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Multicriticality in the
Bragg-Glass Transition

Fig. 1.  (a) Temperature and history dependence of azimuthal widths of
the (1,-1) diffraction peak at H = 0.3 T.  The dashed line is the peak effect
Tp at this magnetic field based on ac magnetic susceptibility measure-
ments.  Inset: experimental configuration.  (b) Widths at H = 0.2 T.  The
ac susceptibility data are also shown for reference.  Definitions of Tp(H )
and Tc3(H ) are shown.

The discovery [1] of a first-order
         solid-liquid transition in the vortex

matter of a classic type-II superconductor
niobium was widely regarded as an important

result since it resolved a long-standing issue of
whether a genuine order-disorder transition can take

place in the vortex system in type-II superconductors,
and whether the anomalous peak effect is indeed caused

by a structural phase transition in the vortex matter.
However, in a follow-up SANS experiment [2] on a Nb
crystal which has a lower upper critical field, suggesting
even less bulk disorder, neither the first-order transition nor
the peak effect was found.  These two seemingly contra-
dictory results suggest either a trivial technical error in one
of the two experiments, or something more profound and
interesting in the physics of vortex matter, namely the
existence of multicritical behavior in the Bragg-glass
transition.  We have now carried out a systematic study of
the Nb crystal used in our original experiment, and have
found such a multicritical point [3].

Our experiment was carried out on a Nb single
crystal in which both the peak effect and the first-order
Bragg-glass melting transition were observed at the same
temperatures [1]. The sample has a zero-field Tc = 9.16 K,
and an estimated Ginzburg-Landau parameter κ(0) = 2.0.
The experimental SANS configuration is shown in the inset
of Fig.1 (a). The dc magnetic field was applied in the
direction of the incoming neutron beam using a horizontal
superconducting magnet.  A coil was wound on the sample
to allow in situ ac magnetic susceptibility measurements.

Fig.1(a) shows the SANS data at H = 0.3 T.  The
Gaussian widths are obtained from fitting the Bragg peaks
(in intensity vs. azimuthal angle) to six Gaussian peaks
evenly spaced 60° apart.  It is clear that the azimuthal
widths — a measure of orientational disorder in the vortex
array — are strongly history dependent.  Supercooling and
superheating effects are observed for field-cooling (FC)
and field-cooled-warming (FCW) paths, respectively.  As
reported previously [1], the disordered phase at T  > Tp
and the ordered phase at T < Tp are their respective
thermodynamic ground states.  The abrupt change in the
structure factor S(q) at the peak effect Tp depicts a
symmetry-breaking phase transition from a vortex liquid
with short-range order to a Bragg glass with quasi-long

range order [1].  The phase transition is first order as
evidenced by the strong thermal hysteresis in S(q). Com-
pared to that at higher fields, the metastability region for
H = 0.3 T is smaller but still pronounced.

It was found that the thermal hysteresis of S(q)
observed in SANS is strongly field dependent, and the
metastability region disappears completely at low fields.
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Fig. 2.  Three-dimensional (3D) magnetic field and temperature
dependence of the real part of the ac susceptibility 4πππππχ χ χ χ χ ′′′′′(T ). Note that
two values of ac fields were used in the measurements. For H < 0.3 T,
Hac = 0.17 mT, and for H > 0.3 T, Hac = 0.7 mT, f = 1.0 kHz. The solid and
dashed lines are guides to eyes. For the ac fields used, Tp is independent
of the ac field amplitude.

Fig. 1 (b) shows the azimuthal width data for H = 0.2 T.
For comparison, the real part χ ′(T) of the ac magnetic
susceptibility is also shown in Fig.1(b).  The dip in χ ′(T) is
the well-established signature of the peak effect [1].  The
history dependence of the Bragg-peak width is only
detectable within 100 mK of the peak-effect temperature
Tp.  A similar trend is observable in the history dependence
of the radial widths of the Bragg peaks. At 0.3 T, there is a
pronounced thermal hysteresis in the radial widths.  At
0.2 T, however, the hysteresis is barely discernable.  At an
even lower field of 0.1 T (data not shown), the thermal
hysteresis in S(q) is undetectable.

At H = 0.1 T, a very sharp peak effect (the onset-to-
end width = 40 mK) is still present.  Thus we believe the
phase transition at 0.1 T is still first-order but the metasta-
bility region is too narrow to be resolved in SANS (the
temperature resolution was  ≈ 50 mK). Nevertheless, the
diminishing hysteresis in the low-field regime suggests that
the phase transition is becoming continuous and mean-
field-like, namely there is a multicritical point on the phase
boundary bordering the Bragg glass on the H-T phase
diagram. We show that this multicritical behavior is directly
related to the appearance and the disappearance of the peak
effect.

Fig. 2 shows a three-dimensional plot of the χ ′(T) as
a function of temperature and magnetic field.  At high
fields, there is a pronounced peak effect, a characteristic
dip in χ ′(T).  At higher temperatures above the peak-effect
temperature Tp(H) (or Hp(T), used interchangeably), there
is a smooth step in χ ′(T).  This step, Tc3(H) (or Hc3(T)),
defined in Fig.1 (b), is the onset of surface superconduc-
tivity.  In the mean-field theory of Saint-James and de
Gennes, Tc3(H) is a continuous phase transition.  The
separation between Tp(H) and Tc3(H) grows larger with
increasing magnetic field.  Upon cooling, below Tc3(H) and
toward Tp(H), the screening effect in χ ′(T) increases
gradually but there is no sharp feature to define another

temperature scale.  With decreasing field, the peak effect
becomes narrower and smaller.  For H < 0.08 T, there is
only a single kink in χ ′(T) corresponding to the mean-field
transition Tc2(H) or Hc2(T).  There is no reentrant peak
effect at low fields — the peak effect simply vanishes
here.  New theoretical studies are needed to elucidate the
possible physical mechanisms of the multicritical point in a
Bragg glass.
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