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DISCLAIMER

The use of company or product name(s) is for identification only and does not imply endorsement by
the Agency for Toxic Substances and Disease Registry.
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UPDATE STATEMENT

A Toxicological Profile for tetrachloroethylene was released in April 1993. This edition supersedes
any previously released draft or final profile.

Toxicological profiles are revised and republished as necessary, but no less than once every three
years. For information regarding the update status of previously released profiles, contact ATSDR at:

Agency for Toxic Substances and Disease Registry
Division of Toxicology/Toxicology Information Branch

1600 Clifton Road NE, E-29
Atlanta, Georgia 30333







Legislative Background vi

The toxicological profiles are developed in response to the Superftmd Amendments and
Reauthorization Act (SARA) of 1986 (Public Law 99-499) which amended the Comprehensive
Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public
law directed ATSDR to prepare toxicological profiles for hazardous substances most commonty found at
facilities on the CERCLA National Priorities List and that pose the most significant potential threat to
human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275
hazardous substances was announced in the Federal Register on April 29, 1996 (61 FR 18744). For prior
versions of the list of substances, see Federal Register notices dated April 17, 1987 (52 FR 12866);
October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17,1990 (55 FR 42067);
October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486).
Section 104(i)(3) of CERCLA, as amended, directs the Administrator of ATSDR to prepare a
toxicological profile for each substance on the list.
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toxicokinetics, key health end points, mechanisms of action, human and animal exposure, and
quantification of risk to humans. All reviewers were selected in conformity with the conditions for
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final content. The responsibility for the content of this profile lies with the ATSDR.





















TETRACHLOROETHYLENE 1

1. PUBLIC HEALTH STATEMENT

This public health statement tells you about tetrachloroethylene and the effects of exposure.

The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites

in the nation. These sites make up the National Priorities List (NPL) and are the sites

targeted for long-term federal cleanup. Tetrachloroethylene has been found in at least 771 of

the 1,430 current or former NPL sites. However, it’s unknown how many NPL sites have

been evaluated for this substance. As more sites are evaluated, the sites with tetrachloroethylene

may increase. This is important because exposure to this substance may harm you

and because these sites may be sources of exposure.

When a substance is released from a large area, such as an industrial plant, or from a

container, such as a drum or bottle, it enters the environment. This release does not always

lead to exposure. You are exposed to a substance only when you come in contact with it.

You may be exposed by breathing, eating, or drinking the substance or by skin contact.

If you are exposed to tetrachloroethylene, many factors determine whether you’ll be harmed.

These factors include the dose (how much), the duration (how long), and how you come in

contact with it. You must also consider the other chemicals you’re exposed to and your age,

sex, diet, family traits, lifestyle, and state of health.

1.1  WHAT IS TETRACHLOROETHYLENE?

Tetrachloroethylene is a synthetic chemical that is widely used for dry cleaning of fabrics and

for metal-degreasing operations. It is also used as a starting material (building block) for

making other chemicals and is used in some consumer products. Other names for

tetrachloroethylene include perchloroethylene, PCE, pert, tetrachloroethene, perclene, and

perchlor. It is a nonflammable liquid at room temperature. It evaporates easily into the air
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and has a sharp, sweet odor. Most people can smell tetrachloroethylene when it is present in

the air at a level of 1 part in 1 million parts of air (ppm) or more. In an experiment, some

people could smell tetrachloroethylene in water at a level of 0.3 ppm. For more information,

see Chapters 3 and 4.

1.2 WHAT HAPPENS TO TETRACHLOROETHYLENE WHEN IT ENTERS THE

ENVIRONMENT?

Tetrachloroethylene enters the environment mostly by evaporating into the air during use. It

can also get into water supplies and the soil during disposal of sewage sludge and factory

waste and when leaking from underground storage tanks. Tetrachloroethylene may also get

into the air, soil, or water by leaking or evaporating from storage and waste sites. It can stay

in the air for several months before it is broken down into other chemicals or is brought back

down to the soil and water by rain.

Much of the tetrachloroethylene that gets into water and soil will evaporate into the air.

However, because tetrachloroethylene can travel through soils quite easily, it can get into

underground drinking water supplies. If it gets into underground water, it may stay there for

many months without being broken down. If conditions are right, bacteria will break down

some of it and some of the chemicals formed may also be harmful. Under some conditions,

tetrachloroethylene may stick to the soil and stay there. It does not seem to build up in

animals that live in water, such as fish, clams, and oysters. We do not know if it builds up in

plants grown on land. For more information on tetrachloroethylene in the environment, see

Chapters 4 and 5.

1.3 HOW MIGHT 1 BE EXPOSED TO TETRACHLOROETHYLENE?

People can be exposed to tetrachloroethylene from environmental and occupational sources

and from consumer products. Common environmental levels of tetrachloroethylene (called

background levels) are several thousand times lower than levels found in some workplaces.

Background levels are found in the air we breathe, in the water we drink, and in the food we
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eat. The chemical is found most frequently in air and, less often, in water. Tetrachloroethylene

gets into air by evaporation from industrial or dry cleaning operations. It is also

released from areas where chemical wastes containing it are stored. It is frequently found in

water. For example, tetrachloroethylene was found in 38% of 9,232 surface water sampling

sites throughout the United States. There is no similar information on how often the chemical

is found in air samples, but we know it is widespread. We do not know how often it is found

in soil, but in one study, it was found in 5% of 359 sediment samples.

In general, tetrachloroethylene levels in air are higher in cities or industrial areas where it is

in use more than in more rural or remote areas. You can smell it at levels of 1 ppm in air.

However, the background level of tetrachloroethylene in air is usually less than 1 part in

1 billion parts of air (ppb). The air close to dry cleaning shops and chemical waste sites has

levels of tetrachloroethylene higher than background levels. These levels are usually less than

1 ppm, the level at which you can smell it. Water, both above and below ground, may

contain tetrachloroethylene. Levels in water are also usually less than 1 ppb. Levels in

contaminated water near disposal sites are higher than levels in water far away from those

sites. Water polluted with this chemical may have levels greater than 1 ppm. In soil,

background levels are probably l00-1,000 times lower than 1 ppm.

You can also be exposed to tetrachloroethylene by using certain consumer products. Products

that may contain it include water repellents, silicone lubricants, fabric finishers, spot

removers, adhesives, and wood cleaners. Although uncommon, small amounts of tetrachloroethylene

have been found in food, especially food prepared near a dry cleaning shop. When

you bring clothes home from the dry cleaners, the clothes may release small amounts of

tetrachloroethylene into the air. The full significance to human health of these exposures to

small amounts of tetrachloroethylene is unknown, but to date, they appear to be relatively

harmless. Tetrachloroethylene can also be found in the breast milk of mothers who have been

exposed to the chemical.
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The people with the greatest chance of exposure to tetrachloroethylene are those who work

with it. According to estimates from a survey conducted by the National Institute for

Occupational Safety and Health (NIOSH), more than 650,000 U.S. workers may be exposed.

For the general population, the estimated amount that a person might breathe per day ranges

from 0.08 to 0.2 milligrams. The estimated amount that most people might drink in water

ranges from 0.0001 to 0.002 milligrams per day. These are very small amounts. For more

information on the ways people might be exposed to tetrachloroethylene, see Chapter 5.

1.4 HOW CAN TETRACHLOROETHYLENE ENTER AND LEAVE MY BODY?

Tetrachloroethylene can enter your body when you breathe air containing it. How much

enters your body in this way depends on how much of the chemical is in the air, how fast and

deeply you are breathing, and how long you are exposed to it. Tetrachloroethylene may also

enter your body when you drink water or eat food containing the chemical. How much enters

your body in this way depends on how much of the chemical you drink or eat. These two

exposure routes are the most likely ways people will take in tetrachloroethylene. These are

also the most likely ways that people living near areas polluted with the chemical, such as

hazardous waste sites, might be exposed to it. If tetrachloroethylene is trapped against your

skin, a small amount of it can pass through into your body. Very little tetrachloroethylene in

the air can pass through your skin into your body.

Most tetrachloroethylene leaves your body from your lungs when you breathe out. This is

true whether you take in the chemical by breathing, drinking, eating, or touching it. A small

amount of the tetrachloroethylene is changed by your body (especially your liver) into other

chemicals that are removed from your body in urine. Most of the changed tetrachloroethylene

leaves your body in a few days. Some of it that you take in is found in your blood

and other tissues, especially body fat. Part of the tetrachloroethylene that is stored in fat may

stay in your body for several days or weeks before it is eliminated. For more information on

how tetrachloroethylene enters and leaves your body, see Chapter 2.
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1.5 HOW CAN TETRACHLOROETHYLENE AFFECT MY HEALTH?

To protect the public from the harmful effects of toxic chemicals and to find ways to treat

people who have been harmed, scientists use many tests.

One way to see if a chemical will hurt people is to learn how the chemical is absorbed, used,

and released by the body; for some chemicals, animal testing may be necessary. Animal

testing may also be used to identify health effects such as cancer or birth defects. Without

laboratory animals, scientists would lose a basic method to get information needed to make

wise decisions to protect public health. Scientists have the responsibility to treat research

animals with care and compassion. Laws today protect the welfare of research animals, and

scientists must comply with strict animal care guidelines.

Tetrachloroethylene has been used safely as a general anesthetic agent, so at high

concentrations, it is known to produce loss of consciousness. When concentrations in air are

high-particularly in closed, poorly ventilated areas-single exposures can cause dizziness,

headache, sleepiness, confusion, nausea, difficulty in speaking and walking, unconsciousness,

and death. Irritation may result from repeated or extended skin contact with the chemical.

As you might expect, these symptoms occur almost entirely in work (or hobby) environments

when individuals have been accidentally exposed to high concentrations or have intentionally

abused tetrachloroethylene to get a “high.” In industry, most workers are exposed to levels

lower than those causing dizziness, sleepiness, and other nervous system effects. The health

effects of breathing in air or drinking water with low levels of tetrachloroethylene are not

definitely known. However, at levels found in the ambient air or drinking water, risk of

adverse health effects is minimal. The effects of exposing babies to tetrachloroethylene

through breast milk are unknown. Results from some studies suggest that women who work

in dry cleaning industries where exposures to tetrachloroethylene can be quite high may have

more menstrual problems and spontaneous abortions than women who are not exposed.

However, it is not known for sure if tetrachloroethylene was responsible for these problems

because other possible causes were not considered.
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Results of animal studies, conducted with amounts much higher than those that most people

are exposed to, show that tetrachloroethylene can cause liver and kidney damage and liver

and kidney cancers even though the relevance to people is unclear. Although it has not been

shown to cause cancer in people, the U.S. Department of Health and Human Services has

determined that tetrachloroethylene may reasonably be anticipated to be a carcinogen. The

International Agency for Research on Cancer (IARC) has determined that tetrachloroethylene

is probably carcinogenic to humans. Exposure to very high levels of tetrachloroethylene can

be toxic to the unborn pups of pregnant rats and mice. Changes in behavior were observed in

the offspring of rats that breathed high levels of the chemical while they were pregnant Rats

that were given oral doses of tetrachloroethylene when they were very young, when their

brains were still developing, were hyperactive when they became adults. How

tetrachloroethylene may affect the developing brain in human babies is not known.

For more information on the health effects of tetrachloroethylene, see Chapter 2.

1.6  IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN

EXPOSED TO TETRACHLOROETHYLENE?

One way of testing for tetrachloroethylene exposure is to measure the amount of the chemical

in the breath, much the same way breath alcohol measurements are used to determine the

amount of alcohol in the blood. This test has been used to measure levels of the chemical in

people living in areas where the air is contaminated with tetrachloroethylene or those exposed

to the chemical through their work. Because it is stored in the body’s fat and is slowly

released into the bloodstream, it can be detected in the breath for weeks following a heavy

exposure. Tetrachloroethylene can be detected in the blood. Also, breakdown products of the

chemical can be detected in the blood and urine of people exposed to tetrachloroethylene.

Trichloroacetic acid (TCA), a breakdown product of tetrachloroethylene can be detected for

several days after exposure. These tests are relatively simple to perform. The breath, blood,

or urine must be collected in special containers and then sent to a laboratory for testing.

Because exposure to other chemicals can produce the same breakdown products in the urine

and blood, the tests for breakdown products cannot determine if you have been exposed only
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to tetrachloroethylene. For more information on where and how tetrachloroethylene can be

detected in your body after you have been exposed to it, see Chapters 2 and 6.

1.7 WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO

PROTECT HUMAN HEALTH?

The federal government develops regulations and recommendations to protect public health.

Regulations can be enforced by law. Federal agencies that develop regulations for toxic

substances include the EPA, the Occupational Safety and Health Administration (OSHA), and

the Food and Drug Administration (FDA). Recommendations provide valuable guidelines to

protect public health but cannot be enforced by law. Federal organizations that develop

recommendations for toxic substances include the Agency for Toxic Substances and Disease

Registry (ATSDR) and NIOSH.

Regulations and recommendations can be expressed in not-to-exceed levels in air, water, soil,

or food that are usually based on levels that affect animals; then they are adjusted to help

protect people. Sometimes these not-to-exceed levels differ among federal organizations

because of different exposure times (an 8-hour workday or a 24-hour day), the use of

different animal studies, or other factors.

Recommendations and regulations are also periodically updated as more information becomes

available. For the most current information, check with the federal agency or organization

that provides it. Some regulations and recommendations for tetrachloroethylene include the

following:

The EPA maximum contaminant level for the amount of tetrachloroethylene that-can be in

drinking water is 0.005 milligrams tetrachloroethylene per liter of water (mg/L) (0.005 ppm).

EPA has established regulations and procedures for dealing with tetrachloroethylene, which it

considers a hazardous waste. Many regulations govern its disposal. If amounts greater than
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100 pounds are released to the environment, the National Response Center of the federal

government must be told immediately.

OSHA limits the amount of tetrachloroethylene that can be present in workroom air. This

amount is limited to 100 ppm for an 8-hour workday over a 40-hour workweek. NIOSH

recommends that tetrachloroethylene be handled as a chemical that might potentially cause

cancer and states that levels of the chemical in workplace air should be as low as possible.

For more information on regulations and guidelines to protect human health, see Chapter 7.

1.8 WHERE CAN I GET MORE INFORMATION?

If you have any more questions or concerns, please contact your community or state health or

environmental quality department or

Agency for Toxic Substances and Disease Registry
Division of Toxicology
1600 Clifton Road NE, Mailstop E-29
Atlanta, Georgia 30333

*Information line and technical assistance

Phone: (404) 639-6000
Fax: (404) 639-6315 or 6324

ATSDR can also tell you the location of occupational and environmental health clinics.

These clinics specialize in recognizing, evaluating, and treating illnesses resulting from

exposure to hazardous substances.
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*To order toxicological profiles, contact

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22 161
Phone (800) 553-6847 or (703) 487-4650
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2.1 INTRODUCTION

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and

other interested individuals and groups with an overall perspective on the toxicology of

tetrachloroethylene. It contains descriptions and evaluations of toxicological studies and

epidemiological investigations and provides conclusions, where possible, on the relevance of toxicity

and toxicokinetic data to public health.

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile.

2.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE

To help public health professionals and others address the needs of persons living or working near

hazardous waste sites, the information in this section is organized first by route of exposure

(inhalation, oral, and dermal) and then by health effect (death, systemic, immunological, neurological,

reproductive, developmental, genotoxic, and carcinogenic effects). These data are discussed in terms

of three exposure periods: acute (14 days or less), intermediate (15-364 days), and chronic (365 days

or more).

Levels of significant exposure for each route and duration are presented in tables and illustrated in

figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest-observed-

adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the

studies. LOAELs have been classified into “less serious” or  “serious” effects. “Serious” effects are

those that evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute

respiratory distress or death). “Less serious” effects are those that are not expected to cause significant

dysfunction or death or those whose significance to the organism is not entirely clear. ATSDR

acknowledges that a considerable amount of judgment may be required in establishing whether an end

point should be classified as a NOAEL, “less serious” LOAEL, or “serious” LOAEL, and that in some

cases, there will be insufficient data to decide whether the effect is indicative of significant

dysfunction. However, the Agency has established guidelines and policies that are used to classify
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these end points. ATSDR believes that there is sufficient merit in this approach to warrant an attempt

at distinguishing between “less serious” and “serious” effects. The distinction between “less serious”

effects and “serious”’ effects is considered to be important because it helps users of the profiles to

identify levels of exposure at which major health effects start to appear. LOAELs or NOAELs should

also help in determining whether or not the effects vary with dose and/or duration, and place into

perspective the possible significance of these effects to human health.

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and

figures may differ depending on the user’s perspective. Public health officials and others concerned

with appropriate actions to take at hazardous waste sites may want information on levels of exposure

associated with more subtle effects in humans or animals or exposure levels below which no adverse

effects have been observed. Estimates of levels posing minimal risk to humans (Minimal Risk Levels

or MRLs) may be of interest to health professionals and citizens alike.

Levels of exposure associated with carcinogenic effects (Cancer Effect Levels, CELs) of

tetrachloroethylene are indicated in Tables 2-B and 2-3 and Figures 2-l and 2-2.

Estimates of exposure levels posing minimal risk to humans (Minimal Risk Levels or MRLs) have

been made for tetrachloroethylene. An MRL is defined as an estimate of daily human exposure to a

substance that is likely to be without an appreciable risk of adverse effects (noncarcinogenic) over a

specific duration of exposure. MRLs are derived when reliable and sufficient data exist to identify the

target organ(s) of effect or the most sensitive health effect(s) for a specified duration within a given

route of exposure. MRLs are based on noncancer health effects only and do not reflect a

consideration of carcinogenic effects. MRLs can be derived for acute, intermediate, and chronic

duration exposures for inhalation and oral routes. Appropriate methodology does not exist to develop

MRLs for dermal exposure.

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990),

uncertainties are associated with these techniques, Furthermore, ATSDR acknowledges additional

uncertainties inherent in the application of the procedures to derive less than lifetime MRLs. As an

example, acute inhalation MRLs may not be Iprotective for health effects that are delayed in

development or result from repeated acute insults, such as hypersensitivity reactions, asthma, or
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chronic bronchitis. As these kinds of health effects data become available and methods to assess

levels of significant human exposure improve, these MRLs will be revised.

A User’s Guide has been provided at the end of this profile (see Appendix B). This guide should aid

in the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs.

2.2.1 Inhalation Exposure

2.2.1.l Death

At high vapor concentrations, tetrachloroethylene is both a potent anesthetic agent and a cardiac

epinephrine sensitizer. Therefore, sudden death resulting from acute exposure to anesthetic vapor

concentrations is presumed to result from either excessive depression of the respiratory center or the

onset of a fatal cardiac arrhythmia induced by epinephrine sensitization. Human deaths caused by

tetrachloroethylene inhalation have been reported. A 33-year-old man was found unconscious after

performing work on a plugged line in a commercial dry cleaning establishment and died on the way to

the hospital (Lukaszewski 1979). Exposure to tetrachloroethylene was presumably by inhalation since

‘an autopsy revealed no tetrachloroethylene in the stomach contents but high levels of the compound in

the blood and brain (4.4 mg/l00 mL and 36 mg/l00 g, respectively). In another report, a 53-year-old

male dry cleaner died after being overcome by tetrachloroethylene fumes (Levine et al. 1981).

Tetrachloroethylene concentrations were 66 mg/L in blood, and 79, 31, and 46 mg/kg in the brain,

heart, and lungs, respectively, of a 2-year-old boy found dead 1.5 hours after he was placed in his

room with curtains that had been incorrectly dry cleaned in a coin-operated dry cleaning machine

(Gamier et al. 1996). In these reports, the level of tetrachloroethylene exposure was not reported.

Epidemiological studies of workers occupationally exposed to tetrachloroethylene have not consistently

shown increased mortality. Although total mortality was not increased, Blair et al. (1979) found

increased mortality from cancers of the lungs, cervix, uterus, and skin. This study is limited by a lack

of control for alcohol and tobacco consumption. Other studies have not shown significantly increased

mortality in workers occupationally exposed to tetrachloroethylene (Blair et al. 1990; Brown and

Kaplan 1987; Katz and Jowett 1981; Spirtas et al. 1991).
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There were no major differences between mice and rats in susceptibility to lethal effects of

tetrachloroethylene following acute- or intermediate-duration exposure. In addition, no sex differences

in response were detected. A 4-hour inhalation LC50 of 5,200 ppm for female albino mice has been

reported. Data used to derive the LC50 show that the highest concentration of tetrachloroethylene for a

4-hour exposure that was not lethal to mice was 2,450 ppm; the lowest concentration that caused death

was 3,000 ppm (Friberg et al. 1953). In another study, the highest concentration for a 4-hour exposure

that did not result in death in B6C3F1 mice or Fischer-344 rats of both sexes was 2,445 ppm; the

lowest concentrations causing death were 2,613 ppm in mice and 3,786 ppm in rats (NTP 1986). A

single 10- or 14-hour exposure of rats to 2,000 ppm and a single 4-hour exposure to 3,000 ppm did

not produce death, while death occurred with exposure to 3,000 ppm for 5 hours or longer (Rowe et

al. 1952).

Rats and mice were exposed to tetrachloroethylene by inhalation for 14 days or 13 weeks (NTP 1986).

In the 14-day study, mortality occurred in rats exposed to 1,750 ppm tetrachloroethylene but not in

mice. Compound-related mortality did not occur in either species at exposure concentrations of

875 ppm or lower. In the 13-week inhalation study, mortality occurred in rats and mice exposed to

1,600 ppm tetrachloroethylene but not to concentrations of 800 ppm or lower.

Mortality in rats exposed to 400 ppm tetrachloroethylene and mice exposed to 100 or 200 ppm

tetrachloroethylene by inhalation in a 103-week carcinogenesis bioassay was a result of compoundrelated

lesions and neoplasms (NTP 1986). This study is discussed in Sections 2.2.1.2 and 2.2.1.8.

All reliable LOAEL and LC50 values for death in each species and duration category are recorded in

Table 2- 1 and plotted in Figure 2-1.

2.2.1.2 Systemic Effects

The highest NOAEL and all reliable LOAEL values for systemic effects in each species-and duration

category are recorded in Table 2-l and plotted in Figure 2-l.

No studies were located regarding dermal effects in humans or animals after inhalation exposure to

tetrachloroethylene.
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Respiratory Effects.   Intense irritation of the upper respiratory tract was reported in volunteers

exposed to high concentrations (>l,000 ppm) of tetrachloroethylene (Carpenter 1937; Rowe et al.

1952). These older acute inhalation studies in humans were limited by a small number of

experimental volunteer subjects, incomplete characterization of subjects, variable concentrations of

tetrachloroethylene, and reliance on symptomatology, which are subjective data. Despite these

limitations, some of the end points identified at high concentrations provide important toxicological

data on tetrachloroethylene effects in humans. Respiratory irritation (irritation of the nasal passages)

was reported in workers exposed to tetrachloroethylene vapors at levels of 232-385 ppm in a

degreasing operation (Coler and Rossmiller 1953) and in volunteers exposed to concentrations as low

as 216 ppm for 45 minutes to 2 hours (Rowe et al. 1952). Volunteers exposed to concentrations as

high as 1,060 ppm could tolerate no more than l-2 minutes of exposure before leaving the chamber

(Rowe et al. 1952). Pulmonary edema occurred in a case of accidental exposure although this lesion

may have been a secondary finding (Pate1 et al. 1973).

An experimental human exposure study titled Tetrachloroethylene: Development of a biologic
standard for the industrial worker by breath analysis, completed by Stewart and colleagues, was first

published by NIOSH in 1974. This publication can now be obtained from the National Technical

Information Service (NTIS) with a 1981 date, and is cited as Stewart et al. (1981) throughout this

Profile. In this study, four male volunteers were sequentially exposed to 0, 20, 100, or 150 ppm

tetrachloroethylene vapor for 7.5 hours/day, 5 days/week (Stewart et al. 1981). The men were exposed

to each concentration for 1 week. Once each week, pulmonary function was assessed at both rest and

during two levels of exercise with forced maximum expiratory flow measurements, while alveolarcapillary

gas exchange was measured by single breath carbon monoxide diffusion. The exposures to

tetrachloroethylene at these vapor concentrations and time intervals had no effect on the pulmonary

function measurements.

A l0-minute exposure of dogs to tetrachloroethylene at 10,000 ppm resulted in upper respiratory

irritation (Reinhardt et al. 1973). This effect was not observed at 5,000 ppm. In a study designed to

examine the effects of tetrachloroethylene on the respiratory mucosa, epithelial degeneration was

observed in mice exposed to tetrachloroethylene at 300 ppm for 6 hours/day for 5 days (Aoki et al.

1994). The degeneration was more severe in the olfactory mucosa compared to other sites in the

respiratory mucosa. Dilation of Bowman’s glands and atrophy of olfactory nerves were also observed.
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In a study in mice evaluating susceptibility to infection from inhaled Streptococcus zooepidemicus and

pulmonary bacteriocidal activity to inhaled Klebsiella pneumoniae, exposure to 50 ppm

tetrachloroethylene for 3 hours increased susceptibility to both bacteria. The primary adverse effect of

tetrachloroethylene was hypothesized to be on alveolar macrophage activity, although other pulmonary

and extrapulmonary defense mechanisms may also have been involved (Aranyi et al. 1986). However,

because of variability in control group mortality and the lack of evaluation of specific immunological

end points, the relevance of the findings is unclear.

Congestion of the lungs was reported in rats exposed intermittently to tetrachloroethylene at

1,600 ppm, but not 800 ppm, for 13 weeks (NTP 1986). Thrombosis and squamous metaplasia were

observed in the nasal cavity of rats exposed intermittently at ≥200 ppm for 103 weeks (Mennear et al.

1986; NTP 1986). In mice exposed intermittently to tetrachloroethylene at ≥100 ppm for 103 weeks,

acute passive congestion of the lungs was observed (Mennear et al. 1986; NTP 1986).

Cardiovascular Effects.   No effects on heart rate or blood pressure were noted in four men

exposed to tetrachloroethylene at 87 ppm for 3 hours (Ogata et al. 1971). Ten adult male volunteers

and 10 adult female volunteers were exposed to 0, 20, 100, or 150 ppm tetrachloroethylene vapor for

1 hour, 3 hours, or 7.5 hours, 5 days/week for 1 week at each concentration (Stewart et al. 1981).

During the exposure periods, blood pressure and pulse rate were measured every hour, while

electrocardiograms were monitored continuously via telemetry. There was no deviation from the

baseline measurements which were obtained preexposure or for the postexposure follow-up period

(Stewart et al. 1981). These observations confirmed those of a separate study of six males and six

females in which no effects on the electrical activity of the heart were observed following random

exposure at 0, 25, and 100 ppm tetrachloroethylene vapor for 5.5 hours, 5 days/week (Stewart et al.

1977). The total study lasted 11 weeks, although the exposure concentrations varied daily throughout

the study. A case report describes a 24-year-old man who experienced cardiac arrhythmia (frequent

premature ventricular beats). The patient had been employed for 7 months in a dry cleaning facility

where he used tetrachloroethylene (Abedin et al. 1980). Plasma tetrachloroethylene was-measured at

0.15 ppm on his 5th day of hospitalization. The patient was discharged the next day but returned in

2 weeks for outpatient evaluation with a recurrence of skipping of heartbeats, headache, and dizziness.

At that time, plasma tetrachloroethylene was measured at 3.8 ppm. Since the biological exposure

index associated with an 8-hour exposure of 25 ppm is 0.5 mg/L tetrachloroethylene in blood (ACGIH
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1995), this subject was exposed to relatively high concentrations. The patient was reported to be

asymptomatic 1 month after finding different employment.

Epinephrine-induced cardiac arrhythmia was not induced in beagle dogs exposed by face mask to

5,000 or 10,000 ppm tetrachloroethylene (Reinhardt et al. 1973). This study was complicated by the

dogs’ struggling, which could represent irritant effects of these high tetrachloroethylene concentrations

on the upper respiratory tract.

Gastrointestinal Effects.  No studies were located regarding gastrointestinal effects in humans after

inhalation exposure to tetrachloroethylene. Forestomach ulcers were observed in male rats exposed

intermittently to tetrachloroethylene at 400 ppm for 103 weeks (NTP 1986). Ulcers were not observed

at 200 ppm.

Hematological Effects.   Ten adult male volunteers and 10 adult female volunteers were exposed to

0, 20, 100, or 150 ppm tetrachloroethylene vapor for 1 hour, 3 hours, or 7.5 hours, 5 days/week for

1 week at each vapor concentration (Stewart et al. 1981). A complete blood count was obtained once

a week and compared to the preexposure and postexposure values. No deviation from baseline was

observed. Six males and six females were randomly exposed to 0, 25, or 100 ppm tetrachloroethylene

vapor for 5.5 hours, 5 days a week, over an 1l-week period (Stewart et al. 1977). A complete blood

count was obtained once a week and compared to the preexposure and postexposure values; no

deviations from baseline were observed. Relative to unexposed controls, changes in hemoglobin levels

and white blood cell counts were not observed in workers exposed to tetrachloroethylene at a

geometric mean time-weighted average (TWA) concentration of 20 ppm (Cai et al. 1991).

A decrease in erythrocyte δ-aminolevulinate dehydratase activity was observed in rats exposed to 200

but not 50 ppm tetrachloroethylene for 4 weeks (Soni et al. 1990). It is not clear if exposure was

intermittent or continuous. Rats exposed to 230 or 470 ppm tetrachloroethylene for up to 160 days

had splenic congestion and increased hemosiderin deposits (Carpenter 1937). Study limitations include

the use of sick animals (parasites, pneumonia), nonstandard study protocols, rats of undefined strain,

and inadequate controls. A transient increase in reticulocytes was observed in mice exposed to

tetrachloroethylene at 135 and 270 ppm during the first few weeks of an 11.5-week study (Seidel et al.

1992). Microscopic examination of bone marrow revealed no effect on pluripotent stem cells and only
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a small reduction in erythroid committed cells. Because of a lack of statistical analysis, NOAELs and

LOAELs were not clearly identified in the Seidell et al. (1992) study.

Musculoskeletal Effects.  No studies were located regarding musculoskeletal effects in humans

after inhalation exposure to tetrachloroethylene. Histological changes were not observed in the limb

muscles of rats exposed to tetrachloroethyliene at 50, 200, or 800 ppm 6 hours/day, 5 days/week, for

13 weeks (Mattsson et al. 1992).

Hepatic Effects.   The liver is a target organ in humans accidentally exposed to high concentrations

of tetrachloroethylene. Hepatocellular damage was documented by biopsy in a case study of a woman

exposed occupationally to tetrachloroethylene fumes for 2.5 months (Meckler and Phelps 1966). Liver

damage also has been diagnosed by the presence of hepatomegaly, icterus, and elevations of serum

glutamic oxaloacetic transaminase (SGOT), bilirubin, and urinary urobilinogen (Coler and Rossmiller

1953; Hake and Stewart 1977; Saland 1967; Stewart et al. 1961a). These effects were generally

observed several days after an acute exposure resulting in nervous system effects. There was one case

report of diffuse fatty liver in a dry cleaner who died shortly after being exposed to tetrachloroethylene

fumes (Levine et al. 1981). Because of the brief interval between exposure and death, this liver lesion

may have been preexistent.

Ten adult male volunteers and 10 adult female volunteers were sequentially exposed to 0, 20, 100, or

150 ppm tetrachloroethylene vapor for 1 hour, 3 hours, or 7.5 hour periods, 5 days/week for one week

at each exposure concentration. No ethanol consumption was permitted during the exposure sequence.

A complete panel of clinical chemistries was obtained each week. The tests completed included a

serum alkaline phosphatase, a serum ghrtamic pyruvic transaminase (SGPT), an SGOT, and a serum

bilirubin. These results were compared to the preexposure and postexposure values. No deviation

from baseline was observed (Stewart et al. 1981). Six males and six females were randomly exposed

to 0, 25, or 100 ppm tetrachloroethylene vapor for 5.5 hours, 5 days a week, over an 11-week period

(Stewart et al. 1977). A complete panel of clinical chemistries was obtained each week,-which

included a serum alkaline phosphatase, an SGPT, an SGOT, and a serum bilirubin. These results were

compared to preexposure and postexposure values; no deviations from baseline were observed.

Hepatic effects as measured by SGPT elevations were not detected in 22 dry cleaning workers in

Belgium exposed to a TWA concentration of 21 ppm tetrachloroethylene over an average of 6 years
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(Lauwerys et al. 1983). SGOT, SGPT, and serum alkaline phosphatase were not increased in workers

exposed to tetrachloroethylene at a geometric mean TWA concentration of 20 ppm for l-120 months

(Cai et al. 1991). Differences in the isoenzyme fractionation of serum gamma-glutamyltransferase

(GGT) enzymes were observed in 141 workers exposed to tetrachloroethylene at an average

concentration of 11.3 ppm relative to 130 unexposed controls (Gennari et al. 1992). Both exposed and

control subjects were chosen on the basis of normal liver function tests (SGOT, SGPT, serum alkaline

phosphatase, lactate dehydrogenase, and 5’-nucleotidase). In exposed workers, total GGT was

significantly (1.4-fold; p<0.01) increased, principally as a result of an increase in GGT-2. Small

amounts of GGT-4 were only observed in exposed workers. No correlation between serum GGT

levels and worker tetrachloroethylene exposure level or duration was found. The investigators

indicated that GGT-4 is associated with hepato-biliary impairment and that further investigation is

required to determine why low-level exposure to tetrachloroethylene is associated with changes in the

GGT isoenzyme profile in workers without any other evidence of liver disease.

Changes in serum levels of liver enzymes may not be the most sensitive marker of liver damage

following exposure to tetrachloroethylene. In dry cleaning workers exposed to an average of 15.8 ppm

tetrachloroethylene, ultrasound revealed diffuse parenchymal changes in the livers of 18/27 (67%)

compared with10/26 (39%) unexposed laundry workers (Brodkin et al. 1995). This difference was

statistically significant (p<0.05). An exposure-related trend was also noted, with parenchymal changes

observed in all 5 subjects with exposures above 15 ppm, in 6 of the 12 subjects with exposures below

15 ppm, and in 38% of unexposed laundry workers. No changes in serum markers of liver damage

(SGOT, SGPT, γ-glutamyl transferase, alkaline phosphatase, total and direct bilirubin) were noted in

these workers. The workers in this study stated that they had not drunk an average of more than two

alcoholic beverages a day for six months and had no history of alcoholism or hepatitis. Dry cleaners

were included in the study only if tetrachloroethylene was used exclusively in the past 5 years. The

average duration of employment was 20 years for the dry cleaning workers and 5 years for the laundry

workers.

Hepatic lesions are also induced in experimental animals during inhalation exposure to

tetrachloroethylene. Mice are the species most sensitive to this effect. Hepatocellular vacuolization

occurred after a single 4-hour exposure of mice to 200 ppm or greater concentrations of

tetrachloroethylene (Kylin et al. 1963). This lesion was also reported in male B6C3F1 mice exposed to
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875 or 1,750 ppm tetrachloroethylene for 14 days and in females exposed to the highest concentration.

Vacuolization was not present at 425 ppm (NTP 1986).

Liver lesions differed markedly between mice and rats after longer duration exposure. In a 13-week

study, male mice exposed to 200 ppm and higher concentrations of tetrachloroethylene exhibited

mitotic alterations in the liver while both sexes had leukocytic infiltrations, centrilobular necrosis, and

bile stasis at 400 ppm and higher concentrations (800 and 1,600 ppm). Dose-related liver congestion

was observed in rats, with 8/20, 10/20, and 15/19 rats affected at 400, 800, and 1,600 ppm tetrachloroethylene,

respectively, with no liver effects observed at 200 ppm (NTP 1986). In a reproductive

study, hepatic effects were not observed in parental male and female rats exposed to 1,000 ppm of

tetrachloroethylene 6 hours/day, 5 days/week for 1l-19 weeks (Tinston 1995).

Another inhalation study in mice and rats correlated light microscopic and ultrastructural liver effects

with liver levels of cyanide-insensitive palmitoyl CoA oxidase, a marker for peroxisomal β-oxidation

(Odum et al. 1988). Animals were exposed to 200 ppm of tetrachloroethylene for 28 days or 400 ppm

for 14, 21, or 28 days. Centrilobular hepatocellular vacuolization was induced in mice by tetrachloro-ethylene

exposure. Electron microscopy revealed that this effect corresponded to lipid accumulation. Centrilobular

hepatocytes with cytoplasmic eosinophilia on light microscopy had marked proliferation

of cytoplasmic peroxisomes at the ultrastructural level, and there was a significant increase in the

marker enzyme. These changes occurred in mice at both doses and all exposures and were most

pronounced in male mice. Exposed male rats in both dose groups and female rats exposed to 400 ppm

developed centrilobular hepatocellular hypertrophy, which ultrastructurally consisted of proliferation of

smooth endoplasmic reticulum. There was no increase in peroxisomes (Odum et al. 1988).

NMRI mice were exposed to 0, 9, 37, 75, or 150 ppm tetrachloroethylene continuously for 30 days

(Kjellstrand et al. 1984). Exposed mice developed hepatocellular vacuolization and enlargement.

Lesions were observed at 37 ppm and were noted to be most pronounced at exposures to 75 and

150 ppm tetrachloroethylene. It was not possible to determine if a dose-response relationship existed

for this effect because the nature and extent of the lesions at each dose were not reported. Relative

liver weights were not calculated; however, absolute liver weights were significantly elevated at

exposure concentrations of 9 ppm and higher. Liver weights were still increased (10%) 120 days

following 30 days of continuous exposure to 150 ppm. Plasma butyrylcholinesterase (BuChe) also

was elevated in some exposed mice, but the significance of this increase is unclear for two reasons:
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there was wide variability in BuChe activity in the controls, and plasma BuChe can be modulated by

nonhepatic factors (Kjellstrand et al. 1984).

The hepatic effects of tetrachloroethylene in guinea pigs have also been evaluated (Rowe et al. 1952).

Changes reported were increased liver weight (≥200 ppm) and cirrhosis (400 ppm). These data are of

questionable value because of the use of an undefined strain of guinea pigs, lack of standardized

protocols, small numbers of animals per exposure group, incomplete necropsy examination, inadequate

controls, selective histopathological evaluation, and lack of quantitative supporting data.

Hepatocellular degeneration and necrosis occurred in male mice exposed to 100 and 200 ppm

tetrachloroethylene for 103 weeks and in females exposed to 200 ppm. Liver effects were not reported

in rats exposed chronically to 200 or 400 ppm tetrachloroethylene, but the effects of mononuclear cell

leukemia infiltrates may have obscured subtle compound-induced changes (NTP 1986). Both sexes of

mice also had increased incidences of hepatocellular tumors at both exposure concentrations. This

study is discussed further in Section 2.2.1.8.

Renal Effects.   Ten adult male volunteers and 10 adult female volunteers were exposed to 0, 20,

100, or 150 ppm tetrachloroethylene vapor for 1 hour, 3 hours, or 7.5 hours, 5 days/week, for 1 week

at each concentration, during which time urinalysis and blood urea nitrogen (BUN) analysis were

completed. These results were compared to the preexposure and postexposure values. No deviation

from baseline was observed (Stewart et al. 1981). Six males and six females were randomly exposed

to 0, 25, or 100 ppm tetrachloroethylene vapor for 5.5 hours, 5 days a week, over an 1 l-week period

(Stewart et al. 1977). Urinalysis and BUN analysis were completed each week. These results were

compared to preexposure and postexposure values; no deviations from baseline were observed.

Symptoms of renal dysfunction, including proteinuria and hematuria, have been associated with

accidental exposure to anesthetic concentrations of tetrachloroethylene vapor (Hake and Stewart 1977).

Weak or no renal effects, depending on the parameters evaluated, were reported in people with chronic

occupational exposure. Workers in dry cleaning shops exposed for an average of 14 years to an

estimated TWA concentration of 10 ppm of tetrachloroethylene had increased urinary levels of

lysozyme and β-glucuronidase suggestive of mild tubular damage (Franchini et al. 1983).

Urinary lysozyme activity was also increased in workers exposed to an average of 23 ppm for about

9 years (Vyskocil et al. 1990). At unspecified exposure concentrations and durations, an increase in
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urinary fibronectin was observed in workers exposed to tetrachloroethylene (Bundschuh et al. 1993).

No effects on urinary proteins (high and low molecular weight) or n-acetyl-glucosaminidase (NAG)

were observed. No effects on BUN or serum creatinine were observed in workers exposed at an

average concentration of 20 ppm for l-120 months (Cai et al. 1991), and occupational exposure to

tetrachloroethylene at an average concentration of 14 ppm for an average of 12 years had no effects on

total urinary protein, albumin, NAG, and creatinine (Solet and Robins 1991). In another report, serum

creatinine and urinary albumin, β2-microglobulin, and retinol-binding protein levels were normal in dry

cleaning workers exposed to a TWA concentration of 21 ppm of tetrachloroethylene for 6 years

(Lauwerys et al. 1983).

In a more comprehensive examination of kidney function, urinary markers were measured in 9 men

and 41 women occupationally exposed to tetrachloroethylene from trace levels to 85 ppm and in

50 controls (Mutti et al. 1992). Both exposure levels and measurements of kidney function were taken

over a long period of time to account for variability in the working cycle or seasonal fluctuations. The

total duration of the study was not stated. The results showed an increase in markers suggesting an

increase in the shedding of epithelial membrane components from tubular cells. The following urinary

markers were increased in exposed workers relative to unexposed workers: albumin; transferrin;

brush-border antigens BBA, BB50, and HF5; and tissue nonspecific alkaline phosphatase. Urinary

fibronectin was also significantly increased. Serum antiglomerular basement membrane antibodies and

serum laminin levels were significantly increased in exposed workers compared to controls. No

effects on serum β2-microglobulin, creatinine, or urinary prostaglandins, glycosaminoglycans, NAG, or

intestinal alkaline phosphatase were noted. The investigators (Mutti et al. 1992) indicated that the

significance of the findings was unclear, and they suggested that the changes could be a physiological

adaptation to exposure or may represent an early state of potentially progressive renal disease. Relative

to age- and sex-matched unexposed controls, laminin fragments in the serum (n=37) and urine

(n=50) of tetrachloroethylene-exposed workers were significantly increased, suggesting glomerular

dysfunction (Price et al. 1995). The exposure concentrations and the duration of exposure were not

stated.

In animal studies, adverse renal effects have been observed in rodents exposed to tetrachloroethylene.

Hyaline droplets in proximal tubules but no tubular damage or cell proliferation occurred in male rats

exposed to 1,000 ppm by inhalation for 10 days (Green et al. 1990). Male rats exposed to 400 ppm

tetrachloroethylene (the same concentration used in the NTP [1986] chronic study) for 28 days did not
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develop kidney lesions (Green et al. 1990). Minimal chronic progressive glomerulonephropathy and

increased pleomorphism within the proximal tubular nuclei were noted in male but not female rats

exposed to tetrachloroethylene at 1,000 ppm for up to 19 weeks (Tinston 1995). Kidney effects were

not observed at 300 ppm. In other intermediate-duration studies, rats exposed to 470 ppm for

150 days or to 7,000 ppm for 40 or more exposures had intratubular casts and swelling and

desquamation of tubular epithelium (Carpenter 1937). On the other hand, abnormal renal function or

histopathological findings were not observed in rats or guinea pigs exposed to tetrachloroethylene

vapor concentrations of 0, 100, 200, or 400 ppm for about 6 months (Rowe et al. 1952). Guinea pigs

that received 18 exposures of 7 hours each to 2,500 ppm tetrachloroethylene over a period of 20 days

had increased kidney weights with slight-to-moderate cloudy swelling of tubular epithelium.

Renal tubular karyomegaly (nuclear enlargement) occurred in both sexes of mice exposed to 200, 400,

800, and 1,600 ppm tetrachloroethylene for 13 weeks but did not occur in mice exposed to 100 ppm.

Kidney lesions did not occur in rats exposed to 1,600 ppm; kidneys from lower dose groups were not

examined microscopically (NTP 1986).

Peroxisomal proliferation induced in hepatocytes by tetrachloroethylene exposure appeared to be

correlated with hepatotoxicity and cell proliferation However, peroxisomal proliferation in renal

tubular epithelium of rats or mice was not induced by exposure to 200 or 400 ppm tetrachloroethylene

for up to 28 days (Odum et al. 1988). Intermittent exposure of rats to 200 ppm tetrachloroethylene for

4 weeks induced renal P-450 enzymes (Soni et al. 1990).

In the chronic inhalation toxicity/oncogenicity study of tetrachloroethylene, Fischer-344 rats of each

sex were exposed to 0, 200, or 400 ppm tetrachloroethylene, and B6C3F1 mice were exposed to 0,

100, or 200 ppm tetrachloroethylene for 103 weeks (NTP 1986). Dose-related renal tubular cell

karyomegaly occurred in both species and sexes at all exposure concentrations. This alteration was

accompanied by low incidences of renal tubular cell hyperplasia in male rats.

Endocrine Effects.   Ferroni et al. (1992) measured prolactin levels in 30 controls and in 60 women

occupationally exposed to tetrachloroethylene at a median concentration of 15 ppm. Although they

noted a significant increase in prolactin levels in the exposed women relative to the controls during the

proliferative phase of the menstrual cycle, values of both groups were in the normal range. Therefore,

it is unlikely that the observed effect has biological significance.
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Medullary hyperplasia of the adrenal glands was observed in male rats, and cortical hyperplasia of the

adrenal glands was observed in female rats, when both groups were exposed to tetrachloroethylene at

200 or 400 ppm for 103 weeks (NTP 1986). Histological changes were not observed in the pituitaries

of rats exposed to tetrachloroethylene at 50, 200, or 800 ppm 6 hours/day, 5 days/week, for 13 weeks

(Mattsson et al. 1992).

Ocular Effects.   Intense irritation of the eyes of humans was noted following acute exposure to high

concentrations (930 ppm) of tetrachloroethylene vapors (Carpenter 1937; Rowe et al. 1952). Burning

or stinging sensations in the eyes occurred after exposure to 600 or 280 ppm; very mild irritation was

reported by four subjects at exposure to 216 or 106 ppm (Rowe et al. 1952); and transient eye

irritation was noted in six subjects during the first few minutes of exposure at 75-80 ppm (Stewart et

al. 196lb). The Rowe et al. (1952) and Carpenter (1937) studies are limited by small numbers of

subjects, variable concentrations of tetrachloroethylene, and lack of measured clinical changes.

Although no loss of color vision was noted in workers exposed to tetrachloroethylene at average

concentrations of 15.3 and 10.7 ppm for men and women, respectively (Nakatsuka et al. 1992), loss of

color vision was reported in dry cleaners exposed to an average concentration of 7.3 ppm for an

average of 106 months (Cavalleri et al. 1994). Because this effect may be a neurological effect rather

than a direct effect on the eyes, it is also presented in Section 2.2.1.4.

Histological changes were not observed in the eyes of rats exposed to tetrachloroethylene at 50, 200,

or 800 ppm 6 hours/day, 5 days/week, for 13 weeks (Mattsson et al. 1992).

Body Weight Effects.   Rats appear to be more sensitive to effects on body weight than mice.

Following intermittent exposure to tetrachloroethylene for 2 weeks, body weights of rats but not mice

were significantly reduced at 1,750 ppm (NTP 1986). Following intermediate-duration exposure to

tetrachloroethylene, body weights of rats were significantly reduced at 1,600 ppm (NTP 1986), with no

changes greater than 10% noted in rats exposed at 800 ppm (Mattsson et al. 1992) or 1,000 ppm

(Tinston 1995). No effects on body weight were noted in mice intermittently exposed to

tetrachloroethylene for intermediate durations at concentrations as high as 1,600 ppm (Kjellstrand et al.

1985; Kylin et al. 1965; NTP 1986). Body weight effects were not observed in rats exposed to

tetrachloroethylene at 400 ppm, or in mice exposed at 200 ppm for 103 weeks (NTP 1986).
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In intermediate-duration studies, guinea pigs exposed to tetrachloroethylene at 2,500 ppm for 24 days

lost weight, and guinea pigs exposed to 200 ppm for 158 days showed a significant depression in body

weight gain (Rowe et al. 1952). Limitations of this study include a lack of quantitative data, the use

of small numbers of animals, and intercurrent infection

2.2.1.3 Immunological and Lymphoreticular Effects

No studies were located regarding immunological or lymphoreticular effects in humans after inhalation

exposure to tetrachloroethylene.

There are also no reliable data to assess immunological effects in animals following inhalation

exposure. However, in a mouse study (see the discussion on respiratory effects in Section 2.2.1.2),

there was increased host susceptibility to pulmonary bacterial infection after a 3-hour inhalation

exposure to 50 ppm tetrachloroethylene (Aranyi et al. 1986). The specific mechanism of the increased

susceptibility is unknown. The significance of the study is unclear because of variability in control

group mortality and lack of evaluation of specific immunological end points.

2.2.1.4 Neurological Effects

The nervous system is a major target organ in humans exposed to tetrachloroethylene by inhalation.

Acute exposure, depending on concentration, can result in reversible mood and behavioral changes,

impairment of coordination, or anesthetic effects.

The anesthetic and preanesthetic central nervous system effects of tetrachloroethylene were

documented in four volunteer subjects (one male, sex not specified for the other three) exposed acutely

to concentrations ranging from 500 to 2,000 ppm. Mood changes, slight ataxia, faintness, and

dizziness occurred with exposure to concentrations of l,000-1,500 ppm for <2 hours. At exposure to

2,000 ppm for 5-7 minutes, subjects experienced a sensation of impending collapse (Carpenter 1937).

Slight lightheadedness was reported by six male volunteers exposed to tetrachloroethylene at a

concentration of 210-240 ppm for over 30 minutes (Stewart et al. 1961b). Dizziness has been

reported after brief accidental exposure to high concentrations of tetrachloroethylene fumes (Saland

1967) while longer exposures resulted in collapse, coma, and seizures (Hake and Stewart 1977;

Morgan 1969; Pate1 et al. 1973; Stewart 1969; Stewart et al. 196la).
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There have been several experimental studies of acute neurological effects in adult humans exposed to

tetrachloroethylene. In one study, symptoms of neurological impairment were not reported after

exposure to 106 ppm for 1 hour (Rowe et al. 1952). Neurological symptoms of dizziness and

drowsiness occurred at exposure to 216 ppm for 45 minutes to 2 hours; loss of motor coordination

occurred at exposure to 280 ppm for 2 hours or 600 ppm for 10 minutes. Volunteers in this study

were allowed to leave the exposure chamber when they experienced discomfort. Consequently,

exposure times varied and ranged from 3 minutes to 2 hours (Rowe et al. 1952). In another study,

exposure to 100 ppm for 7 hours produced symptoms such as headache, dizziness, difficulty in

speaking, and sleepiness (Stewart et al. 1970). Of five objective tests of central nervous system

performance in humans exposed for 7 hours, none showed any abnormality except the Romberg test of

balance, which was abnormal for three of the five subjects exposed for 7 hours a day for 5 consecutive

days. Only one exposure level (100 ppm) was used in this study, and no control subjects were

included (Stewart et al. 1970).

Hake and Stewart (1977) describe a study in which four male volunteers were exposed to

concentrations of 0, 20, 100, and 150 ppm tetrachloroethylene for 7.5 hours/day. Exposure at each

concentration lasted for 5 days. Subjective evaluation of electroencephalographic scores suggested

cortical depression in subjects exposed to 100 ppm. Coordination, as measured by the Flanagan

coordination test, was significantly decreased at some time points during exposure to 100 or 150 ppm.

No effects on flash visual-evoked responses, equilibrium tests, math skills, time discrimination, and

reaction times were noted.

In contrast to the Hake and Stewart (1977) study, Altmann et al. (1990) found a statistically significant

(p<0.05) increase in latency of pattern reversal visual-evoked potentials in 10 male volunteers exposed

to tetrachloroethylene at 50 ppm for 4 hours/day for 4 days, relative to 12 subjects exposed at 10 ppm.

No effects on brainstem auditory-evoked potentials were noted. Tests of visual contrast measured in a

few individuals showed a tendency for loss of contrast in the low and intermediate spatial frequencies

at 50 ppm. In this study, measurements were also completed the day before exposure so each

individual served as his own control. The lo-ppm group was considered the control group, and this

concentration was used because it is well above the odor threshold of tetrachloroethylene so that there

was at least an attempt to blind the subjects to the exposure concentrations. Blood tetrachloroethylene

concentrations were measured before, in the middle, and at the end of each day’s exposure, and an

association between the effect on pattern reversal visual-evoked potentials and blood tetrachloro-
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ethylene concentrations was observed (p<0.03). The lack of effect on flash visual-evoked potentials in

the Hake and Stewart (1977) study at concentrations up to 100 ppm compared to an effect on pattern

reversal visual-evoked potentials at 50 ppm in the Altmann et al. (1990) study may reflect the greater

inter- and intrasubject variability of waveforms for flash visual-evoked potentials (Otto et al. 1988).

In a second study completed by Altmann et al. (1992) in which baseline measurements were

completed 72 hours before exposure, 16 male volunteers were exposed to 50 ppm, and 12 male

volunteers were exposed to 10 ppm, 4 hours/day for 4 days. A faint odor was reported by 33% of the

subjects at 10 ppm and 29% of the subjects at 50 ppm on the first day of testing, and by 15% of the

subjects at 10 ppm and 36% of the subjects at 50 ppm on the last day of testing, leading the

investigators to conclude that only a few subjects could identify their exposure condition. This study

confirmed the effect on pattern reversal visual-evoked potentials at 50 ppm and the lack of effect on

brainstem auditory-evoked potentials. In addition, Altmann et al. (1992) completed a battery of

neurological tests including finger tapping; eye-hand coordination using a sine wave tracking task;

simple reaction time; continuous performance test; symbol-digit test; visual retention; pattern

recognition; digit learning; paired associates learning and retention; vocabulary test; and mood scales.

Analysis of covariance, with preexposure baseline values as covariates, revealed significant

performance deficits for vigilance (p=0.04) and eye-hand coordination (p=0.05) at 50 ppm. A

borderline (p=0.09) effect on simple reaction times was also noted at 50 ppm. Based on the NOAEL

of 10 ppm, an acute-duration inhalation MRL of 0.2 ppm was calculated as described in the footnote

to Table 2-l.

An investigation was conducted with 19 volunteers (10 males and 9 females) exposed 5 days/week for

1 month to tetrachloroethylene vapor concentrations of 0, 20, 100, or 150 ppm (Stewart et al. 1981).

The subjects were exposed 7.5 hours/day and were exposed to each concentration for 1 week.

Electroencephalogram (EEG) results indicated that major changes in the EEG of three of four male subjects

and four of five female subjects occurred during exposure to 100 ppm. In the majority of subjects, the

EEG changes were characterized by a reduction in overall wave amplitude and frequency, most

strikingly evident in the occipital leads. The study authors stated that the altered EEG pattern was

similar to that seen in healthy adults during drowsiness, light sleep, and the first stages of anesthesia.

Long-term neurotoxic effects may be a sequel of organic solvent exposure as indicated by studies of

dry cleaning workers. While acute work-related symptoms, such as headache, seemed to improve after
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cessation of exposure of workers to solvents, symptoms suggestive of chronic encephalopathy,

particularly memory and concentration impairment, persisted after cessation of exposure. These latter

symptoms remained unchanged even after workers had been free of organic solvent exposure for

6.6 years and continued in workers still being exposed (Gregersen 1988). Limitations of this 10-year

follow-up study of solvent-exposed workers include the combining of workers exposed to organic

solvents other than tetrachloroethylene (white spirit, toluene, and styrene) with dry cleaners for

purposes of analysis, unknown exposure concentrations and durations, possible skewed recruitment of

the study population when the study was started in 1975, different methods employed in the two

follow-up studies, and failure to confirm symptoms of chronic encephalopathy by a neuropsychological

investigation.

In a study of 22 dry cleaning workers (primarily women) in Belgium exposed to a TWA concentration

of 21 ppm tetrachloroethylene over an average of 6 years, no significant alterations were detected in

neurological symptoms or psychomotor performances compared to 33 unexposed controls (Lauwerys et

al. 1983). However, 17 of 22 subjective neurologic symptoms were more prevalent in the exposed

group, particularly memory loss and difficulty in falling asleep. Exposure assessment included

measurement of urinary trichloroacetic acid daily for 1 week, measurement of air tetrachloroethylene

concentrations with personal air samplers and badges, and measurement of breath and blood

concentrations of tetrachloroethylene. All measurements were completed during 1 work week. Cai et

al. (1991) also reported an increase in subjective symptoms including dizziness and forgetfulness in

workers exposed to tetrachloroethylene at a geometric mean concentration of 20 ppm for

l-120 months relative to unexposed controls. Exposure was measured using a diffusive sampling with

carbon cloth. Additional details, including frequency of measurements were not reported.

In a study of 65 dry cleaning workers exposed to tetrachloroethylene for at least 1 year, behavioral

tests that measured short-term memory for visual designs showed deficits in the high-exposure group

(40.8 ppm) relative to the low-exposure group (11.2 ppm) (Echeverria et al. 1995). Exposure was

assessed by a breath sample, and by 15-minute air samples from the breathing zone of a-clerk, a

pressor, and an operator in 19 of the 23 shops studied. Individuals were then placed in the high-,

moderate-, or low-exposure groups based on work history. These authors (Echeverria et al. 1995) also

describe four cases referred for neuropsychologic assessment of possible tetrachloroethylene

encephalopathy. The subjects performed below expectation on tasks assessing memory, motor,

visuospatial, and executive functions, with milder attentional deficits. The authors suggest that
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tetrachloroethylene may affect the functioning of the frontal lobes (mediating complex organizational

behavior, attention executive functioning, and reasoning) and the limbic system (mediating mood and

memory).

There are conflicting reports on the effect of tetrachloroethylene on color vision. No effect on blue-yellow

color vision was noted in 30 men or 34 women occupationally exposed to tetrachloroethylene

at average concentrations of 15.3 and 10.7 ppm, respectively (Nakatsuka et al. 1992). The average

duration of exposure for these subjects was not stated. When compared to unexposed controls

(matched for sex, age, alcohol consumption and cigarette use), 22 dry cleaners exposed to an average

concentration of 7.3 ppm tetrachloroethylene for an average of 106 months showed a significant

decrease (p=0.007) in color vision, primarily in the blue-yellow range (Cavalleri et al. 1994). Because

the exposure concentrations were measured on a single day, it is not clear how well they represent

long-term exposure. The mechanism of color vision loss and the contribution of peak exposure to this

effect are not known.

Dry cleaning workers exposed to a TWA concentration of 12 or 54 ppm tetrachloroethylene had

significantly impaired perceptual function, attention, and intellectual function compared to a control

population when evaluated by a battery of psychological tests and questionnaires (Seeber 1989). The

workers were exposed chronically, but the specific duration of exposure is unclear as no units for

duration of exposure were stated. The study showed no dose response (no significant differences

between high- and low-exposure groups), no correlation between test results and individual exposure

levels as measured by blood tetrachloroethylene and urinary TCA levels, and variable deviations

between exposed and control populations. Compared to 30 unexposed women, significantly prolonged

reaction times (simple reaction times, p<0.000l; shape comparison to test vigilance and to test stress,

p<0.005) were reported in 60 women occupationally exposed to tetrachloroethylene at a median

concentration of 15 ppm for an average of 10 years (Ferroni et al. 1992). Exposure levels were

determined by measuring tetrachloroethylene in the blood collected during the workday and in air

samples collected during 4-hour periods in the workweek. The sampling was completed-during the

winter and summer to account for seasonable variability. No significant association between measures

of exposure and neurobehavioral tests was noted. Based on the LOAEL of 15 ppm, a chronic-duration

inhalation MRL of 0.04 ppm was calculated as described in the footnote to Table 2-l.
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A study of 14 persons living above or next to dry cleaning facilities for l-30 years relative to

23 controls suggests that further studies of a large population exposed to very low levels of

tetrachloroethylene would be useful. In this study, no significant differences were observed in the

absolute values of tests of a neurological battery (pattern reversal visual-evoked potentials continuous

performance test, hand-eye coordination, finger tapping, simple reaction time, visual memory)

(Altmann et al. 1995). When analyzed using multivariate analysis to adjust for age, gender, and

education, response time in the continuous performance test and simple reaction time were increased

(p<0.05), and a smaller number of stimuli were identified correctly by the exposed subjects (p<0.05).

The median concentrations of tetrachloroethylene were 0.2 and 0.003 ppm in the apartments of

exposed and control subjects, respectively, and blood concentrations measured in the examination

room were 17.8±46.9 µg/L in exposed subjects and below the 0.5-µg/L detection limit in controls.

Because there were no significant effects on the absolute values of the neurological tests, the 0.2ppm

concentration is considered a NOAEL for neurological effects in humans.

Neurological effects and biochemical changes in the brain have been reported in animals exposed to

tetrachloroethylene. Many experimental studies did not correlate biochemical with behavioral effects

or either parameter with morphologic changes in the brain. The significance of many of these studies

regarding neurotoxicity is therefore unclear.

Neurological signs typical of an anesthetic effect of inhaled tetrachloroethylene have been reported in

numerous animal studies (see Table 2-l). These clinical signs consist of hyperactivity (excitability),

ataxia, hypoactivity, and finally loss of consciousness (Friberg et al 1953; NTP 1986; Rowe et

al. 1952). In one study, mice inhaling tetrachloroethylene for 4 hours showed signs of anesthesia at

concentrations of 2,328 ppm (NTP 1986). Mice exposed to concentrations of 0, 100, 200, 425, 875,

and 1,750 ppm (6 hours per day, 5 days per week, for 2 weeks) experienced dyspnea, hypoactivity,

hyperactivity, anesthesia, and ataxia at the highest concentration (NTP 1986). In another study,

anesthesia was observed in mice within 2.5 minutes of breathing air containing 6,800 ppm tetrachloro-ethylene

(Friberg et al. 1953). Rats exposed to 0, 100, 200, 425, 875, and 1,750 ppm tetrachloro-

ethylene (6 hours per day, 5 days per week, for 2 weeks) were observed to have dyspnea, hypoactivity,

and ataxia at the highest concentrations (NTP 1986). In additional studies, rats exposed to 3,000 ppm

tetrachloroethylene became anesthetized in several hours, while those exposed to 6,000 ppm were

anesthetized in minutes (Rowe et al. 1952). Rats became ataxic following exposure to 2,300 ppm for

4 hours (Goldberg et al. 1964). Dogs exposed to 5,000 ppm tetrachloroethylene by face mask for less
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than 10 minutes became excited and struggled (Reinhardt et al. 1973). This response may have

represented irritant respiratory effects of tetrachloroethylene.

Albee et al. (1991) reported electrophysiological changes in male rats exposed to tetrachloroethylene at

800 ppm 4 hours/day for 4 days. The changes included altered shape, reduced amplitude, and

decreased latency of flash-evoked potentials and decreased latency of somatosensory evoked potentials.

EEG changes were also observed. A 13-week study in which rats were exposed to 50, 200, or

800 ppm tetrachloroethylene (6 hours/day, 5 days/week) reported no effect on gait, posture, muscle

tone, sensory response, and hind and forelimb grip performance (Mattsson et al. 1992). At 800 ppm,

minimal changes were noted in flash-evoked potentials measured 1 week after the last exposure. The

investigators considered the effect nonadverse and indicated that changes in flash-evoked potential can

occur in rats exposed to enriched environment (paired housing, access to an exercise wheel, and

handling twice a day by study personnel). Histological changes were not observed in the optic tract,

brain, spinal cord, or peripheral nerves. According to the investigators, this study indicates that

intermediate-duration exposure of rats to tetrachloroethylene at 800 ppm does not cause serious

permanent damage and suggests that if minor acute changes in flash-evoked potentials are prevented,

more serious neurological effects will not occur However, it is not possible to draw a conclusion on

the reversibility of the effects without data on the post-exposure time course of these effects.

A multigeneration study in rats suggests that animals may adapt to some of the neurological effects of

tetrachloroethylene. Exposure at 1,000 ppm, 6 hours/day, 5 days/week, for 11-19 weeks resulted in

decreased activity, reduced response to sound, salivation, breathing irregularities, and piloerection

(Tinston 1995). The effects were observed only during the first 2 weeks in each generation, and

recovery from these effects was noted about 30 minutes before the end of each exposure.

Behavioral alteration has been observed in rodents after inhalation exposure to tetrachloroethylene.

Open-field behavior (ambulation) was elevated in groups of 10 male rats exposed to 200 ppm

tetrachloroethylene of unspecified purity for 6 hours a day for 4 days (Savolainen et al. 1977).

Ambulation was significantly increased 1 hour, but not 17 hours, after the last exposure. Biochemical

changes in the brains following several additional exposures were reduced ribonucleic acid (RNA)

content and increased nonspecific cholinesterase content. There was no histologic examination of

brain tissue, so these findings could not be correlated with brain structural damage.
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Biochemical changes were reported in brains of rats and Mongolian gerbils exposed by inhalation to

tetrachloroethylene. Gerbils exposed to 320 ppm continuously for 3 months followed by a 4-month

exposure-free period had changes in levels of S-100 protein, a marker for astrocytes as well as other

cells in the peripheral nervous system and skin (Rosengren et al. 1986). Rats exposed to 320 ppm

continuously for 30 days had changes in brain cholesterol, lipids, and polyunsaturated fatty acids

(Kyrklund et al. 1988). Changes in the fatty acid composition of the brain were also observed in rats

continuously exposed to tetrachloroethylene at 320 ppm for 90 days (Kyrklund et al. 1990). Gerbils

exposed to 60 or 320 ppm had decreased deoxyribonucleic acid (DNA) content in portions of the

cerebrum (Karlsson et al. 1987; Rosengren et al. 1986). Gerbils exposed to 120 ppm continuously for

12 months had altered phospholipid content (phosphatidylethanolamine) in the cerebral cortex and

hippocampus (Kyrklund et al. 1984). In another study, gerbils with a similar exposure regimen had

decreased taurine content and increased glutamine content in areas of subcortical brain tissue (Briving

et al. 1986). These studies are limited by failure to examine nervous tissue histologically in order to

correlate biochemical changes with behavioral alterations or with morphologic evidence of brain

damage. In addition, all but the Rosengren et al. (1986) study involved exposure to only one

concentration of tetrachloroethylene.

In a study designed to examine tetrachloroethylene effects on different regions and different cell types

of the brain, Wang et al. (1993) measured brain weight and neuronal and glial markers in rats exposed

continuously at 300 or 600 ppm for 4 or 12 weeks. Brain weight was significantly reduced at

600 ppm following both 4 and 12 weeks of exposure. Measurement of neuron-specific enolase, a

cytosolic neuronal protein in the frontal cerebral cortex, hippocampus, and brainstem did not show any

changes. The cytosolic marker of glial cells, glial S-100, was significantly reduced in all three brain

regions following exposure at 600 ppm for 12 weeks, with the greatest reduction observed in the

frontal cerebral cortex. Cytoskeletal elements of neuronal cells (neurofilament 68 kD polypeptide) and

glial cells (glial fibrillary acid protein) were significantly reduced in the frontal cerebral cortex at

600 ppm. The neuronal marker was reduced at both 4 and 12 weeks, while the glial marker was

reduced only at 12 weeks. In the hippocampus and brainstem, only the glial cytoskeleton protein was

significantly reduced following 12 weeks of exposure at 600 ppm. The investigators (Wang et al.

1993) concluded that the frontal cerebral cortex is more sensitive to tetrachloroethylene than other

regions of the brain, that cytoskeletal elements are more sensitive than cytosolic proteins, and that in

addition to neural cells, glial cells are vulnerable to the effects of tetrachloroethylene.
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Histologic lesions in the central nervous system have not been observed in chronic inhalation studies

in rats and mice (NTP 1986).

The highest NOAEL values and all reliable LOAEL values for neurological effects in each species and

duration category are recorded in Table 2-l and plotted in Figure 2-l.

2.2.1.5 Reproductive Effects

Some adverse reproductive effects in women have been reported to be associated with occupational

exposure to tetrachloroethylene in dry cleaning operations. These effects include menstrual disorders

and spontaneous abortion. However, no definitive conclusions can be made because of the limitations

associated with these studies.

A small-scale exploratory study described menstrual disorders in dry cleaning workers (Zielhuis et al.

1989). Limitations of the study are lack of exposure measurement data, methodologic problems (self-administered

questionnaire with no follow-up and failure to account for various confounding factors

such as smoking, alcohol consumption, and medicinal drugs), and a relatively small study population.

Several case-control studies of women occupationally exposed to tetrachloroethylene in dry cleaning

operations suggested that exposed women had increased risk of spontaneous abortion (Ahlborg 1990;

Kyyriinen et al. 1989; Windham 1991). Limiting factors include a low number of pregnancies among

exposed women (Ahlborg 1990), a small group of exposed affected workers, biological monitoring not

concurrent with the first trimester of pregnancy (Kyyrönen et al. 1989), and exposure assessed through

telephone interviews (Windham et al. 1991). In another small study, spontaneous abortions and birth

defects occurred at a higher incidence in Italian dry cleaning workers than in housewives, but this

difference was not statistically significant (Bosco et al. 1986). No increase in spontaneous abortion

rates for laundry and dry cleaning workers in Canada was detected in a cross-sectional study

(McDonald et al. 1986). In a case-control study of 214 cases of low birth weight, congenital

malformations, perinatal mortality, or spontaneous abortions identified in a cohort of dry cleaning

workers in Scandinavia, no consistent effect on pregnancy outcome was observed (Olsen et al. 1990).

Study limitations include incomplete participation of all dry cleaning facilities, limited controls for lifestyle

factors, and limited exposure information
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In a study of semen quality among dry cleaners (n=34), the overall percentages of abnormal sperm

were similar in the dry cleaners and 48 unexposed laundry workers (Eskenazi et al. 1991b). However,

the sperm cells of dry cleaners were significantly more likely to be round and less likely to be narrow.

Men with the highest exposure levels had sperm with less progressive linear movement and more

lateral movement. No effects on sperm counts were noted. A study of the reproductive outcome of

17 of the dry cleaners and 32 of the laundry workers showed that there is some evidence that it may

take slightly longer for the wives of dry cleaners to become pregnant and that they seek help for

infertility problems more often (Eskenazi et al. 1991a). Spontaneous abortions were not increased in

wives of dry cleaners (Eskenazi et al. 1991a). In 20 women occupationally exposed to unspecified

concentrations of tetrachloroethylene, a nonsignificant increase in time-to-pregnancy was observed

compared to 92 unexposed controls (Sallmen et al. 1995). Exposure concentrations were not provided

in this study.

Adverse effects on reproductive performance were not detected in rats exposed by inhalation to 70,

230, or 470 ppm tetrachloroethylene for 28 weeks, as judged by the number of pregnancies, number of

litters conceived, and number of offspring per litter (Carpenter 1937). This older study has numerous

limitations including intercurrent disease, nonstandard protocols, rats of undefined strain, and

inadequate controls.

In a multi-generation study, groups of rats were exposed to tetrachloroethylene at 0, 100, 300, or

1,000 ppm for 6 hours/day, 5 days/week, for 11 weeks before mating (Tinston 1995). After mating,

the males were exposed at all concentrations daily until termination, and the females were exposed at

all concentrations daily until gestation day 20 when they were removed from exposure. One litter was

produced in the first generation, and the dams and litters were exposed to all concentrations daily from

day 6 to day 29 post partum. The F 1 generation parents were exposed to tetrachloroethylene at 0, 100,

300, or 1,000 ppm for at least 11 weeks before mating. Three litters were produced in the second

generation. Dams and F2A litters of the control and l00-ppm exposure groups were exposed daily

from day 6 to day 29 post partum, and dams and F2A litters of the 300-ppm exposure group were

exposed daily from day 7 to day 29 postpartum. Dams and F2A litters of the l,000-ppm group were

not exposed during lactation. For all exposure concentrations, dams and F2B litters were not exposed

during lactation. The F2C litters were produced by mating unexposed females with male controls and

the males exposed to 1,000 ppm.
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Exposure at 1,000 ppm resulted in sedation of dams and pups. Decreased body weight gain in the

parental animals was noted at 1,000 ppm during the pre-mating and lactation periods but was generally

less than 10%. The proportion of pups born live at 1,000 ppm was significantly lower in the F1A,

F2A, and F2B litters. The incidence of pup mortality during lactation was also significantly increased

at 1,000 ppm in the F1A, F2A, and F2B litters. The effects on survival were observed with and without

pup exposure suggesting an in utero effect rather than a direct effect of tetrachloroethylene. Relative

to controls, growth of offspring was reduced during lactation, with the reduction most marlced at

1,000 ppm. At the beginning of the pre-mating period for the F1 parents, body weights of males and

females were 26% and 24% lower than controls, respectively. After adjustment for initial body

weights, growth of females was similar to controls, although growth of the l,000-ppm males was less

than controls. Body weights of offspring in the l00- and 300-ppm groups were generally within 10%

of control values. In the F2C litters, there were no statistically significant changes in the proportion of

pups born live, pup survival, or growth suggesting that the effects were not male mediated. No effects

on reproductive outcome were noted at 300 ppm. The investigators describe treatment-related chronic

progressive glomerulonephropathy in the kidneys of adult rats at 1,000 ppm (Tinston 1995). The

report indicates that other organs were removed for histological examination, but it is not clear if they

were examined, and if they were examined, details of the results are not provided. The l,000-ppm

concentration is considered a serious LOAEL for reproductive effects resulting in a decrease in the

number of livebom pups, and the 300-ppm concentration is considered a NOAEL.

2.2.1.6 Developmental Effects

No studies were located regarding developmental effects in humans after inhalation exposure to

tetrachloroethylene.

A slight but significant increase in maternal and fetal toxicity occurred in Sprague-Dawley rats and

Swiss Webster mice exposed to 300 ppm tetrachloroethylene by inhalation on days 6-15 of gestation

(Schwetz et al. 1975). Maternal or fetal toxicity or teratogenicity was not, however, reported for rats

exposed on days 1-19 or rabbits on days l-24 of gestation by inhalation to 500 ppm

tetrachloroethylene (Hardin et al. 1981). Limitations of this study include use of only one dose level,

the use of summary and nonquantitative data, and conduct of portions of the study at two separate

laboratory facilities.
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In a behavioral teratology study, pregnant Sprague-Dawley rats were exposed to 0, 100, or 900 ppm

tetrachloroethylene on days 14-20 of gestation and to 0 or 900 ppm tetrachloroethylene on days 7-13

(Nelson et al. 1980). Effects occurred after exposure to 900 ppm for both exposure periods, but not

after exposure to 100 ppm. Dams had reduced feed consumption and weight gain, without liver or

kidney histological alterations. Pups of dams exposed to 900 ppm on gestation days 7-13 had

decreased performance during tests of neuromuscular ability (ascent on a wire mesh screen and rotarod

balancing) on certain days. Offspring (before weaning) from dams exposed to 900 ppm on days

14-20 performed poorly on the ascent test on test day 14 only, but later in development their

performance in the rotarod balancing test was superior to the controls, and they were more active in an

open-field test. Brains of 21-day-old offspring exposed to 900 ppm prenatally had significant

decreases in neurotransmitters (dopamine in those exposed on gestation days 14-20 and acetylcholine

in those exposed on days 7-13 or 14-20). The lower concentration (100 ppm) produced no significant

differences from controls. There were no microscopic brain lesions. Changes in brain fatty acid

composition were observed in the offspring of guinea pigs exposed to tetrachloroethylene at 160 ppm

during gestation days 33-65 (Kyrklund and Haglid 1991). Measurements of brain lipids did not show

any effects. The investigators concluded that changes in fatty acid composition in the brains of

developing animals were not greater than in adult animals exposed to tetrachloroethylene.

The highest NOAEL values and all reliable LOAEL values for developmental effects in rats and mice

following acute exposure to tetrachloroethylene are recorded in Table 2- 1 and plotted in Figure 2- 1.

2.2.1.7 Genotoxic Effects

Assays of clastogenic effects in humans following occupational exposure to tetrachloroethylene via

inhalation have shown inconsistent results. Increases in chromosome aberrations and sister chromatid

exchanges were not detected in lymphocytes from 10 workers who were occupationally exposed to

tetrachloroethylene (Ikeda et al. 1980). The exposure concentrations for these workers were estimated

to be between 10 and 220 ppm for 3 months to 18 years. The small number of workers-and the wide

range of exposure concentrations and durations limit the generalizations that can be made from this

study. Twenty-seven workers exposed to an 8-hour TWA concentration of 10 ppm tetrachloroethylene

were compared to unexposed occupational controls with respect to incidence of sister chromatid

exchanges (Seiji et al. 1990). Although the study authors had found no significant effect of cigarette

smoking alone in either the exposed workers or the controls, the difference in sister chromatid
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exchange frequency between tbe exposed workers who smoked and the nonsmoking controls was

statistically significant. The authors proposed a synergistic effect of chemical exposure and cigarette

smoking. The number of workers examined was small (12 smokers and 2 nonsmokers among the

exposed men; 9 smokers and 3 nonsmokers among the controls). The lack of any effect of cigarette

smoking alone on the frequency of sister chromatid exchange is somewhat surprising, as this is a

recognized effect that is well documented in the literature (Hook 1982).

No studies were located regarding genotoxic effects in animals after inhalation exposure to

tetrachloroethylene.

Other genotoxicity studies are discussed in Section 2.5.

2.2.1.8 Cancer

There have been a number of epidemiology studies of dry cleaning and laundry workers. Many of

these studies are complicated by potential exposure to other petroleum solvents.

The only investigation of dry cleaning workers with no known exposure to petroleum solvents was a

retrospective mortality study of a subcohort of 615 workers employed only in shops where

tetrachloroethylene was the principal solvent (Brown and Kaplan 1987). Excess risk for cancer at any

site was not identified in this subcohort. In the entire cohort, whicR was composed of 1,690 workers

(including workers who had potential occupational exposure to petroleum solvents), there were

significant excesses of mortality from kidney, bladder, and cervical cancer. The authors state that the

increased incidence of cervical cancer may reflect the lower socioeconomic status of the cohort, as

other studies have reported a correlation between lower socioeconomic status and increased risk of

cervical cancer (Brown and Kaplan 1987; Hoover et al. 1975). A limitation of this study was lack of

evaluation of smoking habits of the study cohort, since cigarette smoking has been associated with an

increased risk of kidney, bladder, and cervical cancers (Newcomb and Carbone 1992).

A follow-up of the Brown and Kaplan (1987) cohort further examined the vital status of the workers

without updating the work histories (Ruder et ah 1994). Statistically significant excesses were

observed for bladder cancer (standardized mortality ratio [SMR] = 2.54), esophageal cancer (SMR =
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2.14) and intestinal cancer (SMR = 1.56). Increased mortality from pancreatic cancer was also noted

in the subcohort with the longest latency period.

Additional epidemiological studies of dry cleaning and laundry workers have shosvn significant

excesses in mortality resulting from cancers of the lung, cervix, esophagus, kidney, skin,

lymphatic/hematopoietic system, and/or colon (Blair et al. 1979, 1990; Duh and Asal 1984; Katz and

Jowett 1981). Lynge and Thygesen (1990) reported a small excess risk of liver cancer among female

(7 observed, 2.1 expected) but not male laundry and dry cleaning workers. A nested-case-control

study of this population, which distinguished between laundry and dry cleaning workers, indicated that

all of the liver cancers were found among laundry workers (Lynge et al. 1995). Renal cell carcinoma

was also not increased among dry cleaners relative to laundry workers. The investigators concluded

that the excess risk of liver cancer among women working in laundries and dry cleaning shops was not

explained by exposure to dry cleaning solvents.

Non-significant increases in lymphosarcoma/reticulosarcoma, bladder cancer, and cervical cancer have

also been reported (Blair et al. 1990). Although these studies suggest a possible association between

chronic occupational exposure to tetrachloroethylene and increased cancer risk, the evidence must be

regarded as inconclusive for the following reasons. First, workers were exposed to petroleum solvents

and other dry cleaning agents as well as tetrachloroethylene. Second, other confounding factors such

as smoking, alcohol consumption, and low socioeconomic status were not considered in the analyses.

Third, the numbers of deaths from cancer of specific organs or involving the hematopoietic system

were low. Fourth, in several of these studies, attempts were not made to distinguish between laundry

and dry cleaning workers.

In a study of Finnish workers (292 men and 557 women) exposed primarily to tetrachloroethylene,

non-significant increases in non-Hodgkin’s lymphoma, cervical cancer, and pancreatic cancer were

noted (Anttila et al. 1995). The total number of cancer cases in this study was 31. Blood

concentrations of tetrachloroethylene measured in random samples taken from these workers averaged

116 µg/L in men and 66 µg/L in women. As the biological exposure index associated with an 8-hour

exposure of 25 ppm is 500 µg/L tetrachloroethylene in blood (ACGIH 1995), these workers were

probably exposed to concentrations of tetrachloroethylene below 25 ppm.
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Two other epidemiological studies of laundry and dry cleaning workers did not identify an

occupational risk of bladder cancer compared to control subjects (Chapman et al. 1981; Smith et al.

1985). In the epidemiological study conducted by Smith et al. (1985), smoking status was examined

to evaluate confounding or interactive effects, and smoking was found to be associated with an

increased risk of bladder cancer. While an increased risk of bladder cancer specifically in laundry or

dry cleaning workers of both sexes was not detected by Chapman et al. (1981), these authors found

that women exposed to solvents as a group were in the high-risk category.

A cohort of white male chemical workers in Louisiana exposed to a variety of chemicals including

tetrachloroethylene did not have an increased risk for total mortality or cancer (Olsen et al. 1989).

This nonpositive study was confounded by the healthy worker effect, defined as the observation that

employed persons have lower mortality rates than the general population. Blacks and women were not

analyzed in this study because of the small numbers of representatives from these groups.

A case-control study in New Jersey identified an increased risk of primary liver cancer in male

workers categorized as craftsman or operators in laundry or dry cleaning operations (Stemhagen et al.

1983). The specific solvents to which the workers were exposed and exposure levels were not

identified. The study controlled for alcohol consumption and smoking. A case control study of

astrocytic brain cancer among white males in Louisiana, New Jersey, and Pennsylvania showed a trend

for increased brain tumors with high tetrachloroethylene exposure (Heineman et al. 1994). This result

was based on only three cases and is limited in that exposure information was not available. This

study may also be confounded by exposure to methylene chloride. The study authors concluded that

the association between tetrachloroethylene and brain cancer requires further study.

A retrospective cohort study of 14,457 aircraft maintenance workers at Hill Air Force Base, Utah, was

undertaken by Spirtas et al. (1991) to determine if occupational exposure to over 20 solvents,

including trichloroethylene and tetrachloroethylene, posed an increased risk of mortality. Deaths due

to multiple myeloma or non-Hodgkin’s lymphoma were elevated in female workers exposed to

tetrachloroethylene for at least 1 year. However, confidence in these data is low primarily because

multiple and overlapping exposure to more than one chemical was considerable. In addition, the

levels of tetrachloroethylene to which the workers were exposed were not provided, and lifestyle

factors such as smoking and alcohol consumption were not assessed.
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An association between exposure to tetrachloroethylene and increased risk of developing cancer has

been suggested in results from animal experiments A 103-week inhalation toxicity/carcinogenicity

study of tetrachloroethylene was conducted using male and female Fischer-344 rats and B6C3F1 mice.

Exposure levels were 0, 200, or 400 ppm tetrachloroethylene for rats and 0, 100, or 200 ppm

tetrachloroethylene for mice (NTP 1986). In rats, there were significant and dose-related increases in

the incidences of mononuclear cell leukemia in exposed male and female rats (males: 28/50 control,

37/50 low dose, 37/50 high dose; females: 18/50 control, 30/50 low dose, 29/50 high dose). This

neoplasm occurs spontaneously in Fischer-344 rats, and incidences of mononuclear cell Peukemia in

control groups (56% for males, 36% for females) for this study were higher than for historical

chamber controls for the laboratory or for untreated controls from the NTP database. However, NTP’s

Board of Scientific Counselors considered the incidence of rat leukemias to be a valid finding despite

high background frequencies because there was a decreased time to the onset of the disease and the

disease was more severe in treated animals than in control animals.

Low incidences of renal tubular cell adenomas or adenocarcinomas (l/49, 3149, 4/50) occurred in male

rats (NTP 1986). Although the incidence of these tumors was not statistically significant, the fact that

there was any increase was itself significant because these tumors are considered uncommon in

untreated male rats. In mice of both sexes exposed to 100 or 200 ppm, there were significantly

increased incidences of hepatocellular neoplasms (Table 2-2). Study limitations include numerous

instances of rats and mice loose from their cages within the exposure chambers, with the potential for

aberrations in exposure and animal identification, as well as a very high incidence of mononuclear cell

leukemia in control rats, and liver tumors in mice.

In summary, a number of epidemiology studies of dry cleaning workers have shown increases in

cancer, especially esophageal and bladder cancers. After reviewing the data, Weiss (1995) concluded

that confounding of esophageal cancer by cigarette smoking and heavy alcohol consumption was only

partially taken into account in these studies. He also suggested that bladder cancers may be a result of

exposure to other solvents used in dry cleaning. Following inhalation exposure to tetrachloroethylene,

mononuclear cell leukemia was observed in rats and hepatic tumors were observed in mice (NTP

1986). Because both mononuclear cell leukemia and hepatic tumors are common in rats and mice,

respectively, the relevance of these tumors to humans is not clear. Further discussion of the relevance

of tumors in animals exposed to tetrachloroethylene to humans is presented in Section 2.5. The cancer

effect levels (CELs) for rats and mice are recorded in Table 2-I and plotted in Figure 2- 1.
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2.2.2 Oral Exposure

2.2.2.1 Death

One human death has been reported following oral treatment with 3 mL (152 mg/kg) of

tetrachloroethylene for hookworm infestation (Chaudhuri and Mukerji 1947). This individual was a

severely emaciated “street beggar” with preexistent chronic malnutrition and septic cholecystitis; thus,

it is difficult to determine the specific cause of his death and the relevance of this death to healthy

humans.

Single-dose LD50, values of 3,835 and 3,005 mg/kg were determined for male and female rats given

tetrachloroethylene by gavage in 4% Emulphor in water. Death occurred within 24 hours after dosing

and was preceded by tremors, ataxia, and central nervous system depression (Hayes et al. 1986).

When given in corn oil, half the female rats treated with a single dose of 5,000 mg tetrachloro-

ethylene/kg died (Berman et al. 1995). An oral LD50 of 8,139 mg/kg was reported for mice treated

with undiluted tetrachloroethylene (Wenzel and Gibson 1951).

Osborne-Mendel rats of each sex received tetrachloroethylene in corn oil by gavage at doses of 316,

562, 1,000, 1,780, or 3,160 mg/kg 5 days/week for 6 weeks. Deaths (number unspecified) occurred in

both males and females at the two highest doses but not at 1,000 mg/kg or lower (NCI 1977).

In a bioassay of tetrachloroethylene administered by gavage to rats and mice, compound-related

mortality occurred as a result of toxic nephropathy in both species and hepatocellular tumors in mice

(NCI 1971). Increased deaths occurred in groups of male and female rats exposed to 471 and

474 mg/kg/day tetrachloroethylene, respectively, 5 days per week for 78 weeks. Similarly exposed

mice had increased numbers of deaths at doses of 536 and 386 mg/kg/day for males and females,

respectively. This study is discussed in Sections 2.2.2.2 and 2.2.2.8.

All reliable LOAEL and LD50 values for death in each species are recorded in Table 2-3 and plotted in

Figure 2-2.
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2.2.2.2 Systemic Effects

The highest NOAEL and all reliable LOAEL values for systemic effects in each species and duration

category are recorded in Table 2-3 and plotted in Figure 2-2. No studies were located regarding

musculoskeletal or ocular effects in humans or animals after oral exposure to tetrachloroethylene.

Respiratory Effects.   No studies were located regarding respiratory effects in humans after oral

exposure to tetrachloroethylene. In a chronic bioassay, microscopic examination of the lungs did not

reveal any effects in rats treated by gavage with tetrachloroethylene at doses up to 941 mg/kg/day or

in mice at doses up to 1,072 mg/kg/day, doses which were associated with increased mortality (NCI

1977).

Cardiovascular Effects.   No studies were located regarding cardiovascular effects in humans after

oral exposure to tetrachloroethylene. However, cardiovascular effects from chronic ingestion of

solvent-contaminated (including tetrachloroethylene) drinking water were investigated in family

members of patients with leukemia in Woburn, Massachusetts (Byers et al. 1988). Fourteen adults in

a group of 25 complained of cardiac symptoms of tachycardia at rest, palpitations, or near syncope.

Eleven of these were selected for detailed testing that included resting and exercise tolerance

electrocardiograms, Holter monitoring, echocardiograms, and serum lipid levels. Of these 11, 8 had

serious ventricular dysfunctions, 7 had multifocal premature ventricular beats, and 6 required cardiac

medication. None of the subjects had clinically significant coronary artery disease. No rationale was

given as to the factors that were involved in the selection of the 11 given extensive testing. No

background information on family history of heart disease, smoking habits, or occupational history was

given for any of the 25 family members.

In a chronic bioassay, microscopic examination of the heart did not reveal any effects in rats treated

by gavage with tetrachloroethylene at doses up to 941 mg/kg/day or in mice at doses up to

1,072 mg/kg/day, both of which were doses associated with increased mortality (NCI 1977).

Gastrointestinal Effects.  Vomiting has been reported in boys treated with unspecified oral doses

of tetrachloroethylene to remove intestinal worms (Wright et al. 1937). Histological changes in the

gastrointestinal tract were not observed in rats or mice treated by gavage with tetrachloroethylene for

78 weeks at doses that increased mortality (NCI 1977).
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Hematological Effects.   No studies were located regarding hematological effects in humans after

oral exposure to tetrachloroethylene.

Hemoglobin, hematocrit, and cell counts were not affected in rats exposed to tetrachloroethylene in

drinking water (4% emulphor) at doses up to 1,400 mg/kg/day for 90 days (Hayes et al. 1986). Mice

exposed to 0.1 mg/kg/day tetrachloroethylene in drinking water for 7 weeks had high relative

concentrations of tetrachloroetbylene in the spleen, increased spleen weight, increased hemosiderin

deposits and congestion of red pulp, increased serum lactic dehydrogenase (LDH) isozyme I, which

was interpreted as being indicative of erythrocyte hemolysis, and a relative decrease in bone marrow

erythropoiesis (Marth 1987). Milder or no hematological effects, depending on the parameters

evaluated, occurred at exposures to 0.05 mg/kg/day. All hematological effects were reversible within

an S-week recovery period. There are several limitations of this study. First, only one sex of mouse

was evaluated. Second, splenic hemosiderosis, one of the parameters evaluated, is present in normal

mouse spleens; therefore, the presence of this pigment in the spleen is not necessarily an indicator of

hemolysis unless it is more widespread and severe compared to control spleens. Third, grading of

lesions by distribution and severity for either spleen or bone marrow was not documented in the paper.

Fourth, the study author did not provide documentation that LDH isozyme I is the isozyme found in

mouse erythrocytes.

Mild microcytic anemia and bone marrow and immune function changes occurred in B6C3F1 mice

exposed via drinking water to tetrachloroethylene plus 24 other groundwater contaminants (Germolec

et al. 1989). The observed changes in bone marrow consisted of suppression of granulocytemacrophage

progenitor cells accompanied by a decrease in bone marrow cellularity. A dose-related

suppression of antigen-induced antibody forming cells was also observed. This study is discussed in

more detail in Section 2.2.2.3.

Hepatic Effects.  The liver has not been shown to be a target organ in humans exposed to

tetrachloroethylene by the oral route except a single case report of obstructive jaundice and

hepatomegaly reported in a 6-week-old infant exposed to tetrachloroethylene (1 mg/dL) via breast milk

(Bagnell and Ellenberger 1977). After breast feeding was ended, a rapid improvement was observed.
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The liver is a principal target organ in rodents exposed orally to tetrachloroethylene. Hepatic effects

in rodents from oral exposure to tetrachloroethylene are similar to those produced by inhalation

exposure. Mice are more sensitive than rats to tetrachloroethylene-induced toxic effects; these effects

are related to tetrachloroethylene metabolism-particularly the formation of TCA-as discussed in

Section 2.3.

Liver weights were significantly increased and CYP2B P-450 enzymes were significantly induced in

rats treated by gavage with tetrachloroethylene in corn oil at 1,000 and 2,000 mg/kg/day for 5 days

(Hanioka et al. 1995). The P-450 enzymes were also significantly induced at 500 mg/kg/day, although

no change in liver weight was noted at this dose. Phase II drug metabolizing enzymes were also

induced with significant increases in DT-diaphorase activity at 2,000 mg/kg/day, significant increases

in glutathione S-transferase activity at 1,000 and 2,000 mg/kg/day, and significant increases in UDP-

glucuronyltransferase activity at all doses tested (≥125 mg/kg/day). Increased relative liver weights,

increased serum alanine aminotransferase, and hepatocellular hypertrophy were observed in female rats

treated by gavage with tetrachloroethylene in corn oil at a dose of 1,500 mg/kg/day for 14 days

(Berman et al. 1995). Hepatic effects were not observed at 500 mg/kg/day.

Tetrachloroethylene administered by gavage at a dose of 1,000 mg/kg/day for 10 days to male B6C3F1

mice increased relative liver weights and elevated cyanide-insensitive palmitoyl CoA oxidase levels,

indicative of peroxisomal proliferation (Goldsworthy and Popp 1987). The same dose administered to

Fischer-344 rats did not elevate cyanide-insensitive palmitoyl CoA oxidase levels significantly above

controls, although relative liver weights were increased. Schumann et al. (1980) reported

hepatocellular swelling in mice given 11 daily gavage doses of 100 mg tetrachloroethylene/kg. A

similar effect was not observed in rats exposed at doses up to 1,000 mg/kg/day.

Toxic effects induced in male Swiss Cox mice given tetrachloroethylene by gavage at doses of 0, 20,

100, 200, 500, 1,000, 1,500, or 2,000 mg/kg/day for 6 weeks were increased relative liver weight and

triglycerides beginning at 100 mg/kg/day, decreased glucose-6-phosphate and increased SGPT at

500 mg/kg, and hepatocellular lesions at ≥100 mg/kg/day. Lesions consisted of centrilobular

hepatocellular hypertrophy, karyorrhexis, centrilobular necrosis, polyploidy, and hepatocellular

vacuolization. All these effects were present in the two dose groups examined histologically (200 and

1,000 mg/kg/day) (Buben and O’Flaherty 1985). Centrilobular necrosis and increased levels of protein
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and protein-bound carbohydrates were observed in the livers of rats treated by gavage with

tetrachloroethylene in sesame oil at 3,000 mg/kg/day for 42 days (Ebrahim et al. 1995).

Elevated liver weights, relative to body weight but not brain weight, occurred in both sexes of

Sprague-Dawley rats given 1,400 mg/kg/day tetrachloroethylene in drinking water for 13 weeks.

While the serum enzyme, 5’-nucleotidase, was increased in females given 1,400 mg/kg/day and in

males given 400 or 1,400 mg/kg/day, results of other biochemical measurements did not suggest a

hepatotoxic effect. In addition, gross necropsy examination did not reveal any abnormalities in

selected organs including the liver (Hayes et al. 1986). The major limitation of this study was lack of

microscopic examination of livers.

Tetrachloroethylene has been tested for initiating and promoting activity in a rat liver foci assay (Story

et al. 1986). Mean liver weights and/or liver-to-body weight ratios were significantly increased

relative to the controls in partially hepatectomized adult male Osborne-Mendel rats (l0/group)

administered 995 mg/kg/day tetrachloroethylene by gavage in corn oil. In both the presence and

absence of an initiator (30 mg/kg diethylnitrosamine), tetrachloroethylene (995 mg/kg/day) induced an

increase in enzyme-altered foci (foci with increased γ-glutamyltranspeptidase activity).

Chemically related nonneoplastic liver lesions were not reported for Osborne-Mendel rats or B6C3F1

mice given tetrachloroethylene by gavage in a chronic bioassay (NCI 1977). This study, including its

limitations, is discussed in Section 2.2.2.8.

Renal Effects.   No studies were located regarding renal effects in humans after oral exposure to

tetrachloroethylene.

Daily gavage administration of 1,000 mg/kg tetrachloroethylene to male Fischer-344 rats for 10 days

produced an increase in protein droplet accumulation and cell proliferation in the P2 segment of the

kidney. This effect, not seen in female rats, was correlated with an increased presence of α-2µ-globulin

in the proximal convoluted epithelial cells (Goldsworthy et al. 1988). Results from an earlier study

by the same investigators indicated that peroxisomal proliferation in the rat kidney was not associated

with administration of 1,000 mg/kg/day tetrachloroethylene (Goldsworthy and Popp 1987). Peroxisomal

proliferation was the only end point investigated in this experiment. Male rats exposed to

1,500 mg/kg tetrachloroethylene by gavage for 42 days developed typical α-2µ-globulin nephropathy
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 (Green et al. 1990). Male rats, but not female rats, also developed α-2µ-globulin nephropathy

following daily gavage treatment with tetrachloroethylene at 500 mg/kg/day (Bergamaschi et al. 1992).

Kidney effects were not observed in female rats treated by gavage with tetrachloroethylene in corn oil

at a dose of 1,500 mg/kg/day for 14 days (Berman et al. 1995). Male B6C3F1 mice exposed to

1,000 mg/kg per day by gavage for 10 days had peroxisomal proliferation as evidenced by elevated

cyanide-insensitive palrnitoyl CoA oxidase levels (Goldsworthy and Popp 1987).

Hypercellular glomeruli and congestion of the convoluted tubules were observed in the kidneys of rats

treated by gavage with tetrachloroethylene (3,000 mg/kg/day) in sesame oil for 42 days (Ebrahim et al.

1995). Significant increases in the levels of protein and protein-bound carbohydrates in the kidneys

were also observed. No other doses of tetrachloroethylene were used in this study. Increased

kidney/body weight ratios were observed in male rats treated with tetrachloroethylene in the drinking

water at 400 mg/kg/day for 90 days (Hayes et al. 1986). No effects on the kidneys were observed at a

dose of 14 mg/kg/day.

Osborne-Mended rats and B6C3F1 mice of each sex were exposed to tetrachloroethylene in corn oil by

gavage for 78 weeks, followed by observation periods of 32 weeks (rats) and 12 weeks (mice) in a

carcinogenicity bioassay (NCI 1977). TWA doses for the study were 536 and 1,072 mg/kg/day for

male mice, 386 and 772 mg/kg/day for female mice, 471 and 941 mg/kg/day for male rats, and 474

and 949 mg/kg/day for female rats; untreated and vehicle control groups were included. Study

limitations are discussed in Section 2.2.2.8. Toxic nephropathy occurred at all dose levels in both

sexes of rats and mice, as did increased mortality. The nephropathy in both species was characterized

by degenerative changes in the proximal convoluted tubules at the junction of the cortex and medulla,

with cloudy swelling, fatty degeneration, and necrosis of the tubular epithelium and hyalin intralurninal

casts. Rat kidneys also had occasional basophilic tubular cytomegaly, chronic inflammation, and

mineralization.

Endocrine Effects.   No studies were located regarding endocrine effects in humans following oral

exposure to tetrachloroethylene. Histopathological changes in the adrenal glands were not observed in

female rats treated by gavage with tetrachloroethylene in corn oil at a dose of 1,500 mg/kg/day for

14 days (Berman et al. 1995). In a chronic bioassay, histological changes were not observed in the

adrenal glands, thyroid, parathyroid, pancreas, or pituitary of rats and mice treated by gavage with

tetrachloroethylene at doses that resulted in increased mortality (NCI 1977).
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Dermal Effects.   In family members of patients with leukemia from the Woburn study, 13 of 25

adults who had been chronically exposed to solvent-contaminated drinking water (including

tetrachloroethylene) developed skin lesions. These were maculopapular rashes that occurred

approximately twice yearly and lasted 2-4 weeks. These skin conditions generally disappeared within

l-2 years after cessation of exposure to contaminated water (Byers et al. 1988). There is no evidence

that skin lesions were related to solvent exposure in general or to tetrachloroethylene specifically.

In a chronic bioassay, histological changes were not observed in the skin of rats and mice treated by

gavage with tetrachloroethylene at doses that resulted in increased mortality (NCI 1977).

Body Weight Effects.   At the end of a 5-day study, body weights of male rats treated by gavage

with tetrachloroethylene at 2,000 mg/kg/day were 16% lower than controls (Hanioka et al. 1995).

Body weight gain was decreased 22% in male Fischer-344 rats treated by gavage with tetrachloro-

ethylene at 1,000 mg/kg/day for 11 days (Schumann et al. 1980). A decrease in body weight gain of

approximately 25% was observed in pregnant rats treated by gavage with tetrachloroethylene in corn

oil at 900 mg/kg/day on gestation days 6-19 (Narotsky and Kavlock 1995). No effect on body weight

was observed in Fischer-344 rats treated by gavage with tetrachloroethylene at 1,000 mg/kg/day for

10 days (Goldsworthy and Popp 1987) or in B6C3F1 mice treated by gavage with tetrachloroethylene

at 1,000 mg/kg/day for 10 or 11 days (Goldsworthy and Popp 1987; Schumann et al. 1980). An

explanation for the difference in effect on body weight in rats in the studies was not readily apparent.

Changes in body weight in longer term oral studies are also not consistent. Hayes et al. (1986)

reported 18% and 24% decreases in body weight gain in female rats treated with tetrachloroethylene in

the drinking water at 400 and 1,400 mg/kg/day, respectively, for 90 days. Body weight gain was

significantly decreased (15%) in males only at 1,400 mg/kg/day. A 30% reduction in body weight

gain was observed in female mice treated by gavage with tetrachloroethylene at 562 mg/kg/day for

90 days (NCI 1977), but no effect on body weight gain in male mice was noted at this dose. Changes

in body weight were not observed in rats treated by gavage with tetrachloroethylene at doses of

≤1,000 mg/kg/day for 6 weeks or in rats or mice in a chronic bioassay at doses associated with

increased mortality (up to 941 mg/kg/day for rats and 1,072 mg/kg/day for mice) (NCI 1977).
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2.2.2.3  Immunological and Lymphoreticular Effects

No studies were located regarding immunological and lymphoreticular effects in humans after oral

exposure to tetrachloroethylene.

There was, however, a study suggesting immunological effects in humans with chronic exposure to a

solvent-contaminated domestic water supply. Several wells in Wobum, Massachusetts, were

contaminated by a variety of solvents. The two main volatile chlorinated hydrocarbons measured

before well closure were trichloroethylene (267 ppb) and tetrachloroethylene (21 ppb) (Byers et al.

1988). A potential association between water contamination in Woburn and cases of childhood

leukemia is discussed in Section 2.2.2.8.

Some immunological abnormalities were found in 23 adults in Wobum who were exposed to

contaminated water and who were family members of children with leukemia. These immunological

abnormalities, tested for 5 years after well closure, were persistent lymphocytosis, increased numbers

of T lymphocytes, and depressed helper:suppressor T cell ratio. A follow-up test 18 months later

revealed reductions in lymphocyte counts, decreased numbers of suppressor T cells, and increased

helper:suppressor ratio. Auto-antibodies, particularly anti-nuclear antibodies, were detected in 48%

(1 l/23) of the adults tested. In the Wobum population, there was also a suggestion of an association

between cumulative exposure to contaminated wells and increased urinary tract infections and

respiratory disorders (asthma, bronchitis, pneumonia) in children (Lagakos et al. 1986).

Interpretation of the results reported by Byers et al. (1988) and Lagakos et al. (1986) is limited

because of the possible bias in identifying risk factors for immunological abnormalities in a small,

nonpopulation-based group identified through probands with leukemia. There is evidence that some

genetic factor or factors may predispose persons to both altered immunologic parameters as well as an

increased risk of developing leukemia. Other limitations of this study are described in Section 2.2.2.8.

Atrophy of the spleen and thymus, indicated by significantly decreased organ weights, was noted in

rats treated by gavage with tetrachloroethylene in corn oil at 2,000 mg/kg/day for 5 days (Hanioka et

al. 1995). This effect was not observed at 1,000 mg/kg/day. Histopathological changes in the spleen

and thymus were not observed in female rats treated by gavage with tetrachloroethylene in corn oil at

1,500 mg/kg/day for 14 days (Berman et al. 1995).
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Immunological effects were detected in a study exposing female B6C3F1 mice to drinking water

containing tetrachloroethylene (maximum concentration 6.8 ppm) and 24 other contaminants frequently

found in groundwater for 14 or 90 days (Germolec et al. 1989). Mice exposed to the highest

concentration of this laboratory-prepared stock solution had a dose-related suppression in antibody

plaque-forming units to sheep red blood cells and increased host susceptibility to infection by the

protozoan, Plasmodium yoelii. There were no changes in lymphocyte number or T cell

subpopulations, no alterations of T cell, NK cell or macrophage activities, and no effect on host

susceptibility to challenge with intravenous Listeria monocytogenes (bacteria) or PYB6 tumor cells.

These findings indicate an immunotoxic effect on B cells/humoral immunity (Germolec et al. 1989).

These effects cannot be attributed to tetrachloroethylene alone.

In a chronic bioassay, microscopic examination of the spleen, lymph nodes, and thymus of rats and

mice exposed by gavage to tetrachloroethylene at doses that resulted in increased mortality did not

reveal any adverse immunological or lymphoreticular effects (NCI 1977).

The highest NOAEL values and all LOAEL values from each reliable study for immunological and

lymphoreticular effects identified in rats for each duration category are recorded in Table 2-3 and

plotted in Figure 2-2.

2.2.2.4 Neurological Effects

Acute neurological effects in humans after ingesting tetrachloroethylene are similar to those seen after

inhalation. A 6-year-old child who ingested 12-16 g of tetrachloroethylene was conscious upon

admission to a hospital 1 hour after ingestion, but his level of consciousness deteriorated to

somnolence and subsequently coma (Koppel et al. 1985). Other symptoms included drowsiness,

vertigo, agitation, and hallucinations. The boy recovered completely.

The oral administration of tetrachloroethylene as an anthelminthic in humans was common at one

time; however, newer therapeutic agents have since replaced tetrachloroethylene. Narcotic effects,

inebriation, perceptual distortion, and exhilaration, but not death, were observed in patients receiving

doses ranging from 2.8 to 4 mL (about 4.2-6 g) of tetrachloroethylene orally as an anthelminthic

(Haerer and Udelman 1964; Kendrick 1929; Sandground 1941; Wright et al. 1937).
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Ataxia was observed in pregnant rats treated by gavage with tetrachloroethylene in corn oil at

900 mg/kg/day on gestation days 6-19 (Narotsky and Kavlock 1995). The ataxia lasted about 4 hours

after dosing. Four hours after female rats were given a single gavage dose of 1,500 mg

tetrachloroethylene/kg, lacrimation and gait scores were significantly increased and motor activity was

significantly decreased (Moser et al. 1995). The study authors indicated that the effects were less

24 hours after dosing, but specific data were not provided. A battery of neurological tests which

examined autonomic, neuromuscular, and sensorimotor function, as well as activity and excitability did

not show any significant effects at 4 or 24 hours after a single gavage dose of 500 mg/kg, or 24 hours

after the last of 14 daily doses of 1,500 mg tetrachloroethylene/kg (Moser et al. 1995).

In a chronic bioassay, microscopic examination of the brains of rats and mice exposed by gavage to

tetrachloroethylene at doses that resulted in increased mortality did not reveal any adverse effects (NCI

1977).

The serious LOAELs for nervous system effects identified in human and animal studies, and the

NOAEL in rats are indicated in Table 2-3 and Figure 2-2.

2.2.2.5 Reproductive Effects

No studies were located regarding reproductive effects in humans after oral exposure to

tetrachloroethylene.

Resorptions were significantly increased in rats treated by gavage with tetrachloroethylene in corn oil

at doses of 900 and 1,200 mg/kg/day on gestation days 6-19 (Narotsky and Kavlock 1995). At

1,200 mg/kg/day, no live pups were delivered by gestation day 22, while the number at 900 mg/kg/day

(5.2±1.5 pups/litter) was significantly (p<0.01) reduced compared to controls (7.7±0.7 pups/litter). The

implantation sites required ammonium sulfide staining for detection, suggesting that the embryos died

early in the treatment period. The 900-mg/kg/day dose also resulted in maternal ataxia and body

weight gain approximately 25% less than controls.

In a chronic bioassay, microscopic examination of the testes and ovaries of rats and mice exposed by

gavage to tetrachloroethylene at doses that resulted in increased mortality did not reveal any adverse

effects (NCI 1977).
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The serious LOAEL for reproductive effects in rats is recorded in Table 2-3 and plotted in Figure 2-2.

2.2.2.6 Developmental Effects

In the Woburn, Massachusetts, study of residents exposed to drinking water contaminated with

solvents, including 21 ppb tetrachloroethylene, there was a suggestion that eye/ear anomalies and

central nervous systern/chromosomal/oral cleft anomalies were associated with exposure (Lagakos et al.

1986). However, several scientists have questioned the biological relevance of grouping these

anomalies for purposes of statistical analysis (Lagakos et al. 1986). The association between birth

outcome and drinking water contamination has also been examined in 75 towns in New Jersey (Bove

et al. 1995). Based on four cases, oral cleft defects were increased (odds ratio 3.54; 90% confidence

interval 1.28-8.78) in the group with the highest exposure (>10 ppb). Because of possible exposure

misclassification, and limits in the number of possible confounders that were examined (maternal

occupational exposures, smoking, medical history, height, gestational weight gain), the study authors

note that this study alone cannot resolve whether some of the relationships between drinking water

contaminants and adverse outcome are causal or a result of chance or bias.

At 900 mg/kg/day, a dose that resulted in maternal toxicity (ataxia and body weight gain approximately

25% less than controls), increased numbers of postnatal deaths and increased

micro/anophthalmia were observed in offspring of rats treated by gavage with tetrachloroethylene in

corn oil on gestation days 6-19 (Narotsky and Kavlock 1995). On postnatal day 6, the number of

pups/litter that were alive was 7.7±0.7 in the control litters, and 4.9±1.2 in the 900-mg/kg/day group

(ρ<0.001) Additional data about malformations were not provided.

In a study regarding late stages of nervous system development, male mouse pups were treated by

gavage with tetrachloroethylene at 5 and 320 mg/kg/day for 7 days beginning at 10 days of age

(Fredriksson et al. 1993). Throughout the dosing period, no clinical signs of toxicity were observed.

Measures of activity (locomotion, rearing, and total activity) were completed in mice at 17 and

60 days of age. No significant effects were observed in mice at 17 days of age, while at 60 days of

age a significant increase in locomotion (p<0.05 or <0.0l) and total activity (p<0.01) was observed at

both doses. Based on this LOAEL of 5 mg/kg/day for evidence of developmental neurotoxicity, an

acute oral MRL of 0.05 mg/kg/day was calculated as described in the footnote to Table 2-3.
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All reliable LOAELs values identified in rats and mice are recorded in Table 2-3 and plotted in

Figure 2-2.

2.2.2.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans or animals after oral exposure to

tetrachloroethylene.

Genotoxicity studies are discussed in Section 2.5.

2.2.2.8 Cancer

A case-control study was completed to examine the relationship between bladder cancer, kidney

cancer, and leukemia with exposure to tetrachloroethylene in public drinking water in an area in

Massachusetts where many pipes were lined with a tetrachloroethylene containing resin (Aschengrau et

al0 1993). Exposure was estimated as a relative delivered dose using a model described by Webler and

Brown (1993). Based on a small number of cancer patients with tetrachloroethylene exposure (7), the

investigators indicated that there was a tendency for an increased risk of leukemia among patients (2)

who were most highly exposed. Because of the small number of patients, and the potential for

drinking water contaminated with other chemicals, the association between leukemia and

tetrachloroethylene noted in this study is not definitive. In a study in New Jersey, tetrachloroethylene

contamination of the drinking water was associated with an increased incidence of non-Burkitt’s highgrade

non-Hodgkin’s lymphoma in females (Cohn et al. 1994). Many of the water supplies were also

contaminated with trichloroethylene, making it difficult to assess the relative contribution of each

chemical. The investigators also noted that the conclusions of their study are limited by potential

misclassification of exposure because of lack of information on individual long-term residence and

water consumption

After tri- (212 µg/L) and tetrachloroethylene (180 µg/L) were identified in the drinking water supply of

two towns in Finland, the incidence rates of total cancer, Biver cancer, non-Hodgkin’s lymphoma,

mnltiple myeloma, and leukemia were compared with the rest of the country (Vartianinen et al. 1993).

No significant difference was found. This study is limited in that people who might not have been

exposed were included in the exposed group, and it is not clear how long the people were exposed.
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The contamination was discovered in 1992, and new sources of drinking water were supplied shortly

after the discovery. A controversial study of a population in Woburn, Massachusetts, reported a

potential association between ingestion of drinking water contaminated with solvents and increased risk

of childhood leukemia, particularly acute lymphocytic leukemia (Lagakos et al. 1986). Numerous

investigators (MacMahon 1986; Prentice 1986; Rogan 1986; Swan and Robins 1986; Whitmore 1986)

have evaluated the data and have identified a number of shortcomings in the study. The two wells in

question began pumping in 1964-1967. Measurements of well contaminants before their closure in

1979 revealed numerous volatile organic compounds in the drinking water, with the highest

concentrations being trichloroethylene (267 ppb) and tetrachloroethylene (21 ppb) (Byers et al. 1988).

Of particular importance is the fact that no more than 6 of the 20 cases of leukemia could be linked to

drinking water from the contaminated wells; several cases occurred in children with no access to these

wells. The extent and duration of the contamination in the wells of concern are also not known.

Geophysical modeling has suggested that the contamination had probably been present before the

measurements of the contaminants were taken. Therefore, it is not possible to determine when

exposure to the chemicals first occurred or whether the level of exposure varied over time. Two

approaches were used in classifying exposures in the study by Lagakos et al. (1986). The use of

continuous measurement based on estimates of the use and distribution of water from the contaminated

wells actually showed less significance than the cruder measurement which accounted for water

consumed from other sources, such as schools or workplaces. This toxicological profile attempts,

where possible, to identify exposures to the specific chemical under discussion. The contamination of

the two wells at Wobum involved more than one measurable contaminant.

The study by Lagakos et al. (1986) used family members of children affected with leukemia and other

community members as interviewers, introducing possible interviewer bias. In addition, the study was

performed following considerable publicity about the well contamination and the possible health

effects that could follow these exposures, thus contributing to recall bias of the participants.

Cancer has been reported in experimental animals after oral exposure to tetrachloroethylene.

Osborne-Mendel rats and B6C3F1 mice of each sex were exposed to tetrachloroethylene in corn oil by

gavage for 78 weeks, followed by observation periods of 32 weeks (rats) and 12 weeks (mice) in an

NCI (1977) carcinogenicity bioassay. Because of numerous dose adjustments during the study, doses

had to be represented as TWAs. TWA doses were 471 and 941 mg/kg/day for male rats, 474 and

949 mg/kg/day for female rats, 536 and 1,072 mg/kg/day for male mice, and 386 and 772 mg/kg/day
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for female mice. The elevated early mortality, which occurred at both doses in both sexes of rats and

mice, was related to compound-induced toxic nephropathy (see Section 2.2.2.2). Because of reduced

survival, this study was not considered adequate for evaluation of carcinogenesis in rats. Statistically

significant increases in hepatocellular carcinomas occurred in the treated mice of both sexes.

Incidences in the untreated control, vehicle control, low-dose, and high-dose groups were 2/17, 2/20,

32/49, and 27/48 in male mice, and 2/20, 0/20, 19/48, and 19/48 in female mice. Study limitations

included control groups smaller than treated groups (20 versus 50), numerous dose adjustments during

the study, early mortality related to compound-induced toxic nephropathy suggesting that a maximum

tolerated dose was exceeded, and pneumonia due to intercurrent infectious disease (murine respiratory

mycoplasmosis) in both rats and mice.

Because of its carcinogenic activity in mouse liver, tetrachloroethylene has been tested for initiating

and promoting activity in a rat liver foci assay. Tetrachloroethylene administered by gavage in corn

oil at 995 mg/kg/day did not exhibit initiating activity as indicated by an increase in γ-glutamyltrans-peptidase-

positive type I altered foci. Tetrachloroethylene did promote the appearance of type II

altered foci, both in the presence and in the absence of an initiator (in this case, diethylnitrosamine)

(Story et al. 1986).

All reliable CELs are recorded in Table 2-3 and plotted in Figure 2-2.

2.2.3 Dermal Exposure

2.2.3.1 Death

No studies were located regarding death in humans after dermal exposure to tetrachloroethylene.

All five rabbits treated with a single dermal dose of 3,245 mg/kg tetrachloroethylene that was occluded

for 24 hours survived (Kinkead and Leahy 1987). Additional studies regarding death following dermal

exposure in animals were not located.
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2.2.3.2 Systemic Effects

No studies were located regarding respiratory, gastrointestinal, hematological, or musculoskeletal

effects in humans or animals after dermal exposure to tetrachloroethylene.

Cardiovascular Effects.   Hypotension was reported in a male laundry worker found lying in a pool

of tetrachloroethylene (Hake and Stewart 1977). In this case, the worker was exposed to

tetrachloroethylene by both inhalation and dermal routes of exposure, and the exact contribution of

dermal exposure is unknown. The patient fully recovered from the effects of tetrachloroethylene.

No studies were located regarding cardiovascular effects in animals after dermal exposure to

tetrachloroethylene.

Hepatic Effects.   Elevated serum enzymes (not further described) indicative of mild liver injury

were observed in an individual found lying in a pool of tetrachloroethylene (Hake and Stewart 1977).

Exposure in this case was by both the inhalation and dermal routes, and the exact contribution of

dermal exposure is unknown.

No studies were located regarding hepatic effects in animals after dermal exposure to

tetrachloroethylene.

Renal Effects.   Proteinuria, which lasted for 20 days, was observed in an individual found lying in a

pool of tetrachloroethylene (Hake and Stewart 1977). Exposure in this case was by both the inhalation

and dermal routes, and the exact contribution of dermal exposure is unknown.

No studies were located regarding renal effects in animals after dermal exposure to tetrachloroethylene.

Dermal Effects.   Five volunteers placed their thumbs in beakers of tetrachloroethylenefor

30 minutes (Stewart and Dodd 1964). Within 5-10 minutes, all subjects had a burning sensation.

After the thumb was removed from the solvent, the burning decreased during the next 10 minutes.

Marked erythema, which cleared l-2 hours after exposure, was present in all cases. Chemical burns

characterized by severe cutaneous erythema, blistering, and sloughing have resulted from prolonged
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(more than 5 hours) accidental contact exposure to tetrachloroethylene used in dry cleaning operations

(Hake and Stewart 1977; Ling and Lindsay 1971; Morgan 1969).

Rabbits were exposed dermally to pure tetrachloroethylene (2 mL/kg body weight) which was covered

by an occlusive dressing for 24 hours to prevent evaporation of the chemical. The animals did not

develop toxic signs, and skin lesions were not reported (Kinked and Leahy 1987).

Ocular Effects.   Intense ocular irritation has been reported in humans after acute exposure to

tetrachloroethylene vapor at concentrations greater than 1,000 ppm (Carpenter 1937; Rowe et al.

1952). Vapors of tetrachloroethylene at 5 or 20 ppm were irradiated along with nitrogen dioxide in au

environmental chamber in order to simulate the atmospheric conditions of Los Angeles County. These

conditions did not produce appreciable eye irritation in volunteers exposed to the simulated atmosphere

(Wayne and Orcutt 1960).

No studies were located regarding ocular effects in animals after dermal exposure to

tetrachloroethylene including direct application to the eye.

2.2.3.3 Immunological and Lymphoreticuiar Effects

No studies were located regarding immunological and lymphoreticular effects in humans or animals

following dermal exposure to tetrachloroethylene.

2.2.3.4 Neurological Effects

A male laundry worker found lying in a pool of tetrachloroethylene was in a coma (Hake and Stewart

1977). The exposure to tetrachloroethylene in this case was by both the inhalation and dermal routes,

and the exact contribution of dermal exposure is unknown. The patient fully recovered from the

effects of tetrachloroethylene.

No studies were located regarding neurological effects in animals after dermal exposure to

tetrachloroethylene.
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No studies were located regarding the following health effects in humans or animals after dermal

exposure to tetrachloroethylene:

2.2.3.5 Reproductive Effects

2.2.3.6 Developmental Effects

2.2.3.7 Genotoxic Effects

Genotoxicity studies are discussed in Section 2.5.

2.2.3.8 Cancer

No studies were located regarding cancer in humans after dermal exposure to tetrachloroethylene.

In a mouse skin initiation-promotion assay, tetrachloroethylene applied at amounts of 18 or 54 mg did

not produce skin tumors over a 440-594-day study duration when applied either as an initiator or a

promoter (Van Duuren et al. 1979).

2.3 TOXICOKINETICS

Tetrachloroethylene is readily absorbed following inhalation and oral exposure as well as direct

exposure to the skin. Pulmonary absorption of tetrachloroethylene is dependent on the ventilation rate,

on the duration of exposure, and at lower concentrations, on the proportion of tetrachloroethylene in

the inspired air. Compared to pulmonary exposure, uptake of tetrachloroethylene vapor by the skin is

minimal. Once tetrachloroethylene is absorbed, its relatively high lipophilicity results in distribution to

fatty tissue. The fat/blood partition coefficient in humans is in the range of 125-159. Because of its

affmity for fat, tetrachloroethylene is found in milk, with greater levels in milk with a higher fat

content. Tetrachloroethylene has also been shown to cross the placenta and distribute to the fetus.

Regardless of the route of exposure, only l-3% of the absorbed tetrachloroethylene is metabolized to

trichloroacetic acid (TCA) by humans, and the metabolism of tetrachloroethylene is saturable.

Compared to humans, rodents, especially mice, metabolize more tetrachloroethylene to TCA.

Geometric mean Vmax values for the metabolism of tetrachloroethylene of 13, 144, and
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710 nmol/(minkg) have been reported for humans, rats, and mice, respectively. TCA produced from

tetrachloroethylene is excreted in the urine, and in humans, TCA excretion is linearly related to

concentrations of tetrachloroethylene in air at levels up to about 50 ppm. Unmetabolized

tetrachloroethylene is exhaled. The half-lives of tetrachloroethylene in vessel-rich tissue, muscle, and

adipose tissue of humans have been estimated to be 12-16 hours, 30-40 hours, and 55 hours,

respectively.

2.3.1 Absorption

2.3.1.l Inhalation Exposure

The primary route of exposure to tetrachloroethylene is inhalation. In humans, tetrachloroethylene is

readily absorbed into the blood through the lungs. Fulmonary uptake of tetrachloroethylene is

proportional to ventilation rate, duration of exposure, and at lower atmospheric concentrations of

tetrachloroethylene, to the concentration of tetrachloroethylene in the inspired air (Hake and Stewart

1977; Stewart et al. 1981). Absorption was measured in male volunteers exposed to concentrations

between 72 and 144 ppm for 4 hours (Monster et al. 1979). The data indicated that uptake was

influenced more by lean body mass than by ventilation rate or the amount of adipose tissue. In

addition, uptake decreased as a function of exposure time, so that after 4 hours, it was 75% of its

initial value. This latter finding may be attributable to a large percentage uptake of tetrachloroethylene

during the first few minutes of exposure, or the decreased uptake may result from a decrease in

retention of tetrachloroethylene with exposure time.

Six volunteers were exposed by inhalation to 0.02-44 mmol/m3 (0.5-9.8 ppm) tetrachloroethylene for

durations of l-60 minutes (Opdam and Smolders 1986). The concentration of tetrachloroethylene in

alveolar air was determined for residence times (i.e., the time interval between the beginning of

inhalation and the end of the next exhalation) in the lung ranging from 1 to 50 seconds. Measurements

were made both during and after exposure periods. During exposures, the concentrations of

tetrachloroethylene in alveolar air decreased as a function of the residence time. The concentration

seemed to stabilize at residence times of 10-12 seconds but decreased even more rapidly at residence

times longer than 12 seconds. In the postexposure period, the alveolar concentration of tetrachloroethylene

increased for residence times of 5-10 seconds. The decreasing concentration of

tetrachloroethylene in alveolar air for times less than 10 seconds could be explained by absorption by
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mixed venous blood. Furthermore, the alveolar air concentration of tetrachloroethylene measured

during exposures for residence times of 1%12 seconds provided a valid estimate of the concentration

of the chemical in mixed venous blood in the pulmonary artery. This study is discussed further in

Section 2.3.4.1.

In another study (Pezzagno et al. 1988), 15 volunteers were exposed to tetrachloroethylene during

periods of rest and during periods of rest alternated with periods of exercise. The experiments were

designed to assess the relationship between pulmonary uptake and urinary concentration of

tetrachloroethylene, and between pulmonary uptake and ventilation and/or retention of the chemical.

Urinary concentration of tetrachloroethylene was positively correlated with uptake of the chemical.

The retention index decreased with increasing ventilation at rest and during exercise. The urinary

concentration of tetrachloroethylene was ventilation and retention index-dependent, increasing when

either of these two parameters increased. In the same study, a group of workers occupationally

exposed to tetrachloroethylene (occupation not specified) were also monitored to determine if urinary

concentration of tetrachloroethylene correlated with environmental exposure. A close relationship

between the environmental TWA concentration and urinary concentration after a 4-hour exposure was

found. These results suggest that physical activity affects the absorption of tetrachloroethylene and

that these variations in absorption are reflected in urinary concentrations of the chemical.

Inhalation experiments in animals indicate that tetrachloroethylene is readily absorbed through the

lungs into the blood. The amount of tetrachloroethylene absorbed in male Sprague-Dawley rats

exposed for 6 hours increases as atmospheric tetrachloroethylene concentrations increase from 10 to

600 ppm (Pegg et al. 1979). Radioactivity has been detected in the urine, feces, expired air, and

carcasses of B6C3F1 mice following inhalation exposure to 10 ppm of 14C-labeled tetrachloroethylene

for 6 hours (Schumann et al. 1980). Dallas et al. (1994c) examined the uptake of tetrachloroethylene

in Sprague-Dawley rats during nose-only exposure to tetrachloroethylene at 50 or 500 ppm for

3 hours. At 500 ppm, minute volumes and respiratory rates were lower than at 50 ppm. Near steadystate

breath concentrations in exhaled air were achieved within about 20 minutes and were proportional

to concentration (2.1-2.4 µg/mL at 500 ppm and 0.2-0.22 µg/mL at 50 ppm). The percentage of

tetrachloroethylene taken up following inhalation exposure was relatively constant after the first

20 minutes and averaged 40% at 500 ppm and 50% at 50 ppm. The total uptake of tetrachloroethylene

during the 3-hour exposure was 79.9 mg/kg at 500 ppm and 11.2 mg/kg at 50 ppm indicating

that cumulative uptake was not proportional to inhaled concentration. The investigators suggest that
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the greater uptake at 50 ppm relative to 500 ppm provides further evidence that tetrachloroethylene

metabolism is saturable. The metabolism of tetrachloroethylene is discussed further in Section 2.3.3.

2.3.1.2 Oral Exposure

Tetrachloroethylene was found in the blood of a g-year-old boy who ingested 12-16 g of the

compound, indicating that tetrachloroethylene is absorbed following oral exposure in humans (Koppel

et al. 1985). The blood tetrachloroethylene level was 21.5 µg/mL 1 hour after ingestion.

Results from several studies (Dallas et al. 1994a, 1995; Frantz and Watanabe 1983; Pegg et al. 1979;

Schumann et al. 1980) indicate that tetrachloroethylene is rapidly and virtually completely absorbed

following oral administration to rats, mice, and dogs. A peak blood tetrachloroethylene concentration

of 40 µg/mL was measured 1 hour following administration of the chemical by gavage (500 mg/kg) to

Sprague-Dawley rats (Pegg et al. 1979). The analytical technique used in this study lacked the

sensitivity for precisely measuring blood levels of tetrachloroethylene following administration of

1 mg/kg of the compound. Radioactivity was found in the liver, kidney, and fat, but not the brain. In

Sprague-Dawley rats and Beagle dogs given a single oral dose of tetrachloroethylene (10 mg/kg) by

gavage in polyethylene glycol 400, the absorption constants were estimated to be 0.025/minute for rats

and 0.34/minute for dogs (Dallas et al. 1994a). After rats and dogs were treated with a single oral

dose of tetrachloroethylene (1, 3, or 10 mg/kg), maximum blood concentrations of tetrachloroethylene

were reached in 20-40 minutes and 15-30 minutes after dosing in rats and dogs, respectively.

2.3.1.3 Dermal Exposure

Dermal absorption in humans following exposure to vapors of tetrachloroethylene is apparently not as

important as absorption via inhalation. Dermal and pulmonary absorption of tetrachloroethylene vapor

was compared by exposing subjects to the vapor (600 ppm) after they had been fitted with a

full-facepiece respirator to prevent inhalation (Riihimaki and Pfaffli 1978). After an exposure period

of 3.5 hours, absorption of tetrachloroethylene by the dermal route was found to be 1% of that

expected had no respirator been worn. Dermal absorption of tetrachloroethylene has also been

measured by immersing one thumb of experimental subjects (about 0.1% of the total body surface

area) into a liquid sample (99% pure tetrachloroethylene) and then measuring the concentration of

tetrachloroethylene in the exhaled air (Stewart and Dodd 1964). To prevent inhalation exposure, the
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beaker of tetrachloroethylene was placed under a hood and was covered with Saran wrap, leaving only

enough room for immersing a thumb into the solvent. A peak concentration of 0.31 ppm in exhaled

air was reached after 40 minutes of exposure.

Animal studies also indicate that dermal uptake of tetrachlorethylene following vapor exposure is

Minimal. For example, the skin absorption rate of tetrachloroethylene in nude Balb/cAnNCrj mice

exposed to 200 ppm while wearing respirators was 0.002 mg/cm2/hour (Tsuruta 1989). Skin

absorption of tetrachloroethylene occurred by passive diffusion as defined by Fick’s law and increased

to 0.007 and 0.02 mg/cm2/hour following exposure at 1,000 and 3,000 ppm, respectively.

Tetrachloroethylene exposure (12,500 ppm) of Fischer-344 rats that were wearing respirators, and

whose fur was closely clipped indicated that <10% of a mixed inhalation dermal exposure to

tetrachloroethylene vapor was taken up by the skin (McDougal et al. 1990).

Uptake of tetrachloroethylene following direct application to the skin is greater than uptake following

vapor exposure. Absorption following application of the undiluted compound to the shaved backs of

guinea pigs (strain not specified) yielded peak blood concentration of 1.1 µg/mL after 30 minutes of

exposure. It then decreased to 0.63 µg/mL after 6 hours of exposure (Jakobson et al. 1982). The

decline in tetrachloroethylene blood levels with duration of exposure was attributed to local

vasoconstriction of the exposed skin or rapid transport of the compound from the blood to adipose

tissue. The decrease in blood concentration with exposure time was not attributed to rapid metabolism

of the compound. Little of the absorbed dose was expected to be metabolized in this species because

at concentrations well below 100 ppm, the metabolites TCA and trichloroethanol reach a plateau

(Jakobson et al. 1982).

Tetrachloroethylene applied to a patch of abdominal skin of ICR mice for 15 minutes/week resulted in

an in vivo absorption rate of 0.24 mg/cm2/hour (Tsuruta 1975). An in vitro study using excised rat

(SD-JCL) skin demonstrated that the rate of penetration by tetrachloroethylene was much slower than

that of several other halogenated hydrocarbons (i.e., 2,070 times slower than that of the fastest

compound, dichloromethane), and the measured rate for tetrachloroethylene penetration was

0.005 mg/cm2/hour. The penetration rate observed in the in vitro method was 44 times slower than

that observed in the in vivo method. The difference may result from the solubility of the substance in

0.9% sodium chloride and its solubility in body fluids (Tsuruta 1977).
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Bogen et al. (1992) immersed anesthetized female hairless guinea pigs in water containing 27-64 ppb

tetrachloro[14C]ethylene for 70 minutes, and the disappearance of radioactivity was determined. The

guinea pigs were immersed up to their shoulders, and the top of the container was sealed around them

to help prevent evaporation. About 20% of the radioactivity was lost in an hour. When an animal

was not present in the chamber, about 1.3% of the radioactivity was lost. Therefore, it was assumed

that most of the lost radioactivity was absorbed by the guinea pig. Over the concentration range

studied, no difference in the dermal absorption of tetrachloroethylene was noted. From their results

using low concentrations, the investigators (Bogen et al. 1992) estimated that a 70-kg human with a

surface area of 18,000 cm2, 80% immersed, would take up the tetrachloroethylene in 2 L of water (of

the total amount of water in which the person was immersed) in 20 minutes. These results suggest

that dermal exposure to tetrachloroethylene in domestic water supplies could be an important route of

exposure.

2.3.2 Distribution

Examples of partition coefficients determined in four species by four different methods are shown in

Table 2-4. Both Ward et al. (1988) and Gearhart et al. (1993) used a vial equilibration method in

which tetrachloroethylene was added to a closed vial containing blood or tissue, and partitioning was

determined by estimating the amount of chemical that disappeared from the head space after

equilibration at 37°C. Gear-hart et al. (1993) and Byczkowski and Fisher (1994) used a modification

of the vial equilibration method; the tissue was homogenized and smeared onto the inside of a vial.

Dallas and colleagues determined partition coefficients in Sprague-Dawley rats given a single bolus

injection of tetrachloroethylene through an arterial cannula (Dallas et al. 1994b) or in Sprague-Dawley

rats and beagle dogs given a single oral dose of tetrachloroethylene (Dallas et al. 1994a). After

treatment, groups of animals were sacrificed at various timepoints after dosing. Following all

methods, partitioning into fat was the greatest. A marked difference between species is the partition

coefficients for milk/blood, which were 12 in Sprague-Dawley rats and 2.8 in humans (Byczkowski

and Fisher 1994). The difference between rats and humans probably reflects a greater fat content in

the rat milk that was tested compared to the human milk that was tested. The partition coefficients for

human perinatal blood are lower than adult and perinatal rat values (Byczkowski and Fisher 1994).

Details on the infant tissues that were obtained and the age of rat pups at sacrifice were not provided.
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2.3.2.1 Inhalation Exposure

Repeated inhalation exposure to tetrachloroethylene results in the accumulation of this compound in

the body, especially in fatty tissue as indicated by the partition coefficients. Data indicating that

tetrachloroethylene is accumulated in the body is provided by the study of Stewart et al. (1977).

Experimental subjects were exposed by inhalation to 100 ppm tetrachloroethylene 7 hours a day for

5 days. During the 5-day exposure period, the concentration of tetrachloroethylene in exhaled breath

increased as the 5-day week progressed, indicating an increase in the body burden with repeated daily

exposures. Following termination of exposure, a slight but definite accumulation of the compound

was indicated by a long decay (greater than 14 days) of the concentration of tetrachloroethylene in

exhaled air. The study authors concluded that tetrachloroethylene’s affinity for fat tissue probably

accounts for the protracted period of excretion via the lungs. Altmann et al. (1990) measured blood

concentrations of tetrachloroethylene in volunteers before, during, and after four daily 4-hour

exposures to 10 or 50 ppm. Tetrachloroethylene levels in the blood were also measured the day after

exposure. Even at relatively low concentrations, with exposures of 4 hours/day, tetrachloroethylene

levels in the blood measured at all time points increased from one exposure day to the next. Blood

levels in ug/L measured before exposure, on exposure days l-4, and the day after cessation of

exposure are shown below.

Exposure day 10 ppm (n=12) 50 ppm (n=l0)

Day 1 <0.5 <0.5

Day 2 36 ± 49 59 ± 25

Day 3 38 ±  37 109 ± 50

Day 4 52 ± 48 127 ±47

One day after
cessation of exposure 56 ±  56 153 ±49

The observation of tetrachloroethylene in the blood (1.8-31.8 umol/L) and TCA in the urine

(0.71-15.8 mmol/mol creatinine) on Monday before work in dry cleaners suggests that the weekend is

not long enough to clear the tetrachloroethylene that has accumulated during the week (Skender et al.

1987).
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Several case studies provide some information on concentrations of tetrachloroethylene in various

tissues following inhalation exposure. In one human fatality following exposure to the chemical, the

highest concentrations were found in the brain (36 mg/kg) and lowest concentrations in the lung

(3 mg/kg) (Lukaszewski 1979). These were the only two tissues examined. Tetrachloroethylene was

detected in the liver (240 mg/kg), kidney (71 mg/kg), brain (69 mg/kg), and lung (30 mg/kg) of a dry

cleaner who died following exposure to high concentrations of the chemical (Levine et al. 1981).

Tetrachloroethylene concentrations were 66 mgiL in blood, and 79, 31, and 46 mg/kg in the brain,

heart, and lungs, respectively, in a 2-year-old boy found dead shortly after he was placed in his room

with curtains that had been incorrectly dry cleaned (Gamier et al. 1996).

Hattis et al. (1993) reviewed a number of experimental studies of humans exposed to tetrachloroethylene

and calculated ratios of arm blood to alveolar air tetrachloroethylene concentrations following

inhalation exposure. These ratios suggest that the blood/air partition coefficient should be 15-18.

Among the human blood/air partition coefficients estimated by in vitro methods (Table 2-4), the in
vivo values are closest to the human blood/air partition coefficient of 19.8 estimated by Byczkowski

and Fisher (1994) using the smear method.

Animal data support the theory that tetrachloroethylene is distributed readily to fatty tissue. The

distribution of the compound in Sprague-Dawley rats following exposure to 200 ppm tetrachloroethylene

vapor for 5 days was characterized by Savolainen et al. (1977).  Seventeen hours after the

fourth daily exposure, tetrachloroethylene was found to have distributed primarily to adipose tissue and

especially the perirenal fat. Tetrachloroethylene levels were 145 times greater in the perirenal fat than

in the blood. Dallas et al. (1994b) exposed Sprague-Dawley male rats to tetrachloroethylene at

500 ppm for up to 2 hours. At 15, 30, 60, 90, and 120 minutes during the exposure and 0.25, 0.5, 1,

2, 4, 6, 12, 36, 48, and 72 hours after the exposure, five rats were sacrificed and tetrachloroethylene

residues in the blood, brain, liver, kidneys, lung, heart, perirenal fat, and skeletal muscle were

measured. The maximum tetrachloroethylene concentration of 1,536 µg/g was found in the fat, which

contained 9-18 times more of the chemical than nonfat tissues. The maximum concentration in the

blood was 44 µg/g, and of the tissues examined, skeletal muscle contained the lowest concentration,

87.3 µg/g. Half-lives ranged from 322 minutes in the blood to 578 minutes in fat.

Tetrachloroethylene can cross the placenta and distribute to the fetus and amniotic fluid. Unmetabo-

lized tetrachloroethylene was found in the fetoplacental unit following inhalation exposure of pregnant



TETRACHLOROETHYLENE 98

2. HEALTH EFFECTS

657BL/6N mice to radioactive tetrachloroethylene for 10 minutes or 1 hour (Ghantous et al. 1986).

High uptake of radioactivity in maternal tissues was found in the body fat, brain, nasal mucosa, blood,

and in well-perfused organs such as the liver, kidneys, and lungs.

2.3.2.2 Oral Exposure

Pertinent data regarding the distribution of tetrachloroethylene in humans following oral administration

were not found in the available literature.

Following dietary administration of tetrachloroethylene to pigs, the chemical was concentrated mainly

in subcutaneous fat (Vemmer et al. 1984). Male Fischer-344 rats given a daily oral dose of

1,500 mg/kg tetrachloroethylene for 42 days had evidence of kidney damage. In addition,

radiolabelled material included with the doses given on days 1, 17, and 42 was detected in bile and

urine. These data indicated that tetrachloroethylene was distributed to the liver and kidneys (Green et

al. 1990). Following oral exposure of Sprague-Dawley rats to a single dose of tetrachloroethylene

(10 mg/kg), the highest concentrations were found in the fat (360 minutes after dosing), liver

(10 minutes after dosing), kidney (10 minutes after dosing), and brain (15 minutes after dosing)

(Dallas et al. 1994a). In Beagle dogs given a single oral dose of tetrachloroethylene, the highest

concentrations were found in the fat, brain, liver, heart, and kidneys. Except for the fat in which the

peak concentrations were noted at 720 minutes, peak concentrations in the other organs were observed

at 60 minutes, the first measurement time, so that true maximum concentrations may have actually

occurred earlier.

2.3.2.3 Dermal Exposure

Pertinent data regarding the distribution of tetrachloroethylene in humans and animals following

dermal exposure to the compound were not found in the available literature.

2.3.3 Metabolism

The metabolism of tetrachloroethylene by humans is shown in Figure 2-3. Irrespective of the route of

exposure, only l-3% of the absorbed tetrachloroethylene is metabolized to trichloroacetic acid (TCA)

by humans (ACGIH 1991). The remaining absorbed tetrachloroethylene is exhaled unchanged. Small
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amounts of trichloroethanol have also been detected in the urine of workers exposed to

tetrachloroethylene (Bimer et al. 1996; Monster 1986). Skender et al. (1991) indicate that

trichloroethanol is not generally found following experimental exposure of humans to pure

tetrachloroethylene and suggest that the trichloroethanol found in urine of workers exposed to

tetrachloroethylene is a result of trichloroethylene contamination of tetrachloroethylene. Although

trichloroethylene was not detected in the air of workers exposed to tetrachloroethylene, trichloroethanol

was found in the urine of two of the four workers studied (Birner et al. 1996). The study authors

could not provide a reasonable mechanism for the formation of trichloroethanol. Further research is

required to determine if trichloroethanol is a metabolite of tetrachlorethylene, or is produced from

trichloroethylene which can contaminate tetrachloroethylene.

The metabolism of tetrachloroethylene is saturable in humans. Total measured trichloro-compounds in

the urine of tetrachloroethylene-exposed workers in dry cleaning and textile-processing plants reached

a plateau in the urine at tetrachloroethylene exposure concentrations of >l00 ppm in workroom air

(Ohtsuki et al. 1983). Another study of dry cleaning workers showed that the urinary level of

trichloro-compounds was linearly related to exposure at concentrations below 112 ppm (Seiji et al.

1989). Thioethers have also been detected in the urine of dry cleaning workshop employees, but the

significance of this finding is unclear (Lafuente and Mallol 1986).

The amount of tetrachloroethylene metabolized varies among different ethnic human populations. Seiji

et al. (1989) reported that the relationship between total urinary trichloro-compounds and the

concentration of tetrachloroethylene in breath air was 0.063 mg TCA/L per ppm tetrachloroethylene in

Chinese workers, while the value was 0.7 mg TCA/L per ppm tetrachloroethylene in Japanese workers.

Jang et al. (1993) determined that the biological exposure index in Korean workers exposed to 50 ppm

tetrachloroethylene was 1.6 mg tetrachloroethylene/ in blood and 2.9 mg TCA/L in urine compared

to the ACGIH values of 1 mg tetrachloroethylene/L in blood and 7 mg TCA/L in urine for exposure to

50 ppm (ACGIH 1991).

The variability of tetrachloroethylene metabolism among humans is reflected by a wide range of Vmax

and Km values that have been reported in the literature. These values, summarized by Hattis et al.

(1990), are shown in Table 2-5. Also shown in the table are the values for rats and mice. Following

exposure to tetrachloroethylene, metabolism to TCA is the principal route of metabolism in these
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rodents. As indicated by the Vmax values, rats metabolize tetrachloroethylene at a greater rate than

humans, and mice metabolize tetrachloroethylene at a much greater rate than rats.

Metabolism of tetrachloroethylene to TCA in animals is also limited. Swiss-Cox mice were

administered tetrachloroethylene in doses of 0, 20, 100, 200, 500, 1,000, 1,500, and 2,000 mg/kg/day

in corn oil by gavage for 6 weeks. The amount of total metabolites found in the urine increased

logarithmically with dose and approached a plateau with doses of tetrachloroethylene higher than

1,000 mg/kg/day (Buben and O’Flaherty 1985). Following a 6-hour inhalation exposure, the amount

of tetrachloroethylene excreted as metabolites decreased with increasing exposure concentration in

both Fischer-344 rats and B6C3F1 mice (Reitz et al. 1996). In rats exposed to 11.9, 318, or

1,146 ppm tetrachloroethylene, 33%, 14.6%, and 11.3% was excreted as metabolites, respectively. In

mice exposed to 11, 365, or 1,201 ppm tetrachloroethylene, 85%, 44%, and 26% of the dose was

excreted as metabolites.

In addition to TCA, other metabolites have been identified following treatment of rats and mice with

tetrachloroethylene (Figure 2-4). Urinary oxalic acid accounted for 18.7% and 6% of the dose

following inhalation exposure of Sprague-Dawley rats to tetrachloroethylene at 10 and 600 ppm,

respectively (Pegg et al. 1979). An N-acetylcysteine glutathione conjugate has also been found in the

urine of Wistar rats and NMRI and B6C3F1 mice and in the bile of Fischer-344 rats exposed to

tetrachloroethylene by inhalation (Dekant et al. 1986; Green et al. 1990). Levels were higher in rat

urine than in mouse urine, and higher after gavage dosing than after inhalation exposure. The

glutathione pathway was found to be minor at low doses but began to increase following saturation of

the cytochrome P-450 pathway (Green et al. 1990). The formation of the N-acetylcysteine glutathione

conjugate requires glutathione conjugation, which occurs in the liver, and the action of P-lyase which

is found in the kidneys. Green et al. (1990) compared the activities of these enzymes in humans,

B6C3F1 mice, and Fischer-344 rats (Table 2-5). Glutathione conjugation to tetrachloroethylene could

not be detected using liver cytosol from humans, while the rate of glutathione conjugation was higher

in rat relative to mouse liver cytosol. β-Lyase activity in kidney cytosol was also higher in rats

relative to mice and humans. Small amounts of the glutathione conjugate N-acetyl-S-(1,2,2-

trichlorovinyl)-L-cysteine were found in the urine of four workers occupationally exposed to

tetrachloroethylene at 50 ppm for 4 or 8 hours/day, 5 days/week (Bimer et al. 1996). The

concentrations of N-acetyl-S-( 1,2,2-trichlorovinyl)-L-cysteine were 2.2-14.6 pmol/mg creatinine
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compared to concentrations of 13-65 nmol/mg creatinine for trichloroacetic acid and trichloroethanol

combined. The amount of tetrachloroethylene exhaled was not determined so it is not possible to

estimate what percentage of the total dose of tetrachloroethylene was metabolized to N-acetyl-S-(1,2,2-

trichlorovinyl)-L-cysteine.

Dichloroacetylated mitochondrial and cytosolic proteins (Ne-[dichloroacetyll-L-lysine) detected in the

kidneys of tetrachloroethylene-treated Wistar rats suggests that the glutathione, β-lyase pathway may

have a role in the renal toxicity of tetrachloroethylene (Birner et al. 1994). How the differences in

tetrachloroethylene metabolism between humans, rats, and mice affect toxicity is discussed in

Section 2.4.2.

2.3.4 Elimination and Excretion

Exhalation of unmetabolized parent compound is the primary route of excretion of an absorbed dose of

tetrachloroethylene in humans, regardless of the route of exposure.

2.3.4.1 Inhalation Exposure

In six male volunteers exposed by inhalation for 4 hours to either 72 or 144 ppm tetrachloroethylene,

most (80-100%) of the total compound absorbed was exhaled unchanged after 162 hours (Monster et

al. 1979). From concentration-time course curves of tetrachloroethylene in the exhaled air and blood,

the half-lives of tetrachloroethylene in three major body compartments were calculated to be

12-16 hours for the vessel-rich group, 30-40 hours for the muscle group, and 55 hours for the adipose

group, respectively. Tetrachloroethylene was postulated to have a long half-life in adipose tissue

because of its high adipose/blood partition coefficient and because of the relatively low rate of blood

perfusion to this tissue (Monster 1986). The concentration of tetrachloroethylene in alveolar air was

determined for volunteers (three males, three females) exposed to 0.02-0.40 mmol/m3 (0.5-9.8 ppm)

of the chemical for durations of l-60 seconds (Opdam and Smolders 1986). Measurements made in

the post-exposure period showed tetrachloroethylene concentrations increased with residence time of

the chemical in the lung for residence times ranging from 5 to 10 seconds. This could be explained

by excretion of tetrachloroethylene by mixed venous blood. The study authors stated that the

concentration of tetrachloroethylene in arterial blood could be reasonably estimated by the
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concentration of the chemical in alveolar air during normal breathing (residence time of about

5 seconds).

In humans, the urinary excretion of metabolites of tetrachloroethylene represents a small percentage of

the absorbed dose of tetrachloroethylene following inhalation exposure. Urinary excretion of TCA

represented less than 1% of the total estimated absorbed dose of tetrachloroethylene in volunteers

exposed by inhalation to 72 or 144 ppm for 4 hours (Monster et al. 1979). Using a linear regression

model, it was estimated that 2% of the tetrachloroethylene absorbed through the lungs following an

8-hour exposure to 50 ppm tetrachloroethylene would be metabolized and excreted in the urine. It has

been reported that the urinary excretion of TCA in volunteers increased linearly with tetrachloroethylene

concentrations in the air and plateaued at 50 ppm (Ikeda et al. 1972). This finding indicates

that the metabolism of tetrachloroethylene is saturable and that the concentration of urinary metabolites

would not reflect the amount of exposure at a concentration above the saturation of metabolism.

Another study showed that 67 hours after a 3-hour exposure to tetrachloroethylene vapors, the

excretion of TCA in the urine of four male volunteers was 1.8% of the estimated tetrachloroethylene

retained (Ogata et al. 1971). Dry cleaning employees showed an increased trend of excretion of

thioethers throughout the week, but the significance of this finding is unclear since the levels of

thioethers were well within the range found in unexposed individuals (Lafuente and Mallo1 1986). A

linear relationship was found for the urinary concentration and the exposure concentration for workers

exposed to tetrachloroethylene in various industries (Ghittori et al. 1987; Imbriani et al. 1988). The

biological half-life of urinary metabolites of tetrachloroethylene was found to be about 6 days in

occupationally exposed individuals (Ikeda and Imamura 1973).

The relative importance of the routes of excretion of tetrachloroethylene and metabolites following

inhalation exposure in animals depends on the concentration in air and the species. Following a

6-hour inhalation exposure to 10 ppm radiolabelled tetrachloroethylene in Sprague-Dawley rats, the

parent compound (68% of the absorbed dose) and radiolabelled carbon dioxide (3.6% of the absorbed

dose) were exhaled over a 72-hour period (Pegg et al. 1979); 24% of the absorbed dose was excreted

as nonvolatile metabolites in urine and feces, and 3-4% remained in the carcass 72 hours after

exposure. When the exposure concentration was increased to 600 ppm, the percentage of the absorbed

dose exhaled as unmetabolized parent compound over a 72-hour period increased to 88%. At this

higher exposure level (600 ppm), 9% of the absorbed dose was excreted in the urine and feces and 2%

remained in the carcass (Pegg et al. 1979). In contrast to rats, mice excreted most of an absorbed dose
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of inhaled tetrachloroethylene as metabolites in the urine. In B6C3F1 mice exposed to the relatively

low concentration of 10 ppm of radiolabelled tetrachloroethylene for 6 hours, 12% of the absorbed

dose was excreted as unmetabolized compound in the expired air in a 72-hour follow-up period

(Schumann et al. 1980). Most of the absorbed radioactivity was excreted in the urine as metabolites.

The major route of elimination was urinary excretion. Mice were not exposed to higher concentrations

in this study. In a study by Yllner (1961), female mice (unspecified strain) exposed for 2 hours to
14C-tetrachloroethylene vapors at 1,300 mg/kg absorbed 70% of the dose. In 4 days, 90% of the

absorbed radioactivity was excreted, 70% in expired air, 20% in the urine, and less than 0.5% in the

feces. TCA and oxalic acid comprised 52% and 11% of the label in the urine, respectively. Traces of

dichloroacetic acid were also present in the urine. The apparent disagreement between the results of

Yllner (1961) and those of Schumann et al. (1980) regarding the percentage of unchanged

tetrachloroethylene in the expired air demonstrates that as the body burden of tetrachloroethylene

increases, the percentage of unchanged parent compound excreted increases. This observation suggests

that the metabolism of tetrachloroethylene and the urinary excretion of metabolites are limited and

dose dependent.

2.3.4.2 Oral Exposure

The only study of the excretion of tetrachloroethylene and metabolites following oral exposure in

humans is a case report of a 6-year-old boy who accidentally ingested 8-10 mL of pure tetrachloroethylene

(Koppel et al. 1985). The bulk of the ingested tetrachloroethylene was exhaled unchanged;

however, this was not under normal conditions since the patient was hyperventilated to facilitate

pulmonary elimination of the compound. Tetrachloroethylene, TCA, and trichloroethanol were

detected and quantified in the urine. Total urinary tetrachloroethylene decreased from 30 µg on day 1

of treatment to 3 µg on day 3. Total urinary trichloro-compounds increased from 8 mg on day 1 to

68 mg on day 3.

In animals, exhalation of unchanged tetrachloroethylene was the main route of excretion-of the orally

administered chemical. Sprague-Dawley rats given a single oral dose of tetrachloroethylene (1 mg/kg)

excreted 72% of the absorbed dose in the breath as the unmetabolized component and 16% as

metabolites in the urine over a 72-hour period (Pegg et al. 1979). When the administered dose was

increased to 500 mg/kg, the percentage of the dose exhaled as unmetabolized parent compound over a

72-hour period increased to 90%, whereas the percentage of the dose excreted as metabolites in the
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urine dropped to 5%. Similar results were reported in Sprague-Dawley rats following ingestion of

tetrachloroethylene-saturated drinking water solutions ad libitum for 12 hours (Frantz and Watanabe

1983). Administration of tetrachloroethylene in the drinking water provided a dose (about 8 mg/kg)

that was somewhat lower than the doses of tetrachloroethylene given in gavage studies. Excretion of

the absorbed dose was similar, however, for both methods of oral administration. Of the absorbed

dose, 88% was exhaled as unmetabolized parent compound, and 7.2% of the absorbed radioactivity

was excreted in the urine over a 72-hour period. Exhalation of unmetabolized tetrachloroethylene was

also the predominant mode of excretion of an orally administered tetrachloroethylene dose in B6C3F1

mice (Schumann et al. 1980). Mice given a single oral dose of tetrachloroethylene (500 mg/kg)

exhaled 83% of the absorbed dose as the unmetabolized compound and 10% as metabolites in the

urine over 72 hours. Exposure at 500 mg/kg resulted in saturation of oxidative metabolism in the

mouse. There was a shift in the route of elimination from metabolism and urinary excretion to

excretion in expired air.

A comparison of the disposition of tetrachloroethylene in Sprague-Dawley rats and Beagle dogs

following oral exposure, indicates that the rate and magnitude of exhalation and metabolism are

markedly higher in the rat than the dog (Dallas et al. 1994a). Although exhalation of

tetrachloroethylene was not measured directly, the smaller blood:air partition coefficient in rats (19.6)

compared to dogs (40.5) indicates that tetrachloroethylene more readily diffuses from the pulmonary

blood into the alveolar air of the rat. Whole body clearance of tetrachloroethylene in rats and dogs

treated with a single oral dose was 30.1 mL/minute/kg at 3 mg/kg and 32.5 mL/minute/kg at 10 mg/kg

for rats, and 14.6 mL/minute/kg at 3 mg/kg and 25 mL/minute/kg at 10 mg/kg for dogs (Dallas et al.

1995).

2.3.4.3 Dermal Exposure

Volunteers who immersed their thumbs for 30 minutes in liquid tetrachloroethylene exhaled the

compound unchanged for time periods exceeding 5 hours (Stewart and Dodd 1964). The maximum

mean alveolar air concentration of tetrachloroethylene in these subjects was 0.3 ppm, and the study

authors were able to construct concentration-time curves for the mean alveolar tetrachloroethylene

concentrations.
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Following immersion (up to their shoulders) of anesthetized hairless guinea pigs in water containing

10-64 ppb tetrachloroethylene, about 14% of the estimated dose was excreted in the urine during the

4 weeks after exposure (Bogen et al. 1992). During the 6 days after exposure, 95% of the metabolized

dose was excreted in the urine, relative to 95% of the metabolized dose excreted in the urine in 1 day

following a subcutaneous injection.

2.3.5 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake

and disposition of chemical substances to quantitatively describe the relationships among critical

biological processes (Krishnan et al. 1994). PBPK models are also called biologically based tissue

dosimetry models. PBPK models are increasingly used in risk assessments, primarily to predict the

concentration of potentially toxic moieties of a chemical that will be delivered to any given target

tissue following various combinations of route, dose level, and test species (Clewell and Andersen

1985). Physiologically based pharmacodynamic (PBPD) models use mathematical descriptions of the

dose-response function to quantitatively describe the relationship between target tissue dose and toxic

end points.

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to

delineate and characterize the relationships between: (1) the external/exposure concentration and target

tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen and

Krishnan 1994). These models are biologically and mechanistically based and can be used to

extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from route to

route, between species, and between subpopulations within a species. The biological basis of PBPK

models results in more meaningful extrapolations than those generated with the more conventional use

of uncertainty factors.

The PBPK model for a chemical substance is developed in four interconnected steps: (1) model

representation, (2) model parametrization, (3) model simulation, and (4) model validation (Krishnan

and Andersen 1994). In the early 1990s, validated PBPK models were developed for a number of

toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen

1994; Leung 1993). PBPK models for a particular substance require estimates of the chemical

substance-specific physicochemical parameters, and species-specific physiological and biological
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parameters. The numerical estimates of these model parameters are incorporated within a set of

differential and algebraic equations that describe the pharmacokinetic processes. Solving these

differential and algebraic equations provides the predictions of tissue dose. Computers then provide

process simulations based on these solutions.

The structure and mathematical expressions used in PBPK models significantly simplify the true

complexities of biological systems. If the uptake and disposition of the chemical substance(s) is

adequately described, however, this simplification is desirable because data are often unavailable for

many biological processes. A simplified scheme reduces the magnitude of cumulative uncertainty.

The adequacy of the model is, therefore, of great importance, and model validation is essential to the

use of PBPK models in risk assessment.

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the

maximal (i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan

1994). PBPK models provide a scientifically sound means to predict the target tissue dose of

chemicals in humans who are exposed to environmental levels (for example, levels that might occur at

hazardous waste sites) based on the results of studies where doses were higher or were administered in

different species. Figure 2-5 shows a conceptualized representation of a PBPK model.

If PBPK models for tetrachloroethylene exist, the overall results and individual models are discussed

in this section in terms of their use in risk assessment, tissue dosimetry, and dose, route, and species

extrapolations.

As described in Section 2.3.3, the metabolism of tetrachloroethylene to TCA is saturable, and mice

have a greater capacity to metabolize tetrachloroethylene to TCA than either rats or humans. In

addition, the production of TCA is associated with liver tumors in mice but not in rats (NTP 1986).

Therefore, numerous investigators have used PBPK modeling coupled with low-dose extrapolation to

estimate risk to humans based on rodent data. Hattis et al. (1990) reviewed seven of these models to

determine which parameters contribute most to the uncertainty of the predictions. The models

reviewed all have structures similar to the one shown in Figure 2-5. All of the models assume that the

blood flowing through the lungs comes into complete equilibrium with alveolar air, with no absorption

assumed for dead space air that enters the respiratory system without reaching the alveoli. Blood

flowing through each compartment was also assumed to come into full equilibrium with the tissue, and
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all metabolism was assumed to occur in the liver. The range of metabolic parameters used in these

models is shown in Table 2-5, while the range of physiological parameters is shown in Table 2-6. In

the human models, Hattis et al. (1990) assumed low-dose exposure (1 ppm for 1 hour followed by a

week of no exposure) in each model. For the animal models, Hattis et al. (1990) used the low-dose

inhalation exposure from the NTP (1986) bioassay: 100 ppm 6 hours/day, 5 days/week for mice and

200 ppm 6 hours/day, 5 days/week for rats. The prediction of human low-dose metabolism was found

to be highly dependent on the data sets used to calibrate the metabolic parameters. The ratios of low-

dose human to rodent bioassay metabolism spanned a 28-fold range (0.0026-0.072) for the six

available human/rat comparisons and a 13-fold range (0.0066-0.084) for the seven available

human/mouse comparisons. For example, the Monster et al. (1979) study predicts that humans

exposed to 1 ppm tetrachloroethylene for 1 hour will metabolize 0.51 µmol, while rats exposed to

200 ppm for 6 hours, for 5 days, will metabolize 192 µrnol. The ratio of these two values (0.51/192)

is 0.0026.

Bois et al. (1990) used Monte Carlo simulations of a coupled PBPK, multistage model to predict a

median cancer risk estimate for humans. With their model, they predicted that a concentration of

0.00015 ppm was associated with a theoretical upper-bound risk of 1.6 new cases of cancer per million

exposed individuals. The 5, 25, 75, and 95 percentile risk estimates are 0, 0.04, 2.8, and 6.8 per

million, respectively. The kinetic parameters defining the metabolic rate were the most influential

parameters in the model. Without PBPK modeling, the theoretical upper-bound human cancer risk for

exposure to 1 µg tetrachloroethylene/m3 was estimated to be 5.1x10-7 (Travis et al. 1989). With PBPK

modeling using a model similar to those described by Hattis et al. (1990), the theoretical upper-bound

cancer risk was estimated to be 3.1x10-7 (Travis et al. 1989).

Hattis et al. (1993) compared expectations from 10 human PBPK models for tetrachloroethylene with

actual dose-response data following inhalation exposure. All the models were similar to the model

shown in Figure 2-5. The models all showed a time pattern of departure of predictions of air and

blood levels relative to experimental data. For data in which there was an appreciable amount of time

since the end of chronic exposure, the models tended to underpredict blood tetrachloroethylene

concentrations, often by over twofold. For measurements taken shortly after the end of chronic

exposure, models both under- and overpredicted blood tetrachloroethylene levels. When measurements

were taken immediately after the end of a single short-term exposure, there was a tendency for the

models to overpredict tetrachloroethylene blood concentrations. Hattis et al. (1993) suggested that
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more sophisticated models that incorporated heterogeneity in the fat compartment or intertissue

diffusion between the fat and muscle and the vessel-rich tissues would correct the departures from

actual data. Models using a resting alveolar ventilation rate of about 5.4 L/minute seemed to be most

compatible with the most reliable set of tetrachloroethylene uptake data.

Metabolic parameters and blood air partition coefficients were also found to have the greatest impact

on the prediction of the amount of tetrachloroethylene metabolized in PBPK models developed by

Reitz et al. (1996). The models, developed for rats, mice, and humans, used Vmax values of 0.325,

0.355, and 41.5 mg/hours for the three species, respectively, and Km values of 5.62, 3.69, and

4.66 mg/L, respectively. Validation of the models showed a close correspondence to the rat data, but

difficulties in fitting mouse data were attributed to difficulties in estimating the Km. The model for

humans was able to predict the distribution of tetrachloroethylene in blood and expired air, but

metabolism data adequate to fully validate the model were not identified.

PBPK models following oral exposure to tetrachloroethylene in rats and dogs (Dallas et al. 1994a)

have also been developed. The models were validated using oral and intraarterial dosing experiments

(Dallas et al. 1995). Over a 10-fold range of doses, tetrachloroethylene blood concentrations in the rat

were well predicted by the model following intraarterial dosing and slightly under predicted following

oral exposure. The blood concentrations in dog blood were generally over-predicted, except for fairly

precise predictions in dogs given a single oral dose of 3 mg/kg.

The majority of the available PBPK models are concerned with the carcinogenesis of

tetrachloroethylene. However, noncancer end points are also of concern based on available literature.

For example, logistic regression analysis of noncancer tetrachloroethylene toxicity suggests that for

humans exposed by inhalation, the central nervous system may be the most sensitive target of

tetrachloroethylene toxicity (Rao et al. 1993). One PBPK model has been developed to predict brain

concentrations following exposure to tetrachloroethylene in the shower or while bathing (Rao and

Brown 1993). The model has six compartments: liver, fat, rapidly perfused tissues, slowly perfused

tissues, brain, and skin. The skin compartment was treated only as a portal of entry, and skin/blood,

skin/air, and skin/water partition coefficients of 26.7, 275.2, and 348.4, respectively, were estimated

based on data for dihalomethanes. Additional parameters obtained from the literature that were used

in the model included a skin permeability value of 0.125 cm/hour, a Vmax of 6.77, and a Km of 4.56.

Using this model, Rao and Brown (1993) estimated that taking a 15minute shower with water
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containing 1 mg tetrachloroethylene/L would result in maximum brain and blood tetrachloroethylene

concentrations of 42 and 11 µg/L in an adult, and a 30minute bath would result in maximum brain

and blood concentrations of 52 and 13 µg/L and 71 and 20 µg/L in an adult and a 3-year-old child,

respectively. Estimated steady-state brain levels following exposure to tetrachloroethylene vapor at

0.6 ppm were 0.148 and 0.153 mg/L for an adult and child, respectively. Based on the modeling data,

Rao and Brown (1993) concluded that showering or bathing with water containing ≤2 mg/L would not

be expected to produce neurological effects in humans, but that concentrations of >3 mg/L may result

in an unacceptable health risk. Further description of the parameters used to develop the exposure

model is presented in Chapter 5. Models predicting exposure from a dry cleaning worker exhaling

tetrachloroethylene (Thompson and Evans 1993) and infant exposure through breast milk (Byczkowski

and Fisher 1994, 1995; Byczkowski et al. 1994; Schreiber 1993) are also presented in Chapter 5.

2.4 MECHANISMS OF ACTION

2.4.1 Pharmacokinetic Mechanisms

The absorption, distribution, storage, and excretion of tetrachloroethylene are largely determined by its

lipophilic nature. The blood/air partition coefficient estimated for humans is 10-20, the fat/air

partition coefficient is 1,450-1,638, and the fat/blood partition coefficient is 125-159 (Byczkowski and

Fisher 1994; Gearhart et al. 1993; Ward et al. 1988). Therefore, tetrachloroethylene is readily taken

up by blood and is then distributed to fatty tissues where it is retained with a half-life of about

55 hours. The affinity of tetrachloroethylene for fat also results in its translocation into milk

(Byczkowski and Fisher 1994).

2.4.2 Mechanisms of Toxicity

Experimental studies in rodents have shown that tetrachloroethylene alters the fatty acid pattern of

brain phospholipids and amino acids (Briving et al. 1986; Kyrklund et al. 1984, 1990), which could be

partially responsible for tetrachloroethylene-induced neurotoxic effects. Alternatively, the effects of

tetrachloroethylene on the central nervous system may result from the incorporation of this lipophilic

compound into brain membranes, which may alter neural conduction velocity. A study by Wang et al.

(1993), which examined neuronal and glial cell markers in different regions of the brain in rats

exposed to tetrachloroethylene, suggests that the frontal cerebral cortex is more sensitive to
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tetrachloroethylene than other regions of the brain, that cytoskeletal elements are more sensitive than

cytosolic proteins. How tetrachloroethylene produces changes in the central nervous system still needs

to be elucidated.

In contrast to nervous system effects, which are thought to be a result of tetrachloroethylene, effects on

the liver including cancer in mice are thought to be a result of the metabolite, TCA. Rodents,

especially mice, produce more TCA than humans (Hattis et al. 1990). In addition, mice and rats also

respond to TCA and many other chemicals by induction of hepatocellular peroxisomes, while humans

are relatively insensitive to peroxisome proliferators, or do not respond at the doses that cause a

marked response in rats and mice (Bentley et al. 1993). How peroxisome proliferation leads to liver

cancer is still being elucidated. The proliferation process appears to require a specific receptor, that

when activated, induces peroxisomal enzymes that produce hydrogen peroxide as a by-product without

inducing catalase. The increased production of hydrogen peroxide may increase DNA damage. In

addition, peroxisome proliferators may promote endogenous lesions by sustained DNA synthesis and

hyperplasia which may be sufficient for tumor formation (Bentley et al. 1993). Liver cancer is not

observed following tetrachloroethylene exposure of rats because the threshold concentration of TCA

required to induce peroxisome proliferation is not reached as a result of saturation of the metabolic

pathway for the production of TCA (Green 1990). Because humans produce little TCA following

tetrachloroethylene exposure (ACGIH 1995; Hattis et al. 1990), and because the peroxisome

proliferation response in humans is minimal (Bentley et al. 1993), liver hypertrophy and tumor

development as is observed in mice (NCI 1977; NTP 1986) may not occur by the same mechanisms in

humans.

An in vitro study (Kukongviriyapan et al. 1990) suggests that tetrachloroethylene can directly affect

hepatocytes. Vapor exposure of rat hepatocytes to tetrachloroethylene (2-4 µL) significantly decreased

the hepatocyte uptake of taurocholate, ouabain, and 2-aminoisobutyric acid, all substances that require

adenosine 5’-triphosphate (ATP) for uptake. The uptake of cadmium and 3-O-methyl-D-glucose,

substances that do not require ATP, was not affected. Cellular ATP was decreased by tetrachloroethylene

but only at cytotoxic levels. Tetrachloroethylene also decreased membrane ATPase activity

leading the investigators (Kukongviriyapan et al. 1990) to hypothesize that the effect of

tetrachloroethylene on transport may result from both a decrease in ATP levels and an inhibition of

cell membrane ATPases.
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The metabolism of tetrachloroethylene is mediated by a cytochrome P-450 catalyzed oxidation reaction

involving the formation of an epoxide intermediate. Evidence of the role of hepatic microsomal

cytochrome P-450 during the in vitro metabolism of tetrachloroethylene was provided in the study by

Costa and Ivanetich (1980). This evidence included production of a type I difference spectrum

(indicating tetrachloroethylene binding to cytochrome P-450), production of known metabolites of

tetrachloroethylene following its incubation with hepatic microsomes and the reduced form of

nicotinamide adenine dinucleotide phosphate (NADPH), and inhibition of spectral binding and of

metabolite formation by cytochrome P-450 inhibitors. Many investigators (Buben and O’Flaherty

1985; Daniel 1963; Henschler 1977; Leibman and Ortz 1977; Yllner 1961) have postulated that an

epoxide is initially formed following interaction of tetrachloroethylene with the cytochrome P-450

system, but as with other substrates for this system, current technology does not permit the isolation of

an epoxide intermediate. It is hypothesized that the major pathway from the epoxide intermediate

involves nucleophilic attack by water or enzymatic reduction by epoxide hydrase to yield a

tetrachlorinated diol (Pegg et al. 1979). As indicated in Section 2.3.3, the metabolism of

tetrachloroethylene to TCA by the P-450 pathway is saturable. In addition, as indicated in Table 2-5,

mice have a greater capacity to metabolize tetrachloroethylene than rats or humans.

A low incidence of kidney cancer has been observed in male rats following inhalation exposure to

tetrachloroethylene (NTP 1986). Kidney cancer may in part be a result of the formation of the

genotoxic metabolites from S-( 1,2,2-trichlorovinyl)glutathione by β-lyase. As indicated in

Section 2.3.3, this pathway, which requires glutathione conjugation of tetrachloroethylene in the liver,

is most likely to occur when the P-450 pathway becomes saturated. Because glutathione conjugation

was not detected in the cytosol of human livers, and because P-lyase activity is low in the cytosol of

human kidneys (Green et al. 1990), the formation of reactive metabolites by β-lyase in humans may

not play a role in the renal toxicity of tetrachloroethylene in humans.

Tetrachloroethylene has also been shown to selectively affect the tubular S2 segment in the kidney of

male rats through the accumulation of α-2µ-globulin (Bergamaschi et al. 1992). This mechanism of

renal effects observed in male rats may not be relevant to human risk assessment because humans do

not produce α-2µ-globulin or proteins in the same family (lipocalin) in large quantities as observed in

male rats (Swenberg et al. 1989).
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2.4.3 Animal-to-Human Extrapolations

The difference in the toxic action of tetrachloroethylene in rats and mice correlates well with

differences in the metabolism of the compound. Mice, which are most sensitive to the liver effects of

tetrachloroethylene, produce the most TCA. The liver effects of TCA in mice are also thought to be a

result of peroxisome proliferation, a response to chemical exposure that is minimal in humans (Bentley

et al. 1993). Therefore, for liver effects, the mouse may not be the most appropriate model for

humans.

Rats, which are most sensitive to the kidney effects of tetrachloroethylene, have the greatest potential

for producing reactive intermediates from the glutathione conjugate of tetrachloroethylene through the

activity of kidney β-lyase (Green et al. 1990). Male rats also develop α-2µ-globulin nephropathy

following exposure to tetrachloroethylene. Therefore, for kidney effects, the male rat seems to be a

poor model for humans, especially at doses above saturation of the P-450 pathway, where the

glutathione conjugation pathway may become important.

Nervous system effects have been well documented in humans. Although tetrachloroethylene is

thought to be responsible for the nervous system effects, the possible role of metabolites has not been

well studied. If tetrachloroethylene is the active nervous system toxicant, metabolism to TCA may

serve to reduce nervous system toxicity. Therefore, rats, which metabolize less tetrachloroethylene to

TCA than mice (Hattis et al. 1990), may serve as a better model of nervous system effects in humans.

2.5 RELEVANCE TO PUBLIC HEALTH

Inhalation and oral routes are the major routes of human exposure to tetrachloroethylene. In the

following discussions, inhalation exposures are presented in ppm, and oral exposures are presented in

mg/kg/day. Inhalation exposure may occur near hazardous waste sites as well as in urban and

industrial areas. Occupational exposure to tetrachloroethylene (dry cleaners, chemical workers) is

generally by inhalation. Because most of the absorbed tetrachloroethylene is slowly exhaled, this

compound is not confined to the occupational setting. Workers exposed to tetrachloroethylene bring

the compound home to their families. For example, the tetrachloroethylene concentration in the

apartments of dry cleaners was 0.04 ppm relative to 0.0003 ppm in the control apartments (Aggazzotti

et al. 1994a). Oral exposure to tetrachloroethylene is primarily through drinking contaminated
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groundwater. Because tetrachloroethylene readily volatilizes from water, contaminated water is also a

source of inhalation exposure to tetrachloroethylene. Compared to inhalation exposure, little

tetrachloroethylene vapor is absorbed across the skin (Riihimaki and Pfaffli 1978). However, when

tetrachloroethylene is trapped against the skin beneath an impermeable barrier, small amounts of the

solvent are absorbed (Stewart and Dodd 1964).

Central nervous system effects are the most predominant and sensitive effects of tetrachloroethylene in

humans. Acute exposure (<2 hours) to high concentrations of tetrachloroethylene at l,000-1,500 ppm

has caused mood changes, slight ataxia, and dizziness (Carpenter 1937). Exposure to 100 ppm for

7 hours produced symptoms of headache, dizziness, difficulty in speaking, and sleepiness (Stewart et

al. 1970). Subjective evaluation of electroencephalographic scores suggested cortical depression in

subjects exposed to 100 ppm, 7.5 hours/day for 5 days (Hake and Stewart 1977). Altmann et al.

(1990, 1992) found a significant increase in latency of pattern reversal visual-evoked potentials in male

volunteers exposed to tetrachloroethylene at 50 ppm 4 hours/day for 4 days, compared to subjects

exposed at 10 ppm for the same duration. No effects on brainstem auditory-evoked potentials were

noted. Tests of visual contrast measured in a few individuals showed a tendency for loss of contrast

in the low and intermediate spatial frequencies at 50 ppm (Altmann et al. 1990). Significant

performance deficits for vigilance and eye-hand coordination were also observed at 50 ppm (Altmann

et al. 1992). Following occupational exposure, Cai et al. (1991) reported an increase in subjective

symptoms including dizziness and forgetfulness in workers exposed to tetrachloroethylene at a

geometric mean concentration of 20 ppm relative to unexposed controls. Loss of color vision has also

been reported in dry cleaning workers exposed to tetrachloroethylene at an average concentration of

7.3 ppm (Cavalleri et al. 1994); however, no effect on color vision was observed in workers exposed

at average concentrations of 15.3 and 10.7 ppm for men and women, respectively (Nakatsuka et al.

1992). The American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit

value (TLV) of 25 ppm (ACGIH 1995) is very near the threshold for neurological effects in humans.

Subtle renal effects such as increased urinary lysozyme, fibronectin, albumin, brush border antigens,

transferrin, laminin fragments, and tissue-nonspecific alkaline phosphatase have been noted in humans

occupationally exposed to tetrachloroethylene (Franchini et al. 1983; Lauwerys et al. 1983; Mutti et al.

1992; Price et al. 1995; Vyskocil et al. 1990). The observed changes could be a physiological adaptation

to exposure or may represent an early state of progressive renal disease. Kidney effects, including

cancer, following tetrachloroethylene exposure have also been noted in animals, predominantly male
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rats (Goldsworthy et al. 1988; Green et al. 1990; NCI 1977). The mechanism for the development of

kidney effects in rats may differ from that in humans. After saturation of the P-450 metabolic

pathway, which produces TCA, male rats produce more glutathione (GSH) conjugates of

tetrachloroethylene than humans (Green et al. 1990). The GSH conjugates are then metabolized to

reactive metabolites by β-lyase found in the kidneys. In addition, an accumulation of α-2µ-glolbulin,

which is a male rat-specific phenomenon, is observed in male rats exposed to tetrachloroethylene

(Bergamaschi et al. 1992).

Liver effects including enlarged liver, fatty changes, and elevated SGOT have been reported in humans

exposed to high levels of tetrachloroethylene (Coler and Rossmiller 1953; Hake and Stewart 1977;

Levine et al. 1981). These limited case studies do not provide exposure concentrations.

Tetrachloroethylene is clearly a hepatic toxicant in rodents, with mice exhibiting a greater response

than rats. The hepatic toxicity of tetrachloroethylene correlates well with the production of TCA

(Travis et al. 1989), and mice metabolize more tetrachloroethylene to TCA than rats and humans

(Hattis et al. 1990). Mice are also more sensitive to the hepatic effects of tetrachloroethylene because

they respond to TCA with hepatic peroxisome proliferation, while humans are relatively insensitive to

peroxisome proliferators, or do not respond at the doses that cause a marked response in mice (Bentley

et al. 1993). Therefore, hepatotoxic effects from tetrachloroethylene in humans may result from a

mechanism that differs from the mechanism that produces hepatotoxic effects in mice.

Limited studies of women occupationally exposed to tetrachlorethylene suggest an association with

menstrual disorders (Zielhuis et al. 1989) and spontaneous abortions (Ahlborg 1990; Kyyrönon et al.

1989). Other studies have not found a significant association between tetrachloroethylene exposure

and birth outcome (Bosco et al. 1986; McDonald et al. 1986; Olsen et al. 1990). An increase in the

percentage of round and narrow sperm has been noted in dry cleaners relative to the unexposed

controls, but the overall percentage of abnormal sperm was similar between the two groups (Eskenazi

et al. 1991a). There is some indication from questionnaires that it may take slightly longer for wives

of dry cleaners to become pregnant, and they are more likely to seek help for an infertility problem

(Eskenazi et al. 1991a). In a multigeneration study, reduced litter size and reduced survival of

offspring were the only reproductive effects noted in rats exposed to tetrachloroethylene at 1,000 ppm,

a concentration that also resulted in sedation and kidney effects (Tinston 1995). No reproductive

effects were identified at 300 ppm. Increased resorptions have also been noted in rats treated by
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gavage with tetrachloroethylene at 900 mg/kg/day on gestation days 6-13, a dose that also resulted in

maternal toxicity (Narotsky and Kavlock 1995).

Without providing the data, Narotsky and Kavlock (1995) indicated that an increase in

micro/anophthalmia was observed in the offspring of rats treated by gavage with tetrachloroethylene at

900 mg/kg/day on gestation days 6-19. At the 900-mg/kg/day dose, maternal ataxia and body weight

gain approximately 25% less than controls were also observed. Hyperactivity in adult mice treated

while the nervous system was developing was the most sensitive end point among oral studies of

tetrachloroethylene (Fredriksson et al. 1993), suggesting that the developing nervous system may be

especially sensitive to tetrachloroethylene. Infants can be exposed to tetrachloroethylene that has been

transferred into breast milk, and by inhalation to tetrachloroethylene that has been exhaled or released

from dry cleaned clothes. Therefore, because of both potential exposure and a sensitive and possibly

permanent effect, infants should be considered a susceptible population for exposure to

tetrachloroethylene.

Minimal Risk Levels for Tetrachloroethylene

Inhalation MRLs

• An MRL of 0.2 ppm has been derived for acute inhalation exposure (14 days or less) to

tetrachloroethylene. This MRL is derived from the study by Altmann et al. (1992) in which

human volunteers were exposed to tetrachloroethylene at 10 or 50 ppm, 4 hours/day for 4 days.

At 50 ppm, pattern reversal visual-evoked potential latencies increased (p<0.05), and significant

performance deficits for vigilance (p=0.04) and eye-hand coordination (p=0.05) were observed.

No effects on brainstem auditory-evoked potential were noted at either concentration. Because

faint odor was reported by 33% of the subjects at 10 ppm and 29% of the subjects at 50 ppm on

the first day of testing, and by 15% of the subjects at 10 ppm and 36% of the subjects at 50 ppm

on the last day of testing, the investigators concluded that only a few subjects could identify

their exposure condition. The MRL was derived based on the NOAEL of 10 ppm for

neurological effects.

In a similar study by Altmann et al. (1990), significant (p<0.05) increased latencies for pattern

reversal visual-evoked potentials were observed in 10 male volunteers exposed to tetrachloro-
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ethylene at 50 ppm, compared to 12 men exposed at 10 ppm. Exposures in this study were also

4 hours/day for 4 days. Effects on brainstem auditory-evoked potentials were also not observed

in the Altmann et al. (1990) study. Tetrachloroethylene in the blood increased with exposure

duration, and linear regression to associate blood tetrachloroethylene with pattern reversal visual-evoked

potential latencies was significant (r = -0.45, p<0.03). Additional tests of neurological

function were not conducted in this study.

Hake and Stewart (1977) did not find any changes in flash-evoked potentials and equilibrium

tests in four male subjects exposed to increasing concentrations of tetrachloroethylene

7.5 hours/day for 5 days. The subjects were sequentially exposed to 0, 20, 100, and 150 ppm

(each concentration 1 week). Subjective evaluation of EEG scores suggested cortical depression

in subjects exposed at 100 ppm. Decreases in the Flanagan coordination test were observed at

≥100 ppm. This study confirms that the nervous system is a sensitive target following exposure

to tetrachloroethylene. It does not serve as the basis of the acute-duration inhalation MRL

because effects were observed at a lower concentration in the Altmann et al. (1992) study. The

lack of effect on flash-evoked potentials in the Hake and Stewart (1977) study at concentrations

up to 150 ppm compared to changes in pattern reversal visual-evoked potentials observed in the

Altmann et al. (1992) at 50 ppm may reflect the greater inter- and intrasubject variability of

flash-evoked potentials compared to pattern reversal visual-evoked potentials (Otto et al. 1988).

• An MRL of 0.04 ppm has been derived for chronic (≥1 year) inhalation exposure to tetrachloro-ethylene. This

MRL is derived from the study by Ferroni et al. (1992) in which significantly

prolonged reaction times were observed in women (n=60) who had been exposed to

tetrachloroethylene at an average concentration of 15 ppm for an average period of 10 years.

Tests that were significantly different from controls were a test of simple reaction times

(p<0.0001) and shape comparison tests which were constructed to test vigilance (p<0.005) and

moderate stress (p<0.005). Exposure was estimated by determining tetrachloroethylene

concentrations in both blood and air samples.

The nervous system is a well-established target of tetrachloroethylene exposure in humans, and

logistic regression of toxicity data suggests that it may be the most sensitive target (Rao et al.

 1993). Cai et al. (1991) reported increased subjective symptoms including dizziness and

 forgetfulness in workers exposed to tetrachloroethylene at an average of 20 ppm for
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l-120 months. Exposure was measured using diffusive sampling with carbon cloth. Additional

details were not provided. In a study in which the duration of exposure is unclear (Seeber

1989), perceptual speed and digit reproduction as a memory test were impaired in workers

exposed to an average of 12 ppm. No detrimental effects on critical flicker fusion, simple and 9-

choice visual reaction time, and a sustained attention test were observed in 22 workers exposed

to tetrachloroethylene at an average of 21 ppm for about 6 years (Lauwerys et al. 1983). In this

study, the neurological function tests were completed both before and after work; therefore,

training effects and effects of tetrachloroethylene exposure on learning may have contributed to

the difference between the Ferroni et al. (1992) study and the Lauwerys et al. (1983) study.

Although exposure measurements were more comprehensive in the Lauwerys et al. (1983) study

(the investigators measured urinary TCA daily for 1 week, air concentrations with personal air

samplers and badges, and breath and blood concentrations of tetrachloroethylene), the

measurements were completed during 1 week, while in the Ferroni et al. (1992) study, the more

limited measurements were completed during the summer and winter and may better represent

chronic exposure.

Loss of color vision has also been reported in dry cleaners exposed to tetrachloroethylene at an

average of 7.3 ppm for an average of 106 months (Cavalleri et al. 1994). Although this study

seems to identify an effect at a lower concentration than the Ferroni et al. (1992), fewer subjects

were studied (n=22 exposed subjects), and exposure concentrations were only measured in air on

1 day, while Ferroni et al. (1992) completed air and blood measurements in both the winter and

summer. In addition, no effect on blue-yellow color vision was noted in 30 men or in

34 women occupationally exposed to tetrachloroethylene at average concentrations of 15.3 and

10.7 ppm, respectively (Nakatsuka et al. 1992). Therefore, because of inconsistent reports on the

effect of tetrachloroethylene on color vision, and because of the better exposure assessment and

the larger number of subjects (n=60) in the Ferroni et al. (1992) study compared to the Cavallari

et al. (1994) study, the Ferroni et al. (1992) study was chosen as the basis for the MRL.

An additional study did not reveal any effects on neurological function among 14 persons who

lived above or next to dry cleaning facilities for l-30 years compared to 23 controls matched for

age (± l year, in two cases 3 and 5 years) and gender when the absolute values of the tests were

examined (Altmann et al. 1995). Median tetrachloroethylene exposure concentrations were

0.2 ppm in the apartments of the exposed individuals and 0.0003 ppm in the apartments of
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control subjects, and blood concentrations were 17.8±46.9 µg/L in exposed individuals and less

than the detection limit of 0.5 ug/L in the controls. When multivariate analysis was completed

to adjust for age, gender, and education, an increased response time in a continuous performance

test (p<0.05), increased simple reaction time to a visual stimuli (p<0.05), and decreased

performance in a test of visual memory (p<0.05) were observed. No effect on pattern reversal

visual-evoked potentials was observed. The 0.2-ppm concentration is considered a NOAEL

because of the lack of effect on the absolute values of the tests. This study does suggest that

further studies of larger populations exposed to very low levels of tetrachloroethylene would be

useful.

Additional studies of workers exposed to relatively low concentrations of tetrachloroethylene

have also reported minor indicators of renal tubular damage. Franchini et al. (1983) reported

increased urinary levels of lysozyme and β-glucuronidase in workers occupationally exposed to

tetrachloroethylene at a TWA concentration of 10 ppm for an average of 14 years. Mutti et al.

(1992) found increased urinary albumin, transferrin, the brush-border membrane antigens B50,

BBA, and HF5, and tissue nonspecific alkaline phosphatase in workers exposed to an average

tetrachloroethylene concentration of 15 ppm for an average period of 10 years. Urinary

fibronectin was significantly decreased relative to the controls. The investigators concluded that

the results showed increased shedding of epithelial membrane components from tubular cells.

Vyskocil et al. (1990) found an increase in urinary lysozyme in workers exposed to

tetrachloroethylene at an average of 23 ppm for 9 years. No effects on urinary β2-microglobulin,

creatinine, lysozyme activity, glucose, low-density lipoprotein, or total proteins were noted.

Although both nervous system and mild kidney effects appear to occur at similar concentrations

in persons occupationally exposed to tetrachloroethylene, the nervous system effects were

considered a more appropriate basis for the MRL. The nervous system effects noted (decreased

reaction times), could lead to accidents, and at higher concentrations for shorter time periods,

tetrachloroethylene clearly produces incoordination (Stewart et al. 1970). The significance of the

mild kidney changes observed following low-level occupational exposure to tetrachloroethylene

is not clear. The kidney changes may be an adaptive effect rather than an adverse effect. In

addition, in the study reporting kidney effects at 10 ppm (Franchini et al. 1983), the exposure

level was estimated using urinary TCA concentrations, so the actual exposure concentrations are

unknown.
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An intermediate-duration inhalation MRL was not derived. The only available intermediate-duration

human studies were two case reports (Abedin et al. 1980; Meckler and Phelps 1966) and a case

control study of reproductive outcome in women occupationally exposed (Ahlborg 1990) that did not

identify exposure concentrations. Minimal changes in flash-evoked potential were observed in rats

exposed to 800 ppm tetrachloroethylene 6 hours/day, 5 days/week, for 13 weeks, with no effects at

200 ppm (Mattsson et al. 1992). The testing was completed 1 week after the end of exposure. A

study in mice (Kjellstrand et al. 1984) indicates that liver enlargement occurs following intermediate-duration

exposure (30 days, 24 hours/day) at 9 ppm, a less-serious LOAEL for animals. Because mice

metabolize more tetrachloroethylene to TCA than humans, and because the peroxisomal proliferative

response in mice is much greater than in humans, data in humans were considered more appropriate

for the derivation of MRLs.

Oral MRLs

• An MRL of 0.05 mg/kg/day has been derived for acute-duration oral exposure to tetrachloroethylene.

This MRL is derived from the study by Fredriksson et al. (1993) in which a

significant (p<0.01) increase in total spontaneous activity (locomotion and rearing) was observed

in 60-day-old mice treated with tetrachloroethylene for 7 days beginning at 10 days of age.

Hyperactivity was observed at both 5- and 320-mg/kg/day doses which did not cause observable

symptoms of toxicity or differences in body weight gain. Behavior was similar to that of the

controls in mice tested at 17 days of age. The change in behavior at 60 days of age was similar

in both dose groups. An inhalation study (Nelson et al. 1980) in which hyperactivity was

observed in 31- and 32-day-old rats that were exposed during gestation (900 ppm) supports the

observation that the developing nervous system is a target of tetrachloroethylene toxicity. The

developing nervous system is also at risk because tetrachloroethylene is known to cross the

placenta, and it is found in breast milk (Schreiber 1993).

Intermediate- and chronic-duration oral MRLs were not derived. Longer term oral studies in animals

have not focused on neurological effects, the principal effect of tetrachloroethylene in humans.

Intermediate-duration oral studies have noted liver effects in rats (Hayes et al. 1986) and mice (Buben

and O’Flaherty 1985) and kidney effects in male rats (Hayes et al. 1986). There are species

differences in the metabolism of tetrachloroethylene and the response to metabolites which contribute

to the liver effects. The kidney effects are associated with α-2µ-globulin, a male rat-specific protein.
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Therefore, the liver and kidney effects were not considered appropriate for the derivation of an MRL.

Chronic-duration oral studies in animals have not identified NOAELs or less serious LOAELs at doses

below those causing decreased survival of rats and mice (NCI 1977).

Death.  At high concentrations (>l,000 ppm), tetrachloroethylene vapor acts as an anesthetic agent,

producing collapse, loss of consciousness, and death in humans. Death may be related to depression

of respiratory centers of the central nervous system or cardiac arrhythmia and heart block. Death

following acute inhalation of concentrations that produce unconsciousness has been confirmed by

animal studies (Carpenter 1937; NTP 1986). Oral exposure of a malnourished man to a dose of

152 mg tetrachloroethylene/g resulted in death (Chaudhuri and Mukerji 1947). Animal studies of oral

exposure suggest that anesthesia and death would be likely occurrences in humans if high doses were

swallowed (Berman et al. 1995; Hayes et al. 1986; Wenzel and Gibson 1951). There are no reports of

fatalities in humans or animals exposed solely by the dermal route.

It appears unlikely that death would occur in humans exposed to the levels of tetrachloroethylene that

occur in the environment or in the vicinity of hazardous waste sites.

Systemic Effects

Respiratory Effects   Respiratory tract irritation has been reported at concentrations as low as 216 ppm

in volunteers exposed for 45 minutes to 2 hours (Rowe et al. 1952). At concentrations of >l,000 ppm,

tetrachloroethylene is intensely irritating (Carpenter 1937; Rowe et al. 1952). Changes in pulmonary

function tests were not observed in four male volunteers exposed to 0, 20, 100, or 150 ppm

tetrachloroethylene for 7.5 hours/day, 5 days/week, for 1 week at each exposure concentration (Stewart

et al. 1981). Exposure of mice to 300 ppm of tetrachloroethylene (300 ppm) for 6 hours/day for

5 days has resulted in degeneration of the olfactory and respiratory mucosa (Aoki et al. 1994).

Respiratory effects were not reported in animals after oral exposure (NCI 1977). Environmental

exposure to tetrachloroethylene in air or water is unlikely to pose a risk to the respiratory system.

Cardiovascular Effects.  Despite the relatively large number of people occupationally exposed to

tetrachloroethylene, there are few reported cases of tetrachloroethylene-associated cardiotoxicity.

Cardiac arrhythmias in a small number of Wobum residents cannot be directly related to chronic

tetrachloroethylene exposure (Byers et al. 1988). Experimental exposure studies have not found
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changes in electrocardiograms for persons exposed at concentrations up to 100 ppm for 5.5 hours,

5 days/week (Stewart et al. 1977) or up to 150 ppm for 7.5 hours/day, 5 days/week, for 1 week

(Stewart et al. 1981). The case report of Abedin et al. (1980) suggests an association of inhaled

tetrachloroethylene with cardiac arrhythmia, but the patient described may have been an unusually

sensitive individual. These investigators hypothesized that exposure to tetrachloroethylene may

sensitize the myocardium to endogenous epinephrine. In an experiment in dogs, however, inhalation

exposure to high levels of tetrachloroethylene failed to sensitize the heart to epinephrine (Reinhardt et

al. 1973). In contrast, intravenous administration of tetrachloroethylene to rabbits and dogs enhanced

myocardial sensitivity to an exogenous epinephrine challenge (Kobayashi et al. 1982). The available

studies provide no strong evidence that people exposed to environmental levels of tetrachloroethylene

or levels typically found at hazardous waste sites would develop cardiovascular effects.

Gastrointestinal Effects.  Nausea and vomiting have been experienced in some individuals given an

oral dose of tetrachloroethylene as an anthelminthic (Wright et al. 1937). Forestomach ulcers have

been reported following chronic inhalation exposure of rats to high concentrations of

tetrachloroethylene (NTP 1986). Gastrointestinal effects resulting from exposure to tetrachloroethylene

at a hazardous waste site are unlikely to occur.

Hematological Effects.  There are no studies that support hematological effects in humans after acute

or chronic exposure to tetrachloroethylene by any route.

Several animal studies indicate that tetrachloroethylene exposure in drinking water can affect the

hematopoietic system, particularly the erythrocytes. Tetrachloroethylene in the blood may enter the

polar phospholipid layer of the rodent erythrocyte membrane and alter the structure, thus resulting in

mechanical fragility and hemolysis (Marth 1987). Thus, there is a potential, though unsubstantiated,

risk of subclinical hematological effects resulting from exposure to tetrachloroethylene in drinking

water.

Musculoskeletal Effects.  There are no studies regarding musculoskeletal effects in humans following

exposure to tetrachloroethylene by any route.

An intermediate-duration study did not find any microscopic changes in the limb muscles of rats

exposed to tetrachloroethylene (Mattsson et al. 1992). Because of the very limited data, it is not
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possible to determine whether musculoskeletal effects would occur in humans following tetrachloroethylene

exposure at hazardous waste sites.

Hepatic Effects.  Tetrachloroethylene has been shown to cause hepatotoxic effects in humans

following inhalation exposure (Brodkin et al. 1995; Hake and Stewart 1977; Meckler and Phelps 1966;

Saland 1967) and in animals exposed by the inhalation (Kylin et al. 1963; NTP 1986; Odum et al.

1988; Schumann et al. 1980) and oral routes (Berman et al. 1995; Buben and O’Flaherty 1985;

Goldsworthy and Popp 1987). For humans, reports of hepatotoxicity consist almost entirely of case

studies of accidental exposures in which reliable quantitative exposure information was not available

(Coler and Rossmiller 1953; Hake and Stewart 1977; Meckler and Phelps 1966; Saland 1967). In

most cases, hepatic effects in humans have been reported as transient in nature. Human exposure

studies (Stewart et al. 1977, 1981) have not found any effects on serum alkaline phosphatase, SGPT,

SGOT, or serum bilirubin in volunteers exposed to tetrachloroethylene at concentrations up to

150 ppm for 7.5 hours/day for 1 week. Changes in serum levels of liver enzymes may not be the

most sensitive marker of liver damage following exposure to tetrachloroethylene. Diffuse parenchymal

changes detected with ultrasound were observed in the livers of dry cleaning workers exposed to an

average of 15.8 ppm tetrachloroethylene for at least 6 months (Brodkin et al. 1995). No changes in

serum markers of liver damage (SGOT, SGPT, γ-glutamyl transferase, alkaline phosphatase, total and

direct bilirubin) were noted in these workers.

In animals, liver effects are characterized by hypertrophy, fatty degeneration, and peroxisome

proliferation. Mice are much more sensitive to the hepatic effects of tetrachloroethylene than rats

because of their higher rate of oxidative metabolism of tetrachloroethylene to TCA (Odum et al. 1988).

TCA is also a peroxisome proliferator in rodents (Goldsworthy and Popp 1987; Odum et al. 1988).

Oral exposure to tetrachloroethylene has also been shown to induce CYP2B P-450 enzymes in rats

(Hanioka et al. 1995). Although liver damage can occur in humans exposed to tetrachloroethylene, the

mechanism of damage may be different from that occurring in rodents. Hepatic effects in humans

following exposure to tetrachloroethylene at environmental levels or at a hazardous waste site cannot

be ruled out.

Renal Effects.  Reversible kidney damage has been reported in humans accidentally exposed to

acutely toxic amounts of tetrachloroethylene vapors (Hake and Stewart 1977). There are also data that

suggest that occupational exposure to hydrocarbon solvents as a class may contribute to chronic renal
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disease (Kluwe et al. 1984). Subtle renal perturbations have been detected in studies of chronically

exposed workers in dry cleaning workshops (Franchini et al. 1983; Mutti et al. 1992; Price et al. 1995;

Vyskocil et al. 1990). Mutti et al. (1992) suggested that the observed effects indicated increased

shedding of epithelial membrane components from tubular cells, which could be a physiological

adaption to exposure or could be an early state of clinically silent renal disease.

Studies of tetrachloroethylene in animals support the fact that renal effects are produced. One acute

study of tetrachloroethylene administered intraperitoneally to dogs resulted in alteration of

phenolsulfonphthalein excretion indicative of tubular dysfunction, in the absence of microscopic

lesions (Klaassen and Plaa 1967). Inhalation or oral exposure of rodents to tetrachloroethylene induces

renal effects. However, the data showing an increased incidence of protein droplet nephropathy in

male rats may have little relevance to human health, as discussed below.

Chemically induced protein droplet nephropathy in sexually mature male rats is characterized by

accumulation of α-2µ-globulin in lysosomes, degeneration and necrosis of tubular cells, formation of

granular casts, and regeneration of the tubular epithelium (Swenberg et al. 1989). Chemicals that are

known to induce protein droplet nephropathy bind to α-2µ-globulin, yielding a complex that is more

resistant to proteolytic enzymes in the lysosomes, leading to the accumulation of the complex in the

tubule cells. α-2µ-Globulin has not been found in immature male rats, female rats, or humans (Alden

1986). Humans synthesize and excrete trace amounts of proteins similar to α-2µ-globulin. However,

human male urine has a very low protein content compared to male rat urine (1% of male rat urine).

In addition, human urinary proteins are primarily of high molecular weight compared to those of rats,

and human urinary protein has a relatively small proportion of cationic to total proteins. These

findings suggest that humans are not at risk for tetrachloroethylene-induced renal damage analogous to

the type found in male rats (Olson et al. 1990). Nevertheless, because of tubular effects detected in

workers and in animal species other than rats, risks of subclinical renal changes to humans exposed to

environmental levels of tetrachloroethylene or levels near hazardous waste sites cannot be discounted.

Endocrine Effects.  Ferroni et al. (1992) reported increased prolactin levels in women occupationally

exposed to tetrachloroethylene. Because the prolactin levels were still within the normal range, it is

not clear if the observed effect had any biological significance. Histopathological changes in the

adrenal glands were not observed in female rats treated by gavage with tetrachloroethylene for 14 days

at doses that resulted in hepatotoxicity (Berman et al. 1995). Adrenal medullary hyperplasia was



TETRACHLOROETHYLENE 129

2. HEALTH EFFECTS

observed in rats chronically exposed to tetrachloroethylene by inhalation (NTP 1986). Studies of

endocrine function are too limited to conclude whether or not endocrine effects may occur in humans

following exposure to tetrachloroethylene at hazardous waste sites.

Dermal Effects.   Skin damage (burns) has been reported in humans exposed to concentrations of

tetrachloroethylene liquid or vapors high enough to cause anesthetic effects (Morgan 1969). No

damage to skin has been reported in animals exposed chronically (Van Duuren et al. 1979). Data are

too limited to predict if dermal effects can occur following environmental exposure of humans.

Ocular Effects.   Intense ocular irritation has been reported in humans exposed to concentrations of

tetrachloroethylene vapors high enough to cause anesthetic effects (Morgan 1969). Transient eye

irritation was also reported in six subjects during the first few minutes of exposure at 75-80 ppm

(Stewart et al. 1961b). Data are too limited to predict if ocular effects can occur following

environmental exposure of humans.

Body Weight Effects.   Decreased body weight gain has been observed in animals following inhalation

exposure (NTP 1986; Rowe et al. 1952; Wang et al. 1993) or oral exposure (Hayes et al. 1986;

Narotsky and Kavlock 1995; NCI 1977; Schumann et al. 1980) to high levels of tetrachloroethylene.

The decreased body weight gain occurred at doses that were associated with other adverse effects,

indicating that tetrachloroethylene does not cause a selective effect on body weight. Body weight

effects are unlikely in humans exposed to tetrachloroethylene in the environment or at hazardous waste

sites.

Immunological and Lymphoreticular Effects.   Immunological effects in humans related

specifically to tetrachloroethylene exposure have not been reported. Atrophy of the spleen and thymus

have been noted in rats treated by gavage with 2,000 mg/kg/day of tetrachloroethylene for 5 days

(Hanioka et al. 1995). Histopathological changes in the spleen and thymus were not observed in rats

treated by gavage with tetrachloroethylene at 1,500 mg/kg/day for 14 days (Berman et ah 1995). No

effects on natural killer cell, natural cytotoxic, and natural P-815 killer cell activities or humoral and

T cell mitogenesis were observed in cells harvested from rats and mice treated with three daily intraperitoneal doses

of 829 mg tetrachloroethylene/g/day (Schlichting et al. 1992). In a study limited by

high mortality in the control group, susceptibility to infection was enhanced in mice exposed to
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tetrachloroethylene (Aranyi et al. 1986). The relevance of these findings to public health is, therefore,

unclear.

Neurological Effects.   The symptomatology of acute inhalation exposure to high levels of

tetrachloroethylene is well documented in humans and includes headache, dizziness, and drowsiness.

EEG studies done on male and female volunteers resulted in changes in the EEG of three of four male

subjects and four of five female subjects during exposure to 100 ppm (Stewart et al. 1981). In the

majority of subjects, the EEG changes were characterized by a reduction in overall wave amplitude

and frequency, most strikingly evident in the occipital leads. This altered pattern is similar to that

seen in a healthy adult during drowsiness, light sleep, and the first stages of anesthesia. Altmann et al.

(1990) reported increases in the latency of pattern reversal visual-evoked potentials in volunteers

exposed to tetrachloroethylene at 50 ppm for 4 hours/day for 4 days. In a similar study, significant

performance deficits for vigilance and eye-hand coordination, as well as increased latencies for pattern

reversal visual-evoked potentials were observed in subjects exposed to tetrachloroethylene at 50 ppm

for 4 hours/day for 4 days (Altmann et al. 1992). No effects were noted at 10 ppm. An acute

inhalation MRL was derived based on the lack of neurological effects at 10 ppm.

In a study completed over an 1l-week period, decrements in coordination were observed in volunteers

exposed at 100 ppm but not 20 ppm (Stewart et al. 1977). Longer term occupational exposure to

tetrachloroethylene has resulted in an increase in subjective complaints including headache and

dizziness (Abedin et al. 1980; Cai et al. 1991; Coler and Rossmiller 1953). The exposure

concentrations were not well defined in these studies. Deficits in behavioral tests that measured shortterm

memory for visual designs have been reported in dry cleaning workers exposed to an average of

40.8 ppm tetrachloroethylene for at least 1 year (Echevenia et al. 1995). Loss of color vision has

been reported in dry cleaning workers exposed to tetrachloroethylene at an average of 7.3 ppm for an

average of 106 months (Cavalleri et al. 1994). However, no loss of color vision was noted in workers

exposed to tetrachloroethylene at average concentrations of 15.3 and 10.7 ppm for an unspecified

duration (Nakatsuka et al. 1992). Reaction times were increased in workers exposed to

tetrachloroethylene at an average of 15 ppm for about 10 years (Ferroni et al. 1992). Exposure in the

Ferroni et al. (1992) study was assessed with both blood and air measurements completed during more

than one season. Because of the better exposure assessment and more study subjects compared to the

study by Cavalleri et al. (1994), a chronic inhalation MRL of 0.04 ppm has been derived based on the

LOAEL of 15 ppm identified in the Ferroni et al. (1992) study. In all of the occupational studies
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assessing neurological effects, it is not clear if the observed effects are a result of peak exposures or

the TWA concentrations.

In a study of 14 persons living above or next to dry cleaning facilities, effects on neurological function

tests were noted when multivariate analysis was used to analyze the data, but not when the absolute

values of the tests were examined (Altmann et al. 1995). Median tetrachloroethylene exposure

concentrations were 0.2 ppm in the apartments of the exposed individuals and 0.0003 ppm in the

apartments of control subjects. The 0.2-ppm concentration is considered a NOAEL because of the

lack of effect on the absolute values of the tests. This study does suggest that further studies of larger

populations exposed to very low levels of tetrachloroethylene would be useful.

Electrophysiologic changes measured on the last day of exposure (e.g., reduced amplitude and

decreased latency in flash-evoked potentials) were reported in rats exposed to 800 ppm

tetrachloroethylene 6 hours/day for 4 days (Albee et al. 1991). Exposure of rats at 800 ppm

6 hours/day, 5 days/week for 13 weeks, only resulted in minimal changes in flash-evoked potential

when measured 1 week after the end of exposure (Mattsson et al. 1992). According to the

investigators, these studies suggest that the electrophysiologic changes are a result of repeated acute

exposure rather than permanent damage to the nervous system. Further investigation is required to

determine if the minimal changes observed in the 13-week study are reversible since the neurological

testing was done at one time point only (i.e., 1 week after the last exposure).

An inhalation multigeneration study in rats suggests that animals may adapt to some of the

neurological effects of tetrachloroethylene. Exposure at 1,000 ppm 6 hours/day, 5 days/week resulted

in decreased activity, reduced response to sound, salivation, breathing irregularities, and piloerection

(Tinston 1995). The effects were observed in each generation only during the first 2 weeks of a

19-week study, and recovery from these effects was noted about 30 minutes before the end of each

exposure period.

Subchronic and chronic inhalation exposure in rats and mice (NTP 1986) did not result in brain

lesions. Experimental studies in rodents have shown, however, that tetrachloroethylene alters the fatty

acid pattern of brain phospholipids and amino acids (Briving et al. 1986; Kyrklund et al. 1984, 1990).

Taurine is known to be a nonspecific membrane stabilizer; therefore, a reduction in the content of this

amino acid may lead to alterations in nerve impulse transmission and could be partially responsible for
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tetrachloroethylene-induced neurotoxic effects. Alternatively, the effects of tetrachloroethylene on the

central nervous system that were observed may have resulted from the incorporation of this lipophilic

compound into brain membranes and the resultant alteration of parameters such as neural conduction

velocity. Decreased DNA content concomitant with a decrease in astroglial protein was found in the

brain of gerbils exposed continuously to tetrachloroethylene concentrations as low as 60 ppm

(Rosengren et al. 1986). It was unclear, however, whether the astroglial response represents a direct

effect of tetrachloroethylene toxicity or an indirect reaction in response to neuronal cell damage. A

study by Wang et al. (1993), which examined neuronal and glial cell markers in different regions of

the brain in rats exposed to tetrachloroethylene, suggests that the frontal cerebral cortex is more

sensitive to tetrachloroethylene than other regions of the brain, that cytoskeletal elements are more

sensitive than cytosolic proteins, and that glial cells are more sensitive than neurons.

The relevance of neurotoxic effects to individuals following exposure to low concentrations of

tetrachloroethylene, most likely by inhalation, and the oral route through contaminated water, is

unclear.

Reproductive Effects.   Epidemiological studies of women occupationally exposed to

tetrachloroethylene in the dry cleaning industry suggest that they may have an increased risk of

adverse reproductive effects, primarily menstrual disorders and spontaneous abortions (Ahlborg 1990;

Bosco et al. 1986; Kyyronen et al. 1989; Windham et al. 1991; Zielhuis et al. 1989). Interpretation of

these studies is complicated by limiting factors, such as small sample populations, failure to account

for possible confounding factors, lack of exposure data, and inadequate data collection methods. Other

studies have not found an association between tetrachloroethylene exposure and spontaneous abortions

(McDonald et al. 1986; Olsen et al. 1990). Wives of dry cleaners who had significantly more rounded

sperm did not have more spontaneous abortions, although there was some evidence that it may take

slightly longer for these women to become pregnant (Eskenazi et al. 1991a, 1991b). Therefore, it is

not possible to speculate on whether adverse reproductive effects could occur in environmentally

exposed people. Decreased litter sizes and decreased survival during lactation were observed in rats

exposed to 1,000 ppm in a multigeneration study (Tinston 1995). Sedation was also noted at this

concentration. No significant effects on reproduction were observed at 300 ppm. This study suggests

that at concentrations below those that result in frank neurological effects, reproductive effects are

unlikely to occur. Increased resorptions have also been noted in rats treated by gavage with
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tetrachloroethylene at 900 mg/kg/day on gestation days 6-13, a dose that also resulted in maternal

toxicity (Narotsky and Kavlock 1995). Lower doses were not examined in this study.

Developmental Effects.  Studies examining the association between drinking water contamination

and birth outcome in humans suggest that there may be an association between birth defects, especially

oral cleft defects, and tetrachloroethylene contamination (Bove et al. 1995; Lagakos et al. 1986).

These studies are confounded by more than one contaminant, and the Lagakos et al. (1986) study

combined birth defects in the analysis in a manner that has questionable biological relevance.

Results from inhalation studies in animals also suggest that tetrachloroethylene is fetotoxic but not

teratogenic at concentrations that are also maternally toxic (Schwetz et al. 1975). Fetotoxicity in

rodents is usually expressed by decreased fetal weight and delayed skeletal ossification. These effects

have been associated with exposure to 300 ppm, and NOAELs have not been reported. A gavage

study in rats reported that tetrachloroethylene caused an increase in micro/anophthalmia in the

offspring of rats treated by gavage with tetrachloroethylene at 900 mg/kg/day on gestation days 6-13

(Narotsky and Kavlock 1995). This dose also resulted in transient maternal ataxia and decreased

maternal body weight gain. The lack of teratogenic effects in the inhalation studies compared to the

oral study may be the result of different dose rates; gavage treatment may result in higher peak blood

concentrations compared to inhalation studies.

Gestational exposure to higher concentrations of tetrachloroethylene (900 ppm) was associated with

behavioral and neurochemical alterations in some rat offspring (Nelson et al. 1980). Following oral

exposure of mice to 5 mg tetrachloroethylene/kg for 7 days beginning at 10 days of age, hyperactivity

was observed at 60 but not by 17 days of age (Fredriksson et al. 1993). These studies suggest that the

developing nervous system may be sensitive to tetrachloroethylene. Based on the LOAEL of

5 mg/kg/day identified in the Fredriksson et al. (1993) study, an acute-duration oral MRL of

0.05 mg/kg/day has been derived.

A high concentration of the tetrachloroethylene metabolite TCA has been detected in the amniotic fluid

of mice following maternal inhalation exposure to tetrachloroethylene (Ghantous et al. 1986). TCA

levels in the amniotic fluid were higher following exposure to tetrachloroethylene compared to

exposure to TCA, suggesting that tetrachloroethylene can cross the placenta and be metabolized to

TCA by fetal tissues. Because TCA also appeared in the fetal urinary bladder, TCA may recirculate
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several times before leaving the fetoplacental compartment. This process may contribute to long-term

retention in the murine fetus.

Genotoxic Effects.   The lack of strong genotoxic effects seen in assays of human lymphocytes

following occupational exposure to tetrachloroethylene is consistent with data on the metabolism of

this compound. The metabolism of tetrachloroethylene by the hepatic cytochrome P-450 enzymes

does not result in the formation of compounds that are mutagenic or that otherwise interfere with the

integrity of the DNA. However, the metabolites that are formed are oxiranes and acyl chlorides; these

are highly cytotoxic, which may contribute to the weak hepatocarcinogenic effect of tetrachloroethylene

(Buben and O’Flaherty 1985; Daniel 1963; Yllner 1961). Another biotransformation pathway

of this compound is glutathione conjugation. This process results in the formation of strong mutagens,

e.g., S-( 1,2,2-trichlorovinyl)glutathione, in the kidney and could explain the carcinogenic effects seen

in this organ in rats (Dekant 1986).

A large number of studies of in vitro genotoxicity of tetrachloroethylene have been performed using

prokaryotic, eukaryotic, and mammalian cells. The results of in vitro and in vivo studies are

summarized in Tables 2-7 and 2-8, respectively. Most of the studies using the Ames test with

Salmonella typhimurium have indicated that tetrachloroethylene itself is not a mutagen (Bartsch et al.

1979; Haworth et al. 1983; NTP 1986). Several chlorinated aliphatic compounds identified in the

spent liquor from the softwood kraft pulping process were found to be mutagenic (Kringstad et

al. 1981). Tetrachloroethylene was one of several compounds isolated that was shown to be mutagenic

for S. typhimurium TA 1535 without the addition of liver microsomes for metabolic activation. In

contrast, purified tetrachloroethylene was not mutagenic with or without exogenous metabolic

activation. However, preincubation of tetrachloroethylene with purified rat liver GSH S-transferases in

the presence of GSH and rat kidney fraction resulted in the formation of the conjugate, S-(1,2,2-tri-chlorovinyl)

glutathione, which was unequivocally mutagenic in the Ames test (Vamvakas et al. 1989).

Tetrachloroethylene oxide, an epoxide intermediate of tetrachloroethylene, was found to be mutagenic

in bacterial studies (Kline et al. 1982).

Studies of mutagenicity on Escherichia coli have been negative (Greim et al 1975; Henschler 1977), as

have been tests for mitotic recombination in yeast (Callen et al 1980; Koch et al. 1988). Mixed results

were obtained in yeast when no metabolic activation was used in the experiments by Bronzetti et al.

(1983). Koch et al. (1988) postulated that the lack of mutagenicity of tetrachloroethylene was because
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of its highly toxic effects on cells and that lower doses would be required to demonstrate

unequivocally the presence or absence of mutagenic effects.

Direct effects on DNA by tetrachloroethylene have been investigated in several cell systems. Human

fibroblasts were assayed for unscheduled DNA synthesis following exposure to tetrachloroethylene, but

the results were equivocal (NIOSH 1980). This study is difficult to interpret because negative results

were obtained using the higher concentrations, whereas the lower doses produced a weak positive

response. In addition, the positive control chemicals (N-methyl-N-nitro-N-nitrosoguanidine,

benz[a]pyrene) produced only weak positive responses. Induction of single-strand breaks in mouse

liver and kidney DNA, but not in lung DNA, following intraperitoneal injection of 4-8 mmol

tetrachloroethylene/kg body weight was reported (Walles 1986). Most of the data do not support a

directly mutagenic effect of tetrachloroethylene itself (Costa and Ivanetich 1980). The inconsistent

results could be due to differences between tested species in metabolism or activation, protocol

differences, or purity of the compound tested. Other investigators found no effects on the DNA of rat

and mouse hepatocytes (Costa and Ivanetich 1980). However, evidence of DNA binding of

tetrachloroethylene in mouse liver and rat kidney was seen in experiments that utilized liver

microsomes and the addition of glutathione transferases (Mazzullo et al. 1987), further substantiating

the evidence that the glutathione metabolites may be responsible for the mutagenic and carcinogenic

properties of tetrachloroethylene. A single intraperitoneal injection of tetrachloroethylene given to

mice at doses up to 2,000 mg/kg did not increase micronuclei in reticulocytes or hepatocytes when

mice were treated before partial hepatectomy (Murakami and Kazumi 1995). Micronuclei were

increased in hepatocytes at 1,000 and 2,000 mg/kg when mice were treated after partial hepatectomy.

There are few data on clastogenic effects of tetrachloroethylene following in vitro exposure. When

Chinese hamster ovary cells were assayed for sister chromatid exchanges, no increase in frequency was

found (NTP 1986). Two assays of cell transformation in mouse cells treated with tetrachloroethylene

were negative (NTP 1986; Tu et al. 1985). However, Fischer rat embryo cells were transformed in the

absence of metabolic activation.

Most of the studies on tetrachloroethylene have been done using commercial or technical grade

chemical, which means that contaminants may be involved when effects are seen. Stabilizers are

added to tetrachloroethylene to prevent decomposition. Stabilizers are amines or mixtures of epoxides

and esters. Epoxides are themselves highly reactive because of the unstable three-member ring
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structure. They easily generate hydroxide radicals, which can have deleterious cellular effects.

Problems with unusual dose-response curves, cytotoxic doses of chemical, and small sample sizes are

examples of factors that limit the interpretation of these studies. There is growing evidence that the

mutagenic properties of tetrachloroethylene depend on the metabolic pathway that involves glutathione

conjugation, a pathway more prominent in rats than mice or humans (Green et al. 1990). Therefore, it

is not clear whether the low levels of tetrachloroethylene found at most hazardous waste sites would

cause observable genotoxic effects in humans.

Cancer.   Some epidemiological studies of dry cleaning workers suggest a possible association

between chronic tetrachloroethylene exposure and increased cancer risk (Anttila et al. 1995; Blair et al.

1990; Chapman et al. 1981; Duh and Asal 1984; Katz and Jowett 1981; Lynge and Thygesen 1990

Ruder et al. 1994). Both the Anttila et al. (1995) and Ruder et al. (1994) studies reported a small

number of cancers in their study populations, and that no significant excess number of cases of

malignancy occurred. However, there was an increase in certain types of cancers which did develop.

The cancer types most consistently showing an increase were esophageal cancer (Blair et al. 1979,

1990; Ruder et al. 1994), cervical cancer (Anttila et al. 1995; Blair et al. 1979, 1990; Brown and

Kaplan 1987), and non-Hodgkin’s lymphoma (Anttila et al. 1995). In general, these studies are

confounded by concomitant exposure to other solvents, smoking and other life-style variables, and

methodological limitations in choosing control populations and maintaining complete follow-up. The

Woburn study (Lagakos et al. 1986), which attempted to correlate an increased risk of childhood

leukemia with exposure to solvent-contaminated water, has been refuted by many scientists. In a study

in New Jersey, tetrachloroethylene contamination of the drinking water was associated with an

increased incidence of non-Burkitt’s high-grade non-Hodgkin’s lymphoma in females (Cohn et al.

1994). The investigators noted that the conclusions of their study are limited by potential

misclassification of exposure because of a lack of individual information on duration of residence and

water consumption.

Occupational exposure to tetrachloroethylene and other solvents did not generally result in increased

risk of hematopoietic neoplasms. Although there was one report of familial chronic lymphocytic

leukemia in five of seven members of a family who had worked for years in the dry cleaning industry

(Blattner et al. 1976), it appears that an inherited defect was the cause of this family’s susceptibility to

leukemia. In addition, there was a study on occupational exposure of parents whose children had

acute nonlymphocytic leukemia. Paternal (but not maternal) exposure to agents categorized as
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“solvents” was reported to pose a significant risk for development of childhood leukemia (Buckley et

al. 1989). However, the risk was nonsignificant when controlled for household exposure (including

marijuana use) and paternal exposure to petroleum products.

The carcinogenicity of tetrachloroethylene has been documented in animals exposed by inhalation

(NTP 1986) or oral (gavage) routes (NCI 1977). By both routes of exposure, mice but not rats

developed compound-related hepatocellular neoplasms. One mechanism for tetrachloroethyleneinduced

hepatocellular tumors in mice has been hypothesized to be the formation of a genotoxic

epoxide intermediate during metabolism of tetrachloroethylene by mixed function oxidases (MFOs)

(Buben and O’Flaherty 1985). However, data from numerous studies also indicate that chlorinated

hydrocarbon-induced hepatocellular tumor development in rodents is related to peroxisomal

proliferation. Tetrachloroethylene induces hepatocellular peroxisomal proliferation in mice but not in

rats (Goldsworthy and Popp 1987). This species difference appears to result from differences in

metabolic rates between rats and mice, with mice forming higher levels of TCA, a major

tetrachloroethylene metabolite (Odum et al. 1988). TCA itself induces peroxisomal proliferation in

mouse liver (Goldsworthy and Popp 1987). Both TCA and dichloroacetic acid (DCA), a minor

metabolite of tetrachloroethylene, can induce hepatocellular tumors in mice (Herren-Freund et al. 1987;

Pereira 1996). The tumors produced by TCA were basophilic, and lacked glutathione S-transferase-π,

consistent with mouse liver tumors caused by other peroxisome proliferators (Pereira 1996). Humans

are exposed to a number of disparate chemicals, including therapeutic hypolipidemic agents, that cause

peroxisomal proliferation and liver cancer in rodents. These compounds, including TCA, cause little

peroxisome proliferation in humans (Bentley et al. 1993). Nevertheless, the mechanism of

carcinogenicity via peroxisomal proliferation is not well understood, and a cause and effect

relationship has not been established. Therefore, the relevance of this end point to human risk remains

unclear.

Other cancer end points in the inhalation study of tetrachloroethylene in rats, but not in mice, were

significantly increased incidences of mononuclear cell leukemia in both sexes and a low-incidence of

renal cancer in males (NTP 1986). Male rats exposed to a diverse group of hydrocarbon chemicals

develop a unique form of kidney damage characterized by crystalloid phagolysosomal inclusions in the

cytoplasm of renal proximal tubular epithelium (P2 segment) (Alden 1986). Biochemically, these

inclusions are composed of the low-molecular-weight protein α-2µ-globulin complexed with a

hydrocarbon chemical or its metabolite (Swenberg et al. 1989). This type of nephropathy, with
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concomitant increases in cell replication in the damaged segment of the kidney, has been induced

experimentally in male rats, but not in female rats, by treatment with doses of 1,000 mg/kg/day

tetrachloroethylene or greater by gavage (Goldsworthy et al. 1988; Green et al. 1990). However,

a-2µ-globulin accumulation was not seen in rats after inhalation exposure to tetrachloroethylene levels

(400 ppm) that produced nephrotoxicity in both sexes and renal tumors in males (NTP 1986). This

finding tends to argue against a major role for the α-2µ-globulin mechanism in tetrachloroethyleneinduced

renal carcinogenesis in male rats. The complete pattern of nephropathy attributed to

α-2µ-globulin accumulators has not been fully characterized for tetrachloroethylene. The available

data do suggest, however, that since α-2µ-globulin accumulation was seen only after exposure to

dosages that were higher than those inducing nephrotoxicity in the cancer bioassay (NTP 1986), a

threshold level for the α-2µ-globulin nephrotoxicity of tetrachloroethylene (above the doses known to

cause tumors in male rats) may exist.

In addition, there is evidence that tetrachloroethylene can be metabolized by glutathione conjugation in

the liver (Dekant et al. 1986, 1987; Green et al. 1990). The conjugate is further metabolized by the

mercapturic acid pathway and excreted in urine as the N-acetyl cysteine derivative. The precursor of

this metabolite, S-( 1,2,2-trichlorovinyl)glutathione, is a substrate for the renal enzyme, cysteine

conjugate β-lyase. The data presented by Green et al. (1990), which show that the urinary level of the

N-acetylated metabolite only begins to increase after saturation of the cytochrome P-450 pathway, have

been used to support the speculation that hepatic glutathione conjugation of tetrachloroethylene is a

“high-dose phenomenon” in rats. However, the saturation of the β-lyase pathway in the kidney would

seem to be a more plausible explanation; at high doses, more of the cysteine conjugate would be

converted and excreted because the competing β-lyase pathway approaches saturation. In addition,

S-( 1,2,2-trichlorovinyl)glutathione induces a powerful mutagenic response in the Ames bacterial

mutation assay when activated by rat kidney fractions (Dekant et al. 1986; Vamvakas et al. 1989).

The mutagenic response demonstrated for the cysteine conjugate of tetrachloroethylene suggests a

possible genotoxic component in nephrocarcinogenicity of tetrachloroethylene in male rats.

Human metabolism of tetrachloroethylene can be saturated by exposure to more than 100 ppm for

8 hours/day (Ohtsuki et al. 1983). Although glutathione conjugation was not detected in in vitro
studies of human liver tissues (Green et al. 1990), the results are inconclusive. The small number of

human liver samples that were assayed, in conjunction with the relatively weak response reported for

rat livers, does not resolve the issue of whether humans are at risk from renal damage caused by the
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electrophilic intermediate resulting from glutathione conjugation. Of the various mechanisms

hypothesized to be involved in tetrachloroethylene-induced renal tumorigenesis in male rats (i.e.,

protein droplet nephropathy, chronic nephrotoxicity, and hepatic glutathione-S-transferase-conjugation

resulting in the formation of a mutagenic cysteine conjugate), the formation of mutagenic metabolites

in the kidney appears to be a likely mode of action.

Despite some indication of human risk of leukemia from solvent exposure, the relevance to human

health of elevated incidences of mononuclear cell leukemia related to tetrachloroethylene exposure in

Fischer-344 rats is unclear. This is a spontaneous and very prevalent neoplasm that is fairly specific

for Fischer-344 rats, and the control incidences for this study were higher than historical values.

However, NTP’s Board of Scientific Counselors considered the incidence of rat leukemias to be a true

finding because there was a decreased time to onset of the disease and the disease was more severe in

treated as compared to control animals.

The weight-of-evidence for the carcinogenicity classification of tetrachloroethylene represents a

departure from the strict categorization scheme outlined in EPA’s Cancer Risk Assessment Guidelines

(EPA 1986b). Since EPA’s carcinogenicity classification of tetrachloroethylene has major

ramifications and can influence the public’s perceptions of risk, some historical perspective is provided

on the major issues arising from the assessment. In 1986, EPA recommended a Group B2 (probable

human carcinogen) weight-of-evidence classification for tetrachloroethylene based on sufficient

evidence from animal studies and inadequate human evidence (EPA 1991a). EPA’s Science Advisory

Board (SAB) reviewed tetrachloroethylene-related issues in late 1987; the summarized findings,

presented in a letter to the EPA Administrator (March 9, 1988) were that the overall weight-of evidence

positions tetrachloroethylene “on a continuum between categories B2 and C” (possible human

carcinogen). In 1991, after reevaluation of animal data and additional mutagenicity data, the SAB

Executive Committee made the following statement:

It is the Committee’s view that the major issues arising from the assessment of tetrachloro-

ethylene have not changed over the past four years, and that SAB’s previous response remains

appropriate. The available scientific evidence confirms that tetrachloroethylene should be

considered as an animal carcinogen, based on three endpoints in two species: liver tumors in

male and female mice, kidney tumors in male rats, and, possibly, mononuclear cell leukemia in

male and female rats. Complications within each study and in their biological interpretations
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have made it difficult to categorize this compound. We do not consider the evidence strong

enough to classify this compound as a probable human carcinogen (i.e., B2); on the other hand,

the evidence for carcinogenicity is stronger than for most other compounds classified as possible

human carcinogens (i.e., C). Therefore, in the spirit of the flexibility encouraged by the

Guidelines, our best judgement places this compound on a continuum between these two

categories (EPA 1991b).

The carcinogenicity assessment of tetrachloroethylene is still pending (IRIS 1996).

Based on increased risks of esophageal cancer, cervical cancer, and non-Hodgkin’s lymphoma in

several epidemiologic studies, and increased liver tumors in mice, increased mononuclear cell leukemia

in rats, and renal tumors in male rats, IARC (1995) has classified tetrachloroethylene as probably

carcinogenic to humans (Group 2A). According to the Department of Health and Human Services’

(DHHS) Annual Report on Carcinogens, there is sufficient evidence for the carcinogenicity of

tetrachloroethylene in animals, but the data in humans are inconclusive, leading to the conclusion that

tetrachloroethylene may reasonably be anticipated to be a carcinogen (DHHS 1994).

2.6 BIOMARKERS OF EXPOSURE AND EFFECT

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They

have been classified as markers of exposure, markers of effect, and markers of susceptibility

(NAS/NRC 1989).

Due to a nascent understanding of the use and interpretation of biomarkers, implementation of

biomarkers as tools of exposure in the general population is very limited. A biomarker of exposure is

a xenobiotic substance or its metabolite(s) or the product of an interaction between a xenobiotic agent

and some target molecule(s) or cell(s) that is measured within a compartment of an organism

(NAS/NRC 1989). The preferred biomarkers of exposure are generally the substance itself, substance-specific

metabolites in readily obtainable body fluid(s), or excreta. However, several factors can

confound use and interpretation of biomarkers of exposure. The body burden of a substance may be

the result of exposures from more than one source. The substance being measured may be a

metabolite of another xenobiotic substance (e.g., high urinary levels of phenol can result from

exposure to several different aromatic compounds). Depending on the properties of the substance
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 (e.g., biologic half-life) and environmental conditions (e.g., duration and route of exposure), the

substance and all of its metabolites may have left the body by the time samples can be taken. It may

be difficult to identify individuals exposed to hazardous substances that are commonly found in body

tissues and fluids (e.g., essential mineral nutrients such as copper, zinc, and selenium). Biomarkers of

exposure to tetrachloroethylene are discussed in Section 2.6.1.

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within

an organism that, depending on magnitude, can be recognized as an established or potential health

impairment or disease (NAS/NRC 1989). This definition encompasses biochemical or cellular signals

of tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital

epithelial cells), as well as physiologic signs of dysfunction such as increased blood pressure or

decreased lung capacity. Note that these markers are not often substance specific. They also may not

be directly adverse, but can indicate potential health impairment (e.g., DNA adducts). Biomarkers of

effects caused by tetrachloroethylene are discussed in Section 2.6.2.

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism’s

ability to respond to the challenge of exposure to a specific xenobiotic substance. It can be an

intrinsic genetic or other characteristic or a preexisting disease that results in an increase in absorbed

dose, a decrease in the biologically effective dose, or a target tissue response. If biomarkers of

susceptibility exist, they are discussed in Section 2.8, Populations That Are Unusually Susceptible.

2.6.1 Biomarkers Used to Identify or Quantify Exposure to Tetrachloroethylene

Biological monitoring for exposure to tetrachloroethylene is possible by measuring levels of the parent

compound in the blood, urine, or exhaled air or TCA in the blood or urine. Biological monitoring for

tetrachloroethylene exposure has been performed to measure both exposure occurring in the workplace

and the environmental exposure of individuals at places other than the work site. In these instances, it

has been demonstrated that measurement of tetrachloroethylene in exhaled air is a fairly-simple,

effective, and noninvasive method for assessing both occupational and nonoccupational exposure

(Stewart and Dodd 1964; Stewart et al. 1961b, 1970, 1981). Tetrachloroethylene is excreted in the

breath for long periods after exposure and is measurable on Monday morning following exposure the

previous week (Monster et al. 1983). In an experimental exposure study, Stewart et al. (1981) found

that breath concentrations reached an equilibrium with exposure concentrations on the third day of
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each week. Based on breath analysis decay curves, Stewart et al. (1981) concluded that 16.5 hours

after a male worker has been exposed to tetrachlorethylene in air at 100 ppm for 7.5 hours, his breath

level should not exceed 10 ppm, while breath concentrations of a female worker should not exceed

6 ppm. Following 3 hours of exposure at 100 ppm, breath levels at 21 hours postexposure should not

exceed 5 and 1 ppm for males and females, respectively.

In the experimental exposure studies of Stewart et al. (1961b, 1970, 1981), analysis of the expired

breath of exposed subjects for tetrachloroethylene proved to be superior to both blood and urine

analyses for determining the magnitude of the previous vapor exposure. A series of Breath Decay

Curves was constructed following vapor exposures to 20, 50, 100, 150, and 200 ppm for 1, 3, and

7.5 hours, repeated for 5 days each, which permitted the estimation of the magnitude of the previous

exposure. Utilizing the 30-second breath holding technique to collect breath samples, these Breath

Decay Curves provide an efficient method for determining whether overexposure has occurred (Stewart

et al. 1961a, 1981).

The concentration of tetrachloroethylene in exhaled air was used to measure environmental exposure in

a group of 54 healthy volunteers from an urban population (Krotoszynski et al. 1979). In this group

of subjects, it was determined that 30.2% had traces of tetrachloroethylene in their breath, with a mean

concentration of 2.6 ng/m3. The measurement of tetrachloroethylene in exhaled air showed that 93%

of a sample of about 300 nonoccupationally exposed residents of Bayonne and Elizabeth, New Jersey,

had measurable concentrations of tetrachloroethylene in their breath (Wallace 1986). The mean

concentration of tetrachloroethylene in the breath in this study was 13.3 µg/m3, and this mean

concentration was increased to 22 µg/m3 for persons who had visited a dry cleaning establishment.

Measurements of tetrachloroethylene in exhaled air were used to determine exposure in children

attending a school near a factory and in occupants of a senior citizens home located near a former

chemical waste dump. A control group of children had a mean tetrachloroethylene level in their

exhaled air of 2.8 µg/m3, whereas exposed children had a mean tetrachloroethylene level of 24 µg/m3.

In the senior citizens group, people living on the first floor of the home had a mean tetrachloro-

Ethylene level of 7.8 µg/m3, whereas people living on the second floor and above had a mean tetra-chloroethylene

level of 1.8 µg/m3. It was concluded that biological monitoring of tetrachloroethylene

in exhaled air was an effective method of assessing total ambient tetrachloroethylene exposure in both

the young and aged (Monster and Smolders 1984).
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Biological monitoring for recent, as opposed to more remote, exposure to tetrachloroethylene has also

been performed by measuring concentrations of tetrachloroethylene and its principal metabolite, TCA,

in blood and urine. However, TCA is not specific for tetrachloroethylene because it is also produced

from the metabolism of trichloroethylene and l,l,l-trichloroethane (Monster 1988). In a study of

occupationally exposed individuals, measurements of tetrachloroethylene and TCA in the blood

15-30 minutes after the end of the workday at the end of the week were judged to be the best

parameters for estimating exposure to the chemical. The best noninvasive method for determining

tetrachloroethylene exposure was to measure the concentration of the parent compound in exhaled air.

After exposure to a TWA concentration of 50 ppm of tetrachloroethylene, the estimated concentrations

of tetrachloroethylene and TCA in blood were 2.2 and 5.4 mg/L, respectively; the concentration of

tetrachloroethylene in exhaled air was estimated to be 22.5 ppm (Monster et al. 1983). In another

study of workers exposed to tetrachloroethylene, urinary metabolites were related to vapor

concentrations up to 50 ppm, but little additional increase occurred at higher concentrations (Ikeda et

al. 1972). The ACGIH biological exposure index (BEI) associated with a TWA concentration of

25 ppm tetrachloroethylene is 0.5 mg tetrachloroethylene/L in blood and 3.5 mg TCAL in urine

(ACGIH 1995). The estimated BE1 in Korean workers exposed to 50 ppm tetrachloroethylene was

1.6 mg tetrachloroethylene/ in blood and 2.9 mg TCAL in urine (Jang et al. 1993), suggesting that

there are differences in tetrachloroethylene metabolism among different ethnic populations.

Increased tetrachloroethylene blood levels have been detected after exposure to drinking water polluted

by tetrachloroethylene released from a leaking storage tank (Kido et al. 1989). The investigators

detected tetrachloroethylene in blood of exposed families when tetrachloroethylene was in drinking

water at levels above 120 µg/L.

2.6.2 Biomarkers Used to Characterize Effects Caused by Tetrachloroethylene

Hepatocellular damage and icterus have been related to exposure to tetrachloroethylene. Biomarkers

of hepatic cell death, which are not specific for tetrachloroethylene, are increases in serum levels of

intracellular liver enzymes including SGOT, SGPT, and lactic dehydrogenase. Biomarkers of icterus

include increased serum levels of bilirubin and alkaline phosphatase and increased urobilinogen in

urine (Bagnell and Ellenberger 1977; Coler and Rossmiller 1953; Hake and Stewart 1977; Meckler and

Phelps 1966; Stewart 1969). Electrophoresis of serum GGT enzymes from tetrachloroethyleneexposed

workers with no other evidence of liver effects (SGOT, SGPT, serum alkaline phosphatase,
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lactate dehydrogenase, and 5’-nucleotidase) has shown increases in GGT-2 and the appearance of

GGT-4, which was not present in the serum of the unexposed controls (Gennari et al. 1992). The

investigators indicate that further research is required to determine if changes in GGT enzymes are

useful for detecting early liver changes induced by tetrachloroethylene. As increases in GGT also

occur with fatty livers, pancreatitis, and following exposure to other xenobiotics (Suber 1989), this

liver effect is not specific for tetrachloroethylene. Parenchymal changes detected by ultrasound may

also be a useful noninvasive marker of liver effects (Brodkin et al. 1995), although it also is not

specific for tetrachloroethylene.

Biomarkers of renal damage are not specific for solvents. For clinical renal damage, these include

increased blood urea nitrogen and serum creatinine and abnormal urinalysis findings. Increased

urinary levels of lysozyme and the lysosomal enzyme N-acetyl-beta-D-glucuronidase, albuminuria, and

other urinary markers suggesting increased shedding of epithelial membrane components from tubular

cells may indicate subclinical renal damage in workers exposed to a potentially nephrotoxic chemical

(Franchini et al. 1983; Meyer et al. 1984; Mutti et al. 1992; Viau et al. 1987).

Neurotoxic effects manifested in the central nervous system have been associated with acute and

chronic exposure of humans to tetrachloroethylene. These effects may be monitored by

symptomatology, neurological examination, and neuropsychological testing (Gregersen et al. 1984).

Neurological effects are not specific for tetrachloroethylene. Therefore, other causes of neurological

disease must be ruled out before effects are attributed to tetrachloroethylene exposure.

2.7 INTERACTIONS WITH OTHER CHEMICALS

The hepatic monooxygenase system is primarily responsible for oxidation of tetrachloroethylene.

Thus, compounds that stimulate or induce tetrachloroethylene metabolism could influence the toxicity

associated with exposure to this chemical. Results of experiments that have investigated possible

enhancement of tetrachloroethylene-induced toxicity by increasing tetrachloroethylene metabolism have

been equivocal. Pretreatment of rats with ethanol (Cornish and Adefuin 1966; Klaassen and Plaa

1966) and phenobarbital (Cornish et al. 1973; Moslen et al. 1977) failed to enhance tetrachloroethylene

hepatic toxicity. Pretreatment with polychlorinated biphenyls (PCBs), on the other hand, increased

urinary excretion of tetrachloroethylene metabolites in rats and enhanced tetrachloroethylene-induced

hepatotoxicity (Moslen et al. 1977).
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A study was conducted to evaluate the potential interaction between tetrachloroethylene and ethanol, or

tetrachloroethylene and diazepam (Stewart et al. 1977). Twelve healthy volunteers of each sex were

exposed to 0, 25, or 100 ppm tetrachloroethylene vapor alone or in combination with either ethanol

(0.0, 0.75, or 1.5 mL vodka/kg body weight) or diazepam (0, 6, or 10 mg/day). The subjects exhibited

a decrement in performance of at least one of the behavioral or neurological tests while on either drug

alone at the highest dose level, but no interaction with tetrachloroethylene resulting in additional test

performance decrement could be demonstrated for either combination of solvent vapor and drug.

Giovannini et al. (1992) examined the interaction of ethanol and tetrachlorethylene on the hepatic

toxicity in rats. Rats were exposed to 15% ethanol in the drinking water and/or to tetrachloroethylene

aerosol for 10 minutes each day for 4 weeks. The tetrachloroethylene concentration used was not

provided, but can be assumed to be very high because the rats were unconscious by the end of the

lo-minute exposure period. Liver effects, necrotic foci, steatosis, and lymphocyte infiltration were

worse after ethanol exposure compared to tetrachloroethylene exposure alone. When the rats were

treated with both compounds, tetrachloroethylene tended to reduce the hepatic effects of ethanol.

Giovannini et al. (1992) suggest that the reduction of ethanol hepatic effects by tetrachloroethylene is a

result of a metabolic interaction between ethanol and tetrachloroethylene.

In a study of dry cleaning workers in China, urinary metabolite levels (total trichloro compounds) were

reduced when workers were exposed to mixtures of tetrachloroethylene and trichloroethylene as

opposed to trichloroethylene alone (Seiji et al. 1989). The effect on the trichloroethylene metabolite,

trichloroethanol was greatest, with little effect on TCA, a metabolite of both trichloroethylene and

tetrachloroethylene. The study authors indicated that because of the smaller amount of

tetrachloroethylene metabolized, it was not possible to determine if trichloroethylene suppressed the

metabolism of tetrachloroethylene. Concurrent administration of tetrachloroethylene and

trichloroethylene to mice did not result in additive or synergistic effects in induction of hepatic

peroxisomal proliferation as measured by cyanide-insensitive palmitoyl CoA oxidation activity

(Goldsworthy and Popp 1987). This may be related to preferential metabolism of trichloroethylene at

the dose levels used.

Combined oral treatment of rats with tetrachloroethylene (3,000 mg/kg/day) and vitamin E

(400 mg/kg/day) prevented the centrilobular necrosis in the liver and hypercellular glomeruli and

congestion of convoluted tubules of the kidneys that was observed when rats were treated with tetra-
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chloroethylene alone (Ebrahim et al. 1995). Vitamin E also prevented the tetrachloroethylene-induced

increase in protein and protein-bound carbohydrates observed in the liver and kidneys of rats treated

only with tetrachloroethylene. This study suggests that free radical metabolites may play a role in the

liver and kidney toxicity observed in rats treated with tetrachloroethylene.

Tetrachloroethylene may sensitize the myocardium to effects of other chemicals. For example, high

doses of intravenously administered tetrachloroethylene have been found to sensitize the myocardium

to the presence of exogenous epinephrine (Kobayashi et al. 1982). However, Reinhardt et al. (1973)

did not observe sensitization to epinephrine in beagle dogs exposed to vapors of tetrachloroethylene.

Tetrachloroethylene may also have a direct effect on the heart. In synergy with alcohol and hypoxia,

tetrachloroethylene prolonged atrioventricular conduction in the perfused rat heart. Because of the

perfused heart model, this effect was not catecholamine mediated (Kawakami et al. 1988).

Using the Tradescantia-micronucleus assay, Ma et al. (1992) examined the genotoxicity of

tetrachloroethylene with lead tetraacetate, arsenic trioxide, and dieldrin. Although tetrachloroethylene,

dieldrin, and arsenic trioxide were not genotoxic alone, mixtures of tetrachloroethylene with dieldrin or

arsenic trioxide were genotoxic. An interaction between tetrachloroethylene and lead tetraacetate was

not observed. When mixtures of three chemicals (combination of any 3: tetrachloroethylene, dieldrin,

arsenic trioxide, and lead tetraacetate) were tested, interactions were also not observed.

2.8 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE

A susceptible population will exhibit a different or enhanced response to tetrachloroethylene than will

most persons exposed to the same level of tetrachloroethylene in the environment. Reasons may

include genetic makeup, age, health and nutritional status, and exposure to other toxic substances (e.g.,

cigarette smoke). These parameters may result in reduced detoxification or excretion of

tetrachloroethylene, or compromised function of organs affected by tetrachloroethylene. Populations

who are at greater risk due to their unusually high exposure to tetrachloroethylene are discussed in

Section 5.6, Populations With Potentially High Exposures.

Patients who had detectable blood levels of volatile organic chemicals (often more than one chemical)

and who had a variety of systemic symptoms were classified as “chemically sensitive” by Rea et

al. (1987). Tetrachloroethylene was the most common chemical detected in the blood of the
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“chemically sensitive” individuals who were studied (found in 72 of 134 patients). No controls were

used in this study, so it is not clear if tetrachloroethylene is more frequently detected in chemically

sensitive individuals and/or if concentrations of tetrachloroethylene in the blood are greater in sensitive

individuals than in the general population. Some adults also appear to have increased sensitivity to

certain systemic effects of tetrachloroethylene, e.g., cardiac sensitization (Abedin et al. 1980). Since

high doses of tetrachloroethylene are known to cause liver and kidney effects, persons with clinical or

subclinical renal or hepatic disease may be predisposed to the effects of tetrachloroethylene. Persons

with preexisting nervous system diseases may also be more sensitive to the neurotoxic effects of

tetrachloroethylene.

The developing fetus, children, and especially the developing nervous system may be particularly

susceptible to the toxic effects of tetrachloroethylene (Frederiksson et al. 1993). Studies in mice

suggest that tetrachloroethylene can cross the placenta and that TCA concentrates in the fetus

(Ghantous et al. 1986). Unmetabolized tetrachloroethylene has been excreted in breast milk and was

detected in an exposed infant with liver damage (Bagnell and Ellenberger 1977). In addition, possible

chemical effects were detected in children in Woburn, Massachusetts. These children may have been

exposed to solvent-contaminated drinking water as infants or in utero, and they had elevated

incidences of acute lymphocytic leukemia or impaired immunity (Byers et al. 1988; Lagakos et al.

1986).

2.9 METHODS FOR REDUCING TOXIC EFFECTS

This section will describe clinical practice and research concerning methods for reducing toxic effects

of exposure to tetrachloroethylene. However, because some of the treatments discussed may be

experimental and unproven, this section should not be used as a guide for treatment of exposures to

tetrachloroethylene. When specific exposures have occurred, poison control centers and medical

toxicologists should be consulted for medical advice. The following texts provide specific information

about treatment following exposures to tetrachloroethylene: Ellenhorn and Barceloux 1988; Stetz and

Ulin 1992.
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2.9.1 Reducing Peak Absorption Following Exposure

Following suspected overexposure to tetrachloroethylene, the person should be promptly placed under

the care of a knowledgeable physician. In the case of vapor exposure, the person should be removed

from the vapor-contaminated environment and given the standard emergency, and supportive treatment.

There is no specific antidote. Anesthetic overexposure may require respiratory assistance and the

treatment of cardiac arrythmias. General recommendations for reducing absorption following acute

oral exposure have included the administration of water or milk, emesis with ipecac syrup (unless the

patient is or could rapidly become obtunded, comatose, or convulsive), gastric lavage, and/or

administration of a charcoal slurry with or without a cathartic (Ellenhorn and Barceloux 1988; HSDB

1996; Stutz and Ulin 1992). Induction of emesis is not recommended because of the danger of

aspiration resulting in a chemical pneumonitis. In the case of eye exposure, irrigation with copious

amounts of water or saline has been recommended (Bronstein and Currance 1988; Haddad and

Winchester 1990; HSDB 1996; Stutz and Ulin 1992). For dermal exposure, the removal of

contaminated clothing and a thorough washing of any exposed areas with soap and water have been

recommended (HSDB 1996; Stutz and Ulin 1992).

2.9.2 Reducing Body Burden

The body does not retain significant amounts of tetrachloroethylene; most of an absorbed dose is

excreted within several days of either inhalation or oral exposure (see Section 2.3.4). However,

methods aimed at enhancing elimination during this period of retention may be effective in mitigating

the serious effects that can occur following absorption of tetrachloroethylene. It is emphasized that no

clinical treatments, other than supportive measures, are currently available to enhance elimination.

One possible method for enhancing elimination is increasing the ventilation rate. In a single case

report, controlled hyperventilation over a 5-day period enhanced pulmonary elimination in a 6-year-old

boy who had ingested between 12 and 16 grams of tetrachloroethylene (Koppel et al. 1985).

Metabolism of tetrachloroethylene is saturable following either inhalation (Ohtsuki et al. 1983; Seiji et

al. 1989) or oral (Pegg et al. 1979; Schumann et al. 1980) exposure, and therefore, it is likely that

stimulation of the metabolism of tetrachloroethylene will also lead to enhanced elimination. Methods

for enhancing elimination through stimulation of metabolism could focus on either P-450-mediated
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oxidation or glutathione conjugation. While elimination enhancement through stimulation of either of

these pathways may reduce some forms of toxic effects, these same pathways may form reactive

metabolites from tetrachloroethylene or from other substances (such as carbon tetrachloride) (Anders et

al. 1988; Cornish and Adefuin 1966; Cornish et al. 1973; Dekant et al. 1986; Green et al. 1990;

Klaassen and Plaa 1966; Moslen et al. 1977). Therefore, the risks and benefits of stimulating these

pathways are unclear.

2.9.3 Interfering with the Mechanism of Action for Toxic Effects

Clinical effects caused by acute tetrachloroethylene exposure include central nervous system

depression, liver or kidney injury, and in severe cases even death from anesthetic effects (see

Section 2.5). Other effects can include malaise, dizziness, fatigue, headache, and lightheadedness, all

of which may disappear soon after the exposure is stopped (HSDB 1996). The mechanism of action

for the central nervous system effects has not been clearly established but may be related to solvent

effects on lipid and fatty acid compositions of membranes (Kyrklund et al. 1984, 1988, 1990).

The mechanism of action for kidney toxicity and nephrocarcinogenicity may involve the formation of

reactive intermediates from glutathione conjugates (Dekant et al. 1986, 1987; Green et al. 1990;

Henschler 1977). Although evidence from an in vitro study with human liver tissue suggests that

glutathione conjugation is not an important route of biotransformation in humans (Green et al. 1990),

the results are not conclusive. Methods for reducing the destructive damage caused by glutathione

conjugates metabolites, or for blocking their formation through inhibition of β-lyase may prove

effective in reducing kidney toxicity but are not currently available for clinical use.

One mechanism of action for liver toxicity suggested in the literature is the induction of peroxisome

proliferation (and resulting increases in hydrogen peroxide and oxidative damage) by TCA, a

metabolite of tetrachloroethylene (Odum et al. 1988). Shifting metabolism away from formation of

TCA could theoretically reduce toxicity that might be caused by this mechanism. However, the net

effect on all forms of toxicity of tetrachloroethylene by such an alteration in metabolism would need

to be evaluated.
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2.10 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of tetrachloroethylene is available. Where adequate

information is not available, ATSDR, in conjunction with the National Toxicology Program (NTP), is

required to assure the initiation of a program of research designed to determine the health effects (and

techniques for developing methods to determine such health effects) of tetrachloroethylene.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment. This definition should not be interpreted to mean

that all data needs discussed in this section must be filled. In the future, the identified data needs will

be evaluated and prioritized, and a substance-specific research agenda will be proposed.

2.10.1 Existing Information on Health Effects of Tetrachloroethylene

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to

tetrachloroethylene are summarized in Figure 2-6. The purpose of this figure is to illustrate the

existing information concerning the health effects of tetrachloroethylene. Each dot in the figure

indicates that one or more studies provide information associated with that particular effect. The dot

does not necessarily imply anything about the quality of the study or studies, nor should missing

information in this figure be interpreted as a “data need.” A data need, as defined in ATSDR’s

Decision Guide for Identifying Substance-Specific Data Needs Related to Toxicological Profiles
(ATSDR 1989), is substance-specific information necessary to conduct comprehensive public health

assessments. Generally, ATSDR defines a data gap more broadly as any substance-specific

information missing from the scientific literature.

Most of the literature regarding health effects in humans comes from studies of workers exposed to

tetrachloroethylene during occupational uses. Case reports describe some of the acute, intermediate,

and chronic health effects associated with ingestion or inhalation of the chemical. The predominant

mode of exposure in these studies is by inhalation. The primary untoward health effects observed in

the humans reported in these occupational and case studies are the result of central nervous system
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depression or skin injury. Transient kidney and liver injury are observed when acute and prolonged

exposure to higher vapor concentrations occur. Acute exposure to high vapor concentrations has also

resulted in death, from either profound respiratory center depression or cardiac arrhythmia. These

studies are limited by the lack of reliable data on individual exposure levels. According to one case

report, direct dermal exposure to tetrachloroethylene reportedly resulted in erythema and blistering of

the skin. Experimental exposure studies at concentrations achieved in occupational settings have

confirmed neurological effects.

A large number of studies examining the health effects of inhalation of tetrachloroethylene by animals

were reviewed. There were also a number of studies regarding health effects of ingested tetrachloro-ethylene.

Primary target organs and systems in animals include the nervous system, kidney, and liver.

The mouse is especially susceptible to liver damage leading to increased risk of liver cancer. The rat

appears to have an increased sensitivity to kidney damage leading to cancers of the kidney. The

limited dermal exposure studies of tetrachloroethylene in animals indicate that the compound can be

absorbed following direct application, but the studies have not clearly identified any effects.

2.10.2 Identification of Data Needs

Acute-Duration Exposure. There are reports on acute tetrachloroethylene exposure of humans

following inhalation and oral routes, and in animals following inhalation and oral exposure. The

primary targets following acute inhalation and oral exposure are the central nervous system (Altmann

et al. 1990, 1992; Carpenter 1937; Hake and Stewart 1977; Haerer and Udelman 1964; Kendrick 1929;

Moser et al. 1995; NTP 1986; Ogata et al. 1971; Rowe et al. 1952; Savolainen et al. 1977; Stewart

1969; Stewart et al. 1961a, 1961b, 1970, 1981), kidneys (Goldsworthy and Popp 1987), and the liver

(Berman et al. 1995; Hake and Stewart 1977; Goldsworthy and Popp 1987; Hanioka et al. 1995; Kylin

et al. 1963; NTP 1986; Odum et al. 1988; Saland 1967; Schumann et al. 1980; Stewart 1969). The

majority of the human studies are cases involving accidental (Gamier et al. 1996; Koppel et al. 1985;

Saland 1967) or occupational exposure (Levine et al. 1981; Lukaszewski 1979; Morgan 1969; Pate1 et

al. 1973), or the use of tetrachloroethylene as an anthelminthic (Kendrick 1929; Wright et al. 1937).

However, studies are available that reported the thresholds for central nervous system effects in

humans resulting from acute-duration inhalation exposures to tetrachloroethylene (Altmann et al. 1990,

1992; Carpenter 1937; Hake and Stewart 1977; Rowe et al. 1952). An acute inhalation MRL of

0.2 ppm has been determined based on the NOAEL for human central nervous system effects
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 (Altmann et al. 1992). Human oral exposure data, limited to an accidental exposure (Koppel et al.

1985) and descriptions of the use of tetrachloroethylene as an anthelminthic (Chaudhuri and Mukerji

1947; Kendrick 1929; Koppel et al. 1985; Sandground 1941; Wright et al. 1937), do not clearly define

threshold dosages. Direct dermal contact with tetrachloroethylene results in chemical burns (Hake and

Stewart 1977; Ling and Lindsay 1971; Morgan 1969). Additional effects in humans following dermal

exposure only have not been conclusively identified.

There are acute inhalation studies that provide data on lethality (Friberg et al. 1953; NTP 1986) and

systemic effects in mice including neurotoxic (NTP 1986), hepatic (Kylin et al. 1963; NTP 1986;

Odum et al. 1988), respiratory (Aoki et al. 1994), and immunotoxic effects (Aranyi et al. 1986), and

neurotoxic effects in rats (Goldberg et al. 1964; NTP 1986; Rowe et al. 1952; Savolainen et al. 1977).

There are also oral lethality studies in rats (Berman et al. 1995; Hayes et al. 1986) and mice (Wenzel

and Gibson 1951). Effects noted in acute oral studies of tetrachloroethylene in animals include

increased liver weight (Berman et al. 1995; Goldsworthy and Popp 1987; Hanioka et al. 1995),

nephropathy (Goldsworthy et al. 1988), decreased body weight gain in rats (Schumann et al. 1980),

neurological effects in rats (Moser et al. 1995), and liver hypertrophy (Schumann et al. 1980) in mice.

Oral exposure of young mice to tetrachloroethylene resulted in hyperactivity when the mice were

tested as adults (Fredriksson et al. 1993). Interpretation of some of these data is difficult because of

limitations in the design and conduct of the studies (e.g., decreased survival, poor study methodology).

An acute oral MRL of 0.05 mg/kg/day has been derived based on the LOAEL for developmental

neurotoxicity (Fredriksson et al. 1993). Acute dermal exposure data in animals were not identified.

Additional data on dermal exposure of animals would be useful to provide threshold levels. Because

the acute oral MRL is based on a single study showing effects on the developing nervous system

(Fredriksson et al. 1993), additional animal studies designed to examine this end point would increase

confidence in the database. The targets that seem to be of greatest concern following

tetrachloroethylene exposure are the central nervous system, including effects on the developing

nervous system, the liver, and the kidneys. Populations living near hazardous waste sites may

potentially be exposed for brief periods to tetrachloroethylene via inhalation, oral, or dermal routes.

Intermediate-Duration Exposure.   Human data regarding intermediate-duration exposure are

limited to inhalation studies that reported adverse neurological effects (Abedin et al. 1980; Meckler

and Phelps 1966). However, exposure concentrations are not well defined in these studies. No human

data were located regarding oral or dermal exposure to tetrachloroethylene. The target organs
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identified in animal studies of intermediate-duration oral or inhalation exposure to tetrachloroethylene

include the central nervous system (Carpenter 1937; Karlsson et al. 1987; Kyrklund et al. 1988;

Rosengren et al. 1986), liver (Buben and O’Flaherty 1985; Carpenter 1937; Hayes et al. 1986;

Kjellstrand et al. 1984; Kylin et al. 1965; Kyrklund et al. 1988; NTP 1986; Odum et al. 1988; Rowe et

al. 1985; Story et al. 1986), and kidney (Carpenter 1937; Green et al. 1990; Hayes et al. 1986; NTP

1986; Rowe et al. 1985). These studies were conducted in a variety of animal species including mice,

rats, guinea pigs, and gerbils. Intermediate oral studies in animals have reported mortality in rats (NCI

1977), and kidney (Green et al. 1990; Hayes et al. 1986) and liver (Buben and O’Flaherty 1985; Hayes

et al. 1986; Story et al. 1986) effects in rats and mice. No intermediate-duration dermal studies in

animals were located. An intermediate-duration inhalation MRL was not derived. Exposure concentrations

were not well defined in human intermediate-duration studies following inhalation exposure.

The lowest animal LOAEL was for liver effects in mice (Kjellstrand et al. 1984). Because mice

metabolize more tetrachloroethylene to TCA than humans, and because the peroxisomal proliferative

response in mice is much greater than in humans, data in humans were considered more appropriate

for the derivation of inhalation MRLs. Oral studies have not focused on neurological effects, the

principal effect of tetrachloroethylene in humans, and the most sensitive end point in an acute oral

study (Fredriksson et al. 1993). Therefore, an intermediate-duration oral MRL was not derived.

Additional animal studies concerning the threshold of nervous system effects following inhalation,

oral, and dermal exposure to tetrachloroethylene would be especially useful for determining levels of

significant exposure to tetrachloroethylene that are associated with adverse health effects.

Chronic-Duration Exposure and Cancer.  Kidney toxicity (Franchini et al. 1983; Mutti et al.

1992; Price et al. 1995) and symptoms of chronic encephalopathy (Gregersen 1988) were reported in

studies of humans occupationally exposed to tetrachloroethylene. Other occupational exposure studies

have not identified kidney (Lauwerys et al. 1983; Solet and Robins 1991) or irreversible central

nervous system effects (Cai et al. 1991; Coler and Rossmiller 1953; Lauwerys et al. 1983). Deficits in

behavioral tests that measured short-term memory for visual designs (Echeverria et al. 1995) have also

been noted in humans occupationally exposed to tetrachloroethylene. There are conflicting reports on

the effect of tetrachloroethylene on color vision in persons occupationally exposed to tetrachloro-

ethylene. Cavalleri et al. (1994) reported an effect on color vision at an average concentration of

7.3 ppm, while Nakatsuka et al. (1992) reported no effect on color vision at average concentrations of

15.3 and 10.7 ppm for men and women, respectively. Further studies to clarify whether occupational

exposure to tetrachloroethylene affects color vision would be useful. Ferroni et al. (1992) reported
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increased reaction times in women exposed to tetrachloroethylene in dry cleaning shops at an average

concentration of 15 ppm for about 10 years. Based on this LOAEL, a chronic-duration inhalation

MRL of 0.04 ppm was derived.

A study of neurological function in persons living above or next to dry cleaning facilities has been

completed (Altmann et al. 1995). Although no differences in absolute values of neurological function

tests were noted, effects on neurological function tests were observed when multivariate analysis was

used to analyze the data. This study suggests that further studies of larger populations exposed to very

low levels of tetrachloroethylene would be useful.

Adverse health effects observed in chronic inhalation animal studies include reduced survival in rats

and mice (NTP 1986), biochemical alterations in the brains of gerbils (Briving et al. 1986; Kyrklund et

al. 1984) and kidney effects (nephropathy) in rats and mice (NTP 1986). Chronic oral animal studies

have demonstrated reduced survival and kidney effects in rats and mice (NCI 1977). Doses causing

target organ effects in animals following oral exposure are very similar to those causing lethality (NCI

1977). Therefore, no chronic-duration oral MRL was derived. No chronic dermal studies were

located. Additional chronic studies in animals that provide information on threshold levels and dose-response

relationships for toxic effects following oral or dermal exposure would be useful since

populations living near hazardous waste sites are likely to be exposed at low levels over a long period

of time.

Epidemiology studies suggest a possible association between chronic inhalation exposure to tetrachloroethylene

and cancer (Anttila et al. 1995; Blair et al. 1979, 1990; Brown and Kaplan 1987; Duh

and Asal 1984; Katz and Jowett 1981; Lynge and Thygesen 1990; Ruder et al. 1994; Spirtas et al.

1991). The cancer types most consistently showing an increase were esophageal cancer (Blair et al.

1979, 1990; Ruder et al. 1994), cervical cancer (Anttila et al. 1995; Blair et al. 1979, 1990; Brown and

Kaplan 1987), and non-Hodgkin’s lymphoma (Anttila et al. 1995). In general, these studies are

confounded by concomitant exposure to other solvents and lack of consideration of the smoking habits

and socioeconomic status of the subjects. The only data on carcinogenicity in humans following

chronic oral exposure to tetrachloroethylene are from communities exposed to drinking water

contaminated with tetrachloroethylene (Cohn et al. 1994; Lagakos et al. 1986). There are a number of

confounding factors (i.e., uncertain exposure duration, exposure to multiple organic compounds) that
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render the studies problematic, and the findings do not substantiate an association between

tetrachloroethylene and cancer in humans. No chronic dermal exposure data are available for humans.

Inhalation and oral bioassays using rats and mice have been conducted (NCI 1977; NTP 1986). These

data provide sufficient evidence to conclude that tetrachloroethylene is carcinogenic in animals.

However, the oral study (NCI 1977) was limited by control groups smaller than treatment groups,

decreased survival, and dose adjustments during the study. A dermal study conducted in mice

reported no incidence of cancer in the test animals (Van Duuren et al. 1979). No additional cancer

bioassays in animals appear to be necessary at this time. However, additional studies that clarify the

relationship between peroxisome proliferation and hepatic cancers in mice as well as the relevance of

hepatic glutathione conjugation of tetrachloroethylene to humans would be useful.

Genotoxicity.  In vivo genotoxicology studies, including two studies examining human lymphocytes

from persons occupationally exposed to tetrachloroethylene (Ikeda et al. 1980; Seiji et al. 1990), were

negative for sister chromatid exchange. Similarly, the majority of in vitro genotoxicity tests using

prokaryotic cells (Bartsch et al. 1979; Haworth et al. 1983; NTF’ 1986; Williams and Shimada 1983),

eukaryotic cells (Bronzetti et al. 1983; Callen et al. 1980; Koch et al. 1988), and mammalian cells

(Costa and Ivanetich 1980; Mazzullo et al. 1987; NIOSH 1980; NTP 1986; Tu et al. 1985; Walles

1986; Williams and Shimada 1983) showed negative or marginal results for gene mutation,

recombination, DNA damages and sister chromatid exchanges. Although the results in both in vivo
and in vitro assays generally indicate that tetrachloroethylene is not genotoxic, marginal and equivocal

results in some assays indicate that genotoxic effects cannot be ruled out. Data are available indicating

that the precursor of the N-acetyl cysteine derivative of tetrachloroethylene, S-( 1,2,2-trichlorovinyl)-

glutathione, induces a powerful mutagenic effect in S. typhimurium strains in the presence of rat

kidney fractions (Vamvakas et al. 1989). It is conceivable, therefore, that the mutagenic potential of

the parent compound could be uncovered if the steps involved in the activation of tetrachloroethylene

via glutathione conjugation could be replicated in in vitro microbial systems. Additional genotoxicity

assays would be useful for either substantiating the data that indicate that this chemical may be

carcinogenic in humans or for providing information about the carcinogenic mechanism of tetrachloroethylene.

Additional data on genotoxic end points from animals exposed in vivo would be useful

because the available data are inconclusive.
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Reproductive Toxicity.   Reproductive data are available on women occupationally exposed to

tetrachloroethylene in dry cleaning operations. Three studies suggest an increase in spontaneous

abortion (Ahlborg 1990; Bosco et al. 1986; Kyyronen et al. 1989; Windham et al. 1991), but other

studies reported no increase (McDonald et al. 1986; Olsen et al. 1990). However, these studies are

limited by the difficulty in identifying appropriate controls and by the problems in controlling for

concomitant exposures to other chemicals. Limited evidence also suggests that time-to-pregnancy may

be increased among women occupationally exposed to tetrachloroethylene (Sallmen et al. 1995).

Wives of dry cleaners who had significantly more rounded sperm did not have more spontaneous

abortions, although there was some evidence that it may take slightly longer for these women to

become pregnant (Eskenazi et al. 1991a, 1991b). These studies suggest that tetrachloroethylene may

affect the ability of men to reproduce. No studies were located regarding reproductive effects in

humans after oral or dermal exposure to tetrachloroethylene.

Decreased litter sizes and decreased survival during lactation were observed in rats exposed to

1,000 ppm in a multigeneration study (Tinston 1995). Sedation was also noted at this concentration.

No significant effects on reproduction were observed at 300 ppm in air. This study suggests that at

concentrations below those that result in frank neurological effects, reproductive effects are unlikely to

occur. A significant increase in resorptions was also observed in rats treated by gavage with

tetrachloroethylene during organogenesis at 900 mg/kg/day, a dose that resulted in maternal ataxia and

decreased body weight gain (Narotsky and Kavlock 1995). Histopathological effects in the testes and

ovaries were not observed in rats or mice exposed by gavage to tetrachloroethylene at doses that

resulted in increased mortality (NCI 1977). No studies were located regarding reproductive effects in

animals following dermal exposure. It would be useful to conduct multigeneration or continuous

breeding studies for oral and dermal exposures of animals in order to clarify the potential for

tetrachloroethylene to cause reproductive effects in humans via these exposure routes.

Developmental Toxicity.   Studies examining the association between drinking water contamination

and birth outcome (Bove et al. 1995; Lagakos et al. 1986) have suggested that tetrachloroethylene

exposure may be associated with increased eye/ear anomalies and central nervous/chromosomal/oral

cleft anomalies. These studies are not conclusive because the water was contaminated with other

solvents in addition to tetrachloroethylene. In animal studies, tetrachloroethylene has been shown to

cross the placenta and distribute to the fetus and amniotic fluid (Ghantous et al. 1986). Developmental

effects following inhalation exposure to tetrachloroethylene were investigated in several animal studies
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(Nelson et al. 1980; NIOSH 1980; Schwetz et al. 1975). Developmental studies conducted in rats and

mice reported fetotoxic effects but no teratogenic effects at concentrations that were maternally toxic

(Schwetz et al. 1975). Decreased fetal weight and delayed skeletal ossification were common

observations. In rats, behavioral and neurochemical alterations were observed after maternal exposure

to tetrachloroethylene (Nelson et al. 1980). Increased postnatal deaths and increased

micro/anophthalmia were observed in the offspring of rats treated by gavage with tetrachloroethylene

during organogenesis at 900 mg/kg/day, a dose that resulted in maternal ataxia and decreased body

weight gain (Narotsky and Kavlock 1995). Following oral exposure of mice to 5 mg tetrachloro-

ethylene/kg for 7 days beginning at 10 days of age, hyperactivity was observed at 60 but not 17 days

of age (Fredriksson et al. 1993). This study suggests possible permanent damage to the nervous

system if exposure occurs during development. No NOAEL was identified. Because the Fredriksson

et al. (1993) study serves as the basis for the acute oral MRL, additional animal inhalation and oral

studies confirming the observation of developmental neurotoxicity would be useful. Studies in more

than one species and studies examining whether the effect is a result of tetrachloroethylene or TCA are

needed to determine if the results in mice are applicable to predicting effects in humans.

No studies were located regarding developmental effects following dermal exposure to

tetrachloroethylene in animals. Additional animal studies should focus on the mechanism by which

tetrachloroethylene produces embryotoxic and neurological effects in the offspring. Studies examining

the relationship between behavioral effects and morphological changes in the nervous system following

tetrachloroethylene exposure would be especially useful. Because tetrachloroethylene crosses into

breast milk (Byczkowski and Fisher 1994), and because workers exhale tetrachloroethylene at home,

these animal studies should also examine the later stages of nervous system development that occur

after birth. Nervous system function should be examined throughout the lifetime of exposed animals

to determine if effects are consistently observed as the animals age. Additional studies regarding

developmental effects in animals following inhalation, oral, and dermal exposure would provide useful

information relevant to humans exposed by these routes in areas near hazardous waste sites.

Immunotoxicity.  Immunotoxicity data in either humans or animals are insufficient. Available data

indicate possible immunotoxic effects (altered ratios of T lymphocyte subpopulations) in humans

chronically exposed to tetrachloroethylene (21 ppb) as well as trichloroethylene (267 ppb) and other

solvents from a contaminated water supply (Byers et al. 1988). However, because of other

contaminants, it is not possible to infer from these data the exact role of tetrachloroethylene. One
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study (Aranyi et al. 1986) in which mice were exposed by inhalation for 3 hours to varying doses of

tetrachloroethylene demonstrated increased susceptibility to bacterial infection. Interpretation of this

study is complicated by the fact that the controls for one of the treated groups had a higher mortality

rate than any other group in the study. In a study in which rats were exposed to tetrachloroethylene

vapors, no production of antibodies to tetrachloroethylene was detected (Tsulaya et al. 1977). In a

14-day study, histopathological changes in the spleen and thymus gland were not observed in rats

treated by gavage with tetrachloroethylene at a dose that resulted in liver effects (Berman et al. 1995).

No effects on natural killer cell, natural cytotoxic, and natural P815 killer cell activities or humor-al

and T cell mitogenesis were observed in cells harvested from rats and mice treated with three daily

intraperitoneal doses of 829 mg tetrachloroethylene/kg (Schlichting et al. 1992). There are no dermal

studies regarding the immunotoxic effects of tetrachloroethylene. Additional data from inhalation,

oral, and dermal intermediate-duration animal studies on immune function are needed to confirm or

refute the evidence suggested in the human data. There are differences in metabolism across species;

data from several species are needed for determining possible immunotoxic effects of

tetrachloroethylene among different species.

Neurotoxicity.   It has been clearly established that the central nervous system is a target of

tetrachloroethylene toxicity in humans and animals following either inhalation or oral exposure.

Human data are available for acute inhalation exposure (Altmann et al. 1990, 1992; Carpenter 1937;

Hake and Stewart 1977; Morgan 1969; Rowe et al. 1952; Saland 1967; Stewart et al. 1961b, 1970)

and acute oral exposure (Haerer and Udelman 1964; Kendrick 1929; Koppel et al. 1985; Sandground

1941; Wright et al. 1937) to tetrachloroethylene. The human studies indicate that the LOAEL for

neurological effects (increased latency of pattern reversal visual-evoked potentials and deficits for

vigilance and eye-hand coordination) following inhalation exposure is about 50 ppm for 4-hour

exposures (Altmann et al. 1990, 1992). Additional nervous system effects including dizziness,

headache, sleepiness, and incoordination have been observed following 5.5-7-hour exposures at

100-200 ppm in air (Carpenter 1937; Hake and Stewart 1977; Morgan 1969; Rowe et al. 1952; Saland

1967; Stewart et al. 1961b, 1970). Some human studies (Cavalleri et al. 1994; Echeverria et al. 1995;

Gregersen 1988; Lauwerys et al. 1983; Seeber 1989) indicate that chronic occupational exposure to

tetrachloroethylene can produce more serious effects including memory deficits (Cai et al. 1991;

Echevenia et al. 1995; Gregersen 1988; Seeber 1989), ataxia (Lorenz et al. 1990), disorientation (Coler

and Rossmiller 1953), loss of color vision (Cavalleri et al. 1994), and sleep disturbances (Lorenz et al.

1990). A study of neurological function in persons living above or next to dry cleaning facilities has
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been completed (Altmann et al. 1995). Although no differences in absolute values of neurological

function tests were noted, effects on neurological function tests were observed when multivariate

analysis was used to analyze the data. This study suggests that further studies of larger populations

exposed to very low levels of tetrachloroethylene would be useful. Effects observed in humans after

acute oral exposure appear to parallel those observed after inhalation exposure. No dermal data were

located for humans. Adverse neurological effects in animals exposed to tetrachloroethylene by

inhalation include biochemical alterations in the brains of rats (Kyrklund et al. 1988; Wang et al.

1993) and gerbils (Briving et al. 1986; Karlsson et al. 1987; Kyrklund et al. 1984; Rosengren et al.

1986), electrophysiological changes in rats (Albee et al. 1991; Mattsson et al. 1992), ataxia in rats

(Goldberg et al. 1964; NTP 1986), hypoactivity in rats (NTP 1986; Tinston 1995), and hyperactivity in

rats (Savolainen et al. 1977). Ataxia (Narotsky and Kavlock 1995), increased lacrimation, gait

changes, and decreased activity (Moser et al. 1995) have been reported in rats following acute oral

exposure to tetrachloroethylene. No animal data were located regarding neurological effects following

dermal exposure to tetrachloroethylene. Animal studies on the mechanism of tetrachloroethylene

neurotoxicity would be useful for mitigating the effects observed. Because studies (Fredriksson et al.

1993; Nelson et al. 1980) suggest that tetrachloroethylene is a developmental neurotoxicant, further

animal studies would be useful to determine if the developing nervous system is indeed the most

sensitive target of tetrachloroethylene.

Epidemiological and Human Dosimetry Studies.   Exposure to tetrachloroethylene may occur in

the workplace, near hazardous waste sites, and from certain consumer products, including clothes that

have been dry cleaned. Most occupational exposure results from inhalation of tetrachloroethylene.

Several epidemiological studies have been conducted that provide evidence of relationships between

tetrachloroethylene exposure in dry cleaning workers and cancer (Anttila et al. 1995; Blair et al. 1979,

1990; Brown and Kaplan 1987; Chapman et al. 1981; Duh and Asal 1984; Katz and Jowett 1981;

Lynge and Thygesen 1990; Ruder et al. 1994), kidney effects (Bundschuh et al. 1993; Franchini et al.

1983; Mutti et al. 1992; Vyskocil et al. 1990), liver effects (Brodkin et al. 1995; Coler and Rossmiller

1953), and cardiovascular effects (Abedin et al. 1980; Hake and Stewart 1977). Limitations of these

studies include exposure to other chemicals, lack of control for socioeconomic status, alcohol

consumption, and tobacco consumption. There are also human studies that measured the concentration

of tetrachloroethylene in exhaled air to determine exposure concentration (Jang et al. 1993; Monster et

al. 1983; Ohtsuki et al. 1983; Solet et al. 1990; Stewart et al. 1977, 1981). Additional epidemiological

studies might focus on populations exposed to tetrachloroethylene through contaminated drinking water
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in areas surrounding hazardous waste sites in order to determine the effects of chronic, low-level

exposures. It would be important for these studies to focus on cancer, reproductive effects, develop-

mental effects, kidney effects, liver effects, and neurological effects, and to document possible

confounding factors including other chemical exposure, smoking habits, and gender.

Biomarkers of Exposure and Effect.   Exposure to tetrachloroethylene does not produce a unique

clinical disease state. However, various central nervous system effects (e.g., dizziness, headache,

incoordination, and sleepiness) can result from both inhalation and oral exposure to

tetrachloroethylene.

Methods are available that can measure levels of tetrachloroethylene or its metabolites in the blood

(Antoine et al. 1986; Michael et al. 1980; Ramsey and Flanagan 1982; Ziglio et al. 1984), urine

(Christensen et al. 1988; Michael et al. 1980; Pekari and Aitio 1985a, 1985b), and exhaled air

(Wallace et al. 1986a, 1986b). Measurement of tetrachloroethylene in exhaled air is simple, effective,

and noninvasive and has been found to be more accurate than measuring metabolites, which are not

specific for tetrachloroethylene exposure (Krotoszynski et al. 1979; Monster and Smolders 1984;

Wallace 1986). Additional studies that couple measurement of tetrachloroethylene with tests for

determining central nervous system effects and other effects (e.g., liver and kidney effects) would be

useful to correlate exposure with adverse effects of tetrachloroethylene. This correlation would be

useful for monitoring persons possibly exposed to tetrachloroethylene in areas surrounding hazardous

waste sites.

Absorption, Distribution, Metabolism, and Excretion.   The data indicate that inhalation is the

principal occupational route of exposure for humans, and inhalation and oral exposure from

contaminated water supplies is a concern for the general public. Absorption rates suggest that

tetrachloroethylene is rapidly and readily absorbed following oral (Frantz and Watanabe 1983; Koppel

et al. 1985; Pegg et al. 1979; Schumann et al. 1980) or inhalation exposure (Hake and Stewart 1977;

Monster et al. 1979). Tetrachloroethylene vapor is not well absorbed across the skin (McDougal et al.

1990; Riihimaki and Pfaffli 1978), but tetrachloroethylene placed directly on the skin can be absorbed

(Bogen et al. 1992; Jakobson et al. 1982; Kinkead and Lehy 1987; Stewart and Dodd 1964; Tsurata

1975). Available data indicate that during inhalation exposure, uptake is influenced more by lean

body mass than by ventilation rate and that the absorption rate is decreased with increased time

(Monster et al. 1979). Oral studies in animals which examine the stability of tetrachloroethylene to
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gastrointestinal microbes, and rates of absorption from various sections of the gastrointestinal tract

would be useful. Further quantitative data regarding the absorption of tetrachloroethylene following

direct skin exposure would be useful because of the potential for dermal exposure at a hazardous waste

site.

Several studies are available that describe the distribution of tetrachloroethylene in both humans and

animals following inhalation exposure (Chen and Blancato 1987; Ghantous et al. 1986; Guberan and

Femandez 1974; Marth 1987; Reitz et al. 1996; Savolainen et al. 1977; Stewart et al. 1970). The

distribution of tetrachloroethylene has also been studied in rats and dogs following oral exposure

(Dallas et al. 1994a, 1995). Studies using human subjects indicate increases in the body burden with

repeated daily exposure (Altmann et al. 1990; Guberan and Femandez 1974; Stewart et al. 1970). No

other studies are available that correlate duration of exposure with the distribution kinetics. Animal

data support predictions from PBPK models that tetrachloroethylene is primarily distributed to and

accumulated in adipose tissue, the brain, and the liver (Green et al. 1990; Marth 1987; Savolainen et

al. 1977; Stewart et al. 1970). Animal studies also indicate that tetrachloroethylene crosses the

placenta and is distributed to the amniotic fluid and fetus (Ghantous et al. 1986). A study by

Byczkowski and Fisher (1994) indicated that tetrachloroethylene does cross into milk in rats exposed

to tetrachloroethylene. Models have been developed to estimate the levels of tetrachloroethylene in

breast milk of women exposed to tetrachloroethylene (Byczkowski and Fisher 1994, 1995; Schreiber

1993). Additional studies that determine blood-milk transfer coefficients would be useful for risk

assessment. Distribution data following oral and dermal exposure of animals would also be useful as

the potential exists for both oral and dermal exposure of humans in the vicinity of hazardous waste

sites.

Human and animal data are available on metabolism following oral exposures (Bimer et al. 1996;

Buben and O’Flaherty 1985; Dallas et al. 1994a; Dekant et al. 1986; Frantz and Watanabe 1983;

Green et al. 1990; Pegg et al. 1979) and inhalation exposures (Bimer et al. 1996; Dallas et al. 1994c;

Gearhart et al. 1993; Ikeda et al. 1972; Imbriani et al. 1988; Jang et al 1993; Monster 1986; Monster

et al. 1983; Odum et al. 1988; Ogata et al. 1971; Ohtsuki et al. 1983; Pegg et al. 1979; Popp et al.

1992; Reitz et al. 1996; Schumann et al. 1980; Seiji et al. 1989; Skender et al. 1991; Yllner 1961), but

not following dermal exposures. One human study indicates that the metabolism of tetrachloro-

ethylene is saturable following inhalation exposure (Ohtsuki et al. 1983). A similar saturation pattern

has been observed in both mice and rats following oral exposure. Differences in the metabolites of
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animals and humans have been seen for inhalation exposures (Bois et al. 1990; Hattis et al. 1990;

Odum et al. 1988) and oral exposures (Dallas et al. 1994a, 1995; Dekant et al. 1986). Further studies

investigating possible differences according to gender, ethnic population group, or nutritional status,

and the effects of enzyme induction on the metabolic rate would also be useful. Research to determine

if trichloroethanol is a metabolite of tetrachlorethylene, or is produced from trichloroethylene

which can contaminate tetrachloroethylene, would also be useful. There are no data available

regarding the route of exposure as a factor in the relative rates of metabolism.

There are one oral study (Koppel et al. 1985), one dermal study (Stewart and Dodd 1964), and

several inhalation studies (Ikeda et al. 1972; Monster et al. 1979; Ogata et al. 1971; Ohtsuki et al.

1983; Opdam and Smolders 1986) on excretion of tetrachloroethylene by humans. The oral data are

presumed to be atypical because the patient was hyperventilated to facilitate pulmonary excretion

following an accidental ingestion of the chemical. These human studies indicate that a large

percentage of tetrachloroethylene is excreted unchanged in exhaled air (Ohtsuki et al. 1983), with

urinary excretion comprising a much smaller percentage (approximately 2%) of the estimated absorbed

dose (Ogata et al. 1971). The excretion of the urinary metabolites increased linearly with

tetrachloroethylene concentrations but reached a plateau when the metabolic capacity was saturated

(Ikeda et al. 1972). Similar saturation excretion patterns were seen in rats (Pegg et al. 1979). As in

inhalation exposure, the majority of unmetabolized tetrachloroethylene administered orally to humans

and animals was eliminated via the lungs with smaller amounts detected in the urine. The elimination

of tetrachloroethylene is well characterized; therefore, further studies are not needed at this time.

Comparative Toxicokinetics.   Data are available on the pharmacokinetics of this chemical for

different species. Human data (Hake and Stewart 1977; Monster et al. 1979; Opdam and Smolders

1986; Pezzagno et al. 1988; Stewart et al. 1977) and data from rats (Dallas et al. 1994c; Pegg et al.

1979), mice (Schumann et al. 1980), and dogs (Dallas et al. 1994a, 1995) regarding absorption of

tetrachloroethylene following inhalation and oral exposure are similar. Distribution following

inhalation has not been studied thoroughly in humans, although pharmacokinetic models-have been

developed. These models and animal data suggest that tetrachloroethylene accumulates mainly in fat

(Green et al. 1990; Guberan and Fernandez 1974; Marth 1987; Monster 1986; Savolainen et al. 1977;

Stewart et al. 1970). Both animal and human data suggest that the primary target organs are the

central nervous system (Rao et al. 1993; Savolainen et al. 1977; Stewart et al. 1970, 1981), the liver

(Marth 1987), and the kidney (Franchini et al. 1983; Green et al. 1990; Mutti et al. 1992).



TETRACHLOROETHYLENE 166

2. HEALTH EFFECTS

There are differences in the metabolism of tetrachloroethylene in humans and animals. Oxalic acid is

an important metabolite in rats (Pegg et al. 1979), but it has not been reported in humans. The

metabolism of tetrachloroethylene is known to be saturable in humans (Ohtsuki et al. 1983) and in

animals (Pegg et al. 1979; Schumann et al. 1980). No human or animal data were located regarding

the metabolism of tetrachloroethylene following dermal exposure. In humans, exhalation of unchanged

tetrachloroethylene following inhalation (Ikeda et al. 1972; Ogata et al. 1971; Ohtsuki et al. 1983), oral

(Koppel et al. 1985), or dermal exposure (Stewart and Dodd 1964) was the primary route of excretion.

Because there are differences in the metabolic pattern between humans and rodents, it may be useful to

conduct studies using additional animal models (e.g., primates) so that a metabolic pattern more

closely resembling that of humans can be studied. There are also differences in the metabolic patterns

of rats and mice (Dekant et al. 1986; Green et al. 1990; Odum et al. 1988). Peroxisome proliferation

in the mouse liver has not been shown to have a parallel in the rat kidney, suggesting that the

mechanisms of carcinogenicity differ in these two species (Goldsworthy and Popp 1987; Odum et al.

1988). The peroxisome proliferation response in humans is also minimal (Bently et al. 1993), and the

liver effects observed in mice may not occur in humans by the same mechanism. Additional

pharmacokinetic data in different species, especially regarding the dynamics of the nervous system

distribution of tetrachloroethylene, would be useful to improve PBPK analysis.

Methods for Reducing Toxic Effects.   The general recommendations for reducing the absorption

of tetrachloroethylene following acute inhalation, oral (HSDB 1996; Stutz and Ulin 1992), dermal

(HSDB 1996; Stutz and Ulin 1992), or ocular (Bronstein and Currance 1988; Haddad and Winchester

1990; HSDB 1996; Stutz and Ulin 1992) exposure are well established and have a proven efficacy.

No additional investigations are considered necessary at this time.

No clinical treatments other than supportive measures are currently available to enhance elimination of

tetrachloroethylene following exposure. Studies designed to assess the potential risks or benefits of

increasing ventilation to enhance pulmonary elimination or of stimulating enzymatic pathways to

increase the metabolism of tetrachloroethylene could prove useful. However, it should be emphasized

that once exposure has ended, the body does not retain significant amounts of tetrachloroethylene for

long periods.

The development of treatment protocols designed to interfere with the mechanism of tetrachlor-

oethylene-induced toxic effects would require a sizable research effort. Since the body does not retain
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significant amounts of tetrachloroethylene for long periods, the relative merits of such an undertaking

are not clear. Nevertheless, there is substantive evidence from well-conducted studies suggesting

possible methods that could be exploited to block the mode of action that causes neurotoxicity,

nephrotoxicity, and hepatotoxicity.

The mechanism of action of tetrachloroethylene for the central nervous system has not been clearly

established. However, there are data indicating that the induced neurotoxicity may be related to

solvent effects on lipid and fatty acid compositions of membranes (Kyrklund et al. 1984, 1988, 1990).

Effects on neurotransmitter systems have also been demonstrated (Korpela and Tahti 1986; Mutti and

Franchini 1987). It is reasonable to speculate, therefore, that these effects on neurotransmitters could

be mitigated by pharmacologic intervention; however, no such interventions are currently available for

clinical use.

The mechanism of action associated with kidney toxicity and nephrocarcinogenicity may involve the

formation of reactive intermediates from glutathione conjugates (Dekant et al. 1986, 1987; Green et al.

1990; Henschler 1977). Although evidence from an in vitro study of human liver tissue suggests that

glutathione conjugation is not important in human biotransformation of tetrachloroethylene (Green et

al. 1990), the results are not conclusive. Methods for reducing the destructive damage caused by these

intermediates or for blocking their formation through inhibition of β-lyase (Dekant et al. 1986, 1987;

Green et al. 1990), may prove effective in reducing kidney toxicity but are not currently available for

clinical use.

One mechanism of action of liver toxicity suggested in the literature is the induction of peroxisome

proliferation (and resulting increases in hydrogen peroxide and oxidative damage) by TCA, a

metabolite of tetrachloroethylene (Odum et al. 1988). Shifting metabolism away from formation of

TCA could theoretically reduce toxicity that might be caused via this mechanism. However, the net

effect on all forms of toxicity of tetrachloroethylene by such an alteration in metabolism would need

to be carefully evaluated.
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2.10.3 On-going Studies

ATSDR is conducting a retrospective cohort study of adverse pregnancy outcomes in a military

population that resided at Marine Corps Camp LeJeune in North Carolina where there is documented

past exposure to tetrachloroethylene, trichloroethylene, and 1,2-dichloroethylene in drinking water

supplies.

Glutathione conjugation of tetrachloroethylene is being studied in vitro in rat tissues by Dr. Lash and

colleagues at Wayne State University in Detroit, Michigan (Lash et al. 1996).
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3.1 CHEMICAL IDENTITY

The chemical identity of tetrachloroethylene is shown in Table 3-l.

3.2 PHYSICAL AND CHEMICAL PROPERTIES

The physical and chemical properties of tetrachloroethylene are shown in Table 3-2.
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4.1  PRODUCTION

Tetrachloroethylene is produced by several temperate and subtropical marine macroalgae at the rate of

0.0026-8.2 ng/g fresh weight/hour. These species of algae have also been shown to produce

trichloroethylene, usually at greater rates. It has been concluded that emission of trichloroethylene and

tetrachloroethylene from algae to the atmosphere “may be of such a magnitude that it cannot be

neglected in the global atmospheric chlorine budget” (Abrahamsson et al. 1995).

Tetrachloroethylene is a commercially important chlorinated hydrocarbon solvent and chemical

intermediate. It is used as a dry cleaning and textile-processing solvent and for vapor degreasing in

metal-cleaning operations. Tetrachloroethylene was first commercially produced in the United States

in 1925 via a four-step process using acetylene and chlorine as raw materials (IARC 1979). By 1975,

only one U.S. plant was using this process because of the high cost of acetylene. Currently, the

majority of tetrachloroethylene produced in the United States is made by one of two processes: direct

chlorination of certain hydrocarbons or oxychlorination. The first process involves the reaction of

chlorine with a hydrocarbon such as methane, ethane, propane, or propylene. A chlorinated derivative

of a hydrocarbon may also be used. The reaction forms a crude product, which can be purified to

yield a marketable grade of tetrachloroethylene. This is easier and more economical than the acetylene

process. The second process, oxychlorination of ethylene via ethylene dichloride, is widely used to

coproduce trichloroethylene and tetrachloroethylene without any net production of hydrogen chloride

(Chemical Products Synopsis 1985; Keil 1985).

Tetrachloroethylene is produced in the following grades: purified, technical, U.S. Pharmacopoeia1

(USP), spectrophotometric, and dry cleaning (ACGIH 1991). The dry cleaning and technical grades

meet specifications for technical grade, differing only in the amount of stabilizer added to prevent

decomposition. Stabilizers, which include amines or mixtures of epoxides and esters, are added to

prevent decomposition. Tetrachloroethylene, which is thus stabilized and not easily hydrolyzed, is

transported in tanks and drums (ACGIH 1991).
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U.S. production volumes of tetrachloroethylene in recent years have been reported as follows (C&EN

1994):

Production

Year                    (millions of pounds)

1993 271
1992 245
1991 239
1990 372
1989 481
1988 498
1987 473
1986 414
1985 678
1984 573
1983 547

These data show there has been an overall decline of about 50% between 1983 and 1993. The future

production market for tetrachloroethylene has been projected at either zero growth or a long-term

gradual decline (Chemical Products Synopsis 1985). The facilities that manufactured or processed

tetrachloroethylene in 1993 are listed in Table 4-l (TRI93 1995). Toxics Release Inventory (TRI) data

should be used with caution since only certain types of facilities are required to report. This is not an

exhaustive list.

The 1995 Directory of Chemical Producers in the United States lists three major manufacturers of

tetrachloroethylene with a total annual capacity of 490 million pounds (SRI 1995).

4.2 IMPORT/EXPORT

The volume of tetrachloroethylene imported to the United States has increased sharply since 1980

because of the strength of the dollar abroad (Chemical Products Synopsis 1985). In 1990, about

75.3 million pounds of tetrachloroethylene were imported into the United States, while in 1994, about

83.8 million pounds were imported into the United States (NTD 1995). Tetrachloroethylene exported
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from the United States was about 55.2 million pounds in 1990, and 44 million pounds in 1994 (NTD

1995).

4.3 USE

Tetrachloroethylene is commercially important as a chlorinated hydrocarbon solvent and as a chemical

intermediate. An estimate of the current end-use pattern for tetrachloroethylene is as follows: 55%

for chemical intermediates, 25% for metal cleaning and vapor degreasing, 15% for dry cleaning and

textile processing, and 5% for other unspecified uses (Chemical Profile 1995).

In textile processing, tetrachloroethylene is used as a scouring solvent that removes oils from fabrics

after knitting and weaving operations, and as a carrier solvent for sizing and desizing, and for fabric

finishes and water repellents. Tetrachloroethylene is able to dissolve fats, greases, waxes, and oils

without harming natural or man-made fibers. However, because of the growing popularity of washand-

wear fabrics, improved efficiency of dry cleaning equipment, and increased chemical recycling,

the demand for tetrachloroethylene as a dry cleaning solvent has steadily declined. There are three

major types of dry cleaning facilities, industrial, commercial and coin-operated. Industrial facilities

have the largest average output, while smaller commercial facilities are the most common. Coinoperated

dry cleaners are being phased out, and new coin-operated machines are no longer available

(EPA 1995). A survey conducted by the International Fabricare Institute in 1989 indicated that 88.4%

of the dry cleaners in the United States use tetrachloroethylene (Andrasik and Cloutet 1990).

Another major use of tetrachloroethylene is as a vapor and liquid degreasing agent. Since

tetrachloroethylene dissolves many organic compounds, select inorganic compounds, and high-melting

pitches and waxes, it can be used to clean and dry contaminated metal parts and other fabricated

materials. It is also used to remove soot from industrial boilers (Verschueren 1983). Tetrachloroethylene

has been used as an anthelmintic in the treatment of hookworm and some nematode

infestations, but it has been replaced by drugs that are less toxic and easier to administer(Budavari

1989; HSDB 1996).
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4.4 DISPOSAL

Recently, the chemical industry has responded to increased environmental and ecological concerns

with efforts to improve recovery and recycling of tetrachloroethylene. One method of disposal

involves absorption in vermiculite, dry sand, earth, or a similar material and then burial in a secured

sanitary landfill (HSDB 1996). A second method involves incineration at >450°C after mixing with

another combustible fuel. With the latter method, combustion must be complete to prevent the

formation of phosgene, and an acid scrubber must be used to remove the haloacids produced (HSDB

1996).

Recent federal regulations prohibit land disposal of various chlorinated solvent materials that may

contain tetrachloroethylene. Any solid waste containing tetrachloroethylene must be listed as a

hazardous waste unless the waste is shown not to endanger the health of humans or the environment

(EPA 1985b, 1988). Destruction and removal efficiency of tetrachloroethylene that is designated as a

principal organic hazardous constituent must be 99.99%. Discharge of tetrachloroethylene into U.S.

waters requires a permit (WHO 1987). Before implementing land disposal of waste residue,

environmental regulatory agencies should be consulted for recent guidance on acceptable disposal

practices (HSDB 1996).
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5.1 OVERVIEW

Tetrachloroethylene is a volatile organic compound that is widely distributed in the environment. It is

released to the environment via industrial emissions, and it is released from building and consumer

products. Releases are primarily to the atmosphere, but the compound is also released to surface water

and land in sewage sludges and in other liquid and solid waste, where its high vapor pressure and

Henry’s law constant usually result in its rapid volatilization to the atmosphere. Tetrachloroethylene

has relatively low solubility in water and has medium-to-high mobility in soil, thus its residence time

in surface environments is not expected to be more than a few days. However, it persists in the

atmosphere for several months and may also persist in groundwater for several months or more.

Because of its pervasiveness and ability to persist under certain conditions, the potential for human

exposure may be substantial. It should be noted that the amount of tetrachloroethylene measured by

chemical analysis is not necessarily the amount that is bioavailable.

Tetrachloroethylene has been found in at least 771 of the 1,430 current or former EPA National

Priorities List (NPL) hazardous waste sites (HazDat 1996). However, the number of sites evaluated

for tetrachloroethylene is not known. The frequency of these sites can be seen in Figure 5-l. Of these

sites, 767 are located in the United States and 4 are located in the Commonwealth of Puerto Rico (not

shown).

5.2 RELEASES TO THE ENVIRONMENT

5.2.1 Air

According to the Toxics Release Inventory (TRI), an annual compilation of information bn the release

of toxic chemicals by manufacturing and processing facilities, an estimated total of at least

11.2 million pounds of tetrachloroethylene was released to the air in the United States in 1993 (TRI93

1995). This accounts for about 99% of all tetrachloroethylene released to the environment and is a

reduction from a level of 32.2 million pounds which was reported in 1988 (TRI88 1990). The number
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of reporting facilities in each state and the ranges within which individual facilities reported their

releases are shown in Table 5-1. The TRI data listed in Table 5-l should be used with caution since

only certain types of facilities are required to report. This is not an exhaustive list.

It has been estimated that 80-90% of the tetrachloroethylene used annually in the United States is

released to the environment, particularly to the atmosphere (EPA 1982a; Singh et al. 1979). Most

releases of tetrachloroethylene during its use are directly to the atmosphere (EPA 1987b). A major

portion of the atmospheric releases are attributed to evaporative losses in the dry cleaning industry

(EPA 1982a). Other atmospheric emissions occur from metal degreasing uses, production of

fluorocarbons and other chemicals, textile industry uses, and miscellaneous solvent-associated

applications (EPA 1982a; Weant and McCormick 1984).

Environmental releases of tetrachloroethylene also occur at sites of its manufacture and at sites of

production of other chlorohydrocarbons (such as ethylene dichloride and methylene chloride) in which

tetrachloroethylene is formed as a by-product (Weant and McCormick 1984). Tetrachloroethylene

emissions to the atmosphere may occur at sites used in disposing the chemical (EPA 1985d), including

incineration facilities for municipal and hazardous waste (Oppelt 1987). Tetrachloroethylene can also

be released to the atmosphere from the ocean where it is produced by some macroalgae (Abrahamsson

et al. 1995).

5.2.2 Water

According to TRI, an estimated total of at least 23,000 pounds of tetrachloroethylene was released to

water from manufacturing and processing facilities in the United States in 1988 (TRI88 1990). The

level reported in 1993 was 10,152 pounds, about 0.09% of the total release to the environment (TRI93

1995). The number of reporting facilities in each state and the ranges within which individual

facilities reported their releases are shown in Table 5-l. The TRI data listed in Table 5-l should be

used with caution since only certain types of facilities are required to report. This is not an exhaustive

list.

A variety of industries that use tetrachloroethylene (such as metal degreasing and dry cleaning)

generate aqueous wastes containing the compound which end up at waste treatment facilities (Weant

and McCormick 1984). Aeration processes at waste treatment facilities strip much of the
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tetrachloroethylene from the water and release it into the atmosphere as a result of the high volatility

of this chemical (Lurker et al. 1982).

Dumping of industrial waste products into the St. Clair River/Lake St. Clair/Detroit River system in

Canada and Michigan resulted in tetrachloroethylene concentrations up to 473 ng/L (0.473 ppb) in

surface water samples from Lake St. Clair (Kaiser and Comba 1986). Disposal of secondary sewage

effluent by rapid infiltration into the subsurface resulted in contamination of groundwater in

Massachusetts with several volatile organic compounds including tetrachloroethylene, which reached

levels as high as 980 ppb (Barber et al. 1988). Tetrachloroethylene in untreated well water located

near a dry cleaning plant in Japan reached levels of 27,000 µg/L (27,000 ppb) (Kido et al. 1989).

Tetrachloroethylene may also be emitted to groundwater from landfill leaching (Dewalle and Chian

1981; Kosson et al. 1985; Reinhard et al. 1984; Sabel and Clark 1984; Schultz and Kjeldsen 1986) as

well as from pits and lagoons used for storage, treatment, and disposal of liquid wastes (Barbash and

Roberts 1986).

5.2.3 Soil

According to TRI, an estimated total of at least 106,000 pounds of tetrachloroethylene was released to

land from manufacturing and processing facilities in the United States in 1988 (TRI88 1990) prior to

the federal ban on land disposal of tetrachloroethylene (see Section 4.4). The amount released in 1993

was at least 8,027 pounds, about 0.07% of the total released to the environment (TRI93 1995). The

number of reporting facilities in each state and the ranges within which individual facilities reported

their releases are shown in Table 5-l. The TRI data listed in Table 5-l should be used with caution

since only certain types of facilities are required to report. This is not an exhaustive list.

Many of the processes in which tetrachloroethylene is used as a solvent involve recycling the

compound by various methods (EPA 1991a). These recycling methods produce tetrachloroethylene-containing

sludges and dirty filters that have been landfilled in the past. Contamination of soil can

occur through leaching of tetrachloroethylene from these disposal sites (Kosson et al. 1985; Schultz

and Kjeldsen 1986). Leaking of tetrachloroethylene from underground storage tanks can also result in

the contamination of soil.
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5.3 ENVIRONMENTAL FATE

5.3.1 Transport and Partitioning

The predicted degradation half-life of tetrachloroethylene in the atmosphere indicates that long-range

global transport is likely (Class and Ballschmiter 1986). Indeed, monitoring data have demonstrated

that tetrachloroethylene is present in the atmosphere worldwide and at locations far removed from

anthropogenic emission sources (see Section 5.4.1).

Tetrachloroethylene has been detected in a number of rainwater samples collected in the United States

and elsewhere (see Section 5.4.2). However, the relatively low water solubility of tetrachloroethylene

suggests that wet deposition as a result of scavenging by rainwater occurs very slowly compared to

other volatile chlorinated hydrocarbons. For example, concentrations of the more water soluble

l,l,l-trichloroethane fell to below detection limits during a 12-hour rain event, while concentrations of

tetrachloroethylene fell only slightly during the same time period (Jung et al. 1992). Dry deposition

does not appear to be a significant removal process (Cupitt 1987), although substantial evaporation

from dry surfaces can be predicted from the high vapor pressure.

Laboratory studies have demonstrated that tetrachloroethylene volatilizes rapidly from water (Chodola

et al. 1989; Dilling 1977; Dilling et al. 1975; Okouchi 1986; Roberts and Dandliker 1983; Zytner et al.

1989b). One study found that only 2.7% of the initial mass of tetrachloroethylene remained in

stagnant water with a surface-to-volume ratio of 81 m2/m3 after 4.5 hours (Zytner et al. 1989b).

Dilling et al. (1975) reported the experimental half-life with respect to volatilization of 1 mg/L

tetrachloroethylene from water to be an average of 26 minutes at approximately 2°C in an open

container. This behavior is consistent with its high Henry’s law constant and first-order kinetics.

Other factors which influence volatilization rates are ambient temperature, water movement and depth,

associated air movement, and surface-to-volume ratio. In laboratory models using beakers of stagnant

water, the rate of tetrachloroethylene volatilization was found to increase with increasing surface-to-

volume ratio (Chodola et al. 1989; Zytner et al. 1989b). Data from these models also demonstrated

that volatilization from water was independent of concentration.

The volatilization half-life of tetrachloroethylene from a rapidly moving, shallow river (1 meter deep,

flowing 1 meter/second with a wind velocity of 3 meters/second) has been estimated to be 4.2 hours
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(Thomas 1982). Measured volatilization half-lives in a mesocosm, which simulated the Narragansett

Bay in Rhode Island during winter, spring, and summer, ranged from 12 days in winter conditions to

25 days in spring conditions (Wakeham et al. 1983). Measurements of tetrachloroethylene levels in

Lake Zurich, Switzerland, indicated that volatilization is the dominant removal process in surface

waters (Schwarzenbach et al. 1979).

Laboratory studies modeling soil systems have demonstrated that volatilization rates for

tetrachloroethylene from soil are much less than those from water (Park et al. 1988; Zytner et al.

1989b). Volatilization rates from soil, like water, appear to be related to surface-to-volume ratio

(Zytner et al. 1989b). However, the authors of these studies also found a direct relationship between

the concentration of the chemical in soil and rate of volatilization, which contrasts with results seen in

water, probably because concentration gradients are a more significant factor in soils than in uniformly

mixed water (Zytner et al. 1989b). Soil type also influenced the volatilization rate in this study, with

the rate in a high organic carbon top soil greatly reduced compared to that of a low organic carbon,

sandy loam. Contrasting results were seen in another study, which found that soil type had no effect

on rate of volatilization (Park et al. 1988). However, this may simply be a reflection of the fact that

the differences between soils used in this study, particularly organic carbon content, were not very

great. Park et al. (1988) found that 20% of the applied tetrachloroethylene was volatilized 168 hours

after treatment. In general, it can be said that losses of tetrachloroethylene from soil resulting from

volatilization seem to be between l0- and l00-fold slower than from water, depending on soil type

which directly affects the amount of sorption (Park et al. 1988; Zytner et al. 1989b).

Sorption of organic compounds to soil has been found to be most reliably predicted when related to

the organic carbon content of the soil (Kenaga 1980; Urano and Murata 1985; Zytner et al. 1989a).

Experimentally measured soil sorption coefficients based on organic carbon content (KOC) for

tetrachloroethylene range from 177 to 534 (Seip et al. 1986; Zytner et al. 1989a). These values are

indicative of medium-to-high mobility in soil (Kenaga 1980; Swann et al. 1983). Others have also

shown that tetrachloroethylene is highly mobile in sandy soil (Wilson et al. 1981). Another study

comparing predicted and observed sorption on clay and organic soils suggested that sorption/desorption

to inorganic mineral surfaces may also play a role, and the reactions generally follow reversible

pseudo first-order kinetics (Doust and Huang 1992). The movement of tetrachloroethylene in soil has

been confirmed by band-infiltration systems in the Netherlands, where tetrachloroethylene has been

reported to leach rapidly into groundwater (Piet et al. 1981).
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Several models for describing the transport of volatile chlorinated hydrocarbons in soils have been

developed, often by fitting one or more parameters to experimental data. One model which

determined all parameters a priori and included transfer between solid, liquid, and gas phases found

that the Henry’s law constant was the primary determinant of transport behavior in a wet, nonsorbing

aggregated medium, suggesting that volatilization and movement in the gas phase accounts for a large

portion of tetrachloroethylene movement in soils (Gimmi et al. 1993).

A considerable number of monitoring studies have detected tetrachloroethylene in groundwater (see

Section 5.4.2), which is further evidence of its mobility in soil. Tetrachloroethylene was observed to

leach rapidly into groundwater near sewage treatment plants in Switzerland (Schwarzenbach et al.

1983). No evidence of biological transformation of tetrachloroethylene in groundwater was found in

this study. Accurate prediction of tetrachloroethylene transport in groundwater is complicated by the

sorption effect of organic and inorganic solids (Doust and Huang 1992). Analysis of groundwater in

Massachusetts contaminated with tetrachloroethylene indicated that movement of the chemical was not

retarded by sorption to sediment (Barber et al. 1988), although this phenomenon may be site specific.

Contrasting data from an experiment in a sand aquifer indicated that the movement of tetrachloroethylene

through the aquifer was significantly retarded and the retardation was attributed to sorption

(Roberts et al. 1986).

Experimentally measured bioconcentration factors (BCFs), which provide an indication of the tendency

of a chemical to partition to the fatty tissue of organisms, have been found to range between 10 and

100 for tetrachloroethylene in fish (Kawasaki 1980; Kenaga 1980; Neely et al. 1974; Veith et al.

1980). Barrows et al. (1980) estimated a value of 49 for bluegill sunfish. Somewhat lower BCFs

were determined by Saisho et al. (1994) for blue mussel (25.7) and killifish (13.4). These numbers are

suggestive of a low tendency to bioconcentrate.

Monitoring data on tetrachloroethylene concentrations in seawater and associated aquatic organisms are

in agreement with the experimental BCF data. Concentrations of tetrachloroethylene (dry weight

basis) detected in fish (eel, cod, coalfish, dogfish) from the relatively unpolluted Irish Sea ranged from

below detection limits to 43 ppb (Dickson and Riley 1976). Levels of 1-41 ppb (wet weight) in liver

tissue, and up to 11 ppb (wet weight) in other tissue, were found in various species of fish collected

off the coast of Great Britain near several organochlorine plants (Pearson and McConnell 1975).
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Clams and oysters from Lake Pontchartrain near New Orleans had tetrachloroethylene levels averaging

up to 10 ppb (wet weight) (Ferrario et al. 1985).

To assess bioaccumulation in the environment, the level of tetrachloroethylene in the tissues of a wide

range of organisms was determined (Pearson and McConnell 1975). Species were chosen to represent

several trophic levels in the marine environment. The maximum overall increase in concentration

between sea water and the tissues of animals at the top of food chains, such as fish liver, sea bird

eggs, and sea seal blubber, was less than loo-fold for tetrachloroethylene. Biomagnification in the

aquatic food chain does not appear to be important (Pearson and McConnell 1975). Bioaccumulation

in plants may be indicated by the presence of tetrachloroethylene in fruits and vegetables (see

Section 5.4.4), but care must be used in interpreting these studies because it is often unclear whether

accumulation took place during growth or at some point after harvesting.

5.3.2 Transformation and Degradation

5.3.2.1 Air

The dominant transformation process for tetrachloroethylene in the atmosphere is a reaction with

photochemically produced hydroxyl radicals (Singh et al. 1982). Using the recommended rate constant

for this reaction (1.67x10-13 cm3/molecule-second) and a typical atmospheric hydroxyl (OH) radical

concentration of 5x105 molecules/cm3 (Atkinson 1985), the half-life is calculated at about 96 days.

Class and Ballschmiter (1986) state this half-life as about 70 days. An atmospheric lifetime of

119-251 days was calculated by Cupitt (1987), assuming removal by reaction with hydroxyl radicals

and using a range of temperatures, rates, and hydroxyl ion concentrations. It should be noted that the

half-lives determined by assuming first-order kinetics represent the calculated time for loss of the first

50% of tetrachloroethylene; the time required for the loss of the remaining 50% may not follow firstorder

kinetics and may be substantially longer.

The reaction of volatile chlorinated hydrocarbons with OH radicals is temperature dependent and is

thus expected to proceed more rapidly in the summer months. The degradation products of this

reaction include phosgene, chloroacetylchlorides, formic acid, carbon monoxide, carbon tetrachloride,

and hydrochloric acid (Gay et al. 1976; Itoh et al. 1994; Kirchner et al. 1990; Singh et al. 1975).
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Reaction of tetrachloroethylene with ozone in the atmosphere is too slow to be an effective agent in

tetrachloroethylene removal (Atkinson and Carter 1984; Cupitt 1987).

EPA considers the photochemical reactivity of tetrachloroethylene leading to the production of ambient

ozone to be negligible (EPA 1996a). Therefore, tetrachloroethylene has been added to the list of

compounds excluded from the definition of volatile organic compounds for purposes of preparing state

implementation plans to attain the national ambient air quality standards for ozone.

5.3.2.2 Water

Existing evidence indicates that tetrachloroethylene does not readily transform in water. Mass balance

experiments in a sand aquifer showed that the amount of tetrachloroethylene recovered at the end of

migration through the aquifer was essentially the same as that added (Roberts et al. 1986). Studies of

photolysis and hydrolysis conducted by Chodola et al. (1989) demonstrated that photolysis did not

contribute substantially to the transformation of tetrachloroethylene. Chemical hydrolysis appeared to

occur only at elevated temperature in a high pH (9.2) environment, and even then, at a very slow rate.

Results from experiments conducted at high pH and temperature were extrapolated to pH 7 and 25°C

(Jeffers et al. 1989), and the estimated half-life was 9.9x108 years, which suggests that hydrolysis does

not occur under normal environmental conditions. In contrast, estimates of the hydrolysis half-life of

tetrachloroethylene under corresponding conditions were cited in other studies as about 9 months

(Dilling et al. 1975) and 6 years (Pearson and McConnell 1975). It is not clear why there is such a

large difference between these values; however, errors inherent in the extrapolation method used in the

first approach (Jeffers et al. 1989) and the presence of transformation factors other than chemical

hydrolysis, such as microbial degradation, in the second approach (Dilling et al. 1975; Pearson and

McConnell 1975) may account for the discrepancy in the estimates of half-lives.

In natural waters, biodegradation may be the most important transformation process. Various

biodegradation screening tests and laboratory studies have shown tetrachloroethylene to be resistant to

biotransformation or biodegraded only slowly (Bouwer and McCarty 1982; Bouwer et al. 1981;

Wakeham et al. 1983). Other screening studies have noted more rapid biodegradation; however, these

studies used microbes that had to be adapted to tetrachloroethylene (Parsons et al. 1984, 1985; Tabak

et al. 1981). Microbial degradation products of tetrachloroethylene in groundwater have been reported
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to include primarily trichloroethylene and small amounts of cis- and trans-dichloroethylene (Parsons et

al. 1984, 1985; Smith and Dragun 1984). Biotransformation was strongly indicated as a factor in the

degradation of tetrachloroethylene in a case of soil and groundwater pollution (Milde et al. 1988). The

only ethylenes at the source of pollution were tetrachloroethylene and trichloroethylene; however,

substantial amounts of known metabolites of these two compounds (dichloroethylene, vinyl chloride,

and ethylene) were found at points far from the source. Data from laboratory studies by the same

group supported the study authors’ contention that degradation was due to reductive dehalogenation by

microorganisms. Further evidence that tetrachloroethylene can be completely degraded to ethylene by

microorganisms was provided by Freedman and Gossett (1989). Their experiments indicated that this

transformation can occur under methanogenic conditions. Reductive dehalogenation and further

degradation to carbon dioxide by methanogens have also been demonstrated (Vogel and McCarty

1985).

Since neither biodegradation nor hydrolysis occurs at a rapid rate, most tetrachloroethylene present in

surface waters can be expected to volatilize into the atmosphere. However, because

tetrachloroethylene is denser than water and only slightly soluble in water, that which is not

immediately volatilized may be expected to sink and thus be removed from contact with the surface

(Doust and Huang 1992). Volatilization will therefore not be a viable process for this fraction of

tetrachloroethylene, which may instead be rapidly transported into groundwater by leaching through

fissures rather than matrix pores (Chilton et al. 1990). The sinking of tetrachloroethylene into

groundwater also makes cleanup difficult.

There is evidence that slow biodegradation of tetrachloroethylene occurs under anaerobic conditions

with acclimated microorganisms (Bouwer and McCarty 1984; Wilson et al. 1983b), suggesting that a

slow transformation by biodegradation may occur in subsurface waters. Analysis of pore water from

the principal aquifer in England referred to as “the Chalk,” which has low carbon content and rapid

groundwater flow in fissures, detected the presence of tetrachloroethylene at concentrations ranging

from 0.05 to 40 mg/L at a depth of 50 meters (Lawrence et al. 1990). Given the slow rate of

biodegradation, it is probable that tetrachloroethylene will persist for decades in the Chalk.
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5.3.2.3 Sediment and Soil

Biodegradation of tetrachloroethylene in soil appears to occur only under specific conditions, and then

only to a limited degree. When subsurface soil samples containing toluene-degrading bacteria were

collected from a floodplain in Oklahoma and incubated with tetrachloroethylene, no detectable

degradation occurred (Wilson et al. 1983a). Most evidence for transformation in soil comes directly

from data on contaminated aquifers and the soils and sediments associated with them. Based on this

indirect evidence, tetrachloroethylene is probably degraded to some extent in anaerobic soil

environments (Freedman and Gossett 1989; Milde et al. 1988; Parsons et al. 1984, 1985; Wakeham et

al. 1983). There is evidence that during the first 2 months of soil contamination, tetrachloroethylene

(l00-1,000 µg/l00 g soil) may inhibit microbial and fungal activity as measured by ATP content of

the soil (Kanazawa and Filip 1987). However, the same study authors observed an increase in

anaerobic and specialized aerobic bacteria, which might indicate an opportunistic response to a suitable

substrate by these microorganisms.

Anaerobic incubations of tetrachloroethylene with soils collected from lotus, rice, and vegetable fields

in Japan resulted in biodegradation rates which varied with soil type, temperature, and initial

concentration of tetrachloroethylene (Yagi et al. 1992). The decline in tetrachloroethylene

concentration over 42 days was accompanied by an increase in the concentration of trichloroethylene,

implicating this compound as a major metabolite. In an anaerobic column operated under methanogenie

conditions, 100% transformation of injected tetrachloroethylene and trichloroethylene to vinyl

chloride was obtained after 10 days (Vogel and McCarty 1985).

5.4 LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT

5.4.1 Air

A compilation of available U.S. ambient air monitoring data for tetrachloroethylene prior to 1981 has

been published (Brodzinsky and Singh 1982). This compilation, which includes more than

2,500 monitoring points, reported mean tetrachloroethylene concentrations of 0.16 ppb in rural and

remote areas, 0.79 ppb in urban and suburban areas, and 1.3 ppb in areas near emission sources. A

similar compilation listed measured average concentrations ranging from 0 ppb (Grand Canyon,

Arizona) to 31 ppb (the Boundbrook/Rahway/Edison/Passaic area of New Jersey) (EPA 1985d). Data
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from ambient air monitoring studies in Canada have shown tetrachloroethylene concentrations of

0.03-0.73 ppb in urban locations and 0.03-0.06 ppb in a rural location (CEPA 1993).

Data from ambient air monitoring studies in the United States have shown tetrachloroethylene

concentrations of 400-2,100 ng/m3 (0.0584l.31 ppb) in Portland, Oregon, in 1984 (Ligocki et al.

1985), 5.2 µglm3 (0.77 ppb) in Philadelphia, Pennsylvania, in 1983-1984 (Sullivan et al. 1985),

0.24-0.46 ppb in three New Jersey cities during the summer of 1981 and the winter of 1982 (Harkov

et al. 1984), and 0.29-0.59 ppb in seven cities (Houston, Texas; St. Louis, Missouri; Denver,

Colorado; Riverside, California; Staten Island, New York; Pittsburgh, Pennsylvania; and Chicago,

Illinois) in 1980-1981 (Singh et al. 1982). A Total Exposure Assessment Methodology (TEAM) study

of three industrialized areas (Bayonne/Elizabeth, New Jersey; Los Angeles, California; and

Antioch/Pittsburg, California) detected levels ranging from 0.24 to 9.0 µg/m3 (0.035-1.33 ppb)

(Hartwell et al. 1987). In these studies, levels were found to vary between the fall/winter season and

the spring/summer season, with fall/winter levels usually higher. This is consistent with the

observation that higher temperatures increase the rate of reaction with hydroxyl radicals and

subsequent degradation of tetrachloroethylene (see Section 5.3.2.1).

Data gathered from several sites near Niigata, Japan, between April 1989 and March 1992 also showed

elevated levels of tetrachloroethylene and other volatile chlorinated hydrocarbons in the winter

(Kawata and Fujieda 1993). A rural site in this study had annual mean concentrations between 0.031

and 0.045 ppb, while four industrial sites had mean concentrations between 0.082 and 1.0 ppb. The

average levels of tetrachloroethylene detected in air in the Norwegian Arctic during July 1982 and

March 1983 were 0.018 and 0.038 ppb, respectively (Hov et al. 1984). Average concentrations of

tetrachloroethylene in Alaskan Arctic haze between 1980 and 1982 were 0.118 ppb in winter and

0.067 ppb in summer (Khalil and Rasmussen 1983). Measurements of tetrachloroethylene completed

during 1982-1989 on marine islands included concentrations of 0.021 ppb in the northern troposphere

at 90-30°N, 0.007 ppb in the northern troposphere at 30-0°N, and 0.002 ppb in the southern

troposphere at 0-30°S(Wiedmann et al. 1994). The sample sites were chosen with the objective of

sampling large and well-mixed air masses influenced only by long-range transport.

Data collected from several locations in the city of Hamburg, Germany, showed ambient air

concentrations ranging from 1.8 to 70.8 µg/m3 (0.27-10.44 ppb) (Bruckmann et al. 1988). The highest

concentrations were detected downwind of a dry cleaning facility. A monitoring study in Finland
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reported levels of 0.08 and 130 µg/m3 (0.012 and 19.17 ppb) in ambient air from an industrialized and

a suburban area, respectively (Kroneld 1989a). No tetrachloroethylene was detected in samples of

rural air in that study.

Some of the highest outdoor air levels of tetrachloroethylene reported are associated with waste

disposal sites. Mean concentrations of tetrachloroethylene detected in ambient samples collected at

seven waste sites in New Jersey ranged from 0.12 to 1.91 ppb; the maximum level found at any site

was 7.24 ppb (Harkov et al. 1985). Levels between 5.0 and 5.6 µg/m3 (0.70 ppb and 0.82 ppb) were

found at a distance of 0.5-l.5 meters above the surface of a landfill known to contain halogenated

volatile organic compounds in Germany (Koenig et al. 1987).

A survey of indoor air in an office building, a school, and a home for the elderly showed median

levels of tetrachloroethylene between 1.7 and 4.8 µg/m3 (0.25 and 0.71 ppb) (Hartwell et al. 1985).

The level of tetrachloroethylene in the air of an indoor university laboratory was 0.002-0.005 ppm

(2.0-5.0 ppb) (Nicoara et al. 1994). Analysis of indoor and outdoor air for tetrachloroethylene in six

regions of the United States (Greensboro, NC; Baton Rouge/Geismar, LA; Deer Park/Pasadena, TX;

Elizabeth/Bayonne, NJ; Antioch/W. Pittsburg, CA; and small communities in the Los Angeles, CA,

area) during 1981-1984 showed that indoor air concentrations were generally greater than outdoor air

concentrations (Pellizzari et al. 1986). Ratios of tetrachloroethylene concentrations in indoor air

relative to outdoor air ranged from 1.2 to 27.

Elevated levels of tetrachloroethylene have been found in apartments above dry cleaning facilities

(Schreiber et al. 1993). Tetrachloroethylene concentrations ranged from 0.04 to 8.1 ppm in six

apartments above dry cleaning facilities when measurements were completed from 7 AM to 7 PM, and

from 0.01 to 5.4 ppm when measured from 7 PM to 7 AM. Tetrachloroethylene concentrations were

higher above facilities using transfer-type dry cleaning machines compared to dry-to-dry machines,

although the highest levels were found above a facility using an old, poorly maintained dry-to-dry

machine. Tetrachloroethylene concentrations in nearby apartments were <0.001-0.015 ppm during the

day and <0.001-0.01 ppm at night.
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5.4.2 Water

Average concentrations of 0.12-0.5 parts-per-trillion (ppt) tetrachloroethylene have been detected in

the North Atlantic (Murray and Riley 1973; Pearson and McConnell 1975). Levels in open waters of

the Gulf of Mexico were below the detection limit of <l ppt (Sauer 1981).

Rainwater collected in Portland, Oregon, in 1984 was found to contain tetrachloroethylene levels of

0.82-9.2 ng/L (0.82-9.2 ppt) (Ligocki et al. 1985). A March 1982 rainwater sample from Los

Angeles, California, contained 21 ng/L (21 ppt) (Kawamura and Kaplan 1983). An average

tetrachloroethylene concentration of 5.7 ng/L (5.7 ppt) was detected in rainwater from La Jolla,

California, and levels of 2.3 and 16 ng/L (2.3 and 16 ppt) were detected in snow from southern

California and Alaska, respectively (Su and Goldberg 1976). Levels up to 150 ng/L (150 ppt) were

found in samples collected in rainwater in industrial cities in England (Pearson and McConnell 1975).

Rainwater samples collected in Tokyo between October 1989 and September 1990 had a mean tetra-chloroethylene

level of 99 ng/L (99 ppt), with higher levels in samples obtained during the winter

(Jung et al. 1992).

Tetrachloroethylene has been detected in drinking water sources throughout the United States.

Results from an EPA Groundwater Supply Survey of 945 water supplies from groundwater sources

nationwide showed tetrachloroethylene in 79 water supplies. The median concentration of the positive

samples was about 0.75 µg/L (0.75 ppb), with a maximum level of 69 µg/L (69 ppb) (Westrick et al.

1984). Tetrachloroethylene concentrations of 0.01-0.2 µg/L (0.01-0.2 ppb) were detected in drinking

water from five cities in 1974 and 1975 (Cincinnati, Ohio; Miami, Florida; Grand Forks, North

Dakota; Lawrence, Massachusetts; New York, New York) (Keith et al. 1976). Drinking water from

wells in New York, New Jersey, and Connecticut have been found to contain tetrachloroethylene at

levels of 717-1,500 ppb, although these elevated levels were in areas of considerable pollution

(Burmaster 1982). Levels of 0.38-2.9 ppb were detected in tap water from homes near the

contaminated Love Canal site in New York (Barkley et al. 1980). In other countries, 30 Canadian

drinking water sources were found to contain tetrachloroethylene levels at <l µg/L (Otson and

Williams 1982), and recent drinking water samples from Zagreb, Croatia, contained 0.36-7.80 µg/L

(0.36-7.80 ppb) (Skender et al. 1993).
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A summary of U.S. groundwater analyses from both federal and state studies reported that

tetrachloroethylene was detected in 14-26% of all samples analyzed (Dykson and Hess 1982). In a

comparison of groundwater data from 178 CERCLA sites, tetrachloroethylene was detected in 36% of

the samples and was the second most frequently detected organic groundwater contaminant in the

CERCLA database (Plumb 1987). Tetrachloroethylene was detected in 179 of 421 groundwater

samples in New Jersey between 1977 and 1979, at a maximum concentration of 90.6 ppb (Page 1981).

Tetrachloroethylene has been detected in groundwater leachates from various landfill sites nationwide

(Reinhard et al. 1984; Sabel and Clark 1984; Schultz and Kjeldsen 1986). A landfill in New Jersey

contained levels up to 590 µg/L (590 ppb) in its leachate (Kosson et al. 1985). Groundwater samples

taken from several locations near a sewage effluent disposal site in Massachusetts had levels as high as

980 µg/L (980 ppb) (Barber et al. 1988). A nationwide monitoring study conducted in Japan showed

that tetrachloroethylene was common in water supplies of that country (Magara and Furuichi 1986).

Tetrachloroethylene was detected in 27% of shallow wells and 30% of deep wells. Concentrations

ranged from 0.2 to 23,000 µg/L (0.2 to 23,000 ppb) in shallow wells and from 0.2 to 150 µg/L (0.2 to

150 ppb) in deep wells.

An analysis of the EPA STORET Data Base showed that tetrachloroethylene was detected in 38% of

9,323 surface water reporting stations nationwide (Staples et al. 1985). An analysis of 1,140 samples

from the Ohio River showed a similar percentage of positive detections, with detected levels usually

<l ppb (Ohio River Valley Sanitation Commission 1980). Tetrachloroethylene was detected in 154 of

174 surface water samples collected in New Jersey between 1977 and 1979, with a maximum

concentration of 4.5 ppb (Page 1981). Levels of 0.003-.08 µg/L (0.003-0.08 ppb) were found in the

Niagara River and Lake Ontario between 1978 and 1981 (Strachan and Edwards 1984).

Concentrations ranged from 0 to 473,000 ppb in the surface water of Lake St. Clair in Canada during

June of 1984 (Kaiser and Comba 1986). Highest levels were detected where the St. Clair River

emptied into the lake. River levels ranged from 79,000 to 182,000 ppb.

5.4.3 Sediment and Soil

Sediments from Liverpool Bay, England, were found to contain concentrations ranging from 0.03 to

6 ppm, with most detections at the lower limit (Pearson and McConnell 1975). Sediment levels from

nondetectable to 0.3 ppb (wet weight) tetrachloroethylene were identified in samples from Lake

Pontchartrain, near New Orleans (Ferrario et al. 1985). The detection limit of the method used in this
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study was not stated. An analysis of the EPA STORET Data Base showed that tetrachloroethylene

had been positively detected in 5% of 359 sediment observation stations, with median levels of

<5 ng/g (5 ppb) (Staples et al. 1985). Tetrachloroethylene was qualitatively detected in the

soil/sediment matrix of the Love Canal waste site near Niagara Falls, New York (Hauser and

Bromberg 1982).

5.4.4 Other Environmental Media

Tetrachloroethylene has been detected in dairy products (milk, cheese, and butter) at 0.3-13 µg/kg

(0.3-13 ppb), meat (English beef) at 0.9-1.0 µg/kg (0.9-1.0 ppb), oils and fats at 0.01-7 µg/kg

(0.01-7 ppb), beverages (canned fruit drink, instant coffee, and tea) at 2-3 µg/kg (2-3 ppb), fruits and

vegetables (potatoes, apples, pears, and tomatoes) at 0.7-2 µg/kg (0.7-2 ppb), and fresh bread at

1 µg/kg (1 ppb) (McConnell et al. 1975). Samples obtained from a food processor in Pennsylvania

contained tetrachloroethylene concentrations of 0.4 ppb in plant tap water, 2.0 ppb in Chinese-style

sauce, 2.2 ppb in quince jelly, 2.5 ppb in crab apple jelly, 1.6 ppb in grape jelly, and 3.6 ppb in

chocolate sauce (Entz and Hollifield 1982). In another study, levels of tetrachloroethylene detected in

a variety of foods ranged from 1 to 230 ng/g (l-230 ppb), with a mean of 12 ng/g (12 ppb) (Daft

1989). An analysis of intermediate grain-based foods in 1985 showed the following

tetrachloroethylene levels (in ppb): corn muffin mix, 1.8; yellow corn meal, 0.0; fudge brownie mix,

2.45; dried lima beans, 0.0; lasagna noodles, 0.0; uncooked rice, 0.0; and yellow cake mix, 2.5 (Heikes

and Hopper 1986). Levels of tetrachloroethylene detected in margarine from several supermarkets in

the Washington, DC, area were 50 ppm in 10.7% of the products sampled (Entz and Diachenko 1988).

The highest levels (500-5,000 ppb) were found in samples taken from a grocery store located near a

dry cleaning shop. Additional analysis showed that the concentrations were highest on the ends of the

margarine stick and decreased toward the middle. According to the study authors, these findings

suggested that contamination occurred after manufacturing rather than during the manufacturing

process (Entz and Diachenko 1988).

Another study showed that tetrachloroethylene can be absorbed from the atmosphere by foods and

concentrated over time, so that acceptable ambient air levels may still result in food levels which

exceed acceptable limits (Grob et al. 1990). The study authors estimated that, in order to limit food

concentrations of tetrachloroethylene to 50 µg/kg (the maximum tolerated limit for food halocarbons in

Switzerland), the level in surrounding air should not exceed 12.5 µg/m3 (0.002 ppm). Since the



TETRACHLOROETHYLENE 197

5. POTENTIAL FOR HUMAN EXPOSURE

accepted levels found near emission sources are often far above this limit, foods processed or sold near

these sources may routinely exceed the Swiss tolerated tetrachloroethylene concentration, thus making

the setting of air emission standards problematic. It is also noteworthy that the limits recommended

by Grob et al. (1990) exceed acceptable ambient air concentrations for many regions of the United

States (see Chapter 7).

An analysis of six municipal solid waste samples from Hamburg, Germany, revealed levels of

tetrachloroethylene ranging from undetectable to 1.41 mg/kg (1.41 ppm) (Deipser and Stegmann

1994). In a study analyzing automobile exhaust for chlorinated compounds, tetrachloroethylene was

not detected (Hasanen et al. 1979).

5.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE

The most important routes of exposure to tetrachloroethylene for most members of the general

population are inhalation of the compound in ambient air and ingestion of contaminated drinking

water. Available data indicate generally that dermal exposure is not an important route for most

people. General population exposure from inhalation of ambient air varies widely depending on

location. While background levels are generally in the low-ppt range in rural and remote areas, values

in the high-ppt and low-ppb range are found in urban and industrial areas and areas near point sources

of pollution.

Tetrachloroethylene has been detected in expired air in several comprehensive studies of humans;

attempts were made to correlate the levels in breath with those in water and ambient air (Hartwell et

al. 1987; Krotoszynski et al. 1979; Wallace et al. 1985, 1986a). Results suggested that expired air

concentrations of tetrachloroethylene were correlated with personal exposure concentrations of the

chemical. Breath levels were higher than outdoor air levels and seemed to be more closely related to

indoor air levels (Wallace 1986; Wallace et al. 1985, 1986a), suggesting that indoor air is a more

significant exposure source of tetrachloroethylene than outdoor air, even near major point sources such

as chemical plants (Wallace 1986; Wallace et al. 1986a, 1986b, 1986c, 1986d). Wallace et al. (1989)

reported air concentrations for four homes (nine samples per home) in North Carolina and found that

indoor air concentrations of tetrachloroethylene in all homes were consistently higher than the outdoor

concentrations.



TETRACHLOROETHYLENE 198

5. POTENTIAL FOR HUMAN EXPOSURE

Indoor air of apartments where dry cleaners lived was about 0.04 ppm compared to 0.003 ppm in the

apartments of the controls (Aggazzotti et al. 1994a), indicating that dry cleaners serve as a source of

exposure for their families. Breath concentrations of tetrachloroethylene in dry cleaners, family

members and controls were 0.65, 0.05, and 0.001 ppm, respectively (Aggazzotti et al. 1994b). A

study which combines PBPK modeling with a single compartment model for a “typical” home

(Thompson and Evans 1993) suggests that tetrachloroethylene levels in a home with a worker exposed

to a TWA of 50 ppm for 8 hours as the only source of tetrachloroethylene could result in

concentrations of 0.004-0.01 ppm. The air exchange rate in the house made a larger difference in the

house air concentrations than the choice of metabolic data used in the PBPK model.

In addition to breathing contaminated air, infants can also be exposed to tetrachloroethylene in breast

milk. For example, tetrachloroethylene was present at unspecified levels in seven of eight samples of

mother’s milk from four urban areas in the United States (Pellizzari et al. 1982). A woman in Halifax,

Nova Scotia, who visited her husband daily at the dry cleaning plant where he worked, was found to

have tetrachloroethylene present in her breast milk (Bagnell and Ellenberger 1977). This was

discovered after her breast-fed infant developed obstructive jaundice, which was attributed to the

contaminant. Using a PBPK model, Schreiber (1993) predicted that for women exposed under

occupational conditions, breast milk concentrations would range from 857 to 8,440 µg/L. The

exposure scenario for the low concentrations was 8 hours at about 6 ppm (exposure concentration of

counter workers, pressers and seamstresses) and 16 hours at 0.004 ppm (residential background), and

for the high concentration, 8 hours at 50 ppm and 16 hours at 0.004 ppm (residential background).

Assuming a 7.2-kg infant ingests 700 mL of breast milk/day, the infant dose would range from 0.08 to

0.82 mg/kg/day, relative to the EPA RfD of 0.01 mg/kg/day (IRIS 1996). The infant dose estimated

from background exposure (24 hours at 0.004 ppm) was 0.001 mg/kg/day (Schreiber 1993). Because

of potential widespread exposure, the study author suggested that additional monitoring of breast milk

levels should be completed. A second model of the lactational transfer of tetrachloroethylene has been

developed using data from rats (Byczkowski and Fisher 1994, 1995). Using an exposure scenario

similar to that described by Bagnell and Ellenberger (1977), investigators (Byczkowski and Fisher

1994) estimated that a l-hour exposure to 600 ppm tetrachloroethylene each day would result in an

infant blood concentration of about 0.035 mg/L within 1 month of exposure. Using the same exposure

scenarios as Schreiber (1993), the Byczkowski and Fisher (1995) model predicts slightly smaller doses

delivered to the infant. For example, Schreiber (1993) predicted 0.08 mg/kg/day as the minimum dose

to the infant for the exposure scenario for low concentrations (8 hours at 6 ppm, 16 hours at
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0.004 ppm) while Byczkowski and Fisher (1995) predicted a dose of 0.032 mg/kg/day. The Schreiber

(1993) model may have overestimated the dose to the infant because it assumes the infant will be

exposed to the peak concentrations of tetrachloroethylene in breast milk, while the Byczkowski and

Fisher (1995) model provides more insight into the changing concentrations of tetrachloroethylene in

breast milk as maternal exposure changes.

Although the use of tetrachloroethylene in the dry cleaning industry makes this chemical a potential

hazard for exposed workers, casual contact by the general population with dry-cleaned clothing may

pose a risk as well. One study showed that the storage of newly dry-cleaned garments in a residential

closet resulted in tetrachloroethylene levels of 0.5-2.9 mg/m3 (74-428 ppb) in the closet after 1 day,

followed by a rapid decline to 0.5 mg/m3 (74 ppb) which persisted for several days (Tichenor et al.

1990). Initial “airing out” of the clothes for 4-8 hours had little effect on the resulting emissions,

presumably because diffusion through the fabric, rather than surface evaporation, was rate-limiting. A

study of nine homes into which 10 or fewer freshly dry-cleaned garments were introduced showed an

increase in tetrachloroethylene levels in the air of seven homes (Thomas et al. 1991). The increases

ranged from 2 to 30 times the levels before the introduction of the garments, and the magnitude of the

increase was highly correlated with the number of garments divided by the house volume. tetrachloroethylene

levels in personal breathing space and expired air of residents were also monitored and

found to be generally correlated with indoor air concentrations. An investigation of different methods

for reducing tetrachloroethylene retention in dry-cleaned fabrics found that, while airing at 20°C for

several hours had little effect, airing at 45°C greatly reduced retention time, and thus was

recommended as a way to reduce consumer exposure from garments (Guo et al. 1990).

A survey of 15 coin-operated dry cleaning establishments in Hamburg, Germany, showed indoor air

concentrations of tetrachloroethylene between 3.1 and 331 mg/m3 (457 and 48,812 ppb) and a

concentration of 4.5 mg/m3 (664 ppb) in one building 7.5 months after removal of dry cleaning

machines, indicating that tetrachloroethylene may be absorbed by building materials and then slowly

released into the air over time (Gulyas and Hemmerling 1990). This study also indicated that a car

transporting a freshly dry-cleaned down jacket had air concentrations of 20.4 mg/m3  (3,008 ppb) after

25 minutes and 24.8 mg/m3 (3,657 ppb) after 108 minutes.

A survey of dry cleaning operators conducted by the International Fabricare Institute from 1980 to

1990 indicated that 1,302 operators in plants with transfer units were exposed to an average time-
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weighted average of 48.4 ppm, while 1,027 operators in plants with dry-to-dry units were exposed to

an average time-weighted average of 16.9 ppm (Andrasik and Cloutet 1990). An in-depth series of

studies of the dry cleaning industry has been completed by the National Institute for Occupational

Safety and Health (NIOSH). These studies evaluate worker exposure to tetrachloroethylene at several

locations in the United States, and examine how the exposure can be controlled (Earnest 1995, 1996;

Earnest and Spencer 1995; Earnest et al. 1995a, 1995b, 1995c; Spencer et al. 1995). Personal and area

air samples were obtained. Results of the studies showed that the TWA concentrations of

tetrachlorethylene were within the American Conference of Governmental Industrial Hygienists

recommended threshold limit value of 25 ppm (ACGIH 1995). The primary exposure of the workers

occurred during the loading and unloading of the dry cleaning machines.

Various consumer products have been found to contain tetrachloroethylene. These include printing

ink, glues, sealants, polishes, lubricants, and silicones (ACGIH 1991) as well as paint removers; rug

and upholstery cleaners; and stain, spot, and rust removers (EPA 1985d).

Contamination of drinking water supplies with tetrachloroethylene varies with location and with the

drinking water source (surface water or groundwater). Generally higher levels are expected in

groundwater because tetrachloroethylene volatilizes rapidly from surface water. The EPA has

estimated that approximately 5.3% of the U.S. population using public water supplies is exposed to

tetrachloroethylene levels above 0.5 µg/L (0.5 ppb), and 0.4% are exposed to levels above 5 µg/L

(5 ppb) (EPA 1985c). Thus, assuming a 70-kg person drinking 2 L of water containing 0.5 ppb

tetrachloroethylene per day, the daily intake of tetrachloroethylene is 1 ppb, or 0.014 µg/kg/day.

Showering or bathing with contaminated water can also result in tetrachloroethylene exposure. Rao

and Brown (1993) describe a combined PBPK exposure model that estimates brain and blood levels of

tetrachloroethylene following a 15-minute shower or 30-minute bath with water containing 1 mg

tetrachloroethylene/. The PBPK model is described further in Section 2.3.5. The exposure model

assumed that the shower or bath would use 100 L of water, the air volume in the shower stall or

above the bath tub was 3 m3, and the shower flow rate was 6.667 L/mmute. The exposure model was

validated with data for chloroform and trichloroethylene, but not tetrachloroethylene. Using this

model, Rao and Brown (1993) estimated that shower air would contain an average of 1 ppm and that

the air above the bathtub would contain an average of 0.725 ppm if the water contained 1 mg

tetrachloroethylene/L.
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There is some evidence that tetrachloroethylene can be produced in small amounts during the

chlorination process of water treatment (Bellar et al. 1974), although no evidence exists for its

formation through drinking water chlorination (Bellar et al. 1974; Westrick et al. 1984). Other studies

of vinyl coated water pipes used for carrying drinking water in some parts of the northeast United

States suggested that residual tetrachloroethylene from the coating process may contribute to drinking

water contamination (Wakeham et al. 1980; Yuskus 1984).

General population exposure may also occur from ingestion of contaminated foods, but data are

insufficient to calculate an average daily intake with a high degree of accuracy, or estimate the

importance of contaminated food as a source of exposure for the general population. However, the

EPA made some approximations assuming individual average daily intakes of 0.753 kg for dairy

products, 0.262 kg for meat, fish, and poultry, 0.073 kg for fats and oils, and 0.128 kg for beverages.

Based on average tetrachloroethylene levels reported for these foods, it was determined that a person’s

average daily intake of tetrachloroethylene is between 0 and 4 µg from dairy products, 0 and 1 µg

from meat, fish, and poultry, 0 and 0.95 µg from fats and oils, and 0 and 0.06 µg from beverages

(EPA 1985c).

Total tetrachloroethylene intake for Canadians has been estimated to range from 1.2 to 2.7 µg/kg/day

(CEPA 1993). Indoor air exposure (assuming 20 hours/day) from the use of household products

containing tetrachloroethylene and from recently dry-cleaned clothes accounted for 1.2-l .9 µg/kg/day.

Drinking water and food consumption contributed 0.002-0.03 and 0.12-0.65 µg/kg/day, respectively.

Data were not sufficient to estimate tetrachloroethylene intake from soil.

Tetrachloroethylene has been measured in the blood and urine in a sample of the general population in

Italy (Brugonone et al. 1994). In rural locations, tetrachloroethylene was detected in the blood of 76%

of 107 individuals tested at a mean concentration of 62 ng/L, while in 106 urban subjects it was

detected in 41% at a mean concentration of 263 ng/L. Measurement of tetrachloroethylene in urine

showed similar results for urban (74% positive; average 90 ng/L) and rural populations (74% positive;

average 119 ng/L). In Zagreb, Croatia, tetrachloroethylene concentrations in the drinking water ranged

from 210 to 7,800 ng/L, and tetrachloroethylene in blood ranged from <10 to 239 ng/L (Skender et al.

1994).
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The National Occupational Exposure Survey (NOES), conducted by NIOSH from 1981 to 1983,

estimated that 688,110 workers employed at 49,025 plant sites were potentially exposed to

tetrachloroethylene in the United States during this period (NOES 1990). The NOES database does

not contain information on the frequency, concentration, or duration of exposure; the survey provides

only estimates of workers potentially exposed to chemicals in the workplace. A NIOSH survey of 44

dry cleaning facilities showed tetrachloroethylene TWA exposures to machine operators ranging from

4.0 to 149 ppm; the geometric mean tetrachloroethylene exposures to machine operators was 22 ppm,

while mean exposures to pressers, seamstresses, and front counter workers were 3.3, 3.0, and 3.1 ppm,

respectively (Ludwig et al. 1983). A study of the dry cleaning industry in England indicated exposure

was similar to that determined in the U.S. studies (Shipman and Whim 1980).

Workplace exposure to tetrachloroethylene has been monitored by examining venous blood

concentrations of unmetabolized tetrachloroethylene and its metabolite trichloroacetic acid in workers

at dry cleaning shops. The tetrachloroethylene concentrations increased greatly through the course of

the workweek, while the increases in trichloroacetic acid were less dramatic (Skender et al. 1987). A

limited capacity in humans for metabolizing tetrachloroethylene was also indicated by a study in which

61 workers showed a linear increase in urinary metabolite concentration as the ambient

tetrachloroethylene concentration increased up to 100 ppm, beyond which point metabolite excretion

leveled off (Ohtsuki et al. 1983). Another study involving 40 workers at various plants exposed to

tetrachloroethylene showed a direct correlation between levels monitored in the personal breathing

zone and levels of unmetabolized tetrachloroethylene in the urine (Ghittori et al. 1987).

5.6 POPULATIONS WITH POTENTIALLY HIGH EXPOSURES

Various segments of the population can be exposed to levels of tetrachloroethylene significantly above

normal background concentrations. Metal degreasers who use the chemical as a solvent would be

expected to have high exposure. People working in the dry cleaning industries are exposed to elevated

levels of tetrachloroethylene. In addition, recent evidence has suggested that people living with

workers in the dry cleaning industry may be subjected to higher exposures even though their homes

are far removed from the work site (Aggazzotti et al. 1994a). This study surveyed 30 such homes and

showed a range of indoor tetrachloroethylene levels from 34 to 3000 µg/m3 (5.0 to 442 ppb), which

was significantly higher than that found in control homes (1-16 µg/m3) (0.1-2.4 ppb). The

tetrachloroethylene levels in alveolar air samples were likewise significantly higher in family members
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of workers than in control subjects, and the higher exposures were attributed to clothing worn home

from work and the expired breath of workers (Aggazzotti et al. 1994a, 1994b).

Elevated levels of tetrachloroethylene in human breath of the general public (i.e., non-occupational

exposure) appear to be related to tetrachloroethylene emissions from nearby factories or from chemical

waste dumps. A sample of 6 children living near a factory in the Netherlands had a mean

concentration of 24 µg/m3 (3.5 ppb) tetrachloroethylene in their breath, compared with 11 control

children with a mean level of 2.8 µg/m3 (0.4 ppb) (Monster and Smolders 1984). Nine residents of

Love Canal, New York, a site of serious chemical contamination for many years, were found to have

tetrachloroethylene levels ranging from 600 to 4,500 ng/m3 (0.09-0.66 ppb) in their breath, from 0.35

to 260 ng/mL (0.35-260 ppb) in their blood, and from 120 to 690 ng/mL (120-690 ppb) in their urine

(Barkley et al. 1980). This same study indicated that the participants were exposed to

120-14,000 ng/m3 (0.02-2.06 ppb) in ambient outside air and levels of 350-2,900 ng/L

(0.35-2.90 ppb) in their drinking water.

Because of its pervasiveness in the environment, the general public can be exposed to tetrachloroethylene

through drinking water, air, or food, although the levels of exposure are probably far below

those causing any adverse effects. Concern may be justified, however, for people who are

continuously exposed to elevated levels, such as residents of some urban or industrialized areas, people

living near hazardous waste sites, or people exposed at work. Short-term exposure to high levels of

tetrachloroethylene may also pose risks to people using products containing the chemical in areas with

inadequate ventilation. The discontinuation of tetrachloroethylene use in many medical applications

and some consumer products has generally decreased the exposure risks in these situations.

An EPA TEAM (Total Exposure Assessment Methodology) study conducted in New Jersey attempted

to identify factors associated with risk of higher inhalation of tetrachloroethylene (Wallace et al.

1986b). The following factors (in order of importance) were identified: employment (not otherwise

specified), wood processing, visiting a dry cleaner, working at a textile plant, using pesticides, working

at or being in a paint store, and being male.



TETRACHLOROETHYLENE 204

5. POTENTIAL FOR HUMAN EXPOSURE

5.7 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of tetrachloroethylene is available. Where adequate

information is not available, ATSDR, in conjunction with the NTP, is required to assure the initiation

of a program of research designed to determine the health effects (and techniques for developing

methods to determine such health effects) of tetrachloroethylene.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment. This definition should not be interpreted to mean

that all data needs discussed in this section must be filled. In the future, the identified data needs will

be evaluated and prioritized, and a substance-specific research agenda will be proposed.

5.7.1 Identification of Data Needs

Physical and Chemical Properties.  The physical and chemical properties of tetrachloroethylene

are well characterized and allow prediction of the environmental fate of the compound (HSDB 1996;

Lide 1990; Sax and Lewis 1987). Estimates of the distribution of tetrachloroethylene in the

environment based on available constants (e.g., water solubility, log kow, log koc, vapor pressure)

(HSDB 1996; Seip et al. 1986; Zytner et al. 1989a) are generally in good agreement with

experimentally determined values. No additional studies are required at this time.

Production, Import/Export, Use, and Release and Disposal.   Humans are at risk of exposure

to tetrachloroethylene because of its widespread use and distribution in the environment. Production,

import, and use of the chemical are known to be relatively high. Tetrachloroethylene is released to the

atmosphere mainly through its use in the dry cleaning and textile processing industries, as a chemical

intermediate, and in degreasing procedures (EPA 1982a; Weant and McCormick 1984). It is also

released to surface water and land in sewage sludges and industrial liquid or solid waste (Schultz and

Kjeldsen 1986; TRI93 1995; Weant and McCormick 1984). Tetrachloroethylene-containing material is

considered a hazardous waste and its disposal is subject to regulations (see Chapter 7) (EPA 1985a,

1985c). More current data on production, use in food processing and consumer products, releases,
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efficiency of disposal practices, adequacy of current disposal regulations, and the extent of recovery

and recycling of tetrachloroethylene would assist in estimating human potential exposures, particularly

of populations living near industrial facilities and hazardous waste sites.

According to the Emergency Planning and Community Right-to-Know Act of 1986, 42 U.S.C. Section

11023, industries are required to submit substance release and off-site transfer information to the EPA.

The Toxics Release Inventory (TRI), which contains this information for 1992, became available in

May of 1994. This database will be updated yearly and should provide a list of industrial production

facilities and emissions.

Environmental Fate.   Tetrachloroethylene partitions primarily to the atmosphere (Class and

Ballschmiter 1986), where it can be transported back to land and surface water in rain (Kawamura and

Kaplan 1983; Pearson and McConnell 1975; Su and Goldberg 1976). In air, the half-life of

tetrachloroethylene has been estimated to range from 70 to 251 days (Class and Ballschmiter 1986;

Cupitt 1987). The chemical is mobile in soil (Kenaga 1980; Swann et al. 1983) and can contaminate

groundwater (Dykson and Hess 1982). It does not appear to be readily transformed in soil (Wakeham

et al. 1983; Wilson et al. 1983a) or water (Bouwer and McCarty 1982; Bouwer et al. 1981; Chodola et

al. 1989; Jeffers et al. 1989; Roberts et al. 1986). The hydrolysis half-life has been estimated to be

from 9 months (Dilling et al. 1975) to 9.9x108 years (Jeffers et al. 1989). Because of the great

variability in half-life, additional studies regarding the hydrolysis of tetrachloroethylene would be

useful. Data are inadequate for predicting the biological degradation of tetrachloroethylene under

different soil conditions, e.g., soil characteristics and composition. It is not currently possible to use

models to predict the rate of degradation nor the proportions of degradation products that might be

produced. It would be very useful to have this capability.

Bioavailability from Environmental Media.   No studies have been identified regarding the

absorption of tetrachloroethylene following ingestion of contaminated soil and plants grown on

contaminated soil near hazardous waste sites and other points sources of pollution.

Tetrachloroethylene can be absorbed following inhalation (Hake and Stewart 1977; Monster et al.

1979), oral (Frantz and Watanabe 1983; Pegg et al. 1979; Schumann et al. 1980), or dermal exposure

(Jakobson et al. 1982; Stewart and Dodd 1964; Tsuruta 1975). All of these routes of exposure may be

of concern to humans because of the potential for tetrachloroethylene to contaminate the air, drinking

water, food, and soil. More information on the absorption of tetrachloroethylene following ingestion
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of contaminated soil and plants grown on contaminated soil near hazardous waste sites and other

sources of pollution would be helpful in determining the bioavailability of the chemical from soil.

Food Chain Bioaccumulation.   Data indicate that tetrachloroethylene has a low bioconcentration

potential in aquatic organisms and animals (Barrows et al. 1990; Kawasaki 1980; Kenaga 1980; Neely

et al. 1974; Veith et al. 1980). No data were located on the bioconcentration potential of this

compound in plants. Research on the bioconcentration of tetrachloroethylene in plants would help in

assessing the potential for exposure from ingestion of plant foodstuffs. Although biomagnification of

tetrachloroethylene in terrestrial and aquatic food chains is not expected to be important because the

compound is metabolized in animals, experimental data to confirm the expected behavior would be

useful in evaluating the importance of food chain bioaccumulation as a source of human exposure to

tetrachloroethylene.

Exposure Levels in Environmental Media.   Tetrachloroethylene is widely distributed in the

environment and has been detected in air (Brodzinsky and Singh 1982; Hartwell et al. 1987; Ligocki et

al. 1985; Singh et al. 1982), water (Dykson and Hess 1982; Kawamura and Kaplan 1983; Ligocki et

al. 1985; Staples et al. 1985), soil (Ferrario et al. 1985; Staples et al. 1985), and food (Daft 1989; Entz

and Diachenko 1988; Entz and Hollifield 1982; Heikes and Hopper 1986). Ambient air levels in cities

in the United States generally range from 0.035 to 1.3 ppb (Hartwell et al. 1987). Surface water

concentrations of tetrachloroethylene are generally less than 1 ppb (Ohio River Valley Sanitation

Commission 1980), and the median concentration in 79 ground water samples was 0.75 ppb (Westrick

et al. 1984). Median concentrations of tetrachloroethylene in 359 sediment samples were <5 ppb

(Staples et al. 1985). Continual monitoring data for surface air, water, groundwater, and soil are

needed to assess the current potential for exposure to the chemical from these media. Additional data

characterizing the concentration of tetrachloroethylene in air, water, and soil surrounding hazardous

waste sites and estimating human intake from these media would be helpful in assessing the potential

human exposure to this chemical for populations living near hazardous waste sites. Reliable

monitoring data for the levels of tetrachloroethylene in contaminated media at hazardous waste sites

are needed so that the information obtained on levels of tetrachloroethylene in the environment can be

used in combination with the known body burden of tetrachloroethylene to assess the potential risk of

adverse health effects in populations living in the vicinity of hazardous waste sites.
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Exposure Levels in Humans.   Tetrachloroethylene has been detected in human breath (Koppel et

al. 1985; Stewart et al. 1977), blood (Altmann et al. 1990; Hams et al. 1993), urine (Koppel et al.

1985), tissues (Gamier et al. 1996; Levine et al. 1981; Lukaszewski 1979), and breast milk (Bagnell

and Ellenberger 1977). Most of the monitoring data come from occupational studies of specific

worker populations exposed to tetrachloroethylene; however, some studies of exposure in the general

population have been done (Aggazzotti et al. 1994a, 1994b; Hartwell et al. 1987; Krotoszynski et al.

1979; Schreiber et al. 1993; Wallace et al. 1985, 1986a). More current information on biological

media monitoring of the general population would be helpful in estimating human exposure. Because

infants may be more susceptible to tetrachloroethylene, more information on tetrachloroethylene in

breast milk would be useful. Data correlating levels in biological samples with media exposure levels

and the subsequent development of health effects are especially needed for populations living in the

vicinity of hazardous waste sites. This information is necessary for assessing the need to conduct

health studies on these populations.

Exposure Registries.   No exposure registries for tetrachloroethylene were located. This substance

is not currently one of the compounds for which a subregistry has been established in the National

Exposure Registry. The substance will be considered in the future when chemical selection is made

for subregistries to be established. The information that is amassed in the National Exposure Registry

facilitates the epidemiological research needed to assess adverse health outcomes that may be related

to exposure to this substance.

5.7.2 On-going Studies

As part of the Third National Health and Nutrition Evaluation Survey (NHANES III), the

Environmental Health Laboratory Sciences Division of the National Center for Environmental Health,

Centers for Disease Control and Prevention, will be analyzing human blood samples for

tetrachloroethylene and other volatile organic compounds. These data will give an indication of the

frequency of occurrence and background levels of these compounds in the general population.

The biodegradation of tetrachloroethylene as a method for waste treatment and remediation of polluted

sites is the focus of many current research projects (CRIS 1994). Reductive dechlorination of

tetrachloroethylene by an anaerobic enrichment culture is being investigated at Cornell University

(Principal Investigator, Dr. S.H. Zinder) in order to characterize responsible organisms and the kinetics
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of the reactions. Other studies concerned with identifying optimal conditions for both aerobic and

anaerobic biotransformation as methods of treatment are in progress (e.g., at Westinghouse, Savannah

River Technical Center, Oak Ridge National Laboratory, Occidental Chemical Corporation, U.S. EPA,

University of Washington, and University of California).
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The purpose of this chapter is to describe the analytical methods that are available for detecting,

measuring, and/or monitoring tetrachloroethylene, its metabolites, and other biomarkers of exposure

and effect to tetrachloroethylene. The intent is not to provide an exhaustive list of analytical methods,

but is to identify well-established methods that are used as the standard methods of analysis. Many of

the analytical methods used for environmental samples are the methods approved by federal agencies

and organizations such as EPA and the National Institute for Occupational Safety and Health

(NIOSH). Other methods presented in this chapter are those that are approved by groups such as the

Association of Official Analytical Chemists (AOAC) and the American Public Health Association

(APHA). Additionally, analytical methods may be included that modify previously used methods to

obtain lower detection limits and/or to improve accuracy and precision.

6.1  BIOLOGICAL MATERIALS

Several methods are available for the analysis of tetrachloroethylene in biological media. The method

of choice depends on the nature of the sample matrix; required precision, accuracy, and detection limit;

cost of analysis; and turnaround time of the method. Since tetrachloroethylene is metabolized in the

human body to trichloroacetic acid (TCA), TCA may be quantified in blood and urine as an indirect

measure of tetrachloroethylene exposure (Monster et al. 1983). It should be pointed out that the

determination of TCA may not provide unambiguous proof of tetrachloroethylene exposure since it is

also a metabolite of trichloroethylene. Trichloroethanol has also been thought to be a metabolite of

tetrachloroethylene, identified following occupational exposure (Bimer et al. 1996; Ikeda et al. 1972;

Monster et al. 1983). However, rather than being a metabolite of tetrachloroethylene, it is more likely

that trichloroethanol is formed from trichloroethylene, which is often found as a contaminant of

tetrachloroethylene (Skender et al. 1991). Methods for the determination of trichloroethylene and

trichloroethanol are summarized in the Toxicological Profile for Trichloroethylene (ATSDR 1993).

The main method used to analyze for the presence of tetrachloroethylene and TCA in biological

samples is separation by gas chromatography (GC) combined with detection by mass spectrometry

(MS) or an electron capture detector (ECD). Tetrachloroethylene and/or its metabolites have been

detected in exhaled air, blood, urine, breast milk, and tissues. Preconcentration techniques are
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frequently used in tetrachloroethylene analysis. Preconcentration not only increases the sensitivity but

in certain instances may decrease the sample separation time. Interference in tetrachloroethylene

analysis results from the widespread distribution of volatile organic compounds in the environment.

The most likely sources of these interfering compounds are contamination from the vessels used to

hold and prepare samples, contamination of the plumbing in the analytical instrument, and leaking of

environmental contaminants into the sample vessel. Details on sample preparation, analytical method,

and sensitivity and accuracy of selected methods are shown in Table 6-l.

Breath samples have been analyzed for tetrachloroethylene in several studies. Preconcentration on a

solid sorbent followed by thermal desorption onto a cryogenic trap connected to the gas

chromatograph was used to analyze exhaled air in several TEAM studies (Wallace 1986; Wallace et al.

1986a, 1986b, 1986c, 1986d). Vapors were thermally released directly onto the chromatographic

column for separation and detection by electron impact MS (EIMS).

The methods most frequently used to determine the presence of tetrachloroethylene in biological

tissues and fluids are headspace analysis and purge-and-trap, followed by GC/MS or GC/ECD. In

headspace analysis, the gaseous layer above the sample is injected into the gas chromatograph.

Samples may be hydrolyzed prior to analysis of headspace gases (Ramsey and Flanagan 1982).

Headspace gases can be preconcentrated prior to GC analysis (Cramer et al. 1988; Michael et al. 1980)

or injected directly into the gas chromatograph (Ramsey and Flanagan 1982). Sensitivity is in the

low-ppb range, with generally good precision and accuracy for blood, serum, plasma, and urine

(Cramer et al. 1988; Michael et al. 1980). The purge-and-trap method is used with liquid samples and

involves purging the sample with an inert gas and trapping the purged volatiles on a solid sorbent.

Blood and breast milk have been analyzed for tetrachloroethylene by purging onto a solid sorbent to

concentrate the volatiles, followed by thermal desorption and analysis by GC/MS (Antoine et al. 1986;

Pellizzari et al. 1982). However, the breast milk analysis was only qualitative, and recoveries

appeared to be low for those chemicals analyzed (Pellizzari et al. 1982). Precision and sensitivity

were comparable to headspace analysis, but accuracy was lower. Recovery of tetrachloroethylene from

rat tissues was found to be greater when the tissues were homogenized in saline:isooctane (1:4) rather

than saline alone (Chen et al. 1993).

Analysis of blood and urine for TCA has been done primarily by GC/ECD (Ziglio et al. 1984). TCA

has also been determined calorimetrically by decarboxylation to chloroform and conjugation with
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pyridine (Pekari and Aitio 1985a). The recovery and precision for this method were good, but the

sensitivity was about a tenth that of GC/ECD methods (Christensen et al. 1988; Pekari and Aito

1985a).

The tetrachloroethylene metabolite, N-acetyl-S-(trichlorovinyl)cysteine (TCVC), produced from

glutathione conjugation, has been measured in rat urine using a negative ion chemical ionization gas

chromatographic/tandem mass spectrometric method (Bartels 1994). The detection limit of this

method was reported as 0.3 ng TCVC/mL of rat urine. As discussed in Section 2.3.3, glutathione

conjugation of tetrachloroethylene has not been identified in humans.

6.2 ENVIRONMENTAL SAMPLES

Analysis of environmental samples is similar to that of biological samples. The most common

methods of analyses are GC coupled to MS, ECD, a Hall’s electrolytic conductivity detector (HECD),

or a flame-ionization detector (FID). Preconcentration of samples is usually done by sorption on a

solid sorbent for air and by the purge-and-trap method for liquid and solid matrices. Alternatively,

headspace above liquid and solid samples may be analyzed without preconcentration. Details of

commonly used analytical methods for several types of environmental samples are presented in

Table 6-2.

The primary methods of analyzing for tetrachloroethylene in air are GC combined with either MS or

ECD. Air samples are collected on a solid sorbent, thermally desorbed to an on-column cryogenic trap

and heat-released from the trapping column directly to the gas chromatograph (Bayer and Black 1987;

Krost et al. 1982; Wallace 1986; Wallace et al. 1986a, 1986b, 1986c, 1986d). Grab-samples of air can

also be obtained and preconcentrated on a cryogenic column (Makide et al. 1979; Rasmussen et al.

1977). The limit of detection for cryogenic trapping followed by GC/ECD or GC/MS is in the low-

ppt range (Krost et al. 1982; Makide et al. 1979; Rasmussen et al. 1977; Wallace et al. 1986a, 1986d).

With careful technique, precision for both GC/ECD and GC/MS is acceptable, although the relative

standard deviation (RSD) can be as high as ±28% (Krost et al. 1982; Rasmussen et al. 1977; Wallace

et al. 1986a, 1986b, 1986c, 1986d). Accuracy could not be compared between the two analytical

methods because no recovery data were located for GC/ECD. An alternate method of analysis

chemically desorbs tetrachloroethylene from activated coconut charcoal and directly injects the extract
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into a GC equipped with FID detection (NIOSH 1994b; Peers 1985). The sensitivity of this method is

only in the low-ppm range.

Tetrachloroethylene can be detected in drinking water, groundwater, waste water, and leachate from

solid waste. The primary analytical methods are separation by GC combined with detection by HECD

or other type of halogen-specific detector, ECD, or MS. In most methods, tetrachloroethylene is

liberated from the liquid matrix by purging with an inert gas concentrated by trapping on a suitable

solid sorbent and thermally desorbed onto the gas chromatograph column. Baykut and Voigt (1992)

describe a method in which tetrachloroethylene is removed from aqueous solutions using a spray

extraction technique, followed by trapping on a solid sorbent, then thermal desorption onto a gas

chromatograph. Detection of tetrachloroethylene is generally by HECD (or other halogen-specific

detector) or MS (APHA 1992; Baykut and Voigt 1992; EPA 1982b, 1982c; Otson and Williams 1982;

Wallace 1986; Wallace et al. 1986c, 1986d). The limit of detection is in the sub-ppb range for

halogen-specific detectors (APHA 1992; EPA 1982b, 1982c) and in the low-ppb for MS (EPA 1982b).

Accuracy is generally greater than 90% (APHA 1992; EPA 1982b, 1982c), although lower values have

been reported (Wallace 1986; Wallace et al. 1986c, 1986d). Precision is ±13% (RSD) or better

(APHA 1992; EPA 1982b, 1982c; Wallace 1986, Wallace et al. 1986d). Purging directly to the gas

chromatograph with whole-column cryogenic trapping has been reported (Pankow and Rosen 1988).

The study authors have reported excellent purging efficiency (100%) and state that sensitivity and

precision should be correspondingly good, although specific values for these parameters were not

reported. Headspace analysis has been used to determine tetrachloroethylene in water samples. High

accuracy and precision were reported for a procedure in which GC/ECD was the analytical method

(Dietz and Singely 1979). Solid waste leachates from sanitary landfills have been analyzed for

tetrachloroethylene and other volatile organic carbons (Schultz and Kjeldsen 1986). Detection limits

for the procedure, which involves extraction with pentane followed by GC/MS analysis, are in the lowppb

and low-ppm ranges for concentrated and neat samples, respectively.

An in situ method for tetrachloroethylene analysis using fiber evanescent wave spectroscopy (FEWS)

has been described by Krska et al. (1993). In this method, the water flows through a glass chamber

containing a silver halide fiber coated with low-density polyethylene in an amorphous phase. The

coating serves to concentrate the tetrachloroethylene, and the compound is detected using infrared

spectrophotometry. The detection limit of this method, which was validated using headspace GC, was

1 ppm.
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No information on analysis of tetrachloroethylene in soil or sediment was located. Several procedures

for determination of the chemical in plants and food were located. GC/ECD and GC/HSD are most

commonly used to analyze solid samples for tetrachloroethylene contamination. Extraction, purge-and-

trap, and headspace analysis have all been used to prepare samples. Analysis of headspace gases by

GC coupled with ECD, MS, or HSD has proven relatively sensitive (low- to sub-ppb range) and

reproducible for a variety of foods (Boekhold et al. 1989; Entz and Hollifield 1982; EPA 1982c;

Pocklington 1992; Van Rillaer and Beemaert 1989). It has also been used to analyze building

materials and consumer products (Wallace et al. 1987). GC/HSD of headspace gases is the EPArecommended

method for solid matrices (EPA 1982c). Foods have also been analyzed for

tetrachloroethylene by GC/ECD/HECD following isooctane extraction. Sensitivity was comparable to

headspace methods, but reproducibility was not as good (Daft 1988). In both headspace and extraction

preparation methods, increased lipid content of the matrix adversely affected accuracy and precision.

A purge-and-trap technique proved useful for analyzing grains and grain-based foods with high

sensitivity and good recovery (Heikes and Hopper 1986).

6.3 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of tetrachloroethylene is available. Where adequate

information is not available, ATSDR, in conjunction with the NTP, is required to assure the initiation

of a program of research designed to determine the health effects (and techniques for developing

methods to determine such health effects) of tetrachloroethylene.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment. This definition should not be interpreted to mean

that all data needs discussed in this section must be filled. In the future, the identified data needs will

be evaluated and prioritized, and a substance-specific research agenda will be proposed.
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6.3.1 Identification of Data Needs

Methods for Determining Biomarkers of Exposure and Effect

Exposure.  Methods are available for measuring tetrachloroethylene in breath (Wallace et al. 1986a,

1986d), blood (Antoine et al. 1986; Michael et al. 1980; Ramsey and Flanagan 1982), urine (Michael

et al. 1980), and adipose tissue (Chen et al. 1993; Michael et al. 1980; Ramsey and Flanagan 1982),

and TCA in blood (Ziglio et al. 1984) and urine (Christensen et al. 1988; Pekari and Aito 1985a,

1985b). Available methods are sensitive for measuring exposure levels at which health effects have

been observed to occur, for example, in workers known to be exposed to high levels of tetrachloroethylene.

These methods have also been used to measure background levels in individuals believed

not to have been exposed to higher-than-expected levels of tetrachloroethylene (e.g., office workers

and housewives) (Wallace 1986). The methods are generally reliable, although increased precision for

most methods would increase reliability. However, tetrachloroethylene is pervasive in the environment

and background levels for the general population are not well defined. Levels may vary considerably

within the environment, making it difficult to differentiate between normal background exposure and

excess exposure. Further research on the relationship between levels found in living and working

environments not suspected of having elevated levels of tetrachloroethylene and levels of the chemical

and/or its metabolites in biological media would help in better defining background levels of the

chemical and aid in determining if improved methods of monitoring exposure are needed.

Effect.   There are no unique biomarkers of effect for tetrachloroethylene; however, sensitive and

reliable clinical methods exist for determining damage to the liver, a target organ for

tetrachloroethylene toxicity. These include measuring serum levels of liver enzymes, bilirubin, and

alkaline phosphatase and urinary urobilinogen (Bagnell and Ellenberger 1977; Coler and Rossmiller

1983; Meckler and Phelps 1966; Stewart et al. 1981). Neurological effects may also result from

exposure to tetrachloroethylene (Carpenter 1937; Haerer and Udelman 1964; Hake and Stewart 1977;

Kendrick 1929; Koppel et al. 1985; Morgan 1969; Rowe et al. 1952; Saland 1967; Sandground 1941;

Stewart et al. 1970, 1981; Wright et al. 1937). Tests for these effects are not especially sensitive,

reliable, or specific and would not improve detection over the established procedures for measuring

tetrachloroethylene in breath, blood, or urine.
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Methods for measuring levels of tetrachloroethylene and its metabolites that might be associated with

adverse health effects are the same as those for exposure. The methods are sensitive for measuring

levels of tetrachloroethylene and its metabolites in individuals not exhibiting apparent health effects

resulting from the chemical (Monster and Smolders 1984; Wallace 1986) as well as in those known to

be affected by absorption of excessively high levels of tetrachloroethylene. However, correlations

between levels of tetrachloroethylene or its metabolites detected in biological media and specific

observed effects at lower levels of absorption are not well established. Additional research in this area

would allow better assessment of existing methods and would help in defining areas in which

improvements are needed. Improved methods of tissue analysis, giving greater sensitivity and

reproducibility, would also help in determining the quantitative relationship between the observed toxic

effect on specific organs and the levels of tetrachloroethylene or its metabolites in these organs.

Methods for Determining Parent Compounds and Degradation Products in

Environmental Media.  Existing methods for determining tetrachloroethylene in air (Krost et al.

1982; Makide et al. 1979; Rasmussen et al. 1977; Wallace et al. 1986a) and water (APHA 1992; EPA

1982b; Otson and Williams 1982), the media of most concern for human exposure, are sensitive,

reproducible, and reliable for measuring background levels in the environment. Research investigating

the relationship between levels measured in air and water and observed health effects could increase

our confidence in existing methods and/or indicate where improvements are needed. Methods for solid

matrices vary in accuracy and precision depending on the method and the matrix (e.g., sludge, soil,

sediment, building material). No detailed descriptions of methods specifically for soil were located.

Soil analyses presumably were done using a method for solid waste (e.g., EPA Method 8010). Data

specifically for soil might be useful in evaluating the reliability of soil data and in determining if

additional methods are needed. Improved methods of detecting tetrachloroethylene in plants and

foods, especially those with higher fat content, would aid in determining the contribution of

tetrachloroethylene exposure from these sources. This would be especially important in determining

the potential for contamination of populations living adjacent to hazardous waste sites and other

potential sources of exposure to higher than background levels of tetrachloroethylene. -

6.3.2 On-going Studies

The Environmental Health Laboratory Sciences Division of the National Center for Environmental

Health, Centers for Disease Control and Prevention, is developing methods for the analysis of
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tetrachloroethylene and other volatile organic compounds in blood. These methods use purge and trap

methodology, high resolution gas chromatography, and magnetic sector mass spectrometry, which give

detection limits in the low ppt range.
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The international, national, and state regulations and guidelines regarding tetrachloroethylene in air,

water, and other media are summarized in Table 7- 1.

Tetrachloroethylene is on the list of chemicals appearing in “Toxic Chemicals Subject to Section 313

of the Emergency Planning and Community Right-to-Know Act of 1986” (EPA 1987d).

As a result of the Eleventh Circuit Court of Appeals decision (AFL-CIO versus OSHA), OSHA’s

permissible exposure level for tetrachloroethylene, which was lowered to 25 ppm in 1989, was

returned to 100 ppm (OSHA 1993). Based on human exposure data, Stewart et al. (1981) concluded

that a TLV of 100 ppm contained no safety factor for individuals more susceptible to the subjective

and neurological symptoms of tetrachloroethylene. Based on human data, the ACGIH (ACGIH 1995)

TLV-TWA is 25 ppm. The geometric mean exposure of dry cleaning machine operators was 22 ppm

(Ludwig et al. 1983), a value close to the ACGIH TLV-TWA.

ATSDR has derived an acute inhalation MRL of 0.2 ppm with an uncertainty factor of 10, based on

increased pattern reversal visual-evoked potential latencies, and deficits for vigilance and eye-hand

coordination observed in humans exposed 4 hours/day for 4 days at 50 ppm but not at 10 ppm

(Altmann et al. 1992). A chronic-duration inhalation MRL of 0.04 ppm with an uncertainty factor of

100 was derived based on increased reaction times in workers exposed to tetrachloroethylene in dry

cleaning shops at an average concentration of 15 ppm for about 10 years (Ferroni et al. 1992). An

acute oral MRL of 0.05 mg/kg/day with an uncertainty factor of 100 was derived based on

hyperactivity observed in 60-day-old mice that were treated with tetrachloroethylene for 7 days

beginning at 10 days of age (Fredriksson et al. 1993). Additional inhalation and oral MRLs were not

derived.

EPA (IRIS 1996) has derived an oral reference dose (RfD) for tetrachloroethylene of 0.01 mg/kg/day

with an uncertainty factor of 1,000, based on hepatotoxicity in mice (Buben and O’Flaherty 1985). An

inhalation reference concentration (RfC) for tetrachloroethylene has not been derived (IRIS 1996).
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In 1987, EPA’s Science Advisory Board, Office of Research and Development, placed

tetrachloroethylene on a continuum between B2 (probable human carcinogen; based on sufficient

evidence in animals and inadequate or no evidence in humans) and C (possible human carcinogen)

(EPA 1991b). In 1991, EPA’s Office of Health and Environmental Assessment, a component of the

Office of Research and Development, asked the Science Advisory Board to reevaluate the animal

cancer data and related new ancillary information. The conclusion of the Science Advisory Board was

that EPA’s assessment of tetrachloroethylene done in 1987 remains appropriate. Therefore, the

position taken by EPA’s Science Advisory Board in 1987 regarding the carcinogenicity classification

for tetrachloroethylene, which was reiterated in 1991, has not changed since 1987. This assessment is

based on “increased liver tumors in male and female mice, kidney tumors in male rats, and, possibly,

mononuclear cell leukemia in male and female rats” (EPA 1991b). The Science Advisory Board

concluded that tetrachloroethylene “is an example of a chemical for which there is no compelling

evidence of human cancer risk, but for which reductions in unnecessary human exposure might well be

prudent.” In response to the on-going evaluation, the q1
* for tetrachloroethylene and the associated

unit risk for oral and inhalation exposure have been withdrawn.
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Acute Exposure -- Exposure to a chemical for a duration of 14 days or less, as specified in the
Toxicological Profiles.

Adsorption Coefficient (Koc)-- The ratio of the amount of a chemical adsorbed per unit weight of
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium.

Adsorption Ratio (Kd) -- The amount of a chemical adsorbed by a sediment or soil (i.e., the solid
phase) divided by the amount of chemical in the solution phase, which is in equilibrium with the solid
phase, at a fixed solid/solution ratio. It is generally expressed in micrograms of chemical sorbed per
gram of soil or sediment.

Bioconcentration Factor (BCF) -- The quotient of the concentration of a chemical in aquatic
organisms at a specific time or during a discrete time period of exposure divided by the concentration
in the surrounding water at the same time or during the same period.

Cancer Effect Level (CEL) -- The lowest dose of chemical in a study, or group of studies, that
produces significant increases in the incidence of cancer (or tumors) between the exposed population
and its appropriate control.

Carcinogen -- A chemical capable of inducing cancer.

Ceiling Value -- A concentration of a substance that should not be exceeded, even instantaneously.

Chronic Exposure -- Exposure to a chemical for 365 days or more, as specified in the Toxicological
Profiles.

Developmental Toxicity -- The occurrence of adverse effects on the developing organism that may
result from exposure to a chemical prior to conception (either parent), during prenatal development, or
postnatally to the time of sexual maturation. Adverse developmental effects may be detected at any
point in the life span of the organism.

Embryotoxicity and Fetotoxicity -- Any toxic effect on the conceptus as a result of prenatal exposure
to a chemical; the distinguishing feature between the two terms is the stage of development during
which the insult occurred. The terms, as used here, include malformations and variations, altered
growth, and in utero death.

EPA Health Advisory -- An estimate of acceptable drinking water levels for a chemical-substance
based on health effects information. A health advisory is not a legally enforceable federal standard,
but serves as technical guidance to assist federal, state, and local officials.

Immediately Dangerous to Life or Health (IDLH) -- The maximum environmental concentration of
a contaminant from which one could escape within 30 min without any escape-impairing symptoms or
irreversible health effects.
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Intermediate Exposure -- Exposure to a chemical for a duration of 15-364 days, as specified in the
Toxicological Profiles.

Immunologic Toxicity -- The occurrence of adverse effects on the immune system that may result
from exposure to environmental agents such as chemicals.

In Vitro -- Isolated from the living organism and artificially maintained, as in a test tube.

In Vivo -- Occurring within the living organism.

Lethal Concentration(LO) (LCLO)-- The lowest concentration of a chemical in air which has been
reported to have caused death in humans or animals.

Lethal Concentration(50) (LC50)--_  A calculated concentration of a chemical in air to which exposure
for a specific length of time is expected to cause death in 50% of a defined experimental animal
population.

Lethal Dose(LO) (LDLO)-- The lowest dose of a chemical introduced by a route other than inhalation
that is expected to have caused death in humans or animals.

Lethal Dose(50)_(LD50)-- The dose of a chemical which has been calculated to cause death in 50% of a
defined experimental animal population.

Lethal Time(50) (LT50) -- A calculated period of time within which a specific concentration of a
chemical is expected to cause death in 50% of a defined experimental animal population.

Lowest-Observed-Adverse-Effect Level (LOAEL) -- The lowest dose of chemical in a study, or
group of studies, that produces statistically or biologically significant increases in frequency or severity
of adverse effects between the exposed population and its appropriate control.

Malformations -- Permanent structural changes that may adversely affect survival, development, or
function.

Minimal Risk Level (MRL) - An estimate of daily human exposure to a dose of a chemical that is
likely to be without an appreciable risk of adverse noncancerous effects over a specified duration of
exposure.

Mutagen -- A substance that causes mutations. A mutation is a change in the genetic material in a
body cell. Mutations can lead to birth defects, miscarriages, or cancer.

Neurotoxicity -- The occurrence of adverse effects on the nervous system following exposure to
chemical.

No-Observed-Adverse-Effect Level (NOAEL) -- The dose of chemical at which there were no
statistically or biologically significant increases in frequency or severity of adverse effects seen
between the exposed population and its appropriate control. Effects may be produced at this dose, but
they are not considered to be adverse.
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Octanol-Water Partition Coefficient (Kow) -- The equilibrium ratio of the concentrations of a
chemical in n-octanol and water, in dilute solution.

Permissible Exposure Limit (PEL) -- An allowable exposure level in workplace air averaged over an
8-hour shift.

q1*-- The upper-bound estimate of the low-dose slope,of the dose-response curve as determined by
the multistage procedure. The q1* can be used to calculate an estimate of carcinogenic potency, the
incremental excess cancer risk per unit of exposure (usually µg/L for water, mg/kg/day for food, and
µg/m3 for air).

Reference Dose (RfD) -- An estimate (with uncertainty spanning perhaps an order of magnitude) of
the daily exposure of the human population to a potential hazard that is likely to be without risk of
deleterious effects during a lifetime. The RfD is operationally derived from the NOAEL (from animal
and human studies) by a consistent application of uncertainty factors that reflect various types of data
used to estimate RfDs and an additional modifying factor, which is based on a professional judgment
of the entire database on the chemical. The RfDs are not applicable to nonthreshold effects such as
cancer.

Reportable Quantity (RQ) -- The quantity of a hazardous substance that is considered reportable
under CERCLA. Reportable quantities are (1) 1 pound or greater or (2) for selected substances, an
amount established by regulation either under CERCLA or under Sect. 311 of the Clean Water Act.
Quantities are measured over a 24-hour period.

Reproductive Toxicity -- The occurrence of adverse effects on the reproductive system that may
result from exposure to a chemical. The toxicity may be directed to the reproductive organs and/or the
related endocrine system. The manifestation of such toxicity may be noted as alterations in sexual
behavior, fertility, pregnancy outcomes, or modifications in other functions that are dependent on the
integrity of this system.

Short-Term Exposure Limit (STEL) -- The maximum concentration to which workers can be
exposed for up to 15 min continually. No more than four excursions are allowed per day, and there
must be at least 60 min between exposure periods. The daily TLV-TWA may not be exceeded.

Target Organ Toxicity -- This term covers a broad range of adverse effects on target organs or
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited
exposure to those assumed over a lifetime of exposure to a chemical.

Teratogen -- A chemical that causes structural defects that affect the development of an organism.

Threshold Limit Value (TLV) -- A concentration of a substance to which most workers can be
exposed without adverse effect. The TLV may be expressed as a TWA, as a STEL, or as a CL.

Time-Weighted Average (TWA) -- An allowable exposure concentration averaged over a normal 8-
hour workday or 40-hour workweek.

Toxic Dose (TD50) -- A calculated dose of a chemical, introduced by a route other than inhalation,
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population.
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Uncertainty Factor (UF) -- A factor used in operationally deriving the RfD from experimental data.
UFs are intended to account for (1) the variation in sensitivity among the members of the human
population, (2) the uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in
extrapolating from data obtained in a study that is of less than lifetime exposure, and (4) the
uncertainty in using LOAEL data rather than NOAEL data. Usually each of these factors is set equal
to 10.



TETRACHLOROETHYLENE A-1

APPENDIX A

ATSDR MINIMAL RISK LEVEL

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C.

9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L.

99-4991, requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop

jointly with the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous

substances most commonly found at facilities on the CERCLA National Priorities List (NPL); prepare

toxicological profiles for each substance included on the priority list of hazardous substances; and

assure the initiation of a research program to fill identified data needs associated with the substances.

The toxicological profiles include an examination, summary, and interpretation of available

toxicological information and epidemiologic evaluations of a hazardous substance. During the

development of toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and

sufficient data exist to identify the target organ(s) of effect or the most sensitive health effect(s) for a

specific duration for a given route of exposure. An MRL is an estimate of the daily human exposure

to a hazardous substance that is likely to be without appreciable risk of adverse noncancer health

effects over a specified duration of exposure. MRLs are based on noncancer health effects only and

are not based on a consideration of cancer effects. These substance-specific estimates, which are

intended to serve as screening levels, are used by ATSDR health assessors to identify contaminants

and potential health effects that may be of concern at hazardous waste sites. It is important to note

that MRLs are not intended to define clean-up or action levels.

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty

factor approach. They are below levels that might cause adverse health effects in the people most

sensitive to such chemical-induced effects. MRLs are derived for acute (l-14 days), intermediate

(15-364 days), and chronic (365 days and longer) durations and for the oral and inhalation routes of

exposure. Currently, MRLs for the dermal route of exposure are not derived because ATSDR has not

yet identified a method suitable for this route of exposure. MRLs are generally based on the most

sensitive chemical-induced end point considered to be of relevance to humans. Serious health effects

(such as irreparable damage to the liver or kidneys, or birth defects) are not used as a basis for

establishing MRLs. Exposure to a level above the MRL does not mean that adverse health effects will

occur.
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MRLs are intended only to serve as a screening tool to help public health professionals decide where

to look more closely. They may also be viewed as a mechanism to identify those hazardous waste

sites that are not expected to cause adverse health effects. Most MRLs contain a degree of uncertainty

because of the lack of precise toxicological information on the people who might be most sensitive

(e.g., infants, elderly, nutritionally or immunologically compromised) to the effects of hazardous

substances. ATSDR uses a conservative (i.e., protective) approach to address this uncertainty

consistent with the public health principle of prevention.  Although human data are preferred, MRLs

often must be based on animal studies because relevant human studies are lacking. In the absence of

evidence to the contrary, ATSDR assumes that humans are more sensitive to the effects of hazardous

substance than animals and that certain persons may be particularly sensitive. Thus, the resulting

MRL may be as much as a hundred fold below levels that have been shown to be nontoxic in

laboratory animals.

Proposed MRLs undergo a rigorous review process: Health Effects/MRL Workgroup reviews within

the Division of Toxicology, expert panel peer reviews, and agencywide MRL Workgroup reviews,

with participation from other federal agencies and comments from the public. They are subject to

change as new information becomes available concomitant with updating the toxicological profiles.

Thus, MRLs in the most recent toxicological profiles supersede previously published levels. For

additional information regarding MRLs, please contact the Division of Toxicology, Agency for Toxic

Substances and Disease Registry, 1600 Clifton Road, Mailstop E-29, Atlanta, Georgia 30333.
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MINIMAL RISK LEVEL

Chemical Name: Tetrachloroethylene
CAS Number: 127-18-4
Date: October 1996
Profile Status: Post-Public Comments
Route: [x] Inhalation [ ] Oral
Duration: [x] Acute [ ] Intermediate [ ] Chronic
Graph Key: 16
Species: Human

Minimal Risk Level: 0.2       [  ] mg/kg/day  [x] ppm

Reference: Altmann et al. 1992

Experimental design:

Male volunteers were exposed to tetrachloroethylene at 10 or 50 ppm for 4 hours/day for 4 days. A
total of 28 subjects were exposed; 12 at 10 ppm, 16 at 50 ppm. The 10 ppm concentration was
considered the control exposure and was used because it exceeded the odor threshold of tetrachloroethylene.
Therefore, the subjects were supposedly blinded to the exposure conditions. Altmann et al.
(1992) state that faint odor was reported by 33% of the subjects at 10 ppm and 29% of the subjects at
50 ppm on the first day of testing, and by 15% of the subjects at 10 ppm and 36% of the subjects at
50 ppm on the last day of testing leading the investigators to conclude that only a few subjects could
identify their exposure condition.

Pattern reversal and pattern onset visual-evoked potentials (VEPs), brainstem auditory evoked
potentials (BAEPs), and tests of cognitive and psychomotor performance, and mood ratings were
completed 72 hours before exposure, and during or after the exposure. VEPs and BAEPs were
measured after 2 hours of exposure. Peak latencies of three components of VEPs (N75, Pl00 and
N150) were measured. Measurements were made at the same time each day (10 AM-12 PM) to
exclude circadian variations. The test battery completed included finger tapping, eye-hand coordination
using a sine wave tracking test, simple reaction times, a continuous performance test, symbol-digit
test, visual retention, pattern recognition test, digit learning, paired associates learning and retention,
vocabulary test, and mood scales. Blood concentrations of tetrachloroethylene were measured before
each day’s exposure, in the middle of the exposure and at the end of the exposure.

Effects noted in study and corresponding doses:

At 50 ppm, pattern reversal VEP latencies increased over the course of the exposure period, while at
10 ppm, pattern reversal VEP latencies decreased as a result of training. The difference-between the
two groups was statistically significant (p<0.05). No effect on pattern onset VEPs or BAEPs were
noted.

Using analysis of covariance, with preexposure baseline values as the covariates, significant
performance deficits for vigilance (p=0.04), and eye-hand coordination (p=0.05) as well as a borderline
increase in simple reaction times (p=0.09) at 50 ppm were found. For these tests, both exposure
groups improved over the course of the experiment, but there was a greater improvement in the
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10 ppm group compared to the 50 ppm group. No significant effects were noted for the tapping tests,
or the learning and memory tests, or mood ratings.

Tetrachloroethylene in the blood increased with exposure duration. By the end of the last exposure
period, tetrachloroethylene concentrations “exceeded 1.5 mg/L, and 0.3 mg/L” at 50 and 10 ppm,
respectively.

Dose and endpoint used for MRL derivation:

[x] NOAEL [ ] LOAEL

10 ppm

Uncertainty Factors used in MRL derivation:

[ ] 10 for use of a LOAEL
[ ] 10 for extrapolation from animals to humans
[x] 10 for human variability

Was a conversion used from ppm in food or water to a mg/body weight dose?
If so, explain:

If an inhalation study in animals, list the conversion factors used in determining human equivalent
dose:

To extrapolate from intermittent exposure, the 10 ppm concentration was multiplied by 4/24 hours.

Other additional studies or pertinent information which lend support to this MRL:

In a similar study by Altmann et al. (1990), increased latencies (p<0.05) for pattern reversal VEPs
were observed in 10 male volunteers exposed to tetrachloroethylene at 50 ppm, compared to 12 men
exposed at 10 ppm. Exposures in this study were also 4 hours/day for 4 days. Effects on BAEPs
were also not observed in the Altmann et al. (1990) study. Tetrachloroethylene in the blood increased
with exposure duration, and linear regression to associate blood tetrachloroethylene with pattern
reversal VEP latencies was significant (r = -0.45, p<0.03). Additional tests of neurological function
were not completed in this study.

Hake and Stewart (1977) did not find any changes in flash evoked potentials (FEPs) and equilibrium
tests in 4 male subjects exposed to increasing concentrations of tetrachloroethylene for 7.5 hours/day
for 5 days. The subjects were sequentially exposed to 0, 20, 100 and 150 ppm (each concentration
1 week). Subjective evaluation of EEG scores suggested cortical depression in subjects-exposed at
100 ppm. Decreases in the Flanagan coordination test were observed at ≥100 ppm. No significant
changes in FEPs were observed. Otto et al. (1988) notes that FEPs are subject to large inter- and
intrasubject variability of waveforms, and that pattern reversal VEPs are more useful clinically than
FEPs. Therefore, the lack of effect on FEPs at 100 ppm in the Hake and Stewart (1977) study may
reflect the lower sensitivity of the FEPs compared to the pattern reversal VEPs. The Hake and Stewart
(1977) study does confirm that the nervous system is a sensitive target in humans. Rao et al. (1993)
completed a logistic regression analysis of tetrachloroethylene toxicity data and concluded that the
nervous system was a sensitive target of tetrachloroethylene toxicity in humans.
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Acute studies in animals have reported serious effects at much higher concentrations. Hypoactivity
and ataxia were observed in rats following a 2 week exposure (6 hours/day, 5 days/week) at 1750 ppm
(NTP 1986). Anesthesia has been reported in mice exposed to tetrachloroethylene at 2328 ppm for 4
hours and 1750 ppm for 2 weeks (6 hours/day, 5 days/week) (NTP 1986). The lowest LOAEL in an
acute study in animals was 200 ppm for fatty degeneration of the livers of mice exposed to
tetrachloroethylene for 4 hours (Kylin et al. 1963). Therefore, the comparison of animal and human
data following acute inhalation exposure suggests that humans are more sensitive to
tetrachloroethylene, or that sensitive neurological endpoints have not been examined in animal studies.
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Chemical Name: Tetrachloroethylene
CAS Number: 127-18-4
Date: October 1996
Profile Status: Post-Public Comments
Route: [x] Inhalation [ ] Oral
Duration: [ ] Acute [ ] Intermediate [x] Chronic
Graph Key: 64
Species: Human

Minimal Risk Level:   0.04 [ ] mg/kg/day [x] ppm

Reference:   Ferroni et al. 1992

Experimental design:

Neurobehavioral effects were studied in 60 women exposed to tetrachloroethylene in dry cleaning
shops for an average of 10.1 years. Thirty women who worked at a cleaning plant where solvents
were not used served as controls. Tetrachloroethylene levels were measured in blood samples
collected during the work day and in air samples collected over 4-hour periods during the workweek.
Blood and air samples were taken during the summer and winter to allow for seasonal variation. The
median tetrachloroethylene concentration in air was 15 ppm (range l-67 ppm), and the median
tetrachloroethylene blood concentration was 145 mg/L (range 12-864 mg/L). Neurobehavioral tests
completed were: finger tapping with dominant and nondominant hands, simple reaction times, digit
symbol, shape comparison in two versions to test vigilance and the response to stress. It is not clear
when in relation to the working day the neurobehavioral tests were completed.

Effects noted in study and corresponding doses:

Tetrachloroethylene-exposed workers had increased reaction times in all tests: simple reaction times,
exposed 259 ± 40, controls 235 ±22, p<0.0001; shape comparison - vigilance, exposed 635 ± 68,
controls 589 ± 72, p<0.005; shape comparison - stress, exposed 557 ± 66, controls 501 ±72, p<0.005.
The duration of exposure and tetrachloroethylene blood levels were not significantly correlated with
performance test scores.

Dose and end point used for MRL derivation:

[ ] NOAEL [x] LOAEL

15 ppm, increased reaction times

Uncertainty Factors used in MRL derivation:

[x] 10 for use of a LOAEL
[ ] 10 for extrapolation from animals to humans
[x] 10 for human variability

Was a conversion used from ppm in food or water to a mg/body weight dose? No,
If so, explain:
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If an inhalation study in animals, list the conversion factors used in determining human equivalent
dose:

To convert from occupational exposure to continuous exposure, the 15-ppm concentration was
multiplied by 8/24 hours and 5/7 days.

Other additional studies or pertinent information which lend support to this MRL:

The nervous system is a well established target of tetrachloroethylene exposure in humans, and logistic
regression of toxicity data suggests that it may be the most sensitive target (Rao et al. 1993). Cai et
al. (1991) reported increased subjective symptoms including dizziness and forgetfulness in workers
exposed to tetrachloroethylene at an average of 20 ppm for l-120 months. Exposure was measured
using diffusive sampling with carbon cloth. Additional details were not provided. In a study in which
the duration of exposure is unclear (Seeber 1989), perceptual speed and digit reproduction as a
memory test were impaired in workers exposed to an average of 12 ppm. No detrimental effects on
critical flicker fusion, simple and g-choice visual reaction time and a sustained attention test were
observed in 22 workers exposed to tetrachloroethylene at an average of 21 ppm for about 6 years
(Lauwerys et al. 1983). In this study, the neurological function tests were completed both before and
after work so that training effects and effects of tetrachloroethylene exposure on learning may have
contributed to the difference between the Ferroni et al. (1992) study and the Lauwerys et al. (1983).
Although exposure measurements were more comprehensive in the Lauwerys et al. (1983) study (the
investigators measured urine trichloroacetic acid daily for one week, air concentrations with personal
air samplers and badges and breath and blood concentrations of tetrachloroethylene), the measurements
were completed during one week, while in the Ferroni et al. (1992) study, the more limited
measurements were completed during the summer and winter and may better represent chronic
exposure.

Loss of color vision has also been reported in dry cleaners exposed to tetrachloroethylene at an
average of 7.3 ppm for an average of 106 months (Cavalleri et al. 1994). Although this study seems
to identify an effect at a lower concentration than the Ferroni et al. (1992) study, fewer subjects were
studied (n=22 exposed subjects), and exposure concentrations were only measured in air on one day,
while Ferroni et al. (1992) completed air and blood measurements in both the winter and summer. In
addition, no effect on blue-yellow color vision was noted in 30 men, or in 34 women occupationally
exposed to tetrachloroethylene at average concentrations of 15.3 and 10.7 ppm, respectively
(Nakatsuka et al. 1992). Therefore, because of inconsistent reports on the effect of tetrachloroethylene
on color vision, and because of the better exposure assessment and the larger number of subjects
(n=60) in the Ferroni et al (1992) study compared to the Cavallari et al. (1994) study, the Ferroni et al.
(1992) study was chosen as the basis for the MRL.

An additional study did not report any effects on neurological function among 14 persons who lived
above or next to dry cleaning facilities for 1 to 30 years compared to 23 controls matche-d for age
(±l year, in two cases 3 and 5 years) and gender when the absolute values of the tests were examined
(Altmann et al. 1995). Median tetrachloroethylene exposure concentrations were 0.2 ppm in the
apartments of the exposed individuals, and 0.0003 ppm in the apartments of control subjects, and
blood concentrations were 17.8 ±46.9 µg/L in exposed, and less than the detection limit of 0.5 µg/L in
the control individuals. When multivariate analysis was completed to adjust for age, gender, and
education, an increased response time in a continuous performance test, increased simple reaction time
to a visual stimuli, and decreased performance in a test of visual memory were observed. No effect on
pattern reversal visual-evoked potentials was observed. The 0.2 ppm concentration is considered a
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NOAEL because of the lack of effect on the absolute values of the tests. This study does suggest that
further studies of larger populations exposed to very low levels of tetrachloroethylene would be useful.

Additional studies of workers exposed to relatively low concentrations of tetrachloroethylene have also
reported minor indicators of renal tubular damage. Franchini et al. (1983) reported increased urinary
levels of lysozyme and beta-glucuronidase in workers occupationally exposed to tetrachloroethylene at
a time-weighted average of 10 ppm for an average of 14 years. Mutti et al. (1992) found increased
urinary albumin, transferrin, the brush-border membrane antigens B50, BBA, and HF5, and tissue
nonspecific alkaline phosphatase in workers exposed to an average tetrachloroethylene concentration of
15 ppm (measured in air over a wide period to account for seasonal variation) for an average of
10 years. Urinary fibronectin was significantly decreased relative to controls. The investigators
concluded that the results showed increased shedding of epithelial membrane components from tubular
cells. Vyskocil et al. (1990) found an increase in urinary lysozyme in workers exposed to tetrachloroethylene
at an average of 23 ppm for 9 years. No effects on urinary β2-microglobulin, creatinine,
lysozyme activity, glucose, LDH, and total proteins were noted.

Other studies of renal function in workers occupationally exposed to tetrachloroethylene at relatively
low TWA concentrations have not found any effects. Cai et al. (1991) found no effects on BUN or
creatinine in workers exposed to an average of 20 ppm for l-120 months. Urinary β2-microglobulin,
retinol binding protein, and albumin were not affected in workers exposed to tetrachloroethylene at an
average concentration of 21 ppm for 6 years (Lauwerys et al. 1983). Solet and Robins (1991) found
no effects on total protein, albumin, N-acetyl-glucosaminidase, or creatinine in workers exposed to
tetrachloroethylene at an average concentration of 14 ppm.

Although nervous system and mild kidney effects appear to occur at similar concentrations in persons
occupationally exposed to tetrachloroethylene, the nervous system effects were considered a more
appropriate basis for the MRL. The nervous system effects noted, decreased reaction times, could lead
to serious accidents, and at higher concentrations, tetrachloroethylene clearly produces incoordination
(Stewart et al. 1970). The significance of the mild kidney changes observed following low level
occupational exposure to tetrachloroethylene is unknown. The kidney changes may be an adaptive
effect rather than an adverse effect. In addition, in the study reporting kidney effects at 10 ppm
(Franchini et al. 1983), the exposure level was estimated using urinary TCA concentrations, so the
actual exposure concentrations are unknown.
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Chemical Name: Tetrachloroethylene
CAS Number: 127-18-4
Date: October 1996
Profile Status: Post-Public Comments
Route: [ ] Inhalation [x] Oral
Duration: [x] Acute [ ] Intermediate [ ] Chronic
Graph Key: 19
Species: Mouse

Minimal Risk Level:   0.05 [xl mg/kg/day [ ] ppm

Reference:   Fredriksson et al. 1993

Experimental design:

Groups of 12 male NMRI mice from 3-4 different litters were treated by gavage with tetrachloroethylene
in egg 1ecithin:peanut oil (10:l) at 0, 5, or 320 mg/kg/day for 7 days beginning at 10 days of
age. The high dose was 5% of the LD50and did not sedate the pups. Although the study indicates
that female pups were dosed, results in female pups are not presented. At 17 and 60 days of age,
behavioral testing (locomotion, rearing, total activity) was completed during three 20minute testing
periods from 8 a.m.-12 p.m.

Effects noted in study and corresponding doses:

No symptoms of toxicity were observed throughout the experimental period, and there were no
differences in body weight gain. No effects on behavior were noted when the animals were tested at
17 days of age. At 60 days of age, treated mice showed an increase in locomotion and total activity
which was statistically different from controls (p<0.05 or p<0.01) at both doses and over the three
20-minute test periods. The increase in activity measures was similar at both doses. A significant
decrease (p<0.01) in rearing was observed in mice treated only at the high dose during the first and
second, but not the third, 20-minute test period. The investigators indicate that the results show a
disruption of a simple nonassociative learning process, habituation. The mice were not followed to
determine if the increase in activity persisted beyond 60 days.

The changes in behavior observed at the lowest dose (5 mg/kg/day) is a LOAEL and serves as the
basis for the acute oral MRL.

Dose and end point used for MRL derivation:

[ ] NOAEL [x] LOAEL

5 mg/kg/day, hyperactivity

Uncertainty Factors used in MRL derivation:

[x] 10 for use of a LOAEL
[xl 10 for extrapolation from animals to humans
[x] 1 for human variability
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Was a conversion used from ppm in food or water to a mg/body weight dose? No.
If so, explain:

If an inhalation study in animals, list the conversion factors used in determining human equivalent
dose:

Other additional studies or pertinent information which lend support to this MRL:

In a behavioral teratology study, pregnant Sprague-Dawley rats were exposed to 0, 100, or 900 ppm
tetrachloroethylene on days 14-20 of gestation and to 0 or 900 ppm tetrachloroethylene on days 7-13
(Nelson et al. 1980). Effects occurred after exposure to 900 ppm for both exposure periods, but not
after exposure to 100 ppm. Dams had reduced feed consumption and weight gain, without liver or
kidney histological alterations. Pups of dams exposed to 900 ppm on gestation days 7-13 had
decreased performance during tests of neuromuscular ability (ascent on a wire mesh screen and rotarod
balancing) on certain days. Offspring (before weaning) from dams exposed to 900 ppm on days
14-20 performed poorly on the ascent test on test day 14 only, but later in development their
performance in the rotarod balancing test was superior to the controls, and they were more active in an
open-field test. Brains of 21-day-old offspring exposed to 900 ppm prenatally had significant
decreases in neurotransmitters (dopamine in those exposed on gestation days 14-20 and acetylcholine
in those exposed on days 7-13 or 14-20). The lower concentration (100 ppm) produced no significant
differences from controls. There were no microscopic brain lesions.

This study confirms that behavioral effects can occur if exposure to tetrachloroethylene occurs while
the nervous system is developing. Additional studies which determine if the effect is permanent, and
studies in rats which may be a better model for neurological effects would increase the confidence in
the use of developmental neurotoxicity as the end point for the development of the oral MRL.
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USER’S GUIDE

Chapter 1

Public Health Statement

This chapter of the profile is a health effects summary written in non-technical language. Its intended
audience is the general public especially people living in the vicinity of a hazardous waste site or
chemical release. If the Public Health Statement were removed from the rest of the document, it
would still communicate to the lay public essential information about the chemical.

The major headings in the Public Health Statement are useful to find specific topics of concern. The
topics are written in a question and answer format. The answer to each question includes a sentence
that will direct the reader to chapters in the profile that will provide more information on the given
topic.

Chapter 2

Tables and Figures for Levels of Significant Exposure (LSE)

Tables (2-1, 2-2, and 2-3) and figures (2-l and 2-2) are used to summarize health effects and illustrate
graphically levels of exposure associated with those effects. These levels cover health effects observed
at increasing dose concentrations and durations, differences in response by species, minimal risk levels
(MRLs) to humans for noncancer end points, and EPA’s estimated range associated with an upperbound
individual lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. Use the LSE tables and
figures for a quick review of the health effects and to locate data for a specific exposure scenario. The
LSE tables and figures should always be used in conjunction with the text. All entries in these tables
and figures represent studies that provide reliable, quantitative estimates of No-Observed-Adverse-
Effect Levels (NOAELs), Lowest-Observed-Adverse-Effect Levels (LOAELs), or Cancer Effect Levels
(CELs).

The legends presented below demonstrate the application of these tables and figures. Representative
examples of LSE Table 2-l and Figure 2-l are shown. The numbers in the left column of the legends
correspond to the numbers in the example table and figure.

LEGEND

See LSE Table 2-1

(1) Route of Exposure  One of the first considerations when reviewing the toxicity of a substance
using these tables and figures should be the relevant and appropriate route of exposure. When
sufficient data exists, three LSE tables and two LSE figures are presented in the document. The
three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, and
dermal (LSE Table 2-1, 2-2, and 2-3, respectively). LSE figures are limited to the inhalation
(LSE Figure 2-l) and oral (LSE Figure 2-2) routes. Not all substances will have data on each
route of exposure and will not therefore have all five of the tables and figures.
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(2) Exposure Period Three exposure periods - acute (less than 15 days), intermediate (15-364 days),
and chronic (365 days or more) are presented within each relevant route of exposure. In this
example, an inhalation study of intermediate exposure duration is reported. For quick reference
to health effects occurring from a known length of exposure, locate the applicable exposure
period within the LSE table and figure.

(3) Health Effect The major categories of health effects included in LSE tables and figures are
death, systemic, immunological, neurological, developmental, reproductive, and cancer.
NOAELs and LOAELs can be reported in the tables and figures for all effects but cancer.
Systemic effects are further defined in the “System” column of the LSE table (see key number
18).

(4) Key to Figure Each key number in the LSE table links study information to one or more data
points using the same key number in the corresponding LSE figure. In this example, the study
represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL
(also see the 2 “18r” data points in Figure 2-l).

(5) Species The test species, whether animal or human, are identified in this column. Section 2.5,
“Relevance to Public Health,” covers the relevance of animal data to human toxicity and Section
2.3, “Toxicokinetics,” contains any available information on comparative toxicokinetics.
Although NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent
human doses to derive an MRL.

(6) Exposure Frequency/Duration The duration of the study and the weekly and daily exposure
regimen are provided in this column. This permits comparison of NOAELs and LOAELs from
different studies. In this case (key number 18), rats were exposed to 1,1,2,2-tetrachloroethane
via inhalation for 6 hours per day, 5 days per week, for 3 weeks. For a more complete review
of the dosing regimen refer to the appropriate sections of the text or the original reference paper,
i.e., Nitschke et al. 1981.

(7) System This column further defines the systemic effects. These systems include: respiratory,
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and dermal/ocular.
“Other” refers to any systemic effect (e.g., a decrease in body weight) not covered in these
systems. In the example of key number 18, 1 systemic effect (respiratory) was investigated.

(8) NOAEL A No-Observed-Adverse-Effect Level (NOAEL) is the highest exposure level at which
no harmful effects were seen in the organ system studied. Key number 18 reports a NOAEL of
3 ppm for the respiratory system which was used to derive an intermediate exposure, inhalation
MRL of 0.005 ppm (see footnote “b”).

(9) LOAEL A Lowest-Observed-Adverse-Effect Level (LOAEL) is the lowest dose used in the
study that caused a harmful health effect. LOAELs have been classified into “Less Serious” and
“Serious” effects. These distinctions help readers identify the levels of exposure at which
adverse health effects first appear and the gradation of effects with increasing dose. A brief
description of the specific endpoint used to quantify the adverse effect accompanies the LOAEL.
The respiratory effect reported in key number 18 (hyperplasia) is a Less serious LOAEL of 10
ppm. MRLs are not derived from Serious LOAELs.

(10) Reference The complete reference citation is given in chapter 8 of the profile.
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(11) CEL A Cancer Effect Level (CEL) is the lowest exposure level associated with the onset of
carcinogenesis in experimental or epidemiologic studies. CELs are always considered serious
effects. The LSE tables and figures do not contain NOAELs for cancer, but the text may report
doses not causing measurable cancer increases.

(12) Footnotes Explanations of abbreviations or reference notes for data in the LSE tables are found
in the footnotes. Footnote “b” indicates the NOAEL of 3 ppm in key number 18 was used to
derive an MRL of 0.005 ppm.

LEGEND

See Figure 2-1

LSE figures graphically illustrate the data presented in the corresponding LSE tables. Figures help the
reader quickly compare health effects according to exposure concentrations for particular exposure
periods.

(13) Exposure Period The same exposure periods appear as in the LSE table. In this example, health
effects observed within the intermediate and chronic exposure periods are illustrated.

(14) Health Effect These are the categories of health effects for which reliable quantitative data
 exists. The same health effects appear in the LSE table.

(15) Levels of Exposure concentrations or doses for each health effect in the LSE tables are
          graphically displayed in the LSE figures. Exposure concentration or dose is measured on the log
         scale “y” axis. Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in
         mg/kg/day.

(16) NOAEL In this example, 18r NOAEL is the critical endpoint for which an intermediate
         inhalation exposure MRL is based. As you can see from the LSE figure key, the open-circle
         symbol indicates to a NOAEL for the test species-rat. The key number 18 corresponds to the
         entry in the LSE table. The dashed descending arrow indicates the extrapolation from the
         exposure level of 3 ppm (see entry 18 in the Table) to the MRL of 0.005 ppm (see footnote “b”
         in the LSE table).

(17) CEL Key number 38r is 1 of 3 studies for which Cancer Effect Levels were derived. The
          diamond symbol refers to a Cancer Effect Level for the test species-mouse. The number 38
          corresponds to the entry in the LSE table.

(18) Estimated Upper-Bound Human Cancer Risk Levels This is the range associated with the
upper-bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. These risk levels are
derived from the EPA’s Human Health Assessment Group’s upper-bound estimates of the slope
of the cancer dose response curve at low dose levels (q1*).

(19) Key to LSE Figure The Key explains the abbreviations and symbols used in the figure.
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Chapter 2 (Section 2.5)

Relevance to Public Health

The Relevance to Public Health section provides a health effects summary based on evaluations of
existing toxicologic, epidemiologic, and toxicokinetic information. This summary is designed to
present interpretive, weight-of-evidence discussions for human health end points by addressing the
following questions.

1. What effects are known to occur in humans?

2. What effects observed in animals are likely to be of concern to humans?

3. What exposure conditions are likely to be of concern to humans, especially around hazardous
     waste sites?

The section covers end points in the same order they appear within the Discussion of Health Effects
by Route of Exposure section, by route (inhalation, oral, dermal) and within route by effect. Human
data are presented first, then animal data. Both are organized by duration (acute, intermediate,
chronic). In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.)
are also considered in this section. If data are located in the scientific literature, a table of
genotoxicity information is included.

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using
existing toxicokinetic, genotoxic, and carcinogenic data. ATSDR does not currently assess cancer
potency or perform cancer risk assessments. Minimal risk levels (MRLs) for noncancer end points (if
derived) and the end points from which they were derived are indicated and discussed.

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to
public health are identified in the Data Needs section.

Interpretation of Minimal Risk Levels

Where sufficient toxicologic information is available, we have derived minimal risk levels (MRLs) for
inhalation and oral routes of entry at each duration of exposure (acute, intermediate, and chronic).
These MRLs are not meant to support regulatory action; but to acquaint health professionals with
exposure levels at which adverse health effects are not expected to occur in humans. They should
help physicians and public health officials determine the safety of a community living near a chemical
emission, given the concentration of a contaminant in air or the estimated daily dose in water. MRLs
are based largely on toxicological studies in animals and on reports of human occupational exposure.

MRL users should be familiar with the toxicologic information on which the number is based.
Chapter 2.5, “Relevance to Public Health,” contains basic information known about the substance.
Other sections such as 2.7, “Interactions with Other Substances,” and 2.8, “Populations that are
Unusually Susceptible” provide important supplemental information.

MRL users should also understand the MRL derivation methodology. MRLs are derived using a
modified version of the risk assessment methodology the Environmental Protection Agency (EPA)
provides (Barnes and Dourson 1988) to determine reference doses for lifetime exposure (RfDs).
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To derive an MRL, ATSDR generally selects the most sensitive endpoint which, in its best judgement,
represents the most sensitive human health effect for a given exposure route and duration. ATSDR
cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is
available for all potential systemic, neurological, and developmental effects. If this information and
reliable quantitative data on the chosen endpoint are available, ATSDR derives an MRL using the
most sensitive species (when information from multiple species is available) with the highest NOAEL
that does not exceed any adverse effect levels. When a NOAEL is not available, a lowest-observedadverse-
effect level (LOAEL) can be used to derive an MRL, and an uncertainty factor (UF) of 10
must be employed. Additional uncertainty factors of 10 must be used both for human variability to
protect sensitive subpopulations (people who are most susceptible to the health effects caused by the
substance) and for interspecies variability (extrapolation from animals to humans). In deriving an
MRL, these individual uncertainty factors are multiplied together. The product is then divided into the
inhalation concentration or oral dosage selected from the study. Uncertainty factors used in
developing a substance-specific MRL are provided in the footnotes of the LSE Tables.
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