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Optimal Weighting of Data to Detect Climatic Change:
Application to the Carbon Dioxide Problem
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Increasing carbon dioxide concentration in the atmosphere is expected to lead to warming of the
surface of the earth. Detection of the warming is difficult because it must be distinguished from natural
variability of temperatures due to daily weather changes. It is shown that a weighting of surface
temperature data using information about the expected level of warming in different seasons and
geographical regions and statistical information about the amount of natural variability in surface
temperature can improve the chances of early detection of the warming. Surface temperature data are
conventionally averaged over the surface of the earth, weighted according to the geographical area
represented by the data. A preliminary analysis of the optimal weighting method suggests that it is 25%
more effective in revealing a surface warming than the conventional weighting method, in the sense
that 25% more data analyzed in the conventional way are needed to have the same chance of detecting
the climatic warming. The possibility of detecting the warming in data already available is examined. A
rough calculation suggests that the warming ought to have already been detected if the only sources of

significant variability in surface temperature had time scales less than 1 year.

1. INTRODUCTION

It is the unpredictability of atmospheric behavior that
makes the discussion of climatic change both interesting and
difficult. Although the laws governing the behavior of the
atmosphere may by their very nature preclude detailed
predictions of the state of the atmosphere more than a few
weeks into the future, it may still be possible to say
something useful about probabilities of various future states,
that is, to predict climatic evolution. Predictions of climatic
change are usually for the evolution of climatic means. The
warming trend associated with increasing atmospheric CO,
is probably the best known example of such predictions.
Verification of predictions of climatic change is, however, a
more subtle problem than verifying weather forecasts. As
Leith [1973] points out, unambiguous detection of climatic
warming is hampered by the unpredictable variations in
temperature that would occur even in the absence of chang-
ing CO, levels. Only if the warming is large in relation to this
natural variability, or ‘climatic noise,” can one feel some
confidence that a true climatic change has occurred.

The warming due to the CO, increase may be difficult to
detect during this century at any one location on the earth
because the natural variability of temperature at a given
location tends to be high in comparison to the warming so far
expected there. However, the climatic noise in temperature
averaged over large geographical areas is much lower, and
the warming trend should be detectable much earlier in such
averages than in local temperatures. A pioneering study by
Madden and Ramanathan [1980] showed that by averaging
temperature data from many stations around latitude 60°N
the climatic noise ought to be lowered enough to make the
warming detectable very soon.

A number of different averaging schemes can be imagined
for computing globally averaged temperature. The most
straightforward is a simple arithmetical average of the data
from all reporting stations. The most natural is probably an
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average in which data from each area of the globe contribute
to the average in proportion to the geographical area they
represent. Hasselmann [1979] and Stefanick [1981] have
suggested constructing weighted averages designed to have
the best chance of revealing the climatic change if the change
occurs as predicted. The concept is similar to that of
designing a filter optimally tailored for detecting a signal in
radio or radar transmissions [Wainstein and Zubakov, 1962].
It can also be related to the problem of classification as
described, for example, by Anderson [1958]. We pursue this
idea here, concentrating on the problem of detecting the
warming due to increasing CO,, though the method is clearly
applicable to detecting climatic change of any sort.

In section 2 we derive the optimal weighting of data to
detect a predicted climatic change, and give a useful approxi-
mation for the weights. The weights are functions of the
predicted warming and of the covariance statistics of the
data. Data from a number of stations are assumed to be
available, but their geographical distribution need not be
particularly uniform. The weighting varies with season as
well as geographical location. The weighting derived is
intuitively plausible: areas and seasons where the warming is
expected to be large are weighted more. Areas and seasons
where there is a large amount of climatic noise are weighted
less. Correlations between stations are taken into account.

In section 3 we estimate the improvement that might be
possible using this. scheme to detect the surface warming
predicted for the northern hemisphere by the climate model
of Manabe and Stouffer [1980]. The estimated improvement
is about 25%, in the sense that one would need 25% more
data analyzed in the conventional way, using annual, hemi-
spherical averages, to have an equal chance of detecting the
climatic warming. The analysis of section 3 suggests that the
climatic warming ought already to be detectable. This is
discussed further in section 4. More general discussion of the
method and conclusions appear in section 5.

2. OpPTIMAL WEIGHTING

Derivation

To derive the weighting of data that has the best chance of
showing a global climatic warming if the warming is actually

11,161



11,162

occurring as predicted, let us suppose that a surface tem-
perature data set has been assembled that is as nearly global
as possible and goes sufficiently far back in time that the
statistical characteristics of the surface temperature before
the CO, warming has become significant can be established.
In practice, of course, few regions on the earth can boast of
temperature records going back more than a hundred years.
The procedure outlined here, when applied to an actual data
set to test for climatic change, will require additional as-
sumptions about the nature and magnitude of fluctuations in
the atmospheric state with time scales longer than a decade.
Such assumptions, which must derive from a physical under-
standing of the climate system and from proxy data sets
extending over longer periods of time, are inevitable in any
search for climatic change. We shall return to the problems
of dealing with a limited data set at the end of this section.
The earlier part of the temperature record, where the CO,
warming is supposed small, is used to establish the climatic
mean at each station, the level of variability to be expected,
and the amount of correlation between temperature fluctua-
tions at the various stations. Based on this information, a
weighting scheme is designed that has the best chance of
revealing a climatic shift when applied to the portion of the
temperature récord where a climatic change is predicted.
The derivation of the optimal weighting is considerably
simplified by using the concept of an ensemble, which was
introduced as a tool for discussing climatic change by Leith
[1973]. One imagines an ensemble of planets, identical to the

earth, but differing in the initial conditions for the atmos- -

pheres. The ensemble is constructed so that an average over
the ensemble would give the same statistics for the atmo-
sphere as would a time average over a single planet, in the
absence of changing boundary conditions such as the CO,
increase. A climatic shift due to an external disturbance such
as increasing CO, will appear as an increase, for example, in
the ensemble-averaged temperature. We denote averages
over the ensemble by angular brackets.

Suppose that data from S stations are used, in the form of
monthly averaged temperature 7,(¢) at each station s, 5 =
1, -+, S, with t labeling month and year. We suppose that
earlier than z = = (t+ ~ 1950, say), the CO, warming is small
enough that the effect of the warming on the statistics of the
time series can be neglected, so that, aside from the annual
cycle, the statistics of the data for ¢ < ¢- may be assumed to
be stationary. Temperatures T,(r) are expressed as devi-
ations from the climatic mean established from this earlier
portion of the data set, so that

(Tt =0 1=t (1)
In principle, of course, some interannual variability may be
attributable to external factors such as volcanic or solar
activity, and one would want to correct the data for these
effects, but until convincing quantitative estimates of the
size of these effects become available, such variability will
probably have to be included in the ‘natural variability” of
the climate.

The later portion of the data set Ty(z), t > t«, where
significant warming due to the CO; increase is predicted, is
expressed as deviations from the climatic mean established
from the earlier portion. Climate models attempt to predict
the warming AT(f) expected in the temperatures at the
various stations:

(T,(0)) = ATJ(1) t> 1t @
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The warming is a function of time because of the gradual
increase in CO, with time and because of the response
characteristics of the atmosphere-ocean system.

We cannot, of course, test the prediction (2) directly, since
we have access only to the data set Ty(t) from ‘our own’
planet. The warming trend at any one station may be
indistinguishable from natural variations in temperature until
the trend has become very large. But we should be able to
find early evidence of the warming by constructing a weight-
ed average of the data, averaging over stations and months
to reduce the natural variability. Denote this weighted
average by

S Tw
A= 3 3 wTft: + 1) 3)
s=1 =0

The average A starts with the (year, month) ¢, and ends Tw
months later. For example, the averaging period might be
chosen to be the year 1975, with £, = (January 1975) and Ty
= 11 months. The weight w,(¢) assigned to each station s may
depend on the month ¢ and so can vary with the seasons. The
weighting may be normalized to

22wl =1 @

5 t

We shall omit writing the limits on the sums from now on
since they do not change.

If the surface temperatures are behaving as predicted in (2)
by the climate models, then the expected value of the
weighted average (3) is

(A) = 2 2 w0 AT (t4 + 1) )
s t
However, the weighted average A obtained from our data set
will probably differ from zero whether or not the CO,
warming has occurred, simply because of the climatic noise
in averages such as those described by Leirh [1973] arising
from the natural, unpredictable variability of the atmo-
sphere. We therefore need some measure of the level of
climatic noise. Since A is a sum over many independent
data, its statistics are likely to be nearly Gaussian (normal).
A good measure of its natural variability is therefore its
expected variance, which can be computed from periods
identical in length to the one used in (3) but displaced many
years earlier to start at ¢_, when there is no climatic
warming. For example, we might choose ¢_ to be (January
1925).
Denote the weighted average over the earlier period
starting at 1_ by A_,

A_=3 2 w T+ ©)

s t

Its variance is

(AD) = <[2 > owe () Ty (- + tl):l

Sih

[2 > wi(t) Tplt- + l‘z)]>

S h

=3 3 ST w ) wi KT (1= + 1) Tot- + 1) ()

sios 4 h
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The quantity in angular brackets is just the lagged covariance
between temperatures at pairs of stations s; and s5:

Cslsz (tla t2) = <Ts, (t— + tl)Tsz (t— + t2)> (8)

In the period before the climatic warming, the covariance
should not depend on the particular year r_ for which it is
evaluated, though it will still depend on the season. A
discussion of variables with seasonally varying statistics has
recently been given by Hasselmann and Barnett [1981]. By
using all of the data before ¢+ and assuming that the climatic
statistics are stationary from year to year, we may estimate
(8) using standard statistical procedures. Let us therefore
assume that the covariance (8) has been obtained from our
data set. We are then able to estimate the variance expected
for A_ for any weighting as

<A-2> = 2 2 2 E Wsl(tl) wsZ(IZ)Cs,sl(tls t2) (9)

S8 4 b

The confidence with which we can assert that a climatic
warming has occurred depends on how large the ratio
AA_%' is. The larger the ratio is, the less likely is it that
the value for A we have obtained can be due to natural
variability. Since the statistics of A are nearly Gaussian and
(A_?)is the expected variance of A, confidence limits can be
established for A. The expected value of the ratio AKA_2)'?2
if the climate models are correct, is (4){A_%"?, where (A) is
given by (5). By choosing the weights w,(f) to maximize this
ratio we obtain a weighting scheme that is optimal for
detecting climatic change if it is occurring along the lines
suggested by the models. If the models are wrong and the
climate does not warm as much as they suggest, then the
weighting scheme will fail to show a climatic change, as
measured by A/A_%!2: in the absence of climatic change,
no matter what the weighting selected, this ratio will exceed
2 with less than 2.3% probability.

The weighting w,(7) that maximizes (4)/{A_%"2 can be
found in the usual fashion, by sefting the derivatives of the
ratio with respect to each weight equal to zero and solving
the resulting equations for the weights. The set of equations
obtained by this procedure is

2 2 Cy (1, 1wy (') = WAT(t4 + 1)

st

10

where W is a constant which must be adjusted so that the
weights w(r) are properly normalized as in (4). Note that (10)
is a simple linear equation for w(¢): the covariance Cy, (7, t')
is determined from the data before the warming, and AT,(z,
+ #) is the predicted warming. Provided that there are not too
many stations S and not too many months (T + 1), (10) can
be solved by straightforward numerical procedures. Howev-
er, an approximate solution to the equations can be found
that will prove useful.

Useful Approximation for Weights

To obtain some insight into the behavior of the weighting,
let us solve (10) approximately by assuming either that the
covariance C,.(t, t') decreases rapidly as the separation
between stations s and s’ increases and the number of
months between  and ¢’ increases or that wy(f) and AT,(¢, +
?) vary slowly with station position and month ¢ if C does not
decrease so rapidly. This may be a good approximation for
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surface temperature in middle and low latitudes where the
spatial variability in the statistics is comparable to the spatial
variability in the amount of warming expected. It may be
poorer in polar regions where correlations may extend over
distances large in comparison with the spatial variability in
the amount of warming there. It may also prove inadequate if
long-range correlations are found in monthly averaged sur-
face temperature as strong as those found by Wallace and
Gutzler [1981] in the 500-mbar geopotential height fields.
Having made these assumptions, define the quantity

Vs(t) = 2 2 Css' (t’ t,) (11)

s t
Roughly speaking, this quantity may be interpreted as the
product

Vi(#) ~ 2C(t, N7, (12)

where Cy(¢, 1) is the interannual variance of monthly aver-
aged temperature at station s for month ¢, N, is the number
of stations significantly correlated with station s, and =, is the
typical correlation time, in months, of temperatures in the
neighborhood of s. All of these quantities could depend on
season. Given the assumptions stated above, the solution to
(10) is approximately given by

wi(tYW = AT(t, + V(D (13)

Equation (13) shows that w(r) behaves as we might have
guessed intuitively: stations and months where the predicted
warming is large are weighted more; stations and months
where temperature variability is large are weighted less;
stations and months that are correlated with many others are
weighted less (since the information contributed by the
others is relatively less).

It is interesting to calculate the ratio {(A){A_%'? to see
how large it is expected to be if the climate models are
correct. By substituting (10) into (9) we obtain the exact
result

(A¥KA_?) = (/W) > 2 wiOAT(t, + 1) (14)
~ which is approximately given by
Ay [AT(r + )
an ZI g )

It is independent of the normalization factor W, of course.
Equation (15) may be interpreted as the signal-to-noise ratio
of the climatic change, or as the amount of ‘information’
about the climatic change that can be extracted from the
data. By choosing the weights according to (13) we have
extracted the maximum amount of evidence of climatic
change possible with a linear average of the data. If the ratio
in (15) is larger than, say, 4, we begin to have a reasonable
chance of discovering the climatic change in the data at the
2.3% significance level.

Since the signal-to-noise ratio is maximized when the
weightings are chosen to satisfy (10), the first derivatives of
the ratio with respect to the weights vanish. The power of
the optimal weighting method is therefore not sensitive to
small errors made in determining the weights.
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Fig. 1. The geographical zones into which the northern hemi-
sphere is divided. The area in steradians of each zone is shown
within each zone.

Special Remarks*

Determination of the optimal weighting requires an esti-
mate of the covariance matrix C, (¢, t'), since the weights
wy(f) are solutions of the linear equations (10) in which the
covariance matrix elements appear as coefficients. The
covariance matrix is not known exactly and must be estimat-
ed from a data set of finite length. Inevitable sampling error
in the covariance estimates must be kept in mind in imple-
menting the scheme described here.

Suppose, for example, that monthly averaged data from
100 stations are available for a period S0 years prior to the
time when significant warming is believed to have occurred
and that the optimal weighting for each station for each
month of the year is to be determined. Given this situation,
even assuming that there were no correlation from one
month to the next, one would be trying to estimate covari-
ances of 100 variables with 50 independent samples. An
eigenvalue analysis of the sample covariance matrix would
find at most 49 nonzero eigenvalues; i.e., the covariance
matrix would be highly singular.

Some care must therefore be taken that the number of
independent weights does not exceed the number of inde-
pendent samples available in the data set. One way to reduce
the number of independent weights is to divide the earth up
into regions within which the statistics are not too inhomo-
geneous, so that the station data are replaced by regional
averages. The weighting can then be determined region by
region instead of station by station. The analysis of the next
section provides an example of this approach. A slightly
more abstract but in principle quite useful approach is to use
a subset of empirical orthogonal functions to represent the
spatial variability of the data, as suggested by Hasselmann
[1979]. Allowance for seasonal variability in the weighting
can lead to sampling problems similar to those met in trying
to represent spatial variability of the weighting in too much
detail. Reduction of the number of temporally independent
weights can be achieved by parameterizing seasonal variabil-
ity of the weights with a few sinusoidal modes to represent
the annual cycle. It may be useful to model the correlations
in the data from one month to the next using low-order

autoregressive models such as those.described, for example,_.

by Jenkins and Watts [1968}, generalized to allow for season-
al variations in the statistics along the lines of Hasselmann

and Barnett [1981]. Monte Carlo studies-may be needed to

verify that the treatment of the data set is consistent with the
number of data available.
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Adjustment of the weighting at each station and month
independently to optimize the chances of detecting climatic
change may be prevented by the size of the data set, but
appropriately reducing the degrees of freedom in the weight-
ing and introducing statistical models for the covariance
matrix will allow one to make the best possible use of the
data set consistent with its size. The effort involved in
modeling the covariance matrix, if required, can be substan-
tial, but the matrix is interesting in its own right as a
statistical characterization of the atmosphere. Fortunately,
the effort need not be repeated to determine new optimal
weights w,(?) if later theoretical developments should lead to
different predictions of the climatic shift AT(f), since this
changes only the right-hand side of (10).

Once the covariance matrix is obtained and the optimal
weighting is determined, a theoretical estimate of the level of
natural variability in the weighted average A of (3) follows
from (9) and (10). If the data set is long enough, a more
satisfactory estimate may be obtained by simply applying the
weighting to successive portions of the data set before the
signal is believed to be significant and estimating the vari-
ability of the weighted average directly from the data. A
substantial disagreement between the two estimates would
indicate that the statistical model chosen for the covariance
matrix is a very poor representation of its actual nature,
including the possibility that a substantial amount of long-
time scale ‘noise’ is present in the data that cannot be
accounted for by using short-term statistics. In the latter
case, the investigator must return to first principles, identify
the source of the long—time scale variability, and either
remove it from the data or include it in the estimate of the
intrinsic climatic noise. Only when an acceptable estimate of
the noise intrinsic to the average A is obtained can one
establish confidence limits on whether or not climatic change
has occurred.

The intrinsic variability of A can be used to gauge how
well the theoretical prediction for climatic change as mea-
sured by A agrees with the value of A calculated from the
data. There is less than 5% chance of their differing by more
than 2(A_2%)"2 (two standard deviations).

3. APPLICATION TO THE CO; WARMING

We shall attempt here to estimate how much improvement
might be possible, using the weighting scheme described in
the previous section, in our ability to detect the climatic
warming produced by the CO, increase. The estimate is
necessarily a rough one, since the detailed statistical studies
of the temperature records needed to obtain a more accurate
estimate have not yet been done.

The weighting scheme is used to best advantage when the
weights are allowed to vary from station to station and from
day to day. Little is lost, however, by using monthly
averaged data, since the warming is believed to be occurring
slowly and since the variation of statistics with season
occurs mostly on this time scale. More is lost by not treating
each geographical region individually, but the covariance
statistics needed for such a treatment are not readily avail-
able. We shall therefore restrict ourselves to the northern
hemisphere, divided into three zones separated by latitudes
30° and 60°, as illustrated in Figure 1. This division is

suggested by the study of the statistics of zonally, monthly

averaged surface temperature by Weare [1979], who found
no significant correlation between temperatures averaged
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over 15° latitude bands on either side of latitudes 30° and
60°N, but did find significant (0.4-0.5) correlation within
each of the three zones of Figure 1. Zonal averages taken at
latitudes 15°, 45°, and 70° will be used to represent the
behavior of temperatures in the tropical, mid-latitude, and
polar zones respectively. We shall allow the weighting
factors in (13) to vary with season and from one zone to
another.

The weighting factors are given in (13) in terms of the
warming expected and the covariance statistics of the tem-
perature in each zone. We shall use values for the warming
taken from the climate model of Manabe and Stouffer [1980].
Values shown in Figure 2 for the warming are zonal averages
over continents and oceans. Manabe and Stouffer’s results
for a 1200-ppm concentration of CO, have been scaled down
by a factor [Ramanathan et al., 1979; Madden and Raman-
athan, 1980] of log 1.1/log 4 = 0.07 to obtain the warming
expected from a 10% (30 ppm) increase in CO, concentra-
tion. This corresponds to the increase in concentration
believed to have occurred since the early 1900’s to about
1972. The model results do not include the time-dependent
effects of the ocean heat capacity, which may delay the
warming by a decade or more [Offenborn and Grassl, 1981]
and alter its geographical character [Schneider and Thomp-
son, 1981]. For the covariance statistics of zonally averaged
temperature we use standard deviations of monthly average
1000-mbar temperature, averaged over seasons, computed
by Oort [1982] from 10 years of data beginning in 1963.
Standard deviations are shown in Figure 3. The spring and
autumn seasons are adjusted so that they are equal. Qur
estimates of the correlations in time and space of zonally
averaged temperature are based on the study of Weare
[1979]. Correlations between zones are neglected, and 1-
month-lagged correlations of the temperature in each zone
are estimated to have the values given in Table 1. Correla-
tions are assumed to be constant throughout the year.

Before investigating the use of the optimal weighting of the
data to detect the warming, let us evaluate the possibility of
detecting the warming in an individual zone. Let us compute
the ‘signal-to-noise’ ratio for the seasonal warming AT(r)
given in Table 1 for seasonally averaged (i.e., 3-month

1.0
WARMING DUE TO 10% INCREASE IN CO,
WINTER (DJF)
0751 SUMMER (JJA) ————
(°C) 05
_________ 1
0.25F L]
0.0 1 ]
0° 30° 60°  90°N
SIN (LATITUDE)

Fig. 2. Surface warming in degrees Celsius due to 10% increase
in CO, as a function of latitude and season, obtained by scaling the
results of Manabe and Stouffer’s [1980] calculation by a factor of log
1.1/log 4. Warming values expected for the high-, middie-, and low-
latitude zones are 0.49°, 0.35°, and 0.21° and 0.56°, 0.35°, and 0.24°C
for the spring and autumn respectively.
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Fig. 3. Standard deviations of monthly, zonally averaged tem-

perature for each season and zone. Values for spring and autumn are
forced to be equal and are 1.25° 0.35°, and 0.2°C for the high-,
middle-, and low-latitude zones respectively.

averaged) temperatures in each zone. The natural variability
of seasonally averaged temperature may be estimated using
Jones’ [1975] result for time averages,

1 N
T==-3 TG 16
NE O] (16)
over N months, where i labels the month:
_ My
Ty = —= (T 17
(T = (1) (17)
with
1
My=1+2]c[1——]+ ¢ 1—3 + e 4 N i
N N N
(18)

where (T%) is the variance of monthly averaged temperature
and c is the 1-month-lag correlation of temperature. We have
assumed that the temperature’s statistical behavior in time
can be adequately represented by a first-order Markov
process. The quantity My is the effective time, in months,
between independent samples in an N-month average.

The signal-to-noise ratio [AT{#)]*AT*) for unweighted sea-
sonally averaged temperature in each zone is shown in
Figure 4. We show the signal-to-noise ratio rather than its
square root because the ratio is linear in the number of data
used to detect the signal; that is, an average over two
seasons should have twice as large a signal-to-noise ratio as
an average over one season (neglecting correlations between
the seasons). None of the numbers in Figure 4 exceeds 4,
and so at the 2.3% significance level we would not expect to

TABLE 1. Lagged Correlations of Monthly, Zonally Averaged
Temperature, Assumed Independent of Season

1-Month-Lag Correlation

90°-60° 0.2
60°-30° 0.2
30°-0° 0.5
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SEASONAL AVERAGES
e ————— e —— a1}
WINTER —— ‘ I
SUMMER ~==-= | '
Q = |
2 2 +— | |
o | ]
uw i
%2} |
=] |
2 |
e ]
3 1
< )
4

S 1 l
7] i
T
l
i
i

o
1 1

o° 30° 60° 90°N
SIN (LATITUDE}

Fig. 4. The signal-to-noise ratio [AT{)PAT?) for seasonally,
zonally averaged temperature for the warmings indicated in Figure
2. Values for high, middle, and low latitudes are 0.4, 2.4, and 1.8 and
0.5, 2.4, and 2.5 for spring and autumn respectively. Ratios greater
than 4 represent a two-standard deviation warming.

detect the warming in the temperature averaged over a single
season. However, it is clear from Table 4 that if our estimate
of the level of variability of seasonal averages is correct and
if the warming is indeed occurring at the levels assumed
here, then by averaging over enough seasons we should be
able to see some evidence of a climatic warming. The
implications of the magnitudes of these ratios are discussed
further in section 4. Note that when the values in Figure 4
are divided by the area in steradians of each zone to obtain a
measure of the amount of detectable signal per unit area of
the earth, one finds a maximum value in mid-latitudes in the
summer, in agreement with the results of Wigley and Jones
[1981], although the values for spring and autumn in mid-
latitudes are close enough that on the basis of our calcula-
tions alone one could not rule these seasons out as being
more favorable.

We next investigate the improvement in our ability to
detect a climatic warming using the optimal weighting
scheme of section 2. Consider first the case of trying to
detect climatic warming for a single season. The weighting
for each zone is given approximately by (13) and (17):

wit) o AT(t)M(T?) (19)

where M; is defined in (18) and (T%) is the variance of
monthly averaged temperature for the season of interest.
These weights are shown in Table 2. Note that the polar
regions should generally be weighted much less than the
lower latitudes, except in the winter.

TABLE 2. Weighting Factors for Each Zone From Equation
(19) Optimally Designed for Detecting a Shift in Seasonal Mean

Temperature
Winter Spring Summer Autumn
90°-60° 1 1 1 1
60°-30° - 08 34 22 3.0
30°-0° 2.2 3.2 1.7 3.2

The factors have been normalized by dividing by the area of each
zone to obtain the weighting appropriate for each station for stations
distributed uniformly on the surface of the earth. The weighting for
the polar zone has been arbitrarily set equal to 1 for each season.
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TABLE 3. Change in Hemispherically Averaged Temperature
AT,, Defined in Equation (20), and Climatic Noise of
Hemispherically Averaged Temperature, (To*)'"?,

From Equation (21)

Winter Spring Sumrner Autumn
ATy, °C 0.34 0.30 0.25 0.33
{TH'2, °C 0.20 0.16 0.12 0.16

The hemispheric average warming AT, expected from a
10% increase in CO, is obtained from an area-weighted
average of each zone,

3
AT() = E Qj ATJ/Z’TT
j=1

(20)

where Q; is the area in steradians of zone j given in Figure 1
and AT; is the warming of that zone from Figure 2. The
climatic noise in the hemispherically averaged temperature
is estimated from

3
(T = T QXTI

j=1
where we use Jones’ [1975] expression (17) for the vari-
ance (T/%) in the seasonally averaged temperature of zone j.
We have neglected correlations among temperatures in the
different zones, which is suggested by Weare’s [1979] study
as mentioned above. In Table 3 we show for each season the
quantities AT and (To®"2. In Figure 5 we plot versus season
the signal-to-noise ratio for the hemispherically averaged
temperature and, for comparison, the signal-to-noise ratio
expected using the weights of Table 2, computed using (15).
Note that more is gained by using the weighting scheme in

the nonsummer months than in the summer.
Let us turn now to annual averages of the temperature.
Since the correlation time-is short in high latitudes (Table 1)
and the variance changes little with season in low latitudes
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Fig. 5. Signal-to-noise ratio as a function of season for seasonal-

ly, hemispherically averaged temperature and for seasonally aver-
aged temperature optimally weighted geographically using weights
from Table 2.
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TABLE 4. Weighting Factors for Annually Averaged

Temperatures
Winter Spring Summer Autumn
°—60° 1 0.7 1.3 0.8
60°-30° 0.8 2.3 2.8 2.3
30°-0° 1.7 1.7 1.7 2.0

Weights are normalized as in Table 2, with the polar winter zone
weighting arbitrarily set equal to 1.

where the correlation times are long, we may use (17) to
compute the variances of annual averages, with N = 12 and
(T% the annually averaged variance, with values for M,
obtained from (18) using the correlations listed in Table 1.

The optimal weightings for each season and latitude are
shown in Table 4. The normalization used is such that all
entries in Table 4 would equal 1 if the conventional area
average was optimal. The signal-to-noise ratio (4)%/(A4_2)
expected using the weights in Table 4 for a weighted average
over the northern hemisphere and over one year is found
from (15) to be

(AYKA_D = 14 22)

For comparison, the hemispherically (area-weighted), annu-
ally averaged surface warming (A7) (overbars here indicate
annual averages) calculated using (20) is 0.30°C, and the
standard deviation of hemispherically, annually averaged
temperature (T%)'? calculated using (21) is 0.09°C, so that
the signal-to-noise ratio (AT,)’ATy?) expected for hemispher-
ic annual temperature is

F\2 2
(aTo” _ (—(i) =11 23)

T  10.09

Thus, by using optimal weighting of the data, our ability to
detecta climatic warming is improved by about 25% relative
to using the more conventional hemispheric, annual tem-
perature as a measure of global warming, in the sense that
the weighted average produces the same signal-to-noise ratio
as would be obtained using the conventional average with
25% more data.

4. DiscussioN

In the previous section we estimated the signal-to-noise
ratio we should expect to see if the surface warming due to a
30-ppm increase in the CO, concentration in the atmosphere
were to occur as predicted. For area-weighted averages over
a single year of northern hemisphere data we obtained a
value for the ratio (ATP)/Ty?) =~ 11, or a 3.3 standard
deviation shift in the mean. The optimal weighting scheme
would give an even larger ratio. Such values would suggest
that the temperature rise since the beginning of the century
ought to be easily observable in the data. Recent analyses of
surface temperature data by Borzenkova et al. [1976] and
Hansen et al. [1981] do show a substantial temperature rise
up until the 1940’s, but this warming was followed by a
marked cooling, noted earlier by Angell and Korshover
{1977], during the period when the CO,-related warming
ought to be most evident. Although our main purpose here is
to investigate the use of the optimal weighting scheme for
detecting climatic change rather than to evaluate the chances
of detecting the climatic warming due to the CO, increase,
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the discrepancy between our estimates of the observability
of the warming and what the data actually show merits some
discussion. In any case, some of the considerations raised
here are likely to be issues in any search for evidence of
climatic change.

Let us try, then, to obtain a slightly more realistic estimate
of the detectability of the warming, including the effect of
having only a limited number of data to work with. Our
estimate of the signal-to-noise ratio depends on, among other
things, the accuracy of the predictions of Manabe and
Stouffer’s [1980] climate model. Most models of other work-
ers seem to predict similar amounts of warming, though
seasonal and geographical details vary. A few models have
predicted substantially smaller temperature increases, but
Ramanathan [1981] has identified physical processes left out
of these models that appear to explain the models’ lower
sensitivities to a CO, increase. The temperature increase
predicted by Manabe and Stouffer’s [1980] model is, howev-
er, for the eventual warming expected after the climate
system has equilibrated with the new atmospheric concen-
tration of CO,. The values we have used therefore almost
certainly overestimate the amount of warming that has
actually occurred because of the delay in the warming
caused by the large heat capacity of the oceans. Suppose we
use as a rough approximation to the atmospheric concentra-
tion of CO; an exponentially increasing function of the form

[CO,] (ppm) = 300 + 30V 1972025 (24)

which would assign to the year 1972 a 30-ppm increase of
CO; over the levels typical of the early part of the century.
The rise in the hemispherically averaged temperature, calcu-
lated as in section 3, assuming instantaneous equilibration of
the climate to the CO, concentration, would be given by

AT (°C) = 0.30~ 197212 5)

The results of Bryan et al. [1982] suggest that the effect of the
oceans is to slow the approach to equilibrium, with tempera-
tures reaching 60-80% of their equilibrium values within a
few years but requiring many decades thereafter to climb
appreciably further toward equilibrium. If their results are
taken as representative, the effect of the oceans is to reduce
the warming at any time to about 70% of the equilibrium
value, so that the temperature rise would in effect be delayed
about 10 years:

AT (°C) = 03¢0~ 19%/2 (26)

We turn next to our estimate of the natural variability of
temperature in the northern hemisphere. We have almost
certainly underestimated it, since we have assumed that data
are uniformly available over the hemisphere and that all
interannual variability can be explained by variability of the
atmosphere on time scales of a few months. The latter
assumption entered in our use of a first-order Markov
process with the 1-month-lag correlations given in Table 1. A
factor of 2 or 3 underestimate in the variance of the hemi-
spherically averaged temperature is not impossible. The
analysis of Yamamoto and Hoshiai [1979] shows a variance
of 0.26(°C)* for annually averaged northern hemisphere
temperature for the period 1951-1977. Combined with the
probable overestimation of the strength of the warming just
discussed, it is not unlikely that we have overestimated the
signal-to-noise ratio for the year 1972 by as much as a factor
of 410 6.
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TABLE 5. Probable Signal-to-Noise Ratios Using Data From Three Periods All Beginning in 1946
and Ending in 1975, 1980, and 1985 Respectively

Hemispheric, Annual

Averages Optimal Averages
Probability Probability
Period Covered Signal-to-Noise <2a Signal-to-Noise <20
by Data Ratio Warming Ratio Warming
1946-1975 2.3 68% 33 57%
(19461957 vs.
1968-1975)
1946-1980 4.6 44% 6.6 28%
(1946-1959 vs.
1971-1980)
1946-1983 8.7 17% 12.6 6%
(1946~1962 vs.
1975-1985)

The second column shows the signal-to-noise ratios that can be achieved by subtracting means over
the two spans given in parentheses below the ratios. The fourth column shows probable signal-to-noise
ratios resulting from the optimal seasonal and geographical weighting scheme described in section 3
and also using an optimal weighting of each year based on the signal (26) believed to be present. The
third and fifth columns show the probability of seeing less than a two-standard deviation change in the

climate during the period.

One should also keep in mind that the signal-to-noise
ratios given are only the most probable values. Even if the
predicted (most probable) warming is 3.3 standard devi-
ations, for example, there is still 1 chance in 10 that natural
variability would lead to a mean temperature more than 1.3
standard deviations lower than the most probable mean, i.e.,
that we would reject the hypothesis of climatic change at the
5% significance level since the warming for that year would
be less than 2 standard deviations.

The chances of detecting a warming are obviously im-
proved by comparing averages over many years instead of
the average temperature for just a single year, since the
signal-to-noise ratio increases roughly linearly with the num-
ber of years averaged over. On the other hand, the strength
of the predicted warming decreases earlier in the century,
and the early portion of the data set must be kept in reserve
to establish the climatic norm with which averages over the
later data are compared. To see what values the signal-to-
noise ratios might reach by averaging over many years
within these constraints, let us examine the possibility of
detecting a warming using data from 1946 to recent times.
Assume that the signal grows exponentially as in (25), with
the 10-year delay due to the oceans included. Assume also a
more conservative estimate of the variance of hemispherical-
ly, annually averaged temperature of 3 X 0.008(°C)> =
0.024(°C)? (i.e., 3 times as large as the estimate obtained in
section 3), and assume that there is negligible correlation in
the temperature from one year to the next.

As a measure of the warming, let us compare the mean
temperature over a span of N, years ending near the present
to an earlier span of N,-years starting from 1946. The
difference between the two means has an intrinsic variance
(A_?%), in the absence of any warming, given by

1 1\
AHY=—+ —| (T 27
(A-% ( N Ny) (1) 27
where (T?) = 0.024(°C)? is our estimate of the variance of the
annually averaged temperature. The expected difference
between the two means is

(8) = @D, - @D (28

where (A7), is the average of (25) over the N, earlier years,
and (AT), is the corresponding average for the later N, years.
By adjusting N, and N,, we can find the choice that
maximizes the signal-to-noise ratio (A)?/(A_%) and gives us
the best chance of finding a significant difference in tempera-
ture between the two periods.

This has been done for three periods ending in 1975, 1980,
and 1985 respectively, and the resulting maximum signal-to-
noise ratios are shown in the second column of Table 5. For
comparison we show in the fourth column of Table 5 the
improvement possible using the optimal geographical and
seasonal weighting scheme described in section 3, which
gives a 25% improvement in signal-to-noise ratio, and in
addition weighting each year of data in the record so as to
take maximum advantage of the exponential trend expected
in the data, which gives another 13% improvement over
simply comparing means from the end and beginning of the
record, as was done in the second column of Table 5.

In the third column of Table 5 is shown the probability of
finding less than a 2o warming in hemispherically averaged
temperature (and so concluding that there has been no
climatic change at the 5% significance level). It is remarkable
that even with 30 years of data (1946-1975) there is still
almost a 70% chance of seeing less than a two-standard
deviation warming over that period. It must be remembered,
of course, that our assumptions for the noise levels and
signal strengths are rather conservative: we have decreased
the signal-to-noise ratio by a factor of 3 from what our
original estimate would have been by using 0.024(°C)? for the
variance of the annually averaged temperature; we have lost
another factor of 0.49 by including the delaying effect of the
ocean and a factor of 0.6 because the warming during the 30-
year period is only 75% as large as what occurred since the
beginning of the century; and with only 30 years of data
some additional noise is introduced in not being able to
establish the climatic mean before the warming (i.e., the first
term on the right-hand side of (27)).

On the other hand, given our assumptions, there is less
than a 7% chance of seeing hemispheric cooling during this
period, which is what actual surface temperature data seem
to show [e.g., Borzenkova et al., 1976; Yamamoto and
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Hoshiai, 1979; Hansen et al., 1981]. This suggests that one
or more of the assumptions on which Table 5 is based are
wrong. The warming may be less than has been predicted
and delayed by the oceans more than we have assumed.
Equally likely is that there is more long-term variability of
the climate than our estimates have allowed for. Many
sources for such variability have been suggested. Some of
the variability may eventually be accounted for and removed
from the data, such as that due to material deposited in the
atmosphere by volcanic activity [Mitchell, 1961; Robock,
1981; Hansen et al., 1981]. Some may be due to the
integrating effects of the ‘slow’ components of the climate
system, such as ice sheets, the deep oceans, vegetation, etc.
[Hasselmann, 1976]. Much work needs to be done in estab-
lishing limits on the likely magnitude of variability from
these sources to make unambiguous detection of the CO,-
related warming possible soon. In several more decades,
with continued increase in the CO, concentration, the effects
of the warming should be clear enough that subtle statistical
considerations may not be so necessary.

5. CoONCLUSION

The optimal weighting of data described here is designed
to increase the probability of detecting a predicted climatic
shift in the data. In an ideal world, the prediction of the
climatic change would be made before scrutinizing the
available data. In practice one must trust that a prediction
based on sound physical principles is objective enough that it
can be considered to be determined independently of the
knowledge gained from study of a data set.

Implementation of the method requires that a data set be
long enough that a satisfactory estimate of the noise level in
the data set can be made. As climate model runs become
longer and the ability of climate models to represent the
natural variability of the climate improves, it may eventually
be possible for the models themselves to suggest optimal
weightings of data sets to detect climatic change.

As with any statistical method designed to detect lorng-
term trends in data, the method described here assumes that
all long-time scale variability, apart from the suspected
signal, can be accounted for as a statistical residue of
shorter-time scale processes, in the same way that Leith
[1973] has expressed variability of climatic averages in terms
of shorter-term statistics. Estimates of the noise level on
time scales comparable with the length of the data set must
be based on theoretical and modeling efforts. For detecting
the CO, warming in surface temperature data one needs a
data set at least 30 years long, and preferably longer. It
seems likely from the analysis of the previous section that
some additional information about longer-term variability is
going to be required.

The approach described here generates, in effect, a linear
filter that converts a many-variable time series into a single-
variable time series best suited to revealing a predicted
climatic change. If new variables are admitted to the averag-
ing scheme, the power of the method to detect the climatic
change is increased, if the variables added are not highly
correlated with the ones already included in the average. In
this sense an ideal index of the climatic change would be a
weighted average of all atmospheric variables for which
sufficient data can be assembled. However, one is inevitably
faced with the problem of verifying that the cause of the
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climatic change revealed by the index is indeed the one
postulated. The forces which affect climate are so intercon-
nected that documentation of the climatic change in some
detail is required before one begins to feel confident that the
true source of the climatic change has been identified. This
requires that different atmospheric variables be analyzed
separately to see if each is behaving according to model
predictions. Unfortunately, the greater the detail with which
one looks at the data, the smaller the signal-to-noise ratio
becomes, so that one must wait longer to verify climatic
change in detail than to see the first evidence of it.

There may be some tendency for global climatic change, at
least at the surface of the earth, to occur in much the same
way no matter what its external cause, as Wigley and Jones
[1981} have remarked, so that identification of the cause of
the change may be difficult. The atmosphere may ‘prefer’ to
vary on long-time, global scales in only a few ways. To the
extent that this is true, the optimal weighting will tend to be
uniform in time and space. Considering the inhomogeneity of
the statistics on the earth, the tendency for the estimates for
the weights obtained in section 3 toward uniformity is
already remarkable. This may also be evidence that a kind of
‘fluctuation-dissipation’ relation may be governing the be-
havior of the atmosphere, although it is not clear how a
result of this nature might be derived from Leith’s [1975]
formulation of the idea.

Despite this tendency, it appears that observations of
other variables might enable one to distinguish the warming
due to the CO, increase from that due, say, to an increase in
the solar output. Madden and Ramanathan [1980] remark,
for example, that the CO, warming should be accompanied
by stratospheric cooling.

Although the method described here can in principle be
used to construct an optimal test for climatic change that can
be applied to an entire data set, a more satisfactory use of it
might be to construct a kind of annual index of global
temperature from the optimal weighting for a year of data, as
was done in the example in section 3, with different seasons
and geographical areas weighted differently, and then to
construct a time series of these yearly averages, which can
then be treated in much the same way as the more familiar
time series of global, annually averaged temperatures. Ep-
stein [1982], for example, has discussed in some detail tests
aimed at detecting climatic change in a time series of globally
averaged temperatures. Such methods could be applied to
the time series of optimally weighted annual averages.
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