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ABSTRACT

A search for climatic change predicted by climate models can easily yield unconvincing results because of
“climatic noise,” the inherent, unpredictable variability of time-averaged atmospheric data. We describe a
weighted average of data that maximizes the probability of detecting predicted climatic change. To obtain the
optimal weights, an estimate of the covariance matrix of the data from a prior data set is needed. This introduces
additional sampling error into the method. We show how to take this into account. A form of the weighted
average is found whose probability distribution is independent of the true (but unknown) covariance statistics
of the data and of the climate model prediction. A table of critical values for statistical testing of the weighted
average is given, based on Monte Carlo calculations. The results are exact when the prior data set consists of

temporally uncorrelated samples.

1. Introduction

Weather prediction, seasonal forecasting, and pre-
diction of climatic change have as a goal foreknowledge
of the atmosphere’s future states. To this end, models
are built reflecting as much as possible our under-
standing of the processes that govern the atmosphere’s
behavior and its interactions with land and ocean. Our
understanding is tested by comparing the model pre-
dictions to what the atmosphere actually does. The na-
ture of the comparison and the degree of success ex-
pected vary considerably, depending on how far into
the future we try to predict. . ’

General circulation models, on which weather fore-
casts are based, attempt to produce a picture of the
atmosphere accurate on a spatial scale of hundreds of
kilometers and a time scale of hours. The forecasts are
sensitive 1o knowledge of the initial state of the at-
mosphere, and a forecast accurate out to a week is still
cause for celebration. Verification of a weather forecast
is based on a comparison of the forecast with the ob-
served state of the atmosphere on a point by point
basis. The forecast and the real atmospheric state are
expected to agree with one another much better than
two randomly selected states of the atmosphere.

Seasonal forecasts do not pretend to predict the fu-
ture state of the atmosphere day by day, but attempt
instead to say something about the probability distri-
bution of the weather during a season. The forecast is
less dependent on initial conditions of the atmosphere,
though Shukla (1981) has offered some evidence that
the atmosphere may retain information about its initial
state out to a month or two. Much of the predictability
of the atmosphere out to a season or more is expected

to originate in the slowly varying “boundary condi-
tions” such as the state of the oceans, soil moisture,
snow cover, sea ice, and processes affecting radiative
properties of the atmosphere. A seasonal forecast at-
tempts to improve our odds of being right about the
average weather during a season over what we can al-
ready guess from climatology. However, a single sea-
sonal forecast, at least for the present, offers such wide
latitudes in its predictions of what could happen that
a history of many forecasts must be built up before a
fair idea can be obtained of whether the forecasts are
providing any extra information. Evaluation of sea-
sonal forecasts is therefore a subtler problem than eval-
uating weather forecasts.

Climate forecasts are based on changes in boundary
conditions, and they predict changes in the probability
distribution of future weather, Initial conditions of the
atmosphere are generally ignored in making these
forecasts. Verification of climate forecasts has all of the
problems that verification of seasonal forecasts has, ag-
gravated by the scarcity of cases where climatic change
is big enough to detect. We shall be primarily interested
here in the problem of detecting climatic change when
a model prediction is available to suggest what to look
for and when the expected change, or “signal,” is in
danger of being obscured by the natural variability of
time-averaged atmospheric data, the “climatic noise™
characterized by Leith (1973). One of the best known
problems of this sort is that of trying to detect the
warming of the earth’s surface believed to be occurring
due to the increasing CO, and other trace gases in the
atmosphere. Many decades from now the warming is
expected to be so great that sophisticated statistical
analyses of data will not be necessary to show it. How-
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ever, we would like to see the first signs of it as soon
as possible in order to begin checking our understand-
ing of the process.

It will be helpful for the discussion that follows to
recall briefly some of the probabilistic concepts asso-
ciated with predicting atmospheric behavior. A more
thorough treatment of these ideas may be found in the
excellent discussions by Lorenz (1969) and Leith (1971,
1974).

Let us denote by &(¢) the set of fields completely de-
scribing the state of the atmosphere at a given time ¢,
Although a great deal of effort is expended in gathering
data about the atmosphere from all over the world, the
data we collect are not perfectly accurate—measure-
ments are never perfect—and in any case we are miss-
ing details of the state of the atmosphere too fine for
our observational net to catch. We shall denote by x
the vector of variables describing the atmosphere that
can be obtained from our observing system. The vari-
ables x might, for instance, consist of temperature,
moisture, and winds at the grid points of a general
circulation model. The variables x tell us about the
state of the atmosphere £ at the grid points of the model
(but with errors due to the inaccuracies in the observing
system); they do not specify what happens in between.
The variables evolve in time. Models of the atmosphere
try to predict this evolution, based on the initial con-
ditions x, = x(f) and, in the case of long-range fore-
casts, data about the state of the boundary conditions,
like sea surface temperature, which we denote by the
vector bg.

When a forecast is attempted at a given time #;, many
different initial states £ of the atmosphere are consistent
with what we know about the atmosphere from the
observing network, x,. We can at best specify a prob-
ability distribution for the initial state £(¢;). All of these
possible initial states &(fp) would be effectively indistin-
guishable to our observing network, giving observations
equal to xp to within the errors of the measurement
and data analysis scheme. '

The dynamics of the atmosphere are unstable; there
is good reason to believe that two nearly identical states
of the atmosphere will, in general, evolve within a few
weeks to states that appear to the casual observer vir-
tually unrelated to each other. Differences initially
confined to small spatial scales eventually show up on
all scales. This is what makes weather prediction chal-
lenging. The dynamics of the atmosphere dictate how
each of the possible states £ evolves in time. The prob-
ability distribution for & spreads out due to instabilities
in the dynamics. The observations x that each possible
state would generate likewise diverge from each other
with time. :

We therefore introduce the probability distribution
P{x(t)Ixo, by, L] for the possible observations x of the
atmosphere that could follow from what we know
about the initial state of the atmosphere, x5, and
boundary conditions, by. The very best model that we
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could hope to construct would predict P. We are far
from being able to do that.

Models tell us something about P[x(¢)|xq, bo, fo]. Ex-
actly what they tell us depends on their complexity and
on how far into the future they try to predict. Weather
forecasting, for which ¢ — 1, is less than a week, inte-
grates the dynamical equations of the atmosphere for-
ward in time starting from Xy, produces a single forecast
x(f), and makes no attempt to estimate the uncertainty
in the forecast. It is up to the individual forecaster to
judge how much weight to give the numerical forecast
based on his prior experience with the model. For fore-
casts of a few days the probability distribution remains
comparatively narrow, and a single forecast is useful.
Information about the width of the probability distri-
bution P may be obtained with ‘“Monte Carlo” fore-
casting (Leith, 1974; see also Epstein, 1969), in which
multiple forecasts are made starting from many differ-
ent initial conditions near x,. A variation on this ap-
proach recently investigated by Hoffman and Kalnay
(1983) may make this method operationally feasible.
(See also Dalcher et al., 1985.)

Because the probability distribution P is relatively
narrow for the time scales of weather forecasting, com-
parisons of model predictions with atmospheric data
can be quite specific. When there is a major discrep-
ancy, say, between the 24-hour forecast of the 500 mb
geopotential height over the central United States and
the observed height field at that time, the modeler is
as inclined to examine the parameters of his model as
he is to ascribe the discrepancy to inadequate knowl-
edge of the initial conditions.

As we move to prediction times ¢ ~ £, characteristic
of seasonal and climatic forecasting, P[x(f)|xo, bo, %)
is becoming quite broad, comparable in fact to the cli-
matic probability distribution typical of the season at
the time ¢. We shall denote this climatic probability
distribution by Py(x, ). It represents the probability
distribution  of observable atmospheric variables,
known to a certain extent from historical records. The
explicit dependence of P, on time ¢ is retained to allow
for diurnal or seasonal variation of the climate. If our
models were perfect, and we could run the models
starting from a range of initial conditions and boundary
conditions typical of the present-day earth, we would
find that the predictions P[x(f)|xq, bo, %] average out
to Py(x, t); i.€., the model climate equals the observed
climate. Seasonal forecasting tries to provide predic-
tions P narrower than P, by taking advantage of the
extra information xg, by.

To compare the predictions P with actual atmo-
spheric behavior is a more difficult task than is the case
for weather predictions, because we can no longer af-
ford to ignore the probabilistic aspect of seasonal and
climatic forecasts. In fact, to make any progress at all
we must begin to limit the number of variables to be
studied. One reason for this has been described by
Hasselmann (1979). He considers as an example (which
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FIG. 1. The probability of detecting climatic change in p uncorrelated Gaussian
random variables z;, i = 1,- - -, p, using two methods. Before the climatic change, all
variables have zero mean and variance o*. After the climatic change, variable z; has
mean 2¢; the remaining variables have mean zero. The first detection method checks
whether the x2 variable ¥ z? is significantly different from 0. The second detection

method checks each variable individually to see if it is significantly different from zero. -

The proper way to conduct such a test is described by Livezey and Chen (1983). Both
tests are conducted at the 0.05 significance level. The dashed line shows the probability
of obtaining a (false) positive result if there were no climatic change.
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we modify slightly) a case where p Gaussian random
variables z; ({ = 1, - -, p) vary independently of each
other with mean 0 and variance ¢°. Suppose that the
mean of the first variable z; has shifted by 2¢ (we can
always change to a new set of variables so that this is
the case) and that we try to detect this “climatic change”
in the system with a single observation of the variables
z. One way to look for a change is to check whether
the quantity >, z?, which is a measure of the distance
ol

of z from its (former) mean 0, is unusually large. The
range of values it would have if there were no change
in the mean (which we shall refer to as the acceptance
interval') can be looked up in probability tables for a
chi-squared variable with p degrees of freedom. A
change in the mean is identified with confidence only
if > z? lies outside this range.

1

We have plotted in the lower curve in Fig. 1 the
probability that, if the mean of z; were actually 20
instead of 0, >, z? would fall outside the acceptance

1

"When ¥ z2 falls within the “acceptance interval,” we need not

i
conclude that we must accept the hypothesis that the climate is un-
changed, as Hayashi (1982) has emphasized; only that, with the ev-
idencs at hand, we have no reason to reject the hypothesis (at the
specified confidence level). This caveat applies throughout this paper
to the use of the term acceptance interval.

interval (at the 95% confidence level) for a x? variable
with p degrees of freedom. This is the probability that
we would detect climatic change. Note that even when
variable z, is tested alone (p = 1), there is still a 48%
chance of failing to detect its climatic change at the
95% confidence level. As the number of variables tested
increases, the probability of detection decreases. This
is because 'the acceptance interval for the x? test in-
creases with the number of variables to take into ac-
count the increasing chance of large random excursions
of some lincar combination of the variables.

Another way we might look for a climate change in
this example is to examine each variable individually
to see if it is unusually far from its mean 0. Any one
variable should fall within O % 1.960 95% of the time,
if there were no climatic change. However, with p vari-
ables we must move the boundaries of the acceptance
interval to values larger than +£1.96¢ so that the prob-
ability of all p variables lying inside their respective
acceptance intervals is 95%. Livezey and Chen (1983)
give a detailed discussion of this. If we then calculate
how probable it is that we detect a climate change when
the mean of z, shifts by 20, we obtain the upper curve
in the plot shown in Fig, 1. Note again the decrease
with increasing number of variables, although our
chances of succeeding are better than with the x? test.
The reason for this improvement is that by testing each
variable individually we are favoring detection of cli-
matic change occurring in one variable alone (as hap-
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pens in our example), whereas with the x? test we are
testing for a shift in the climate involving any linear
combination of variables.

-As this example illustrates, testing for a difference
in the probability distribution P from Py must be done
judiciously. If we examine too many variables we risk
being unable to say anything with much confidence.
In the example above it is obviously wisest to choose
to concentrate on the first variable z,. Part of the re-
search effort in seasonal and climate forecasting is de-
voted to discovering what “z,” is; that is, what variables
are most likely to reveal significant differences from
climatological behavior. These variables tend to de-
scribe time-averaged atmospheric behavior on large
spatial scales, because dynamical instability of the at-
mosphere reduces the predictability fastest of shorter
time scale, smaller spatial scale variations of the at-
mosphere. Moreover, the information we have about
the boundary conditions b, is usually for the more
slowly varying components.

The approaches to verifying seasonal and climatic
forecasts differ somewhat because of the different na-
ture of the forecasts. Seasonal forecasts generally do
not predict shifts in the mean of the probability dis-
tribution P away from the climatic mean more than
one standard deviation. A forecast might indicate in-
creased probability of higher seasonal temperatures,
say, but nothing that had not been experienced several
times in the previous 20 years. Verifying such a forecast
would tend toward showing that the variance of the
actual behavior of variables from the predicted behavior
for the season is less than it would have been for a
forecast based solely on climatic means. The test de-
scribed by Preisendorfer and Mobley (1984) is in this
spirit.

Predictions of climatic change, on the other hand,
are usually based on single events, such as a change in
the radiative properties of the atmosphere or charac-
teristics of the surface. We cannot easily average over
successive forecasts, as we can with seasonal forecasts,
in order to make the comparison -of model and data
statistically stronger. To compare a model prediction
of climatic change with what actually happens, we must
be able to find a set of variables for which the individual
climatic event is large enough to be detected over the
natural variability.

The numerical example given above suggests that
the fewer the number of variables we initially limit
ourselves to the more likely we are to be successful. In
that example it is obviously best to look for climatic
change in the first variable alone. The choice is not so
obvious when we look for climatic change in real data.
Models typically predict small changes spread over the
entire globe, and the best variable to look for evidence
of the predicted change is some sort of global average
_of the data. Once a variable is chosen, methods de-
scribed, for example, by Epstein (1982) or Katz (1982)
can be explored for identifying climatic change in the
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variables. Livezey (1985) gives a useful review of recent
work on statistical methods for evaluating climatic
anomalies in general circulation model data.

It is the purpose of this paper to discuss a method
of forming a weighted average of global data that max-
imizes the signal-to-noise ratio for a given climatic
change. The method is closely related to a technique
described by Hasselmann (1979) for discovering the
pattern of climatic. response to external forcing, in
which a small number of “guesses” about the nature
of the climatic response are statistically modified to
obtain from observed anomalies as statistically signif-
icant an estimate of the pattern of climatic response
as possible. Here the emphasis is more on comparing
a single “guess” for the climatic response—a climate
model prediction, for instance—to atmospheric data
in a way that produces as statistically strong a conclu-
sion as possible. Hannoschéck and Frankignoul (1985)
describe an interesting attempt to implement Hassel-
mann’s (1979) ideas with a climate model, but remark
that the sampling theory for these techniques is not
well developed. Some progress with the sampling theory
described here for the optimal weighting method may
be directly applicable to the problems encountered in
using Hasselmann’s (1979) approach.

The optimal weighting method was described in an
earlier paper (Bell, 1982), and the reader may find
helpful 'the derivation given there of the optimal
weights. An alternative derivation using probabilistic
arguments is given here, but the bulk of the present
paper is devoted to making quantitative estimates of
the effect on the method of having only a finite amount
of data to work with when using the method.

In section 2 which follows we shall show that a prop-
erly weighted average of data maximizes the probability
of detecting a change in the climate when 1) a model
prediction of the change is available to guide in the
choice of the weighting and 2) sufficient prior data are
available to obtain good estimates of the covariance
statistics of the variables inciuded in the average. A .
critical value for the weighted average can be estab-
lished such that if the weighted average of the data
exceeds this critical value, then we can conclude that
the climate has changed. In addition, the weighted av-
erage of the data can be tested to see whether it falls
within an acceptance interval centered around the cli-
mate model prediction for the most probable value of
the weighted average. [See Eq. (2.27).] If the climate
model were incorrect and the climate had in fact not
changed, this test would maximize one’s chances of
detecting the discrepancy. The weighted average picks
out from among the variables for which there are data
the “direction” in which the data are most likely, given
the climatic noise, to show a significant difference de-
pending on whether the climate conforms to the new
climate predicted by the model or to the climate prior
to the change. More detailed comparisons of the model
with the data are of course desirable, but will be ham-
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pered by the increasing likelihood that differences be-
tween the two can be attributed simply to natural vari-
ability.

In section 3 we relax the assumption that unlimited
prior data are available. The distribution theory for
this problem is relatively undeveloped in the statistical
literature, so far as we can tell, and so it is developed
here. We show that with a finite amount of prior data
the acceptance interval for detecting climatic change
must be enlarged, and the chances of detecting climatic
change are correspondingly reduced. It is shown that
when data for p variables are used to form a weighted
average, and N independent samples of prior data are
used to estimate the covariance matrix of the variables,
then the acceptance interval for detecting climatic
change with optimally averaged data must be increased
by approximately a factor n/(n — p) (where n = N
— 1) over what it would be if we had unlimited prior
data. The approximation is quite accurate for most
purposes. ‘

In section 4 we show that because of the effect of
the finite prior data set on the statistics of optimally
weighted averages, the advantages of the optimal
weighting can be nullified by including too many in-
dependently weighted variables in the average. A
method for choosing how many variables to keep is
described. Section 5 provides a summary of the optimal
weighting approach and some conclusions. Two Ap-
pendices give some details of the statistical sampling
theory calculations.

2. Optimal weighting of data to detect a predicted
change in climate

a. Philosophy

We describe here a probabilistic approach to the
derivation of the optimal weighting of data to detect a
change in the climate. We assume that a climate model
prediction is available to guide in the choice of the
weighting, and that sufficient data are available, or a
sufficiently advanced model, so that the covariance
statistics are accurately known for the variables of in-
terest. This approach allows us to investigate the effect
on the weighting of uncertainties in the predicted cli-
mate change or of a change in the covariance statistics
as the climate changes. :

The philosophy behind the approach described here
is not the only one that leads to the statistical quantity
proposed at the end of this section to compare actual

data to a climate model prediction. The problem can .

also be formulated in terms of classifying atmospheric
data into one of two populations: one that is charac-
teristic of the undisturbed climate and one that is char-
acteristic of the altered climate predicted by the model.

Both approaches lead to a quantity known in the sta- °

tistical literature as the discriminant function intro-
duced by Fisher (1936), a discussion of which may be
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found in Anderson (1958). Some applications of mul-
tiple discriminant analysis for meteorological problems
have been described by Miller (1962).

Suppose that a climate model predicts climatic
change over a certain span of time ¢, to £,. For con-
creteness we may take this period to be 1 yr long. Data
from that period are collected and some averaging of
the data over seasons and geographical areas is done.
(One might, for instance, average the station data over
latitudinal zones.) The result would be values for p
variables which we shall denote by Y;, i = 1,-+ -, p,
representing, for example, seasonally and zonally av-
eraged surface temperature for the period ¢ to £,.

In the absence of a model prediction, we expect the
observations Y to occur with probability described by
the climatic distribution Py(y), introduced in the pre-
vious section.? The climate model supplies us with an
alternative probability distribution P(y). We are there-
fore presented with two hypotheses #, and #; con-
cerning the data Y:

#o. the data Y are drawn from a population de-
scribed by the climatic distribution Py(y);
#. the data Y are drawn from a population de-

scribed by the climate model prediction P(y).

Our task, then, is to find evidence for or against one
of the hypotheses by devising a suitable test of the data
Y. In formulating this test we shall make certain as-
sumptions about the nature of this problem:

(i) The probability distributions P, and P are
Gaussian. Since the data Y; themselves represent av-
erages over many measurements, this is a reasonable
assumption, but it should be verified for the particular
choice of variables. Some examples of such an exam-
ination of meteorological quantities may be found in
Parthasarathy and Mooley (1978) and White (1980).

(i) The probability distribution P(y) is about as
broad as Py(y), at least on global scales, and so it is
essentially the shift in the mean that defines the change
from P, to P. This differs from the case for verification
of a seasonal forecast, where some additional help is
to be gained from the narrowing of the distribution P
relative to Po.

(iii) The shift in the mean is not very strong, so we
are advised to test for the change in the mean for only
a few variables or risk being unable to say anything
with much confidence, as was discussed in the Intro-
duction. In order to maximize our chances of success,
we shall reduce the problem to testing a single variable.

(iv) We have only one chance to make the test since
the events producing climatic change generally do not
repeat themselves: carbon dioxide levels will rise only

2 We shall use upper case letters to denote quantities obtained
from the data and lower case letters to denote characteristics of an
underlying statistic population.



15 AuGusT 1986

once, volcanos rarely inject aerosols into the strato-
sphere with the same spatial distribution, etc. In this
respect also the problem we face differs from that of
verifying seasonal forecasts, since each new season of-
fers another opportunity to improve the statistics of
the comparison of model and data.

The test we shall propose for the data Y will be de-
signed to maximize our chances of rejecting confidently
one of the hypotheses #, or #,. As Hayashi (1982)
has emphasized, it is in the nature of testing hypotheses
about probability distributions that one can never be
sure whether a hypothesis is correct. To show that a
hypothesis is correct requires an infinite amount of
data. One can only construct tests, based on experience
or on physical insight into the problem, that are as
likely as possible to reveal dissonance between the hy-
pothesis and the data, if there is any.

A necessary condition for successfully discriminating
between the two hypotheses is that the two probability
distributions P, and P differ enough that if one of the
hypotheses is correct then there is a reasonable chance
that the other can be rejected. A climate model might
in principle predict that the climate will not change
much, and so offer no guidance how best to test the
prediction. One then has no choice but to “go fishing”
in the data to look for climatic anomalies that are not
predicted by the climate model. OQur approach can offer
no help there. However, if the climate model predicts
a change in the climate, then our approach can provide
as definitive a test of the prediction as is possible given
the size of the data set with which we have to work.

Let us form a weighted average of the data Y (a vector
of p values):

pla)
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J4
A=2wY =wY,

i=1

2.1

where primes indicate matrix transpose. The weights
w are unspecified as yet. The probability p(a)da that
A will fall within a neighborhood da of a is sketched
in Fig. 2 for the two hypotheses # and #,. It is con-
venient to assume the mean of the distribution Fy(y)
to be zero, as we have done in the figure. The separation
between the two probability distributions and their
widths depend on the weights w.

The critical value a,, the boundary of the acceptance
interval for a test of hypothesis # at the 95% confi-
dence level, is marked on Fig. 2. Hypothesis %) is re-
jected (with 95% confidence) if 4 > a.. If at the same
time the value of 4 falls within the acceptance interval
(at the 95% confidence level) appropriate to #, (in-
dicated by vertical dashed lines in Fig. 2), then we can
conclude (with 95% confidence) that the climate has
changed and that the new climate is consistent with
the climate model prediction (insofar as we have
tested it).

The more the two probability distributions overlap,
the more likely is it that the value of 4 will be of little
help in discriminating between the two hypotheses. We
shall take the point of view that to verify a prediction
of climatic change one needs first to find convincing
evidence in the data that the climate has indeed
changed, and in the direction indicated by the climate
model. Otherwise any agreement between the data and
the climate model prediction is open to the objection
that it could be entirely fortuitous and have nothing
to do with the physical mechanisms supposedly causing

a —

a

c

FIG. 2. The probability densities of the weighted average Eq. (2.1) under two hy-
potheses: %, that the climate is unchanged; and .#,, that the climate model prediction
is correct. Climate change at the 5% significance level is indicated by values of 4 > a..
The acceptance interval (at the 95% confidence level) of the climate model prediction

is delimited by the vertical dashed lines.
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the predicted change, since the model has presumably
been tuned to reproduce the climatic situation before
the climatic change.

b. Derivation of weights w

We turn now to the problem of obtaining convincing
evidence that the climate has changed, based on data
Y for p variables. We shall return later to the problem
of verifying that the climate change is consistent with
the model. Our evidence for climate change will be a
value of 4, defined in Eq. (2.1), that exceeds the critical
value 4. illustrated in Fig. 2. If hypothesis #, is correct,
the probability of obtaining such a value is equal to
the area to the right of a, under the curve marked %,
in Fig. 2. The means and widths of these curves depend
on the weights w. We therefore seek to maximize our
chances of success by adjusting the weights.

. Since the critical value a. depends on the weights,
we first determine this dependence. The probability
distribution of ’

a=wy 2.2)

is dictated by the probability distribution Py(y), which
we assume to be (multivariate) Gaussian:

- - 1 -
Bos) = ey PRI exp] — L v(Eo 'y ], 2.9)
‘where X, is the covariance matrix of the p variables y,

(Zo)y = {ViVi)ro- (2.4)

The angular brackets indicate an average over the pop-
ulation with probability distribution P,. We shall de-
note probability distribution (2.3) in the standard way
as

y ~ N(0, ), (2.5)

meaning y is normally distributed with mean 0 and
covariance Zo. (We have assumed that the mean of y
is zero to simplify the notation. If y were to have non-
zero mean pg, y would simply be replaced by y — uo
everywhere in this section. We shall return to using a
nonzero uo in section 3a.) '

It is easily shown (see Anderson, 1958, for example) -

that a linear combination of normal variables is itself
normally distributed. Consequently, variable g in Eq.
(2.2) is distributed as

a ~ N[O, (60)*], under %, (2.6) .
with
(00)? = WZow. 2.7
The critical value a, is therefore given by
ac = 100, (2.8)

where 7, is a number depending on the level of signif-
icance desired for the test and can be obtained from
standard statistical tables for the normal probability
distribution (e.g., Beyer, 1968). For a one-sided test at
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the 5% significance level, the value . = 1.65 is appro-
priate. For a one-sided test at the 2.5% level, the value
of 7. is the more familiar 5. = 1.96.

Next we need the dependence on the weights of the
probability distribution of a under hypothesis #,. The
probability distribution P(y) is again assumed Gaus-
sian:

y~ Ny, Z). (2.9)

The climate model predicts the change g in the means
of the variables y and could possibly predict a change
in the covariance statistics to the new matrix X, as well.
The covariance X is defined as in Eq. (2.4) with P,
replaced by P.

If the climate modeler were able to estimate the un-
certainty in his prediction of the climatic shifts u as an
error matrix X, for the shifts, this information could
still be represented by (2.9) with the covariance X com-
posed of two parts:

I-5,+%, (2.10)

where X, represents the climatic noise—the covariance
of the variables about the true (but imprecisely known)
mean—and Z, represents the additional uncertainty
in the prediction of y due to possible error in the climate
model results. The quantity p in (2.9) would then be
the most likely climatic shift. Some information about
Z, would result naturally from statistical analysis of
general circulation model estimates of u, since there is
always sampling error in these estimates due to the
finite length of integration time of the numerical ex-
periments. The climate modeler’s confidence in how
accurately his model captures the physics of the climate
system 1is a less easily quantifiable component of Z,.
For lack of such information in most cases, we shall

later assume
=%, X, =0 (2.11)

that is, the covariance of the variables is not signifi-
cantly affected by the climate change and that uncer-
tainties in the climate model prediction for the shifts
u can be neglected. However, we do not need to make
these assumptions yet.
- Given Eq. (2.9), it follows that the distribution of a
would be

a ~ N[wu, ¢?] under #,, (2.12)
with

o2 = wZw. (2.13)

Equations (2.12) and (2.13) describe the curve labeled
#\ in Fig. 2. We can now write an expression for the
probability if #, is correct that the value of 4 defined
in Eq. (2.1) would exceed the critical value a. defined
in Eq. (2.8): .

pa> al#zy)
= 2n) V25! f ” exp[—_ % (a— w'u)z/(rz]da. (2.14)
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If #, is correct, this is the probability we have of
rejecting #%,. It depends on w. By changing integration
variables in Eq. (2.14) to x = (a — wu)/¢ we can write
it as

pla > al#) = E(L), (2.15)
where
L = (a. — wu)/o, (2.16)
E(L) = 2x)"'? L - exp(— %xz)dx
= [1 — erflL/V2)}/2. (2.17)

Since E(L) is a decreasing function of L, the probability
p(a> al#;) in Eq. (2.15) is maximized by minimizing
L, which occurs where

oL .
5;—0, i=1, , D.

(2.18)
Substituting (2.8) and (2.13) into (2.16) and evaluating
the derivatives in Eq. (2.18), we obtain equations for
the weights:

[& 5, + ;1—2 (Wp — mao)z]w =u  (2.19)
[/ .

This equation, although apparently nonlinear in w, can
be solved easily if we assume Eqs. (2.11) and take into
account the fact that the overall normalization of the
weights w is irtelevant and not fixed by Eq. (2.19). In
this case {given Eq. (2.11)] the solution to (2.19) would
be the one obtained by Hasselmann (1979) and Bell
(1982),

w=cZ 'y, (2.20)

where c is an arbitrary constant. If we substitute Eq.
(2.20) for the weights into Eqs. (2.7) and (2.13), we
obtain an expression for the standard deviation of a:

00 = o = (WX 'u)'?, 2.21)

¢. Solution for weights for X + X,

If the climate model prediction were sufficiently de-
tailed that assumptions (2.11) would be inappropriate,
then Eq. (2.19) can be solved iteratively numerically.
One method of doing this is to fix the arbitrary nor-
malization of w such that

wu = ¢% 2.22)
Then Eq. (2.19) can be written
W = [(n/00)Zo + (1 — nao/a))E] 'n,  (2.23)

where, in the first iteration, g and o on the right-hand
side would be evaluated from (2.7) and (2.13) using w
= X'y to get a new estimate of w for the next iteration
of the expression. When iteration of (2.23) has con-
verged to a solution, the normalization of the solution
may be changed to whatever suits the investigator. Note
that, in general, the weights w depend on the signifi-
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cance level at which the test is planned, since the so-
lution to (2.19) depends on 7.. However, for & =
this dependence disappears, as in Eq. (2.20).

d. Probability of detection

Once the solution of Eq. (2.19) is obtained for the
weights, it is interesting to know what the probability
is of detecting climatic change; i.e., if the climate model
is correct, what is the probability of the data confirming
even the simplest prediction of the model: that the cli-
mate, as measured by A4, has changed? This probability
is given by Eq. (2.15) evaluated using the solution for
the weights w just described. It is not, in general, a
simple function of the climate model prediction. How-
ever, if we can assume £ = Xy, as we did in order to
write solution (2.20), the probability of detection re-
duces to a simple function of

wa

ZE = wrtw'?, (2.24)
g

which is just the ratio of the model-predicted shift in
the mean to the “climatic noise” for the average A.
The square of (2.24) is just the signal-to-noise ratio
discussed in Bell (1982). The larger the signal-to-noise
ratio is, the larger is the probability of detecting climatic

change,
p(a > aclz/l) = E[ﬂc - (I‘,Z-l”')”z]:

(assuming £ = ).

It is informative to expand the climate change p in
terms of the principal components, or empirical or-
thogonal functions (EOFs), of Z. If m; is the amplitude
of the ith EOF and ), is the corresponding eigenvalue
of Z, Eq. (2.24) may be written

W’M 2 m,~2 '
(-5
42 i Ai

(2.25)

(2.26)

Thus an EOF that contributes only a small amount m;
to the climate signal p can contribute a great deal to
the signal-to-noise ratio of the average A, if \; is small
enough. This will be reflected in the optimal weights
w, which will emphasize such an EOF. This can also
be a source of large errors, if either the prediction m;
is poor or the small eigenvalues A; are badly underes-
timated, as can happen when too little data are available
to estimate the covariance matrix Z. The latter problem
is solved in section 3.

e. Acceptance intervals for comparing model to data

Once evidence for climatic change has been found,
there still remains the problem of comparing the cli-
mate model prediction to the data Y. As Hayashi (1982)
has emphasized, more information is conveyed by ex-
pressing climatic anomalies in terms of where they fall
in an acceptance interval than in terms of simple ac-
ceptance or rejection of a hypothesis. The weighted
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average A = w'Y should fall within the acceptance in-
terval

Wi — a0 <A<wu+ oo (2.27)

centered on the climate model prediction w'u, where
o is given by Eq. (2.13) and « is obtained from a table
for the normal probability distribution and depends
on the significance level desired for the comparison.
The value of «. in (2.27) appropriate for a two-sided
test at the 95% confidence level is a, = 1.96. Note that
a, is distinguished here from 7. defined in Eq. (2.8),
since the latter is used in a one-sided test of a Gaussian
variable. They are both, of course, found in the same
statistical table.

This comparison of the model with data has the ad-
vantage that it uses only one variable, and so avoids
the pitfall described in the Introduction of testing too
many variables at one time. The weights w tend to
emphasize those variables Y; for which the predicted
shift g is large compared with the noise level { y?)'?
for the variable, and so is, in some sense, most sensitive
to the direction in which the climatic shift is likely to
be significant.

By the same token, however, because Eq. (2.27)
compares only one variable, albeit a sensitive one, to
the climate model prediction, one is naturally curious
to know how the model prediction compares to the
actual atmospheric behavior in many other respects,
to answer such questions as, Has the climate truly
warmed more in the arctic regions than in the tropics?
or, Has rainfall truly decreased more in the eastern
United States than in the western? As was discussed in
the Introduction, as one attempts more and more de-
tailed comparisons of the model and the atmospheric
data, the confidence one has in the conclusions reached
will probably diminish (unless the climate model pre-
diction is badly wrong). How far one can go in pursuing
these details depends on the size of the climatic shift
relative to the climatic noise.

3. Sampling error for optimally weighted data
a. Cptimal weighting from a finite sample

In section 2 we derived a weighted average of data
that, if the climate model prediction is correct, has more
chance of revealing climatic change than any other lin-
ear average of the data. We assumed there that the
covariance matrices X, and X describing the probability
distributions before and after the climate change are
accurately known. In practice, these matrices are only
imperfectly known. The matrix &, can be estimated
using data from a period prior to the climatic change.
The matrix £ will be assumed here to have changed so
little from X, that the approximation

2= 20 (31)

can be made. We will continue to ignore any uncer-
tainties in the prediction u for the climatic shift, which
might also cause X to differ from X,. [See Eq. (2.10).]
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The covariance matrix X, is defined in Eq. (2.4). To
estimate it, let us suppose that we have data from N
independent periods of time labeled by a, = 1, - -,
N, prior to the period ¢, to £, over which climatic change
is being investigated. For concreteness, each period can
be imagined to be 1 yr in length. In each period « the
data are averaged over time and space just as they were
for the period ¢, to ¢, to produce a set of values Y,
from which we can obtain an estimate S$ of the co-
variance matrix Xg:

- T e - Ty -7,

a=1

(S)y (3.2)

— 1
Y=% 3 Y.
NZ

The optimal weights can then be written in terms of
estimate (3.2), using Eq. (2.20) and X = X, as

w =Sy, 3.4

where ¢ is an arbitrary normalization constant We shall
use ¢ = 1 here.

It is convenient now to make the climatic mean pg
prior to the climatic change explicit in the weighted
average Eq. (2.1), instead of assuming it equal to 0, as
we have so far. [See the remarks after Eq. (2.5).] The
change in the atmospheric variables following the cli-
matic change is measured by Y — py, and the climate
model predicts (Y — po)p = u. The weighted average
of the deviation of the data Y from the prior climatic
mean, Eq. (2.1), should be written for nonzero p, as

A=w(Y — u). (3.5)

We shall use prior data to estimate g just as we did to
estimate X, and replace g by its estimate Y, Eq. (3.3).
The weighted average of the data Y appropriate to test-
ing hypothesis #, can thus be written in terms of the
estimates (3.2) and (3.3) as

A= ps(Y-Y) (3.6)

Although we cannot prove that this form of the average
with £, and g replaced by sample estimates is optimal
for detecting climatic change (rejecting #,) when #
is correct, it is a plausible choice to make, since it is
simple to compute and agrees with (2 20) in the limit
N — c0.

(3.3)

a=1

b. Distribution theory

To test hypothesis #,, we need to know the prob-
ability distribution that the quantity

a=ws'y—-Y) (3.7

would have under this hypbthesis, where the statistical
behavior of §, s and y are described by

(3.8)
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N
Z 0= -y, G9)

(S)u = —NTI a=1
y ~ N, ), (3.10)
y@ ~ N@O,E), a=1,---,N.  (3.11)

For future reference, note that since y and y® are as-
sumed independent of each other, it follows that

y — ¥ ~ N[0, (1 + I/N)"2E]. (3.12)

The probability distribution of g in (3.7) is no longer
Gaussian (except in the limit N — o0), and so we cannot
so easily determine the critical value a, such that if 4
> a. we will reject #, say, with 95% confidence. The
distribution of a depends on X, which we know only
approximately through Eq. (3.2).

In analogy with the Student’s t-test, let us try to form
a quantity independent of X by taking the ratio of a to
an expression like Eq. (2.21) for its standard deviation,
and define the variable

_a
(ws™ ')
= (1 + IUN)Y "Pu's™(y — y)/(ws'w)A  (3.14)

The factor (1 + 1/N)~"2 is suggested by Eq. (3.12) and
has been introduced for later convenience.

It is a remarkable fact that the random variable u
has a statistical distribution independent of X and pu.
It is shown in appendix A that u is distributed identi-
cally to the variable

u=(1+1/N)y? (3.13)

v = ¢e's, x/(e's, 'e)'/? (3.15)

where e is an arbitrary unit vector in the p-dimensional
variable space, x is a (p-dimensional) multivariate
Gaussian variable with zero mean and unit covariance
matrix, and s, is (Wishart) distributed as the covariance
matrix estimate from n = N —1 samples of p multi-
variate Gaussian variables with (known) zero mean and
unit covariance matrix. More precise definitions of
these quantities may be found in Egs. (A11) and (A15)
in appendix A.

We shall now derive an approximate expression for
critical values of this variable to be used in hypothesis
testing. The approximate expression will be shown to
be quite accurate for our purposes by analyzing Monte
Carlo estimates of the statistics of u. But let us first
discuss how these results will be used. Given the prob-
ability distribution for u, we can establish a value v,
such that p(u > v {#,) = 0.05, say. The corresponding
value a, from Eq. (3.13) is

a. = (1 + 1/N)2p ('S w)' 2. (3.16)

In the limit N — oo, when X, is exactly known, this
confidence limit approaches the limit in Eq. (2.8) and
v. — 1n.. Hypothesis /# is rejected if 4 [defined in Eq.
(3.6)] exceeds a.. Thus, all the ingredients for testing
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hypothesis #, are present in Eq. (3.16) except for v,;
p is supplied by the climate model and S is determined
from prior data using Eq. (3.2). We turn now to eval-
uating v,.

We will first obtain an approximation for the prob-
ability distribution of v in (3.15). Although v is not
exactly normally distributed, we shall approximate it
by a Gaussian. A Monte Carlo calculation, to be de-
scribed later, will show that the Gaussian approxima-
tion is quite good for our purposes. The mean of the
Gaussian is clearly zero, since x has zero mean and is
statistically independent of s,. The width of the
Gaussian is obtained by finding the variance of

Py = (s, X)(Xs, le)/(e's ")), (3.17)

where we have used the vector identities AB = B'A
and the symmetry of matrix s,. Using (xx') = 1 from
(A11) and the statistical independence of x and s,, we

obtain
() = (s %e)/(€'s,"e)). (3.18)

This can be evaluated in the limit n, p — o0, p/n fixed;
it is shown in appendix B that it has the value

o, =AY = 1/1~p/Mm), pn—w. (3.19)

The critical value v, is therefore approximately given
by
Ve == N0, = 770/(1 - p/n), (320)

where 7. is defined just as it was for Eq. (2.8). The
approximation (3.20) becomes exact in the limit
n— co.

¢. Monte Carlo simulation of the distribution

In order to obtain the analytical results above, we
had to treat the distribution of v in (3.15) as approxi-
mately Gaussian and assume 7 large. By using Monte
Carlo methods, we can avoid these assumptions and
find out how good the approximation (3.20) is for small
D, n.

To carry out the Monte Carlo study, we write the
variable v in (3.15) in the form

v = gx, (3.21)

where the vector g is

g = s, 'e/(e's, " le)' 2. (3.22)
The random vector g depends only on the random
matrix s, and is independent of x. We make use of
this fact by doing the integral over x in the expression
(A17) for the probability density p(v) given in appendix
A to obtain

X In] pelx*] (3.23)

a'=1




1704

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 43, No. 16

45
40
as|

0.025 SIGNIFICANCE

25}

ol

15 L L [ 1

0.05 SIGNIFICANCE

5 100

1 1 ) - 1 1

0 0.1 . 0.2

0.3 0.4 . 0.5
p/n

FIG. 3. Critical values v{g) for p optimally weighted variables, with N = n + 1 prior
independent samples availablé for estimating the covariance matrix used in obtaining
the optimal weights. The critical values are obtained from Monte Carlo calculations
described in the text and are fitted by smooth empirical curves, Eq. (3.27), for the two
significance levels 8 = 0.05 and 0.025. The critical values v{f) are used in Eq. (3 16)
to obtain critical values for the weighted average 4 in Eq. (3.6).

where g = |g|. We can write Eq. (3.23) symbolically as

p) = <(V577g)" exp(— % vz/g2)> , (3.29)

where the notation (- ), means the average of the
bracketed quantity over the distribution of vector
lengths g generated by (3.22) when the covariance ma-
trix s, is estimated from » samples of normally dis-
tributed vectors x®. [See Eqs.-(A15) and (A11).] The
critical value v, is defined such that
[ o=, (3.25)
vdB)
where 8 is the significance level desired for a test, 8
= 0.05, say. The value v, depends on 3, as is made
explicit in Eq. (3.25). If Eq. (3.24) for p(v) is substituted
in Eq. (3.25), we obtain

(ElvdB)/g])e = B,

where the function E is defined in Eq. (2.17).

. A Monte Carlo approach was used to carry out the
average over g indicated in Eq. (3.26). Random Gauss-
ian vectors x'*) were generated, » at a time, to create
sample covariance matrices s,; the vector g was eval-
uated using Eq. (3.22) for each sample covariance ma-
trix, and the bracket operation in (3.26) was replaced
by an average over many thousands of values of g thus
generated. The value of v/(8) was then found, using
Newton’s method, that satisfied Eq. (3.26) for a

given S.

" The critical value v/{8) might, in general, depend on
p and n, although the analytical result Eq. (3.20) de-
pends only on the ratio p/n. In Fig. 3 we plot for 8

(3.26)

= 0.025 and 0.05 the results for v{B) of the Monte
Carlo study for various values of p and » vs the ratio
p/n. The points for a given value of n are connected
by smooth lines obtained from an analytical fit of the
form

' Ne
Ve = —, (3.27)
1 = (p/n) + [v1 + voAp/n) + v3/nl/n
where the values of 7., vi, v2 and 3 depend on the
significance level 8. The constant . is just the critical
value for testing a Gaussian variable, the solution of

E(nc) = B, (3.28)

and can be found in standard statistical tables. The
constants v, vz, v3 were obtained from a least squares
fit to the Monte Carlo results and are given in Table
1. Note that they are small. The corrections to ap-
proximation (3.20) are therefore also small and, for
practical purposes, negligible except for the very small-
est values of n. To illustrate this more clearly, in Fig.
4 we plot (1 — p/n)v.. On the scale of this plot, the
uncertainties in the Monte Carlo computation can be
made visible and are shown as one-standard-deviation

TABLE 1. Constants in the empirical fit, Eq. (3.27), for the critical
values v, of a test of the random variable v in Eq. (3.15).

Constants
Significance
level (8) 7 Y2 Y3
0.025 -0.2274 —0.4188 0.6264
0.05 0.06%90 —0.2641 0.3378




15 AUGUST 1986

THOMAS L. BELL

2151
210
L
-
2,05
0.025 SIGNIFICANCE
3 200k
z [
& " 100 2
z [ +y—yg———3-Tx3T ¥ * ©r ¥ T ¥ T o ]
1.95 -1
T
165  0.05 SIGNIFICANCE 100 =
I 25
L 10 ]
I n=5
1.60 |- E
' 1 1 | s | L | L
0.0 0.1 0.2 0.3 0.4 05

pin

FI1G. 4. The quantity (1 — p/n)udB) is plotted to show the accuracy of the Monte
Carlo calculation and the fit (smooth curve) of the empirical curve, Eq. (3.27), to the
Monte Carlo results. Note the change of vertical scale. One-standard-deviation error
bars are errors estimated from the number of samples used in the Monte Carlo cal-

1705

culations.

error bars. The approximation (3.20) is seen to be ac-
curate to a few percent for all but the smallest values
of n, and the empirical fit (3.27) is accurate to a few
tenths of a percent.

4. Power of the optimal weighting method

In section 3 we found that as the number p of vari-
ables for which optimal weights are determined in-
creases, the critical value a., which must be exceeded
by the average A [defined in Eq. (3.6)], likewise in-
creases. [See Egs. (3.16) and (3.20).] Thus, the incli-
nation to try to extract as much signal from the data
as possible, by using as many independent weights w;
as possible, must be weighed against the possible loss
of detection power arising from the concomitant in-
crease in the critical value a,.

This problem is best illustrated by an example. Sup-
_ pose that we wish to detect a predicted climatic warm-
ing of surface temperature during 1 yr. The surface
temperatures are expanded in spherical harmonics, say,
so that the variables Y;,i = 1, - -, p, are the amplitudes
(arranged in a suitable order) of the spherical harmonic
expansion of surface temperature for the year in which
the signal is being sought. The signal we wish to detect
iS p = (u1, p2,° * *, up) where y; is the ith amplitude
of the spherical harmonic expansion of the climate
model prediction. In this example, Y, might represent
the globally averaged surface temperature for the year
in question, and y,; the climate model prediction for
the global warming for that year.

We suppose we have N years of prior data. To pro-
ceed further, we need an expression for the probability

of detecting climatic change, like Eq. (2.15) but mod-
ified to take into account the finite amount of data in
the prior data set.

Climate change is detected when the weighted av-
erage

A=usS(Y-Y) 4.1
exceeds the critical value
a = (1+1/N)Puus™w)'?  (42)

where v, is given approximately by (3.27). The prob-
ability that this will occur can be derived following the
steps of section 3, replacing assumption (3.10) by hy-
pothesis #,:

Y ~ N(u, Z). 4.3)

By repeating the steps of section 3, we find that Eq.
(3.26) is replaced by

pd>al#y) = <E[(Uc - rgl)/g]>g, (4.4)

r =T w1 + 1/N), 4.5)

where the average ( - ), is defined as in Eq. (3.24) and
£, is the component of g in the direction e,

& = eg = (¢'s,'e)'/% (4.6)

with

Let us take as an example that the climate change
vector has the values

w=(2,0.75,0.75,--+,0.75), @.7
and that the covariance matrix Z is the unit matrix
z=1. 4.8)
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We assume we have N = 26 years of prior data from
which to form the estimates Y and § in Eqgs. (3.2)
and (3.3).

‘We are at liberty to include as many of the variables
Y; as we choose in forming the optimal average (4.1).
Each additional variable brings some extra signal to be
detected (as well as additional noise), but the threshold
a. which 4 must exceed increases as well. Our problem
is to choose the number of variables p that maximizes
the probability p(4 > al#,) of detecting climatic
change. A plot of the probability vs p for the assump-
tions (4.7) and (4.8) is shown as the solid curve in Fig.
5 computed from Monte Carlo estimates of Eq. (4.4)
as in the previous section. The confidence level was set
at 97.5%, which requires approximately a two-stan-
dard-deviation shift in the average 4. For p = 1, which
may be thought of as corresponding to examining only
the globally averaged surface temperature, assumption
(4.7) implies that the signal is exactly 2¢ in size (o
= 1), and so the probability of detecting it is approxi-
mately 0.5, but slightly less because of our assumption
that we have only 26 yr of prior data. The dashed curve
is a plot of the probability of detecting climatic change
with optimal weights determined from an infinite

1.0 T T T T T T
0S8t -7 - 1
-7 -
~
-
08} Ve 4
-
-,
“ OPTIMAL WEIGHTING
Q7+ , s N=oo
,
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d
,
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V
05

PROBABILITY OF DETECTION

045 ", _
, Hotelling T2
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FIG. 5. Probability of detecting climatic change at the 0.025 sig-
nificance level for p uncorrelated Gaussian random variables z;, i
= 1,+ « +, p, with unit variance, and a climatic shift in the means u
=(2,0.75, 0.75,- - -, 0.75). The dashed curve shows the detection
probability of the optimal weighting method given an infinite amount
of prior data. The solid curve gives the detection probability for the
optimal weighting method with N = 26 samples of prior data. The
values are from Monte Carlo calculations accurate to +0.007. The
dotted curve shows the detection probability that Hotelling’s 77 test
would yield.
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amount of data, so that we, in effect, know Z and the
prior mean of Y exactly. In that case (dashed curve)
the probability of detection increases with each addi-
tional variable, whereas with a finite amount of prior
data (solid curve) a point is reached (p = 9) beyond
which the power of the optimal weighting begins to
decrease; it is counterproductive to keep more than
this number of variables.

For comparison, we also show in Fig. 5 (as the dotted
curve) the probability of detecting a shift in the mean
of Y using the standard multivariate Hotelling 72 test,
which tests whether the variable

T2 = (Y - Yys (Y - ¥) (4‘9)

‘passes a critical value appropriate to this statistic. The

test is described in Anderson (1958). It makes no as-
sumptions about the nature of the signal u being sought.
As can be seen, even going from p = 1 to 2 results in
a loss in the detection power of this test. The reason
for this loss was explained in section 2. Much of it is
due to the same phenomenon that caused the x? test
to fail rapidly with increasing p in Fig. 1, although some
additional deterioration is due to the finite amount of
prior data (N = 26) used in estimating $ and Y in (4.9).

‘As can be seen in this example, for a given amount
of prior data there is an optimum choice for the number
of variables used in forming the weighted average A.
Unfortunately, this number depends in a detailed way
on the exact values of the climatic shifts u and the
covariance matrix Z, and on the way the variables Y;
are chosen and ordered, and no general rule can be
givén for the best choice to make. Clearly the investi-
gator must bring whatever a priori physical insight he
can to the problem to choose variables Y; beginning
with those likely to have large climatic shifts u; relative
to the noise level [(Z);:]2.

Carrying out Monte Carlo calculations to evaluate
the power P(4 > a/#,) in(4.4) is cumbersome and is
probably not necessary for many purposes since the
variable u defined in Eq. (3.13),

#s 'y —y)
(1 + I/N)I/Z(“rsﬂ“)l/z ’

u= (4.10)

is nearly Gaussian when N is large. We have already
found in Eq. (3.19) that its width is approximately given
by

oy~ 1/ — p/n). @.11)

Its mean under hypothesis #, [Eq. (4.3)] is given by
(uhp = (1 + 1NY (s~ ') 2yp.  (4.12)

The quantity in angular brackets can be evaluated using
a theorem for Wishart-distributed matrices given, for
example, in Mardia et al. (1979) [Theorem (3.4. 7)],
that n(W'E " p)/ (' s"/.c) is distributed as a x2,+; vari-
able. Using the x probablllty distribution we find
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172 T — 1)/2 ‘
sty = wzwa(3) T G
~ WEWP - py? (@14)

with » = n — p + 1. Approximation (4.14) is good for
large n. For large n, Eq. (4.12) can therefore be written

(uyp =~ r/(1 — p/n)'7?, (4.15)

where r is defined in Eq. (4.5). Using the Gaussian
approximation for the statistics of u, with mean (4.15)
and standard deviation (4.11), we find that the prob-
ability of detecting a signal, Eq. (4.4), is approximated
by

p(d > al#) ~ E(n. — {u)plo,), (4.16)

where 7, is entirely determined by the confidence level
at which the change is to be detected and is defined in
Eq. (3.28). The Gaussian integral F is defined in Eq.

(2.17). Thus the detection power is a strictly increasing -

function of

%21-’ ~ (1 — p/m)" 2 (WE "W /(1 + 1/N)2 (4.17)
u

To find the value of p that maximizes detection power,
one can simply maximize (4.17). In the example used
above, for g = (2, 0.75, 0.75,- - -, 0.75), £ = 1, and
N = 26, the maximum is found with some simple al-
gebra to occur at p = 9.4, which agrees well with the
Monte Carlo calculation results in Fig. 5.

In practice one does not know the true covariance
matrix X required to evaluate expression (4.17). How-
ever, using Eq. (4.14) we can replace (w'Z ™ 'u)'”? by its
unbiased estimate (1 — p/n)"*(w'S™')'"? and so obtain
the estimated signal-to-noise ratio

TaON (1= pin)
(%) - Samws o @)

where the hat indicates that the quantity is estimated.

One can therefore choose the best number of variables
to work with in forming the optimal average 4 by max-
imizing expression (4.18) with respect to p.

5. Discussion and conclusions

We have discussed some of the problems of com-
paring climate model predictions with atmospheric
data that arise from the probabilistic nature of the pre-
dictions. The results of such a comparison will be
stronger the fewer the number of variables compared,
at least when predictions of small climatic change are
being investigated; this is the case when the first signs
of global climatic change are being sought.

A weighted average of the data can be found that
maximizes the chance of detecting a predicted climatic
change. However, it requires knowledge of the covari-
ance statistics of the variables in which the climatic
change is being looked for, and prior data must usually
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be used to estimate these statistics. The implications
of this for the optimal weighting approach have been
examined here. If N is the number of independent
samples used to estimate the mean and covariance sta-
tistics of the variables, the number p of variables for
which optimal weights can be determined can at most
be N — 1, and in general should be far fewer.

We summarize here a scheme for using the optimal
weighting method as effectively as possible on a climatic
change detection problem. A decision must first be
made about how to prepare the data beforehand, so
that a sequence of variables Y; can be established such
that as much of the climate signal as possible (relative
to climatic noise) will occur in the first few variables.
If global climatic change is predicted, projections of
the data onto a basis system such as spherical har-
monics or solutions of linearized dynamical equations
should be considered.

A related consideration in choosing the variables is
how well one trusts the climate model. For instance,
if the model were to predict a large difference between
temperatures at 10° and 20°N and one had some
physical reason to suspect that this is due to a fault in
the model, one may want to exclude from the list of
the variables Y; ones that can represent the temperature
difference between these two latitudes. Otherwise the
“optimal weights” might weight this temperature dif-
ference in the data too strongly. In principle, such a
problem could be resolved by including directly in the
equation determining the optimal weights an estimate
of the uncertainty of the predicted climatic shifts, as
was discussed in section 2. However, such estimates
are usually unavailable in so concise a form as an error
covariance matrix X, and, at least for the present, the
researcher must adjust his approach to the more qual-
itative estimates at hand.

Once a list of variables is chosen, their covariance
statistics are determined from prior data. The best
number of variables to keep is then found by com-
puting the effective signal-to-noise ratio (4.18) for vari-
ables Y;,i=1,- - «, p. The number p of variables that
maximizes (4.18) is the best choice of the number of
variables to form the optimal average from.

To detect climatic change, the optimally weighted
average of the data Y,

___#s'Y-Y
U+ UN) S )7

U (.1

is found, where we have divided by the factors suggested
in Eq. (3.14) to create a variable whose probability dis-
tribution is independent of the true covariance statistics
X and the climate change prediction u. If U > v/(f),
where a good approximation to v, is given by Eq. (3.27),
then climatic change (significant at the (3 level) has been
found in the direction of the climate model prediction.
Moreover, if the climate model is correct, the value of
U should lie within the acceptance interval
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M—=v(8,/2) < U<M+v(B/2) (52
where o
_ (WS
M= (1+ 1/N)2 -3)

is an estimate of the climate change signal to be ex-
pected for the weighted average (5.1). The significance
level 8, for the acceptance interval in (5.2) is divided
by two because v, in Eq. (3.27) is defined for a one-
sided test. Equation (5.2) provides a test of the climate
mcodel that emphasizes those vanables with the largest
signal-to-noise ratio.

The results in section 3 require that one know the
number # of independent samples in the prior data set
used to estimate covariance statistics. This is easy when
the temporal correlation is not large; when temporal

correlations are large, some of the analytical results -

obtained here can be inaccurate and one must resort
to modeling the data with an autoregressive process to
carry out the procedures described above, A description
of such an effort will be given in a subsequent paper.

If at some point climate models could supply not
only the predicted change in the means but could also
provide good estimates of the covariance matrices X,
and ¥ used in section 2, then optimal weights could
be found using Eq. (2.23), which would not require
the assumption that the covariance statistics do not
_change with the climate. Furthermore, the complexities
introduced in sections 3 and 4 due to using a limited
prior data set to estimate these statistics could be
avoided. But this development will have to await sub-
stantial improvements in our ability to build models
of the climate system.
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APPENDIX A

Proof That the Distribution of the Ratio-Variable u
in Eq. (3.14) for an Optimally Weighted Average
is Independent of £ and p

The probability distribution of u, defined in Eq.

(3.14), can be written as

. N )
p(u) = f . f ay[[] ay®1elu— (1 + 1/N)™2

N
X ws™y — P/(ws™'w)1Po(y) 1 Poly*’l, (A1)

a’=1

where P, is the normal probability distribution in Eq.
(2.3) and 5[#] is the Dirac é function. Since s is inde-
pendent of variable y, change variables in (A1) from
the set {y, @ = 1,- - -, N} to the set {VNy, v,
=1, N— 1} by an orthogonal transformation,
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and integrate over variable y. Equation (A1) then be-
comes

p = [ [ antl] ave

X 8l — e, y/W's, ™ w) 21Po(y) T1 Polv, (A2)

a'=1
where

n=N-—1, (A3)

1 n
(s0)y = > 2 0.

a=1

- (Ad)

Using the orthogonal transformation U that diagon-
alizes X,

Uzu! = A, (A5)
Ay = Aidy, (A6)
and where U = U™}, define the square root of ¥ as
52 = UNAY (A7)
(N7 =AMy, (A8)
Change variables to
y = Z'%, (A9)
V@ = EVxE g =10 n, (A10)
so that : :
x, X ~ N(D, 1), (Al1)

where 1 is a p X p unit matrix. Equation (A2) then
becomes

p(u) = f . f dx[InI dxN6[u — s, 'x/
a=1

(ehsx"e0) *Ips(x) 1 pelx* (12)
a'=]

where e, is a unit vector pointing in the direction of

z12y,
e = I p/(WE p)' 2, (A13)
€oeo = 1, (A14) -
(8:)y = % 2 x{“x, (A15)
pe(x) = H (2m)~'72 exp[— %xf] . (Al6)
i=1

Finally, since the statistics of x, x> are independent
of direction, because of Eq. (A11), we can find an or-
thogonal rotation matrix R chosen so that ey = Re,
where e points in any direction we choose, and define
new variables £ = R™'x, #* = R™'x®, Since the £’s are
dummy integration variables, we may replace them by
x’s, so that Eq. (A12) becomes
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p(u) = f . f dx[fI dx8[u — e's,'x/

(¢'s'e)"Ipe(x) H pelx“*’L. (A17)
We may, if we like, choose
© (€)= oy, (A18)

so that e points in the direction of variable 1.
We have thus shown that the variable u is distributed
as

v =¢e's, 'x/(e's,'e)?, (A19)

‘where s, is the covariance matrix estimate from 7 sam-
ples, defined in Eq. (A15), for variables x**) with 0 mean
and unit variance as in (A11), where x ~ N(0, 1), and
e is an arbitrary unit vector. The statistical distribution
of u is completely independent of T and u!

APPENDIX B

Large n Limit for the Distribution
of Optimally Weighted Data

To evaluate Eq. (3.18) in the large » limit, we make
use of some results on principle components described
by Cahalan (1983). The random matrix s, in Eq. (A15)
has prmc1pa1 components ¢, and eigenvalues A, k
= 1 s, Dt
5,60 = N\ e®, (B1)
The eigenvalues are ordered in decreasing magnitude,
Ak = Ars1. The eigenvectors e are orthogonal and can
point with equal probability in any direction, subject
to their orthogonality. If we write Eq. (3.18) in terms
of principal components, we obtain

p o
O = U2 eNHICE N (B2)
k=1 =1
where

& = eWe (B3)

is the component of vector e along eigenvector e®,
Since the eigenvectors form a complete set,
p-

T eal=¢ee=1,
k=1

(B4)

" The brackets in (B2) now represent an average over all
€ constrained to lie on the unit sphere by Eq. (B4) and
an average over the distribution of eigenvalues of ma-
trix s,. By expanding the denominator in (B2) in a
power series about one,

D @ p
()= 2 A-T N, (BS)
=1 m=0 =1
and considering each term in the expansion in the limit
D — o0, it can be shown that the average over all ori-

entations of the eigenvectors e in (B2) yields
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) = < 1 % xk‘z) / G % xf‘)) + O(1/p), (B6)

where we have used {&*) = 1/p (for all k), which is
easily derived from Eq. (B4) and the fact that the sta-
tistics of s, are independent of direction.

The average over the eigenvalue spectrum in the
limit p, n — oo is carried out by using the fact that the
eigenvalues in this limit approach a spectrum that de-
pends only on p/n. Fluctuations of the spectrum from
this limiting spectrum are of order 1/7 and can be ne-
glected in this limit. An average over any function of
the eigenvalues f()\) can be written as

;1_?0 d ; 3 f) = f Do),
p/n fixe

(B7)

where p(\) is the probability density of the eigenvalues.
Based on a method of Dyson’s (1962), an explicit form
for p(\) was derived by Cahalan (1983) and is given
by
p(N) = [=A2 +2(1 + rHN — (1 — rHV2/Q2xrr?N),

A<A< ), (B8)

with
A= r=(p/m)' (B9) .

The density p(\) vanishes for A < A_and A > A,. By
changing variables to

y=MA-—1-r%/2r, (B10)
the average of powers of the eigenvalue can be written
. 1 2
im - > (W™

oo Do
p/n fixed k=t

-2 [

This can be evaluated using contour integration meth-

=

)l/2

(a-
YU+ Pt 2y

(B11)

ods. We find L
A= - piny, (B12)
A= (1~ iy, (B13)
Substituting this result into (B6), we obtain
B = (1 — p/n)™> + O /n). (B14)
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