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Multifractal characterizations of nonstationarity and
intermittency in geophysical fields: Observed, retrieved,

or simulated
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Abstract. Geophysical data rarely show any smoothness at any scale, and this often makes
comparison with theoretical model output difficult. However, highly fluctuating signals and
fractal structures are typical of open dissipative systems with nonlinear dynamics, the focus of
most geophysical research. High levels of variability are excited over a large range of scales by
the combined actions of external forcing and internal instability. At very small scales we expect
geophysical fields to be smooth, but these are rarely resolved with available instrumentation or
simulation tools; nondifferentiable and even discontinuous models are therefore in order. We
need methods of statistically analyzing geophysical data, whether measured in situ, remotely
sensed or even generated by a computer model, that are adapted to these characteristics. An
important preliminary task is to define statistically stationary features in generally nonstationary
signals. We first discuss a simple criterion for stationarity in finite data streams that exhibit
power law energy spectra and then, guided by developments in turbulence studies, we advocate
the use of two ways of analyzing the scale dependence of statistical information: singular
measures and gth order structure functions. In nonstationary situations, the approach based on
singular measures seeks power law behavior in integrals over all possible scales of a nonnegative
stationary field derived from the data, leading to a characterization of the intermittency in this
(gradient-related) field. In contrast, the approach based on structure functions uses the signal
itself, seeking power laws for the statistical moments of absolute increments over arbitrarily large
scales, leading to a characterization of the prevailing nonstationarity in both quantitative and
qualitative terms. We explain graphically, step by step, both multifractal statistics which are
largely complementary to each other. The geometrical manifestations of nonstationarity and
intermittency, “roughness” and “sparseness”, respectively, are illustrated and the associated
analytical (differentiability and continuity) properties are discussed. As an example, the two
techniques are applied to a series of recent measurements of liquid water distributions inside
marine stratocumulus decks; these are found to be multifractal over scales ranging from =60 m to
=60 km. Finally, we define the “mean multifractal plane” and show it to be a simple yet
comprehensive tool with many applications including data intercomparison, (dynamical or

stochastic) model and retrieval validations.

1. Introduction

1.1. Motivation and Objectives

In light of our vast and rapidly growing ability to collect and
store data and model output, there is a need in both theoretical
and observational communities for new methods of data
characterization. We are joining a growing number of
researchers in seeking data analysis techniques that are
theoretically consistent with the two most salient facts about
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geophysical systems: they have a large range of scales and are
governed by strongly nonlinear processes. In meteorological
community this movement received considerable impetus from
Lovejoy’s [1982] paper on the fractal dimension of clouds and
rain. Our hope is that the specific methods presented here will
appeal to both observational and theoretical geophysical
communities, thus helping to establish a much needed protocol of
quantitative communication between the two.

Our aim is to find the simplest, most robust measures of the
inherent variability in complex geophysical data or dynamical
model output. To this end, we will use random functions or
“processes” as models and seek methods to determine how well
their statistical properties agree with those of geophysical data.
Random processes fall into various broad classes: scaling versus
nonscaling, additive versus multiplicativé, stationary versus
nonstationary, and so on. We shall focus specifically on the class
of scaling (scale-invariant) models. The challenge we take up is
to discover the simplest possible model within a class that best
fits the statistics of the data set. This “fitting” procedure is not
just an exercise in mathematical statistics. Scaling approaches
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have a strong theoretical basis. Indeed, we will deal with
powerful multifractal data analysis tools developed specifically
for turbulent cascade phenomenology on the one hand, and the
characterization of nonlinear dynamical systems (in their
“chaotic” regimes) on the other. Multifractal formalism has been
successfully applied to systems as complex as turbulence and as
simple as the logistic map. Being physically based,
scale-invariant analysis techniques and stochastic models are
always preferable to ad hoc mathematical approaches.

In short, we perceive scale invariance as a statistical symmetry
possessed by complex natural systems and hopefully by our far
simpler models of them as well. This opens the question of
possible violations of this symmetry, that is, “breaks” in the
scaling behavior. In fact, every realization of most stochastic
processes and every individual data set must break the scaling
symmetry somehow, simply because of its statistical character,
some types of event will not be properly sampled. Bona fide
breaks in scaling are interesting but must be statistically robust
features of the system, that is, addition of new data confirms the
break. For an example of this, see Cahalan and Joseph [1989],
and for a counter-example, see A. Davis et al. (The
scale-invariant structure of marine stratocumulus deduced from
observed liquid water distributions, II, Multifractal properties and
model validation, submitted to the Journal of Atmospheric
Science, 1994).

1.2. Scope and Overview

We will focus specifically on the scale dependence of
statistical moments of various orders. Let @(x) denote a generic
geophysical “signal” that represents the “field” which we are
interested in. For simplicity, we can imagine a time series or a
one-dimensional sounding (x can be either a time or a space
coordinate). We will be defining real nonnegative random
quantities dependent on scale (denoted r), as well as on positions,
that are somehow related to @(x), say ﬁq,(r;x). We wish to
determine the family of exponents A(g) in

Eglrs)) o< rAED (1

for as many real values of g as possible. The angular brackets
designate an ensemble average. In principle, this means leaving x
(and r) constant and varying @( ), that is, the “realization” or
“sample” of the random process. If the quantity §¢(r; ) is
“stationary,” the result will be independent of x in the theoretical
limit where all possible realizations have been accounted for. In
practice, we can only obtain an estimator of the moment in (1)
and some form of spatial averaging over x must be used to this
effect, especially when a single data set is available. The result is
therefore independent of x but in a trivial operational way; so we

~must be careful in choosing the quantity éq,(r; ). In principle, it
should furthermore be ergodic (spatial and ensemble averages are
equivalent); in practice, good theoretical evidence of stationarity
is strongly recommended. Because of our particular focus on the
issues of stationarity and ergodicity, we will carry the x
dependence throughout most of the following.

Other approaches look at the scale dependence of the
associated probability density functions (pdfs). These techniques
based on histograms call for a quantitative definition of an “order
of singularity” and a fractal characterization of their frequency of
occurrence; they lie outside of our present scope. In the
following we will use a sequence of graphics to describe the
successive manipulations of the data that lead up to the required
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families of exponents Ag(g), describing two relatively standard
multifractal statistics: singular measures and structure functions.
More mathematically written prescriptions can be found in the
literature for both of these, in moment and/or pdf representations.
It is also possible to recast and to generalize singular measures
[Arnéodo et al., 1988] and/or structure functions [Muzy et al.,
1993] using wavelets; Davis et al. [1994b] survey this approach
with geophysical applications in mind. Finally, it is important to
bear in mind that, although we will work entirely in one spatial
dimension, generalizations to higher dimensions are
straightforward, at least in isotropic situations; see Pflug et al.
[1993, and references therein] on how to accommodate
anisotropic ones. ;

Statistical stationarity is briefly discussed in section 2 from a
pragmatic viewpoint, using only the scaling of the wavenumber
spectrum, E(k)<<kP, and some examples drawn from the
literature. As it turns out, nonstationary (B>1) scale-invariant
signals are far more ubiquitous than their stationary (B<l1)
counterparts. Bearing in mind the nonstationarity of most
geophysical data, the two simplest scale-conditioned statistics,
singular measures and structure functions, are described in
sections 3 and 4, respectively, using a novel, more graphical
approach based on a small artificial data set. The key concepts of
intermittency and “multiaffinity” [Viscek and Barabdsi, 1991] are
illustrated with theoretical models and empirical findings, drawn
largely from the turbulence literature.

In section 5, we summarize and illustrate the two methods
with liquid water content (LWC) probings, and we underscore the
practical importance of the “g=1" or “mean” plane of multifractal
analysis. It is used here as graphical evidence that neither
multiplicative (turbulent cascade) models, nor their additive
counterparts (fractional Brownian motions) qualify for modeling
LWC or turbulent velocity fields. In a future publication we will
address the problem of stochastically modeling data with
multiaffine properties. The conditions under which the two basic
multifractal statistics can be related is discussed elsewhere [ Davis
et al., 1994a] within the framework of a unified approach that
systematically seeks effective constitutive laws (gradient field
connections) for the physical processes manifested in the data.

2. Stationarity and Stationary Increments
in Scale-Invariant Random Processes and
Geophysical Data Sets

We consider random functions @(x) defined on the segment
[0,L] and viewed as piecewise constant over L segments of length
1. In other words, L is the overall length of the data set and 1//1is
the sampling rate, making A=L/l the overall scale ratio which is
normally > 1. We generally do not know a priori if the discrete
sequence of A+1 measurements

9;=0(x;), x; =il i=0,1,...,A), 2

is representative of an average of the underlying field over a
distance [, or a quasi-instantaneous sampling of it, or some
nontrivially weighted mean. We do assume however that the
field is not extensively oversampled, that is, that ¢; is not an
average over a distance large in comparison with /; otherwise
each datum would be almost a statistical property of the
underlying field. We will also require that the signal ¢(x) be
“scale-invariant.” This simply means that there is no
characteristic scale in the process and that power laws will
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therefore prevail for all scale-conditioned statistics over the large
range of scales:

I<r<L. A3)

Scale invariance is most readily tested by computing E(k), the
energy (or power) spectrum of @(x),

E;= E(k), k; = i/L (i=1,...,A/2). C))
For a scaling process, one expects power law behavior
E(k) o kP ®

over the large range of wavenumbers k~1/r implied in (3). The
data set (2) will generally have an end-point discontinuity. In
some cases this will introduce a spurious scaling in (5) that can
mask the true one. If this problem occurs, it is easily dealt with
by “detrending” or “windowing” the data. Incidentally, these
operations do not make the data stream more stationary (in the
following sense) except at the very largest scales.

It has been argued [Mandelbrot, 1982; Schertzer and Lovejoy,
1987] that the spectral exponent [ contains information about the
degree of stationarity of the field/data set @(x); these arguments
are made more precise by Davis et al. [1994b] and A. Marshak et
al. (The scale-invariant structure of marine stratocumulus
deduced from observed liquid water distributions, I, Spectral
properties and stationarity issues, submitted to the Journal of
Atmospheric Science, 1994). If B<I, the process is stationary in
the most accepted sense of the word, that is, @(x) is statistically
invariant by translation in x. If B>1, we are in presence of a
nonstationary signal but this does not preclude the existence of
stationary features in the data. If B<3, the field has stationary
increments and, in particular, the small-scale gradient field will
be stationary. Many geophysical fields are non-stationary with
stationary increments (1<B<3) over some range of scales that is
always bounded above and below. An absolute upper bound
(say, R) to the nonstationary regime is required to keep field
values within their physically accessible range by limiting the
amplitude of large-scale fluctuations (hence a flatter, stationary-
type spectrum at low wavenumbers). The lower bound (say, n)
ushers in smooth (differentiable) behavior at smaller scales
(hence a steeper spectrum at high wavenumbers).

Our assumption in sections 3 and 4 will be nonstationarity
with stationary increments but, for simplicity, we will not
distinguish the physical range of scales [1,R] and the essentially
instrumental one [[,L] until section 5. Before describing
multifractal statistics, we illustrate stationarity per se and
stationary increments.

Examples of stationarity with intermittency. As an
illustration of scale-invariant stationarity, we have generated in
Figures la and 1b two multiplicative cascades which are
traditionally denoted &(x). These are constructed by initially
setting £(x)=1 on [0,L] then subdividing this segment into (say)
two equal parts and multiplying €(x) in each one by W and W’,
both unit mean nonnegative random variables drawn from the
same distribution. This procedure is repeated ad infinitum (but in
the figures, we stopped after 12 cascade steps). Stationarity in
the above sense follows from B=1-logy(W2) [e.g., Monin and
Yaglom, 1975). Since (W2)>(W)*=1 (Schwartz’s inequality) we
have log,{W2)>0; hence B<1. In Figures 1a and 1b the W values
are lognormal with different log variances leading respectively to
B=0.94 (Figure 1a, less spikyness and longer-range correlations)
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and B=0.77 (Figure 1b, more spikyness and shorter range
correlations); we return to Figure 1c further on.

This class of models was first introduced to account for the
effects of inhomogeneity (in the sense of intermittency) in the
dissipation field, e=-(d/0)u%/2, in fully developed
three-dimensional turbulent flows [Kolmogorov, 1962; Obukhov,
1962; Mandelbrot, 1974]. They are often referred to as
“turbulent” cascades, the intervals are viewed as “eddies” and
their subdivisions as “subeddies” or “daughter eddies”. Figure 1b
is more intermittent than Figure la and in fact quite
representative of the empirical findings of Meneveau and
Sreenivasan [1987] who investigated high Reynolds numbers

Ae(x) (a)
8
4
0 -
X 1
60 Ae(x) (b)
40
20
o_mki
0 X 1
Ae(x) ()
0 X 1
Figure 1. Scale-invariant multiplicative cascade models,

illustrating both intermittency and statistical stationarity, and kin.
(a) The multiplicative weights W follow a lognormal distribution
with logarithmic standard deviation Gy, =0.2 (and log mean
Winw=-02nw/2 Which guarantees (W)=1). (b) Same as Figure 1a
but for 6, =0.4; the same sequence of (exponentials of)
pseudonormal deviates was used, hence the similar distribution of
peaks. The spectral exponents are B=1-log,(W?) [e.g., Monin and
Yaglom, 1975], which is necessarily <1 since (Schwartz’s
inequality) (W2)>(W)?=1; in this case, we have p=0.94 and 0.77,
respectively. The second case is reminiscent of dissipation field
€(x) measured in fully developed turbulence [e.g., Meneveau and
Sreenivasan, 1987]. (c) The result of power law filtering in
Fourier space the cascade in Figure 1a, just enough to bring the
spectral exponent P from 0.94 to 5/3.
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flows in wind tunnels and in the atmospheric boundary layer. For
our present purposes, it is important to note how the apparently
conflicting concepts of intermittency and stationarity come hand-
in-hand within the framework of scale invariance.

A classic example of nonstationarity. Consider Brownian
motion where @(x) is the position of a random walking particle as
a function of time x (Figure 2b). We know that, taking ¢(0)=0
for convenience, the variance (p(x)2) of the process is
proportional to x which is proof of nonstationarity in the
one-point statistics, {(@(x))=0 notwithstanding. However, this
classic result can be reinterpreted in the framework of two-point
statistics: the variance of the “increment” @(x+r)-@(x), increases
linearly with r, independently of x (a good indication of
stationarity of the increments)..

Further examples of nonstationarity. Figures 2a and 2c
illustrate two versions of “fractional” Brownian motion (fBm)
that generalizes the above case [Mandelbrot, 1977, and
references therein] and provides further illustration of scale
invariance with nonstationarity but stationary increments; these
processes are parameterized by O<H<1 and f=2H+1>1. We have
H=1/3 and B=4/3 (in the rougher, less differentiable looking case)
and H=2/3 and B=7/3 (in the smoother, more differentiable
looking case).

The popular midpoint displacement construction procedure
was used: start with @g(x)=const, 0<x<L; take ¢(0)=¢o(0) and
@(L) as @(L) plus a zero mean unit variance Gaussian deviate;
generate another Gaussian deviate with variance [1-22H-1))22H
and obtain @(L/2) by adding it to the first-order piecewise linear
approximation of @(x) at x=L/2, namely ¢;(L/2) = [@(0)+@(L))/2;
now divide the variance by 22# and repeat for @(L/4) between 0
and L/2 (i.e., by adding to @,(L/4)=[@(0)+¢(L/2)]/2), on the one
hand, for @(3L/4) between L/2 and L on the other hand; proceed
similarly to smaller and smaller scales (up to 12 divisions in our
case). By construction, increments @ (x+r,)—@(x) at scales
r,=L/2" (n>1) are zero mean Gaussian with variances that are
weakly x dependent (as discussed by Peitgen and Saupe [1988,
and references therein]). In the small-scale limit (r,—0), their
statistical properties are similar to those of the random variables
©( )—@,( ) that are independently generated at 271 points in each
realization (their variances are [1-22(-D}/22Hnecy 2H) — The
model has exactly scale-invariant and stationary increments only
for H=1/2; otherwise, one can talk about asymptotical (r,
decreasing and the number of points involved increasing) scaling
and incremental stationarity. Notice that the limit H—1 leads to
a linear function @(x) with constant increments at a given scale in
every realization but normally distributed from one realization to
the next.

There are similarities and differences here with the previously
described construction of a cascade model. Both algorithms are
recursive, and this recursivity builds in the scale-invariance. The
other similarity (halving of intervals) is not so important in
comparison with the main difference, namely that the small scale
details are generated additively here and multiplicatively leading
respectively to nonstationarity and stationarity, previously. We
will see that additive models have simple scaling (a single
exponent determines all the others) while their multiplicative
counterparts generally call for an infinite number of exponents.

Smoothing stationarity into nonstationarity. Returning to
Figure 1lc, we illustrate a model due to Schertzer and Lovejoy
[1987], which calls for “fractional” integration (power law
filtering in Fourier space) of a multiplicative cascade. So this
model combines a multiplicative procedure with an additive one.
In this case, the cascade in Figure 1a was used, and the filter was
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Figure 2. Fractional Brownian motions, illustrating
nonstationary statistical scale invariance. (a) An “antipersistent”
case H=1/3 (B=5/3), Kolmogorov’s [1941] estimate for turbulent
velocity. (b) Standard Brownian motion with H=1/2 (=2). (c)
A “persistent” case H=2/3 (B=7/3), not uncharacteristic of
topography for which H=0.75 has been used [e.g., Mandelbrot,
1977]. The same sequence of pseudo-Gaussian random numbers
was used for implementing the midpoint displacement technique,
hence the similar positions of high and low points (at large scale).
The spectral exponent B=2H+1 decreases and, as observed, this
considerably hinders the small-scale “activity.”

chosen so that the final spectral exponent is 5/3, just as in Figure
2a (fractional Brownian motion). This is a typical case of
“spectral ambiguity.” A. Marshak et al. (submitted manuscript,
1994) discuss several other situations (both stationary and not)
where B alone is insufficient to distinguish radically different
types of statistical behavior. All of these cases can be resolved
with the help of multifractal analysis, which can be viewed as an
extension in physical space of scale-invariant spectral analysis.

3. Singular Measures, Averaging Absolute
Gradients Over a Scale

3.1. A Graphic Step-by-Step Tutorial

Figure 3a shows a L=A=16 point made-up data set ¢(x) that
will be used to illustrate both multifractal data analysis



DAVIS ET AL.: MULTIFRACTAL CHARACTERIZATIONS

o(x)
A
15

(a) Original Data

Figure 3. A tutorial data set. (a) A short artificial signal, @(x)
with 0<x<L, and (b) its next neighbor differences or small-scale
gradients, @(x+{)-p(x), where 1/l is the sampling rate. The total
number of points is L=L/I=16 and units of length, where /=1, are
adopted.

techniques (singular measures and structure functions) presented
below. Figure 3b shows the associated next neighbor differences:
AQ(1:x)=@(x+1)—@(x), taking ¢(0)=0. This notation is consistent
with (2) and (3) for r=I=1; the value of 1 in the first argument

 thus stands for the smallest scale of interest. This is generally not
the smallest resolution of the instrument; we will return to this
important issue further on (section 3.4 for turbulence and section
5.1 for a general discussion and an application to cloud structure
analysis).

In this section we describe a basic multifractal approach that
we will call singular measures. In the literature this technique
and its variants are known generically as “singularity analysis,”
but the expressions “functional box counting” [Lovejoy et al.,
1987], “trace moments” [Schertzer and Lovejoy, 1987],
“canonical measures” [Chhabra et al., 1989], “far)-analysis” (via
histograms) [Meneveau and Sreenivasan, 1989], “probability
distribution multiple scaling” [Lavallée et al., 1991], “double
trace moments” [Lavallée et al., 1993], etc., have also been used.

Defining a measure. The first step is to derive a stationary
nonnegative field from the data if it is not already in this
category. In our case (assuming 1<f<3), we can take the
small-scale differences

AQ(131) = QO+ = P )-Px) = Pia1~@ i=0,1,...,A-1
©)

with @¢=0 for simplicity. This new field has a spectral exponent
B-2 which is in (-1,1); so it is stationary, and it can be made
nonnegative simply by taking absolute values. Finally, we can
optionally normalize these to make their average be unity. These
operations yield

1AQ(1;x)!

e(lix) = (Ao’ x=0,...,

A-1, (Ta)
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with
A-1

(dp(LiN) =~ Y, Ag(1:x), (7b)
A=

as illustrated in Figure 4a. This €(1;x) is the only field of interest

to us in the remainder of this section. Note that the sign

information in Figure 3b is irretrievably lost.

This procedure for deriving a stationary nonnegative field is
the simplest. Others have been explored; see, for example,
Schmitt et al. [1992] (“fractional” derivatives) and Tessier et al.
[1993] (second derivatives). Lavallée et al. [1993] argue that the
details of the procedure do not influence the final results of the
singularity analysis. Other means of making the stationary field
nonnegative have been used as well, for example, Meneveau and
Sreenivasan [1987] take squares rather than absolute values, but
these two measures are linearly related in the sense of exponents.

Ergodicity and ensemble averages. Notice that in relation
(7b) we have used for (lA@(1;x)l) a spatial rather than an
ensemble average. This amounts to making an ergodicity
assumption, which is generally our only recourse in data analysis.
If a better estimate of the ensemble average is available, then it
should be used instead. For an in depth study of ergodicity issues
in the framework of multiplicative cascade models, see Holley
and Waymire [1992] and Gupta and Waymire [1993].

Coarse graining by spatial averages. Figures 4b and 4c are
obtained from Figure 4a by recursively summing two
neighboring values and dividing the result by two. We thus
define a series of ever more coarse-grained and ever shorter fields
e(rx), 0<x<A-r, for r=1,24,...,A (which we assume to be an
integer power of 2). The choice of degrading resolution by
factors of 2 is merely convenient and not essential to the
outcome. We have thus computed the average measure in [x,x+7]:

x+r-1

£(rx) =71 2 &(1:x"), x=0,... A-r. ®)

After each “zoom-out” in length scale, a usually spatial average
but preferably ensemble average of the new field is taken and the
result is denoted (€(r;x)). In (8), one usually samples the spatial
coordinate in such a way that the r-sized averaging boxes are all
independent (disjoint). This is what we have done in Figures 4b
and 4c where the €(r;x) fields for r=2,4 are represented as
piecewise constant functions over segments of length r.

Multiscaling. The next step is to determine the behavior of
these spatial and/or ensemble averages (£(r;x)), with respect to
the scale r. This is trivial in the present case because, {€(r;x))=1
independent of the scale r, due to the normalization. However,
this is only the first-order statistical moment of &(r;x), the g=1
case. We now repeat the above procedure for as many other
orders as possible, that is, we average €(r;x)?, g#1. This will
generally yield more interesting results because the small- and
large-scale averages no longer commute. Furthermore, g need
not be positive nor an integer, since we are dealing: with
nonnegative random variables. We illustrate with g=n=3.14-, in
Figures 4d-f. Notice how the higher-order moment emphasizes
the largest events. The g=1 and g=nt moments appear in Figure
5a (horizontal axis and upper curve, respectively), plotted versus
scale r using log-log axes. This type of plot is typical of
multifractal analyses.

Exponents and scaling range. That the marked points fall
along a straight line indicates that (g(r;x)?) has a power law
dependence on scale r; this scale-invariant character is typical of
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Figure 4. Averaging procedure for singular measures. (a) Absolute values of the data in Figure 3b, the (unit)
spatial average is also indicated. (b) The data in Figure 4a are averaged locally over every other neighboring pair of
pixels, then averaged globally. (c) The same procedure is repeated with the data in Figure 4b. Also indicated in
Figures 4a, 4b and 4c, are the measures p(r;x) = | ?’s(x’)dx’ for x=8 and r=1,2,4. The above global averages all
yield unity for the mean (first moment) of the coarse-grained field £(r;x) = p(r;x)/r. In principle (stationarity
prevails), this statistic is independent of x but in practice we must average over x to determine it (ergodicity is
assumed). (e)-(f) Same as Figures 4a-4c, except that prior to the global average, wth powers are taken after the local
average, thus emphasizing the most intense events. In both cases (g=1,T), we are seeking an estimate of the gth
moment {&(r;x)?) = [§> e9dP(elr), where dP(glr) = Prob{ese(r;x)<e+de}. These estimates for r=1,2,4,... and g=1,n
are carried over to Figure 5Sa.

many natural processes. (The oft-repeated fallacy that r\-K(q)
“everything is a straight line on a log-log plot” merely proves the (erm)?) ~ (Z) » 420.

ubiquity of scaling processes.) The slopes in Figure Sa define
two points of the function K(g), using a notation of Schertzer and  Typically, the proportionality constants (prefactors) depend only

®

Lovejoy’s [1987]. We can summarize our definitions in weakly on g, and the scaling is well respected. When interpreting
-Iogz<‘e(r;x)q> o /
1 2 3 4 0.4
0 — >
K(q=1) = 0 TR log.r 03
x e Z K@) o2
-1 _ 0.1 (b)
K(q=x) = 0.35 0 e s
(a) N 0.5 1 1.5 2 2.5 3 3.5 4
0.1 q

Figure 5. Obtaining the K(g) function. (a) The -log of the global averages (€(r;x)?) is plotted against the log of the
scale r of the local average for g=1 (circles) and g=~ (crosses). (b) The exponents (e.g., slopes in Figure 5a) are
plotted against the order g of the moment. The cases found in Figure 4 are highlighted, and the basic intermittency
parameter C; was obtained by numerical differentiation at g=1.
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(9); it is important to recall that the scale ratio r/L is << 1 in the
small scale limit, which i$ always the most reliably sampled. The
scaling range, where log(e(r;x)?) is roughly linear in logr, should
be the same for all g’s so this step normally calls for a certain
amount of graphical supervision.

We have plotted K(g) versus g in Figure 5b where one notices
K(0)=K(1)=0 and the convexity (d2K/dg2>0), all of which follow
directly from the definitions (see appendix). We have K(g)<0
only if O<g<1 which reflects the fact that, in this range, taking a
gth power necessarily reduces the fluctuations of &(r;x);
otherwise (g=1), we have K(q)20. Clearly, {e(r;x)?) in (9)
becomes very large in the limit r—0 if K(gq)>0. This can only
happen (for g>1) if the one-point pdf of the &(r;x) field is very
skewed in the positive direction, and, in turn, this justifies the
expression “singular” measures or “singularity” analysis. Unless
there are null values in the £(1;x) field used to initialize the
singular measures approach, one can take g<0 (with K(g)>0);
these values emphasize the (typically numerous) small events or
“regularities” in the € fields.

Obtaining a hierarchy of exponents. Using K(g) we can
define a nondecreasing function:

K(g)

g (10a)

Cl=

Its monotonicity follows directly from the convexity of K(g) and
K(1)=0 (see appendix). The nonincreasing hierarchy of so-called
generalized dimensions,

D(g) = 1-C(g), (10b)

were first investigated by Grassberger [1983] and Hentschel and
Procaccia [1983] in the context of deterministic chaos theory.

3.2. Various Degrees of Intermittency

To better appreciate the meaning of K(g), we begin with the
case of weakly variable fields, meaning that €(l;x)=1 hence
g(r;x)=1 for all x and all r. From (7)—(9), we see that such
quasi-homogeneous fields have K(g)=0; hence C(g)=0. Without
the normalization in (7a) this reads as {(e(r)?)~(e(r))? (with
{e(r))#1), an apparently innocuous statement one could make
using over-simplified dimensional arguments.

Now consider an example of extreme intermittency: &
functions centered at y, a random point in [0,L]. This yields
K(g)=g-1 hence C(g)=1, and D(g)=0, ¢>0 (i.e., all the activity is
concentrated into a single point). To see this, take
&, (x)=lim;_0,&,(;)=5(x-)); hence

x+r

o1 NN Ur, if x<y<x+r
ey(r,x) = rxj Les )dx'= {

0, otherwise

Taking y to be uniformly distributed on [0,L] and averaging
e(r;x)? over y, we get

L
L 1
(e(rx)?) = d[ gy(rx) dy /L = ’qu o< r'™, g>0,

ihdcpendently of x (stationarity).

Figure 6a shows a famous deterministic example of
intermediate intermittency, namely a uniform measure on
Cantor’s triadic set: C(g)=1-logz2=0.37---. The measure is not
spread out over the complete interval (dimension 1) as in the
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weakly variable case, nor concentrated into a single point
(dimension 0) as in the above & function case, but evenly
distributed over a sparse set of fractal dimension
Ds=log32=0.63--- and we have 1-C(g)=Ds.

3.3. Information Dimension and an Intermittency
Parameter

For g—1 we can use I’Hospital’s rule in (10a) to define a
straightforward measure of inhomogeneity in the sense of
singular measures:

Ci=C(l)=K’(1)=0. (11)
The inequality follows from K(0)=0 and the monotonicity of C(g)
in (10a), equivalently, K(1)=0 and the convexity of K(g).
Inhomogeneity in the sense of singular measures is the currently
accepted way of making precise the concept of intermittency in
turbulent data; for instance, above average events
(e(l;x)>(e(l;x))=1) are already concentrated onto a very sparse
fractal subset of space.

The intermittency parameter C; is related to the mean of &(/;x).
For a one-dimensional field, those events (singularities) that
contribute most to the mean (g(/;x)) occur on a set with fractal
dimension D;=D(1)=1-C;, also known as the information
dimension [Grassberger, 1983; Hentschel and Procaccia, 1983];
these events are far more intense than their average counterparts
(i.e., such that g(/;x)=1) in order to compensate statistically for
their sparse spatial distribution (in sharp contrast with Gaussian-
type processes, extreme event are far more rare but far more
intense). If, unlike our pedagogical exercise (C;=0.07), C; is not
too small and a very large range of scales is present (/<1), then
€(l;x) will look very singular or, colloquially, “spiky;” for an
illustration with Cy=0.115 and A=729, see Figure 6b. It is fair to
say that C; quantifies the intermittency, whereas the full
hierarchy of exponents C(g) is necessary to qualify it. Figure 6c
shows the D(g) exponents for different kinds and amounts of
intermittency.

3.4. Connections with Turbulent Cascade
Phenomenology and Chaos Theory

The choice of notation in (7)—(9) is deliberately similar to the
traditional one for the rate of dissipation of turbulent kinetic
energy (TKE), averaged over a volume r3 (centered at x) in the
theory of fully developed three-dimensional turbulence. This
physically important quantity can be empirically estimated a la
Meneveau and Sreenivasan [1987] by squaring the differences in
velocity u(x) along a one-dimensional transect which amounts to
taking |A@x)l=lu(x+l}u(x)?> in the above with I=n, the
Kolmogorov dissipation scale at the lower end of the scaling
range (known in this context as the “inertial subrange”). This is
one situation where we know the governing equations and where
it is possible to instrumentally resolve two entirely different
physical regimes: rgn where the dissipation term in the
Navier-Stokes equations dominate (and the flow is laminar), r>n
where the nonlinear term dominates (and the flow is turbulent).
It is also very clear where to focus (start) the singularity analysis
of the dissipation field e(/;x)o<lu(x+l)-u(x)12, namely at the
dissipation scale 1.

In Figure 6b we have illustrated the unfolding of a
multiplicative cascade, mimicking the breakup of eddies into
subeddies and the random redistribution of total (or average)
TKE flux. The dividing ratio is Ay = 3, the random weights are
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Figure 6a. The uniform Cantor measure as prototypical

multiplicative cascade on the unit interval. The dividing ratio is
3, so the number of /-sized pixels goes as 1/l = 3", where n is the
number of steps (n = 0,1,2,3 are illustrated here). The
multiplicative weights are always W) = W3 = 3/2 and W, =0; due
to this last value the number of “surviving” subeddies goes only
as 2" = N(I) = I™D%, so the fractal dimension of this set is
Dg=1logz2 = 0.63':-. Only the support of the measure (the set
where €(r;x)>0) is illustrated but we can compute {e(l;x)?) =
2"X[(3/2)"9+[3"-2"x09)/3"~1K@) for g>0, {e(l;x)7) = oo for g<0,
and (g(;x)) = 1. Solving for the exponent, we find K(g) =
(g-1)C; with Cy = 1-Dg = 0.37- for g>0, K(g) = = for g<0, and
K(0) = 0 (as always). The end product is highly intermittent, a
“dust” according to Mandelbrot [1977].

AD(q)

Homogeneity
- - - - Monofractality
0 log-normal (numerical)

- log-normal (theory) }Multlfractallty

o

0 1 2 3 4 5 6 7 8
Figure 6c. Qualifying and quantifying intermittency with D(q)
functions. Illustrated are both numerical and theoretical
multifractal results for -2<g<8, corresponding to a canonical
lognormal cascade, as illustrated in Figure 6b. Notice the
bifurcation at g¢=3; this is where sampling problems arise for the
single one-dimensional realization that we used. Schertzer and
Lovejoy [1992] have developed the theory for estimating gg.
Also illustrated is a typical monofractal result: D(g)=1-C(q)=D;,
a constant <1, for g>0 and e« for g<0. Notice that the
monofractal and the multifractal have the same amount of
intermittency (same D;=0.93) but a very different quality (as can
be seen by visually comparing Figures 6a and 6b). The
horizontal line at D(g)=1 represents a different amount of
intermittency, namely none at all (the corresponding field is flat
or weakly variable around some nonvanishing mean).

lognormally distributed and cascade steps 1, 2, 4 (inset) and 6
(main panel) are represented. The vertical scales give an idea of
the unbounded growth of the peaks, the so-called incipient
singularities, and the concentration on ever sparser subsets of
space is also notable along the horizontal axis. This is how
intermittency in turbulence is currently pictured. In the present
case the intermittency parameter is relatively small (C;=0.1) but
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Figure 6b. The development of a lognormal multiplicative
cascade and an illustration of C;. The same dividing ratio (Ag=3)
as in Figure 6a is used only the weights W are now lognormally
distributed. The inset shows the growth of the singularities
through the first, second and fourth steps. The sixth step is
illustrated in more detail: €(l:x) with 1=36=1/729 and 0<x<1.
The spatial average of this particular realization is =(g(/;x))=1 but
the scale-conditioned one-point pdf p(ell) is so skewed that the
most probable value gyp=1/2, while the value €; that contributes
the most significantly to the mean, €; maximizes ep(ell), is =2. It
can be shown [Parisi and Frisch, 1985] that the fractal dimension
of &, level set is D;=1-C}, where the selected parameters yield
C1=0.115. The complete family of exponents for such fields is
[e.g., Mandelbrot, 1974, Monin and Yaglom, 1975]
K(g)=log),(W?) with, in particular, B=1-K(2)=1-logM(W2)<1 (cf.
Figure 1).

the range of scales (A=729) is large enough to illustrate the basic
idea. For a cascade process with Ag= 2 and a comparable Cj, see
Figure 1b, where A is much larger (212 = 4096) hence more fully
developed singularities are present. Notice how an &(r;x)-type
measure is obtained directly and cannot be uniquely related to
any velocity-type function u(x). Notice also how in Figure 4 we
are essentially undoing a turbulent cascade with Ag= 2.

The idea of studying multiple scaling properties of coarse-
grained measures representing spatial distributions of some
quantity is not exclusive to turbulence theory. In deterministic
chaos theory, nonlinear systems simpler than turbulence are
investigated, ordinary differential equations (ODEs) or just
iterated functions instead of partial differential equations (PDEs),
sometimes even Hamiltonian instead of forced dissipative
systems. Still fractal structures arise (the strange attractors) and
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their complete characterization (via the invariant measure) calls
for a multiscaling approach [Grassberger, 1983; Hentschel and
Procaccia, 1983]. Halsey et al. [1986] describe in multifractal
[Parisi and Frisch, 1985] terms the geometrical meaning of D(g)
with their famous f(0) spectrum of singularities. The processes
in Figures 1a, 1b and 6b are often referred to as multifractals, but
we will now argue that, being necessarily stationary, they do not
encompass all possibilities of multifractal behavior.

4. Structure Functions, Taking Absolute
Differences Over a Scale

4.1. General Definitions and Properties

The difference between structure functions and singular
measures may seem minor but has considerable consequences.
We simply reverse the order in which we take the sums
(corresponding to the r-sized box averages) and the absolute
values; the subsequent operations of taking gth powers and
spatial/ensemble averaging remain unchanged. Bypassing the
optional normalization, the sum of r small-scale signed
differences is simply the difference over scale r. Instead of €(r;x)
in (7)—(8), we end up with

AQ(r;x) = Q(x+r)-@(x) = QX )—-0(x) = Q=93 i=0,1,...,Ar.

(12)

and we ask how the gth-order moment of l[A@(r;x)! scales with r.
In other words, what is the exponent {(g) in

(1 A@(rx)i) ~ (i) 4@ 50 13)

In practical situations, negative g values are problematic; see
Muzy et al. [1993, and references therein] for a theoretical
discussion based on discrete space random walks. In passing, we
note that (lA(p(r;x)Iz) is often referred to as the structure function,
mainly in the turbulence literature, or as a variogram in
geostatistics [e.g., Chistakos, 1992].

Figure 7 illustrates the two steps in the structure functions
method for the artificial data set in Figure 3. Notice that by
keeping the sign of the increment, the structure of the recursively
coarsened signal is retained. However, this stepwise approach is
mainly for comparison to Figure 4; the results presented in Figure
8, for both {IA@(r;x)l9) and {(g), can be obtained more efficiently
by returning to the original data and using directly the definitions
in (12)—(13). The spatial sampling strategy is a matter of choice:
one can average over disjoint the r-sized boxes as suggested in
our Figures 7a and 7b (effectively using only their boundaries) or
one can average over all A-r values of x; in (12) in order to
reduce the statistical noise.

By definition, we have {(0)=0 but this time no other exponent
is known a priori. As for singular measures, a general statement
can be made about the family of exponents: {(g) will be concave
(d2¢/dg?<0); see appendix. If the signal @(x) has absolute
bounds, it can be shown that {(g) is monotonically nondecreasing
[Frisch, 1991; Marshak et al., 1994]. At any rate, concavity
alone is sufficient to define a hierarchy of exponents using &(q);
namely,

(14)

which is nonincreasing (see appendix).
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Obtaining {(g) and/or H(g) is the goal of the method of
structure functions. As will soon be justified, processes with a
variable H(q) are called “multiaffine” [Viscek and Barabdsi,
1991], leaving constant H(g) processes to be “monoaffine”. For
an example, Anselmet et al. [1984] determined the structure
functions for wind tunnel turbulence up to order g=18 and found
a nonlinear {(g) from which a decreasing H(g) can be deduced.
The reader is also referred to Parisi and Frisch’s [1985] original
paper on the multifractality of turbulent velocity signals/fields for
the geometrical interpretation of the {(g) and H(g) functions in
terms of variable orders of singularity.

4.2. Various Degrees of Nonstationarity

Stationary process have stationary increments, but these scale
trivially due to the invariance under translation: {(g)=H(q)=0
(scale-independent increments). However, due to the effects of
finite spatial resolution, even theoretical models lead to
numerically small values of {(q) [e.g., Marshak et al., 1994]. At
the other end of the nonstationarity scale, we have continuous
functions with bounded nonvanishing first derivatives, yielding
A@(r;x)e<r (for almost every x) hence {(q)=q and H(g)=1.

Returning to Figure 2, we have three samples of fBm,
illustrating less and less stationarity: {(g)=gH or H(g)=H with
H=1/3, 1/2, 2/3, thus filling the gap between exact stationarity
(formally, H=0) and almost everywhere differentiability
(formally, H=1). The relation {(g)=gH has a simple probabilistic
meaning. Using (13), they imply {JAQ(r)|9)=(|A@(r)|), that is,
that the pdf of 1A@(r;x)l is narrow enough to enable a simple
dimensional argument to relate quantitatively all moments. In the
classification introduced by Waymire and Gupta [1981] such pdfs
are “short-tailed”. The Gaussian pdfs used in Figure 2 for fBm
provide a good example of weakly variable increments.

4.3. The Graph Dimension and a Parameter for
Nonstationarity at g=1

The g=1 structure function can be related to the fractal
structure of the graph g(@) of @(x), viewed as a self-affine
geometrical object in two-dimensional Euclidean space. In
Figure 9a, the concept of self-similarity is illustrated with von
Koch’s curve and in Figure 9b it is shown how this relates to
self-affinity and to the graph or roughness dimension
Dy(g) [Mandelbrot, 1977]. We have

H, =H(1)=C(1)=2-Dg(¢,)20. (15)
This immediately tells us that the largest possible value for H is
1, attained for (almost everywhere) differentiable functions which
have graphs of nonfractal dimension D=1, like any line or
otherwise rectifiable curve. At H;=0 (stationarity), we find
graphs that fill space: Dgp)=2. In analogy with C (information
codimension), we note that H; is in fact the codimension of g(¢)
and therefore provides us with a measure of smoothness, viewed
as antiroughness, in @(x).

It is also noteworthy that, for g=1 and as long as {(1)>0, (13)
is simply a statement of the stochastic continuity of the process
¢(x); that is, when r is very small, |A@(r;x)l is too (with
probability 1). So, within the framework of strict (r—0) scale
invariance, only stationary processes ({(g=0) can be
discontinuous and are (cf. Figures 1a and 1b).

It is fair to say that H; quantifies to first order the nonstation-
arity of the data since it parameterizes the linear term in {(gq) or
the constant term in H(g). At the same time, it is clear that the
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Figure 7. Averaging procedure for Structure Functions. (a) Same as Figure 4a but with the sign of the fluctuation
retained, absolute values are still used for the global averaging. (b) Same as Figure 4b but the local average is
weighted by the signs (this amounts to reckoning second neighbor increments), then absolute values are taken prior
to global averaging. (c) The same procedure is repeated with the data and signs in Figure 7b, resulting this time in
fourth neighbor increments. (d)-(f) The nth powers of (unsigned) values of the data in panels a—c are taken, prior to
averaging. These estimates of {|Q(x+r)-@(x)l9) for r=1,2,4 and g=1,T are carried over to Figure 8a.

whole {(g) or H(q) functions are needed to qualify the
nonstationarity completely. Figure 9c provides us with a
counterpart for structure functions of Figure 6c in singular
measure theory. We have plotted numerically obtained {(g) for
the three cases of fBm in Figure 2, showing more and more
nonstationarity (increasing Hy=min{H,1}). However, these are
all of the same kind of nonstationarity, namely monoaffine
processes with monoscaling structure functions (a single
exponent H determines all others). For contrast, we also show
C(g) for a “bounded” cascade model [Cahalan et al., 1990] which
is multiaffine since {(g)=min{qH,1} [Marshak et al., 1994], H
being, as for fBm, a smoothing parameter ranging from zero

Iogz<IA(p(r;x)I“>

12 / P
_<__X

10 Wa=m) = 0.71 x .o

8 f__----""3

6

¢ t(a=1) = 0.35 _ o

LT -5
2 ¢ —
0 4)

2 Iogzr

(standard singular cascades) to « (Heaviside step functions). We
used H=1/3, so all moments of order g>1/H=3 scale differently
from those of the associated fBm with {(g)=gH. Now fBms are
entirely additive in nature, and bounded cascades are entirely
multiplicative (at least by construction), so we expect
qualitatively different behavior, at least in some statistical
properties.

Scherizer and Lovejoy’s [1987] process in Figure 2c, a
singular cascade model smoothed in Fourier space, also proves to
be multiaffine as can be expected from a model with both a
multiplicative step (generating a cascade) and an additive one
(the power law filtering).

(b)

A
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q

Figure 8. Obtaining the {(g) function. (a) Same as in Figure 5a but for the logarithms of the global averages
{lo(x+r)-(x)|9), as obtained in Figure 7. (b) Same as in Figure 5b but for slopes obtained from Figure 8a.
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Figure 9a. The von Koch curve as a prototypical self-similar set.
The number of I-sized so-called Richardson yardsticks, N(J),
needed to measure the length of the curve grows as 4", where n is
the number of steps involved. As in Figure 6a, the cases
n=0,1,2,3 are illustrated here. The dividing ratio is again 3 so in
this case as well  goes as 1/3". So N(!)~I"Df can be solved for the
fractal dimension D¢ of this set which turns out to be
Di=logz4=1.26---. As for the Cantor set in Figure 6a, the
algorithm is deterministic but, in sharp contrast with it, details are
added to the basic template rather than subtracted out, via
multiplication by zero. Consequently, no intermittency is
generated (as in the multiplicative cases illustrated in Figures 6a
and 6b), unless we consider intersections of the von Koch curve
with lines.

4.4. Autocorrelation and Energy Spectra Revisited at g=2

It is important to realize that popular statistics such as the
autocorrelation function (@(x+r)@(x)) are not well suited for
nonstationary situations. In the case of {(Q(x+r)p(x)), the result
will depend not only on r but also on x. However, this may not
be obvious to the practitioner who uses x to compute the average!
Very misleading conclusions might follow but can be avoided if
we are able to decide a priori if a given statistic is applicable or
not. In essence, we need guidance as to what type of statistical
property is likely to be properly estimated by spatial averaging
procedures. If stationarity is an issue, as in the case of
{@(x+r)@(x)), and scale invariance prevails, then the spectral
criterion briefly discussed in section 2 (and more so by A.
Marshak et al. (submitted manuscript, 1994)) can be used.
Furthermore, we can devise a consistency check as follows.

The Wiener-Khinchine relation applicable to processes with
stationary increments [e.g., Monin and Yaglom, 1975] states that
it is the second-order structure function and no longer the
autocorrelation function that is in Fourier duality with the energy
spectrum. The scaling version of this statement tells us that the
spectral exponent in (5) is given by

B=C2)+1=2H(2)+1=>1. (16)
Noting that both B and {(2) can be computed by independent
methods from the same data, we see that (16) enables us to verify
the consistency of our assumption about stationary increments.

8065
A
o(x) (b)
W %
<[ N@2)
TT T | — >
r=1 r=2 r=4 X

Figure 9b. The connection between graph dimension Dy and H
for statistically self-affine functions. The plane (dimension 2)
can be covered with about r=2 boxes of size r and N(r)~r—Pe of
these are likely to intersect the graph. This is a good estimator of
the number of r-sized yardsticks needed to approximate the
function. Now the average number of boxes at any given point is
proportional to the mean increment over a scale r; so
(1QGe+r)-QCe))~N(r)/r2~rH1, hence Hy=2-Dy, equivalently, (15).
The argument is unchanged if the vertical size of the boxes is
changed in proportion with @(x); one simply talks about self-
affinity rather than self-similarity.
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Figure 9c. Quantifying and qualifying non-stationarity with
C(g). We use fractional Brownian motion with the same values
of Hy=min{H,1} as in Figure 2 and we consider -1<¢<5 to
illustrate different amounts of nonstationarity (different H;
values). The agreement is excellent between the theoretical result
€(g)=gH, and the numerical estimates, the scatter being due to
the change of realization for every different value of q. For
Hy=1/3, we have added {(g) for a qualitatively different
nonstationary model (bold line), namely bounded cascades which
have in this case {(g)=min{q/3,1} [Marshak et al., 1994].

For instance, if we find {(2)=0 and B<1, we can conclude that the
data have not only stationary increments but stationarity per se.

If (16) is verified (increments are indeed stationary), then we
can adapt the idea of autocorrelation to the (stationary) increment
fields. Consider the correlation coefficient between two
successive r increments:

(AQ(r+n)Ap(rin) / (Ap(r?) = 251 - 1, (17
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as can be seen by squaring and averaging the identity
AQ2rx)=AQ(r;x)+A@(r;x+r) and using (13) for g=2 at both r and
2r. Notice the positive correlation if 1<{(2)<2 (1/2<H(2)<1,
2<P<3), the negative correlation if 0<{(2)<1 (0<H(2)<1/2,
1<B<2); these cases are described as persistent and
antipersistent, respectively [Mandelbrot, 1977). If {(2)=1
(H(2)=1/2, B=2) as in Brownian motion, then the right-hand side
of (17) vanishes (uncorrelated increments). Figure 2 illustrates
all of these cases, and we see that the degree of non-stationarity
increases as we go from antipersistence to persistence in (17).

5. Geophysical Data and Stochastic Models
in the “Mean Multifractal Plane”

5.1. Practical Summary and Application
to Cloud Liquid Water Content Probings

We assume given an ensemble of N>1 data sets (indexed by
Jj=1,...,N), all representative of some geophysical field ¢( )
sampled at equal intervals I: @fx;), x;=il with i=0,1,...,A=L/I>1.
The important steps (and precautions) to take in a comprehensive
multifractal data analysis effort follow.

1. Establish the extent of the nonstationary scaling regime for the
data. This can be done in Fourier space by finding the range of
wavenumbers where the energy spectrum E(k) is well
approximated by a single power law with an exponent >1. The
same operation can be done in physical space using for example
the g=2 structure function. Both methods are recommended and
should yield consistent results (Wiener-Khinchine theorem). Call
this range nsr<R or, in pixels, nnsr/lsnR. For scales r>R, the
amplitude of the fluctuations must be attenuated (i.e., a flatter
spectrum at low wavenumbers); in other words, the signal
becomes stationary. For scales r<n, we generally expect smooth
behavior (i.e., a steeper spectrum at high wavenumbers);
however, a stationary noise of instrumental origin sometimes
dominates.

2. Compute structure functions for g in a predefined range. As g
increases, a single structure in the data will eventually dominate
the estimate of (IAp(r)I?), typically at some specific subrange of
scales; the scaling is broken but only due to sampling limitations
(see A. Davis et al., submitted manuscript, 1994). Higher values
of g are redundant. )

3. Define an ensemble of stationary measures. It is essential to
define the basic measures starting at the smallest scale of interest
M. First compute sj,,-o(n,xi), J=1,....N, iy = 0,...,nq-1 where i goes
from ip to A j-ny+l by steps of ny (all nyXN fields are to be
normalized jointly); then spatially degrade these, averaging over
all r-sized boxes covering the n,, XN fields.

4. Compute singular measures for g in a predefined range, not
necessarily the same as in step 2. High (absolute) values of g will
suffer from sampling problems since one event will eventually
dominate the statistic; as a rule of thumb, one can stop when
K(g) becomes linear. Indeed, if g is large enough, then
e(r; )qz[maxj,,-osj,i()(n,x,-)/r]q in only one of the r-sized boxes,
hence (g(r)?)<r~? and K(q)=q (not unlike & functions discussed in
section 3.2 but with a different offset); Schertzer and Lovejoy
[1992] discuss these issues on theoretical grounds.

If the spatial sampling is insufficient to resolve the transition
to smoothness described in step 1, one must proceed more
cautiously, at least in the singular measures approach. In this
case (where n</) there is no reason not to take small scale
differences as in our section 3 tutorial but there is no guarantee
that the corresponding exponents will not be instrument
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dependent either. We suggest testing the robustness of the K(q)
exponents with respect to taking differences over distances larger
than the pixel.

As an illustration of multifractal data analysis of real world
data, we now apply the above to a data base of particular interest
to the authors. Figures 10a—10e represent five cloud liquid water
content (LWC) time series measured by H. Gerber during the
Atlantic Stratocumulus Transition Experiment (ASTEX) from an
aircraft. Using the Taylor’s frozen turbulence hypothesis, we can
view each one of these 16385-point data streams as a
one-dimensional transect of the corresponding geophysical field,
sampled approximately every 8 m for an overall length (L) of 130
km. We will discuss elsewhere the experiment itself and present
more detailed spectral and multiscaling analyses of the database.

As previously observed [e.g., King et al., 1981; Cahalan and
Snider, 1989; A. Marshak et al. (submitted manuscript, 1994)],
the energy spectrum of this type of field follows a power law
with a Kolmogorov-like exponent =-5/3. In this case (Figure
11a), we find B=1.5 for wavenumbers ranging from k=k;;=2/L
t0 k=kppx=21%m;n, the average being taken over all five runs.
Press et al.’s [1993] routine SPCTRM was used (it averages the
partial spectra of two portions of length L/2) with a parabolic
window to control end-discontinuity effects. Over the
corresponding range of scales (64 mg r=1/k < 65 km), LWC is
nonstationary and we must focus on its increments. For smaller
scales the spectrum steepens (smoother fluctuations) as expected.
There is also evidence of stationary noise at the very smallest
scales (=16 m), probably of instrumental (or digitization) origin.
The multifractal properties {(g) for {A@(r)I) and K(g) for (e(r)?)
are derived as explained in sections 3 and 4 with further
averaging over the five data sets. The scaling is exhibited in
Figures 11b and 11c and both exponent functions are plotted in
Figure 12 for 0<g<5. On the one hand, structure function
analysis is performed over the full range of scales (/=8 m to
L=130 km) with good scaling from r = 23/ (64 m) to r=L/2 (65
km), as expected from that of E(k); a nonstationarity parameter
H,=£(1)=0.29 and a successful consistency check ({(2)+1=p) are
obtained. On the other hand, singularity analysis of the
associated absolute gradient field (see, e.g., Figure 10f) is carried
from r=23[ to r=L, yielding good scaling with an intermittency
parameter C;=K’(1)=0.08 (cf. Figure 12).

5.2. The “Mean Multifractal Plane,” a Guided Tour

Statistical moments of all orders are all important in different
ways. However, it is natural to have a preference and ours is the
mean pair (H,C;) at g=1 which can be easily visualized in a
plane. In practice, we can use the unit square for
one-dimensional signals since the natural ranges of both C; and
Hj are [0,1]. Indeed, if C; were to exceed 1 the mean of &(r;x)
would be divergent in D=1, making the normalization in (7)
impossible; these processes are consequently called degenerate
[Schertzer and Lovejoy, 1987].

As previously explained, C; measures directly the degree of
intermittency in the system, while H; directly measures its degree
of nonstationarity. Both of these fundamental parameters have
geometrical interpretations as codimensions. On the one hand,
we can find the information dimension of the cascade process
underlying the absolute gradient field from D=1-Cj, a first-order
estimate of sparseness in the distribution of strong gradients in
the system. On the other hand, we can find the roughness or
graph dimension of the signals produced by the system from
Dg=2-H,. Both parameters also have analytical meanings: H;
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Figure 10 (begin). Typical real-world data sets. (a)-(e) Five
horizontal transects of atmospheric cloud liquid water content
(LWC) sampled at 10 Hz, 8 m (/) at aircraft speed 80 m/s, and
130 km long (L) with L=L/I=21%=16384. The data were collected
with the PVM-100 (particulate volume monitor) on the C-131A
during the ASTEX experiment in June 1992; instrumental details
are described by Gerber [1991].
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Figure 10 (end). (f) Typical absolute gradients of the data in
panel (e) taken over a distance of 64 m (i.e., 8 pixels) which
defines approximately the bottom of the scaling range for both
the energy spectrum and the structure functions in Figures 11a
and 11b. For each data set we can compute 8 such fields; when
evaluating {€(r)?) in Figure 11c, we average £(r;x)? over all of
these, as well as over x and over the five files.
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Figure 11. The scaling range for the data in Figure 10. (a)

Ensemble-averaged energy spectrum: log,E(k) in arbitrary units
versus logy (kL/2). Wavenumber k ranges from 2/L (Press et al.’s
[1993] routine SPCTRM averages partial spectra of two portions
of length L/2) to the Nyquist frequency 1/2/ (i.e., log,(kL/2)=12)
but the B=1.5 scaling breaks down at log,(kL/2)=10. (b)
Ensemble-averaged structure functions: the {(g) function is
obtained by plotting logy{JAQ(r)i¥) against log,(r/l) for
g=1,2,3,4,5; the same scaling range is observed for r=1/k (from
N=23=8 to R=213=8192 pixels, 64 m to 65 km). (c) Ensemble-
averaged singular measures: same as in Figure 11b but for the
-K(g) function and logy{e(r}?), r going from =23 pixels (where
the absolute gradients are formed) to L=214.

and roughness are related to differentiability (or rather the lack
of), C; and sparseness are related to singularity.

In Figure 13, we show the mean or g=1 multifractal plane,
which we propose as a simplified diagnostic tool. We start by
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Figure 12. The {(g) and K(g) functions for the data in Figure 10
and its statistics in Figures 11b and 11c. The exponents {(g)
describe collectively the random functions in Figures 10a—e. The
K(qg) function describes the associated random measures (cf.
Figure 10f). Notice that K(g) becomes almost linear for our
highest g which means that a single event is dominating the
statistic; see Schertzer and Lovejoy [1992] for theoretical details.
The error bars are derived from the least squares fits that appear
in Figures 11b and 11c. We have highlighted the mean (g=1)
exponents H;=0.29 and C;=0.08 which appear in Figure 13. The
concavity of {(g) tells us that the atmospheric LWC field is
multiaffine (i.e., multifractal in the sense of structure functions);
the convexity of K(q) that its absolute gradients at scale ~60 m
are multifractal (in the sense of singular measures, that is, like
turbulent cascade processes).

mapping onto it the empirical results discussed in the previous
subsection for cloud LWC observed in marine stratocumulus
during ASTEX. We have analyzed elsewhere (A. Davis et al.,
submitted manuscript, 1994) LWC data sets captured during the
First ICCP Regional Experiment (FIRE) marine stratocumulus
experiment in 1987 off the coast of southern California. The two
points are very close in the plane: H;=0.28-0.29, C;=0.08-0.10.
This argues for a degree of universality in the dynamics that
distribute LW under quite different conditions, at least in this
type of cloud. For comparison, we have also indicated the
approximate locus of velocity (or passive scalars) in
three-dimensional turbulence as well as of the associated
dissipation field. We encourage the interested reader to find the
position of his/her own data using the methodology described in
the first sections of this paper and summarized early in this
section. This constitutes a first step toward finding a statistically
realistic model for the data which can be either dynamical or
stochastic in nature. In the former case we generally have a
smaller range of scales but, as long as there is an overlap, this
should not prevent implementation (cf. our tutorial with A=16).
(This situation will improve as computing power increases
anyway.) The latter case is discussed in the following and other
applications of (H{,C;) plots are discussed in the concluding
section.

The vertical and horizontal coordinates are, quite literally, first
order representations of the data according to singular measures
and structure functions, respectively. Given that K(0)=K(1)=0,
C1=K’(1)>0 indicates a nonvanishing K(g), hence a certain
degree of singularity in the stationary absolute gradient field. In
general, a greater Cy will also imply a broader spectrum of
singularities (more multifractality). Given that {(0)=0,
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Figure 13. The “mean multifractal plane” or (H;,C;) plot. See
sections 5.2 and 5.5 for detailed explanations and section 6 for
potential applications.

H;={(1)>0 indicates the need for at least a nontrivial linear trend
in the {(g) curve, hence a substantial degree of nonstationarity in
the original field, and we recall that H;>0 is also a statement of
stochastic continuity. In the following we will also project some
standard theoretical models onto the plane, only to find that they
tend to fall on the boundaries of the accessible domain,
(H.CE[O0,112.

Stationary scaling processes are necessarily discontinuous
(“jumpy”), and they all cumulate at H;=0 with C;20; these
include such well-used models as white noises (at C;=0) but also
multiplicative cascades (for C;>0). Apart from “degenerate”
cases (Cy>1), the most intermittent cascade models, including
Dirac 6 functions positioned at random on [0,L], are found at
C;=1 and (still) H;=0.

All monoscaling additive processes cumulate at C;=0
(non-intermittent gradients) with H;>0; for instance, standard
Brownian motion is found at H;=1/2. The entire class of almost
everywhere differentiable functions cumulates at H1=1 and (still)
C;=0; this is the single point where most dynamical modeling
takes place, since a natural requirement when numerically
solving PDEs is the existence of derivatives.

Above this point (H;=1, C1>0), we find Mandelbrot’s [1977]
“Devil’s staircases” (i.e., integrals of cascade models) which are
continuous and almost everywhere differentiable functions.
However, the most extreme case here (H;=1, C;=1) includes
discontinuous Heaviside functions (unit steps at random p~ints on
[0,L]), the singularity of a & function cannot be tamed by a simple
integration. This last example makes clear the need for other
multifractal planes. Indeed, Heaviside steps have B=2 (hence
H(2)=1/2<H(1)=H,=1), a value it shares with Brownian motion
(H(g)=1/2); the positions of these two models on the g=1 plane
resolve this case of spectral ambiguity.
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From this H;=C;=1 point back to randomly positioned &
functions (H1=0, C;=1), we find in particular fractional integrals
of these & functions: a single weak singularity lx-yI"H, y randomly
chosen in [0,L] (i.e., the convolution of a  function and a power
law with an exponent -H, O<H<1). In the same way, additive
processes can be viewed as fractional integrals of Gaussian
stationary processes along the horizontal axis (C;=0, O<H;<1).

It can be helpful to remember that all four corners of the unit
square in the (Hq,C;) plot are occupied by some well-known
mathematical or modeling tool (see Table 1). Most modeling
efforts operate entirely within first and last frameworks in Table
1: random models (usually in the very restricted sense of
d-correlated white noises) and deterministic (e.g., dynamical)
models, respectively. They completely miss the locus of the data
as do purely additive and purely multiplicative stochastic models
which lay on the horizontal and vertical axes, respectively. More
realistic models must live with the data, inside the unit square. It
is tempting to call them (multiplicative/additive) hybrids. In the
physics and turbulence literature, Viscek and Barabdsi’s [1991]
expression multiaffine is used to describe a process with a
nonlinear {(g) function. Alternatively, one could talk about
nonstationary multifractals [Marshak et al., 1994].

5.3. The Status of Multiaffine Modeling

Only a handful of specific non-stationary multifractal models
have been proposed to date. Schertzer and Lovejoy [1987]
models can theoretically reach any point in the (H;,C;) domain;
they suggest a power law filtering, another (Fourier space) way
of fractionally integrating, universal multifractals (i.e.,
continuous log-Lévy cascades, see below). Cahalan et al. [1990]
describe bounded cascade models with factors that decay to unity
as the cascade proceeds; Marshak et al. [1994] show these to be
multiaffine but their C; is essentially residual (i.e., a small value
traceable to finite resolution effects). Barabdsi and Viscek
[1991] suggest a modification of the midpoint displacement
algorithm that leads to a multiaffine model. Arnéodo et al.
[1992] obtain multiaffine processes by smoothing multiplicative
cascades with negative as well as positive factors. The
singularity properties of the gradient fields for these last two
cases have yet to be explored. The general ideas behind these
specific models, as well as many of their properties, will be
presented elsewhere, with applications to stochastic cloud
modeling based on multifractal LWC analyses in particular.

Benzi et al. [1993] have recently proposed a general
wavelet-based approach for simulating’ multiaffine fields with

Table 1. Four Comners of the Accessible (H;,C;) Domain,
Clockwise Starting From the Origin

H, C, Type of Stochastic Process

0 0 weakly variable (e.g., Gaussian) stationary
scaling processes

0 1 randomly positioned and randomly strong
Dirac 3-functions

1 1 randomly positioned and randomly high
Heaviside steps

1 0 continuous and almost everywhere

differentiable functions
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any given {(g) function. In the following we recall that this
automatically determines the K(g) function, although in a
nontrivial way.

5.4. Theoretical Summary and Discussion

Returning to the generic notations used in the introduction, we
have compiled in Table 2 the main definitions and general results
we have quoted; we also contrast the various concepts we have
mapped to the two multifractal statistics.

Inasmuch as €(x) is related to @(x) as in our data analysis
applications, {(g) and K(g) must somehow be related as well.
They represent two different ways of looking at the unique
multifractality of the geophysical system/model under
investigation. However, the connection cannot be trivial; recall
from sections 3 and 4 that important structural information on
@(x) is not used in €(x). Specific connections have been proposed
for turbulence, stimulating much discussion in the specialized
literature. At the very least, one more exponent is needed to
obtain {(g) from K(q) and we can take it to be H;. If a one-to-
one relation is known (or postulated) to exist, then C; can be
obtained from structure functions, as well and singular measures
become redundant. Davis et al. [1994a,b] discuss a method for
systematically seeking {(g)«>K(g) relations in data and offer an

Table 2. Definitions, Results and Concepts Related to the Two
Multifractal Data Analysis Techniques Surveyed in This Paper

Statistical Structure Singular
Operation Functions Measures
Input (0163) £(x)

Condition (E(k)~k—B) nonstationary (B,>1) stationary (Be<1)

and nature function measure (&(x)=0)
Erx =0 1AQ(rx)l = &(r;x) =

X+r

1
lQCe+r)—p)l L J’ e0e)dx’

x
Ag@ in (1) &) —K(q)
Solution(s) of Ag(g)=0 q=0 q=0,1

Exponent hierarchy H@)=l@lg  Cg)=K(g)(g-1)

Most significant

Hi=HD=41) C=Ccl)=K(®1)

exponent

Spectral property Be=C)+1>1 Be=1-K(2)<1

Analytical properties continuity but discontinuity and
nondifferentiability singularity

Geometrical property roughness sparseness

Statistical/dynamical . ) .

property nonstationarity intermittency
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interpretation of these as effective constitutive laws transposed
into scale-invariant language.

Finally, we note that alternative approaches to minimal
multifractal parameterization are possible. For instance, Tessier
et al. [1993, and references therein] estimate C; and an exponent
comparable to H; (not H(2) although related to B) that they view
as a parameter of nonconservation. Their methodology is
however different from ours; the estimators of both of these
parameters are subordinated to a third one of importance to the
specific (log-Lévy) class of cascades used to model the absolute
gradient fields. These were first introduced by Schertzer and
Lovejoy [1987] and form the basis of the concept of “universal”
multifractals.

6. Conclusions and Applications

Scale invariance is the most natural and productive framework
for data analysis when complex nonlinear geophysical processes
are at work and a large range of length and/or time scales is
involved. The signals detected in such situations are invariably
rough (nondifferentiable) and exhibit intermittency, especially in
their high-frequency (small scale) components. The first hurdle
in any statistical approach is to find the stationary features of the
data. To this effect we argue that the exponent of the power law
energy spectrum can be used to operationally separate stationary
(B<1) from nonstationary (f>1) behaviors. An overwhelming
majority of geophysical fields are in the latter category, at least
for the most readily measurable range of scales. However, one
can generally use the increments (or gradients over all observable
scales) in the data since they can be viewed as stationary as long
as §<3.

We describe and compare the two most straightforward scale-
conditioned data analysis techniques: singular measures which
are currently attracting the most attention and structure functions.
Singular measures call for integrating over a given scale
nonnegatively valued data with stationary behavior, which must
be somehow derived from the nonstationary source. Structure
Functions call for absolute values of differences in the original
nonstationary data stream over the same given scale. Then the
scale is varied, and a power law scale dependence in probability
distributions and/or gth-order statistical moments is sought. If
the range of scales involved is large enough, then the relevant
statistics are the exponents of the power laws. When moments
are used, each of the above approaches leads to a smooth function
about the nonstationarity. Both are illustrated using first a short
artificial data set and then a real-world case relevant to internal
cloud structure (marine stratocumulus are shown to have
multifractal distributions of liquid water for scales ranging from
~60 m to =60 km). Both techniques are also discussed in the
light of turbulence theory and observation, for which both
statistics and related multifractal concepts were developed in the
first place. We hold C;=K’(1) and H;={(1) to be the two most
important exponents of all and show how the (H,C;) plot or
mean multifractal plane is highlighted with a plethora of
empirical findings and theoretical models.

We advocate the use of both multifractal approaches in general
and the (H,C}) pair in particular, in any comprehensive effort to
analyze and/or cross-correlate a broad variety of geophysical
data. This includes in situ measurements and their counterparts
retrieved by remote sensing; also included are dynamical or
stochastic model output, as well as observed and simulated
radiation fields. In essence, any data set or signal, representative
of a geophysical field, is acceptable.
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Dual multifractal analysis is a straightforward and statistically
robust procedure to compare models and measurements, or
soundings and retrievals. Both the empirically and theoretically
inclined members of the geophysical community are called upon
to manipulate ever larger amounts of data and, for the moment,
little is known about what is of real interest in the other’s
database. This is partly due to different concerns but also to the
usually quite different ranges of scales involved. We strongly
believe that both sides of the community can find grounds for a
more quantitative level of communication by adopting scale-
invariant language. We have therefore underscored both the
richness and the simplicity of this conceptual framework.

Appendix: General Properties of Multiscaling
Exponent Functions

Let us describe the general properties of A(g) in (1),

(Er0)) o 1@, (A1)
where £(r;x) is a nonnegative quantity, somehow related to a
scaling field, which (1) depends parameterically on scale » and
(2) is stationary when viewed as a function of the spatial
coordinate x. Taking the logarithm of both parts in (A1) we get

In¢€(r;)?)

Ag=""" (A2)

We recall that the existence of a scaling regime implies that
rather little information on g dependence is hiding in the
prefactors, hence the equal sign in (A2).

Taking derivatives with respect to q in (A2) yields

Ay oy = VD

(=
and reiterating

(EPED (B’
e o o 9

A”(g) Inr

where & represents E(r;x). The inequality in (A3) is a direct
consequence of Schwartz’s; the equal sign is obtained only when
A(g) is a linear function of g. Recalling that Inr<0 (we use units
where L=1>»r), A”(g) must be negative too; so A(g) is concave
(in the broad sense).

It is easy to show that, for any concave (convex) function A(g)
with A(a)=0, the function B(q)=A(q)/(g-a) is nonincreasing
(nondecreasing) for any a. Indeed, if A(g) is a concave function
(A”(g)<0), then

F(g)=(g-a)*B'(@)=A'(g)(g - a) - A(g) <0, g>a, (A4)
since
F(@)=A"@)qa)<0, g>a, (A5)
and
F(a)=0. (A6)

Hence it follows from (A4) that B’(g)<0 which proves that B(g)
is a nonincreasing function for g>a. In case of g<a, it follows
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from (AS5) that F’(g)>0, and together with (A6), this proves that
F(g)<0, that is, B(g) is nonincreasing. If function A(g) is convex,
one can prove that B(g) is a nondecreasing function in analogy
with the above.

Consequently, {(g) in (13) is concave while K(g) in ) is
convex. Recall that K(1)=0 and {(0)=0. Thus taking a=1 and
using definitions (10a) and (10b) C(gq) is nondecreasing and D(g)
is nonincreasing, respectively, taking a=0 and using (14), H(g) is
nonincreasing.
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