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ABSTRACT

Most cloud radiation models and conventional data processing techniques assume that the mean number
of drops of a given radius is proportional to volume. The analysis of microphysical data on liquid water drop
sizes shows that, for sufficiently small volumes, this proportionality breaks down; the number of cloud drops
of a given radius is instead proportional to the volume raised to a drop size–dependent nonunit power. The
coefficient of proportionality, a generalized drop concentration, is a function of the drop size. For abundant
small drops the power is unity as assumed in the conventional approach. However, for rarer large drops, it
falls increasingly below unity. This empirical fact leads to drop clustering, with the larger drops exhibiting
a greater degree of clustering. The generalized drop concentration shows the mean number of drops per
cluster, while the power characterizes the occurrence frequency of clusters. With a fixed total number of
drops in a cloud, a decrease in frequency of clusters is accompanied by a corresponding increase in the
generalized concentration. This initiates a competing process missed in the conventional models: an increase
in the number of drops per cluster enhances the impact of rarer large drops on cloud radiation while a
decrease in the frequency suppresses it. Because of the nonlinear relationship between the number of
clustered drops and the volume, these two opposite tendencies do not necessarily compensate each other.
The data analysis suggests that clustered drops likely have a stronger radiative impact compared to their
unclustered counterpart; ignoring it results in underestimation of the contribution from large drops to cloud
horizontal optical path.

1. Introduction

Drop size and drop spatial distribution determine
photon–cloud interaction. The classical approach as-
sumes that the number of drops of a given radius is
proportional to volume with a drop size–dependent co-
efficient of proportionality, the drop concentration,
which is a volume-independent function of the spatial
point. This assumption underlies the derivation of the
drop size density distribution function, from which one
can derive the extinction coefficient and scattering
phase function, which are in turn input to the radiative
transfer equation.

In general, drop size distributions depend on the spa-
tial scale over which they are sampled. Liu et al. (2002)
pointed out that there is a “saturation scale” beyond
which observed size distributions do not change much
with further increases in averaging scale. At this and
larger scales, distributions are statistically stationary, in
the sense that stable sampling has been achieved. How-
ever, at the saturation scale drop distributions maxi-
mize the spectral entropy (Liu et al. 2002) and thus
convey minimum information about drop spatial vari-
ability (Ash 1965). The use of such distributions in the
radiative transfer equation, therefore, makes the equa-
tion insensitive to small-scale cloud variability. Another
extreme is the case when drops are sampled at an in-
finitesimal scale. The drop distribution is then given by
Dirac delta functions, which account for the total num-
ber of drops with specific radius and correspond to the
minimum spectral entropy (Liu et al. 2002). Although
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information about drops conveyed by these distribu-
tions is maximized, the drop concentration cannot be
defined at this scale and thus cannot be used in the
radiative transfer equation. A Monte Carlo technique
seems to be the only way to account for the full amount
of information conveyed by such distributions.

Drop size distributions are strongly scale dependent
when the sampling scale is between the infinitesimal
and saturation scales. This suggests that drop distribu-
tions at these scales convey a considerable amount of
information on drop variability. The radiative transfer
equation, in turn, aims to relate small-scale properties
of the medium to the photon distribution in the entire
medium. The question then arises, how essential is this
information? We will focus on the drop variability at
the subsaturation scale. Specifically, we would like to
know the following: 1) How can the small-scale drop
variability be parameterized? 2) How can information
on small-scale drop variability be incorporated into the
radiative transfer equation? 3) What is the effect of
ignoring small-scale variability on cloud optical prop-
erties? The objective of this paper is to address these
questions.

This paper is organized as follows. In sections 2 and
3, aircraft data on liquid water drop sizes measured by
the Forward Scattering Spectrometer Probe (FSSP)
during the First International Satellite Cloud Climatol-
ogy Project (ISCCP) Regional Experiment (FIRE),
July 1987, and the Atmospheric Radiation Measure-
ment (ARM) Program Cloud Intensive Operational
Period (IOP), March 2000 (Dong et al. 2002), are ana-
lyzed to answer the first question. We propose a new
approach of data processing in which statistical param-
eters are accumulated only over samples containing
drops. By counting only the FSSP bins filled with drops,
one can extract two pieces of information needed to
quantify the drop variability: the occurrence frequency
of samples of a given volume containing drops of a
given size (section 2) and drop size–dependent mean
number of drops in such samples (section 3). Both
pieces, in turn, can be compressed into power-law re-
lationships between the mean number of drops and vol-
ume (section 3). The conventional data processing tech-
niques are based on the assumption that the mean num-
ber of drops is proportional to volume; thus the
exponent in power-law relationships is unity. This as-
sumption holds true for saturation or coarser sampling
volumes. The analysis of microphysical data shows that,
for smaller sampling volumes, the number of cloud
drops of a given radius is instead proportional to a drop
size–dependent nonunit power of the volume. In a com-
panion paper (Marshak et al. 2005), we have shown that
drop clustering is primarily responsible for devia-

tion of the power from unity. An equation that de-
scribes the attenuation of the radiance and naturally
accounts for the power-law statistics is derived in sec-
tion 4. Nonlinear terms in this equation make tradi-
tional methods of solution inapplicable; however we
were able to find an analytic solution by using new
methods for “fractional” differential equations (appen-
dixes A and B). This solution is used to examine the
effect of small-scale drop variability on cloud optical
properties. Section 5 summarizes the results.

2. Frequency of drop occurrence

Two 10-min samples of the cloud drop size distribu-
tion measured by the FSSP during FIRE (Albrecht et
al. 1988) are used in our analysis. The measurements
were taken on 10 July 1987 over the Pacific Ocean off
San Diego, California (King et al. 1990). Two flight legs
are used; each of them is about 50 km long at an alti-
tude of 725 m in the middle of a 440-m-thick marine
stratocumulus cloud layer. The aircraft speed was 80
m s�1. Drops were accumulated over 1-s time periods in
order to form drop distributions consisting of 15 radius
bins. The bin width is 2 �m; radii of the smallest and
largest registered drop were 1.4 and 31.4 �m, respec-
tively. In total, there were 1196 drop distributions; Fig.
1 shows an example of 100 samples. With the FSSP
sample area �2

min � 0.004 cm2 (Liu and Hallett 1998)
and accumulation distance lmin � 80 m, each measure-
ment provides the distribution of drop sizes in a volume
�min � lmin � �2

min � 32 cm3. We term the volume �min

the smallest FSSP collectable volume scale. The total
volume, VL, in which drops are sampled is VL � L �
�2

min where L is the total length of the flight legs. Here
and in section 3, we focus on examining the distribution
of drop sizes in the volume VL, which is idealized as a
“tube” with the base �2

min and the length L. For the
FIRE FSSP data, L � 80 m s�1 � 1196 s � 95 680 m,
and thus VL � 38 272 cm3.

Let N(�, r) be the total number of drop distribution
samples at a collectable volume scale � � l � �2 con-
taining drops with radii between r � �/2 and r � �/2
where � � 2 �m is the FSSP bin width. For the smallest
FSSP collectable volume �min the number N(�min, r) can
be evaluated from Fig. 1 by counting “nonempty”
records in corresponding column. Each such record can
contain more than one drop, but still adds only unity to
N. This variable describes the frequency of the occur-
rence of drop with radius r at a collectable volume scale
� along the flight legs. Here and in the rest of the text,
r refers to centers of the FSSP radius bins and repre-
sents drops with radii between r � �/2 and r � �/2. Our
aim here is to examine variation in N(�, r) as a function
of the scale �.
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At a scale comparable with the drop size, that is,
when � → 0, a bin has only one drop, so lim�→0N(�, r)
� N(0, r) � NTOT(r) will be the total number of drops
registered in the bin r. Being defined as the number of
samples of volume � with nonempty bins, as � → 0, a
growing number of samples along the flight leg contrib-
ute nothing to the sample count N(�, r). As a function
of increasing scale �, N(�, r) is nonincreasing. Indeed,
an increase in � lowers the number N(�, r) of nonempty
bins since nonempty bins can now contain more than
one drop. In our case, N(�, r) varies with � between 1 (�
� VL) and the total number NTOT(r) of drops with
radius r acquired in the volume VL.

We define the average number of drops in the non-
empty bin r as

n	�, r
 �
� n	�, r


N	�, r

�

NTOT	r


N	�, r

. 	1


The summation is performed over nonempty bins. Here
n(�, r) � 0 is the number of drops with radius r in
corresponding nonempty bin at a volume scale �. Their
sum coincides with NTOT(r), which depends on the total
volume, VL, in which drops are collected rather than on
the scale � over which they are sampled. Thus,

NTOT	r
 � N	�, r
 n	�, r
. 	2


This equation establishes an obvious but very impor-
tant property of drop distribution: with a fixed total
number, NTOT(r), of drops with radius r in VL, a de-
crease in the occurrence frequency, N(�, r), at a given
scale � is necessary accompanied by an increase in the
mean number, n(�, r), of drops per nonempty sample of
the volume �. Since NTOT(r) does not depend on �, the
product of two scale-dependent variables n(�, r) and
N(�, r) does not depend on �, either. Obviously, the
total number of drops, NTOT(r), is a function of the
volume VL in which drops are sampled. Since we focus
on examining the distribution of drop sizes in the vol-
ume VL, it is fixed throughout the paper. Variation in
NTOT(r) with respect to VL is discussed in the compan-
ion paper (Marshak et al. 2005).

Next we degrade our FSSP data to longer accumula-
tion distances of l � 2lmin, 3lmin, . . . , 600lmin by joining
two, three, etc. consecutive readings and estimate the
frequency N(�, r) at corresponding sampling volumes of
� � l � �2

min. Figure 2 shows variation in N(�, r) with
respect to �. Two features can be clearly seen. First,
beyond a volume scale of �sat � 960 cm3 (lsat � 2400 m),
the number N(�, r) of nonempty bins is inversely pro-
portional to the volume �. At these scales, differences in
drop variability cannot be discerned. Thus, in this case
an accumulation distance of 2400 m is Liu et al.’s (2002)
saturation scale. Once the saturation volume is ex-
ceeded, all drop bins will be occupied, and conse-
quently the number of samples with nonempty bins be-
comes inversely proportional to the sampling volume.
Second, for scales between 32 cm3 and about 960 cm3,
variation in N(�, r) also follows a power law, but with an
exponent that is a function of drop size r, that is,

N	�, r
 � m	VL, D
��D	r
. 	3


Here m(VL, D) � N(1, r) is the prefactor. Figure 2
provides a geometrical interpretation of m(VL, D); that
is, the interception of the vertical axis of lnN by a
straight line as a function of ln �, � 
 960 cm3, is given
by ln[m(VL, D)]. The interception depends on the ex-
ponent D(r) and the total volume VL where drops are
collected, rather than on the scale � over which they are
sampled.

Figure 3a shows D(r) as a function of drop size r. At
scales between 32 and 960 cm3, small drops with

FIG. 1. One hundred drop size distribution samples measured
by the FSSP on 10 Jul 1987 (King et al. 1990). The measurements
were taken from 0844 to 0854 and 0931 to 0941 Pacific daylight
time (PDT) over the Pacific Ocean off San Diego. The aircraft
speed was 80 m s�1 and drops were accumulated over 1-s time
period. Drops above 31.4 �m are not registered. Vertical and
horizontal axis show record number and centers of the FSSP ra-
dius bins, respectively. Each row corresponds to one sample of the
drop size distribution. Columns show counts of drops of a given
radius in 80-m intervals along the flight leg. Note that at a linear
scale of 80 m, 14-�m and larger drops do not appear in each
sample.

JULY 2005 K N Y A Z I K H I N E T A L . 2557



r 
 14 �m follow a power law with exponent D(r) � 1.
However, D(r) for larger drops falls below unity. Figure
3b complements Fig. 3a with values of D(r) for drops
larger than 30 �m. Note that this curve was derived
from data collected at a different time (March 2000

versus July 1987), a different site (Oklahoma versus
California), and using a different instrument (1D-C ver-
sus FSSP) and sampling strategy. Both figures illustrate
an important behavior of D(r): for a given scale range,
it is a nonincreasing function with respect to the drop

FIG. 3. (a) Exponent D(r) as a function of drop radius in the range from 2 to 30 �m derived from data acquired
during the flight on 10 Jul 1987 as part of FIRE field program. (b) Exponent as a function of drop radius in the
range from 30 to 300 �m. This curve was derived from data collected by the 1D-C probe on board the University
of North Dakota Citation aircraft during the ARM Cloud Intensive Operational Period (3 Mar 2000). These data
are publicly available online at http://iop.archive.arm.gov/arm-iop/2000/sgp/cloud/poellot-citation/.

FIG. 2. Scaling behavior of bin count N derived from data shown in Fig. 1. Legends indicate
the FSSP radius bin numbers. At volume scales between 32 and 920 cm3, variation in N(�, r)
follows a power law with a drop size–dependent exponent D(r), i.e., N(�, r) � m(VL, D)��D(r).
Here � � l � �2

min where �2
min � 0.004 cm2 is the FSSP sampling area. The interception of the

vertical axis of ln N by a straight line as a function of ln � is given by ln[m(VL, D)] where
m(VL, D) � N(1, r) is the prefactor. It depends on the exponent D(r) and the total volume,
VL � L�2

min, where drops are collected but not on the scale � over which they are sampled.
Here L is the total length of the flight legs.
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size. The companion paper (Marshak et al. 2005) shows
that this is due to the clustering of drops: the larger the
droplet size, the greater the clustering. Examples of
spatial distributions of 100 000 small (D � 1) and 1000
large (D � 0.35) cloud drops generated by a fractal
model proposed by Marshak et al. (2005) are shown in
Fig. 4. In these examples, VL is a cube of 33 � 33 � 33
cm3. This figure clearly illustrates clusters of large
drops. By a cluster here we understand any volume � in
VL that contains drops. Thus at a given scale �, N(�, r)
counts the numbers of clusters in VL.

To summarize, it was found that 1) the occurrence
frequency of drops follows a power law of the volume
with a drop size–dependent exponent; 2) the exponent
is a nonincreasing function with respect to the drop size
and varies between 0 and 1; 3) a deviation of the expo-
nent from unity indicates drop clustering, with the
larger drops exhibiting a greater degree of clustering; 4)
the exponent characterizes the occurrence frequency of
clusters—the lower its value, the rarer the occurrence.

3. Generalized drop concentration

We return to Eq. (1). Substituting (3) into (1), one
obtains

n	�, r
 �
NTOT	r


m	VL, D

�D	r
. 	4


Note that for �min � � � �sat neither NTOT(r) nor m(VL,
D) vary with the scale �; as a result, their ratio is also
scale independent. We will term the latter a generalized
drop concentration, that is,

�	r
 �
NTOT	r


m	VL, D

. 	5


Equation (4) can be rewritten as

n	�, r
 � �	r
�D	r
.

In our example for volumes � between �min � 32 cm3

and �sat � 920 cm3, the mean number of drops with
radius r in a nonempty volume � is proportional to the
volume raised to a drop size–dependent power.

Two variables are required to estimate the general-
ized drop concentration: the total number, NTOT(r), of
drops with radius r in the volume VL and the prefactor
m(VL, D). The scale-independent prefactor can be
specified not only from the interception (Fig. 2) but also
from Eq. (3) as a product of two scale-dependent vari-
ables, namely,

m	VL, D
 � N	�, r
�D	r
, �min � � � �sat.

Figure 5 shows m(VL, D) as a function of r. For small
drops (r 
 14 �m, D � 1), m(VL, D) is simply a product
of a sampling volume � and the total number of samples
N(�, r); that is, it is equal to the total volume VL where
drops are collected. In this case, the generalized drop
concentration �(r) coincides with the classical one,
which is the mean number of drops per unit volume.
For large drops (r � 14 �m, D 
 1) the situation is
more complex: not only does the value of m(VL, D) go
down with D, but also its unit alters with the drop ra-
dius. For these drops, the unit of m(VL, D) is (cm3)D(r).
The fractional power indicates that drops with radius
r form a clustered set, or fractal (see black dots in
Fig. 4). Its Hausdorff–Besicovitch dimension p (Barns-
ley 1993, p. 198) is 3D(r). Each volume � containing
drops is treated as a cluster of size �D(r). The total size
of the clustered set in VL is given by the Hausdorff
p-dimensional measure (Barnsley 1993, p. 198), which
is simply a sum of the cluster sizes over all individual
clusters resided in VL. In our case, the Hausdorff mea-
sure coincides with m(VL, D). Because only volumes
containing drops are counted, m(VL, D) can be treated
as a measure of the “size” of VL after removing “empty
spaces” between clusters. The more empty spaces are
removed, the lower the value of m(VL, D) is.

The prefactor m(VL, D) is a measure of clusters
(fractals) but not the number of drops in VL. The larger
the value of m(VL, D), the “larger” the cluster. If two
sets have different fractal dimensions, then the one with

FIG. 4. Two examples of spatial distributions of 100 000 small (D
� 1; colored gray) and 1000 large (D � 0.35; colored black) cloud
drops. The numbers of small and large drops are in approximately
the same proportion as corresponding numbers NTOT(8) and
NTOT(25) in the FSSP FIRE data. The small drops are distributed
perfectly randomly (D � 1) whereas the large drops follow a
power law with an exponent D � 0.35 (Fig. 2). The deviation of
the exponent D from unity indicates drop clustering—the smaller
its value is, the stronger clustering is.
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the higher fractal dimension is the “larger” one (Barns-
ley 1993, p. 200). The generalized drop concentration,
therefore, shows the number of drops per unit cluster.
The exponent D determines the degree of clustering:
the lower its value, the stronger the clustering and, be-
cause of its reduced total size, the less frequent the
occurrence of clusters in VL and the higher the gener-
alized drop concentration. Thus with a fixed total num-
ber of cloud drops, an increase in clustering (decrease
in D) is accompanied by a corresponding decrease in
the occurrence frequency of clusters (increase in �). In
other words, for large drops the generalized drop con-
centration � shows the number of drops in a cluster of
the size [cm3]D(r), and thus one nonempty cm3 contains
not �(r) but �(r)[1/D(r)] such drops.

Conventional techniques of data processing use
samples acquired over the saturation or coarser scales.
At these scales, however, the resolution of data does
not spatially resolve individual clusters. Once the satu-
ration volume is reached, all sampling volumes will be
occupied, resulting in D � 1. Observed size distribu-
tions do not change much with further increases in av-
eraging scale (Liu et al. 2002), and thus the conven-
tional drop concentration can be defined as the ratio of
the number of drops in a volume � � �sat to �, that is,

c	r
 �
n	�, r


�
�

NTOT	r


m	VL, 1

�

NTOT	r


VL
, � � �sat. 	6


The scale independency of c(r) in Eq. (6) is artificially
extrapolated from � � �sat down to the smaller scales 0


 � � �sat first and then is used in the classical radiative
transfer equation. Information on drop clustering is
lost.

Figure 6 shows values of �(ṙ)[1/D(r)] and the conven-
tional drop concentrations c(r) calculated from Eqs. (5)
and (6), respectively, using FIRE data. The following
interpretation can be given. For each drop size, the
generalized drop concentration accounts for clusters by
counting only nonempty volumes. Its value, therefore,
depends on the occurrence frequency of clusters pa-
rameterized in terms of the exponent D. The conven-
tional concentration ignores the clustering by assuming
the presence of drops in every volume (i.e., D � 1), which
leads to a smaller number of drops in the volume. This is
consistent with Eq. (2), which states that for a fixed
total number of drops with radius r in a given volume
VL, a decrease in the occurrence frequency, N(�, r), at
a given scale � is accompanied by an increase in the
mean number of drops in the nonempty volume �.

Results from this section can be summarized as fol-
lows: 1) for sufficiently small volumes, the mean num-
ber of drops in a given volume is proportional to the
volume raised to a drop size–dependent nonunit power;
2) the drop size–dependent coefficient of proportional-
ity, or a generalized drop concentration, shows the mean
number of drops per cluster while the power character-
izes the occurrence frequency of clusters themselves; 3)
resolution of data collected at the saturation or coarser
scales do not spatially resolve individual clusters and
the information on drop clustering is lost.

FIG. 5. The dependence of the prefactor m(VL, D) on the drop radius derived from data
described in Fig. 1. For drop radii below 14 �m, D � 1 (see Fig. 3) and m(VL, 1) � VL � 38 272
cm3. For drop radii above 14 �m, D 
 1; the coefficient m(VL, D) 
 m(VL, 1) and its unit is
expressed in number of drops per cm3D.
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4. Impact of drop variability on estimation of
cloud optical dimensions

Our data analysis indicates that, for sufficiently small
volumes, the mean number of large drops varies pro-
portionally to the volume raised to a drop size-
dependent nonunit power. This finding suggests drop
clustering (Marshak et al. 2005). The generalized drop
concentration and the nonunit power are two drop size-
dependent parameters that characterize the small-scale
feature of drop variability. The first one is the mean
number of drops per cluster while the second one char-
acterizes the frequency of cluster occurrence. With a
fixed total number of cloud drops, a decrease in the
frequency of clusters is necessarily accompanied by a
corresponding increase in the number of drops per clus-
ter. The conventional drop density concentration is a
special case of the generalized drop concentration when
the power is set to unity and thus is insensitive to this
process. The aim of this section is to estimate the effect
of ignoring small-scale drop variability on the estima-
tion of cloud optical properties. This will be accom-
plished by examining variation in optical distance �(x),
0 � x � L along the flight legs. Therefore, we first
derive the extinction coefficient, �(r, D), which de-
pends on the drop size r and the exponent D(r); then we

derive an equation describing the attenuation of the
radiance along the flight leg and examine its solution.

Consider a sample volume � ∈ [�min, �sat) with a
sample area dS and the accumulation distance dx, that
is, � � dSdx. We denote the total interaction cross sec-
tion Qe(r)�r2 by s0. Here Qe(r) is the efficiency factor.
The ratio dS/s0 is the number n of fine horizontal
“tubes” of the size dx s0 in the volume �. A photon will
necessarily be intercepted within such a tube, if the tube
contains a drop. The probability of interception, there-
fore, is determined by the number of nonempty hori-
zontal tubes. The classical approach (D � 1) assumes
that the number of nonempty tubes (or drops) in the
volume � is proportional to � with the drop concentra-
tion � as a coefficient of proportionality, that is, �� �
� dx dS � � dx s0 n � d�n where d� � s0 � dx is the
optical distance. From here the extinction coefficient
�(r, 1), in cm�1, can be specified as

�	r, 1
 � Qe	r
�r2�	r
. 	7


For 0 
 D(r) 
 1, the number of drops in the volume
� is proportional to the volume raised to D(r), that is,
�(dxdS)D � �(dxs0)D nD. It coincides with the number
of intercepted photons, which is proportional to n
raised to a drop size–dependent nonunit power. Varia-

FIG. 6. Mean number of drops in cm3 as a function of drop radius derived from data
collected above (legend “Classical”) and below (legend “Generalized”) the saturation scales.
The generalized drop concentration accounts for clusters by counting only volumes filled with
drops. Its value, therefore, depends on the occurrence frequency of clusters parameterized in
terms of the drop size–dependent exponent D (see Fig. 3). The conventional concentration
ignores the clustering by assuming the presence of drops in every cm3 (i.e., D � 1). With a
fixed total number of drops in a cloud, a decrease in frequency of clusters is accompanied by
a corresponding increase in number of drops per cluster unit.
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tion in the number of intercepted photons follows a
power law. The coefficient d� � �(s0dx)D that accounts
for intercepted photons is the optical distance. The ex-
tinction coefficient �(r, D) [in cm�D(r)] thus takes the
form

�	r, D
 � �Qe	r
�r2�D	r
�	r
. 	8


If 0 
 D(r) 
 1, a distribution function �(r,
D)[dx]D(r) is called singular (Kolmogorov 1950; Richt-
myer 1978, p. 260). As has been shown in the compan-
ion paper (Marshak et al. 2005), only singular distribu-
tions are able to produce the observed power laws
shown in Fig. 2. The extinction of radiation by a single
drop [D(r) � 0] is described by a Heaviside function H
and the drop extinction cross section; it is detailed in
Knyazikhin et al. (2002).

The removal dI(x) of energy from I(x) along the
flight leg due to photon–droplet interaction is

dI	x
 � �I	x
�
r

�	r, D
�	r, x
�dx�D	r
. 	9


Here I(x), 0 � x � L, is the radiance at point x along
the flight leg; �(r, x) is the indicator function of drops,
which takes on the value 1 if there are drops with radius
r in the volume � at x, and 0 otherwise. The extinction
coefficients are given by Eqs. (7) and (8); the exponents
D(r) used to calculate �(r, D) are shown in Fig. 3a. For
simplicity, we excluded the case D � 0 from our analy-
sis since it was detailed in Knyazikhin et al. (2002).
Note that since drops with r 
 14 �m [D(r) � 1] are
present in each sample volume � (Fig. 1), their indicator
function �(r, x) � 1 for all x and r.

With a fixed total number of cloud drops, a decrease
in the power D is accompanied by (i) an increase in
the extinction coefficient [through the increase in
�(r, D)[1/D(r)]; see, e.g., Fig. 6] and (ii) a decrease in the
occurrence frequency of clusters (“more zero values”
the indicator functions take on; see, e.g., Figs. 1 and 4).
The first process enhances the contribution of drops
while the second one suppresses it. Equation (9) cap-
tures the competition between these two nonlinearly
related processes. The conventional drop concentration
corresponds to a special case when D is set to 1 for all
drop sizes. In this case, Eq. (9) rearranges to the tradi-
tional Beer’s law. The use of the conventional drop
concentration, therefore, makes the radiative transfer
equation insensitive to small-scale drop variability.

The solution of Eq. (9) is I(0) exp[��(x)] where the
optical distance �(x) is given by (see item 4 in appen-
dix B)

		x
 � �
r

�	r, D
q	D
F	x, D
LD	r
. 	10


Here a dimensionless function q(D) is the prefactor

m(VL, D) (Fig. 5) normalized by VD
L , and F(x, D), 0 �

x � L, is a distribution function for drops with the
exponent D (Fig. 7). For small drops (D � 1), F(x, 1) �
x/L; its probability density function is 1/L (appendix B).
For large drops (0 
 D 
 1), the distribution function
F(x, D) is a continuous, nondecreasing function; its de-
rivative—the probability density distribution func-
tion—is zero almost everywhere. Such functions are
known as singular distributions (Kolmogorov 1950;
Richtmyer 1978, p. 260). The Cantor curve (or “devil
staircase”) is a classical example of a singular function
with D � log3 2 � 0.63 (Mandelbrot 1982, p. 99; Richt-
myer 1978, 259–260). Figure 7 shows F(x, D) for D � 1
and D � 0.57 derived from the bin 11 (�22 �m drops)
of the FSSP data acquired at the ARM Cloud IOP (3
March 2000); a distribution function of one isolated
very large drop (D � 0) located at x � 350 km is added
for illustration. If one uses the conventional drop con-
centration [see Eq. (6)], Eq. (10) rearranges to the clas-
sical form

		x
 � �
r

�	r, 1
q	1
F	x, 1
L � �
r

�	r, 1
x. 	11


This corresponds to a solution of Eq. (9) for a special
case when D(r) and �(r, x) are set to 1 for all r and x.
Since the conventional drop concentration assumes that
large and small drops have identical spatial distribu-
tions, Eq. (11) accounts for large drops (D 
 1) artifi-
cially including them in smaller concentrations in every
sample volume � by setting D(r) and �(r, x) to 1. Equa-
tion (10) releases the assumption of the drop size-
independent spatial distributions and describes photon
interaction with drops actually present in the sample
volume by allowing for variation in D(r) and �(r, x).

To estimate the effect of small-scale drop variability,
we compare optical distance calculated with Eqs. (10)
and (11) assuming that the drop concentration, both
classical and generalized, and q(D) do not depend on
the total volume VL in which drops are collected. The
distribution function F(x, D) becomes scale invariant in
this case (see also item 3 in appendix B), that is,

F	kx, D
 � kDF	x, D
, k 
 0. 	12


The “devil staircase” is a classical example of the dis-
tribution satisfying this condition (Mandelbrot 1982, p.
99). Under the above assumption data collected along
the 96-km flight leg can be treated as 96 realizations of
drop distributions within a 1-km interval. The distribu-
tion function is defined on the interval between 0 and 1
km; F(0, D) � 0 and F(1, D) � 1. In this case Eq. (10)
becomes
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		x
 � �
r

�	r, D
q	D
F	x, D
. 	13


Since F(x, D) is scale invariant, the choice of a 1-km
interval as a domain of its definition is not essential to
the following analysis, and it has been assumed only for
simplicity in notations. Thus it follows from (12) and
(13) that the mean optical distance �(L) of a longer
than 1-km path, L, is given by

		L
 � �
r

�	r, D
q	D
F	L, D
 � �
r

�	r, D
q	D
LD	r
.

	14


If the exponent D is set to 1 for all drop sizes, Eq. (14)
coincides with Eq. (11) at x � L.

To estimate the impact of ignoring a realistic spatial
distribution of large drops, we use the ratio of the op-
tical distance resulting from the 14 �m and larger drops
(D 
 1) to the total optical distance. Figure 8 demon-
strates the ratio as a function of the pathlength derived
using Eqs. (11) and (14). Its value is independent of the
pathlength and equal to 4% under assumptions of the
conventional approach. The solution of the classical ra-
diative transfer equation continuously depends on the
optical depth, and thus it becomes almost insensitive to

the presence of large drops. The ratio that accounts for
the spatial distribution of large drops exhibits a differ-
ent behavior. At small geometrical distances, large
drops are responsible for about 40% of the total optical
depth. Their impact decreases with the geometrical
length. The contribution made by the 14-�m and larger
drops to the optical distance of a 100-km horizontal line
in the cloud is up to 10%. This also suggests that drops
that are rare in occurrence have a stronger effect on the
cloud radiation regime than the conventional radiative
transfer equation can possibly predict.

5. Conclusions

One of the weakest links in conventional cloud ra-
diation models is the way a size distribution of cloud
particles is mathematically handled. One first degrades
measured data from the spatial scale over which they
are sampled to a saturation scale beyond which ob-
served size distributions do not change much with fur-
ther increases in averaging scale, thus also making spa-
tial distributions of drops drop size-independent. Such
a distribution is then used in the radiative transfer
equation. This approach avoids the scale dependence of
the drop concentration. However, it ignores informa-
tion on small-scale drop variability.

FIG. 7. Distribution function F(x, D), 0 � x � 600 km, for drops with the exponent D � 1
(r � 14 �m) and D � 0.57 (r � 24 �m) derived from data collected during the ARM Cloud
IOP on 3 Mar 2000. The distribution function of one isolated drop at x � 350 km (D � 0) is
given by a Heaviside function and added for illustration. The function F(x, D) can also be
expressed given the solution I(x) of the equation dI � �I(x)�(r, D)[dx]D as follows. Variation
in optical distance �(x) due drops with the exponent D is �(x) � �ln[I(x)/I(0)]. The distribu-
tion F(x, D) is then the normalized optical distance �(x)/�(600).
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The analysis of cloud liquid water drop sizes indicates
that, for sufficiently small volumes, the mean number of
large drops in a given (“nonempty”) volume is propor-
tional to the volume raised to a drop size–dependent
nonunit power. The coefficient of proportionality, or a
generalized drop concentration, is a function of the drop
size. The power of the volume, the exponent D(r), is a
decreasing function with respect to the drop radius r ; it
varies between 0 and 1. Models that simulate the ob-
served power law show drop clustering, with the larger
drops exhibiting a greater degree of clustering (Mar-
shak et al. 2005). The degree of clustering is determined
by the observed exponents D(r): the smaller its value,
the stronger the clustering. For drops of radius r, the
generalized concentration shows the number of drops
per unit cluster and is expressed in (cm3)D(r). If D � 1,
cloud drops are not clustered and the generalized drop
concentration coincides with the conventional one.
With a total number of cloud drops of radius r constant,
the deviation of the exponent from unity reduces the
frequency of cluster occurrence but increases the drop
concentration per cluster. The latter enhances the im-
pact of large drops.

We derived an equation that describes the attenua-
tion of the radiance along a photon path through real-

istically distributed cloud drops. It is parameterized in
terms of the generalized drop concentration and the
exponent. We found that its solution depends on the
number of drops per unit cluster rather than per volume.
With a total number of (large) cloud drops constant,
clustered drops (D 
 1) have a stronger radiative im-
pact compared to their unclustered counterpart (D �
1). If the exponent is equal to 1, the equation coincides
with the traditional radiative transfer equation. If the
exponent falls below unity, the use of the traditional
equation can result in systematic underestimation of
the contribution of large drops to cloud optical path.
The following mechanism, missed in the conventional
approach, is primarily responsible for this effect. For
sufficiently small occupied volumes, the mean number
of large drops in a given volume decreases as volume
raised to a drop size–dependent nonunit power, while
conventional approaches assume a linear decrease with
respect to the volume. The latter is a faster process!
With a total number of cloud drops constant, the as-
sumption underlying conventional approaches leads to
underestimation of the number of rarer large drops per
cluster at small scales and, consequently, their impact
on radiative transfer. Although the impact decreases
with scale, the contribution of large drops to cloud op-

FIG. 8. Contribution of drops with radii between 13.4 and 31.4 �m to the optical distance.
The ratio of the optical distance for these drops to the total cloud optical distance was
calculated using Eqs. (11) and (14) and data collected during the FIRE field program (Fig. 1).
The true ratio (open circles) varies with the geometrical distance L as R(L) � 0.41L�0.32 (line
with open circles). If coarse-resolution data are used, the ratio (line with closed circles) is
independent on L and takes on the value 4%.
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tical path remains stronger than conventional radiative
transfer predicts.

Data on drop size distributions collected at a resolu-
tion below the saturation scale is the necessary condi-
tion to specify the clustering. A spatial resolution of 80
m appeared to be sufficient to detect clusters of large
drops. Our statistical approach allows us to process
much finer resolution data. We believe that the use of
very fine resolution data—for example, measured by
the Fast FSSP (Pawlowska and Brenguier 1997; Bren-
guier et al. 1998)—is critical not only to better describe
the clustering and its impact on clouds but also to
specify physical processes causing this phenomenon.
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APPENDIX A

Solution of Eq. (9)

The aim of this appendix is to derive a solution, I(x),
0 � x � L, to Eq. (9). For ease of analysis, we assume
only three terms in its right-hand side corresponding to
D(r1) � 1, D(r2) � D, 0 
 D 
 1, and D(r3) � 0. Its
solution can be easily generalized to the solution of Eq.
(9). Thus, consider the following boundary value prob-
lem describing attenuation of the radiance by small (D
� 1), large (0 
 D 
 1), and very large (D � 0) drops

dI	x
 � ��SI	x
dx � �L�L	x
I	x
�dx�D

� �VL�VL	x
I	x
, 	A1


I	0
 � i0. 	A2


Here the extinction coefficients �S (in cm�1), �L (in
cm�D), and the drop extinction cross section �VL do not
depend on x; �L (�VL) is the indicator function of large
(very large) drops, which takes on the value 1 if there is
a large (very large) drop at x, and 0 otherwise. We

assume that there is only one “very large” drop at the
point x in the interval (0, L), that is, �VL � 1 if x � x,
and 0 otherwise.

We partition the interval [0, L] into n equal subinter-
vals by subdivisions at xk � k�, k � 0 to n, where � �
L/n. We approximate the solution of the Eq. (A1) by a
piecewise constant function I(�, x); that is, I(�, x) � I�,k

if x ∈ (xk, xk�1). Values of I(�, x) at xk � k�, k � 0, . . . ,
n, satisfy the following system of equations:

I�,k�1 � I�,k � ��SI�,k� � �L�L,kI�,k�D � �VL�VL,kI�,k,

	A3


I�,0 � i0. 	A4


Here �L,k and �VL,k are indicator functions of the in-
terval [xk, xk�1). In the limit � → 0,

I	x
 � lim
�→0

I	�, x
. 	A5


Note that Eq. (A3) describes attenuation of radiation
along the flight leg where � � lmin � 80 m, n � 1196, L
� 50 km, and [xk, xk�1), k � 0, . . . , n, represent inter-
vals of data accumulation. Data acquired during the
FIRE field experiment allow us to specify all coeffi-
cients that appeared in this equation. The length � �
lmin � 80 m of the interval over which drops were ac-
cumulated is sufficiently small compared to L, and thus
solutions of Eqs. (A1) and (A3) are not significantly
distinct.

It follows from Eqs. (A3) and (A4) that

I�,k � i0 �
i�1

k

	1 � �S� � �L�L,i�1�D � �VL�VL,i�1
.

The solution I(�, x) at x � L can be expressed as

I	�, L
 � I�,n

� i0 �
i�1

n

	1 � �S� � �L�L,i�1�D � �VL�VL,i�1
.

	A6


Let N(�) be the number of subintervals containing large
drops (0 
 D 
 1). We assume that it follows the power
law when � → 0 [cf. with Eq. (3)]:

N	�
 � f	L, D
��D.

Here f(L, D) is the prefactor that depends on D and the
length L of the interval [0, L]. Substituting � � L/n into
equation for N(�) one can obtain

lim
n→�

N	�


n
� lim

n→�

f	L, D
nD

LDn
� 0. 	A7


Note that the product of n factors in the right-hand side
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of Eq. (A6) consists of one factor having the form (1 �
�S � � �L �L,m �D � �VL); N(�) [or N(�) � 1] factors (1
� �S � � �L �D), and n � N(�) � 1 [or n � N(�)] factors
(1 � �S �). Equation (A6), therefore, can be rewrit-
ten as

I	�, L
 � pVL	�, L
pL	�, L
pS	�, L
i0,

where

pVL	�, L
 � 	1 � �S� � �L�L,m�D � �VL
,

pL	�, L
 � 	1 � �S� � �L�D
N	�
, 	A8


pS	�, L
 � 	1 � �S�
n�N	�
�1. 	A9


Our next step is to find limits pVL(L), pL(L), and
pS(L) as � → 0. For very large drops, we have

pVL	L
 � lim
�→0

pVL	�, L


� lim
�→0

	1 � �S� � �L�D � �VL
 � 1 � �VL.

	A10


Tending � → 0 in Eq. (A9) and accounting for Eq. (A7)
results in the following equation for small drops:

pS	L
 � lim
�→0

pS	�, L
 � lim
�→0

	1 � �S�
n�N	�
�1

� lim
�→0

	1 � �S�
n � lim
�→0

	1 � �S�
L
� � exp	��SL
.

	A11


Substituting N(�) � f(L, D)��D into Eq. (A8), one ob-
tains

lnpL	�, L
 � f	L, D
��D ln	1 � �S� � �L�D


� f	L, D
��D	��S� � �L�D
 � �f	L, D
�L.

For large drops, therefore, the coefficient pL takes the
form

pL	L
 � lim
�→0

p	�, L
 � exp	�f	L, D
�L
. 	A12


It follows from Eqs. (A5), (A10), (A11), and (A12) that
the solution, I(x), of the boundary value problem (A1)–
(A2) at L is

I	L
 � 	1 � �VL
 exp���SL � �Lf	L, D
�i0.

To find a value of I(x) at an arbitrary chosen point x,
we define the number N(�, x) of subintervals in [0, x)
containing large drops (0 
 D 
 1). The emergence of
large drops in the interval [0, x) can be described by the
function f(x, D), defined as

f	x, D
 � lim
�→0

N	�, x
�D.

In terms of these notations, the solution to the bound-
ary value problem can be expressed as

I	x
 � �1 � �VLH	x � x
� exp���Sx � �Lf	x, D
�i0,

where H(x � x) is the Heaviside function.

APPENDIX B

Properties of the Solution

1) Let �L � 0; that is, the second term in the right-hand
side of Eq. (A1) is not present. The solution of Eq.
(A1) coincides with one reported in Knyazikhin et
al. (2002).

2) The prefactor f(L, D) can be represented as f(L, D)
� q(D)LD where q(D) � lim�→0N(�)n�D. Indeed, it
follows from N(�) � f(L, D)��D and nD�D � LD

that

f	L, D
 � lim
�→0

N	�
�D � lim
�→0

N	�


nD nD�D � q	D
LD.

3) The emergence of small (D � 1) and large (0 
 D 

1) drops in the interval [0, x) can be described by the
cumulative distribution function F(x, D), defined as

F	x, D
 �
f	x, D


f	L, D

�

f	x, D


q	D
LD .

This is a nondecreasing, continuous function and
F(0, D) � 0, F(L, D) � 1. It follows from (A6) that
the increment dF � F(x � �, D) � F(x, D) is pro-
portional to �D. It means that the probability density
distribution function dF/� cannot be defined if D 

1. For D � 1, F(x, 1) � x/L if x 
 L, and F(x, 1) �
1 if x � L.

4) The solution of Eq. (A1) can be expressed in terms
of the cumulative distribution function as

I	x
 � �1 � �VLH	x � x
� exp��		x
�i0,

where the optical distance �(x) is given by

		x
 � �SF	x, 1
L � �LF	x, D
q	D
LD.
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