidized to a carbonyl
(Voorman and Penner 1986a).

The estimated half-life of MBOCA in soil based on aerobic biodegradation may range between 1 and
6 months (Howard et al. 1991).

5.4 LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT

5.4.1 Air

Monitoring of MBOCA dust and vapor in the ambient air of a production facility in 1969 showed that
the maximum 8-hour average concentrations were 0.32 mg/m3 and 0.25 mg/m3, respectively.
Significant levels were detected only in areas adjacent to the pelletizing unit--although even these
levels were only intermittently high. Skin absorption was the major source of exposure and could be
effectively controlled with appropriate protective clothing and engineering controls (Linch et al.
1971).

Ambient air and personal air monitoring was conducted at a plastics factory where MBOCA was used
in the production of urethane. The results obtained from 10 ambient air samples (6 in the general
work area, 4 in the area where MBOCA was melted) indicated that MBOCA was not present in the
general area above the level of detection (0.015 µg/filter), and was present in the air near the
MBOCA melting pot at levels up to 92 µg/m3. Personal air monitoring indicated that only those
employed as mixers and molders were exposed to detectable levels of MBOCA, ranging from 0.06
to 0.70 µg/m3. Wipe samples of surfaces that workers were most likely to be exposed to contained
low levels of MBOCA throughout. Surface wipe samples showed MBOCA contamination ranging
from 0.1 µg/100 cm2 near the trimmers work table to 19.1 µg/100 cm2 adjacent to the MBOCA
melting pot. Surfaces that were rarely wiped clean, but were not near the melting pot (such as the
tops of storage cabinets), contained an average of 4.7 µg/100 cm2 (Clapp et al. 1991). MBOCA air
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levels were also evaluated in a polyurethane elastomer factory, and the air exposure levels ranged
from 0.2 to 8.9 µg/m3 (Ichikawa et al. 1990). MBOCA levels were measured at 0.001-0.042 mg/m3

in the air of a factory producing rubber ski boots (Smith and Woodward 1983).

MBOCA was present at only trace concentrations in air samples of dust taken 1.5 feet above ground
level in a residential area known to be contaminated with MBOCA (Keeslar 1986).

5.4.2 Water

A specialty chemical manufacturing plant in Adrian, Michigan, that produced more than 1 million
pounds per year of MBOCA during the late 1970s was found to have released significant quantities
of it in its waste water discharges. Water sampling surveys found the following concentrations of
MBOCA associated with the facility (Parris et al. 1980):

Industrial lagoon sediment >1,600 ppm
Industrial lagoon effluent water 250 ppb
Industrial site deep well water 1.5 ppb
Surface runoff water from site 1 ppb
Sewage treatment plant, influent water <0.5 ppb
Sewage treatment plant, effluent water <0.5 ppb
Sewage treatment plant, activated sludge 18 ppm (estimated)
Raisin River water  ≤0.1 ppb

Samples of well water from a residential area adjacent to the manufacturing plant, however, did not
contain detectable levels of MBOCA, suggesting that groundwater contamination had not occurred
(Keeslar 1986).

5.4.3 Sediment and Soil

Soil samples taken on the site of a manufacturing plant using MBOCA contained levels as high as
1,146 ppm, while concentrations along public roads near the site ranged from 4.6 to 590 ppm (Keeslar
1986). Soil from the yards of residences adjacent to the site (within a 1 kilometer radius) typically
had 1.74 mg/kg MBOCA in the top 2 inches of soil and 0.02 mg/kg in the next 4 inches.

5.4.4 Other Environmental Media

No studies were located on the levels of MBOCA found in other Enviromental media. However,
it has been shown that MBOCA binds to and penetrates the roots of plants grown in contaminated
soil. Once in the plant, MBOCA stays very close to the root surface and is not distributed
throughout the plant (Voorman and Penner 1986b).

5.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE

MBOCA is commercially used as a curing agent for isocyanate polymers by specialty manufacturers
of industrial and commercial polyurethane products (e.g., as gears, gaskets, sport boots, and roller
skate wheels). The form of MBOCA to which workers could be exposed is likely to be either a liquid
emulsion, dust, or solid pellets (NIOSH 1986b; Schulte et al. 1988). Occupational exposures may
occur at several stages of polymer production, especially where prepolymers are mixed with molten
curing agent before molding (Edwards and Priestly 1992). In most cases, dermal absorption is the
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most important occupational exposure pathway (Edwards and Priestly 1992; Lowry and Clapp 1992).
The national Occupational Health Survey estimated that 2,094 workers were potentially exposed to
MBOCA in the workplace in 1980 (Schulte et al. 1988).

A urinary monitoring program can determine aggregate worker exposure to MBOCA (Ward et al.
1986). Workers in a plastics plant that mixed or molded urethane products containing MBOCA were
found to have detectable levels of MBOCA in their urine. Concentrations for the mixers ranged
from 5 to greater than 100 µg/L urine (average concentration, 61.9 µg/L), whereas concentrations for
the molders were considerably lower, nondetectable to 50 µg/L urine (average concentration, 14.8
µg/L). The greatest exposure route was inferred to be direct skin contact with MBOCA, despite the
fact that the mixers wore gloves while transferring dry MBOCA, melting it, or dispensing the molten
fluid (Clapp et al. 1991).

After 2 days away from work, only 1 of 13 workers in the plastics plant had detectable levels of
MBOCA in his urine. This worker also had the highest peak urinary MBOCA levels during the
preceeding week (Clapp et al. 1991). Another investigation of workers in a polyurethane elastomer
factory reported that preshift and postshift urinary levels were not significantly different in all exposed
workers and that levels measured 48 hours after cessation of work were not always the lowest
(Ichikawa et al. 1990). The difference may partially be explained by the actual levels of MBOCA in
the workplace; workers that had MBOCA in the urine after 2 days away from work had the highest
levels of the compound when last measured, suggesting that they were exposed to higher MBOCA
levels than workers without any MBOCA in urine after the weekend. The reported findings may also
reflect differences in metabolic rates between workers, or that different depots of MBOCA are
excreted over different time frames from the body.

Workers in a manufacturing plant using MBOCA had urine concentrations of MBOCA ranging from
13 to 458 ppb (mean 145 ppb). Their immediate families were found to have had exposures to
MBOCA also--urine levels of MBOCA ranged from 0 to 15 ppb (Keeslar 1986). These findings
suggest that direct exposure to MBOCA itself in an occupational setting or at a hazardous waste site
may not be necessary for exposure, and that people can also be exposed to MBOCA by contact with
an MBOCA-exposed individual. Monitoring of workers at seven facilities in Australia that used
MBOCA in the manufacture of polyurethane polymers showed that average MBOCA levels in the
urine of the workers dropped from 29.6 to 10.4 mg/L within 8-9 months after the implementation
of an exposure prevention program (Wan et al. 1989). Another study of 150 workers in 19 factories
with industrial exposure to MBOCA showed that, at the end of the workshift, excretion levels ranged
from less than 0.5 µg/L to 1,600 µg/L of MBOCA, with the highest average urine concentrations (600
µg/L) in workers directly involved in MBOCA manufacture or use; urine MBOCA levels dropped
after exposure controls were implemented in the plant (Ducos et al. 1985). Similar decreases in urine
MBOCA concentrations were observed following improvements in ventilation and with the use of
protective clothing by workers exposed to MBOCA (Thomas and Wilson 1984).

Results of a voluntary biological monitoring program implemented by the PMA suggest that exposure
to MBOCA among users of the compound decreased between 1985 to 1990. Following
implementation of a number of engineering controls to limit exposure, including the use of closed
transfer systems and the use of a fused, hardened MBOCA pellet, worker urine specimens containing
less than 25 µg MBOCA/L increased from 77% to 86% of the total amount collected. Over this
same time period, urine samples containing greater than 50 µg MBOCA/L decreased from 12% to
8% of the total number of samples collected (Lowry and Clapp 1992).
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Workers in shipyards where MBOCA is used as a potting and molding agent for wiring may also have
potentially high exposures to MBOCA (Cowles 1978).

Members of the general population may be exposed to MBOCA if they consume certain types of
plants (e.g., root crops) grown in MBOCA-contaminated soil. MBOCA has been found to adhere
to the leaves and roots of plants, and the compound is not removed by rinsing with water (Voorman
and Penner 1986b).

5.6  POPULATIONS WITH POTENTIALLY HIGH EXPOSURES

Populations living near areas known to be contaminated with MBOCA can be considered to have
high potentials for exposure. Although adults living in a contaminated area of Adrian, Michigan, did
not have detectable levels of MBOCA in their urine, young children (all under the age of 6 years)
from the area had urine concentrations of 0.3 to 1.0 ppb. The levels in children were believed to be
a direct consequence of their frequent contact with contaminated soils. MBOCA was detected in the
residences of this area, primarily on floors, carpeting, and vacuum cleaner bags; however, other
household surfaces did not have significant concentrations of MBOCA (Keeslar 1986).

5.7 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation
with the Administrator of EPA and agencies and programs of the Public Health Service) to assess
whether adequate information on the health effects of MBOCA is available. Where adequate
information is not available, ATSDR, in conjunction with the NTP, is required to assure the initiation
of a program of research designed to determine the health effects (and techniques for developing
methods to determine such health effects) of MBOCA.

The following categories of possible data needs have been identified by a joint team of scientists from
ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met
would reduce the uncertainties of human health assessment. This definition should not be interpreted
to mean that all data needs discussed in this section must be filled. In the future, the identified data
needs will be evaluated and prioritized, and a substance-specific research agenda will be proposed.

5.7.1 Identification of Data needs

Physical and Chemical Properties. The physical and chemical properties of MBOCA are
sufficiently defined to allow assessments of the Environmental fate of the compound to be made (see
Chapter 3 and Tables 3-1 and 3-2). no further information is needed.

Production, Import/Export, Use, Release, and Disposal. Presently, conflicting information exists
on the number of people that have been or are being exposed to MBOCA in the workplace; the
numbers range from 114 (NOES 1992) to 2,094 (Schulte et al. 1988). The general population is not
likely to be exposed to MBOCA.

Information is unavailable on current or historical MBOCA production in the United States.
MBOCA is only used in the workplace in 18 facilities in the United States (TR190 1992).
Information on potential food contamination with MBOCA would also be useful in reducing risks
associated with general population exposures. MBOCA may be released to the environment in waste
waters or fugitive emissions from plants. Additional information is needed on atmospheric releases
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of MBOCA from manufacturing facilities to assess the potential for general population exposure.

At the present time, there is no information on the amounts of MBOCA disposed by different
methods except for TRI data on the amounts released into different media (see Tables 5-1 and 5-2).
Additional information on currently used disposal methods would allow the determination of their
efficiency. Also needed is information on the availability of MBOCA residues from polyurethanes
and other plastics.

According to the Emergency Planning and Community Right-to-Know Act of 1986,42 U.S.C. Section
11023, industries are required to submit chemical release and off-site transfer information to the
EPA. The Toxics Release Inventory (TRI), which contains this information for 1990, became
available in May of 1992. This database will be updated yearly and should provide a list of industrial
production facilities and emissions.

Environmental Fate. The fate of MBOCA in soil has been described (EPA 1979; Voorman and
Penner 1986a; Yoneyama and Matsumura 1984), and some information is available on the spread and
transport of MBOCA in surface waters (Parris et al. 1980). Additional data on the aquatic fate of
MBOCA, its residence time in the water column, and its absorption to sediment or organic matter
in the water would assist in assessing drinking water contamination. Information on the fate of
MBOCA adsorbed to sediment would be useful in assessing uptake by aquatic organisms and reentry
of MBOCA into the water column. Information on the half-life of MBOCA in the environment
would also be useful for assessing the risk for human exposure.

Bioavailability from Environmental Media. Available pharmacokinetic data suggest that MBOCA
is absorbed by humans following dermal and inhalation exposures (Chin et al. 1983; Cocker et al.
1988, 1990; Ichikawa et al. 1990; NIOSH 1986b). MBOCA has been measured in the urine of
workers following dermal and/or inhalation exposures, suggesting rapid absorption and excretion.
Information on the absorption of MBOCA by humans as a result of ingestion of contaminated water
or food has not been found and would be useful in assessing the uptake of MBOCA from
contaminated foods. Further information on the uptake of MBOCA by all three exposure routes,
particularly the differentiation of dermal and inhalation exposure in workers, would be helpful in
determining potential uptake of MBOCA as a result of exposure to contaminated air, water, or foods,
or contact with contaminated surfaces.

Food Chain Bioaccumulation. The bioconcentration factor of MBOCA has been estimated to be
5.75 in aquatic organisms (HSDB 1991). In addition, it has been shown that MBOCA binds to and
penetrates the roots of plants grown in contaminated soil and is not easily removed by rinsing.
However, MBOCA stays very close to the root surface and is not distributed throughout the plant,
and the roots bioaccumulate the chemical (Voorman and Penner 1986b). This information suggests
that there is a potential for food chain bioaccumulation both from aquatic organisms and the root
systems of terrestrial plants. Actual data on the potential for aquatic organisms to bioaccumulate
MBOCA would be useful in determining potential food chain concentrations.

Exposure Levels in Environmental Media. Some information exists on levels of MBOCA found
in the workplace and the ENVIRONMENT around facilities that manufacture or use MBOCA (Keeslar
1986; Parris et al. 1980). Further information on atmospheric levels of MBOCA in areas other than
the workplace would be helpful for estimating general population exposure.

Reliable monitoring data for the levels of MBOCA at hazardous waste sites are also needed. The
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information collected on levels of MBOCA in the ENVIRONMENT could be combined with the
information on body burden to assess the potential risk of adverse health effects in populations living
near hazardous waste sites.

Exposure Levels in Humans. Certain population groups are known to have a higher risk of
exposure to MBOCA than others. The highest exposures are found in workers at manufacturing
facilities that use MBOCA in the production of polyurethane plastics (Clapp et al. 1991; Ichikawa
et al. 1990; Schulte et al. 1988; Ward et al. 1987). The next highest levels are found in populations
that live near facilities where uncontrolled MBOCA releases occur (Keeslar 1986). Specific
information on where such releases occur, on the populations living near such facilities, and on the
levels to which they may be exposed was not found. This information is needed to assess whether
health studies on these populations need to be conducted.

Exposure Registries. No exposure registries for MBOCA were located. This substance is not
currently one of the compounds for which a subregistry has been established in the national
Exposure Registry. The substance will be considered in the future when chemical selection is made
for subregistries to be established. The information that is amassed in the national Exposure Registry
facilitates the epidemiological research needed to assess adverse health outcomes that may be related
to exposure to this substance.

5.7.2 On-going Studies

The NIOSH is conducting a long-term study of former MBOCA workers in Adrian, Michigan. The
health of the workers will be followed for 10-15 years to help assess the risk of MBOCA as a
potential human carcinogen (FEDRIP 1991; Keeslar 1986).
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The purpose of this chapter is to describe the analytical methods that are available for detecting,
and/or measuring, and/or monitoring MBOCA, its metabolites, and other biomarkers of exposure and
effect to MBOCA. The intent is not to provide an exhaustive list of analytical methods. Rather, the
intention is to identify well-established methods that are used as the standard methods of analysis.
Many of the analytical methods used for enviromental samples are the methods approved by federal
agencies and organizations such as EPA and the national Institute for Occupational Safety and
Health (NIOSH). Other methods presented in this chapter are those that are approved by groups
such as the Association of Official Analytical Chemists (AOAC) and the American Public Health
Association (APHA). Additionally, analytical methods are included that modify previously used
methods to obtain lower detection limits, and/or to improve accuracy and precision.

6.1  BIOLOGICAL MATERIALS

Very few biological materials have been analyzed for the presence of MBOCA or its metabolites.
MBOCA and its metabolites have been measured in urine of exposed humans and experimental
animals. Hemoglobin adducts have also been measured in the blood of exposed animals. The most
frequently used techniques are gas chromatography (GC) with electron capture detection (ECD) and
high-performance liquid chromatography (HPLC) with electrochemical detection (ED). Detailed
methodologies from selected studies are presented in Table 6-1.

Only a small amount of absorbed MBOCA is excreted in urine as MBOCA in animals, and probably
in humans as well (see Section 2.3). The methods used to detect MBOCA in urine are somewhat
limited since they commonly measure unmetabolized MBOCA--not its metabolic by-products. Some
methods have been developed to directly measure major MBOCA metabolites in urine. Other
analytical methods pretreat urine samples with acid, base and/or heat to release MBOCA from its
various conjugates. Another approach is to analyze the longer-lived complexes, such as
MBOCAhemoglobin adducts. The specific methods used are noted in the following text and in Table 6-1.

Hemoglobin adducts of MBOCA and its metabolites have been detected in animals dosed with the
chemical (Chen et al. 1991; Sabbioni and neumann 1990). The methods used were HPLC/ED, gas
chromatography/mass spectrometry (GC/MS), and GC/ECD. Sample preparation for all three
methods required hemoglobin to be isolated from the blood of the test animals and hydrolyzed to
release the bound MBOCA. Insufficient data were provided to compare the different methods, but
MBOCA was detected and quantified in the blood of dosed rats by all three methods. GC/MS in the
negative chemical ionization mode, with a detection limit of 2 pg, appeared to be the most sensitive
of the methods tested (Sabbioni and neumann 1990).

Both GC and HPLC have been used to separate MBOCA and its metabolites from urine. Most
recently, HPLC has become the method of choice to selectively detect MBOCA and its metabolites
in urine. The most sensitive and specific detection methods for HPLC are ED (Ichikawa et al. 1990;
NIOSH 1986b; Okayama et al. 1988; Trippel-Schulte et al. 1986; Vantulder et al. 1981) and
photoconductivity detection (PCD) (Ducos et al. 1985). Of these, ED has been the most frequently
used detection method. Ultraviolet detection (UV) has also been paired with HPLC (McKerrell et
al. 1987; Angerer and Schaller 1985; Trippel-Schulte et al. 1986) but is less sensitive and less selective
than either ED or PCD (Trippel-Schulte et al. 1986).
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Although not the preferred method, GC may still be used to measure MBOCA and its metabolites
in urine. Analysis of a heptafluorobutyryl derivative of MBOCA using GC/ECD has been frequently
used (Gristwood et al. 1984; NIOSH 1984; Thomas and Wilson 1984), but GC/flame ionization
detection (FID) has also been used to analyze a trifluoroacetyl derivative (Van Roosmalen et al.
1979, 1981). The sensitivity of GC with either ECD or FID is in the low-ppb (µg/L) range, but the
electron capture detector is more selective and gave higher recovery of analyte. GC and MS are
frequently used to confirm the identity of isolated MBOCA compounds (Chen et al. 1991) and a
method for quantifying the metabolite n-acetyl-MBOCA in urine using GCMS has been developed
(Cocker et al. 1988). The sensitivity of this method is also in the low-ppb range.

6.2 ENVIRONMENTAL SAMPLES

As with biological materials, the two primary methods used to separate MBOCA from other
compounds in Environmental samples are HPLC and GC. Most of the analytical methods found
describe detection and measurement of MBOCA in air, the medium of primary interest for
monitoring potential worker exposures in facilities manufacturing or using the chemical. Table 6-2
presents details on selected analytical methods for determining MBOCA in Environmental samples.

Air samples have been collected either in impingers containing a sorbent liquid (Ebell et al. 1980;
nieminen et al. 1983; Skarping et al. 1985) or on solid sorbent cartridges (Ichikawa et al. 1990; James
et al. 1985; Sawicki et al. 1975; Yasuda 1975). Air samples have also been collected on glass fiber
filters designed to trap and stabilize MBOCA in both particulate and vapor form (NIOSH 1985,
1986b; Purnell and Warwick 1981; Rappaport and Morales 1979). MBOCA is desorbed from the
collection medium with an organic solvent. For GC analysis, the extract is usually reacted with a
perfluoro fatty acid anhydride to make the corresponding MBOCA derivative that is then analyzed.
The most commonly used detectors are FID, ECD, and thermionic nitrogen-specific detection (TSD,
but TSD and ECD are preferred because of their increased sensitivity (sub- to low-ppb [pg/m-]
range) and selectivity compared to FID (low-ppb range) (Ichikawa et al. 1990; Sawicki et al. 1975;
Skarping et al. 1985; Yasuda 1975). Sample preparation for HPLC generally requires only
desorption from the collection medium prior to separation on the HPLC column. Two detection
methods, UV and ED, have been paired with HPLC for the analysis of air samples containing
MBOCA (James et al. 1985; nieminen et al. 1983; NIOSH 1986b; Purnell and Warwick 1980, 1981;
Rappaport and Morales 1979). Of these, ED is clearly the most sensitive (ppt [rig/m”] compared to
sub to low ppb for UV) and selective detection method, and HPLC/ED is the method recommended
by NIOSH for the detection of low levels of MBOCA in air (NIOSH 1986b; Purnell and Warwick
1980, 1981). Both the HPLC and GC methods gave high recoveries and precision making them
reliable methods for determination of MBOCA in air samples. HPLC/UV and GC/FID can be used
to determine MBOCA in incinerator effluents indicating that even highly contaminated air samples
can be analyzed with these methods (James et al. 1985). While no specific information was located
on the analysis of similar materials using the other methods, it is likely that they too can be used for
highly complex samples.

HPLC/ED can be used to measure MBOCA in surface water, groundwater, soil, and sludge and is
the IARC-recommended method for these media (Rice and Kissinger 1981, 1982). Liquid samples
require only filtering prior to concentration on a reverse-phase HPLC column and separation on an
analytical column. Solid samples must be mixed with water and filtered prior to the concentration
step. Sensitivity is in the low-ppt range and precision is excellent. no recovery data were reported.
An alternative EPA-recommended method of determining MBOCA in waste water requires more
extensive sample handling prior to analysis by GC/TSD (EPA 1981a). This method has a sensitivity
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in the low-ppb range, but analyte recovery varies widely. Both methods are selective for MBOCA.
MBOCA has been detected in laboratory wastes using HPLC/UV/ED (Barek et al. 1985). While ED
was found to be more sensitive than UV for many chemicals in the wastes, it was comparable for
detection of MBOCA. Either detector could be used to monitor the destruction of aromatic amines
in laboratory wastes. no details on recovery or precision were provided.

Surface wipe and hand monitoring samples taken from areas in a factory in which MBOCA was used
were analyzed for the chemical using HPLCKJV and HPLC/ED (NIOSH 1986b). Because of its
increased sensitivity, HPLC/ED was used for all samples containing low levels (≤2 µg/mL) of
MBOCA and HPLC/UV was used to analyze those with higher levels. Recovery and precision were
both high using these methods.

6.3 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation
with the Administrator of EPA and agencies and programs of the Public Health Service) to assess
whether adequate information on the health effects of MBOCA is available. Where adequate
information is not available, ATSDR, in conjunction with the NTP, is required to assure the initiation
of a program of research designed to determine the health effects (and techniques for developing
methods to determine such health effects) of MBOCA.

The following categories of possible data needs have been identified by a joint team of scientists from
ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met
would reduce the uncertainties of human health assessment. This definition should not be interpreted
to mean that all data needs discussed in this section must be filled. In the future, the identified data
needs will be evaluated and prioritized, and a substance-specific research agenda will be proposed.

6.3.1 Identification of Data needs

Methods for Determining Biomarkers of Exposure and Effect. The measurement of MBOCA
in urine has been used to monitor populations exposed occupationally to the chemical. The most
frequently used methods are HPLC/ED and GC/ECD (Gristwood et al. 1984; Ichikawa et al. 1990;
NIOSH 1984, 1986b; Okayama et al. 1988; Thomas and Wilson 1984; Trippel-Schulte et al. 1986;
Vantulder et al. 1981). These methods are sensitive and have produced reliable results in several
monitoring studies to estimate exposure of workers who have contact with MBOCA during
manufacturing operations.

There are no known adverse health effects associated with exposure to MBOCA other than its weak
association with bladder cancer. While hemoglobin adduct formation has been demonstrated in
exposed animals (Chen et al. 1991; Sabbioni and neumann 1990), the relevance of these adducts with
bladder cancer or with other adverse health effects is not known. The methods that have been tested
for measuring hemoglobin adducts include HPLC/ED, GC/ECD, and GCMS (Chen et al. 1991;
Sabbioni and neumann 1990). The limited information on these methods suggests that they are
sensitive and reliable. However, since there is no clear relationship between the presence of these
adducts in blood and adverse health consequences, no additional methods development is
recommended at this time.

Methods for Determining Parent Compounds and Degradation Products in Environmental
Media. numerous methods have been developed for the measurement of MBOCA in air (Ebell et



MBOCA  92

6. ANALYTICAL METHODS

al. 1980; Ichikawa et al. 1990; nieminen et al. 1983; NIOSH 1986b; Purnell and Warwick 1980, 1981;
Rappaport and Morales 1979; Sawicki et al. 1975). The most sensitive and reliable of these are GC
with TSD or ECD and HPLC with ED (Ebell et al. 1980; Ichikawa et al. 1990; NIOSH 1986b;
Purnell and Warwick 1980, 1981). These methods are useful for the measurement of low
concentrations (ppt) of MBOCA in air, and no additional methods development is needed.
HPLC/ED and GC/TSD can be used to determine the presence of MBOCA in water and soil (EPA
1981a; Rice and Kissinger 1981, 1982), surface wipe and hand monitoring samples (NIOSH 1986b),
and laboratory waste (Barek et al. 1985). While these methods are sensitive for measuring MBOCA
in ENVIRONMENT media, they are of unknown reliability. Some additional data on the accuracy and
precision of measurements in liquid and solid media would be useful.

6.3.2 On-going Studies

No on-going studies focused on analytical method development for MBOCA were located. However,
several of the on-going studies on MBOCA (FEDRIP 1991) involve the development of methods to
better identify MBOCA adducts, which should make the process of monitoring exposed individuals
easier. NIOSH is the sponsoring institution of three studies involving MBOCA that are currently in
progress. Two of the three studies involve the development of more sensitive methods to monitor
and evaluate the effects following MBOCA exposure. F.B. Daniel from NIOSH is the principal
investigator of the study on “Biomonitoring for Populations Occupations Exposed to Aromatic
Amines.” The investigator will analyze hemoglobin and DNA adduct formation by MBOCA in order
to propose a methodology for monitoring workplace exposure. For the second project, L.L. Lowry
from NIOSH is the principal investigator of the study entitled “Biological Monitoring Methods
Research and Evaluation.” This study involves the development and evaluation of biological
monitoring methods in urine to determine their effectiveness in predicting worker exposure to
MBOCA.

The NTP has a study in progress on “Aryl Amine Adducts in Blood as Indicators of Exposure” (NTP
1991a). In this study, blood samples from 100 workers will be analyzed for hemoglobin o-toluidine
adducts. MBOCA will be used to develop an HPLC method for separation and isolation of
mitochondrial or total aryl amine-DNA adducts. In addition, the in vitro activation of potential
carcinogens will be studied, and a mathematical model for MBOCA distribution, metabolism, and
adduct formation will be prepared. The overall objective of the project is to develop a more sensitive
adduct isolation procedure to be used for biological monitoring. The contact person for this project
is K. Cheever (NTP 1991a).
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The international, national, and state regulations and guidelines regarding MBOCA in air, water, and
other media are summarized in Table 7-1.

ATSDR has derived one MRL value for MBOCA. A chronic-duration oral MRL of 0.003 mg/kg/day
was derived for MBOCA based on its ability to cause hepatic effects in dogs (Stula et al. 1977). EPA
has not assigned a reference dose or concentration for MBOCA.

MBOCA is on the list of chemicals appearing in “Toxic Chemicals Subject to Section 313 of the
Emergency Planning and Community Right-to-Know Act of 1986” (EPA 1988d, 1988e).

MBOCA is designated as a hazardous substance (EPA 1985, 1989) and is subject to reporting and
record-keeping requirements (EPA 1986, 1988f).

The Department of Health and Human Services has determined that MBOCA may reasonably be
Anticipated to be a carcinogen (NTP 1991b).
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Acute Exposure - Exposure to a chemical for a duration of 14 days or less, as specified in the
Toxicological Profiles.

Adsorption Coefficient (Koc) - The ratio of the amount of a chemical adsorbed per unit weight of
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium.

Adsorption Ratio (Kd) - The amount of a chemical adsorbed by a sediment or soil (i.e., the solid
phase) divided by the amount of chemical in the solution phase, which is in equilibrium with the solid
phase, at a fixed solid/solution ratio. It is generally expressed in micrograms of chemical absorbed
per gram of soil or sediment.

Bioconcentration Factor (BCF) - The quotient of the concentration of a chemical in aquatic
organisms at a specific time or during a discrete time period of exposure divided by the concentration
in the surrounding water at the same time or during the same period.

Cancer Effect Level (CEL) - The lowest dose of chemical in a study, or group of studies, that
produces significant increases in the incidence of cancer (or tumors) between the exposed population
and its appropriate control.

Carcinogen - A chemical capable of inducing cancer.

Ceiling Value - A concentration of a substance that should not be exceeded, even instantaneously.

Chronic Exposure - Exposure to a chemical for 365 days or more, as specified in the Toxicological
Profiles.

Developmental Toxicity - The occurrence of adverse effects on the developing organism that may
result from exposure to a chemical prior to conception (either parent), during prenatal development,
or postnatally to the time of sexual maturation. Adverse developmental effects may be detected at
any point in the life span of the organism.

Embryotoxicity and Fetotoxicity - Any toxic effect on the conceptus as a result of prenatal exposure
to a chemical; the distinguishing feature between the two terms is the stage of development during
which the insult occurred. The terms, as used here, include malformations and variations, altered
growth, and in utero death.

EPA Health Advisory - An estimate of acceptable drinking water levels for a chemical substance
based on health effects information. A health advisory is not a legally enforceable federal standard,
but serves as technical guidance to assist federal, state, and local officials.

Immediately Dangerous to Life or Health (IDLH) - The maximum Environmental  concentration of
a contaminant from which one could escape within 30 min without any escape-impairing symptoms
or irreversible health effects.

Intermediate Exposure - Exposure to a chemical for a duration of 15364 days, as specified in the
Toxicological Profiles.
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Immunologic Toxicity - The occurrence of adverse effects on the immune system that may result
from exposure to Environmental agents such as chemicals.

In vitro - Isolated from the living organism and artificially maintained, as in a test tube.

In vivo - Occurring within the living organism.

Lethal Concentration(LO) (LCLO) - The lowest concentration of a chemical in air which has been
reported to have caused death in humans or animals.

Lethal Concentration(50) (LC50) - A calculated concentration of a chemical in air to which exposure
for a specific length of time is expected to cause death in 50% of a defined experimental animal
population.

Lethal Dose(LO) (LDLO) - The lowest dose of a chemical introduced by a route other than
inhalation that is expected to have caused death in humans or animals.

Lethal Dose(50) (LD50) - The dose of a chemical which has been calculated to cause death in 50%
of a defined experimental animal population.

Lethal Timet(5O) (LT50) - A calculated period of time within which a specific concentration of a
chemical is expected to cause death in 50% of a defined experimental animal population.

Lowest-Observed-Adverse-Effect Level (LOAEL) - The lowest dose of chemical in a study, or group
of studies, that produces statistically or biologically significant increases in frequency or severity of
adverse effects between the exposed population and its appropriate control.

Malformations - Permanent structural changes that may adversely affect survival, development, or
function.

Minimal Risk Level - An estimate of daily human exposure to a dose of a chemical that is likely
to be without an appreciable risk of adverse noncancerous effects over a specified duration of
exposure.

Mutagen - A substance that causes mutations. A mutation is a change in the genetic material in
a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

Neurotoxicity - The occurrence of adverse effects on the nervous system following exposure to
chemical.

No-Observed-Adverse-Effect Level (NOAEL) - The dose of chemical at which there were no
statistically or biologically significant increases in frequency or severity of adverse effects seen
between the exposed population and its appropriate control. Effects may be produced at this dose,
but they are not considered to be adverse.

Octanol-Water Partition Coefficient (Kow) - The equilibrium ratio of the concentrations of a
chemical in n-octanol and water, in dilute solution.

Permissible Exposure Limit (PEL) - An allowable exposure level in workplace air averaged over
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an 8-hour shift.

q1* - The upper-bound estimate of the low-dose slope of the dose-response curve as determined
by the multistage procedure. The ql* can be used to calculate an estimate of carcinogenic potency,
the incremental excess cancer risk per unit of exposure (usually µg/L for water, mg/kg/day for food,
and µg/m” for air).

Reference Dose (RfD) - An estimate (with uncertainty spanning perhaps an order of magnitude) of
the daily exposure of the human population to a potential hazard that is likely to be without risk of
deleterious effects during a lifetime. The RfD is operationally derived from the NOAEL (from
animal and human studies) by a consistent application of uncertainty factors that reflect various types
of data used to estimate RfDs and an additional modifying factor, which is based on a professional
judgment of the entire database on the chemical. The RfDs are not applicable to nonthreshold
effects such as cancer.

Reportable Quantity (RQ) - The quantity of a hazardous substance that is considered reportable
under CERCLA. Reportable quantities are (1) 1 pound or greater or (2) for selected substances,
an amount established by regulation either under CERCLA or under Sect. 311 of the Clean Water
Act. Quantities are measured over a 24-hour period.

Reproductive Toxicity - The occurrence of adverse effects on the reproductive system that may
result from exposure to a chemical. The toxicity may be directed to the reproductive organs and/or
the related endocrine system. The manifestation of such toxicity may be noted as alterations in sexual
behavior, fertility, pregnancy outcomes, or modifications in other functions that are dependent on the
integrity of this system.

Short-Term Exposure Limit (STEL) - The maximum concentration to which workers can be
exposed for up to 15 min continually. no more than four excursions are allowed per day, and there
must be at least 60 min between exposure periods. The daily TLV-TWA may not be exceeded.

Target Organ Toxicity - This term covers a broad range of adverse effects on target organs or
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited
exposure to those assumed over a lifetime of exposure to a chemical.

Teratogen - A chemical that causes structural defects that affect the development of an organism.

Threshold Limit Value (TLV) - A concentration of a substance to which most workers can be
exposed without adverse effect. The TLV may be expressed as a TWA, as a STEL, or as a CL.

Time-Weighted Average (TWA) - An allowable exposure concentration averaged over a normal 8-
hour workday or 40-hour workweek.
.
TOXIC Dose (TD,,) - A calculated dose of a chemical, introduced by a route other than inhalation,
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population.

Uncertainty Factor (UF) - A factor used in operationally deriving the RfD from experimental data.
UFs are intended to account for (1) the variation in sensitivity among the members of the human
population, (2) the uncertainty in extrapolating animal data to the case of human, (3) the uncertainty
in extrapolating from data obtained in a study that is of less than lifetime exposure, and (4) the
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uncertainty in using LOAEL data rather than NOAEL data. Usually each of these factors is set
equal to 10.
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