

R-96-07

EASTERN MUNICIPAL WATER DISTRICT RO TREATMENT/SALINE VEGETATED WETLANDS PILOT STUDY

Final Report

Water Treatment Technology Program Report No. 16

September 1996

U.S. DEPARTMENT OF THE INTERIOR Bureau of Reclamation Technical Service Center Environmental Resources Team Water Treatment Engineering and Research Group

	Form Approved OMB No 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response including the time gathering and maintaining the data newded, and completing and reviewing the collection of information. Send comment collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Director Davis Highway, Suite 1264, Arlington, VA 222024302, and to the Office of Management and Budget Paperwork Reduction Davis Highway, Suite 1264, Arlington, VA 222024302, and to the Office of Management and Budget Paperwork Reduction collection of information in the Date of the Office of Management and Budget Paperwork Reduction dates the second s	ts regarding this burden estimate or any other aspect of this
1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 3. REPORT TYPE September 1996 Final	AND DATES COVERED
4. TITLE AND SUBTITLE Eastern Municipal Water District RO Treatment/Saline Vegetated Wetlands Pilot Study - Water Treatment Technology Program Report No. lb . AUTHOR(S)	S. FUNDING NUMBERS
Wilbur J. Boegli and Joans. Thullen (NBS)	
'. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Bureau of Reclamation Technical Service Center Denver co 80225	B. PERFORMING ORGANIZATION REPORT NUMBER R-96-07
Bureau O f Reclamation Denver Federal. Center PO Box 25007 Denver CO 80225-0007	10. SPONSORING/MONITORING AGENCY REPORT NUMBER DIBR
Available from the National Technical Information Service, Operations Division, 5285 Port Royal Road, Springfield, Virginia 22161	
13. ABSTRACT (Maximum 200 words) The Bureau of Reclamation and the Eastern Municipal Water District in southerr research study to investigate the use of reverse osmosis (RO) to desalt San Jacint industrial uses, and also to evaluate the use of the RO concentrate (reject) for sus provide irrigated green belts, open spaces, and wildlife habitat.	to Basin groundwater for municipal and staining saline vegetated wetlands to
Two separate low-pressure RO membrane elements were evaluated using a total operating at 75-percent recovery. Two local brackish wells were used as feedwate Highlands well for an 1860-hour test using FilmTec's BW30-2540 elements; and 1000-hour test using Desal 3LP (SG2540) elements. Both wells have salinities of desolved solids). Test results are summarized in terms of average NDP (net driving permeate flow). RO reject flows were directed to the saline vegetated wetlands to	ter Sources: first, the Moreno d second, the Dairyland well for a of approximately 1000 mg/L TDS (total ving pressure) and NPF (normalized
operating at 75-percent recovery. Two local brackish wells were used as feedwate Highlands well for an 1860-hour test using FilmTec's BW30-2540 elements; and 1000-hour test using Desal 3LP (SG2540) elements. Both wells have salinities of desolved solids). Test results are summarized in terms of average NDP (net drivi permeate flow). RO reject flows were directed to the saline vegetated wetlands the Four salt-tolerant plant species, native to southern California, were evaluated in (Scirpus robustus), creeping spikerush (Eleocharis palustris), marsh smartweed Pennsylvania smartweed (Polygonum pensylvanicum). The growth, establishmen monitored from the initial planting. In addition, toxicological data were collected wildlife visitations were made. Conclusions are presented regarding the sufficiency advisability of pursuing full-scale development of saline wetlands.	ter Sources: first, the Moreno d second, the Dairyland well for a of approximately 1000 mg/L TDS (total ring pressure) and NPF (normalized throughout the testing. the saline wetlands: alkali bulrush (Polygonum muhlenbergii), and nt, and health of the plants were and analyzed, and observations of of the data collected and the
operating at 75-percent recovery. Two local brackish wells were used as feedwate Highlands well for an 1860-hour test using FilmTec's BW30-2540 elements; and 1000-hour test using Desal 3LP (SG2540) elements. Both wells have salinities of desolved solids). Test results are summarized in terms of average NDP (net drivi permeate flow). RO reject flows were directed to the saline vegetated wetlands the Four salt-tolerant plant species, native to southern California, were evaluated in (Scirpus robustus), creeping spikerush (Eleocharis palustris), marsh smartweed Pennsylvania smartweed (Polygonum pensylvanicum). The growth, establishmen monitored from the initial planting. In addition, toxicological data were collected wildlife visitations were made. Conclusions are presented regarding the sufficiency	ther Sources: first, the Moreno ad second, the Dairyland well for a of approximately 1000 mg/L TDS (total ving pressure) and NPF (normalized throughout the testing. the saline wetlands: alkali bulrush (Polygonum muhlenbergii), and nt, and health of the plants were and analyzed, and observations of of the data collected and the mosis/saline 15. NUMBER OF PAGES

1.16.11.11

Prescibed by ANSI St 298-102

sta 234-19

R-96-07

EASTERN MUNICIPAL WATER DISTRICT RO TREATMENT/SALINE VEGETATED WETLANDS PILOT STUDY

Final Report

Water Treatment Technology Program Report No. 16

by Wilbur J. Boegli Joan S. Thullen (NBS)

Water Treatment Engineering and Research Group Environmental Resources Services Technical Service Center Denver, Colorado

September 1996

ACKNOWLEDGMENTS

We would like to thank all of the people at the Eastern Municipal Water District who made this pilot study a success. Special thanks go to Steve Crombie and Stella Denison for their diligence and hard work in operating the test facility and monitoring results for the past 2 years. We would also like to thank Christie Crother for coordinating many of the study activities and for running interference for us when necessary, John Ward for his efforts during the design and construction phase, and S. Mark Nelson for his monitoring advice and invertebrate identification throughout the life of this project.

Mission Statements

U.S. Department of the Interior

As the Nation's principal conservation agency, **the** Department of the Interior has responsibility for most of **our** nationally owned public **lands** and natural resources. This includes fostering **sound** use of our land and water resources; protecting our **fish**, wildlife, and biological diversity: preserving **the** environmental and **cultural** values of **our** national parks and historical places; and **providing** for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to **ensure that** their development is in **the** best interests of all people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. Administration.

Bureau of Reclamation

The mission of **the** Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in **the** interest of the American public.

National Biological Service

The National Biological Service, soon to be merged with the U.S. Geological Survey, works with others to provide the scientific understanding and technologies needed to support the sound management and conservation of our Nation's biological resources.

Disclaimer

Information contained in this report regarding commercial products or **firms** was supplied by those firms. It may not be used for advertising or promotional **purposes** and is not to be construed as **an** endorsement of any product or **firm** by **the** Bureau of Reclamation or the National Biological Service.

CONTENTS

Page

1.	Execu	ive summary
2.	Introdu	
		ckground 5
		rpose and scope of study
	-	ecific test objectives
	2.4 G	neral description and layout of test facility
3.	Well s	lection and groundwater quality 1.5
	3.1 W	Ils selected for testing 15
	3.	.1 Walker Duck Club well 15
	3.	.2 Moreno Highlands well 15
	3.	.3 Dairyland well
	3.2 Co	mparison of groundwater constituents for the selected wells 17
4.	Reverse	osmosis (RO) desalination
	4.1	RO process description
	4.2 I	retreatment considerations
	4.	
	4.	2.2 Walker Duck Club well
	4.	2.3 Moreno Highlands well 26
	4.	2.4 Dairyland well
	4.3 Pi	ot plant design and construction
		.1 Pretreatment subsystem i!b
	4	3.2 RO subsystem
	4	3.3 Membrane cleaning subsystem 29
	4	3.4 Membrane selection
	4.4 T	st procedures
	4.	A.1 Schedule
	4	4.2 Pilot plant operations 29
	4	4.3 Process data collection and recording
	4	4.4 Sampling and analyses 31
	4	4.5 Data reduction and interpretive methods 41
	4.5 R	sults and discussion
	4	5.1 RO reject-regenerated ion exchange experiments 41
	4	5.2 FilmTec BW30 element evaluation
		4.5.2.1 Operational data
		4.5.2.2 Performance degradation 55
		4.5.2.3 Membrane autopsy and SEM analysis 55
	4	5.3 Desal-3LP element evaluation
		4.5.3.1 Operational data 59
		4.5.3.2 Performance summary 67

CONTENTS — Continued

	4.6.1 4.6.2	FilmTec BW30 element testing using Moreno Highlands well water 71 Desal 3LP element testing using Dairyland well water
5.	Saline vege	tated wetlands
	5.1 Objecti	ve 73
	5.2 Wetland	ls design and construction
	5.2 .1	Design considerations
	5.2.2	Layout and construction
	5.2.3	Plant species selected for evaluation
	5.3 Test p	procedures
	5.3.1	Planting of salt-tolerant species
	5.3.2	Control of brine inflows/outflows
	5.3.3	Plant data collection and visual observations 83
	5.3.4	Water/soil/plant/invertebrate sampling and analysis
	5.3.5	Data reduction and interpretive methods a7
	5.4 Results	and discussion
	5.4.1	Brine use and physical data
	5.4.2	Plant adaptation and survival
	5.4.3	Wildlife visitation and use
	5.4.4	Invertebrate diversity data
	5.4.5	Toxicological data
	5.5 Conclu	sions
б.	Evaporation	ponds 105
	6.1 Objecti	ive 105
	-	ation pond design and construction
	6.2.1	Design considerations
	6.2.2	Layout and construction
	6.3 Test	procedures
	6.3.1	Monitoring of brine inflows and evaporation rates 107
	6.3.2	Evaporation enhancement methods considered
		s and discussion
	6.4.1	Brine concentration and net evaporation data 109
	6.4.2	Wildlife visitation and use
	6.4.3	Toxicological data
		lusions , , , , , , , , , , , , , , , ,

TABLES

Page

3.1	Groundwater analyses available for the three wells prior to testing	. 1	6
4.1	Percent salt rejection data for the FilmTec BW30 (Moreno Highlands Well) testing .	5	0
4.2	Metals found on autopsied membrane surface	6	0
4.3	Percent salt rejection data for the Desal-3LP (Dairyland Well) testing	6	8
5.1	Metal concentrations and ionic characterization of water samples collected from the		
	RO reject	•	84
5.2a	Metal concentrations and ionic characterization of water samples collected from the		
	south (saline) vegetated wetlands	•	85
5.2Ъ	Metal concentrations and ionic characterization of water samples collected from the		
	north (control) vegetated wetlands	•	86
5.3a	Metal concentrations in the south (saline) vegetated wetlands substrate and substrate characterization	8	8
5.3b	Metal concentrations in the north (control) vegetated wetlands substrate and substrate		
	characterization		89
5.4	Trace metal concentrations found in plant tissue samples collected from the		
	vegetatedwetlands	•	90
5.5	Invertebrate taxa (number of individuals) collected from the vegetated wetlands on		
	July 14. 1994	9	1
5.6	Invertebrate taxa collected from the vegetated wetlands on May 25, 1995	92	2
6.1	Electrical conductivity (EC) readings in the south evaporation pond	10)8
6. 2	Metal concentrations in evaporation pond water samples	1	10

FIGURES

Figure

2.1	EMWD's proposed total water management cycle			6
2.2	State map showing location of the Eastern Municipal Water District .			7
2.3	Map of the Eastern Municipal Water District			8
2.4	Conceptual diagram of the RO /saline vegetated wetlands test facility			10
2.5	RO/saline vegetated wetlands test facility construction drawing (plan view)			. 11
2.6	RO pilot plant with saline wetlands shown in the foreground .		• •	. 13
2.1	Closeup view of the RO pilot plant			13
3.1	Comparison of the three well waters used in the pilot study	1.1		19
4.1	Cut-away diagram of a spiral-wound reverse osmosis element			. 22
4.2	Pretreatment options considered for RO operations	۰,	• •	. 24
4.3	RO system process and instrumentation diagram		•	27
4.4	Comparison of original versus completed RO test program			30
4.5	Well water being pumped into the 5000-gallon RO feed tank	+		33
4.6	View showing basket strainer and polymer addition			33
4.7	View showing the sand clarifier, pressure filter, and GAC column			35
4.8	View showing acid feed tank and UV (ultraviolet) sterilizer to the right .			35
4.9	RO equipment skid next to the 1250-gallon permeate and concentrate tanks			37
4.10	RO system control and instrument panel with data acquisition to the right			37

FIGURES • Continued

Figure

_

4.11	Closeup view of the 32-channel Molytec recorder and disk drive unit	39
4.12	EMWD operator performing daily SDI (silt density index) measurements	39
4.13	System flowrates (FilmTec BW30)	43
4.14	Feed temperature	43
4.15	System conductivities	45
4.16	Permeate conductivity	45
4.17	System pressures	47
4.18	Stage pressure drops	47
4.19	Average net driving pressure	53
4.20	Normalized permeate flow	53
4.21	SEMs of FilmTec BW30 membrane surface showing localized degradation at Vexar TM	
	(concentrate spacer) imprint	57
4.22	System flowrates (Desal-3LP)	61
4.23	Feed temperature	61
4.24	System conductivities	63
4.25	Permeate conductivity	63
4.26	System pressures	65
4.27	Stage pressure drops	65
4.28	Average net driving pressure	69
4.29	Normalized permeate flow	69
5.1	Flow schematic of saline vegetated wetlands and evaporation cells	75
5.2	Soil being deposited on top of the high-density polyethylene liners in the	
	wetland cells	77
5.3	View showing RO reject flowing into the saline vegetated wetland cells from pipes set	
	in the center of each east cell wall	
5.4	Saline vegetated wetlands planting scheme	79
5.5	Salt-tolerant wetland plants being planted on 45.7 cm centers in 3-foot wide	
	horizontal bands	81
5.6	Potable water being added to the newly planted saline wetlands to promote	
	plant establishment	81
5.1	View of both vegetated wetlands during May 1994 showing very lush, vigorous	
	and healthy plant growth	95
5.8	View of both vegetated wetlands on September 8.1994	95
5.9	View of both vegetated wetlands during July, 1995	97
5.10	Example of a waterfowl path through the spikerush in the south saline	
	vegetated wetland	97
6.1	North evaporation pond with adjacent, upstream vegetated wetland and RO	4.6 -
	unit in the background	105

APPENDIXES

Appendix

- A RO reject-regenerated ion exchange experiments
- B FilmTec BW30 element test data
- C Analytical data for **the FilmTec** BW30 element testing
- D Generalized RO process diagram for checking data reduction
- E RO element serial numbers as loaded in pressure vessels
- F Desal-3LP element test data
- G Analytical data for the Desal-3LP element testing
- H Proposed saline marsh monitoring program
- I Pictorial illustration of the vegetation establishment in the saline vegetated wetlands through the study period
- J Electrical conductivity (EC) and total dissolved solids (TDS) readings in the north and south vegetated wetlands
- K Average evaporation pan and precipitation data over time intervals between listed data

ACRONYMS AND ABBREVIATIONS

÷----

СА	cellulose acetate
CDA	cellulose diacetate
cfu	colony forming units
СТА	cellulose triacetate
EC	electrical conductivity
EMWD	Eastern Municipal Water District
EPA	Environmental Protection Agency
FRP	fiber-reinforced plastic
GAC	granular activated carbon
HCl	hydrochloric acid
HPC	heterotrophic plate count
Ix	ion exchange
LSI	Langelier saturation index
MCL	maximum contaminant level
M&I	municipal and industrial
NBS	National Biological Service
NPF	normalized permeate flow
NDP	net driving pressure
ntu	nephelometric turbidity unit
PA	polyamide
РСВ	polychlorinated biphenyls
PID	proportional integral derivative
PVC	polyvinyl chloride
RO	reverse osmosis
RWRF	regional water reclamation facility
s c u	streaming current unit
SDI	silt density index
SEM	scanning electron microscopy
SR	salt rejection
SRPA	Small Reclamations Projects Act
TCF	temperature correction factor
TDS	total dissolved solids
TFC	thin-film composite
TOC	total organic carbon
UV	ultraviolet

CHEMICAL FORMULAS

Al ⁺³	aluminum ion		
B ⁺³	boron ion		
Ba ⁺²	barium ion		
BaSO₄	barium sulfate		
Ca ⁺²	calcium ion		
CaCO ₃	calcium carbonate		
CaF ₂	calcium fluoride		
CaSO₄	calcium sulfate		
Cŀ	chloride ion		
Cl ₂	chlorine		
CO,	carton dioxide		
Cu ⁺²	copper ion		
F	fluoride ion		
Fe ⁺²	ferrous iron		
Fe ⁺³	ferric iron		
H⁺	hydrogen ion		
nco,	bicarbonate ion		
Hg	mercury		
H ₂ S	hydrogen sulfide		
H ₂ SO ₄	sulfuric acid		
K⁺	potassium ion		
Mg ⁺²	magnesium ion		
$Mg(OH)_2$	magnesium hydroxide		
Mn ⁺²	manganese ion		
N ₂	nitrogen		
Na'	sodium ion		
NaCl	sodium chloride		
NH_4^+	ammonium ion		
NO,	nitrate ion		
O ₂	oxygen		
O ₃	ozone		
PO ₄ -3	phosphate ion		
S	elemental sulfur		
Se	elemental selenium		
SiO ₂	silica		
SO ₄ -2	sulfate ion		
Sr ⁺²	strontium ion		
SrSO₄	strontium sulfate		

SI METRIC CONVERSIONS

From	TO	Multiply by	
ft	m	*3.048 000 E -01	
in	m	*2.540 000 E -02	
ft²	m²	'9.290 304 E- 02	
kgal	m ³	3.785 412	
Mgal	m ³	3.785 412 E+3	
acre-ft	m³	1.233 489 E+3	
lb/in²	kPa	6.894 757	
٩F	°C	$t_{\rm C} = (t_{\rm F} - 32)/1.8$	

1. EXECUTIVE SUMMARY

The Bureau of Reclamation (Reclamation) and the Eastern Municipal Water District (EMWD) of San Jacinto, California, are involved in a cooperative research and demonstration project to evaluate the integration of multipurpose wetlands with wastewater and groundwater quality improvement, environmental enhancement, education and recreation, and. ultimate reuse of reclaimed water. Several predesign investigations and pilot studies were performed as part of the second phase of this project, and some are still ongoing at this writing. The pilot studies include the construction, testing, and evaluation of: (1) eight wetland research cells that are fed secondary treated municipal wastewater directly; and (2) a reverse osmosis desalination/saline vegetated wetland system.

EMWD is interested in reverse osmosis (RO) for desalting San Jacinto Basin water, exploring possible beneficial uses for the RO reject (concentrate)' generated with this process, and methods of reducing the concentrate volume prior to final disposal. One beneficial use that is being evaluated as part of this study is using RO reject to sustain saline vegetated wetlands. The wetlands reduce the volume of the reject through plant uptake and evaporation, then final evaporation ponds are used to further reduce the volume of the residual brine prior to disposal. The combination of low-pressure RO treatment of brackish groundwater and saline wetlands has the potential of providing high quality potable water at *a* reasonable cost for the needs of the San Jacinto Valley, as well as irrigated green belts, open spaces, and habitat areas.

An RO/saline vegetated wetlands research facility was constructed in San Jacinto, California, immediately west of the Hemet/San Jacinto Regional Water Reclamation Facility (RWRF). The research facility includes a 6 gal/min pilot RO system designed and built at Reclamation's Denver laboratories, two 20-foot by 80-foot by 2-foot-deep lined saline vegetated wetlands (marshes), and two similarly sized lined evaporation ponds (cells). The pilot RO system was installed and vegetation planted in the saline wetlands during the month of April 1993 by Reclamation and the National Biological Service (NBS) Denver Office personnel. Four salt-tolerant plant species which are attractive to wildlife were planted in horizontal bands in each of the two wetlands: alkali bulrush (*Bolboschoenus robustus*), creeping spikerush (*Eleocharis palustris*), marsh smartweed (*Polygonum muhlenbergii*), and Pennsylvania smartweed (*Polygonum pensylvanicum*). For 6 weeks, the plants received fresh water to promote growth. Then, shortly after pilot plant operations began on June 4, 1993, RO reject was added to the wetlands.

Three separate well waters were used in the pilot study. Originally, it was planned that **all** RO testing would be performed using the nearby Walker Duck Club well water. This well was selected because of its elevated total dissolved solids (TDS): 1,905 mg/L and its proximity to a future wetlands development site (Bureau of Reclamation and Eastern Municipal Water District, 1991). Two separate 1,000-hour tests were to be conducted using the following low-pressure RO elements: FilmTec's BW30-2540 and Desalination System's 3LP (SG2540). However, subsequent to the building of the pilot plant and the completion of

¹ Throughout this report, the terms "reject" and "concentrate" are used interchangeably to refer to the waste stream exiting the reverse osmosis process; whereas, the term "brine" is used for the more highly saline water flowing from the wetlands into the evaporation ponds.

RO reject-regenerated ion exchange pretreatment experiments (see appendix A), the Walker Duck Club well was abandoned as a source of feedwater because of severe flooding and access problems. The nearby Moreno Highlands well (975 mg/L TDS) was then selected by EMWD as an interim feedwater source to begin testing of the FilmTec elements. After 1,860 hours of operation, the Moreno Highlands well pump failed due to electrical problems. Because of the anticipated high cost of repair, along with legal problems associated with a recent change in ownership of the well, EMWD switched to yet another feedwater source. After almost 6 months of down time, the EMWD-owned Dairyland well (1,049 mg/L TDS) was selected as a replacement. The Desal 3LP elements were then loaded, and testing began anew. Operations continued with these elements through November 1995; however, this report documents the results of only the first 1,000 hours of testing.

The average feed and permeate TDS for the FilmTec BW30 element testing, using the Moreno Highlands well water, were 988 and 14.2, respectively. Overall TDS rejection was 97.1 percent., Boron, a trace metal of concern in the saline wetlands, was rejected at an average of 74.4 percent and was measured in the RO reject at a concentration of 1.2 mg/L (based on a single chemical analysis at 561 hours of operation).

Because of high heterotrophic plate counts (HPC) measured in the RO feed and reject tanks (heterotrophic plate counts: >5,700 cfu/mL), a regimen of weekly element flushing with a 1 percent solution of the biocide MinncareTM was initiated. Followup samples indicated significant reductions in the HPCs; however, it was later discovered from noticeable increases in normalized permeate flow (NPF) and permeate conductivity that some membrane damage was occurring. Minncare[™], which contains hydrogen peroxide (a strong oxidant) as a principal ingredient, was suspected. The disinfection protocol was subsequently changed to include less frequent flushing with MinncareTM; i.e., 30 minutes once a month, and weekend storage of the elements in 1 percent sodium bisulfite to inhibit microbial growth. Scanning electron microscopy (SEM) imaging was later used on an autopsied first stage lead element to determine if membrane surface damage could be visually detected. The SEMs showed conclusively that surface penetrations of the membrane developed within and along the edge on the Vexar (concentrate spacer) imprints. Two explanations were considered for this localized degradation: first, that the damage was caused solely by the repeated pressure cycles of operating in a daily on-off mode; and second, that MinncareTM contributed to (accelerated) the damage, possibly by being adsorbed onto trapped particles at the points of Vexar contact.

The average feed and permeate TDS for the Desal-3LP element testing, using the Dairyland well water, were 993 and 20.6 mg/L, respectively. Average salt rejection for the first 1,000 hours of testing was 98.0 percent. Boron was rejected at 38.8 percent, with concentrations of boron in the RO reject of 2.3, 2.0, and 2.5 mg/L (measured during three separate chemical analyses). Ultraviolet (UV) disinfection combined with monthly 30-minute flushings with a 1 percent solution of Minnicare[™] and storage of the elements in dilute sodium bisulfite during weekend shutdowns appears to have effectively controlled biological fouling. There was no evidence of undue fouling or membrane degradation. during the first 1,000 hours of testing.

The growth, establishment, and health of the plants in the saline vegetated wetland cells have been monitored since the initial planting. In addition, some toxicological data have been collected and analyzed, and observations have been made regarding wildlife visitation and use.

The alkali bulrush and spikerush survived in both vegetated wetlands, and once cattail (*Typha spp.*) invaded, it survived and thrived in the north wetland, but was inhibited in the south. Watergrass (*Echinochloa crusgalli*), quillwort (*Isòetes spp.*), and California bulrush (*Schoenoplectus californicus*) plants emerged in the fresher north wetland only. As the constituents of the water changed in the two vegetated wetlands, so did the plant response. Bach time fresh water was added (rainwater or potable water) to either wetland, the plants responded by having a growth spurt and became greener.

The plant communities existing at the end of the 1995 growing season in the north (control) wetland and the south saline wetland differed from each other after a year of maintaining fairly consistent water sources for both. Although the plants propagated rapidly each spring in the south saline vegetated wetland, they turned brown much earlier in the growing season than did plants in fresher wetlands on the San Jacinto Wildlife Refuge, 12.9 kilometers (8 miles) north of this pilot site (Stella Denison, personal communication, 1994). Alkali bulrush quickly became the dominant plant species, outcompeting the spikerush, and remained dominant throughout the study period. In the north vegetated wetland cell, the cattails spread to such a degree that they created more of a mixed plant community with the alkali bulrush, but with time, they may displace most of the other smaller species. Long term evaluation using the appropriate water is necessary to accurately assess the establishment of the plant communities and their successional patterns.

Wildlife usage: of the saline vegetated wetlands was documented on numerous occasions throughout the: period of this study. Tracks, scat, sounds, carcasses, nests, and actual sightings of m-al, rodent, amphibian, bird, and invertebrate species were observed regularly. Reptiles were observed occasionally.

During the period of about 6 months, when both vegetated wetlands were receiving fresh water, the south wetland contained a total of 15 invertebrate **taxa**, while the north wetland contained 18. One year later, the south wetland contained 12 invertebrate **taxa**, and the north wetland **contained** 11. These **taxa** numbers illustrate only that the south wetland was never so saline that it seriously restricted the invertebrates that could live there. When comparing the **taxa**, a few trends can be discerned, such as absence or reduced numbers of intolerant **taxa** from the saline wetland and presence in the control wetland. The sporadic and infrequent nature of invertebrate sampling makes definitive conclusions impossible.

Using the data that were received from EMWD, there are some trace metals that warrant concern for the health and well-being of visiting wildlife but, at this time, there appear to be no serious threats to wildlife using the saline vegetated wetland cells. However, it should be noted that the available data are very limited, so no definite conclusions on the longer term impact can be drawn. Because of data sparsity, it is not recommended that a larger saline wetland system be created to reduce RO reject (concentrate) volumes or to create green space and wildlife habitat until more stable water quality conditions are achieved and further data are collected and analyzed. It must be remembered that within this reported sampling period,

the south saline wetland received a constant flow of RO reject from only July 21, 1994, through the May 1995 sampling date. Therefore, long range effects or accumulations have not yet been adequately addressed. Monitoring should be continued and more samples should be collected and analyzed before any conclusions can be drawn about the feasibility of using wetlands for concentrate reuse and disposal.

The objective of the evaporation ponds (cells) at this pilot facility was to determine the degree to which the effluent volume **from** the saline vegetated wetlands could be further reduced to minimize the cost of RO reject/brine disposal. However, due to the limited amount of data available from the evaporation ponds, conclusions on long term conditions and impacts cannot yet be drawn. Since it is very important to know what, if any, hazards exist for wildlife using evaporation ponds associated with constructed saline wetlands, more data collection and careful analysis are essential before a full-scale RO system with saline vegetated wetlands and evaporation ponds is built.

Although no flow or volume data were recorded, the saline vegetated wetlands appeared to reduce the volume of reject from the RO unit. Since there are **insufficient** data to determine whether or not the saline vegetated wetlands and associated evaporation cells were harmful to the wildlife that used them, a full-scale development project is not recommended at this time. Additional monitoring is highly recommended.

2. INTRODUCTION

2.1 Background

The Bureau of Reclamation (Reclamation) is involved in a cooperative effort with the Eastern Municipal Water District (EMWD) of San Jacinto, California, to evaluate the effectiveness and feasibility of integrating constructed wetlands with wastewater and groundwater quality improvement, environmental enhancement, and ultimate reuse of reclaimed water. The overall program, entitled "Multipurpose Wetlands Research and Demonstration Project," contains five phases. The first phase, which has been completed for some time and documented in a November 1991 report, included the development of specific goals and objectives, agency responsibilities, site review and selection, a detailed plan of study, and preliminary cost estimates and time schedules. Several predesign investigations and pilot studies were performed as part of the second phase, and some are still ongoing. These include the construction, testing, and evaluation of eight research cells, which are fed secondary treated wastewater directly, and a reverse osmosis desalination/saline vegetated wetland system (subject of this report). The final three phases incorporate the design, construction, and operation and monitoring of a 45-acre demonstration wetlands facility. which is being funded under the Small Reclamation Projects Act (SRPA) loan program and the Wetlands and Riparian Initiative. The final designs, environmental assessments, construction, and planting of vegetation have been completed, and operations and monitoring are underway.

The total water management cycle shown in figure 2.1 illustrates EMWD's concept for the integration of multipurpose wetlands into the district's comprehensive water management planning. Reclaimed or treated wastewater represents an underused but readily available source of "new" water for the district that could help meet water demands if more **cost**-effective ways could be found to treat and store the water produced. EMWD is already supplying reclaimed water for irrigation and other nonpotable uses through a secondary distribution system (Bureau of Reclamation and Eastern Municipal Water District, 1991). Constructed wetlands, a heretofore overlooked resource for achieving high levels of treatment, are viewed as a potentially important part of the district's water resource management plan. When applied as an advanced water treatment process, wetlands become part of the water supply, use, treatment, storage, recovery, and reuse cycle.

The pilot and demonstration studies described above are being conducted at the EMWDAJSBR Wetlands Research Facility, which is located at the San Jacinto Regional Water Reclamation Facility (RWRF), approximately 85 miles east of downtown Los Angeles. Figures 2.2 and 2.3 show the location of the EMWD in western Riverside County and a detailed map of the district, respectively.

2.2 Purpose and Scope of Study

EMWD is interested in reverse osmosis (RO) desalting for the treatment of brackish groundwater in the San Jacinto Basin for municipal and industrial (M&I) applications and for

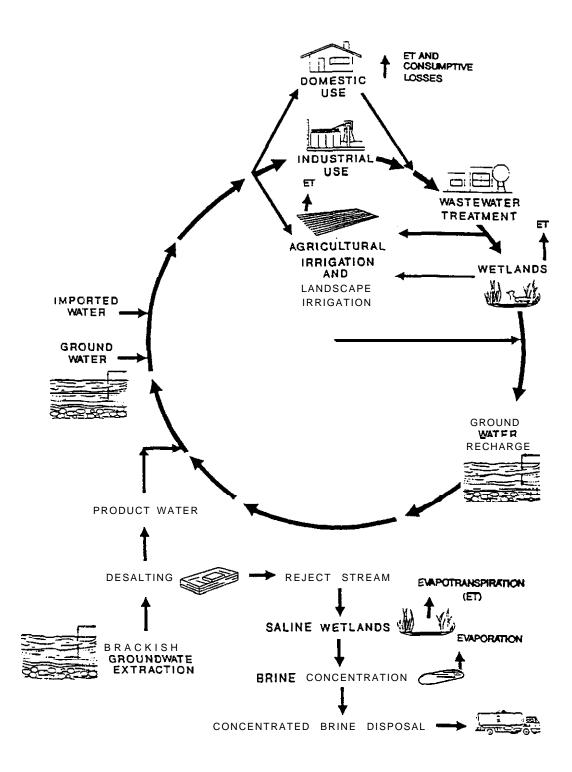


Figure 2.1 .- EMWD's proposed total water management cycle.

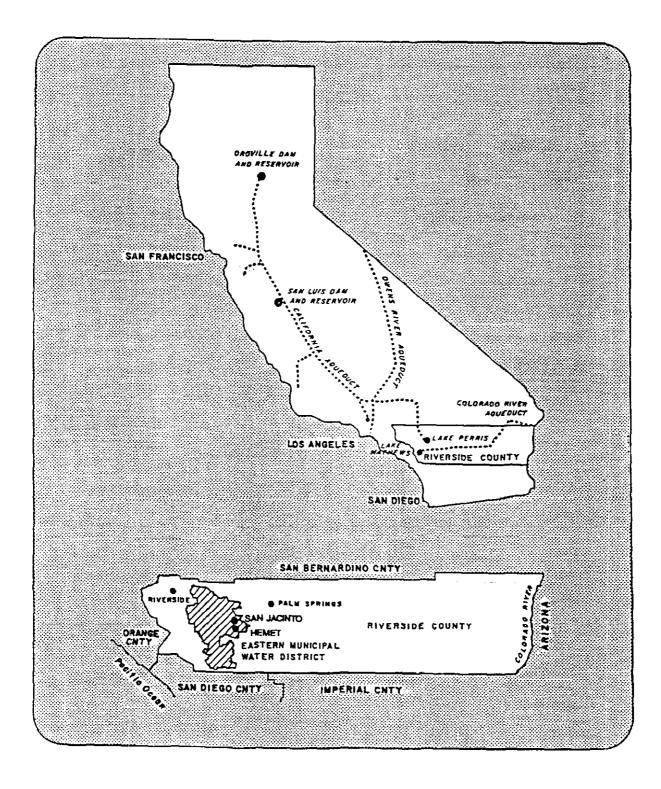


Figure 2.2.--State map showing the location of the Eastern Municipal Water District.

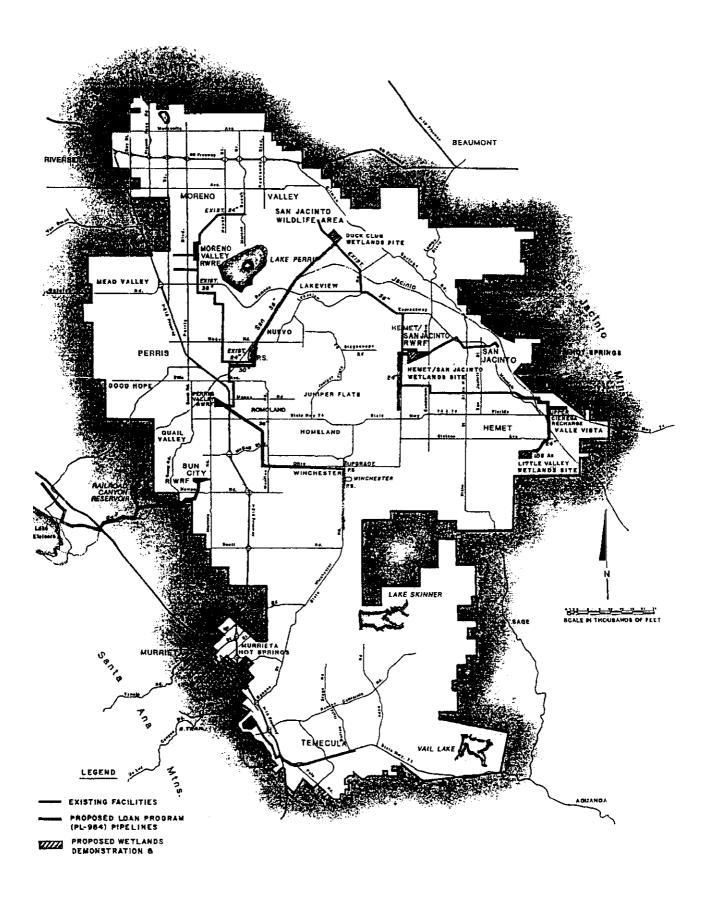
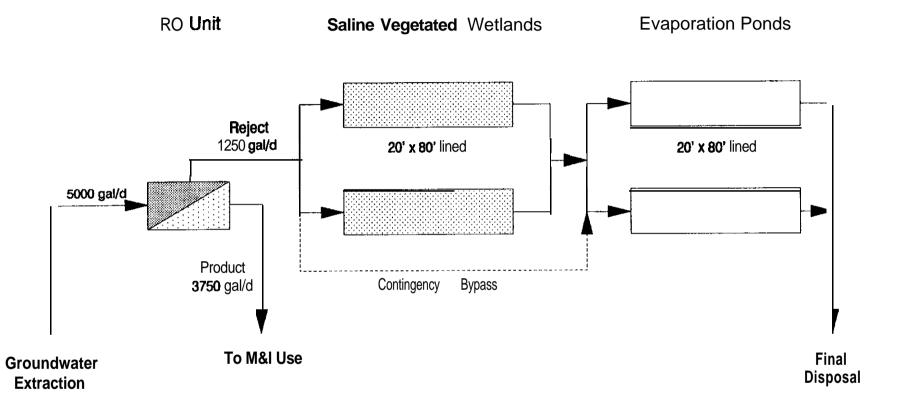


Figure 2.3.—Map of the Eastern Municipal Water District,

groundwater recharge. The pilot study described herein was undertaken to determine the performance of an RO system for improving the quality of San Jacinto Basin water to potable standards. The district is also exploring possible beneficial uses for the concentrate generated with this process and methods for reducing its volume prior to final disposal. One such beneficial use is being evaluated as part of this study, that of using RO reject (concentrate) to sustain saline vegetated wetlands. The wetlands reduce the volume of the concentrate through plant uptake and evaporation, then final evaporation ponds **are** used to reduce the volume of residual **brine**² flowing from the saline wetlands even further. The **successful** demonstration of these processes could lead to the use of RO treatment for the production of high quality water at a reasonable cost for the needs of the San Jacinto Valley and, at the same time, provide saline water for the irrigation of green belts, open spaces, and habitat areas.

2.3 Specific Test Objectives


Referring to the bottom of figure 2.1, the pilot study focused on brackish groundwater extraction, desalting, the use of desalting system reject for the support of saline wetlands, and brine concentration in solar evaporation ponds. Specific test objectives for the study **are** described as follows:

- **Reverse osmosis desalination** to evaluate the use of low-pressure RO desalting for improving the quality of brackish groundwater in the Lower San Jacinto Basin to Federal and state drinking water standards, and to monitor the RO system rejection of selected constituents that are known to be detrimental or toxic to plants.
- Saline vegetated wetlands (*marshes*) to determine whether the reject stream of a desalination process can be used to sustain a variety of flora and fauna in saline vegetated wetlands, and to determine whether these saline wetlands will or will not accumulate toxic materials or result in hazards to wildlife due to water quality.
- Evaporation ponds -to determine the effectiveness of pond design and engineering in discouraging use by wildlife, and to determine whether toxic substances are present and concentrated to significant levels. The original test plan included the evaluation of evaporation enhancement techniques; however, this was not accomplished for reasons explained later in section 7.1.2.

2.4 General Description and Layout of Test Facility

A conceptual diagram of the **RO/saline** wetlands test facility and a construction plan view are shown in figures 2.4 and 2.5, respectively. The research facility is composed of a 6-gal/min pilot RO system designed and built at Reclamation's Denver laboratories, two 20-foot by SO-foot by 2-foot-deep lined saline vegetated wetland cells (marshes), and two similarly sized lined evaporation ponds. Referring to figure 2.4, well water is first treated by RO to reduce the total dissolved solids (TDS) content of the feedwater to well below the

² Throughout this report the terms "reject" and "concentrate" are used interchangeably to refer to the waste stream exiting the reverse osmosis process; whereas, the term "brine" is used for the more highly saline water flowing from the wetlands into the evaporation ponds.

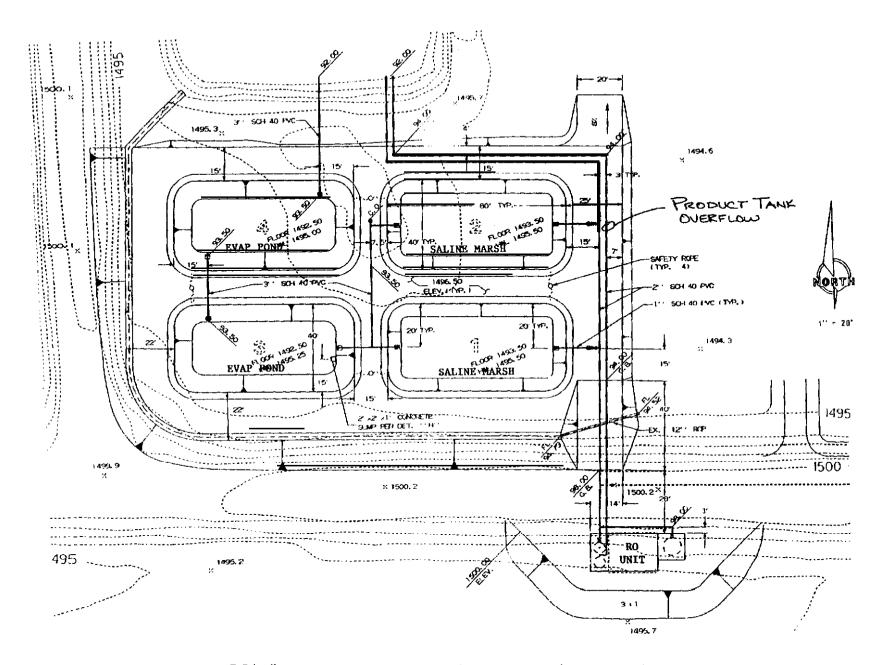


Figure 2.5.-RO/saline vegetated wetlands test facility construction drawing (plan viewj.

11

Environmental Protection Agency (EPA) drinking water guidelines. Next, concentrate from the RO process is directed to the saline marshes where it is used to sustain selected salttolerant plants and, at the same time, undergoes a reduction in volume as it passes through rhe marshes by both plant uptake and evaporation. *Outflows* from the saline marshes are then directed to the evaporation ponds where final brine concentration is achieved. The reject line from the RO system is plumbed such that flows can be directed to either or both of the marshes. The two saline marshes are shown in the foreground of figure 2.6, and the RO pilot plant is shown in both figures 2.6 (background) and 2.7 (closeup).

Installation of the pilot RO system and planting of vegetation in the saline wetlands were accomplished during April 1993 by Reclamation and National Biological Service (NBS) Denver Office personnel.

Figure 2.6.-RO pilot plant with saline wetlands shown in the foreground.

Figure 2.7.—Closeup view of the RO pilot plant.

This page was intentionally left blank.

3. WELL SELECTION AND GROUNDWATER QUALITY

3.1 Wells Selected for Testing

Originally, it was planned that RO testing would be performed using the nearby Walker Duck Club well water. This well was selected because of its elevated TDS, access, and proximity to the wetlands site. However, due to unforeseen events that will be described later in the report, groundwater from two additional wells was also included in the testing: Moreno Highlands well and Dairyland well. The following paragraphs describe the location, construction details, yields, and water quality of these wells. Table 3.1 presents the most recent chemical analyses available (prior to this test program) for the three wells.

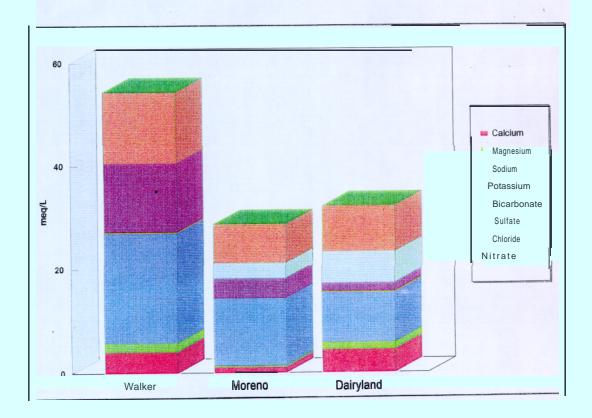
3.1.1 Walker Duck Club well.-The privately owned Walker Duck Club well is located 7.5 miles northwest of the wetlands research facility, adjacent to the San Jacinto Wildlife Area (California Department of Fish and Game). The well was completed in October 1984 to a total depth of 1,035 feet. The diameter of the bore is 24 inches. A 12-inch-diameter steel casing extends to a depth of 1,035 feet, with perforations below 735 feet. The annulus is packed with #5 gravel. A 32-hour pump test yielded 1,600 gal/min with zero drawdown. The static water level was reported to be 155 feet.

3.1.2 Moreno Highlands well.-The Moreno Highlands well, owned by the Alta Dena Dairy, is located approximately 11 miles northwest of the wetlands research facility on the southwest comer of Alessandro and Virginia, near the town of Moreno. The well was completed in October 1980 to a total depth of 1,110 feet. The diameter of the bore is 26 inches with a 3/8-inch gravel pack. A 16-inch-diameter steel well casing extends to a depth of 1,080 feet. The casing is perforated below 504 feet. The well was pump tested for 48 hours at a flow rate of 500 gal/min. Initial and final reported water levels were 106 and 152 feet, respectively.

3.1.3 Dairyland well.-The Dairyland well, owned by EMWD, is located about 1-1/2 miles northwest of the wetlands research facility, along Warren Road, a mile south of the Romona Expressway, in the city of San Jacinto. The well was completed in April 1994 to a total depth of 850 feet. The diameter of the bore is 42 inches to a depth of 50 feet and 28 inches from 50 feet to 800 feet. A 34-inch steel casing was used in the upper 50 feet, and 16-inch alternating steel and stainless steel casings were used from 50 feet to 800 feet. The annular till material is cement (10 sack) from 0 to 350 feet, and **#8** gravel from 350 to 800 feet. The stainless steel sections of the casing are perforated at depth intervals of 400 to 460 feet, 490 to 520 feet, and 550 to 780 feet. A 72-hour pump test yielded an estimated 1,200 gal/min with a total drawdown of 72 feet. The static water level depth was measured at 195.5 feet:.

Constituent		Units	Walker Duck Club	Moreno Highlands	Dairyland
Calcium Magnesium Sodium Potassium Aluminum Barium Boron ron, dissolved iron, total Manganese Strontium Fotal Cations	Ca ⁺² Mg ⁺² Na ⁺ K+ A1 ⁺³ Ba ⁺² B Fe ⁺² Fe Mn ⁺² Sr ⁺²	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	82 21 490 7 <0.1 0.8 0.6 w.35 *0.30 1.0 27.4	23 3.6 2% 1.1 0.28 0.07 0.31 w.74 *0.07 0.48 14.3	89 17 219 7.0 <0.1 <0.02 *1.9 0.04 0.55 15.6
Bicarbonate Sulfate Chloride Nitrate Phosphate Fluoride Total Anions Silica, dissolved Silica, total	HCO ₃ ⁻ SO," CI ⁻ NO ₃ PO ₄ ⁻³ F ⁻ SiO ₂	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	808 <1 *490 3 0.07 0.4 27.1 28 29	234 152 *264 1.8 0.3 2.4 14.5 23.2	104 *300 *310 0.9 0.60 16.7 20 18
Carbon Dioxide Hydrogen Sulfide Dissolved Oxygen Ammonium	CO ₂ H ₂ S O ₂ NH ₄ ⁺	mg/L mg/L mg/L mg/L	nd 0.05 3.8 8.4 31	3.5 <0.1 1.5 <0.1	2.1
Total Organic Carbon Heterotrophic Plate count Specifi©conductance Total Dissolved Solids	HPC Sum	mg/L cfu/mL μS/cm mg/L	125 2500 1905	13 1550 975	2.1 1530 1049
Turbidity Temperature pH		ntu 'C	14 28 7.7	2.1 29 8.0	9.4 8.1

Table 3.1 .-Groundwater analyses available for the three wells prior to testing


nd - none detected * exceeds State

- exceeds State and Federal secondary drinking water standards

3.2 Comparison of Groundwater Constituents for the Selected Wells

Bar graphs are presented in figure 3.1 that depict the major ion concentrations (meq/L) far the three well waters. The predominant ions in each of the waters are sodium (Na⁺) and chloride (Cl). The major ions of concern, however, are usually calcium (Ca⁺²), sulfate (SO,") and bicarbonate (HCO₃⁻) because they can contribute to the formation of calcium sulfate (CaSO₄) and calcium carbonate (CaCO₃) scaling in an RO element's concentrate channel. Solubility calculations must be performed, as part of the RO design process, to determine the degree to which each of these constituents can be concentrated before scaling occurs.

As shown in figure 3.1, the TDS level for the Walker Duck Club well is considerably higher than the other two wells, which made it a good candidate for testing. Note also that the SQ_4^{-2} concentration for this well is extremely low, which would preclude the possibility of $CaSO_4$ scaling. However, as will be discussed later in section 4.2.2, pretreatment would be required for Walker Duck Club well water to reduce the potential for $CaCO_3$ scaling. The Moreno Highlands and Dairyland wells have similar TDS levels; however, the Dairyland well has a fairly low Ca^{+2} concentration, while the Moreno Highland well contains higher concentrations of both Ca^{+2} and SO_4^{-2} . There are, of course, other constituents in the well waters that could contribute to the scaling or fouling of RO membranes. These will be addressed in detail in sections 4.2.2 through 4.2.4, along with pretreatment options. This page left intentionally blank.

This page was intentionally left blank.

4. REVERSE OSMOSIS DESALINATION

4.1 Reverse Osmosis Process Description

Reverse osmosis (RO) is a process used for desalting water by the application of hydrostatic pressure to drive feedwater through a semipermeable membrane. A major portion of the water's impurity (dissolved salts) remains behind and is discharged as concentrate, while relatively pure product water (permeate) emerges at near atmospheric pressure. A typical operating pressure range for RO is 200-400 lb/in² for brackish water and 800-1,000 lb/in' for seawater desalination. However, recently developed ultra-low pressure RO elements are available with an operating range of 75-150 lb/in* for brackish water applications. Ion rejections achieved with RO usually exceed 90 percent.

Membranes **are** manufactured from a variety of materials, such as cellulose acetate (CA):, cellulose diacetate (CDA), cellulose triacetate (CTA), polyamide (PA), other aromatic polyamides, polyetheramides, polyetheramines, and polyetherurea. Thin-film composite (TFC) membranes may be made from a wide variety of polymers consisting of several different materials for the substrate, the thin film, and other functional layers in the membrane (Parekh, 1988). Each of these types of membranes will have a unique response and varying tolerances to feed concentration, composition, pressure, temperature, and pH. Depending on the level of these operating parameters, each membrane will perform differently in terms of: water flux (quantity of water passing through a membrane per unit area and time, gal/ft²/day); salt rejection (measure of the amount of salt rejected in the concentrate, %); and water recovery (permeate recovered from a single element compared to the feed flow rate, %).

Four RO membrane configurations are currently manufactured: spiral-wound, hollow tine fiber, tubular, and plate and frame. Of these, only the spiral-wound (considered in this study) and hollow fine fiber types are used for municipal water treatment. A spiral-wound **membrane**, shown in figure 4.1, consists of two flat sheets of membrane separated by porous support or backing sheets sealed on three sides to form an envelope. The fourth side is attached with an adhesive to a hollow plastic tube that collects the product water. Typically, two or more of these membrane envelopes are glued to the product water collection tube and rolled up in the form of a spiral. Multiples of the spiral-wound modules or elements are usually connected in series in a fiberglass pressure vessel. These pressure vessels are then arrayed in both series and parallel configurations to form a desaltmg system, depending on the product **water** flow and percent recovery required (Conlon, 1990).

4.2 Pretreatment Considerations

4.2.1 General,.-The life and performance of desalting membranes can be adversely affected by the presence of scaling and/or fouling components in the feedwater. Membrane scaling can occur when dissolved salts in the feed are concentrated beyond their solubility limit and precipitate from solution in the element's concentrate channels. Typical scales of concern are calcium carbonate (CaCO₃), calcium sulfate (CaSO₄), barium sulfate (BaSO₄), strontium sulfate (SrSO₄), and silica (expressed as SiO₂ [silicon dioxide]). SiO₂ has a solubility that is

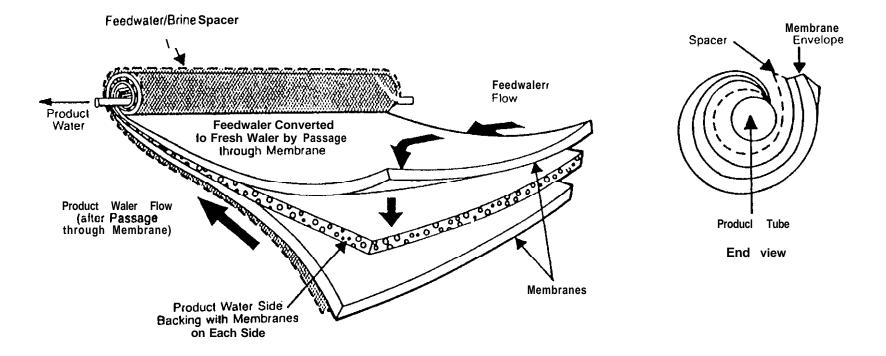


Figure 4.1.-Cutaway diagram of a spiral-wound RO element [Conlon, 1990].

i

directly proportional to temperature and that increases substantially with pH from a minimum at around 7.0-7.8. When supersaturated, SiO_2 can polymerize to form insoluble colloidal silica or silica gel which will cause scaling. Additionally, the solubility of SiO_2 can be dramatically reduced by the presence of metal oxides, which can complex with SiO_2 and lead to the formation of metal silicates. Scaling can usually be avoided by taking one or more of the following actions: (1) limiting the product recovery of the desalting system; (2) removing scaling components from the feedwater during pretreatment (e.g., using lime softening or ion exchange); or (3) adding acid and/or scale inhibitor to increase the solubility limits of the scaling compounds.

Fouling involves the trapping of materials on the surface or within the pores of the membranes. These **foulants** generally include colloidal materials (clays, iron corrosion products, etc.), biological growth, oxidation products of iron and manganese (metal oxides), and oxidized hydrogen sulfide (elemental sulfur). Pretreatment may be necessary to reduce the concentration of these materials and/or to inhibit biological growth. Noncellulosic membranes (used in this study) offer good biological stability and are not degraded by bacteria. However, given the right circumstances, a "biofilm" can develop from the colonization of bacteria on the surface of the membrane, which can cause significant flux decline. High pH cleaning with a detergent/surfactant and chelating agent is usually required for removal of this biofilm. Heterotrophic plate counts (HPC) can be used to assess the fouling potential of bacteria in water. Also, total organic carbon (TOC) has been shown to correlate with direct counts (Paul, 1990).

4.2.2 Walker Duck Club well.-Because of the low SO_4^{-2} concentration in this well water, there is virtually no potential for $CaSO_4$ scaling. The Marshall program (based on the Debye-Huckel equations) indicates that a 99.7 percent product recovery is achievable at an assumed RO feed temperature of 25 °C. However, because of the high HCO₃ level in the raw water, CaCO₃ scaling will occur. The concentrate Langelier Saturation Index (LSI) was calculated at 2.12, assuming 75 percent recovery. In addition, $BaSO_4$ poses a problem with a projected percent saturation of 6,500. Three pretreatment options were considered for the prevention of CaCO₃ scaling, as shown in figure 4.2. The first involves the addition of acid and antiscalant to inhibit $CaCO_3$ precipitation, and the latter two involve the removal of Ca^{+2} from the well water using either lime softening or strong acid ion exchange (IX), making use of the RO reject for regeneration of the resin. The antiscalant and **X** options would each effectively control $BaSO_4$ scaling as well. Because of the considerable quantity of acid required for the first option (about 85 mg/L of 93 percent sulfuric acid [H₂SO₄]), it was decided that brine-regenerated IX feasibility experiments would be performed. These experiments are discussed in section 4.5.1, and a concluding report is presented in appendix A.

Turbidity seems to be highly variable in this well, ranging in the samples tested from 0.9 ntu (November 30, 1992) to 14 ntu (December 10, 1991), depending on the pumping regimen. The well was pumped for 40 minutes prior to the 14 ntu reading, and overnight prior to the 0.9 ntu reading. RO feedwater turbidity should be limited to 1 .0 ntu. Three silt density index (SDI) measurements were performed in the field on January 30, 1992, resulting in values of 6.12, 5.34, and 5.74 (SDI is a measure of the colloidal fouling potential of the water). Most membrane manufacturers recommend an SDI below 5.0 in the feedwater, and preferably closer to 3.0. The 0.35 mg/L of iron shown in table 3.1 is slightly higher than the 0.3 mg/L.

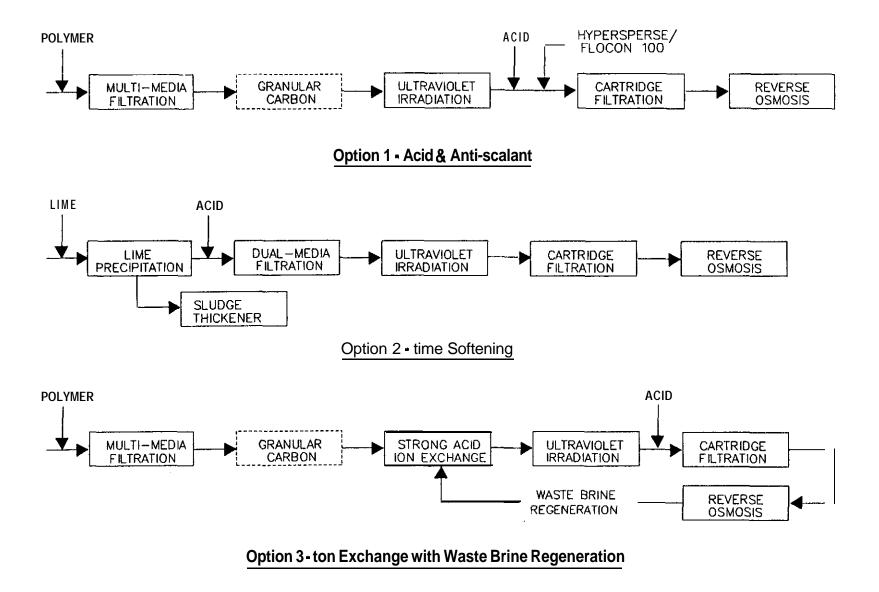


Figure 4.2.-Pretreatment options considered for RO operations.

recommended for RO feedwater; however, because the water is being trucked to the site, most of the iron will oxidize to Fe^{+3} in transit and should be removed during filtration. Dual-media or multimedia filtration is included in each of the pretreatment options. Polymer is added in options 1 and 3 to remove turbidity/colloidal materials and in option 2 for removing carryover precipitates from the lime process.

A considerable amount of air entrainment was observed in the well water during the **SDI** measurements. Dermis Watt, Hydrologist with Reclamation's Lower Colorado Regional Office, commented (memorandum dated February 24, 1992) that air belching from the well may indicate well damage, particularly if the well seems to be pumping too much sand, or a water table decline. A 64-minute pump test on March 6, 1992, resulted in a 61-foot drawdown, from a level of 263 feet to 202.4 feet, and some very fine sand was observed in the water (the well is screened below a depth of 735 feet). Some H_2S odor was noticed during this pump test (17 minutes after the pump was turned on), but all concentrations reported in the well analyses were at or below 0.05 mg/L. Perhaps this occurred because of infrequent pumping. If concentrations of H_2S were present in the well water, most of it would probably be lost during transit, and any residual elemental sulfur (S) would be removed during filtration.

The SiO_2 concentration of 29 mg/L (table 3.1) limits the achievable product recovery to roughly 75 percent. Silica can be removed during pretreatment, but only by using heroic measures such as coprecipitation with magnesium hydroxide (Mg(OH)₂) during high-pH lime softening.

Ammonia (NH_4^+) was measured at 8.4 mg/L, but NO,' was present at only 3 mg/L.

A heterotrophic plate count (HPC) run on this well water indicated 125 cfu/mL (cell forming units per milliliter). Two methods were considered for the control of biofouling: chlorination followed by dechlorination; and ultraviolet (UV) disinfection. Because of the low bacterial population, UV was selected with an estimated 99 percent plus kill probability. Since TFC membranes are highly **susceptable** to damage from strong oxidants, the use of chlorine (Cl,) was considered an unnecessary risk.

Granular activated carbon (GAC) was included in the pilot plant design because of the 3.1 mg/L TOC measured in this well water (table 3.1). However, based on the concerns of membrane manufacturers regarding the possible carryover of carbon fines to the RO elements, it was decided that the GAC would not be used until it was proved necessary.

Based on the outcome of the RO reject-regenerated IX experiments and the desire, by all parties **concerned**, to avoid the copious production of lime sludge (and the disposal requirements that result), it was decided that the pretreatment should consist of polymer addition followed by direct filtration, GAC (if required), acid and antiscalant addition, UV disinfection, and finally cartridge filtration. Because of the need for chemical **compatability**, Filtermate-150TM (polymer) and Hypersperse-150TM (anti-scalant), both marketed by Argo Scientific, were selected.

42.3 Moreno Highlands well.—Ca⁺² concentration is relatively low in this water, compared to the other two wells, which allows an achievable recovery of 97.4 percent based on CaSO₄ solubility (Marshall Program). However, the 23.2 mg/L SiO₂ does limit product recovery to 75 percent. The HCO₃⁻ concentration is not nearly as high as in the Walker Duck Club well water, but still results in a positive concentrate LSI of 1.23 (at 25 "C). Argo Scientific: recommended the addition of 6.6 mg/L Hypersperse-150TM and operation at pH 7.5 to control CaCO₃, as well as BaSO₄ and CaF₂ scaling (at 75 percent recovery, the degree of saturation for BaSO₄ was calculated to be 11.18).

Direct filtration with polymer addition, which was originally designed to accommodate the Walker well water, was determined to be appropriate for this water as well. Direct filtration is recommended for use at turbidities of 15 ntu or less. Argo Scientific determined the: optimum Filtermate-150TM dosage to be 2 ppm. Again, the total iron concentration of 0.74 mg/L is above the 0.3 mg/L recommended by membrane manufacturers; but, as pointed out previously, it most likely will be oxidized in transite and removed during filtration.

Because of the low HPC of 13 cfu/mL, UV disinfection was again considered adequate to control biofouling. Periodic shock treatments with the biocide $Minncare^{TM}$ during extended shutdown periods were included as additional protection. The H₂S and TOC levels in the well water were low, <0.1 and 5 mg/L, respectively.

4.2.4 Dairyland well.—Of the three wells, Dairyland has the highest Ca^{+2} and SO_4^{-2} concentrations (refer to table 3.1 and figure 3.1), yet the Marshall program indicated an achievable product recovery of 88.8 percent based on $CaSO_4$ solubility. However, 20 mg/L SiO₂ limits product recovery to roughly 80 percent. HCO_3^- concentration is the lowest of the three wells, but still results in a positive concentrate LSI of 1.66 (at 25 "C) because of the higher Ca^{+2} level. Argo Scientific recommended the addition of 6.6 mg/L Hypersperse-150TM and operation at pH 7.5 to control CaCO₃, as well as BaSO₄ and CaF₂ scaling (at an assumed 75 percent recovery, the degree of saturation for BaSO₄ was calculated to be 20.88).

Argo Scientific determined the optimum Filtermate-150TM dosage for direct filtration to be 2 ppm, based on zeta potential measurements. Sample turbidity delivered to Argo Scientific was 8.9 ntu, which compares to 9.4 ntu in table 3.1. Total iron is high (1.9 mg/L), but dissolved iron is very low (<0.02 mg/L); therefore, Fe+' would be easily removed during filtration.

No H₂S or HPC data were provided for this well water.

4.3 Pilot Plant Design and Construction

The pilot plant is composed of three subsystems, each mounted on a separate equipment skid: pretreatment,, RO, and membrane cleaning. A process and instrumentation diagram of the combined system is shown in figure 4.3.

4.3.1 Pretreatment subsystem.-The unit processes on the pretreatment skid (figure 4.3) include the following:

- Polymer addition (Filtermate-150[™])
- Direct 2-stage filtration

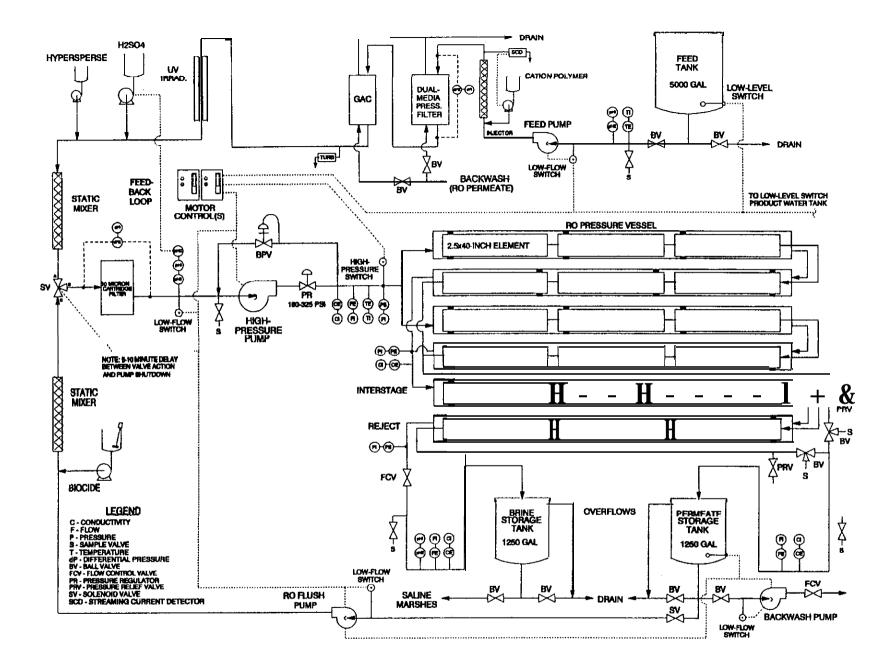


Figure 4.3-RO system process and instrumentation diagram.

27

- Granular activated carbon (GAC)
- Ultraviolet (UV) disinfection
- Acid addition (H_2SO_4)
- Anti-sealant addition (Hypersperse-150[™])
- Cartridge filtration (10 pm)

Polymer dosage was controlled using a Milton Roy model SC 5200 streaming current detector, and filter effluent turbidity was monitored using a Hach model 1720C low range turbidimeter. Acid and antiscalant were added at concentrations determined by Argo Scientific, using Liquid Metronics, Inc. (LMI) chemical feed pumps. A proportional integral derivative (PID) controller was used to control acid addition to maintain the required feed pH. Although GAC was available as part of the pretreatment system, its use was not recommended by the membrane suppliers because of the possibility of carbon fines carrying over to the RO elements. The backwash cycle for the pressure filter was initiated manually at a preselected differential pressure (AP). Pretreated water was provided to the RO skid at a flowrate of 6.0 gal/min.

A separate **30-gallon** mix tank, mixer, and pump were provided on the pretreatment skid for preparing and applying biocideibiostat (sodium bisulfite) solutions to the RO elements during weekend and other extended system shutdowns.

It should be noted that at the time the design and construction of the pilot plant was underway, the planned feedwater was to come from the Walker Duck Club well. Consequently, the design of the pretreatment system and chemical feed rates were **based** on the requirements of this feedwater. Fortunately, when it was necessary to switch to alternate feedwater sources later in the program, it was possible to use the same process **configuration** with only minor changes in chemical feed rates.

4.3.2 RO subsystem.-The reverse osmosis skid included the following equipment:

- High pressure feed pump (normally operating at 200-225 lb/in²)
- Six three-element pressure vessels (for 2.5-inch RO elements)
- RO flush and filter backwash pumps
- Pump controls for the high pressure and feed forwarding pumps
- Instrumentation, relays, timers, etc.
- Data acquisition system (data logger, disk drive, and modem)

The RO system was operated at 75 percent recovery, yielding 4.5 gal/min of product water and 1.5 gal/min of concentrate. Two 1,250-gallon fiber-reinforced plastic (FRP) tanks were provided for the storage of product and concentrate flows. The concentrate was then used to support the saline vegetated wetlands (marshes), while the product water was used for filter backwash, element flushing, chemical dilutions, and other maintenance activities. Because the system operated intermittently (nightly and weekend shutdowns), which is uncharacteristic of most RO plants, extra care had to be taken to avoid biological fouling of the membranes. Besides the online UV disinfection and provisions for periodic flushing of the elements with a biocide/biostat during extended shutdowns, the system was also (designed to automatically flush the elements with RO permeate (product) for 10 minutes at the end of every operational cycle (triggered when the 5,000-gallon feed tank emptied). **4.3.3 Membrane cleaning subsystem.-A** separate membrane cleaning skid was provided in the event the removal of scaling and/or fouling components from the elements was necessary. The 50-gallon cleaning solution tank is equipped with a variable-speed mixer and Chromalox 7.5-kW immersion heater to maintain solution temperature. An inline $10-\mu m$ cartridge filter is also included to remove cleaning residue in the recirculating solution.

4.3.4, Membrane selection.-The main treatment objective was to achieve as high a product recovery as possible at minimum cost. To accomplish this, two separate thin-film composite membrane elements were chosen for testing: FilmTec's BW30-2540 and Desal's X2.540. Both have relatively low operating pressures and provide good productivity and high TDS rejection. It should be noted, however, that other membrane elements are available which would provide equally satisfactory results.

4.4 Test Procedures

4.4.1 Schedule.-A comparison of the original test program and the actual testing completed is shown on the schedule in figure 4.4. As was mentioned previously, at the time the design and construction of the pilot plant was underway, the planned feedwater was to come from the Walker Duck Club well. The original test plan included a 6-week checkout of the pilot plant, using a partial compliment of 6 RO elements, followed by two 1,000-hour tests, the first using FilmTec BW30-2540 elements and the second using the Desal SG2540 elements. Then, based on a comparative analysis of the two tests, a final report was to be: written. Operation of the RO unit was to continue in support of the saline marshes for an additional 12 months. Again, all operations were to be accomplished using the Walker Duck Club well water.

Subsequent to the building of the pilot plant and the completion of RO reject-regenerated ion exchange pretreatment experiments (discussed in section 4.5.1 and appendix A), the Walker Duck Club well was abandoned as a source of feedwater because of severe flooding and access **problems**. The **Moreno** Highlands well was suggested by EMWD as an interim source until a permanent replacement could be found. As shown in figure 4.4, this "interim" well was used for approximately 1,860 hours of testing.

On February 4, 1994, pilot plant operations were discontinued because of electrical problems with the **Moreno** Highlands well pump. Due to the anticipated high cost of repair and legal problems associated with a recent change in ownership of the well, EMWD decided to switch to yet another feedwater source. After almost 6 months of down time, a new well (Dairyland) was identified. On July 21, 1994, the Desal SG2540 elements were loaded and the system restarted. Operations continued with these elements through November 1995; however, this report documents the results of only the **first** 1,000 hours of testing.

4.4.2 Pilot plant operations.-Approximately 5,000 gallons of RO feedwater was trucked to the site each weekday from one of the nearby brackish wells discussed above (figure 4.5). The water was first pretreated to:

- Remove suspended materials; i.e., silts, clays, etc.
- Kill microbial organisms to prevent biofouling of the RO membranes
- Suppress the scaling tendencies of selected minerals



Figure 4.4.-Comparison of original versus completed RO test program.

30

The unit processes involved in pretreatment included: basket strainer and polymer addition (figure 4.6), two-stage pressure filtration (figure 4.7), UV disinfection and acid/antiscalant addition (figure 4.8), and cartridge filtration. The RO system then desalted the pretreated water using TFC membrane elements at an operating pressure of about 225 lb/in*. Operating at 75 percent recovery, the RO system yielded 4.5 gal/min of product (fresh) water and 1.5 gal/min of concentrate. A total of about 1,250 gallons of concentrate was produced and stored each weekday to support the saline vegetated wetlands. Figure 4.9 shows the RO equipment skid and the 1,250-gallon permeate and concentrate tanks. The RO system control and instrumentation panel is shown in figure 4.10.

4.4.3 Process data collection and recording.-System operation was continuously monitored using a Molytek **32-channel** datalogger (figure 4.11). A total of 18 channels were active, receiving 4-20 **mA** signals from process instruments. Channel assignments and engineering units were as follows:

Channel 1 - Streaming current, SCUs Channel 2 - Turbidity, ntu Channel 3 - RO feed conductivity, uS/cm Channel 4 • RO interstage conductivity, uS/cm Channel 5 - RO reject conductivity, µS/cm Channel 6 - RO permeate conductivity, μ S/cm Channel 7 - Raw feed pH Channel 8 - RO feed pH Channel 9 - RO reject pH Channel 10 - RO feed flow, L/min Channel 11 - RO reject flow, L/min Channel 12 - RO permeate flow, L/min Channel 13 - RO feed pressure, kPa Channel 14 - RO interstage pressure, kPa Channel 15 - RO reject pressure, kPa Channel 16 - Raw feed temperature, °C Channel 17 • RO feed temperature, °C Channel 18 - Atmospheric temperature, °C

Every 15 minutes, an instantaneous value was recorded from each channel by a Molytec 9903 disk recorder. In addition, selected channels were plotted as trends on strip chart paper providing visual data for operating and troubleshooting the system. Channels 2 (turbidity) and 8 (RO feed pH) have alarm shutdowns triggered by "out-of-spec" operating conditions. The alarm notifies the operator who isolates the fault(s) and manually restarts the system.

4.4.4 Sampling and analyses.-Pretreatment effectiveness was monitored using pressure filter effluent turbidity and daily silt density index (SDI) measurements (figure 4.12). As was mentioned previously, SDI is a measure of fouling potential of the feedwater from colloidal-size materials. SDIs were initially run only on samples collected upstream from the cartridge

This page left intentionally blank.

Figure 4.5.—Well water being pumped into the 5,000.gallon RO feed tank.

Figure 4.6-View showing basket strainer and polymer addition.

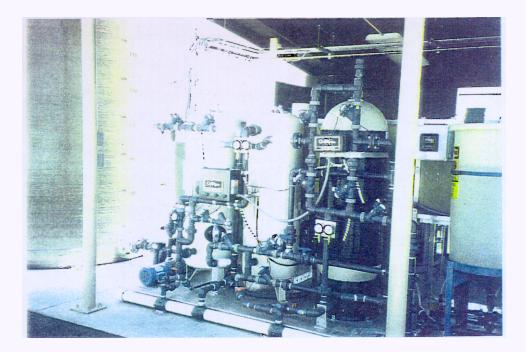


Figure 4.7.-View showing the sand clarifier, pressure filter, and GAC column.

Figure 4.8.-View showing acid feed tank and UV (ultraviolet) sterilizer to the right.

Figure 4.9.—RO equipment skid next to the 1,250-gallon permeate and concentrate tanks.

Figure 4.10.-RO system control and instrumentation panel with data acquisition to the right.

Figure 4.1 I-Closeup view of the **32-channel** Molytec recorder and disk drive unit.

Figure 4.12.-EMWD operator performing daily silt density index (SDI) measurements.

filter. However, recent measurements have been taken on both upstream and downstream samples for comparison (downstream values reflect what the lead RO elements are seeing). Samples were collected periodically from the feed, interstage (Desal 3LP testing only), reject, and permeate streams and chemically analyzed to determine specific ion rejections and to calculate mass balance calculations. The constituents measured included major ions, SiO₂, HPC, TOC, and selected metals (refer to appendices C and G).

4.4.5 Data reduction and interpretive methods.-A generalized RO process diagram is presented in appendix D which was used during data reduction for mass balance calculations. Two methods of data reduction are typically used for interpreting RO data. The first and more rigorous method involves the calculation of water transport (A, 10⁻¹² m/sPa) and salt transport (B, 10" m/s) coefficients. The second involves the calculation of net driving pressure (NDP) and normalized permeate flow (NPF). The latter is the more common method and is used herein.

4.5 Results and Discussion

4.5.1 RO reject-regenerated ion exchange experiments-Bench-scale tests were conducted in anticipation that RO operations would be performed using the Walker Duck Club well water. They basically consisted of laboratory experiments to evaluate reject-regenerated IX (ion exchange) as a pretreatment process. Because of the high concentrations of Ca^{+2} (calcium) and HCO_3^{-} (bicarbonate) in the Walker Duck Club well water, it would have been necessary to add a considerable amount of acid plus antiscalant to avoid the precipitation of $CaCO_3$ (calcium carbonate) in the RO elements. IX experiments were conducted using a strong acid cation exchange resin operated in a sodium cycle to remove calcium. Regeneration of the resin was attempted using a solution synthesized to duplicate the anticipated RO reject (concentrate) stream. These experiments were completed in April 1992, and the results were documented in a memorandum report (Included as appendix A to this report). Subsequent to these experiments, the Walker Duck Club well was abandoned as a potential RO feedwater source because of severe flooding and access problems.

4.5.2 FilmTec BW30 element evaluation.—On June 6, 1993, a full load of 18 FilmTec BW30-2540 elements was installed in the pressure vessels (refer to appendix E for loading pattern and serial numbers). During the following 8 months, a total of 1,860 hours of operation were logged. In that time, 2,530,000 L (670,000 gal) of Moreno Highlands well water was desalted, yielding 1,900,000 L (502,000 gal) of product water and 634,000 L (167,000 gal) of concentrate. Average feed and product concentrations were 988 and 14.2 mg/L TDS, respectively.

4.5.2.1 *Operational* data--Operational data collected during this test period by the plant operators, along with other calculated values, are tabulated in appendix B. Flow, temperature, conductivity, and pressure data are also graphically depicted on figures 4.13 *through 4.18.*

Figures 4.13 and 4.14 show the process flow and temperature data. The feed and reject flows were: held constant at 22.7 L/min (6.0 gal/min) and 5.7 L/min (1.5 gal/min), respectively,

This page left intentionally blank.

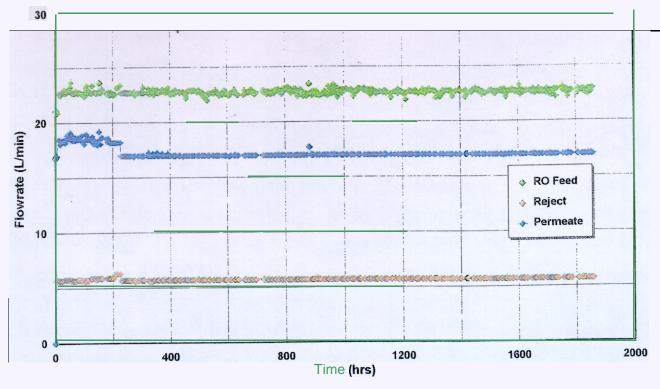


Figure 4.13.—System flowrates (FilmTec BW30).

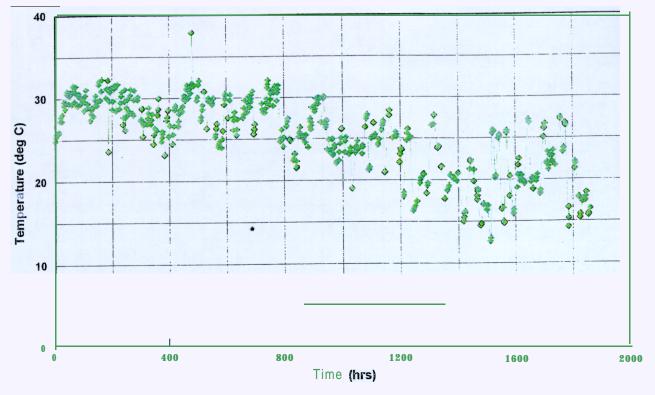


Figure 4.14.—Feed temperature.

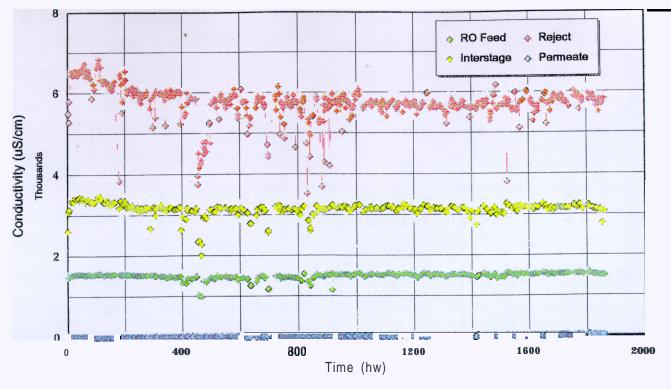


Figure 4.15.—System conductivities.

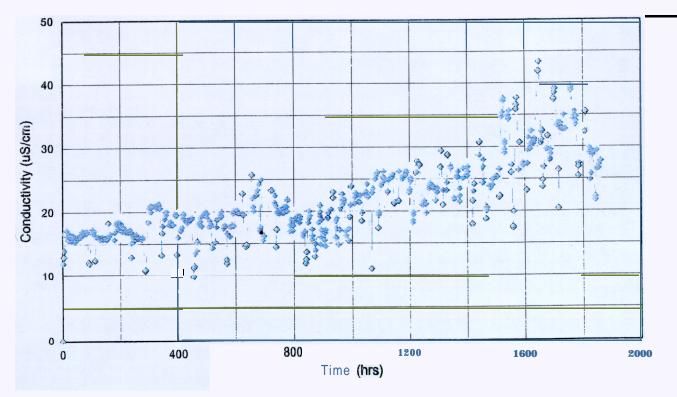


Figure 4.16.—Permeate conductivity.

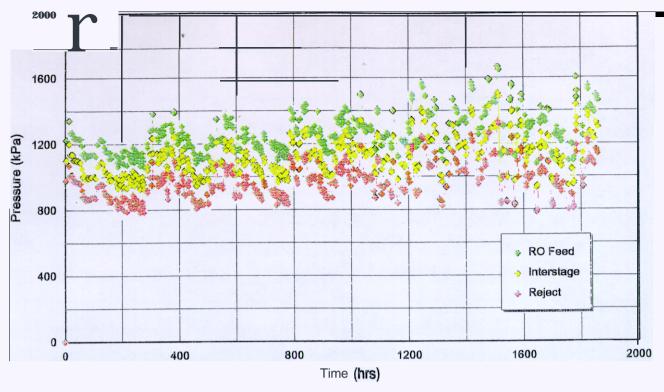


Figure 4.17.-System pressures

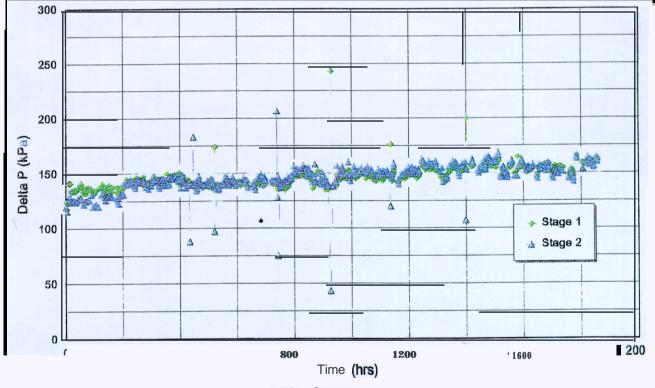


Figure 4.18.-Stage pressure drops

yielding a 75 percent recovery of desalted water (permeate). The discontinuity in the permeate data during the first roughly 200 hours of operation resulted from instrument calibration error. Both diurnal and long term variations in feed temperature are indicated in figure 4.14. This measurement, which was taken at the feed end of the first stage, has a significant effect on membrane performance and is used in later calculations of net permeate flow which is normalized to 25 °C.

Figure 4.15 displays system conductivities as microSiemens per centimeter (µS/cm). Also, for better resolution, figure 4.16 shows an expanded view of the permeate conductivities. Note that the erratic spikes in the curves (figure 4.15) mirror one another. This would indicate that the concentration of the feedwater delivered to the site was not consistent. This is particularly noticeable at about 465 hours of operation, where it appears that the feedwater conductivity dropped by about 25 percent. Note also the gradual increase in permeate conductivity throughout the test period (figure 4.16). The suspected cause of this increase will be addressed later in section 4.5.2.2.

Figure 4.17 shows the RO feed, interstage, and reject operating pressures in kilopascals (kPa). In addition, pressure drops for each of the two stages are shown in figure 4.18. The gradual increase in the curves in figure 4.17 result, as expected, from a gradual decrease in feed temperature. For the most part, the two pressure drop curves in figure 4.18 mirror one another, indicating no differential buildup of fouling or scaling components (colloidal and biological fouling usually manifest themselves in the leading elements of the first stage, whereas scaling predominantly occurs in the trailing elements of the second stage). RO feed pressure averaged 1,267 kPa (184 lb/in²) during the 8 months.

Complete chemical analyses were performed at 561 hours of operation on the three separate process streams (RO feed, permeate, and reject) for the following constituents:

- Cations (Ca⁺², Mg⁺², Na⁺, K⁺)
 Anions (HCO₃⁻, Cl⁻, SO₄⁻², NO₃⁻, NO;, F⁻)
- Metals (Al⁺³, Ba⁺², Sr⁺², Fe⁺², Fe (total), Mn⁺², B^{**}, Cu⁺², Se, Hg⁺²)
- Silica (as SiO₂)
- Total organic carbon (TOC)
- Heterotrophic plate count (HPC)

Results of these analyses are shown in appendix C.

Table 4.1 summarizes percent salt rejections (%SR) for selected ions and for TDS that were calculated from the concentration data in appendix C. The values shown as \geq result from the permeate concentration falling below the detection limit. All ions, with the exception of B^{+3} (boron) and Cu^{+2} (copper), were rejected at or above 93 percent. Boron and copper, which can be toxic to wetlands vegetation at elevated concentrations, were rejected at 74 and 85 percent, respectively. The average reduction in TDS is slightly greater than 97 percent.

The HPCs, which were taken on August 13, 1993, indicated very high readings in the RO feed and reject tanks (>5,700 cfu/mL). Unfortunately, these values were not reported to the Denver Office until September 2, 1993. It was suspected at the time that the high plate

SALT REJECTION (%)		
Constituent	561-Hour	
Calcium	≥ 99.7	
Magnesium	≥97.6	
Sodium	98.6	
Potassium	≥92.9	
Boron	74.4	
Copper	≥85.0	
Selenium		
Bicarbonate	97.7	
Chloride	99.4	
Sulfate	99.6	
Fluoride	98.3	
Nitrate	94.7	
Silica (total)	≥95.6	
TDS	97.1	

Table 4.1 .-Percent salt rejection data for the FilmTec BW30 (Moreno Highlands well) testing

Note: All \geq rejection values above were based on permeate concentrations that were at or below detection limit for **the** analytical method used.

counts in the reject tank might have resulted from feedwater seeping through the system from the head differential, i.e., after the water was delivered but before system startup. The truck driver was advised to shut the effluent valve on the feed tank before tilling it. In addition, the array was flushed with a 1 percent solution of the biocide **Minncare**TM and allowed to sit over the weekend. Minncare" was selected because of its advertised compatablity with TFC membranes. From that point on, a regimen of weekly flushing with 1 percent **Minncare**TM was included in the operation and maintenance (O&M) procedures. Followup samples taken on September 7, 1993, indicated significant HPC reductions; i.e., 1 and 528 cfu/mL in the product and feed tanks, respectively.

A total of 165 **SDIs** were performed during the 1,860 hours of **FilmTec** BW30 testing (June 7, 1993 to February **3, 1994**). The values ranged between 0.41 to 6.16, with an average and standard deviation of 2.33 and 1.47, respectively. All were measured upstream from the cartridge filter for this test phase. Keep in mind, however, that the **SDIs** will be lower downstream from the cartridge filter, and it would be the downstream readings that should fall below the recommended maximum allowable **SDI** of 5.0.

Figures 4.19 and 4.20 present the average net driving pressure (NDP) and normalized permeate flow (NPF) for this test phase. Average NDP is the pressure available to force water through the membrane and is calculated as follows:

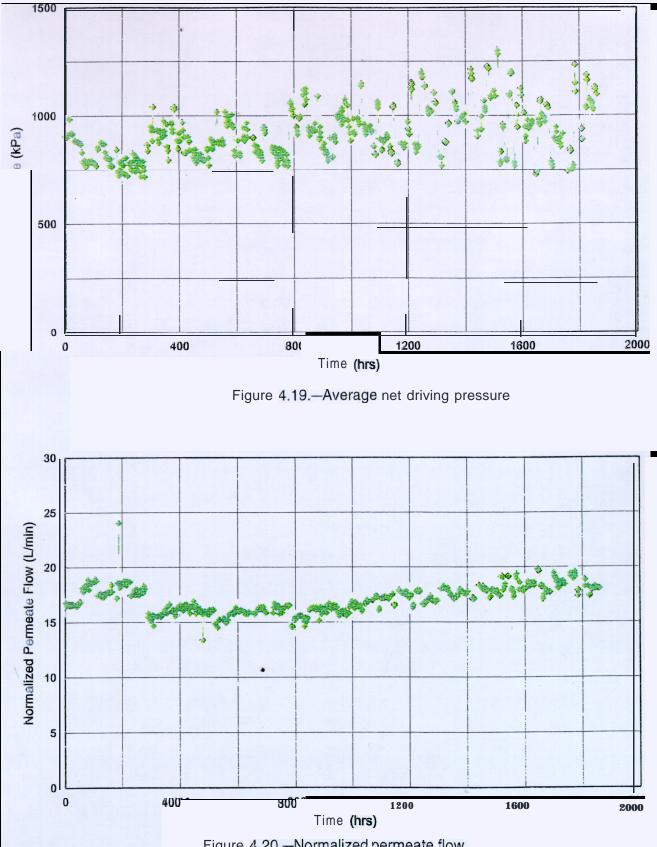
$$NDP = P_f - P_p - P_o$$

where: P_f = Average feed pressure (average of feed and reject pressures)

 P_{p} = Pressure in the permeate line (gauge pressure)

 P_{σ} = Average osmotic back pressure of the feedwater (estimated by averaging the feed and reject concentrations and dividing by 100)

NPF is the total permeate flow adjusted to standard temperature (25 "C) and to normalized NDP at startup and is calculated as follows:


$$NPF = NDP_{startup} / NDP_{today} \times TCF \times F_{p}$$

where: TCF = Temperature correction factor

$$F_{p}$$
 = Permeate flow

The NPF graph (figure 4.20) can be used as a diagnostic tool to estimate the degree to which membranes are being fouled or to determine if damage is occurring. The NPF graph is commonly used to determine the time at which membranes should be chemically cleaned. Some drop in NPF with time is expected. For the TFC membranes used in this study, a 15-20 percent decline over a 3- to 5-year period would not be unusual. This assumes, of course, that adequate pretreatment is maintained and an effective monitoring and membrane cleaning regimen is used. If NPF increases with time, as shown in figure 4.20, membrane damage is strongly expected.

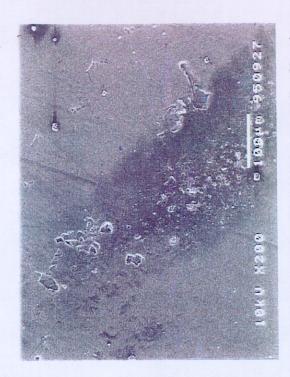
This page left intentionally blank

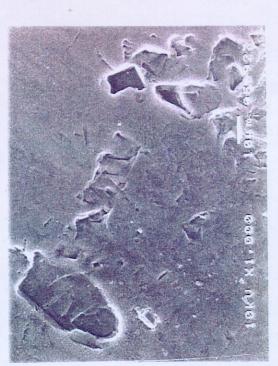
4.5.2.2 Performance degradation.-Midway through the **1,860-hour** test period, some early signs of membrane degradation were observed. The weekly use of the biocide Minncare[™] was suspected as the cause of the degredation. Addition of the biocide began at about 740 hours of operation (refer to previous section), and **noticable** increases in NPF were observed at between 1,000 and 1,200 hours. By 1,370 hours, salt rejection had dropped slightly, by 0.35 percent, and normalized permeate flow had increased by about 8 percent. At that point, it was evident that something was causing significant membrane damage. The obvious culprit was **Minncare[™]**, which contains hydrogen peroxide, a strong oxidant, as a principal constituent. To combat or slow down this degradation, the disinfection protocol was changed to include less frequent disinfection (30 minutes flushing with 1% **Minncare[™]** each month) and weekend storage of the elements in dilute (1 percent) sodium bisulfite to inhibit microbial growth. During the final 400 hours of operation, i.e., since the change *in* disinfection procedures, the salt rejection and normalized flows appear to have leveled out.

4.5.2.3 Membrane autopsy and scanning electron microscopy (SEM) analysis--An autopsy was performed on one of the two lead RO elements in stage 1 (serial No. Al 690782; refer to appendix E). An initial observation was that the membrane surface appeared remarkably clean, revealing no obvious fouling or scaling. Also, the VexarTM (plastic feedwater/concentrate spacer; refer to figure 4.1) showed no signs of any buildup. After measuring the dimensions of the active membrane area, one of the membrane surfaces was irrigated with deionized water and thoroughly squeegeed to collect any adhering surface deposits. This operation yielded a small amount of light brownish material which was later determined to have a dry mass of 0.0734 grams (collected from a membrane active surface area of 0.57 m').

A dye test was used in an attempt to identify possible surface penetrations of the membane layer from chemical deterioration, pin holes, cracks, etc. A l-percent solution of **congo** red dye was applied to several small area of the membrane's surface and then wiped away after a few moments. Residual (dark) dye stains or bleeding of the dye to the membrane backing material would indicate surface penetrations. No evidence of physical degradation was observed. It should be noted, however, that this dye test was originally developed for **cellulose** acetate (CA) membranes, which have considerably less surface roughness, and its application to TFC membranes is questionable.

Membrane samples were cut from the leaf for scanning electron microscopy (SEM) imaging, both from the lead and trailing ends of the element, to determine if surface damage could be **visually** detected. The samples were gold-coated to enhance imaging resolution and detail. It was suspected, prior to running the SEMs, that damage would most likely occur at the points where the **Vexar**TM physically contacted the membrane surface (these points were easily identified from the impressions left behind). Figure 4.21 presents four SEMs of varying magnification which show conclusively that surface penetrations have developed within and along the edge on the VexarTM imprints. Two principal theories have been proposed to explain this localized degradation: first, that the damage was caused solely by the repeated pressure cycles of operating in a daily on-off mode; and second, that MinncareTM contributed to (accelerated) the damage, possibly by being adsorbed onto trapped particles at the points of VexarTM contact.


This page left intentionally blank.


(a) View at 100x magnification showing full imprint.

(c) Closeup view of surface penetrations at 750x magnification.

(b) View at 200x magnification showing middle of imprint.

(d) Closeup view of surface penetrations at 1000x magnification.

Figure 4.21.-SEMs of Film Tec BW30 membrane surface showing localized degradation at Vexar (concentrate spacer) imprint.

The dried sample collected from the squeegeeing operation was digested and analyzed for trace metals using inductively-coupled plasma (ICP) spectroscopy. A total of 26 metals were identified. Table 4.2 lists those found with a total mass ≥ 0.030 mg. Remember, these metals were collected from a membrane surface area of about 0.57 m².

4.5.3 Desal-3LP element evaluation.-& July 21, 1994, after a 5-1/2-month shutdown due to the lack of a feedwater source, a full load of 18 new Desal SG2540 elements were installed in the pressure vessels, and the system was restarted (refer to appendix E for an element loading diagram and serial numbers). As explained earlier, this report documents the results of only the **first** 1,000 hours of testing, even though operations continued with these elements through November 1995. During this test period, **1,363,000** L (360,000 gal) of Dairyland well water was desalted yielding **1,022,000** L (270,000 gal) of product water and 341,000 L (90,000 gal) of concentrate. Average feed and product concentrations were 993 and 20.6 mg/L TDS, respectively.

4.5.3.1 *Operational data.*—Operational data collected during this test period by the plant operators, along with other calculated values, are tabulated in appendix F. Flow, temperature, conductivity, and pressure data are also graphically depicted in figures 4.22 through 4.27.

Figures 4.22 and 4.23 show the process flow and temperature data. As before, the feed and reject flows were held constant at 22.7 L/min (6.0 gal/min) and 5.7 L/min (1.5 gal/min), respectively, yielding a 75-percent recovery of desalted water (permeate). Feed temperature dropped by about 15 °C during the 1 ,000-hour test period, which began in July and ended in December. Again, this measurement has a significant effect on membrane performance and is used in later calculations of net permeate flow which is normalized to 25 °C.

Figure 4.24 displays system conductivities as μ S/cm. Also, for better resolution, figure 4.25 shows an expanded view of the permeate conductivities. Referring to figure 4.24, for some unexplained reason the feedwater concentration steadily declined during the test period by about 27 percent. As expected, this caused corresponding declines in the reject, interstage, and permeate curves as well. Since separate conductivity sensors and meters were used for each of the four streams (feed, interstage, reject, and permeate), the chances of instrument error being the cause is extremely remote.

Figure 4.26 shows the RO feed, interstage, and reject operating pressures in **kPa**. In addition, pressure drops for each of the two stages are shown in figure 4.27. The curves in figure 4.26 vary inversely with feed temperature, demonstrating the effect temperature has on operating pressure. For the most part, the two pressure drop curves on **figure** 4.27 track one another, with the first stage AP increasing at a slightly faster rate. This might indicate some early buildup of colloidal or biological fouling. RO feed pressure averaged 1,407 **kPa** (204 lb/in²) during the 5 months.

Metal	Percent ^{1,2}	Mass (mg)
Iron, Fe	2.29	1.68
Aluminum, Al	1.36	1.00
Calcium, Ca	0.84	0.62
Magnesium, Mg	0.46	0.34
Silicon, Si	0.42	0.31
Chromium Cr	0.32	0.23
Potassium, P	0.26	0.19
Zinc, Zn	0.11	0.08
Nickel, Ni	0.10	0.07
Sodium, Na	0.09	0.07
Boron, B	0.07	0.05
Molybdenum, Mo	0.04	0.03
Manganese, Mn	0.03	0.02
Barium, Ba	0.02	0.01
Copper, Cu	0.01	0.01
Lead, Pb	0.01	0.01

Table 4.2.-Metals found on autopsied membrane surface

¹ Based on a total dry sample weight of 73.4 mg. ² Includes metals present at a percentage ≥ 0.01 .

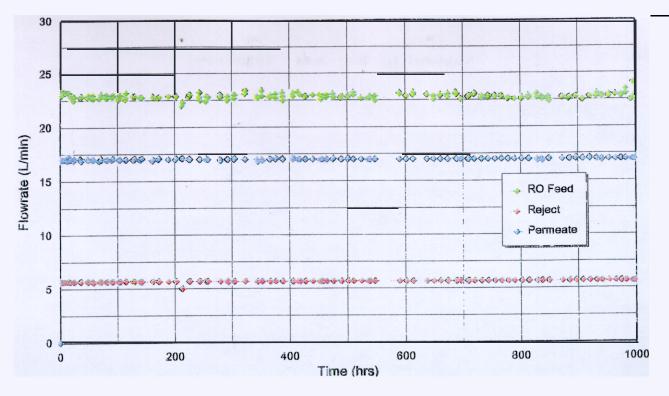


Figure 4.22.-System flowrates (Desal-3LP)

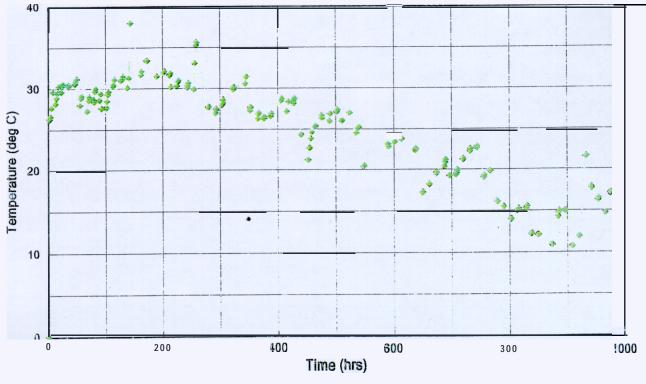


Figure 4.23.-Feed temperature

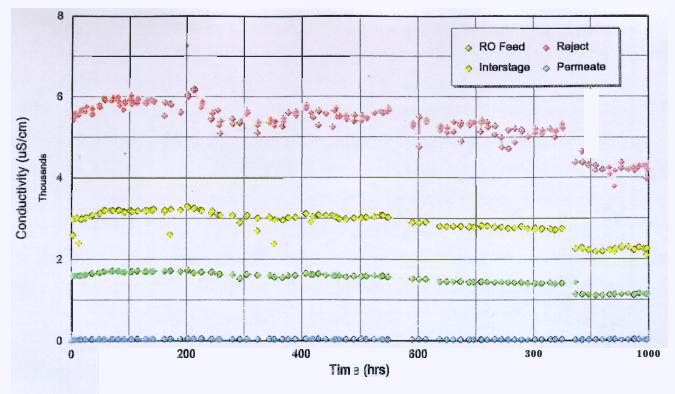


Figure 4.24.-System conductivities

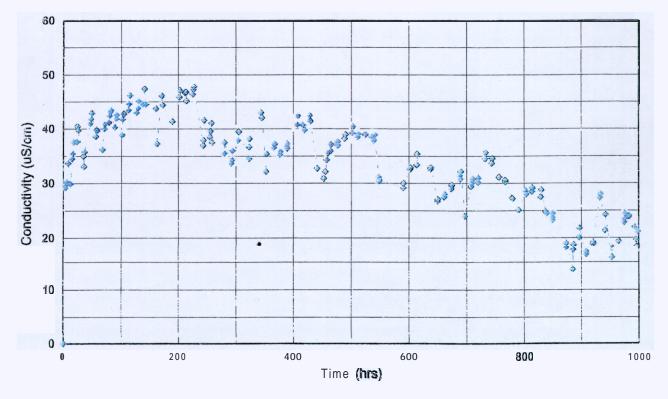


Figure 4.25.-Permeate conductivity,

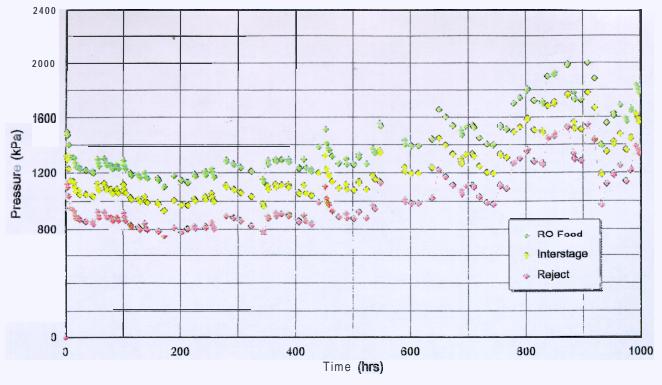


Figure 4.26.-System pressures.

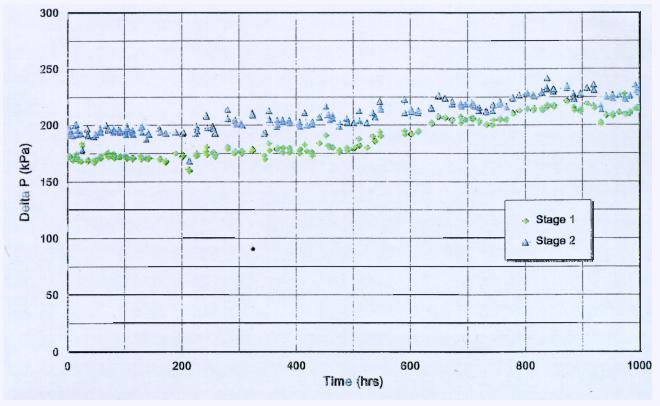


Figure 4.27.-Stage pressure drops.'

Complete chemical analyses were performed at 5, 523, and 996 hours of operation on the four separate process streams (RO feed, interstage, permeate, and reject) for the following constituents:

- Cations (Ca⁺², Mg⁺², Na⁺, K['])
- Anions (HCO_3^- , Cl^- , SO_4^{-2} , NO_3^- , NO_2^- , F^-)
- Metals (Al", Ba⁺², Sr⁺², Fe (total), Mn⁺², P (total), B⁺³, Cu⁺², Se, Hg⁺²)
- NH,' (ammonium)
- N (inorganic nitrogen)
- Silica (as SiO₂)
- Total organic carbon (TOC)
- Heterotrophic plate count (HPC)

Results of these analyses are shown in appendix G.

Table 4.3 summarizes percent salt rejections (%SR) for selected ions and for TDS that were calculated from the concentration data in appendix G. The values shown as \geq result from the permeate concentration falling below the detection limit. The %SR for Cu⁺² and Se could not be calculated because both the feed and permeate concentrations were below the detection limit. As shown, the average TDS rejection was 98.0 percent. The average rejection rate of boron (B⁺³) was 38.8 percent, compared to 74.0 percent in the early test phase.

The HPCs (cfu/mL) measured during this test phase are summarized as follows:

	5-hour data	523-hour data	<u>996-hour data</u>
RO feed	>5,700	2,380	2,380
Interstage	3,021	1468	208
Permeate	78	197	14
Reject	>5,700	2,452	741

The first HPCs taken just 5 hours after system restart (following a 5-1/2 month shutdown) indicate very high plate counts from the feed and reject tanks. However, presumably because of the continuing disinfection protocol (refer to sections 4.5.2.1 and 4.5.2.2), bacterial counts dropped significantly with each succeeding sampling. As with the previous phase of testing, the RO elements were subjected to a monthly 30-minute flushing with a 1 percent solution of MinncareTM and storage in dilute (1 percent) sodium bisulfite during weekend shutdowns.

4.5.3.2 Performance summary-Figures 4.28 and 4.29 present the average NDP and NPF for this test phase. Neither of these curves show evidence of undue fouling or membrane degradation during the **first** 1,000 hours of operation. NPF appears to have dropped slightly, perhaps by about 5 percent. This may be considered excessive for 1.4 months (1,000 hours) of actual RO system operation, but probably not for a total in-service time of 5 months (July 22, 1994 - December 19, 1995). Generally, chemical cleaning of the elements is not necessary until NPF drops 10 to 15 percent (below an expected NPF curve for TFC membranes).

	SALT REJECTION (%)										
Constituent	5-Hour	523-Hour	996-Hour	Average							
Calcium	≥99.0	≥98.8	≥98.3	-							
Magnesium	≥94.1	≥94.1	≥90.9	-							
Sodium	98.1	97.1	98.8	98.0							
Potassium	≥85.7	≥87.5	≥83.3	-							
Boron	40.0	36.4	40.0	38.8							
Copper			≥69.2	-							
Selenium		≥50.0	≥81.8	-							
			07.3	02.7							
Bicarbonate	89.8	94.1	97.3	93.7							
Chloride	98.1	97.3	98.4	97.9							
Sulfate	99.3	≥99.7	99.7								
Fluoride	≥87.5	≥80.0	≥85.7	-							
Nitrate	≥92.3	≥94.4	80.0	_							
Silica (total)	≥95.8	≥94.4	≥94.4	-							
TDS	97.9	97.5	98.7	98.0							

Table 4.3.--Percent salt rejection data for the Desal-3LP (Dairyland well) testing

Note: All ₂ rejection values above were based on permeate concentrations **that** were at or below detection limit for the analytical method used.

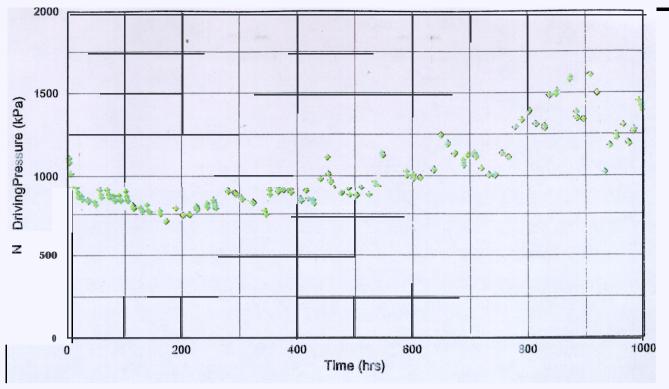


Figure 4.28.-Average net driving pressure

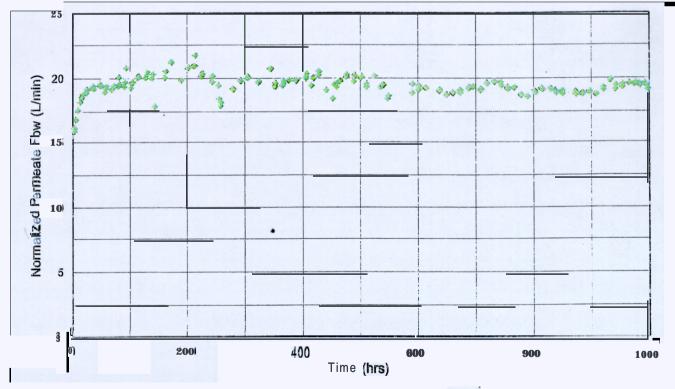


Figure 4.29.-Normalized permeate flow.

4.6 Conclusions

Because the feedwater source was different for the two RO elements tested, it is not possible to do a side-by-side performance comparison.

4.6.1 FilmTec BW30 element testing using Moreno Highlands well water.-

- * The average RO feed and permeate TDS were 988 and 14.2 mg/L, respectively. By blending the permeate with filtered well water at a ratio of about 1.04:1, a net overall recovery in excess of 87 percent could be achieved. The blended product would have a TDS of about 490 mg/L (secondary MCL is 500 mg/L) and would meet all other Federal and state drinking water standards (based on the constituents shown in appendix C).
- Overall salt rejection, calculated using the analytical data presented in appendix C, was 97.1 percent, (table 4.1). This compares to the average of 98.5 percent determined from the conductivity data in appendix B.
- Boron, a trace metal of concern in the saline marshes, was rejected at an average of 74.4 percent. The concentration of boron in the RO reject at 561 hours of operation was measured at 1.2 mg/L (appendix C).
- Because of high heterotrophic plate counts (>5,700 cfu/mL) measured in the RO feed and reject tanks on August 13, 1993, a regimen of weekly flushing with 1 percent Minncare[™] was initiated. Followup samples taken on September 7, 1993, indicated significant reductions in the HPCs. However, when early signs of membrane degradation were later observed (section 4.5.2.2), the disinfection protocol was changed to include less frequent flushing with Minncare[™], i.e., 30 minutes once a month, and weekend storage of the elements in 1 percent sodium bisulfite to inhibit microbial growth.
- SEMs of an autopsied first stage lead element (figure 4.21) show conclusively that surface penetrations of the membrane developed within and along the edge on the VexarTM imprints (point of contact between the VexarTM material and the membrane surface). Two explanations were considered for this localized degradation: first, that the damage was caused solely by the repeated pressure cycles of operating in a daily on-off mode; and second, that MinncareTM contributed to (accelerated) the damage, possibly by being adsorbed onto trapped particles at the points of VexarTM contact.
- The use of a streaming current detector (SCD) proved to be ineffective for the automatic dosing of polymer. Calibration curves prepared with the Milton Roy Model SC5200 were not **reproducable**, and online readings drifted considerably. Cleaning of the SCD cell per the manufacturer's instructions did not remedy the situation.

4.6.2 Desal 3LP element testing using Dairyland well water.-

- * The average feed and permeate TDS were 993 and 20.6 mg/L, respectively. By blending the permeate with filtered well water at a ratio of about 1.08: 1, a net overall recovery in excess of 87 percent could be achieved. The blended product would have a TDS of roughly 485 mg/L and would meet all other Federal and state drinking water standards (based on the constituents shown in table 3.1 and appendix G).
- Average salt rejection, calculated using the analytical data presented in appendix G, was 98.0 percent (table 4.3). This compares to an average of 97.8 percent determined from the conductivity data in appendix F.
- Boron was rejected at an average of 38.8 percent. Concentrations of boron in the RO reject were measured at 2.3, 2.0 and 2.5 mg/L during the three chemical analyses (appendix G).
- W disinfection combined with monthly 30-minute flushings with 1 percent Minncare[™] and storage of the elements in dilute sodium bisulfite during weekend shutdowns appears to have effectively controlled biological fouling.
- There was no evidence of undue fouling or membrane degradation during the first 1,000 hours of operation.

5. SALINE VEGETATED WETLANDS

5.1 Objective

The objective of the saline vegetated wetlands (saline marshes) study was to determine the feasibility of using the reject (concentrate) stream of an RO desalting **process** for irrigating amenities such as wildlife habitat areas, green belts, and open space in arid areas. Specific areas of research included plant survival, water and soil analyses, plant and benthic invertebrate tissue analyses, and wildlife use. EMWD also hoped the wetlands would reduce the volume of the reject brine through plant uptake, transpiration, and evaporation. Final evaporation cells were designed to further reduce the volume of concentrated RO reject (brine) flowing from the saline wetlands (section 6).

5.2 Wetlands Design and Construction

The saline vegetated wetlands are composed of two 6.1-meter by 24.4-meter by 0.6-meterdeep (20-foot by 80-foot by 2-foot-deep) lined cells adjacent to and downstream of the RO pilot plant. (See figure 2.6.) The layouts are illustrated in figures 2.4 and 2.5. The complete construction design and specification document is available through EMWD, San Jacinto, California.

5.2.1 Design considerations.-The saline vegetated wetlands were designed as a pilot study to determine whether the reject stream (concentrate) produced by an RO desalting process, using local groundwater as a feed source, could sustain a variety of flora and fauna in the San Jacinto Valley. The saline vegetated wetlands were used to test the physical features of the system, the short term (three-year) flora and fauna survivability, and whether toxic materials from the reject stream would accumulate to a level that could be hazardous to wildlife using the wetlands. Adequate data must be collected and analyzed before plans to build a full-scale RO system incorporating saline wetlands for concentrating reject can be made.

The initial designs, as described in the Phase 1 Report (Bureau of Reclamation and Eastern Municipal Water District, 1991), included three 6.1-meter by 24.4-meter by 0.6-meter-deep (20-foot by 80-foot by 2-foot-deep) saline vegetated wetlands that were to be plumbed in parallel (as three replications) with a contingency bypass to the evaporation cells downstream (described in section 6). To keep costs down, the number of wetland cells was reduced during final design from three to two.

Due to the nature of the RO reject stream constituents, the cells were lined with an impermeable membrane to prevent any of the stream from moving through the native soil and contaminating **the** groundwater below. The cells were designed to maintain an average **15-centimeter** (6-inch) water depth over the surface of the soil substrate to create a free water surface wetland. The free water surface wetland, as opposed to a rock/gravel subsurface flow wetland, was employed for several reasons. The open water surface would: (1) be susceptible to greater evaporation, (2) provide better waterfowl habitat, and (3) provide more sediment and organic binding sites for certain metals. The 15-centimeter (6-inch) water

depth was used to create optimal conditions for several desirable salt-tolerant, emergent wetland plant species.

5.2.2 Layout and construction.-Installation of the pilot RO system and construction of the saline vegetated wetland cells were completed during April 1993. Figure 5.1 illustrates the layout of the vegetated cells. The cells *were* lined with a high-density polyethylene (80 mil thickness) membrane, then soil was collected from nearby facility areas and deposited in each cell to a depth of about 0.6 meter (2 feet) (figure 5.2).

The reject line from the RO system was plumbed to run RO reject through a l-inch PVC pipe into the east ends of either or both of the two vegetated cells. The RO reject flowed from the pipes, which were set almost vertically in the center of each east cell wall. This design kept the line full and allowed the flow to spill out like a small fountain (figure 5.3). The outflow structures were located at the west end of each cell to force the RO reject to flow lengthwise through either or both of the saline vegetated cells. The ratio of the length to width of the cells was 4 to 1; the water depth above the substrate was 15 centimeters (6 inches). Initially, the two saline wetlands were operated in parallel (running the cells as duplicates). Outflows from each vegetated wetland went into evaporation cell number one (south cell) and then into evaporation cell number two (north cell) in series. Because the volume of reject from the RO unit did not meet the demands of the saline wetlands during peak evaporation periods (up to 1.5 cm [0.6 inches] pan evaporation per day), the underground piping and valve system was modified in September 1993, to allow the south vegetated wetland to receive all of the RO reject and the north vegetated wetland to receive RO product water as a control (figure 5.1). Plumbing modifications were also made to allow the overflow from the north vegetated wetland to flow directly into the nearby sump instead of into the evaporation cells. After modifications, a total of about 4.7 m^3 (1,250 gal) of RO reject was produced and stored each weekday to support the south saline vegetated wetland. (For more details on the construction and/or modification of the saline vegetated wetland cells, contact John Ward, engineer, EMWD, [909] 925-7676, ext. 4453.)

5.2.3 Plant species selected for evaluation.-Alkali bulrush (*Bolboschoenus robustus*), creeping spikerush (*Eleocharis palustris*), marsh smartweed (*Polygonum muhlenbergii*), Pennsylvania smartweed (*Polygonum pensylvanicum*), homed pondweed (*Zannichellia palustris*), seaside arrowgrass (*Triglochin maritimum*), and Nuttall's alkali grass (*Puccinellia nuttalliana*) were selected to be planted in the two saline wetlands (figure 5.4). The plants were chosen because they are all native to southern California (Reed, 1988), they tolerate high brine ion concentrations, tolerate 15 centimeters (6 inches) of water depth (with the exception of Nuttall's alkali grass which was to be planted around the perimeter of the cells), and are plants which wildlife use (Martin and Uhler, 1939). Unfortunately, the last three species listed above (homed pondweed, seaside arrowgrass, and Nuttall's alkali grass) were not available in the quantities that were necessary for the study, so they were not planted and are not included further in this discussion. Figure 5.4 illustrates the designed planting plan as well as the actual planting plan.

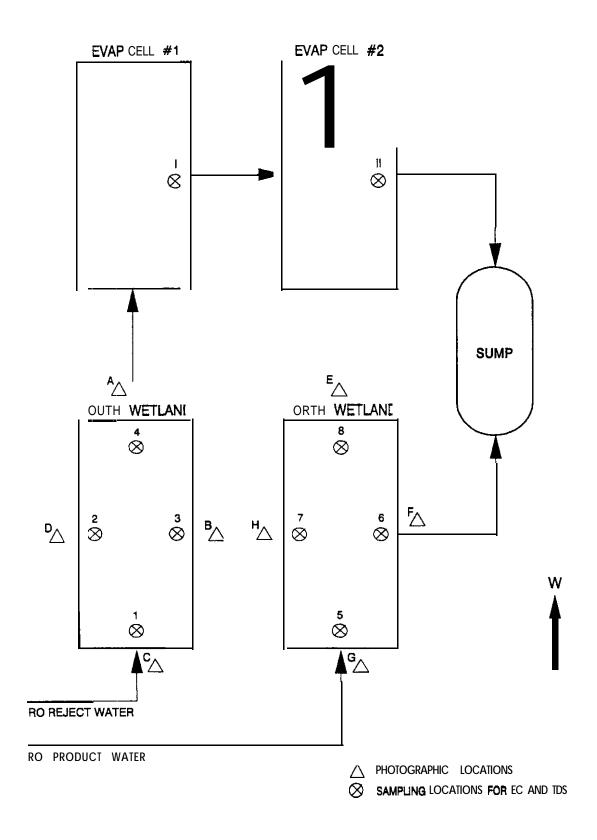


Figure 5.1 .- Flow schematic of saline vegetated wetlands and evaporation cells.

This page left intentionally blank.

Figure 5.2.—Soil being deposited on top of the high-density polyethylene liners in the wetland cells.

Figure 5.3.—View showing RO reject flowing into the vegetated wetland cells from pipes set in the center of each east cell wall.

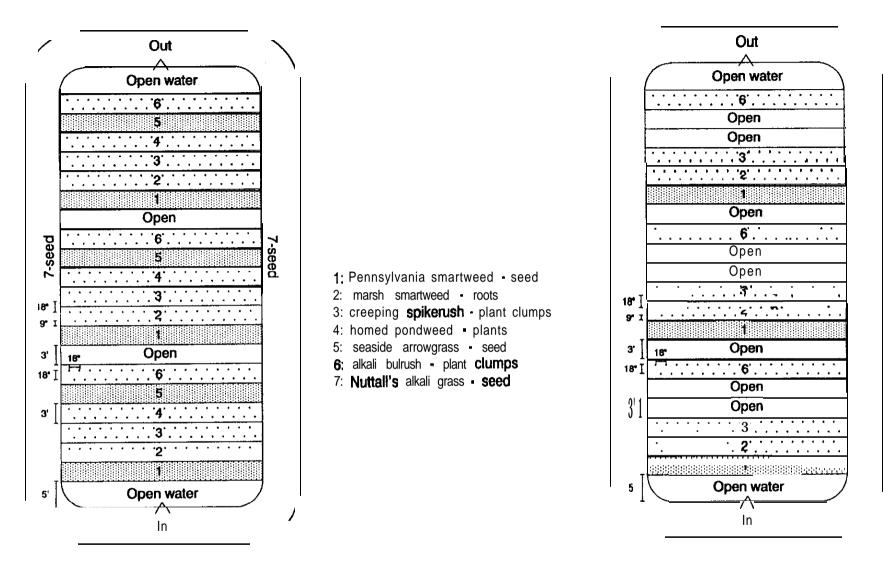


Figure 5.4.—Saline vegetated wetlands planting scheme (both cells).

79

(a) Planned

5.3 Test Procedures

5.3.1 Planting of salt-tolerant species.-Alkali bulrush and creeping spikerush plants were harvested from moist-soil areas around the perimeter of a pond located on the San Jacinto Wildlife Refuge and near the San Jacinto River channel (also on the San Jacinto Wildlife Refuge), about 12.9 and 12.1 kilometers (8 and 7% miles), respectively, from the planting area. The alkali bulrush and the creeping spikerush were harvested as root/rhizome/plant clumps using shovels to dig into the soil IO- 15 centimeters (4-6 inches) and loading the clumps into the back of a pickup truck for transport. They were then planted on 45.7-centimeters (18-inch) centers in 0.9-meter- (3-foot-) wide horizontal bands (figure 5.5), and each species band was repeated three times per cell to expose the plants to different positions along the salinity gradient expected to develop as the RO reject moved from inlet to outlet within the cells (figure 5.4). The plants were watered immediately after they were planted. The marsh smartweed rhizomes and Pennsylvania smartweed seed were purchased from a nursery in Wisconsin that specializes in wetland plants. The rhizomes of the marsh smartweed were laid horizontally under the soil surface on 45.7-cm (IS-inch) centers and watered immediately. The Pennsylvania smartweed seed was broadcast in the preselected 0.9-meter- (3-foot-) wide horizontal bands after the soil was hand scarified with rakes. The seeds were then raked into the soil, pressed down, and watered in each of the two saline marsh cells. The planting was done on April 28, 1993, and for the first 6 weeks, the plants received potable water from a fire hydrant on EMWD's Hemet/San Jacinto RWR Facility. The water was delivered by an EMWD water truck (figure 5.6). The RO reject was first applied on June 7, 1993.

After the smartweed seedlings (grown from the germinated rhizomes and seeds) died back from fluctuating water management and bird predation, EMWD personnel harvested volunteer smartweed plants from around the perimeter of the EMWD/USBR Hemet/ San Jacinto RWRF wetland research cells, on August 25, 1993. The mature plants were transplanted into two 0.9-meter- (3-foot-) wide horizontal bands in each cell after the alkali bulrush was removed from those areas. Two weeks following the transplanting, all smartweed plants were pulled out. No further plantings were attempted.

5.3.2 Control of brine inflows/outflows.-About 19 m³ (5,000 gal) of RO feedwater was trucked to the site each weekday from a nearby well (details given in earlier sections). Operating at 75 percent recovery, about 4.7 m³ (1,250 gal) of RO reject was produced each weekday to support the saline vegetated wetlands throughout the **study period. EMWD** personnel controlled the inflow to the cells and determined that 4.7 m³ of RO reject was not sufficient to provide enough water to both cells. It was then determined that the south vegetated wetland would receive the entire RO reject supply and the north vegetated wetland would receive water from a nearby fire hydrant, or the RO product water, beginning September 20, 1993. As explained above, the plumbing was altered, and EMWD personnel transferred the water supplies into both cells on a weekday basis until November 1995.

Figure 5.5.—Salt-tolerant wetland plants being planted on 45.7-cm (18-inch) centers in 3-foot-wide horizontal bands (refer to figure 5.4 for planting scheme).

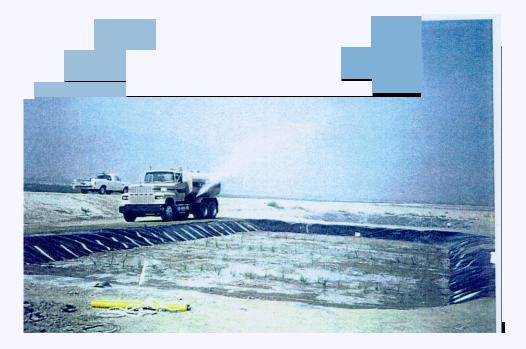


Figure 5.6.—Potable water being applied to the newly planted saline wetlands to promote plan establishment.

Flow interruptions into the vegetated wetlands occurred occasionally due to problems preventing normal operations of the RO unit (e.g., electrical problems, compressor replacement, etc.), and a longer interruption occurred from February 9, 1994, until July 21, 1994, due to water supply problems. During the periods of flow interruption, both vegetated wetlands were kept wet either by EMWD personnel supplying fresh water via a water truck (water was obtained from a fire hydrant on the **Hemet** facility) or by rainfall.

5.3.3 Plant data collection and visual observations.-The "Proposed Saline Marsh Monitoring Program" document describes the plant data collection techniques and is included in appendix H.

Plant growth and survival were monitored weekly by EMWD personnel using general observations noted in a log book kept **onsite** and a photographic record. (Selected examples by Stella Denison and Joanna Crombie, EMWD, are shown in appendix I.) During the first winter, when the vegetation had turned completely brown, survival was determined by digging up several rhizomes and cutting them open. If root buds were present on the outside of the rhizomes and the insides were **firm** and fleshy, with no presence of rot, the plants were determined to be alive. As confirmation, several plants were transplanted into a glass aquarium and kept indoors in water transported from the saline wetlands. Production of new shoots was used as an indicator of plant survival.

Plant growth, establishment, and health were evaluated quarterly by National Biological Service (NBS) personnel. Quarterly monitoring was performed to determine plant survivability based on: (1) presence or absence of the planted species or natural recruits. (2) color or vitality of the vegetation (including height), (3) presence of new shoots and production of flower and seed, and (4) general observations. Photographs were taken during these visits as well.

5.3.4 Water/soil/plant/invertebrate sampling and analysis.-The "Proposed Saline Marsh Monitoring Program" document describes the water, soil, plant, and invertebrate data collection techniques and is included in appendix H.

Water samples collected from the RO reject line on August 13, 1993; July 22, 1994; September 27, 1994; December 19, 1994; and May 25, 1995, were analyzed to determine the chemical makeup of the inflow water entering the saline wetlands. The water sample collected on February 23, 1995, was analyzed for only three specific elements of concern to wildlife. The data are compiled in table 5.1.

In situ measurements were made within the saline vegetated wetlands for electrical conductivity (EC) and total dissolved solids (TDS). (The data are listed in appendix J.) Water samples for laboratory analyses were collected from the inflow and outflow areas of each of the wetlands on July 14, 1994; February 23, 1995; and March 29. 1995. Data are listed in tables 5.2a and b. Precipitation and evaporation data were collected from May 2 1, 1993, through October 6, 1995, and are listed in appendix K.

Table 5.1 .-Metal concentrations and ionic characterization of water samples collected from the RO reject line

Parameter	Symbol	Unit	<u>08/13/93</u>	<u>07/22/94</u>	<u>09/27/94</u>	<u>12/19/94</u>	<u>02/23/95</u>	<u>05/25/95</u>
Aluminum	Al	mg/L	<0.04	<0,1	co. 1	<0.1		<0.009
Antimony	Sb	mg/L	CO.04			co.01		0.0002
Arsenic	As	mg/L	0.006			co.01		0.011
Barium	Ba	mg/L	0.22	0.3	0.1	0.1		0.128
Beryllium	Be	mg/L	< 0.002			<0,01		< 0.0005
Boron	В	mg/L	1.17	2.3	2.0	2.5		1.84
Cadmium	Cd	mg/L	co.003			co.01		<0.0002
Chromium	Cr	mg/L	< 0.004			<0.02		0.006
Cobalt	CO	mg/L	< 0.01			co.01		
Copper	Cu	mg/L	0.01		0.0031	0.0024	0.0023	0.0044
Iron	Fe	mg/L	0.03	co.02	0.03	co.02		<0.2
Lead	Pb	mg/L	co.002			co.01		0.00013
Manganese	Mn	mg/L	0.05	0.06	0.04	0.02		0.0059
Mercury	Hg	mg/L	<0.0004		<0.0002	<0.0002	<0.0005	<0.0002
Molybdenum	Mo	mg/L	0.15					
Nickel	Ni	mg/L	co.03			co.02		co.007
Selenium	Se	mg/L	0.007		0.0048	0.0064	0.005	0.0032
Silver	Ag	mg/L	co.004			co.01		<0.0003
Strontium	Sr	mg/L		2.5	2.0	1.6		2.03
Thallium	Ť	mg/L	<0.002			co.2		<0.0001
Vanadium	v	mg/L	0.02					-0,000
Zinc	Zn	mg/L	0.05			0.03		0.0662
Hardness as CaC03		mg/L	352	1300	1030	662		950
Calcium	Ca	mg/L	111	408	308	198		285
Magnesium	Mg	mg/L	8.1	68	62	40		57
Sodium	Na	mg/L	1150	810	780	540		730
Potassium	К	mg/L	5.4	29	28	19		42
Ammonium nitrogen	NH4-N	mg/L		0.7	0.3	<0.1		co.2
Alkalinity as CaC03		mg/L		93	260	243		290
Hydrodde	ОН	mġ/L				<3		<3
Carbonate	co3	mg/L	0	<3	<3	<3		<3
Bicarbonate	HC03	mg/L	923	113	317	296		354
Sulfate	SO4	mğ/L	736	1200	1100	770		1100
Chloride	CI	mg/L	959	1100	1000	580		860
Nitrate nitrogen	NO3-N	mg/L	6.9	1.1	1.4	2.5		3.2
Fluoride	F	mg/L	2.9	2.3	1.9	2.1		2.5
Total phosphorus	Р	mg/L		1.3	0.9	0.8		1.5
Nitrite nitrogen	NO2-N	mg/L	0.02	<0.1	<0.1	0		<0.1
Inorganic nitrogen	Ν	mg/L	7.5	1.8	1.7			3.2
Total silica	SiO2	mg/L	85.8	95	70	65		79
Dissolved silica	0.02	mg/L	03.2	64	70	56		77
Total organic carbon	TOC	mg/L	3.9	2.9	2.3	1.8		1.6
Heterotrophic plate count	HPC	cfu/mL	>5700	>5700	2450	741		453
Specific Conductance	С	µS/cm	7200	5600	4600	4100		4500
Total dissolved solids	TDS	mg/L	3620	3770	3780	2270		3300
Turbidity	-	ntu		0.5	0.2	0.1		0.5
P H			7.7	7.8	7.9	8.0		7.6
Temperature (lab)	т	deg C	-			13		20

•

Table 5.2a.--Metal concentrations and ionic characterization of water samples collected from the south (saline) vegetated wetland

				Inlet			Outlet-	
<u>Parameter</u>	<u>Symbo</u> l	hit	<u>07/14/94</u>	02/23/95	03/29/95	<u>07/14/94</u>	<u>02/23/95</u>	<u>03/29/95</u>
Aluminum	AI	mg/L	0.7		1.46	2 6		0.082
Antimony	Sb	mg/L	<0.01		<0.0008	co.01		<0.0008
Arsenic	As	mg/L	<0.01		0.012	<0.01		co.002
Barium	Ba	mg/L	co.1		0.117	0.3		0.0202
Beryllium	Be	mg/L	co.01		0.0032	<0.01		<0.0008
Boron	а	mg/L	0.3		1.8	0.3		1.57
Cadmium	Cd	mg/L	<0.001		0.0006	<0.01		<0.0002
Chromium	Cr	mg/L	<0.02		0.008	co.02		<0.003
Cobalt	СО	mg/L	<0.01		0.0018	<0.01		0.0006
Copper	Cu	mg/L	0.0043	0.0055	0.028	0.026	0.0022	0.01
Iron	Fe	mg/L	0.74		17	27		1.1
Lead	Pb	mg/L	co.01		0.0062	0.01		0.0004
Manganese	Mn	mg/L	0.09		0.39	0.51		0.14
Mercury	Hg	mg/L	~0.0002	~0.0005	0.0004	0.0002	<0.0005	0.0003
Molybdenum	Mo	mg/L						
Nickel	Ni	mg/L	<0.02		0.006	co.02		co.002
Selenium	Se	mg/L	<0.001	0.0022	0.0024	0.001	~0.0005	0.0006
Silver	Ag	mg/L	<0.01		0.0011	co.01		<0.0002
Strontium	Sr	mg/L						
Thallium	Ť	mg/L	co.2		0.0002	co.2		a0001
Vanadium	V	mg/L						
Zinc	Zn	mg/L	0.12		0.0993	0.29		0.0519
Hardness as CaC03		mg/L			882			659
Calcium	Ca	mg/L			266			192
Magnesium	Mg	mg/L			52			43
Sodium	Na	mg/L			670			650
% Sodium		%			62			68
Potassium	К	mg/L			15			10
Ammonium nitrogen	NH4-N	mg/L			0.6			0.4
Alkalinity as CaC03		mg/L			293			253
Hydroxide	OH	mg/L			<3			<3
carbonate	co3	mg/L			<3			30
Bicarbonate	HC03	mg/L			357			244
Sulfate	so4	mg/L			930			610
Chloride	CI	mg/L			740			660
Nitrate nitrogen	NO3-N	mg/L			<0.1			0.2
fluoride	F	mg/L			2.1			1.9
Ortho Phosphate	P-P	mg/L			0.6			0.25
Total phosphorus	Р	mg/L			2.2			0.65
Nitrite nitrogen	NO2-N	mg/L			<0.1			<0.1
Inorganic nitrogen	Ν	mg/L						
Total silica	Si02	mg/L						
Dissolved silica		mg/L						
Total organic carbon	тос	mg/L						
Heterotrophic plate count	HPC	cfu/mL						
Electrical conductivity	ЕC	µS/cm			4200			4100
Total dissolved solids	TDS	mg/L			3000			2600
Turbidity	T 00	ntu			0.05			
Total suspended solids pH	TSS	mg/L			965 7.9			70 8.9
F					-			0.0

Table 5.2b.—Metal concentrations and ionic characterization of water samples collected from the north (control) vegetated wetland

				Iniet			Out	tlet	
Parameter	<u>Symbol</u>	Unit	<u>07/14/94</u>	02/23/95	<u>03/29/95</u>	<u>07/14/94</u>	12/14/94	02/23/95	03/29/95
Aluminum	Ai	mg/L	1.4		0.468	14			0.33
Antimony	Sb	mg/L	<0.01		<0.0008	<0.01			<0.0008
Arsenic	As	mğ/L	<0.01		<0.0004	co.01			<0.0002
Barium	Ba	mg/L	<0.1		0.0545	0.2			0.0745
Beryllium	Be	mg/L	<0.01		<0.0008	co.01			<0.0008
Boron	В	mg/L	0.1		0.519	0.3			0.488
Cadmium	Cd	mg/L	<0.01		~0.0002	co.01			<0.0002
Chromium	Cr	mg/L	<0.02		co.003	<0.02			'0.003
Cobalt	СО	mg/L	<0.01		0.0006	so.01			0.0004
Copper	Cu	mg/L	0.0031	0.0053	0.007	0.034	0.018	0.0039	0.0042
Iron	Fe	mg/L	1.9		0.0082	13			3.5
Lead	Рb	mğ/L	<0.01		0.0023	"0.01			0.0007
Manganese	Mn	mg/L	0.78		0.00031	0.29			0.27
Mercury	Hg	mg/L	0.0002	<0.0005	0.0002	co.0002	<0.0002	0.0006	0.0004
Molybaenum	Mõ	mg/L							
Nickel	Ni	mg/L	<0.02		0.0005	<0.02			<0.0008
Selenium	Se	mg/L	0.001	<0.0005	<0.0005	<0.001	0.0005	<0.0005	<0.0005
Silver	Ag	mg/L	<0.01		<0.0002	co.01			~0.0002
Strontium	Sr	mg/L							
Thallium	П	mg/L	<0.2		<0.0001	co.2			<0.0001
Vanadium	v	mg/L							
Zinc	Ζ"	mg/L	0.14		0.0824	0.13			0.119
Hardness as CaCO3		mg/L			44				138
Calcium	Ca	mg/L			11				4 5
Magnesium	Mg	mg/L			4				6
Sodium	Na	mg/L			8				46
% Sodium		%			2 7		59		41
Potassium	к	mg/L			3				4
Ammonium nitrogen	NH4-N	mg/L			<0.1		0.2		0.1
Alkalinity as CaCO3		mg/L			4 0				170
Hydroxide	он	mg/L			<3				<3
Carbonate	co3	mg/L			<3				<3
Bicarbonate	HC03	mg/L			4 9				207
Sulfate	S O 4	mġ/L			15				32
Chloride	CI	mg/L			<1				18
Nitrate nitrogen	NO3-N	mg/L			go.1				<0.1
Fluoride	F	mg/L			0.2				0.4
Ortho Phosphate	P-P	mg/L			co.05				01
Total phosphorus	Р	mg/L			0.55		0.3		0.8
Nitrite nitrogen	NO2-N	mġ/L			<0.1				<0.1
Electrical conductivity	EC	µS/cm			130				430
Total dissolved solids	TDS	mg/L			· • -				295
Total suspended solids	TSS	mg/L			200		2 0		195
рН					7.8				7.7

86

Three baseline soil samples were collected from each vegetated wetland cell just prior to flooding after planting on April 28, 1993. A sample was collected from each cell at the inflow area and near the outflow. The samples were placed in ziplock bags and stored at approximately 4°C (39°F) until they were analyzed for trace metals, soil particle sizes, organochloride pesticides, and polychlorinated biphenyls (PCB) by Babcock and Sons, Inc The baseline trace metal data are reported in tables **5.3a** and b. Soil particle sizes and organochloride pesticides and PCB data are listed in the Bureau of Reclamation/National Biological Survey/Eastern Municipal Water District Phase II/III Report (1994).

Additional soil samples were collected by EMWD personnel using similar techniques on July 14, 1994, and March 29, 1995, and analyzed by Babcock and Son, Inc. These data are also listed in tables **5.3a** and b.

One alkali bulrush sample (multiple plants throughout the cell) was collected from each cell on July 14, 1994, and May 25, 1995, and from the south cell on December 15, 1994. One creeping spikerush sample (multiple plants) was collected on July 14, 1994, from each cell, from the south cell on December 15, 1994, and from the north cell on May 25, 1995. The trace metal values contained in their tissues are listed in tables **5.4a** and b.

Invertebrate samples were collected on July 14, 1994, and May 25, 1995, and analyzed by S. Mark Nelson, Bureau of Reclamation; results are listed in tables 5.5 and 5.6, respectively. The invertebrate biomass collected was insufficient for chemical analysis of the tissue.

5.3.5 Data reduction and interpretive methods.-All available data were put on a Quattro Pro for Windows (version 5.0) spreadsheet for comparisons. Sparsity of data precluded statistical analysis, so all discussion below is based on inter-comparison of the available data. The reader is cautioned, therefore, that all data discussed below should be considered as preliminary and by no means definitive.

5.4 Results and Discussion

5.4.1 Brine use and physical data.—The pilot plant performed as anticipated, with minimal interruption caused by equipment or operational difficulties. However, it was discovered through the first summer of operation that the addition of 4.7 m^3 (1,250 gal) of RO reject each weekday was not enough to keep both saline vegetated wetland cells wet. so beginning on September 20, 1993, 9.5 m^3 (2,500 gallons) of fresh water was added weekly to the north wetland, The south wetland continued to receive the RO reject. Additionally. between February 9, 1994, and July 21, 1994, RO reject was unavailable for even the south wetland because the well pump used to supply RO feedwater developed electrical problems,

Table 5.3a.—Metal concentrations in the south (saline) vegetated wetland substrate an	ıd
substrate characterization	

				Inlet			Outlet	
Parameter	<u>Symbol</u>	<u>Unit</u>	04/28/93	<u>07/14/94</u>	03/29/95	<u>04/28/93</u>	<u>07/14/94</u>	<u>03/29/95</u>
Aluminum	AI	mg/kg	19200		9140	21400		7500
Antimony	Sb	mg/kg	CO.3		<0.5	co.3		< 0.3
Arsenic	As	mg/kg	co.7		<8	<0.6		<5
Barium	Ba	mg/kg	273		262	279		201
Beryllium	Be	mg/kg	co.4		CI.0	0.7		<0.7
Boron	В	mg/kg	6.4		9.3	7.3		7.8
Cadmium	Cd	mg/kg	0.09		0.24	0.16		0.26
Total Chromium	Cr	mg/kg	15.2		14.1	14.6		10.3
Cobalt	СО	mg/kg	7.43		6.3	7.76		5.45
Copper	Cu	mg/kg	16.3	21	25.2	13.1	24	22.5
iron	Fe	mg/kg	23000		22200	26000		14000
Lead	Pb	mg/kg	<5		9.92	<5		6.64
Manganese	Mn	mg/kg	400		244	430		311
Mercury	Hg	mg/kg	co.4	0.13	0.09	co.4	0.094	0.08'1
Molybdenum	Mõ	mg/kg	1.2			1.5		
Nickel	Ni	mg/kg	7.4		7.3	a.9		6.4
Selenium	Se	mg/kg	<2	0.4	0.68	<2	0.5	0.4
Silver	Ag	mg/kg	0.85		1	co.02		0.7
Thallium	ΤI	mg/kg	<0.5		0.31	<0.5		0.34
Zinc	Zn	mg/kg	92.9		195	76.8		93.1
Percent solids Chlordane		%	100 12		38.2	100 N D		61.3
pH		-			7.7			6.3
Electrical Conductivity	EC	µmho/cm			a400			6400
Sodium adsorption ratio		F			16			28
Cation exchange capacity					6.25			a.75
organic matter content					1.8			1
Percent sand		%			74			65
Percent silt		%			2 2			30
Percent clay		%			4			5
· +· = =···· +···· /								Ŭ

Table 5.3b.-Metal concentrations in the north (control) vegetated wetland substrate and substrate characterization

			Inlet			Outlet		
Parameter_	<u>Symbol</u>	<u>Unit</u>	04/28/93	<u>07/14/94</u>	03/29/95	04/28/93	<u>07/14/94</u>	03/29/95
Aluminum	Al	mg/kg	20300		7630	20279		6150
Antimony	Sb	mg/kg	co.3		co.3	<0.3		co.3
Arsenic	As	mg/kg	co.4		<5	co.4		<4
Barium	Ba	mg/kg	274		266	251		182
Beryllium	Be	mg/kg	co.4		<0.6	1.6		<0.6
Boron	В	mg/kg	5.7		4.5	6.1		5.2
Cadmium	Cd	mg/kg	0.16		0.3	0.16		0.22
Total Chromium	Cr	mg/kg	15.4		12.9	14.2		9.5
Cobalt	СО	mg/kg	7.14		6.22	7.91		4.2
copper	Cu	mg/kg	23	21	24	19.4	20	2 0
Iron	Fe	mg/kg	23000		20700	27603		16900
Lead	Pb	mg/kg	<5		9.75	<5		6.66
Manganese	Mn	mg/kg	390		320	621		249
Mercury	Hg	mg/kg	<0.4	0.093	0.12	co.4	0.085	0.13
Molybdenum	MO	mg/kg	1.1			1		
Nickel	Ni	mg/kg	8.1		8	7.7		5.2
Selenium	Se	mg/kg	<2	0.4	0.2	<2	0.4	0.34
Silver	Ag TI	mg/kg	1.09		1.1	0.56		0.7
Thallium	TI	mg/kg	co.5		0.3	<0.5		0.23
Zinc	Zn	mg/kg	109		119	96.3		89.2
Percent solids		%	100		6 5	78.9		69.7
Chlordane			19			N D		
рН		-			7.9			7.7
Electrical Conductivity	EC	µmho/cm			1300			2000
Sodium adsorption ratio					17			11
Cation exchange capacity					13			14
Organic matter content					1.1			1.4
Percent sand		%			62			65
Percent silt		%			31			31
Percent clay		%			7			4

Table 5.4.—Trace metal concentrations found in plant tissue samples collected from the vegetated wetlands

(a) South Saline Wetland

			A	Ikali Bulrus	h ••••	Creepir	ng Spikerus	h
Parameter	<u>Symbol</u>	Unit	<u>07/14/94</u>	<u>12/15/94</u>	<u>05/25/95</u>	<u>07/14/94</u>	<u>12/15/94</u>	<u>05/25/95</u>
Aluminum	AI	mg/kg	1280	800	171	1320	1000	
Antimony	Sb	mg/kg	<8	<10	co. 3	<8>	<10	
Arsenic	As	mg/kg	<8	<10	<7	<8	<10	
Barium	Ba	mg/kg	48. 7	20	9.02	75	30	
Beryllium	Be	mg/kg	<0.1	<5	<0.26	co.1	<5	
Boron	В	mg/kg	31	28	23.4	34	130	
Cadmium	C d	mg/kg	<0.4	<5	co. 07	co. 4	<5	
Chromium	Cr	mg/kg	5	<10	<1.3	6	<10	
Cobalt	CO	mg/kg	<2	<10	co. 07	<2	<10	
Copper	Cu	mg/kg	17	9.2	6.41	26	24	
Iron	Fe	mg/kg	1530	800	230	1390	1600	
Lead	Pb	mg/kg	<8	<10	<2.0	<8	<10	
Manganese	Mn	mg/kg	178	<100		289	300	
Mercury	Hg	mg/kg	0. 024	0.029	0.2	0. 027	0. 035	
Nickel	Ni	mg/kg	2	<10	0.29	4	<10	
Selenium	Se	mg/kg	co. 2	0.1	co. 12	co. 2	0.58	
Silver	Ag	mg/kg	<2	<10	<0.16	<2	<10	
Thallium	TI	mg/kg	<10	<50	<0.1	<10	<50	
Zinc	Zn	mg/kg	39.1	30	30	167	120	
Percent solids (Babcock)		%			30.6			
Percent solids (U of M)		%			33.4			

.....

(b) North Control Wetland

			A	Alkali Bulrush			Creeping Spikerush		
Parameter	<u>Symbol</u>	<u>Unit</u>	<u>07/14/94</u>	<u>12/15/94</u>	05/25/95	<u>07/14/94</u>	12/15/94	<u>05/25/95</u>	
Aluminum	AI	mg/kg	1770		247	3290		410	
Antimony	Sb	mg/kg	<8		co. 3	<8		co. 2	
Arsenic	As	mg/kg	<8		<6	<8		<2	
Barium	Ba	mg/kg	46.5		19	154		21	
Beryllium	Be	mg/kg	co.1		<0.22	co.1		<0.16	
Boron	В	mg/kg	15		24.6	16		220	
Cadmium	cd	mg/kg	0.4		<0.06	co. 4		co. 04	
Chromium	Cr	mg/kg	10		<1.1	16		0.8	
Cobalt	СО	mg/kg	<2		0.08	3		0. 16	
copper	Cu	mg/kg	17		5.87	26		8.69	
Iron	Fe	mg/kg	2370		273	5790		576	
Lead	Pb	mg/kg	<8		a. 7	<8		Cl. 2	
Manganese	Mn	mg/kg	290		53.3	1320		120	
Mercury	Hg	mg/kg	0. 025		co.006	0.059		0.011	
Nickel	Nī	mg/kg	5		0.6	9.3		0.6	
Selenium	Se	mg/kg	<0.2		0.3	0.6		co. 13	
Silver	Ag	mg/kg	<2		co. 14	<2		<0.1	
Thallium	ŤĪ	mg/kg	<10		CO.08	<10		<0.06	
Zinc	Zn	mg/kg	48.9		28.7	192		55.4	
Percent solids (Babcock)		%			36.2			51.4	
Percent solids (U of M)		%			33. 5			45.1	

Таха	North Wetland		South Wetland		
	Sample 1	Sample 2	Sample 1 ^b	Sample 2 ^c	
NEMATODA	1				
OLIGOCHAETA	10	3			
GASTROPODA Physidae	25	9	22	20	
Cladocera	······································	43	4	3	
Ostracoda	84	26	25	21	
Copepoda		1		1	
Amphipoda <u>Hvalella</u>	39	26	45	14	
<u>Callibaetis</u>		1	5	5	
Zygoptera	4	6	5	10	
Anisoptera		1	1	4	
Corixidae	55	1	2		
Notonectidae	9	5	8	14	
Naucoridae		1? (immature)			
Dytiscidae			1		
Helophorus	l (adult)				
<u>Hydrophilus</u>		l (adult)			
Tropisternus		1 (larva)		1 (larva)	
<u>Culex</u>			2	2	
Chironomidae	1	8	5	18	
Sciomyzidae			1		
Hydracarina	1				
Total taxa	11	15	13	12	
Total number	180	133	126	113	

Table 5.5.--Invertebrate taxa (number of individuals) collected from the vegetated wetlands on July 14, 1994"

* Average electrical conductivity (EC) from February 15, 1994 through July 15, 1994 in the north and south vegetated wetlands was 1912 μ S/cm and 2650 μ S/cm, respectively.

^b 3 tadpoles in sample. ^c 1 tadpole in sample

Taxa	North Wetland	South Wetland
	Sample 1 ^b	Sample 1
Turbellaria	3	
OLIGOCHAETA	1	
GASTROPODA Physidae	4	18
Cladocera		1
Ostracoda		19
Amphipoda <u>Hyalella</u>	52	110
Zygoptera	1	2
Anisoptera	2	
Corixidae	19	26
Notonectidae	27	
Gerridae		1 (immature)
Hydrophilidae		1
<u>Culiseta</u>		1
<u>Culex</u>	4	22
Chironomidae	10	75
Dixidae	2	
Collembola		1
Total taxa	11	12
Total number	125	227

Table 5.6.—Invertebrate taxa (number of individuals) collected from the vegetated wetlands on May 25, 1995"

Average electrical conductivity (EC) during May 1995 in the north and south vegetated wetlands was 352 μS/cm and 6518 μS/cm, respectively.

^b Two tadpoles and two **Gambusia** in sample.

Subsequently, the well and surrounding property were sold, so EMWD had to find a new supply well. Once that was achieved, the RO reject supply was mostly consistent with the exception of 6-½ weeks between December 22, 1994, and February 7, 1995 (due to heavy rainfall causing flooding problems); 15 working days between March 20, 1995, and April 10, 1995 (the compressor failed); and another 15 working days between May 3 1, 1995, and June 22, 1995. To keep the plants wet and the water depth constant, fresh water (rainfall or potable water) was supplied to both vegetated wetland cells whenever the RO unit was shut off.

Electrical conductivity (EC) and total dissolved solids (TDS) were measured in situ in the vegetated wetlands. Data are listed in appendix J. The EC ranged from 65 to 4,500 μ S/cm in the north vegetated wetland (after it was converted to the control cell, receiving only fresh water), and 750 μ S/cm (recorded during heavy rains, with flooding, so the RO system was shut off) to 13,680 μ S/cm in the south wetland, with a mean over the 2 years of approximately 1,142 μ S/cm and 4,924 μ S/cm, respectively. The EC and TDS decreased when fresh water was added (by rainfall or water truck) to one or both vegetated wetland cells.

5.4.2 Plant adaptation and survival.-Appendix I contains a representative selection of photographs of the vegetation in the saline wetlands, showing the progression of growth and plant establishment. By July, 1993 (3 months after planting), the alkali bulrush had spread to every available area in both cells, except for the six bands where spikerush was planted and at the inflow ends. Most of the original alkali bulrush plants planted in the six bands had flowered and turned brown, but the new plants were green, robust, flowering abundantly, and taller than the original plants (90 cm compared to 60 cm tall $[\approx 3 \text{ feet to } 2 \text{ feet}]$). The spikerush were healthy and spreading out from the planted bands and were about 60 cm (2 feet) tall in the north wetland and slightly shorter and browner in the south wetland. Flower and seed production were less in the south cell than in the north. Both smartweed species had been completely eliminated due to a combination of a lack of water (drying out some seedlings), too much water (drowning some seedlings), and bird predation. A few cattail (Typha spp.) recruits were growing in both wetland cells (60 to 90 cm [2-3 feet] tall in the south wetland and about 23 cm [3/4 foot] taller in the north wetland), and a few watergrass plants (Echinochloa crusgalli) had also established themselves. Although the cattails and watergrass appeared to be healthy, neither species spread a great deal the first year, and cattail flower production was minimal.

By November 2, 1993, it was evident that the alkali bulrush, spikerush, cattail, and watergrass had survived in both wetland cells. In the north cell, which had received only fresh water since September, the newer plants around the edges (particularly spikerush) were green, while the plants around the edges of the south cell were more chlorotic. Plants throughout the interior of both cells were mostly brown due to the colder winter temperatures. The alkali bulrush remained at about the same height since August, while the few cattails increased to about 152 cm (5 feet) tall. In many of the areas where spikerush had spread during the summer, alkali bulrush was encroaching and became an overstory for the spikerush. A quillwort (*Isòetes spp.*) mat had formed in the inflow end of the north wetland cell and appeared to be very healthy. Alkali bulrush seed was floating over the water surface in both cells.

Throughout the first growing season, some plants of each species exhibited stress, probably due to some constituents of the water (i.e., some browning, slower growth, and less seed production). But: to the casual observer, the plants appeared to be thriving. During the winter, the plants turned brown because of normal winter dormancy.

Spring 1994 growth was very lush and vigorous, and all plants appeared healthy, according to EMWD personnel. The RO reject flow into the south cell was interrupted from February 4, 1994, through July 21, 1994. Therefore, the lush growth was probably due to the fresh water supplied to both cells throughout the spring and part of summer (figure 5.7). During this period of vigorous growth, it appeared that the saline wetland plants regenerated completely by producing new growth from their rootstock. There was no evidence of wetland plant seed germination, even though alkali bulrush seed was floating over the water surface in both cells during the fall. Two species of cattail in the south cell were identified by EMWD's biologist. They were narrow-leaf cattail and broad-leaf cattail (*Typha angustifolia* and *T. latifolia*, respectively). Duckweed (*Lemna spp.*) was abundant in the north cell by April, 1994, and by August, it was evident in the south cell as well.

By September 8, 1994, the south cell had been receiving RO reject for 7 weeks. Alkali bulrush covered the entire cell and was 90-122 cm (3-4 feet) tall. Much of it was lodging (falling over). The stems were green, but the tops were brown, and heavy seeding was evident (figure 5.8). Cattail covered about 15 percent of the area, was about 2.4 meters (8 feet) tall, and was flowering. Spikemsh covered about 5 percent of the area, as the alkali bulrush outcompeted it. The spikerush was browner than in the north cell, about 30-60 cm (l-2 feet) tall, and no flowering was evident.

In contrast, the north cell, during September 1994, contained 95 percent alkali bulrush (90-137 cm [3-4-1/2 feet] tall), 35 percent cattail (2.7 meters [9 feet] tall), 20 percent spikerush (30-60 cm [1-2 feet] tall), and duckweed and algae floating on the open surfaces (figure 5.8). The alkali bulrush exhibited some lodging, but had green stems, brown tops, and abundant seeding. The spikerush was seeding and looked healthy and green. The vitality and health of all the plants in the cell were obviously due to the fresher (lower salinity) water.

On July 10, 1995, the south cell was still dominated by alkali bulrush (90-122 cm [3-4 feet] tall). They had brownish tips with abundant seed heads. The second most abundant species was cattail, covering about 22 percent of the area at either end of the cell (figure 5.9). The west end (higher EC) contained shorter plants with bigger catkins. The east end contained taller plants with smaller and thinner catkins. Virtually all spikerush had been displaced.

By July 1995, the north cell had become a mixed community of alkali **bulrush** and cattail (figure 5.9). Both species **were** flowering at that time, but alkali bulrush was predominantly brown, and the cattail was green and healthy. Spikerush could be seen only in **the** southeast comer (the inflow end) of the cell, and a few California bulrush (*Schoenoplectus californicus*) plants had appeared nearby. **Duckweed** was also present around the inflow area.

The plants responded as the constituents of the water changed in the saline vegetated wetland cells. Each time fresh water was added to one or both of the cells, the plants responded by having a growth spurt and becoming greener. At the end of the 1995 growing season, after a

Figure 5.7.—View of both vegetated wetlands during May 1994 showing very lush, vigorous, and healthy plant growth (south cell had not received RO reject since February 9, 1994).

Figure 5.8.—View of both vegetated wetlands on September 8, 1994 (the south ceil [in foreground] had been receiving reject brine for 7 weeks while the north cell continued to receive only fresh water). The photograph illustrates the additional lodging (falling over), browning, and seeding in the south wetland compared to the north.

Figure 5.9.—View of both vegetated wetlands during July 1995 (the so uth cell [in foreground] had received RO reject for almost 11 months).

Figure 5.10.—Example of a waterfowl path through the spikerush in the south saline vegetated wetland.

This page was intentionally left blank.

year of maintaining fairly consistent water sources for both plant communities, the plant community in the north (control) wetland differed from the plant community in the south (saline) wetland. Alkali bulrush was dominant in the RO reject fed (south) wetland cell and cattails were displacing most of the other smaller species in the fresher (north) wetland cell. Long term evaluation using the appropriate water is necessary to accurately assess the final outcome of this pilot study. Of course, accumulations of heavy metals or other constituents to toxic levels could change the described differences in plant communities.

5.4.3 Wildlife visitation and use.-Wildlife usage of the saline vegetated wetlands was documented on numerous occasions throughout the period of this study by EMWD personnel. Actual sightings, prints, scat, carcasses, nests, or sounds have provided evidence of usage. Raccoon and rabbit prints were observed in 1993, as well as evidence that waterfowl usage occurred (e.g., paths and tunnels through the spikerush, figure 5.10). Aquatic snails were also observed in the wetlands. In 1993, April Sleigh and Andrew Haimov, from California State Polytechnic University (CSPU) at Pomona, working under an NBS contract to count birds on the Hemet/San Jacinto RWR Facility, reported seven sightings of black phoebe (almost always on a wooden post in the vegetation), four sightings of killdeer, and one sighting of a Say's phoebe. Unfortunately, these sightings were not recorded separately for the vegetated wetlands and the evaporation ponds, but the birds were seen in the vegetated wetlands almost exclusively (April Sleigh, personal communication, 1996).

During the spring of 1994, the wildlife usage increased with the sprouting of the new plants, according to EMWD personnel. Numerous tadpoles and, later, frogs were observed. Coots, moorhens, blackbirds, black phoebes, a sora, snails, a crayfish, and a variety of invertebrates were also observed in and around the vegetated wetlands. Later in the year, opossum were observed using both wetlands on numerous occasions, and a heron frequented the north wetland. Throughout the fall, tracks of small animals (including opossum, herons, mice, skunks, small unidentified mammals [probably rodents], and cats [probably domestic]) were so abundant around the cells that it was difficult to distinguish one from another (Stella Denison, personal communication, 1994). April Sleigh and Andrew Haimov, from CSPU, recorded a total of 27 bird sightings during 1994, including: 5 sightings of black-necked stilt, 1 sighting of a willet, 1 sighting of a bank swallow, 11 sightings of least sandpiper, 1 sighting: of an American avocet, 6 sightings of black phoebe (on the wooden post in the vegetation), 1 sighting of a cinnamon teal, and 1 sighting of a common yellow throat. It was agreed by the cooperating agencies to stock mosquitofish (Gambusia spp.) in the two vegetated wetlands to provide a test organism for toxicity analysis. During September 1994, 150 fish each were stocked into the south and north cells. In June 1995, fish could still be seen in both cells.

According to EMWD personnel, wildlife use during 1995 was similar to 1994. Tracks, scat, sounds, **carcasses**, nests, and actual sightings of the same mammal, amphibian, rodent, reptile, bird, and invertebrate species were observed. Additionally, yellow-head blackbirds were sighted regularly. April Sleigh and Andrew Haimov, from CSPU, reported 270 sightings of red wing blackbirds, 3 sightings of black-necked stilts, 1 sighting of an American avocet, 1 sighting of a loggerhead shrike, 39 sightings of tricolor blackbirds, I sighting of a common **moorhen**, and 4 sightings of black phoebes (on the wooden post in the vegetation) using the vegetated cells and/or the evaporation cells.

5.4.4 Invertebrate diversity data.-Invertebrate samples were collected on July 14, 1994, and May 25, 1995, and the data are listed in tables 5.5 and 5.6. At the time of the July 1994 sampling, both cells had been receiving fresh water for over 5 months. (See section 5.3.1.) Therefore, the EC of the water in the south cell was reduced and remained between 750 and 4,200 μ S/cm. The invertebrates that were collected in 1994 (table 5.5) were fresh water taxa, and, therefore, neither cell was representative of the conditions of a saline vegetated wetland. The only taxon that was clearly absent from the south cell, but present in the north, was the *Oligochaeta*. This order includes the earthworms which are unable to survive in saline conditions and which have life cycles normally longer than the other invertebrates. They do not have a winged life stage to move in and out of an area quickly, so they were probably unable to populate the south cell within the 5-month period of receiving only fresh water.

For 10 months prior to the May 25, 1995, sample, RO reject flow had been fairly consistent into the south vegetated wetland. Therefore, we would expect to see species diversity differences between the sampling dates as well as between the cells. In comparing table 5.5 to 5.6, some differences were noted. There were seven invertebrate taxa collected in July 1994 that did not appear in the May 1995 sample, and there were four other taxa present in May that were not present in July 1994. However, with the exception of *Callibaetis* (*Callibaetis* is one of the major invertebrate groups least tolerant of salinities greater that 2 parts per thousand [Short et al., 1991]), each of these differing taxa was uncommon and exhibited only one or two individuals each. Since only three samples have been collected throughout the life of the project, no long term impacts on invertebrate communities can be determined from these data.

In examining the samples collected on May 25, 1995, from the north and south wetland cells, there are large differences in the *Corixidae*, the *Notonectidae*, and the *Chironomidae* taxa. *Notonectidae* occur only in fresh water (and, therefore, were found only in the north cell), while in the families *Corixidae* and *Chironomidae* (found in both cells), there are taxa that are tolerant to saline waters (Usinger, 1956). Individual chironomids were not identified to genus in order to accurately determine their saline tolerances, but their numbers are greater in the saline wetland than in the fresh water wetland. From these data, it can be deduced that these invertebrates were tolerant of higher saline concentrations (tables 5.5 and 5.6). Additional invertebrate sampling and analysis are essential to determine invertebrate community trends related to saline wetland development.

5.4.5 Toxicological data.—Collecting data to determine whether the saline vegetated wetlands are accumulating toxic materials which may be hazards to wildlife is a very important aspect of this study. Monitoring and sample collection have been performed by EMWD personnel.

<u>In situ water analysis</u>: The electrical conductivity (EC) and total dissolved solids (TDS) data for each vegetated wetland cell are listed in appendix J. These data illustrate how the saline wetlands gradually became more saline until they were diluted with the addition of fresh water. Measurements taken immediately after the weekly addition of fresh water to the north vegetated cell on November 3, 1993, showed that the inflow end had an EC of 2,070 μ S/cm; the inflow sampling site on the south vegetated cell was 6,200 μ S/cm at the same time (similar conditions occurred on July 23, 1993. and August 18. 1993). Once the RO system was shut down in February 1994, the EC levels and TDS concentrations were reduced by 50 percent (appendix J). This shutdown, plus the abundant rainfall (appendix K), freshened the water to such a degree that for 5 months the plant and invertebrate communities experienced a growth spurt. The following year (August 1994 through October 1995), EC data from the north vegetated wetland did not exceed 2,000 μ S/cm and averaged 699.4 μ S/cm, while EC data recorded from the south saline vegetated wetland reached 13,680 μ S/cm (average 5,292.8 μ S/cm).

<u>Water analysis • RO reject</u>: On each of 5 days, one water sample was collected from the RO reject line. (There were no replications.) Up to 22 trace elements and complete ion analyses were performed, and the data are listed in table 5.1, An additional sample, collected on February 23, 1995, was analyzed for copper, mercury, and selenium. According to the data, most of the elements analyzed were nondetectable or at levels that would not be toxic to aquatic organisms (U.S. Environmental Protection Agency, 1976 and U.S. Environmental Protection Agency, 1986). The exceptions included higher levels detected for selenium (0.0032 to 0.007 mg/L) and boron (2.5 mg/L).

Selenium levels in water that are over 0.003 mg/L exceed the criteria threshold and have shown adverse effects, such as increased risk of teratogenesis and embryo mortality, on some fish and wildlife species (Joy Gober, Reclamation memorandum dated June 14, 1993, peerreviewed by national experts). The EPA National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses (U.S. Environmental Protection Agency, 1987b) states that "freshwater aquatic organisms and their uses should not be affected unacceptably if the four-day average concentration of selenium does not exceed 5.0 μ g/L (0.005 mg/L) more than once every three years on the average." Regardless of which criterion is applied, selenium should be monitored regularly and at a suitable detection limit to insure adequate evaluation. Since levels of 0.0032 to 0.007 mg/L selenium were detected in the RO reject going into the saline vegetated wetland, this water could potentially pose a threat to wildlife using the wetland. It is possible that higher levels could accumulate in the saline wetlands, particularly in the plants and soils.

The highest boron value found in the RO reject water samples (2.5 mg/L) may be toxic to certain crops and greenhouse plants (Csuros, 1994), but no documented boron toxicity has been found in aquatic plants (Snyder and Snyder, 1984). In hard water, the median lethal concentration to fish eggs and juveniles exposed from fertilization to 4 days after hatch ranged from 204 to 212 mg/L (Brungs et al., 1978). Although from these data, boron does not appear at toxic levels, it should continue to be monitored in the saline vegetated wetlands,,

<u>Water analysis</u> - saline vegetated wetland cells: Analytical results for water samples from the saline vegetated wetlands are listed in tables 5.2a and b. Many of the results are below detectable levels, and many others are at levels too low to cause any known toxic effects. The trace metals that are elevated are: aluminum (26 mg/L), copper (0.034 mg/L in the north cell). iron (27 mg/L), mercury (0.0006 mg/L in the north cell). selenium (0.0024 mg/L), and zinc (0.29 mg/L).

Although aluminum can cause crop problems at levels > 10 mg/L, and > 1 mg/L can be toxic to fish (McKee and Wolf, 1963). aluminum effects on aquatic plants are rare, with toxicity

greatly increasing at pHs less than 5, according to Gough et al. (1979). Battelle's Columbus Laboratories (1971) showed that three species of freshwater fish could survive indefinitely at 100 mg/L, but acute toxic levels of aluminum to aquatic animals vary widely (Snyder and Snyder. 1984). Reviewing the available literature. it is doubtful whether the aluminum concentrations sampled in the wetland cells are toxic to occasional users, such as waterfowl, but since only one sample was taken at each outlet area on July 14, 1994, no definitive statements can be made. Based on a sample that was collected the following March,, aluminum levels dropped from 26 mg/L in the south cell and 14 mg/L in the north cell to below 1 mg/L. Monitoring should be continued.

The highest concentration of copper (0.034 mg/L) was found in a sample collected from the outlet of the north vegetated cell on July 14, 1994. All other samples had lower levels of copper and did not exceed the EPA National Water Quality Criteria Guidelines (U.S. Environmental Protection Agency, 1986). The copper level in the north wetland did exceed the EPA national guidelines after calculating the acceptable level using the only available measured water hardness of 138 mg/L CaCO₃. The measured concentration (0.034 mg/L) was about two times the accepted level for the 4-day average concentration (0.0156 mg/L). Because copper is a biocide, it should be monitored regularly.

The iron levels of 27 and 13 mg/L in the south and north vegetated wetlands, respectively, sampled on July 14, 1994, and 17 mg/L in the south cell sampled on March 29, 1995, are elevated levels. Aquatic vegetation has the ability to absorb large amounts of iron, but no information was found on toxic concentrations of iron to wetland or aquatic vegetation. Iron may actually provide protection from toxic concentrations of copper (Antonovics et al., 1971). Although the upper tolerance limit for fish under the California Water Quality Criteria (McKee and Wolf, 1963) is 50 mg/L, the 1976 EPA criterion for iron on aquatic life is 1.0 mg/L. Therefore, it is an element that could have a negative impact on the aquatic life in the wetlands. Iron levels were also high in both wetland substrates (tables 5.3a and b) and in the plant material (tables 5.4a and b). The iron levels were not high in the influent reject: from the RO unit but were very high in the baseline soil sample prior to flooding in April 1993. The limited amount of sampling provides data which strongly suggests that iron was in the soil brought in for both vegetated wetlands. As saline water that is high in chlorides and sulfates is added to a soil high in iron, precipitates can form as ferrous/ferric ions combine with sulfate or hydroxyl ions. These precipitates could smother aquatic life (McKee and Wolf, 1963). The iron levels in the substrate and plant samples decreased with time, and by March 1995, iron concentrations had dropped to 1.1 mg/L from 27 mg/L in the south cell and to 3.8 mg/L from 13 mg/L in the north cell. This could indicate that iron is leaching from the substrate. Monitoring should be continued.

Mercury is a highly toxic element that can both bioaccumulate and **biomagnify** in the food chain. Vascular plants are resistant to mercury poisoning (U.S. Environmental Protection Agency, 1973), but *Daphnia* (a common aquatic invertebrate) is immobilized by 0.006 mg/L mercury. The 1976 EPA criterion for mercury for freshwater aquatic life and wildlife is 0.00005 mg/L. However, the methylmercury form (CH_3Hg^-) is much more toxic than other forms of mercury, and the proportion of methylmercury to total mercury in *Elodea (an aquatic macrophyte)* was about 3 1 percent for the shoots and 10 percent for the roots in a study done by Mortimer (1985). Therefore, the values of 0.0002 to 0.0006 mg/L total

mercury, found in the February and March 1995 south and north vegetated wetlands water samples, are probably within background levels of the system (Steven Schwarzbach, U.S. Fish and Wildlife Service [USFWS], Division of Environmental Contaminants, personal communication, 1996). Because mercury is such a highly toxic element, monitoring at detection limits no higher than 0.005 μ g/L should be performed on a routine basis (Joseph Skorupa, USFWS, Division of Environmental Contaminants, personal communication, 1994). Analyses for methylmercury would be particularly useful.

Plants are able to absorb high quantities of selenium without injury, and high concentrations of sulfates will diminish the uptake of selenium and act as a partial antidote to toxicity (Bear, 1957). The south cell exhibited high sulfate concentrations in the March 1995 sample, which probably diminished the potential toxicity of the selenium concentrations of 0.0022 and 0.0024 mg/L measured in February and March 1995, respectively. However, since the newly accepted selenium level of concern for fish and wildlife in water is between 0.001 and 0.003 mg/L (Joy Gober, Reclamation memorandum, June 14, 1993), selenium must continue to be monitored. If selenium levels rise, the saline wetland could potentially become toxic to aquatic life.

The levels of zinc in waters of the south wetland, 0.12 and 0.29 mg/L where hardness measured 882 and 659 mg/L CaCO₃, respectively (table 5.2a), probably did not exceed the criteria levels set for aquatic organisms, as determined by the EPA formula (U.S. Environmental Protection Agency, 1987a). However, in the north wetlands, where the available measured hardness was only 44 mg/L CaCO₃, the zinc level of 0.14 mg/L was above criteria levels. In this case, the major source of zinc was from the substrate. The best way to determine whether zinc is toxic to aquatic organisms in this environment would be to perform onsite toxicity tests.

It is very important that additional water and plant samples be collected and analyzed to demonstrate whether the saline vegetated wetlands are accumulating toxic materials which may result in hazards to wildlife. Additionally, there may be synergistic effects of metals in combination in this water matrix. Accurately predicting those combined effects is difficult. so **onsite** toxicity tests should be performed to determine toxicity empirically.

<u>Soil analyses</u>: Data from the two wetland cells are listed in tables 5.3a and b. The baseline soil analyses, taken on April 28, 1993, showed 19 μ g/kg of chlordane in the north wetland inlet area, and 12 μ g/kg was present in the south wetland inlet area. No other organochlorine pesticides or PCBs were detected in the local soil prior to flooding. However, the levels of the elements cadmium, total chromium, iron (see discussion on iron in water analysis section, above). lead, nickel. and zinc in both vegetated wetland substrates were above what would be normal for crop soils (Robert Cox, personal communication, 1994). Raw data are included in appendix C of the USBR/NBS/EMWD Phase II/III Report (1994).

The next complete soil testing was performed on samples taken on March 29, 1995, almost 2 years following planting, with an additional set of samples analyzed for copper, mercury, and selenium. taken on July 14, 1994 (after 5 months of receiving only fresh water). This limited data, set makes definitive conclusions difficult. Mercury and selenium levels in these samples are below levels of concern for fish and wildlife. Copper levels are higher and

appear to have increased somewhat with time in both the south and north cells. However, copper toxicity is reduced in water of high alkalinity (U.S. Environmental Protection Agency, 1976) (refer to table 5.2a).

A review of the baseline data disclosed similar concentrations of elements in both cells. This similarity strongly suggests that the metals came in with the soil. Boron, copper, and zinc increased in the saline wetland with time (possibly due to the concentrations in the RO reject), cadmium and lead increased in both wetlands, but chromium, iron, and nickel decreased. Continued monitoring is recommended.

Plant material analyses: Little information is available regarding toxic levels of heavy metals in plant tissue. In reviewing the data listed in table 5.4a and b, it appears that there are only a few elements that are of concern. Selenium levels increased slightly through time but they are below the levels of concern for consumption by waterfowl. Aluminum, barium, copper, iron, magnesium, mercury, nickel, and zinc levels were high during July 1994, but were lower in the samples collected during May 1995 in both the south and north cells. The element of most concern was boron. During December 1994, spikerush in the south cell contained boron levels of 130 mg/kg; and during May 1995, spikerush in the north (control) cell contained 220 mg/kg (table 5.4a and b). These levels of boron are toxic levels in crops; however, only one sample was collected on each date, so it is unknown whether this was typical for all the spikerush. Plants are capable of absorbing large amounts of metals, whether they need them or not (Guilizzoni, 1991), and it is still debated whether some plants are capable of concentrating high amounts in their tissues from low concentrations in the surrounding environment (Muntau, 1981 and Wells et al., 1980). Because there is no evidence of large boron levels in the water or substrate samples, and because sampled alkali bulrush contained much less boron, the spiketush may be a species capable of this phenomenon.

Sampling and analyses of plant material on an annual basis are recommended to determine if changes are occurring in the system and if the edible portions are accumulating levels of any of the RO reject constituents that could be toxic to plants, waterfowl, or wildlife feeding on these plants

5.5 Conclusions

Using the data that were received from EMWD, there are some trace metals that **warrant** concern for the health and well-being of visiting wildlife, but there appear to be no serious threats to wildlife using the saline vegetated wetland cells at this time. However, it should be noted that the data available are very limited, so no long term conclusions can be drawn. Due to the **sparsity** of the data, it is not recommended that EMWD, or any other entity, create a larger saline wetland system to reduce their RO reject volumes or to create green space and wildlife habitat until more stable water quality conditions are achieved and further data are collected and analyzed. The reader must remember that within this reported sampling period, the South saline cell received a constant flow of RO reject only from July 21, 1994, through the May 1995 sampling date. Therefore, long range effects or accumulations have not yet been adequately addressed. Monitoring should be continued, and more samples should be collected and analyzed before any definitive conclusions can be drawn about the feasibility of using wetlands for brine reuse and disposal.

6. EVAPORATION PONDS

6.1 Objective

The objective. of the evaporation ponds (cells) at this pilot facility was to determine whether the effluent volume from the saline vegetated wetlands could be reduced further to minimize the cost of concentrated RO reject (brine) disposal. In a full-scale **RO** facility, the cost of brine disposal could be considerable.

6.2 Evaporation Pond Design and Construction

The evaporation ponds consisted of two 6.1 x 24.4-meters by 1 .2-meters-deep (20×80 -feet by 4-feet-deep) lined cells adjacent to and downstream from the saline vegetated wetlands (figures 2.4 and 2.5). The complete construction design and specification document is available through EMWD, San Jacinto, California.

6.2.1 Design considerations.-The evaporation ponds were made as unattractive to wildlif as possible, since the ponds could tend to concentrate certain constituents of the saline vegetated wetland effluent to toxic or hazardous levels, if they exist in the system. The ponds were made with steep non-vegetated sides so that no food, shelter, or nesting **areas** were available to wildlife (figure 6.1). Without those attractions, it was hoped that transient waterfowl would be unlikely to linger around these ponds, thus limiting their exposure to any concentrated constituents



Figure 6.1 .- North evaporation pond with adjacent, upstream vegetated wetlands and RO unit in the background.

This page was intentionally left blank.

The initial designs. as described in the Phase 1 Report (Bureau of Reclamation and Eastern Municipal Water District. 1991). included six 12.2-meter by 12.2-meter by 0.6.meter (IO-foot by IO-foot by Z-foot) deep evaporation ponds. three of which were to be fitted with sprinkling systems to further increase evaporation. These designs were modified during the final design to two. rather than six. cells. and the sprinkling systems were eliminated to keep costs down.

6.2.2 Layout and construction.-To prevent seepage of concentrated RO reject into groundwater. the evaporation cells were lined with an 80 mil high-density polyethylene liner. In April 1994. a leak formed in the north evaporation cell and. a short time later. the south cell appeared to be leaking. Both cells were drained. It was determined that the north cell was leaking because a weld along the liner seam had failed. The south cell leaked through the inlet pipe penetration. The manufacturer of the lining was called to repair the leaks. All the seams on the linings of both cells were resealed to prevent future leaks. This work was performed under warranty by the manufacturer.

Initially. outflows from each saline vegetated wetland went into evaporation cell number one (the south cell) and then into evaporation cell number two (the north cell) in series. Due to lack of sufficient reject from the RO unit to meet the demands of the saline vegetated wetlands during peak evapotranspiration periods, the underground piping and valve system was modified. in September 1993 to allow the south vegetated wetland to receive all of the RO reject and the north vegetated wetland to receive RO product water as a control. Plumbing modifications were made to allow the overflow from the north vegetated wetland to flow into a nearby sump instead of into the evaporation cells. while overflow from the south vegetated wetland continued to flow into evaporation cell number one and then into evaporation cell number one and then into evaporation cell number one and then into evaporation cell number two in series (figure 5.1).

6.3 Test Procedures

6.3.1 Monitoring of brine inflows and evaporation rates.—A total of about 4.7 m^3 (1.250 gal) of RO reject w-as produced each weekday to support the saline wetland. Weather, evapotranspiration, and the RO reject flow determined whether the evaporation cells received effluent from the saline wetland. Generally, during the cool, rainy season, there was enough water to accumulate in the evaporation cells, but during the dry, hot months (maximum pan evaporation was over 1.5 cm [0.6 in.] per day), there was no flow out of the saline wetland into the evaporation cells. No water volume data or flow values for the evaporation cells were recorded throughout this study period. Precipitation and evaporation pan data were collected, and the raw data are listed in appendix K.

Electrical conductivity (EC) was measured when the evaporation cells contained water. Data are listed in table 6. 1.

6.3.2 Evaporation enhancement methods.—Consideration of any further evaporation enhancement methods was dropped due to the small volume of flow the evaporation cells received from the vegetated wetlands.

Date	EC (µS/cm)	Date	EC (µS/cm)
02/24/94	4285	01/ 03/9 5	4770
03/03/94	4285	01/10/95	3830
03/11/94	4370	01/17/95	4010
03/18/94	4560	01/24/95	3840
03/28/94	3827	02/03/95	4070
04/04/94	4100	02/10/95	4490
08/30/94	13270	02/17/95	3900
09/06/94	21000	02/24/95	3955
09/13/94	17700	03/06/95	3470
09/20/94	11460	03/24/95	3020
09/27/94	22100	03/31/95	3350
10/04/94	19240	04/14/95	3360
10/11/94	16500	06/09/95	5800
10/18/94	20220	06/16/95	6170
11/01/94	13180	06/30/95	6950
11/08/94	9510	07/07/95	7310
11/15/94	7800	08/04/95	11300
11/22/94	7160	08/10/95	12700
11/29/94	7120	09/11/95	27800
12/06/94	7200	09/22/95	37200
12/13/94	7350	09/29/95	37800
12/20/94	7500	10/06/95	38900
12/27/94	7325		

Table 6.1 .- Electricl conductivity (EC) readings in the south evaporation pond

6.4 Results and Discussion

6.4.1 Brine concentration and net evaporation data.-Recorded EC measurements from the south cell are listed in table 6. 1. The examination of evaporation and precipitation data (listed in appendix K) indicated that the lower ECs occurred during times of abundant rainfall and low evaporation. Specifically. from a low of 3.020 μ S/cm in March 1995 (following a 3-week period of low evaporation and 6.4 cm [2.5 inches] of rainfall). the EC measurements (table 6.1) became exceedingly high during September and October 1995 (77.800 to 38.900 μ S/cm). The high ECs occurred when precipitation was low. evaporation was high. and inflow from the wetland had stopped.

6.4.2 Wildlife visitation and use.-General observations of wildlife use were made by EMWD personnel during weekly visits. Signs of wildlife use. such as tracks and droppings. were noted. and a carcass log was used to record findings of any dead animals in or around the evaporation cells (several small animals were found dead in the cells. but it appeared they had fallen in and were unable to get back out due to the steep sides and smooth lining). The log book is available from EMWD personnel.

EMWD also observed that usage by waterfowl has been brief and transient throughout the testing period. Ducks have been observed in the evaporation cells. but they did not stay for more than 3 days. Near the end of August and into September 1994. small groups of least sandpipers. lesser yellow legs. and black-necked stilts were observed feeding from the bottom of the south evaporation cell in the sand that tilled in around the edges. They were not observed beyond mid-September.

Wildlife use during 1995 was similar to 1994. No new notations of observations were made by EMWD personnel.

6.4.3 Toxicological data.-One water sample was collected from each evaporation cell on February 23, 1995. and analyzed for copper. mercury. and selenium: and on March 29. 1995. 1 sample was collected and analyzed for 19 trace elements. Data are listed in table 6.2. The only element that exceeded the criteria level was zinc (0.1 19 mg/L) in the north pond (using the toxicity criteria of 0.086 mg/L for saltwater aquatic organisms [U.S. Environmental Protection Agency, 19871). However, two samples taken 5 weeks apart do not provide enough data to develop a toxicological picture of the cells through time. In this case, 2 weeks prior to the February 23 sampling. the RO system had been off for 6-X weeks due to abundant rainfall. It is, therefore, very likely that the water sampled from the evaporation cells on February 23 was heavily diluted with rain water. Although the RO system had been back on line for the 7 weeks prior to the March 29 sampling. 11.4 cm (4.5 inches) of rain had fallen within that time. Therefore, it is also very likely that the March 29 sample was heavily diluted. The EC measurement taken on March 24, 1995 (3.020 μ S/cm) was the lowest EC value recorded from the evaporation cells (table 6.1). Therefore, samples were collected at a time when the evaporation ponds were experiencing very uncharacteristic operating conditions. It is logical, during the time when high ECs were recorded (August 1994 through October 199-1 and August 1995 through October 1995). that the

	South Por	nd @pm)	North Por	nd @pm)
Metal	2-23-95'	3-29-95'	2-23-95'	3-29-95'
Aluminum, Al		0.048		0.09
Arsenic, As		I 0.003	Ι	co.002
Barium, Ba		0.0507		0.0488
Cadmium, Cd		< 0.0002		<0.0002
Chromium, Cr		< 0.003		<0.003
Iron, Fe		0.25		0.33
Lead, Pb		0.0003		0.0007
Manganese, Mn		0.06	Ι	0.02
Silver, Ag		< 0.0002		<0.0002
Zinc, Zn		0.0287		0.119
Beryllium, Be		<0.0008		<0.0008
Thallium, Tl		<0.0001		<0.0001
Nickel, Ni		I 0.002		I 0.001
Antimony, Sb		<0.0008		<0.0008
Cobalt, Co		0.0006		0.0005
Boron, B		1.26		1.23
Copper, Cu	0.0064	0.0028	0.0078	0.0073
Mercury, Hg	<0.0005	<0.0002	<0.0005	0.0003 II
Selenium, Se	0.001	0.001	0.001	0.001

Table 6.2.-Metal concentrations in evaporation pond water samples

¹ Electrical conductivity (EC) in the south evaporation pond on February 24, 1995 was 3955 μ S/cm; average EC in the south vegetated wetland was 2925 μ S/cm.

² EC in the south evaporation pond on March 24. 1995 was 3020 μ S/cm; average EC in the south vegetated wetland was 3038 μ S/cm.

constituents in the water were present in higher concentrations. but no samples were collected during those periods. Further sampling and analyses during other times of the year are necessary to determine ifconcentrated water in the evaporation ceils contains constituents at levels exceeding recommended criteria.

6.5 Conclusions

Due to the limited amount of data available from the evaporation cells. conclusions cannot be drawn. Since it is very important to know what. if any, hazards exist for wildlife using evaporation ponds associated with constructed saline wetlands, more data collection and careful analysis are essential before a full-scale RO system with saline vegetated wetlands and evaporation ponds is built.

This page was intentionally left blank.

7. POTENTIAL FOR FULL-SCALE DEVELOPMENT

The data that have so far been collected from the saline vegetated wetlands and the evaporation cells are too limited to predict the potential for full-scale development. Consistent monitoring according to the July 5, 1991. proposed saline marsh monitoring program is recommended before further development is attempted. Although the plants propagated rapidly in the south saline vegetated wetland cell in the spring. they turned brown much earlier in the growing season than did plants in fresher areas (e.g., natural alkali bulrush sites on the San Jacinto Wildlife Refuge 12.9 kilometers [8 miles] north of this pilot site). The south wetland maintained a few salt-tolerant wetland plant species. but species diversity was low; this also reduced wildlife diversity.

In summary, the saline vegetated wetlands appeared to reduce the volume of reject from the RO unit. Since there are insufficient data to determine whether or not the saline vegetated wetlands were harmful to the wildlife that used them, a full-scale development project is not recommended at this time.

This page was intentionally left blank.

8. REFERENCES

- Antonovics, J., A. D. Bradshaw, and R. G. Turner. Heavy metals tolerance in plants. <u>In</u> J B. Craig (ed.). <u>Advances in Ecological Research</u>, vol. 7. Academic Press. New York. 1971. pp. 2-85.
- Battelle's Columbus Laboratories. *Water quality criteria data hook. vol.* 3 *Effects of chemicals* on *aquatic life*. Selected data from the literature through 1968. the U.S. Environmental Protection Agency's Water Pollution Control Research Series 1/0805 GWV 05/71, 1971.
- Bear. F. E. Toxic elements in soils. <u>In Soil: The 1957 Yearbook of Agriculture</u>. A. Stefferud (ed.). U.S. Department of Agriculture. Government Printing Office. Washington. DC. 1957. pp. 165-171.
- Brungs, W. A., R. W. Carlson, W. B. Homing, II. J. H. McCormick. R. L. Spehar. and J. D. Yount. Effects of pollution on freshwater fish. *Journal Water Pollution Control Federation*. 1978. 50(6):1582-1637.
- Bureau of Reclamation and Eastern Municipal Water District. Phase 1 Report Multipurpose Wetlands Demons/ration Project. 1991.
- Bureau or Reclamation/National Biological Service/Eastern Municipal Water District. "Multipurpose Wetlands Phase II/III Report," 15 I pp. + 1 I appendices. 1994.
- Conlon. W. J. Chapter I I-Membrane Processes. *Waler Quality and Treatment* A *Handbook of Community Water Supplies*. 4th ed.. American Water Works Association. McGraw-Hill. Inc.. New York. NY. 1990.
- Csuros. M. Chapter 14—Introduction to Metals. *Environmental Sampling and Analysis for Technicians.* CRC Press. Boca Raton, FL. 1994. pp. 205-215.
- Cough. L. P., H. T. Shackelette. and A. A. Case. *Element concentrations toxic to plants*, *animals*, *and man.* U. S. Geological Survey Bulletin 1466. 1979. 80 p.
- Guilizzoni. P. The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. *Aquatic Botany*. 1991.4 1:87-109.
- Martin. A. C., and F. M. Uhler. *Food of Game Ducks in the United States and Canada*. Technical Bulletin No. 634. U.S. Department of Agriculture. Washington. DC. 1939. 157 p.
- McKee, J. E., and H. W. Wolf. eds. Water Quality Criteria. Second Edition. Publication No. 3-A. The Resources Agency of California State Water Resources Control Board. 1963, 548 p.

- Mortimer, D. C. Freshwater aquatic macrophytes as heavy metal monitors the Ottawa River experience. *Environ. Monitor.* Assessment. 1985, 5:3 | 1-323.
- Muntau, H. Heavy metal distribution in the aquatic ecosystem "Southern Lake Maggiore": Part 2. Evolution and trend analysis. "*Mem. Ist. Ital. Idrobiol.*, 1981," 38:505-529.
- Parekh. B. S. Reverse Osmosis Technology Application for High-Purity-Water Production. 1st ed.. Marcel Dekker. Inc.. New York. NY. 1988.
- Paul. D. Advanced RO Operation and Maintenance. Seminar notes. David H. Paul. Inc., Farmington. NM. 1990.
- Reed. P. B., Jr. National list of plant species that occur in wetlands: California (Region O). Biological Report 88(26.10), U.S. Fish and Wildlife Service. 1988. 135 p.
- Short. T. M., J. A. Black. and W. J. Birge. Ecology of a saline stream: community responses to spatial gradients of environmental conditions. *Hydrobiologia*, 1991.226: 167-178.
- Snyder. B. D., and J. L. Snyder. Feasibility of using oil shale wastewater for waterfowl wetlands - Appendix B. <u>FWSIOBS-84101</u>. Fish and Wildlife Service. U.S. Department of the Interior. 1984. pp. 239-276.
- Usinger. R. L., ed. Chapter 7 Aquatic hemiptera. In: Aquatic Insects of California, University of California Press. Berkeley. Los Angeles. London. 1956. pp. 188-198.
- U.S. Environmental Protection Agency. *Water quality criteria* 1972. Ecological research series. <u>EPA-R3-73-033</u>, (Blue book). 1973.

____Quality criteria for water. (Red book.) Office of Water and Hazardous Materials. Washington. DC. 1976, 256 p.

Quality criteria for water 1986. Office of Water and Regulations and Standards. EPA 440/5-86-001. Washington. DC. 1986.

Ambient water quality criteria for zinc • 1987. EPA-440/5-87-003, Washington, D.C., 1987a.

_____.*Ambient water quality criteria for selenium* - 1987. EPA-440/5-87-006, Washington, D.C., 1987b.

Wells. J. R., P. B. Kaufman, and J. D. Jones. Heavy metal contents in some macrophytes from Saginaw Bay (Lake Huron, USA). *Aquatic Botany*. 1980. 9:185-193.

APPENDIX A

RO Reject-Regenerated ion Exchange Experiments

A. RO REJECT-REGENERATED ION EXCHANGE EXPERIMENTS

A.1 Background

Because of the concentrations of calcium (Ca^{+2}) and bicarbonate (HCO_3) in the Walker Duck Club well water, it would be necessary to add both acid and anti-sealant to avoid the precipitation of calcium carbonate $(CaCO_3)$ in the RO elements. Computer RO performance projections run for this water indicate the need for approximately 85 mg/L of 93-percent sulfuric acid (H_2SO_4) plus about 6 mg/L of FLOCON 100/Hypersperse (anti-sealant) to achieve 75-percent product recovery.

Another way of avoiding $CaCO_3$ scaling is to reduce the concentration of either Ca^{+2} or HCO_3^{-1} in the feedwater. Calcium, present in the Walker Duck Club well water at between 80 and 85 mg/L, can be removed by ion exchange (IX) using a strong acid cation exchange resin operated in a sodium cycle. This means that the exchange sites on the resin, which are occupied by sodium ions (Na⁺) following regeneration, relinquish sodium ions in favor of calcium ions for which they have a greater affinity. Magnesium (Mg⁺²) and other divalent cations are removed as well. The ion exchange process (sodium cycle) is shown in the following forward reaction:

 $2RzNa + Ca^{+2} \neq (Rz)_2Ca + 2Na^+$

where Rz represents the functional group of the resin. Note that two sodium ions are exchanged for each calcium (or magnesium) ion.

Regeneration of the resin is usually accomplished using highly concentrated solutions of sodium chloride (NaCl), generally lo-percent. However, in RO feedwaters that have fairly high sodium levels and a favorable sodium-to-hardness ratio, i.e., high sodium concentration compared to calcium and magnesium, the possibility exists that the resin may be regenerated using the RO reject (concentrate) stream as shown on figure A. 1. This method of resin regeneration has been demonstrated in previous Reclamation research studies [1,2], but never using RO reject with as low a sodium concentration as projected for the Walker Duck Club well.

A.2 Experimental Design and Procedures

A series of laboratory experiments were conducted to demonstrate the feasibility of including reject-regenerated ion exchange as a pretreatment process at the EMWD (Eastern Municipal Water District) RO research facility.

The ion exchange test apparatus, depicted in figure A.2, included a l-inch diameter glass exchange column and the associated pumps. tanks. etc.. required to prepare and transfer feed. rinse and regenerant solutions. The column was tilled to a depth of 2 feet with Rohm and

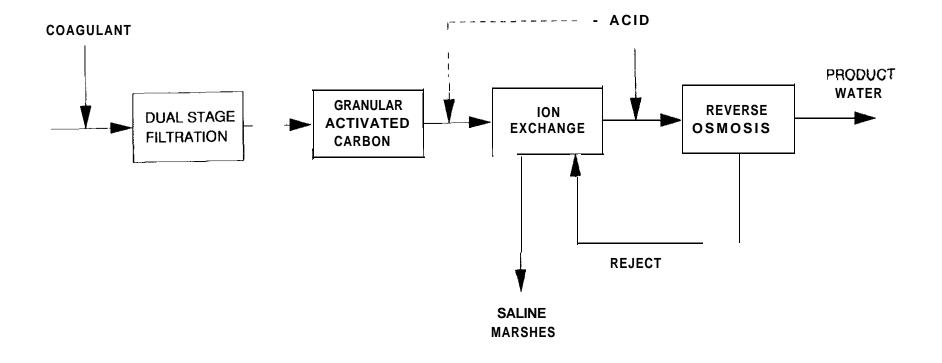


figure A.1. - RO reject-regenerated ion exchange process.

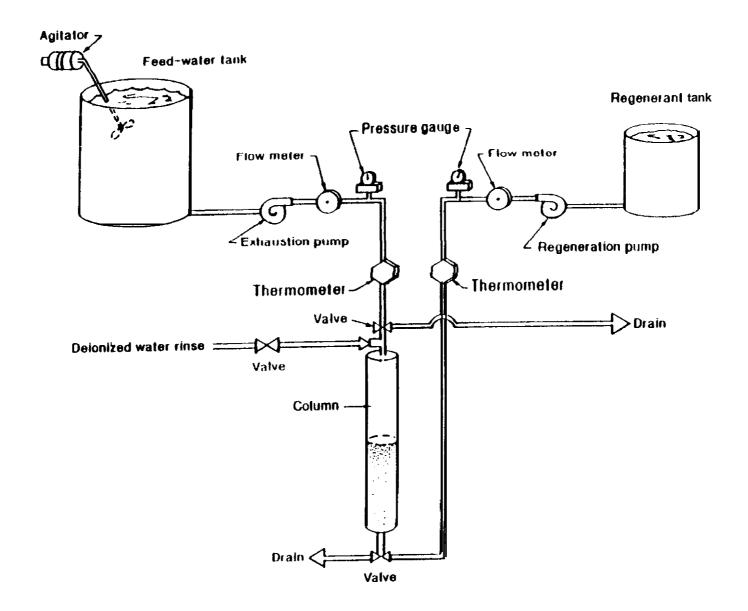
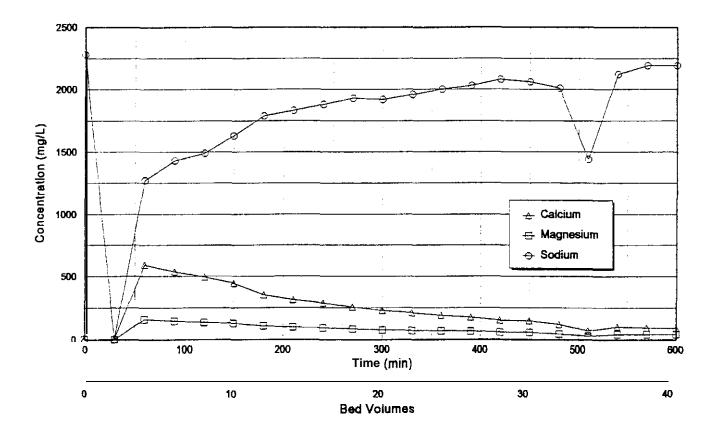


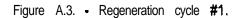
Figure A.2. - Schematic of the ion exchange test apparatus,

Haas Amberlite IR-120 Plus cation exchange resin, which amounted to a resin volume of about 310 mL. Ion exchange feed and regenerant solutions were prepared to simulate the EMWD RO system raw feed and reject streams (assuming the 12/10/91 Walker Duck Club analysis). as follows:

	IX	Feed	IX Regenerant					
	<u>mg/L</u>	<u>meq/L</u>	<u>mg/L</u>	<u>meq/L</u>				
Calcium, Ca ⁺²	82	4.09	2	0.10				
Magnesium., Mg ⁺²	21	1.73	2	0.16				
Sodium, Na ⁺	490	21.32	2346	102.00				
Potassium, K+	7	0.18	26	0.66				
Bicarbonate, HCO,	808	13.37	2739	45.40				
Chloride, Cl ⁻	490	13.82	1866	53.24				
Sulfate, SO_4^{+2}			202	4.21				

A total of 4 exhaustions and 3 regenerations were performed. The initial exhaustion was run 50 bed volumes, past the anticipated calcium breakthrough to make sure the resin was completely exhausted prior to testing (no samples were collected during this initial exhaustion). Samples were taken at 30-minute intervals during the remaining experiments and analyzed for Ca^{+2} , Mg^{+2} and Na^+ . A 15-minute backwash (up flow) and a 15-minute rinse were conducted, after each exhaustion and regeneration. The flowrates used in testing were as follows:


Exhaustion	83 mL/min (equivalent to 2 gal/min/ft ³)
Regeneration	21 mL/min (equivalent to 0.5 gal/min/ft ³)
Backwash	sufficient to achieve a 50-percent bed expansion
Rinse	$42 \text{ mL/min} (1.0 \text{ gal/min/ft}^3)$


A.3 Results and Discussion

Graphs of the three exhaustion/regeneration cycles are presented on figures A.3 through A.8 in the order in which they were run. Likewise, supporting data are shown in tables A. 1 through A.6.

A.3.1 Regenerations. - Referring to the regeneration #1 graph on figure A.3, Ca^{+2} and Mg^{+2} are being displaced from the resin by the higher Na' concentration (2346 mg/L). This occurs rapidly at first:, then, towards the end of the regeneration cycle, the effluent cation concentrations slowly return to their influent levels. At this point the resin is regenerated about as completely as the regenerant sodium concentration will allow and the cycle is terminated (Note: disregard the dip in the curves at 510 min - this represents operator error and did not adversely impact the regeneration).

Because of the low concentration of sodium in the regenerant solution (0.23 percent compared to the manufacturer's recommended 10 percent), it was necessary to run the regeneration cycle

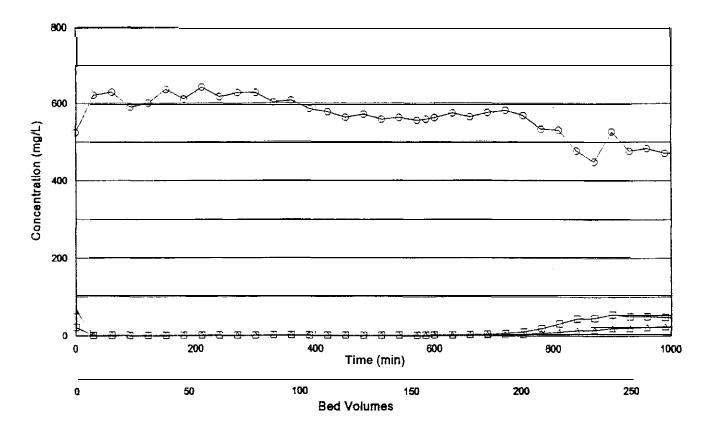
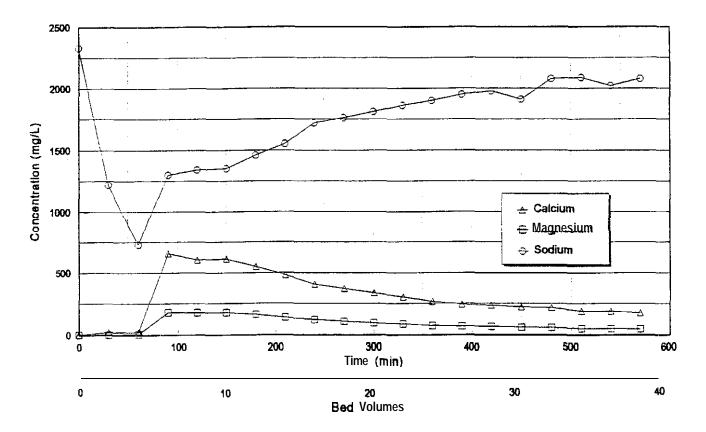
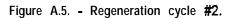




Figure A.4. - Exhaustion cycle #2.

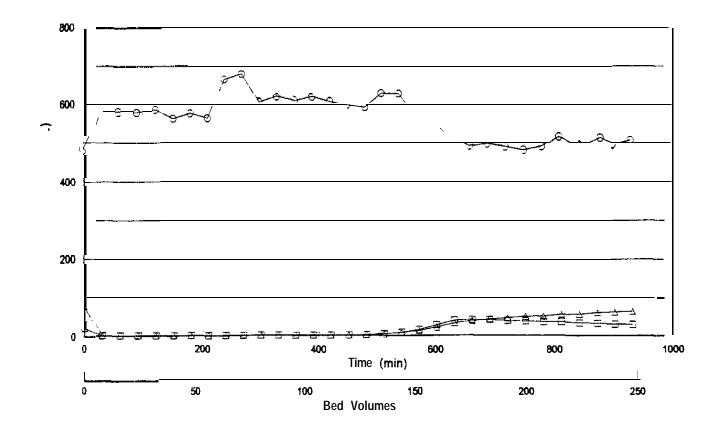
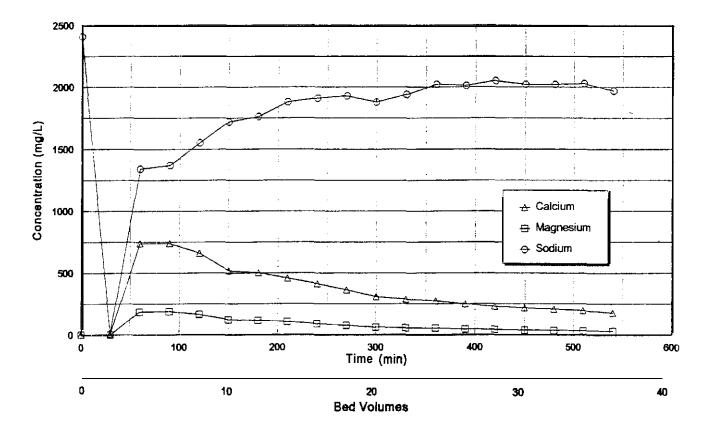



Figure A.6. - Exhaustion cycle #3.

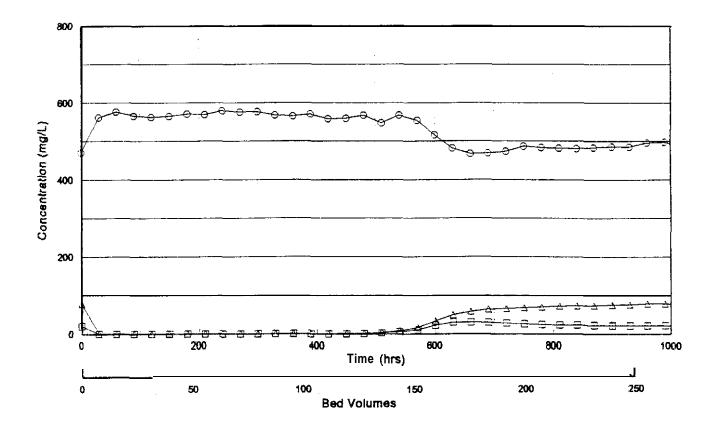


Figure A.8. - Exhaustion cycle #4.

several hours to expose the resin to a sufficient quantity of sodium. The total amount of sodium available in the RO pilot plant reject will be about 22.2 lb/day. Assuming the use of an IX column containing 3 ft^3 of resin, this is equivalent to 7.4 lb Na⁺/ft³. This is roughly 63 percent of the total amount of sodium recommended by the manufacturer for regeneration to full capacity.

Regenerations #2 and #3 are very similar to regeneration #1 except that the Ca^{+2} spikes coming off the resin at the beginning of the cycles appear to be increasing for each successive test. However, this may be an anomaly of the sampling frequency, i.e., the peak of the Ca^{+2} curve may have occurred midway between sampling points for the earlier regenerations.

A.3.2 Exhaustions. - Referring to the exhaustion #2 graph on figure A.4, the data points at t_0 represent the influent concentrations (sample was taken from the feed tank). The subsequent data points are column effluent values. Virtually all of the influent Ca⁺² and Mg⁺² is taken up by the resin during the first 690 mitt, at which time breakthrough begins to occur. During the same time interval. Na⁺ is being displaced from the resin as indicated by the high effluent sodium concentrations relative to the influent level of 490 mg/L. The resin's capacity (meq hardness/mL resin) can be determined from this graph by calculating the areas between the Ca⁺² and Mg⁺² curves and their respective influent values. These calculations, shown in table A.2, indicate that a total of 406.9 meq of hardness was removed, which resulted in a resin capacity of 1.31 meq/mL. According to the manufacturer's literature, the maximum attainable resin capacity is 1.58 meq/mL.

The graphs for exhaustions #3 and #4, shown on figures A.6 and A.8, both exhibited breakthroughs at about 480 min (135 bed volumes), somewhat less than the 690 min achieved with exhaustion #1 The corresponding resin capacities were also lower, as indicated in tables A.4 and A.6, yielding 0.93 and 0.92 meq/mL, respectively. Since this resin capacity was obtained in two successive experiments, it probably is fairly representative of a steady state value.

A.3.3 Problem areas. • The feed solution for the first exhaustion cycle was prepared without pH adjustment (pH as tested was 8.3). Several hours into the test, $CaCO_3$ was observed precipitating in the feed tank and transfer tubes. Scale also formed in the column, both within the bed and at the surface. By the end of the cycle, the buildup was interfering with flow through the resin. A pH 5 solution, prepared with hydrochloric acid (HCI) and deionized water, was then fed to the column for 8 hours in an attempt to dissolve the scale, with little effect. The resin was subsequently replaced and the test rerun at a pH of 6.5, without scale formation.

The solution pH for the remaining experiments was set based on Langelier Index calculations. For the exhaustion cycle, the pH_s was determined to be 6.85 (assuming 70°F). The amount of acid required to adjust the feed pH from 8.3 to 6.85 was calculated to be 135 mg/L of 93-percent H_2SO_4 . It is quite possible, however, that the exhaustion may work fine at a higher pH or with the addition of a small amount of anti-sealant. Additional testing would be needed to determine this.

Because of the high HCO_3 concentration in the regenerant solution and large Ca^{+2} spike coming off the resin at the start of the regeneration cycle, the pH_s was considerably lower at 5.46. However, both pH 5.9 and 6.3 were used during regenerations #2 and #3, respectively, without problem. The amount of acid needed to adjust to pH 6.3 was calculated to be 962 mg/L of 93-percent H₂SO₄, which is considerable. Unlike the feed solution, it is not probable that this acid requirement could be reduced to any great extent.

These acid requirements, particularly for the regeneration, are far in excess of the 85 mg/L needed in the acid/anti-sealant pretreatment described earlier. Even if the regeneration could be operated at a somewhat higher pH, without scale, it is extremely doubtful that the acid dosage could be reduced sufficiently to make the process cost effective. The additional capital costs involved would also have to be factored in, which would further reduce the cost effectiveness of the process.

A.4 Conclusions and Recommendations

- Based on the second and third exhaustion cycles, it appears that a resin capacity of 0.93 meq/mL is attainable, which compares to a theoretical maximum capacity of 1.58 meq/mL.
- Assuming the 12/10/91 analysis for the Walker Duck Club well water (5.85 meq/L hardness), a total of 3.8 ft³ resin will be required to process 4500 gal/day of feed water.
- Acid requirements to condition the regenerant stream, and most likely the feed stream, to avoid $CaCO_3$ scale are far in excess of that required for acid/anti-sealant pretreatment. For this reason, and considering the additional capital costs involved, the use of reject-regenerated ion exchange would not be recommended as part of the RO system pretreatment.

A.5 References

- 1. Haugseth, L. A., and C. D. Beitelshees, "Evaluation of Ion Exchange Pretreatment for Membrane Desalting Processes," U.S. Department of the Interior, Bureau of Reclamation Report No. REC-ERC-74-26, Denver, CO, December, 1974.
- Kaakinen, J. W., and P. E. Laverty, "Cation Exchange Pretreatment for High Recovery -Yuma Desalting Plant," U.S. Department of the Interior, Bureau of Reclamation Report No. REC-ERC-82-11. Denver, CO, October, 1983.

Table A.I, - Regeneration #1 data.

Table A.2. - Exhaustion #2 data.

Elapsed	Bed		- Concentratio	M	Etapsed	Bed			Concen	itration	
Time (min)	Volumes	Ca (mg/L)	Mg (mg/L) .	Na (mg/L)	Time (mln)	Volumes	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	Ca (sum meq)	Mg (sum meq)
0	0	2.54	2.42	2280	0	0	65.1	21. 2	525		
30	2.03	3.41	0.12	1.55	30	8.03	0. 76	0. 43	621	10.09	4. 22
60	4.06	592	158	1270	60	16.06	0.7	0. 43	629	10.10	4. 22
90	6.10	537	145	1430	90	24.10	0.56	0. 39	590	10.11	4. 22
120	8.13	495	136	1490	120	32.13	0.49	0.4	601	10.12	4. 22
150	10.16	447	128	1630	150	40.16	0. 45	0. 42	636	10.13	4. 22
180	12.19	351	106	1790	180	48.19	0.44	0.44	611	10,13	4.22
210	14.23	312	96. 2	1830	210	56.23	0.47	0. 42	641	10.13	4. 22
240	16.26	287	91. 2	1880	240	64.26	0.49	0.45	616	10.13	4.21
270	18.29	256	83.2	1930	270	72.29	0.46	0. 43	627	10.13	4.21
300	20. 32	229	75. 2	1920	300	80.32	0.49	0. 48	627	10.13	4.21
330	22.35	212	71	1960	330	88 . 35	0.46	0.46	602	1013	4.21
360	24. 39	190	67	2000	360	96.39	0.48	0.47	607	10.13	4.21
390	26.42	175	63.4	2030	390	104.42	0.45	0.45	58 5	10.13	4.21
420	28.45	151	58.1	2080	420	112.45	0.46	0.47	577	10.13	4.21
450	30.48	149	55.4	2060	450	120.48	0.46	0.47	563	10.13	4.21
480	32. 52	118	44. 7	2010	480	128. 52	0.46	0.48	572	10.13	4.21
510	34.55	70.8	27.2	1440	510	136.55	0.47	0.5	558	10.13	4. 20
540	36,58	102	41.7	2120	540	144. 58	0.47	0.51	562	10.13	4. 20
570	38.61	92.2	40.6	2190	570	152.61	0. 48	0. 55	556	10.13	4. 20
600	40.65	89.6	40.1	2190	585	156.63	0.54	0.65	558	10.13	4.18
					600	160.65	0.84	1.1	562	10.10	4. 12
					630	168.68	0. 63	0.88	574	10.10	4. 10
					660	176.71	0.8	1.49	564	10.10	4.06
					690	18474	1.24	2.82	575	10.06	3.86
					720	192.77	1.95	5.4	562	9. 99	3.46
					750	200.81	3.12	9.85	568	9.87	2.74
					780	208.64	5.38	18.1	533	9.66	1.44
					810	216.87	8.67	30.8	530	9.32	- 0. 71
					840	224. 90	12.9	43	477	8.85	- 3. 26

870

900

930

960

990

1020

23294

240.97

249.00

257.03

265.06

273. 10

14.7

19.7

19.6

21.4

22.8

24.9

46

55.3

49. 9

49.7

47.6

46.5

Subtotals		337.13	69. 73
Total			406.86
Resin Capacity	(meq/mL)		1. 31

449

527

477

483

471

471

8.47

8.05

7.75

7.64

7.44

7.23

ł

- 4. 82

- 6. 08

- 6.48

- 5.90

- 5.67

- 5.34

Table A.3. • Regeneration #2 data.

Table A.4. • Exhaustion #3 data

Eispsed	Beđ		Concentration			Bed	Concentration								
Fime (min)	Volumes	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	Time (min)	Volumes	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	Ca (sum meq)	Mg (sum meq)				
0	0	2.61	2.58	2330	0	0	77.1	19.9	479						
30	2.03	22.8	2. 76	1220	30	8.03	0. 78	0.3	578	10.09	4.24				
60	4.06	20	3.39	728	60	16.06	0. 82	0.33	580	10.09	4.24				
90	6. 10	658	161	1300	90	24.10	0.81	0.33	579	10.09	4.24				
120	8.13	605	177	1340	120	32.13	0.81	0.34	58 5	10.09	4.24				
150	10. 16	613			150	40.16	0.87	0.36	563	10.08	4.23				
180	12.19			1460	I80	48.19	0.85	0.36	575	10.08	4. 23				
210	14.23	482	140	1550	210	56. 23	0.86	0.35	564	10.06	4.23				
240	16.26			1720	240	6426	1.02	0.43	664	10.07	4.22				
270	18.29	373	108	1760	270	72. 29	1.01	0.45	676	10.06	4.21				
300	20. 32	337	95.3	1810	300	80. 32	0.95	0.43	605	10.07	4.21				
330	22. 35	304	85.2	1860	330	68.35	0.97	0.44	617	10.07	4.21				
360	24. 39	267	73.4	1900	360	96. 39	0. 97	0.44	608	10.07	4.21				
390	26.42	242	66. 6	1950	390	104.42	0. 98	0.46	617	10.07	4.21				
420	28.45	237	64.4	1980	420	112.45	1.04	0.53	606	10.06	4.20				
450	30.48	222	58.4	1910	450	120. 48	1.24	0.75	597	10.05	4.17				
480	32. 52	217	57.3	2080	480	126. 52	2.09	1.72	591	9. 98	4.05				
510	3455	188	49.6	2090	510	136.55	4. 24	4. 22	626	9. 80	3.70				
540	36. 58	189	48.4	2020	540	144. 58	7.74	8.72	626	9.44	2.98				
570	38.61	175	45. 5	2080	570	152.61	12.4	15.4	572	8.94	1.63				
					600	160.65	21. 2	27.1	547	8.10	- 0. 05				
					630	168.68	32.1	38.6	511	6. 88	- 2. 43				
					660	176.71	38.1	40. 3	490	5.83	- 3. 78				
					690	18474	42.1	39.8	496	5.21	- 3. 90				
					720	192.77	45.1	38.3	489	4. 77	- 3. 70				
					750	200.81	48. 4	36.5	482	4.38	- 3. 36				
					780	208.64	49.6	35	490	4. 10	- 3. 02				
					810	216.87	54. 2	349	516	3.74	- 2.86				
					840	224. 90	55.6	32.4	496	3.37	- 2. 59				
					870	232.94	59.2	31.7	514	3.06	- 2. 26				
					900	240.97	61.2	29. 7	496	2.71	- 1. 99				
					930	249.00	62.7	28.6	507	2.49	- 1.67				
								fubtotolo			44 94				

Subtotals	243. 92	44. 24
Total		286.16
Resin Capacity (meq/mL)		0.93

Table A.5. - Regeneration # 3 data.

i

Table A.6. - Exhaustion #4 data

Elapsed			- Concentralk)fi	Elepsed	Bed			Concei	ntration	
Time (min)	Volumea	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	Time (min)	Volumes	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	Ca (sum meq)	Mg (sum meq)
0	0	2.54	2.46	2410	0	0	78	20.1	471		
30	2.03	1.76	0.22	9.8	30	8.03	0.91	0. 16	561	10.08	4.27
60	4.06	741	187	1340	60	16.06	0. 99	0. 18	577	10.07	4.27
90	6. 10	739	18.3	1370	90	24.10	0. 98	0. 16	566	10.07	4. 27
120	8.13	662	166	1550	120	32.13	0. 99	0.18	562	10.07	4.27
150	10.16	520	120	1720	150	40.16	I. 02	0.18	565	10.06	4.27
180	12.19	504	116	1760	180	48.19	1	0.17	571	10.06	4. 27
210	14.23	459	103	1880	210	56.23	1	0.16	569	10.06	4. 27
240	16.26	413	89.7	1910	240	6426	I. 06	0. 19	579	10.06	4.27
270	18.29	363	74.9	1930	270	72. 29	1. 06	0.21	576	10.06	4. 26
300	20. 32	310	61.3	1880	300	80. 32	I. 08	0. 19	577	10.06	4. 26
330	22.35	288	54.3	1940	330	86 . 35	1. 05	0. 17	567	10.06	4. 27
360	24. 39	275	50.4	2020	360	96. 39	1.08	0.2	565	10.06	4.27
390	26.42	248	44. 5	2010	390	10442	1.12	0.2	570	10.05	4. 26
420	28.45	231	40.5	2050	420	112.45	1.22	0. 28	558	10.04	4. 25
450	30.48	218	36.9	2020	450	120. 48	1.51	0.47	559	10.02	4. 23
480	32. 52	206	33.8	2020	480	128. 52	2.42	1.05	567	9.94	4.15
510	34. 55	195	31.4	2030	510	136. 55	4.85	2.64	547	9.74	3.93
540	36. 58	179	28	1970	540	144. 58	9.03	5.66	567	9. 33	3.45
					570	152.61	17	11.4	554	8.57	2.56
					600	160.65	33.7	22.7	516	7.04	0.81
					630	168.68	49. 8	30.4	482	5.00	- 1. 14
					660	176.71	58.6	30.8	467	3.45	- 1. 97
					690	16474	63. 7	29. 2	468	2.59	- 1. 84
					720	192.77	65. 9	27.7	473	2.14	- 1. 53
					750	200. 81	67.9	26.3	487	1.86	- 1. 23
					780	208.84	70.2	24.8	463	1.61	- 0. 93
					810	216.67	72.2	24.1	482	1.34	- 0. 71
					840	224. 90	73.6	23.3	481	1.13	- 0. 55
					870	232. 94	74.6	22.6	483	0. 98	- 0. 40
					900	240. 97	75.5	22.1	486	0.86	- 0. 26
					930	249. 00	76.4	21.7	485	0.75	- 0. 18
					960	257.03	79.5	21.9	496	0. 50	- 0. 16
					990	265.06	79. 3	21.6	498	0. 32	- 0. 15
					1020	273.10	77.6	20.9	465	0. 43	- 0. 05
								Subtotals Tolal		218.48	67. 74

Total286.22Resin Capacity (meq/mL)0.92

+

APPENDIX B

FilmTec BW-30 Element Test Data

Filmtec BW-30 Element Test Data

Date	Time	Elapsed Time (hours)	Feed (L/min)	Flowrate Reject (L/min)	Permeate (L/min)	Feed (uS/cm)	Conduc Interstage (uS/cm)	tlivity Reject (uS/cm)	Permeate (uS/cm)	Feed (kPa)	Pressure interstage (kPa)	Reject (kPa)	Raw Feed	RO Feed	Reject	Raw Feed (deg C)	Temperature RO Feed - {deg C}	Amblent (deg C)	Turbidity Filter Effl. (ntv)
					16 8	1488	2598	5489	12 0	1224	1100	980	6.2	7.0	69	25 1	24 9	-	0 044
06/07/93 06/07/93	11 47 14 00	12	211 212	57 59	16 9	1489	3078	5489	130	1223	1100	980	81	70	6.0	25 4	25 4		0 034
06/07/93	15 30	49	21 1	57	17 0	1490	3128	5279 5799	13.0 14.0	1224	1102 1102	966 986	8.1 8.1	70 69	58 58	25 5 25 6	25 7 25 8	•	0 033 0 032
06/07/93	16 00	54	20.9 22.7	57 57	17 Q 18 5	1491 1544	3138 3338	5/99 6449	17 2	1342	1201	1072	8.2	69	54	26 0	25 8		0 029
06/06/93 06/06/93	09 00 11 00	13 2 15 2	22.7	57	18.5	1532	3358	6549	16.3	1342	1201	1071	8.3	70	53	26 1	26.0	-	0 027
06/08/93	14 00	18 2	22 5	57	16.1	1527	3328	6449	15.7 15.8	1271 1269	1137 1135	1013	6.2 8.2	6.9 6 9	5.3 5.4	26.9 27 4	273 27.8		0 027 0 027
06/08/93	16 00	20 2	22 7	57 57	18.3 18.2	1530 1557	3328 3418	6429 6509	16.6	1203	1139	1015	8.3	7.0	54	27.3	27 3		0 025
06/09/93 06/09/93	09-30 11:00	24 2 25 7	22.7 22.7	57	18.4	1552	3428	6579	16.3	1269	1135	1010	8.2	7.0	5.4	27.8	28 1		0 024
06/09/93	16:30	30 2	22 8	5.8	18.4	1550	3366	6459 6479	15.8 15.5	1237 1237	1103 1102	977 977	8.1 8.1	7.0 7.0	5.5 5.6	28.5 28.9			0.027 0.023
05/09/93	17:30	312	23.1 22.7	5.8 5.8	18.5 16 2	1559	3398 3408	6429	16.4	1239	1105	981	6,2	7.0	5.5	28.9	26.8		0 024
06/10/93 06/10/93	08.30	35 G 37 G	22.8	5.8	16.4	1550	3408	6499	16 2	1239	1103	978	82	7.0	5.4	29.0			0.024
06/10/93	14 00	41.1	22 8	5.8	18 9	1556	3428	6569 6519	15.5 15.4	1234 1232	1096 1096	970 968	8,1 8,1	7.0	54 5.4	29.9 30.2			0 024 0 024
06/10/93	16 00	43 1	22.9	5.8 5.8	19 0 18 7	1560 1544	3438 3378	6529	16.1	1237	1099	971	8.2	7.0	5.7	29.2		30 4	0.024
06/11/93 06/11/93	10-16 13-00	48.4 51 1	22 9 23 2	58	19.1	1549	3408	6599	15.9	1232	1092	964	8.2	7.0	5.7	29.9	30 4	35 B	0 024
06/11/93	15 00	53 1	23.3	58	19.2	1550	3408	6619	15.9	1231	1090	962 962	8.2 6.2	7.0 7 0	5.7 5.7	30 2 30 4		365 385	
06/11/93	16 46	54 9	23.7	5.7	19.1 16.8	1557 1523	3428 3358	6669 6739	16.2 16, i	1231 1191	1090 1053	926	6.2	7.0	6.7	29 1			0.033
06/14/93 06/14/93	10 30 13 00	58.9 61.4	22 7 22 7	5.8 5.7	18.4	1529	3326	6409	16.3	1139	1008	884	8.2	7.0	6.4	30.1	30.8	34.5	
06/14/93	14 30	62 9	22.7	5.7	18.7	1530	3358	6489	16.2	1136	1002	879	8.2	7.0	6.4	30.5		365	
06/14/93	16 00	64.4	22 7	57	18.8	1538	3378 3368	6509 6519	16.9 17.1	1139 1151	1002 1017	680 692	8.2 8.4	7.0 7.0	6.5 6.0	30.8 29.1		35.0 28.0	
06/15/93 06/15/93	11 00 14 00	67.7 70.7	22.7 22.7	5.7 5.7	18.5 18.4	1547 1552	3408	6579	16.6	1121	989	864	8.3	71	60	30.0	30.8	35.0	0.025
06/15/93	16.00	72.7	22 9	5.7	18.7	1559	3398	6509	16.0	1119	985		8.3	7.0	63	30.1		36 0	
06/16/93	11 30	78 8	22 7	58	18.5	1529 1530	3328 3318	6369	17.0 16.7	1133 1133	995 995		6.2 6.2	7.0 7.0	5.8 5.8	29.0 29.7		28 5 32 0	
06/16/93 06/16/93	14 00 16 30	81 3 83.6	22.7 22 6	5.8 5.8	18.7 18.6	1540	3348	5859	17.0	1132	995	869	8.2	7.0	5.8	30.1	306	30.0	0.023
06/17/93	14 00	90.6	22.7	5.6	18.4	1536	3298	6219		1136	1000		6.3	7.0	7.3	29.0		32 0 31 5	
06/17/93	16 00	92.8	22.6	57	18 9	1552 1562	3318 3428	6089 6619	12.0 17.4	1135 1139		681 686	8 3 8,4	7.0 7.0	7.3 6.5	29.4 28.5		28.1	
06/18/93 06/18/93	09 30 11 30	101.5 103.5	22.4 22.8	5.6 5.8	18.1 16.4	1554	3408	6659		1135		880	8.4	7.0	6.4	28.9	29 6	34 1	0.033
06/18/93	14 00	105.0	23.2		19.0	1562	3448	6739	16.8	1131	997 994	875 872	8.3 8.3	7.0 7.0	64	296 30.3		36.0 37.0	
06/18/93	17.00	109.0	23.4	5.7	19.0 18.5	1569 1555	3478 3388	6849 6329	17.1 12.5	1129 1202	1066		6.3	7.0	6.7 7.5	28.9		210	
06/21/93 06/21/93	09.00 11:00	113.2 115.2	22 7 23.0		18.7	1535	3458	6649	16.2	1200	1063	943		7.0	7,4	29.1	29,4	26.0	0 035
06/22/93	10.30	124.3	22.7	5.9	18.4	1541	3318	6229	18.2	1231	1093		8.4	7.0	7.5	27.5		20.0 26 0	
06/22/93	13 00	126.8	22.7	5.9	18.4	1536 1530	3308 3308	6309 6299	15.9	1227	1088		8.4 8.4	7,0 7,0	7.4 7.2	27.9 28.2		28.5	
06/22/93 06/22/93	14.30 16.00	128 3 129.6	23.4 23.4	5.9 5.9		1536		6299		1226	1089	956	8.4	7.0	7.2	28.4	28.9	30 0	0.025
06/23/93	08:30	135.4	22.8		18,1	1558	3378	6299		1221	1083	. 954 918	8.5 8.4	7.0	7.6			19.0 29.0	
06/23/93	12.00	138.9	22.8	5.9		1551 1551	3308 3328	6209 6249	· 16.1 15.8	1183 1158	,		8.4	7.0	7.4	28.5 29.0		33.0	
06/23/93 06/23/93	14.00 15:30	140,9 142,4	22.7 22.7	5.9 5.8		1552		6229		1155	1020		8.4	70	7.4	29,5	30.4	36 0	
06/24/93	09.00	147.6	22.7	5.9	18.0	1539	3268	6089		1157	1023 1020		8.4 8.4	7.0 7.0	7.6 7.5	29.0 29.2		22.0 28 0	
06/24/93	10 30	149 1	22.8			1535 1540		6109 6189		1156 1150				7.0	7.5	30.5		360	
06/24/93 06/24/93	14:30 16:00	153.1 154.0	23.6 22 9			1540		6059	15.9	1113	980	851	8.3	7.1	7.4	31.1	32.1	40 0	0.024
06/25/93	08.00	158.4	22.7	5.9		1566		6199		1151		885 858	8.4 6.4	7.0	7.6 7.5	29 7 30.2		21 C 32.0	
06/25/93	11:00	161.4	23.1	5.9		1548 1556		6199 6289		1121	979			7.1 7.0	7.5			39 0	
06/25/93 06/28/93	13.30 09:00	163.9 179.3	23.0 22.7	5.9 5.9		1551	3178	3629	15.7	1137	999	871	8.3	70	7.6	30 1	30 1	23.0	0.041
06/28/93	11:30	181,8	22,6	5.9	18.3	1550		6469		1092			8.3	70	7,4	30.8		28.0	
06/28/93	14:30	184.8	22.8	5.9		1555 1559		6389 6219		1087	950 933			7.1 7.0	7.4 7 3	31.5 31.9		35.0 35.0	
06/28/93 06/29/93	18-00 11-30	156,3 190,0	22.7 22.5	5.9 5.9		1537		5509		1122				71	7.5			31.0	0.033
06/29/93	13.30	192.0	22.6	59	18.2	1542	3278	5789	17.5	1092				7.0	7.3			34 5	
06/29/93	15:30	194.0	22 8	5.9		1547	3268 3278	6259 8259		1091	955 955			7.0 7.0	7.3 7.3			35.0 34 0	
06/29/93 06/30/93	16.00 08.30	194.5 201.1	22.8 22.5	5.9 5.9		1549 1559		8539		1158	1018	685	85	70	7.4	29.1	28.7	20.0	0.028
06/30/93	10 30	203.1	22.5			1543	3278	6329	17.9	1126					7.3			25.0	
06/30/93	14 00	206.6	22.6	63		1543		6079 5979	17.0	1081			8.5 8.5		7.3 7,3			35.0 35.0	
06/30/93 07/01/93	16:00 09:00	206.6 213.0	22.6 23 2	63 63		1548		6069		1165					7.4			22.0	
07/01/93	14:30	218.5	23.2			1529	3198	6089	16.9	1073					7,3			34.0	
07/02/93	09 00	226.4	23.4	63	18.2	1547		6149		1144				7.0 7.0	7.5 7.3			21 0	
07/02/93	11 OC	228 4	22.7	57	17 0	1538	3158	5939	10.9	129	900		33			292	. 24.3	20.0	

Filmtec BW-30 Element Test Data - Continued

Date	i stim	Elapsed Time (nours)	Feed (L/min)	Flowrate - Reject (L/mim)	Permeate (L/min)	Feed (uS/om)	interstage (uS/cm)	Con Reject (uS/cm)	ductivity Permeate (uS/cm)	Feed (kPa)	Pressure - Interstage (kPa)	Raject (kPa)	Raw Feed	RO Feed	Reject	Raw Feed (deg C)	Temperature RO Feed (deg C)	Amblent (deg C)	Turbidity Filter Effl. (ntu)
07/02/93	13 30	230 9	22 7	57	17 0	1537	3198	6029	17 0	1108	965	822	8.5	70	73	29 7	30 3	32 0	0 026
07/02/93	16 00	233 4	22 7	57	17 0	1540	3168	5949 6059	173 129	1095 1179	954 1036	812 896	6.5 6.7	70 70	73	302 269	30 8 26 9	32 0 23 0	0 029 0.034
07/06/93 07/06/93	10 00 11 30	238 4 239 9	22 7 22 7	57 57	17 0 17 0	1524 1524	3178 3188	6099	12 9	11/9	1036	890 868	6.7 6.7	6.9	7.3	20 9	28 9	230	0.034
07/06/93	15 00	243 4	22 8	57	17 0	1524	3218	6019	16 7	1100	962	825	8.7	70	7 2	28 9	29 6	34.0	0 029
07/06/93	16 00	244 4	22 7	57	17 0	1528	3198	6039	16 3	1090	950	811 000	8.8	70	72	30.9	311	34.0	0 028
07/07/93 07/07/93	09.00 11.00	245 4 247 4	22.7 22.7	57 57	17 0 17 0	1532 1529	3198 3178	6009 5969	1 8 .2 15 6	1171	1025	882 877	86 86	7.0 7.0	76 76	25 0 27 7	26 2 27 7	210 230	0.030
07/07/93	13 30	249 9	22.7	57	17 0	1517	3088	5819	15.6	1122	979	834	8.6	70	74	28 3	28 9	32 0	0 028
07/07/93	16 30	252 9	22.7	57	17 0	1521	3128	5899	15 7	1102	960	817	8.6	7.0	74	29 1	29 9	34 5	0.026
07/08/93	09 00	256 6 258 1	22.7 22.7	57 57	17 0 17 0	1537 1531	3128 3178	5749 5979	16 5 16 0	1150 1135	1005 991	960 647	8.6 8.6	70 7.0	74	28 2 28 4	28 1 28 5	22 O 25 O	0 028 0 028
07/08/93 07/08/93	10 30 15 00	250 1	22 7	57	17 0	1523	3128	5889	15.9	1089	948	805	8.6	70	74	30 4	30 4	33 0	0 027
07/08/93	18 30	264 1	22 7	57	17 0	1521	3148	5959	15.9	1068	927	785	8.6	70	74	30 4	31 1	33 0	0 027
07/09/93	09 30	271 5	22.7	57	17.0 15 9	1540 1525	3188 3148	5969 5939	15.9 15.8	1147	1000 974	855 831	8.5 6.6	7.1	76	28 5 28 7	28 2 28 0	200 280	0 027 0 026
07/09/93 07/09/93	11 30 13 30	273 5 275 5	22 7 22 8	57 57	17 0	1525	3138	5969	15 8	1100	957	815	8.6	7.0	74	29 2	29.6	33 5	0 026
07/09/93	15 00	277 0	22 5	56	17 0	1522	3178	6029	16.1	1064	926	788	8.6	71	74	30 2	31.0	35 G	0 026
07/12/93	15 00	288 5	22 7	57	17 0 17 0	1531 1537	2668 3178	5619 5839	10.8 10.9	1206	1065 1044	924 908	8.7 8.7	7,1	73	293 297	29 8 30 2	32 0	0 042 0 045
07/12/93 07/13/93	16 00 09 30	289 5 298 7	22 7 22 7	57	17.0	1538	3199	5150	18.4	1283	1139	999	8.7	70	74	237	27 3	32 0 17 0	0 032
07/13/93	11 00	300 2	22 7	57	17 0	1515	3195	5910	20.6	1282	1138	999	8.7	7.0	74	276	27.5	210	0 031
07/13/93	15 00	304 2	22 7	57	17.0	1500 1506	3153 3153	5970 5980	20.9 21.1	1236 1236	1094	952	6.7	7.0	72	28 3	28 7	30 0	0 029
07/13/93 07/14/93	16 00 09 00	305 2 307 2	23.2 22 7	5.7 57	17.0 17.0	1505	2988	5390	20.0	1382	1094 1234	950 1087	6,7 8.7	70 70	73	28 4 26 8	28 8 25 4	301 170	0 030 0 028
07/14/93	10 30	308 7	22 7	57	17 0	1515	3181	6040	20.9	1291	1146	1002	8.7	69	7.4	26 9	26 8	210	0 027
07/14/93	11 30	309 7	22 7	57	17.0	1509 1507	3178 3183	6040 5980	20.8 21.0	1290	1144	1000	8.7	7.0	74	27 1	27 1	23 0	0 027
07/15/93 07/15/93	09 30 11 30	321 9 323 9	22 7 23.1	57 57	17 0 17 3	1507	3179	6010	20.7	1288 1284	1144 1139	1001 995	8.6 8.8	70 70	75	27 1 27 4	26 9 27 6	20 Q 26 Q	0.027
07/15/93	13 30	325 9	22 8	56	17 0	1496	3256	6020	20.6	1243	1102	963	88	70	74	27 6	28 2	29.5	0 027
07/15/93	15 30	327 9	22 6	56	17 0	1498	3178	6020 6050	21.0	1223	1083	946	65	7.0	72	28 3	26 9	310	0 027
07/16/93 07/16/93	08 30 10 30	332 7 334 7	22 9 22 8	57 56	17 0 17 0	1503 1501	3174 3170	5950 5930	21.4 21.1	1282 1282	1137 1137	993 993	87 8.7	7.0 7.0	75	27 3 27 1	273 269	16 0 18 0	0 027 0 027
07/16/93	13 30	337 7	22 8	56	17 0	1490	3156	5940	20.6	1267	1123	981	88	7.0	73	27 4	27 4	25 0	0 026
07/16/93	15 30	339 7	23 1	57	17 2	1460	3135	5820	20.6	1252	1108	962	8.8	70	72	27 7	28.1	29 0	0 026
07/19/93 07/19/93	11 30 13 30	343 7 345 7	22 5 22 6	57 57	17 0 17 0	1454 1466	3093 3139	5200 6060	13.2 16.7	1311 1281	1166 1139	1022 1000	8.2 8.2	70	74	24 3 25 1	24 5 25 6	245 300	0 046 0 035
07/19/93	13.30	346 2	22.7	57	17 0	1470	3156	5970	17.8	1259	1118	978	6.1	6.9	73	25 7	264	31.0	0.033
07/20/73	09.00	354 6	23 0	57	17.3	1515	3209	6000	18.9	1318	1168	1022	80	6.9	75	27 9	26 1	18 0	0.032
07/20/73 07/20/73	11.30	357 1 359 1	22.7 22.7	57 57	17 0 17.0	1486 1479	3173 3157	5900 5920	19,9 19,5	1209 1188	1065 1046	923 905	61 61	6.9 6 9	7.5	28 0 28 3	28 0 28 7	23 0 28 5	0 032
07/20/73	13 30 16 00	3616	22.7	57	17.0	1494	3197	6080	20.0	1146	1007	867	8.1	6,9	73	29 5	30.0	20 5	0.029
07/21/93	11 30	370 3	22 8	57	17 0	1477	3144	5910	18.0	1324	1176	1028	80	69	75	24 5	24.8	22 0	0 028
07/21/93 07/21/93	14 00	372 8	23 0	57 57	17.2 17 0	1472 1472	3148 3145	6000 5990	17.9 18,1	1320 1294	1172 1149	1024 1004	8 2 8 2	6.9 6 9	74	25 0 25 3	25 3 25 7	26 0	0 028 0 028
07/21/93	15 30 16 30	374 3 375 3	23 0 22 9	5.7	17.0	1478	3139	5960	18.5	1277	1132	987	82	6.9	72	25 5	260	280 280	0 028
07/22/93	09 30	381 6	22.8	5.7	17.0	1475	3155	6030	18.0	1398	1249	1101	8.3	6.9	7.5	23 0	23 1	19 0	0 028
07/22/93	11 00	383 1	22 7	57	17 0 17 0	1473 1501	3155 3193	6050 6010	18.0 19.6	1387	1238 1097	1090	83	6.9	74	23.0	23 2	215	0 028
07/23/93 07/23/93	11 00 13 00	389.8 391.8	23 0 23 2	5.7 5.7	17.0	1495	3194	6030	19.4	1242 1240	1097	952 949	81	7.0 6.9	75	274 276	27.3 27.7	22 5 26 0	0.029
07/23/93	15 30	394 3	22 7	5.7	17.0	1495	3167	5970	19.4	1202	1060	917	6 1	6.9	7.3	28 0	28.5	30 5	0.029
07/23/93	16 30	395 3	22.7	5.7	17.0	1499	3150	6000 5240	19.5 13.3	1198	1057	913	81	69	73	28 2	28.6	30 5	0 028
07/26/93 07/26/93	11 30	396.7 401.2	22.7 22.5	5.7 5.7	17.0 17.0	1340 1350	2629 2950	5660	18.0	1258 1221	1107 1082	957 945	82 82	7.0 69	74	25 3 26 3	25 4 26 7	24 0 30 0	0 049 0 041
07/27/93	15 00 11 00	410.0	22.5	5.7	17.0	1332	2900	5420	17.1	1308	1160	1013	83	6.9	74	24.4	24 5	23 0	0.033
07/27/93	13 00	412.0	22 7	5.7	17.0	1330	2908	5510	17.1	1273	1127	984	8.3	6.9	74	25 3	25.6	27 0	0.033
07/27/93	16 00	415.0	22.6	57	17.0	1330 1445	2896 3173	5500 6010	17.6 19.0	1230	1096	953	8.3	6.9	73	26 1	26.6	28 5	0 034
07/28/93 07/28/93	14.00 15 30	417.8 419.3	22.9 22.9	5.7 5.7	170 170	1443	3105	5740	19.7	1179 1179	1037 1036	696 895	81	70 69	75 73	28 4 28 4	28.6 28.9	280 300	0.031 0.030
07/28/93	16 30	420 3	22 8	57	17.0	1448	3111	5770	19.5	1170	1027	890	82	70	73	286	29.1	310	0 030
07/29/93	11 00	429 4	22 8	5.7	17.0	1437	3111 3108	5870 5890	18.5 18.4	1253	1109	967	82	70	74	26 4	26.6	24 5	0 033
07/29/93 07/29/93	13 00 15 30	431 4 433 9	22 7 22 8	5.7 57	17 0 17 0	1437 1434	3108	5880	18.3	1226 1204	1085 1063	946 975	83 83	6.9 6 9	74	26 9 27.5	27 2 28 1	295 330	0 030 0 029
07/29/93	15 30	435.4	22 7	57	17.0	1441	3102	5850	18.8	1187	1045	906	83	6.9	7.3	27.5	28 5	330	0 029
07/30/93	11 30	444.8	22 8	57	16 9	1470	3151 3073	5860 5840	18.9 18.8	1187	1046	905	82	70	74	27 9	28 4	30.0	0 035
07/30/93 07/30/93	13 00	446.3 448 3	22 7 22 7	5.7 57	17 0 17.0	1475 1472	3073	5840	18.9	1178 1150	1037 1012	854 872	82 82	7.0 7.0	74	28 3 28 9	29 0 29 9	35 0 37 0	0 030 0 030
07/30/93	15 00 16 30	448 3	22 7	57	17.0	1482	3158	5850	19 1	1130	1005	865	82	70	73	20 9 29 3	29.9	370	0 030
08/02/93	10 30	454 9	22 4	57	17 0	1009	2324	3949	97	1138	998	856	81	70	75	29 2	29 7	32 0	0.049

Date	Time	Elepsed Time (hours)	Feed (L/min)	 Flowrate Reject (L/min) 	Permeate (L/min)	Feed (uS/cm)	interstage (uS/cm)	tivity Reject (uS/cm)	Permeate (uS/cm)	Feed (kPa)	Pressure Interstage (kPa)	Reject (kPa)	Raw Feed	RO Feed	Reject	Raw Feed (deg C)	Temperature RO Feed (deg C)	Ambient (deg C)	Turbidity Filter Effl. (ntu)
08/02/93	11.30	455 9	22 2	57	17 0	1020	2345	3742	11.2	1106	971	837	8.1	7.0	73	29 5	30 2	360	0 035
08/02/93	13 30	457 9	22 7	57	17.0	1025	2350	4520	11 5	1083	948 946	513 610	8.1 8.1	7.0 7 0	74 73	301 307	31.1 31.6	360 360	0 035 0 036
08/02/93 08/03/93	16 00	460 4	22.8 22.9	57 57	17.0 17.0	1030 993	2366 2000	4160 4260	135 139	1083 1125	961	833	6.1	70	74	29 2	30.0	370	0 033
08/03/93	14 00 16 00	465 9 467 9	22 9	57	17.0	996	2270	4340	15 3	1106	964	820	8.2	69	73	30 0	30.6	360	0 032
08/04/93	11 00	473 6	22 9	57	170	1375	2930 2969	4790 4670	18 2 18 0	1142	1002 986	860 846	81	7.1	74	29 9 30 3	306 313	320 375	0.040
08/04/93 08/04/93	13 30 15 00	476 1 477 6	22 B 22 9	57 57	17 0 17.0	1378 1380	2971	4490	18.5	1111	974	835	8.1	7.0	74	30 8	318	36.0	0 033
08/04/93	16 00	478 6	22 9	57	17.0	1386	2980	4610 4560	19 1 17 6	1111	974 972	835 832	8 1 8 1	7.0 7.1	74	310 304	379 315	365 360	0.033 0.035
08/05/93 08/05/93	14 30 15 30	484.1 485.1	22 9 22 9	57	17.0 17.0	1347 1359	2913 2921	4000	19.4	1110	972	833	8.1	7.0	7.3	308	316	39.0	0.032
08/06/92	08.30	494.8	22.7	58	17.0	1453	3135	5230	19.6	1185	1044	900	8.0	7.0	7,5	29.6	29 7	24 0	0.033 0.036
08/06/92	10 30	496.8	22.9 22.8	57 57	17.0	1455 1467	3124 3109	5260 4770	20.0 19.2	1175 1127	1034 988	892 846	6.1 6.1	7.0 7.0	7.4	29.7 30 7	30 1 31.6	31.0 39.0	0.038
08/06/92 08/06/92	14 00 16.00	500.3 502.3	22.8	57	17.0	1468	3129	5720	19.7	1112	975	836	61	7.0	7.0	31.5	32 1	36.0	0 031
08/09/93	09 30	508.9	22.7	57	17.0	1429	3078 3074	5780 5820	17.7 18.6	1242	1097 1088	952 944	81 82	7.0 7.0	7,4	27.1 27.2	27 3 27.7	25.0 29.5	0.035 0.030
08/09/93 08/09/93	11:30 14:30	510.9 513.9	22.6 22.7	57 57	17 0 17.0	1429 1438	3085	5860	17.8	1203	1062	920	83	7.1	7.5	27 8	28.6	34.0	0.030
08/09/93	16 00	515.4	22.4	57	17.0	1443	3075	5810	18.1	1 191 1219	1051 1084	908 947	82 80	71 7.0	74	28 3 30.1	29.1 30.8	34.5 35.0	0.030
08/10/93 08/10/93	14 30	520.0 521 0	22.3 22.2	5.7 5.7	17.0 17.0	1500 1515	3211 3190	5810 5640	14.3 14.9	1219	1037	940	80	7.1	7.5	30.3	30.8	35.0	0.047
08/11/93	15 30 09:14	530.0	22.0	5.7	17.0	1470	3189	5340	15.2	1350	1210	1072	8.1	70	7.5	27 7	26.3	22.0	0.037
08/11/93	14 00	534 8	22.6	5.7	17.0 17.0	1479 1481	3147 3148	5910 5810	17.6 18.7	1227 1221	1089 1084	950 949	8.1 8.2	7.1 7.0	7.6 75	28.8	29.6 29.7	35.5 35.0	0.033 0.032
08/11/93 08/11/93	15 00 16 00	535 8 536 8	22.7 22.6	5.7 57	17.0	1488	3170	5960	18.7	1214	1078	942	8.2	7 1	7.5	30.0	30 0	35.0	0.031
08/12/93	12 00	548.5	22.7	5.7	17.0	1493	3166	5820	19.5 19.4	1237 1230	1096 1089	956 947	6.0 6.0	7.0	7.6 7.5	28.8 28.9	29.2 29.4	29.0 31.0	0.044 0.036
08/12/93 08/12/93	13 30	550 G 551 5	22.7 22.6	5.7 5.7	17 0 17.0	1493 1490	3181 3167	5800 5690	19,4	1230	1059	930	. 8.1	7.0	7.5	20.5	29.9	31.0	0.033
08/12/93	15 00 16 00	552 5	22.0	57	17.0	1496	3175	5630	20.0	1206	1068	928	6.1	71	7.5	29.6	30 0	30.5	0 033
08/13/93 08/13/93	09 30	559.1	22 9	5.7 5.7	17.0 17.0	1464 1463	3155 3139	5830 5820	17.4 17.9	1371 1349	1224	1077 1057	8.0 81	7.0	75	25.4 25.6	25 3 25 6	21.0 22.0	0.037
08/13/93	11 30 14 00	561 1 563.6	22.7 22.7	5.7	17.0	1468	3147	5860	17.7	1319	1175	1029	8.1	7.0	7.5	26.1	26 3	26.0	0 032
08/13/93	16 00	565.6	22.7	5.7	17.0	1471	3124	5730 5720	17.8 11.9	1300 1340	1158 1200	1013 1058	8.1 8.2	70 7.0	7.5 7.6	26.5 23.6	26.9 24.1	29.0 29.0	0.031 0.073
08/16/93 08/16/93	14 00 15:00	569.7 570 7	22.6 22.4	5.7 5.7	17.0 17.0	1458 1470	3 102 3 152	5850	12.5	1341	1201	1061	8.2		7.5	23.6	24.4	28.0	0.042
08/16/93	16 00	5717	22.5	57	17.0	1479	3150	5940	16.6	1328	1189	1050	82		7.2		24.6	290	0.040
08/17/93 08/17/93	11 30	582.2	22.7 22.5	57 5.7	17.0 17.0	1468 1477	3171 3148	6090 5960	16,1 17,6	1361 1315	1218 1172	1073 1025	8.2 8.2	7.1 7.0	7.6 7.5	23.7 24.2	24 0 25.0	27.0 33 0	0.031
08/17/93	13 00 16,43	583.7 587.5	22.9	5.7	17.0	1484	3159	5920	18.0	1298	1156		8,3	7.0	7.4	25.1	26.0	33.0	0.033
08/16/93 08/18/93	13:00	591.0	22.9	5.7	17.0	1409 1394	3031 3005	5610 5630	19,7 19,9	1180 1156	1040	898 876	0.8 0.8		7.4	29.2 29.4	29 2 29 9	26.0 25.5	0.036 0.036
08/18/93	14.00 15.00	592.8 593.8	22.6 22.6	57 57	17.0 17.0	1404	3006	5460	20.1	1154	1016	874	8.0	6.9	7.4	29.7	30.3	27.0	0.036
08/18/93	16 00	594.8	22.7	57	17.0	1397	2999	5370	17.8	1150 1239	1011 1096	872 955	8.0 8.0	7,1 7 D	7.6 7.6	29.8 27.7	30 5 27.6	31.0 19.0	0.035
08/19/93	09.00 14:00	605.2 610.2	22.4 22.6	57 5.7	16.9 17.0	1457	3175 3112	6080 5750	20.2 19,7	1173	1033		6.0		7.6	29.0		34,0	0.034
08/19/93	16 00	612.2	22.7	57	17.0	1464	3125	5810	19.7	1159 1293	1020 1149		6.0 6.0		7.5 7.5		30.4 26 1	34.0 25.5	0.035 0.046
08/20/93 08/20/93	10 12	822.5	22.7	5.7	17.0 17.1	1424 1427	3072 3062	5780 5630	19.6 22,8	1293	1107	962	8.0		7.3		27 3	23.5	0.035
08/20/93	11 28 13 04	623.7 625.3	22.9 22.9	57	17.0	1418	3045	5440	19.5	1231	1090		8.1	8.9	7.3			33.0	0.033
08/20/93	15 16	627.5	22.6	5.7	17.0	1423	3048 2787	4980 5190	19.5 14.6	1211 1296	1071 1153	927 1009	81 80	6.9 6.9	7.4 7.5			33.5 18.0	0.032
08/23/93 08/23/93	08.30	633,8 835,8	22.5 22.5	57 57	17.0 17 0	1257 1257	2791	5410	14.5	1266	1128	989	80	6,8	75	26.0	26.2	27.0	0 048
06/23/93	12 30	637,8	22.5	5.7	17.0	1258	2778	5370	14.8	1228 1237	1090	953 955	8.1 8.1	5.6 7 0	7.6 7.3			34.0 13.5	0 036 0.029
08/24/93 08/24/93	07:00 09.00	656.6 658.6	22.5 22.9	5.7 5.7	17.0 17.0	1369 1460	2983 3155	5630 5750	25.7 22.1	1241	1101		8.1	6.9	7.3			21.0	0.041
08/24/93	11.00	660.6	22.6	57	17.0	1452	3133	5850	20 7	1208	1071	933	81	6.9	75			32.5	0.034
08/24/93	13.30	663.1	22.6	57	17.0	1453	3134 3162	5910 5830	20.1 22.5	1176	1041	906 923	8.1 8.0	6.9 7.0	7.5 7.3			36.0 30.0	0.045 0.037
08/25/93 08/25/93	11.00 12.00	671.0 672.0	22 7 22 7	5.7 57	17.0 17.0	1504 1508	3190	5840	22 7	1196	1055	908	8.1	70	7.3	28 1	28.7	33.0	0.040
08/25/93	13 30	673,5	22 7	57	17 0	1509	3182	5820	22.7	1181 1165	1039 1025		81 81	7.0 7.0	7.3 7.3			35.0 35.0	0 045 0 044
08/25/93 08/26/93	15.50	675.5 680.6	22 7 23.0	57 5.7	17 0 17.0	1512 1519	3189 3181	5780 5880	23.4 24 3	1189	1048		8.1	7.0	7.3			27.0	0.045
08/27/93	15.30 11.00	683.2	23.0	5.7	17.0	1446	3066	5650	17.1	1180	1037		81	7.0	70	29 3	29 5	27.0	0.036
08/27/93 08/27/93	12:00	684.2	22.8	57	17.0	1450 1451	3091 3091	5 680 5640	17.3 17.6	1166 1153	1025		8.1 8.0	7.0 7.0	7.0			20.7 29.0	0 036 0 037
08/27/93	13-30 16:00	685.7 688.2	22.9 22.6	57 57	17.0 17 0	1401	3118	5720	25.0	1136	998	658	80	6.9	7.0	30.2	30.8	33.0	0.038
08/30/93	10 00	695.0	22.5	5.7	17.0	1165	2561	4710	15.5 16,2	1263 1244	1120		81 81	69 69	70 7.0			23.0 27.0	0.058
08/30/93 08/30/93	11.30 13.00	696.5 698.0	22.6 22.7	5.7 5.7	17.0 17.0	1160 1169		4490 4420	16 1	1226	1086		8 1	69	7.0			31 5	0.054

		Elapsed		- Flowrate			· · · · · · Conduc	tivity			Pressure -		•••••		•••••		Temperature		Turbidity
		Time	feed	Reject (L/min)	Permeate (L/min)	feed (uS/cm)	Interstage (uS/cm)	Reject (uS/om)	Permeate (uS/om)	Feed (SPs)	Interstage (kPa)	Reject (kPa)	Raw Feed	RO Feed	Reject	Raw Feed (deg C)	RO Feed (deg C)	Ambient {deg C}	Filter Effi. (ntu)
Date	fime	(hour#)	(Umin)		•			5920	23.3	1210	1066	921	-			28 2	29 3	21.0	0 033
09/01/93 09/01/93	09 00 10 30	722 0 723 5	22.9 22.7	58 57	170 170	1500 1500	3206 3197	5820	23 3	1193	1052	910		7 2		28 3	28.6	26 0 33 0	0 039 0 038
09/01/93	13 00	726 0	22 9	57	17 0	1500	3158	5570	23 3	1175	1035	892 926		-	-	287 279	26 3 26 2	27 0	0 035
09/02/93	10 00	733 3	22 7	57 57	170 170	1502 1505	3254 3204	6150 5960	21.4 22.5	1210 1196	1068 1054	911		-	•	28 1	28 7	32 0	0 0 3 8
09/02/93 09/02/93	12 00 14 30	735 3 737 8	22.5 22.7	57	17.0	1503	3217	5970	20.9	1161	1019	877	•	68	•	28 9 29 1	29.9 29.4	35 0 26 0	0 042
09/07/93	11.30	738 4	22 8	58	170	1428	3067 3121	4970 5400	14.4 17 2	1178 1119	1037 982	830 834	-	70 6.9		30 5	31 2	360	0.083
09/07/93 09/07/93	14 00 15.00	740 9 741 9	22 6 22 8	57	17.0 17.0	1452 1458	3115	5740	19.8	1105	970	842	•	7.1	•	30 9	31.6 32.1	36.0	0 081 0.079
09/07/93	16 30	743 4	22.7	5.7	17.0	1463	3136	5770	20.1	1102	966 1052	891 908	•	7,1		31 4 26 6	32.1	36.1 33.0	0.079
09/08/93	11 30	749 6	22.5 22.7	5.7 5 7	17.0 17.0	1461 1463	3075 3133	5622 5700	19.6 19.8	1194 1170	1032	692		7,0		29 0	29 6	38.0	0.033
09/08/93	13 27 14 52	751.5 752 9	22.6	5.7	17.0	1465	3130	5230	19,9	1142	1006	867 866	•	70 7.0	:	29 4 29 7	30.5 30.8	39.0 39.0	0.033
09/08/93	15 40	753.7	22 B	57	17.0 17.0	1468 1468	3131 3145	4880 5880	20.2 20.6	1140 1186	1003 1045	903		7.0	-	28 3	29 0	34.2	0 034
09/09/93	11 00 13 00	761 8 763 8	22 6 22.9	5.7 5.7	17.0	1477	3134	5890	19.7	1145	1003	859	-	7.0	•	29.2 29.9	30.6 31.2	40.0 40.5	0 034 0 035
09/09/93	15 30	766 3	22.7	57	17,0	1482	3143	5770	19.9	1117	982 979	840 838		7.0 7.0	-	29.8	31.2	39.0	0.035
09/09/93	16 30	767.3	22 9	57 57	17.0 17.0	1486 1459	3148 3086	5730 5660	20.7 20.7	1165	1024	880	-	7.0		28 9	29 6	33.5	0.034
09/10/93 09/10/93	11 30 13 29	774.2 776.2	22.9 23.0	58	17.1	1463	3101	5680	20.0	1139	999	852	•	7.0	•	29.5 29.8	306 310	39.0 39.0	0.034 0.034
09/10/93	14 28	777.2	22.8	57	17.1	1465	3113 3124	5650 5770	21.7 21.9	1126 1113	966 975	842 833		6,9 7.0	-	30.3	31.5	39.0	0.035
09/10/93	15 30	778.2	22 9 22 6	57 57	17.0 17.0	1472 1456	3124	57/0	18.9	1410	1267	1121	-	7.0	-	24.7	24 7	19.0	0.048
09/13/93 09/13/93	11 00 12 00	785.2 786.2	22 5	5.7	17.0	1464	3139	5820	17.9	1414	1269	1124		7.0	•	24.8 25.0	24 7 25 1	22.0 25.0	0.048
09/13/93	13 03	767.3	22.6	57	17 1	1458	3143 3127	5750 4650	178 187	1402 1348	1257 1205	1110 1057		6 9 6.9		25.7	26 1	26.0	0 046
09/13/93 09/14/93	16 14	790 4 796.3	22.8 23.1	5.7 57	17 0 17.0	1458	3063	5740	17.0	1386	1239	1082	•	7.0		23 9	24 1	28.0	0.052
09/14/93	15 00 16 00	790.3	22.8	5.7	17.0	1455	3088	5750	17.8	1350	1203	1051	-	7.0 7.0	•	24.6 24.7	25 1 25 2	29.0 30.0	0.051 0.051
09/14/93	17 00	798 3	22.9	5.7	17.0 17.0	1458	3104 2988	5760 5600	18 5 19.0	1356 1296	1208 1146	1056 996		7.0		26 7	26.5	18 5	0.033
09/15/93 09/15/93	11 00 11 30	607.1 807.6	23.0 23.2	5.7 5.7	17.0	1376	3152	5550	18.9	1292	1145	992	•	6.9	•	26.8 27,0	26.6 27.1	19.5 25 0	0.034 0.031
09/15/93	13 54	810.0	22 9	57	17.0	1371	3138	5510	18.9	1274 1257	1126 1109	972 956	•	70 7.0		27.4	27.5	26.0	0.031
09/15/93	16 19	812.4	22.9	57 5.7	17.0 17.0	1373 1547	3129 3210	5410 5840		1342	1194	1042	-	7.0	•	25.0	25.0	19.5	0.034
09/16/93 09/16/93	14 00 14 30	818.1 818.6	22.6 22.6	57	17.0	1544	3210	5760	18.7	1343	1196	1044	•	7.0	•	25.0 25.0	24.9 24.9	19.5 19.5	0.033 0.035
09/16/93	15 30	819.6	23.0	57	17.0	1546	3210 3210	5890 5810	19.2 19.1	1346 1354	1198 1206	1046 1052	•	7.0 7.0		25.0	24.8	19 0	0.035
09/16/93 09/17/93	17 00	821 1 830.1	22.8 23.0	5.7 5.7	17.0 17.0	1547	2855	4750		1428	1275	1118		6.9	•	22 5	22 4	17.0 20.0	
09/17/93	10 26 11 30	831.2	23.0	5.7	17.0	1363	2646	3520		1421	1270	1115	•	6.9 7.0		22.5 23.1	22 5 23.2	200	0.033
09/17/93	16.00	835.7	22.8	5.7	17.0 17.0	1361 1360	2858 2858	5340 5260	16.8 16.9	1391 1392	1244 1244	1090 1090		6.9		23.2	23 2	21.0	
09/17/93 09/20/93	17.00 10.00	836.7 840.2	23.0 22.5	5.7 5.7	17.0	1241	2606	4420	11.9	1443	1293	1138	-	7.0	•	215	21 5 21.7	20.0 21.0	
09/20/93	11.00	841 2	22 7	57	17.0	1260	2672 2672	5000 4940		1434	1286 1253	1137 1106	-	7.0 7.0		22.0	22 3	24.0	0.071
09/20/93 09/21/93	12:00	842.2	22.3	5.7 5 7	17.0 17.0	1256 1450	2672	4940 5430		1295	1146	991	8.4	7.0	71		25.3	21.0	
09/21/93	11 30 13 30	849.1 851.1	22.8 22.9	57	17.0	1449	3010	5410		1275	1127	975 974	8.4 8.4		76		25 8 25 7	24.0 25.5	
09/21/93	14 30	852.1	22.6	5.7	17,0 17,0	1458 1452	2986 3000	5420 5440	20.0 19.3	1271 1252	1127 1105	974	8.5		7 6	5 26.2	26.4	26.0	0.035
09/21/93 09/22/93	16:30 10.00	854.1 861.8	22.9 22.4	57 5.7	17.0	1537	3220	5870	15.0	1290	1148	1006	8.3		76		25 1 25 2	15.0 18.5	
09/22/93	11.00	862.6	22.3	5.7	17.0	1532	3220	5890		1284	1148 1139	1005	8.3 8.4		7 6			21.0	
09/22/93 09/23/93	12.00	663.6	22.6	5.7 5.7	17.0 17.0	1530 1505	3220 3100	5820 5270	17.2 12.9	1311	1163	1005	8.4	7.1	7.1		24.6	30.5	
09/23/93	14.30 \$6:00	871.4 672.9	22 6 22.3	5.7	17.0	1517	3120	5240	14.9	1269	1127	985	8.5		77		25.4 25.5	31.0 31.0	
09/23/93	16.30	873.4	22.6	5.7	17.0	1520	3150 3160	5340 3690		1266 1395	1126 1243	984 1093	6.5 8.5		7 (24.0	28.0	0.040
09/24/93 09/24/93	09 20	662.3	23.4 22.6	57 57	\$7.7 17.0	1481	3090	5690		1244	1104	961	8.5	i 7.0	76		26 4	35.0	
09/24/93	14/35 15.21	887.6 868.3	22.5	57	17.0	1485	3100	5290		1223	1083	940	8 5		76		27 1 27 4	35.0 34.0	
09/24/93	16.11	889.2	22.7	57	17.1	1489	3110 3120	4290 5550		1216 1292	1076 1149	934 1004	8.5 8.6		7 3	7 257	26 1	31.0	0.054
09/27/93 09/27/93	11.00	890.7 891.7	22.4	57 5.7	17.0 17.0	1501	3120	5880	16.0	1272	1130	987	8.6	i 7.0	71			35.0 36.0	
09/27/93	12:00 12:30	892.2	22.6	57	17.0	1522	3160	5850		1249	1107 1058	967 907	6.6 8.5		71			39.0	0.055
09/27/93 09/29/93	15.12	894.9	22 8	57 57	17.0 17.0	1534 1523	3120 3150	5690 5600	18.7 15.5	1200	1058	926	8.3		71			29.0	
09/29/93	11 00 12 00	904.7 905.7	22.8 22.5	57	17.0	1525	3160	5670	16.8	1190	1051	909	5.3		71		28.6 29.1	32.5 34.5	
09/29/93	13 00	906.7	22.4	57	17.0	1530	3160 3180	5810 4200	14.5 17,1	1169 1150	1034	896 874	8.3 6 4		7 (8 27.1	29 9	36.0	0.050
09/29/93 09/30/93	15:00	908.7	22 7	57 57	17.0 17.0	1536 1151	3180	5690		1161	1025	884	8 3	7.0	70		29 2	34 5	
09/30/93	14.00 15.00	915.3 916.3	22.4 22.5	57	17 0	1560	3230	5950	16.9	1152	1015	876 866	a 4 8.4		71		29.7 30.0	35,5 35.0	0.039
09/30/93				67	17 0	1562	3240	5970	19.7	1139	1004	000	6.4	. 7.0					

1 1

1

Dale	lime	Elapsed Time (hours)	Feel (L/min)	- Flowrate Reject (1 Imin)	Permente (Umin)	Taad (uS/cm)	Conduc Interstage (uS/cm)	etivity Pejest (uS/cm)	Permente (uS/cm)	Faad (kPa)	Pressure interstage (kPa)	Reject (kPa)	Raw Feed	RO Feed	Reject	Raw Feed (deg C)	Temperature RO Feed (deg C)	Ambient (deg C)	Turbidity Filter Effi. (nlu)
				57	17 0	1516	3170	5810	20.3	1244	1001	958	84	7.0	76	27 0	27 0	28 0	0 031
10/01/93 10/01/93	09.00 16.15	926 2 933 4	22.5 27.5	57	170	1529	3160	5630	22 1	1151	1014	874	85	70	77	29 2	29 9	39 0	0 044
10/01/93	16 45	933 9	22 6	57	17 0	1530 1533	3160 3180	5710 5540	22 1 23 0	1151 1150	1014	875 874	8.5 65	7.0 7.0	11	29 3 29 5	30-0 30-1	370 361	0.043
10/01/93 10/05/93	17.15 13.30	934 4 941 4	22.8 22.4	57 57	17 0 17.0	1533	3180	5780	16.0	1257	1117	973	8.6	6.9	7.7	26 2	26.4	26 0	0 053
10/05/93	14 30	942.4	22 6	57	17 0	1531	3170	5790	18 5	1246	1105	962	8.6 5.7	69 69	76 7.6	26.5 26.8	26.7 27.1	270	0.053 0.064
10/05/93	15.30	943 4	22 5 22 4	57 57	17.0	1552 1539	3180 3190	5890 5850	15 B 17.3	1231 1227	1093 1087	950 945	87	70	7.6	20.0	27.2	27 5	0.044
10/05/93 10/06/93	17:00 10:00	944 9 946.7	23 2	57	17.0	1547	3200	5690	18.9	1355	1207	1050	8.5	7.0	7.6	23.8	23 7	24.5	0.054
10/06/93	16 00	952.7	23 0	57	17 0	1528	3180 3220	5030 5970	14.8 17.1	1324 1367	1177 1223	1026 1074	86 85	8.2 7 G	7.6	24 8 23 6	24.9 23 3	25.0 17.5	0 049 0 098
10/07/93 10/07/93	10.30 11-30	957 5 958 5	22 5 23 1	57 57	17 1 17 0	1541 1538	3210	5920		1358	1213	1066	8.5	6.6	7.5	23 7	23.6	20 0	0.044
10/07/93	17.00	964.0	23 2	57	17 0	1546	3140	5620		1312	1167	1018	8.5 8.5	6.9 6.6	7.6	24.9 25 0	24 9 25.0	24 G 23 G	0 059 0 057
10/07/93	17:30	964.5	23 4	57 57	17 0 17 1	1540	3200 3170	5810 5760		1312 1390	1167 1241	1016	8.5	6.9	7.6	23.4	23.0	17.0	0 026
10/08/93 10/08/93	09:55 10.48	966.1 967.0	22 9 23 0	57	17.0	1524	3170	5810	216	1379	1227	1072	85	6.9	76	23.4	23 2	16.0	0 025
10/08/93	15 00	971 2	23 2	57	17 0	1527 1524	3150 3160	5800 5770		1345 1330	1198 1184	1045 1033	85 85	6.8 6.8	7.6 7.6	23.9 24 6	23.9 24 2	23 5 25.5	0.024 0.024
10/08/93 10/11/93	16 30 12 00	972 7 977.4	22 6 22 2	57	17 0 17 0	1324	3070	5330		1400	1255	1105	86	6.9	7.5	21.8	22 2	21.0	0 062
10/11/93	12 30	977.9	22.3	5.7	17.0	1498	3110	5710		1425	1279 1247	1130	86 85	6.9 6.9	7.5 7.7	21.9 23.2	22.0 22.4	19.5 21.0	0.044
10/12/93	10.00	987.4	22.9	57	17.0 17.0	1539 1531	3140 3150	5420 5600		1400 1325	1247	1087	8.5	6.9	1.1	23.2	22.4	21.0	0.041
10/12/93 10/12/93	11.00 14:00	988 4 991 4	22.7 22.6	5.7 5.7	17.0	1526	3160	5670	19.1	1294	1151	1006	86	6.9	7.6	24 1	24.4	26 0	0 046
10/12/93	16.00	993.4	22.6	57	17.0	1533	3190 3240	5930 5980		1270 1241	1128 1094	985 945	86 84	6.9 6.9	7.6 7.6	24 8 26 0	25 1 26 1	28.0 24.0	0 051 0 042
10/13/93 10/13/93	11 00 12 00	996.7 997.7	22 9 22 9	57 57	17.0 17.0	1567 1567	3240	5900		1240	1094	944	84	6.9	7.6	26 1	26 2	26.0	0.045
10/14/93	12 00	1007.4	23 0	57	17.0	1577	3250	6060	21.2	1352	1202	1046	8.5		7.7	24.1	23.4	19.5	0.033
10/14/93	13 30	1009.4	22.9	5.7	17.0	1559 1563	3250 3230	6060 5930		1285 1269	1137 1124	986 976	8-5 8.5	6.9 6.9	7.7	24 6 24.9	24 7 25.2	25.5 26.0	0.026 0.026
10/14/93 10/15/93	16 00 10.00	1011 9 1022, 1	22.9 22.9	5.7 57	17.0 17.0	1495	3070	5650		1340	1189	1037	8.5	6.9	77	23.1	23.1	17,5	0.027
10/15/93	11 30	1023.6	22.8	57	17.0	1476	3060	5600		1338 1324	1189 1176	1036 1024	85 8.5	6.9 6 6	7.7 7.7	23 2 23 4	23 2 23.5	20.5 22 0	0.027 0.026
10/15/93 10/15/93	13.30 15:00	1025 8	22.9 22.8	57 5.7	17.0 17.0	1475 1481	3070 3060	5640 5640		1306	1160	1009	85		7.7	23.8	23.9	22 0	0.026
10/18/93	11 00	1032 6	22.3	5.7	17.0	1497	3130	5710	18.5	1501	1349	1195	8.7	6.8	7.6	19.0	19.0	17.0	0 045
10/18/93	12.00	1033.0	22 5	57	17.0	1504	3130 3180	5720 5750		1492 1318	1341 1168	1186 1015	6.7 8.5	6.9 6.8	7.6 7.6	19.0 23.2	19.0 23.3	18.0 22.5	0.041 0.030
10/19/93 10/19/93	12-00 13-30	1044 7 1046.2	22 7 22 9	5.7 5.7	17.0 17.0	1535 1539	3160	5720		1295	1147	993	8.5		7.6	23.6	23.8	29.0	0 028
10/19/93	14.30	1047.2	23 0	57	17.0	1543	3150	5780		1281	1136	983 970	8.5 8.5	6.8	7.6 7.6	23.9	24.1 24,7	27.0	0.028 0.026
10/19/93 10/20/93	17.30	1050.2 1053.9	22.9 23.0	5.7 5.7	17.0 17.0	1550 1531	3190 3140	5820 5690		1268 1297	1120	992	8.5		7.6	24 5 23 4	23.7	25.5	
10/20/93	12 00 12 30	1053.9	23.0	5.7	17.0	1532	3140	5650	22.3	1292	1144	988	8.5		7.6	23 3	23 7	28 0	
10/21/93	13.30	1057 5	23 0	5.7	17.0	1530	3140 3170	5760 5800		1310 1278	1163 1133	1009 981	8.5 8.5	6.9 6.9	7.6 7.6	22.7 23 5	23.2 24.2	30.0 26.0	
10/21/93 10/21/93	16:00 17:00	1070 0 1071.0	22.6 23.0	57 5.7	17.0 17.0	1538 1542	3170	5780		1287	1140	988	8.5		7.6	23.0	24.0	25.0	0.025
10/22/93	10 00	1079.2	22.7	5,7	17,0	1512	3140	5700		1207 1169	1052 1026	914 879	8.4 8.4	6.9 6.9	7.8 7.7	26 9 27.1	26 4 27.4	21.0 26.5	
10/22/93 10/22/93	12:45 15:00	1081.9 1084.2	22.8 22.9	5.7 5.7	17.0 17.0	1518 1520	3140 3140	5680 5570		1168	1025	876	6.4	6.9	7.7	27.4	27.7	29.0	
10/22/93	16:00	1085.2	22.8	5.7	17.0	1522	3150	5520	26.1	1162	1018	871	8,4	6.9	7,6	27.5	27.9	29.0	
10/25/93	11:00	1090.9	22.4	5.7	17.0	1515	3150 3170	5500 5680		1410	1265 1261	1116 1112	8.6 8.6	6.9 6.9	7.6 7.8	20 9 21.1	21.2 21.3	21.5 25.5	
10/25/93 10/25/93	11:30 12:00	1091.4 1091.9	22.5 22.5	5.7 5.7	17.0 17.0	1520 1520	3160	5810	19,7	1405	1256	1103	8.6	6.9	7.6	21.1	21.4	26.5	0.053
10/25/93	12.30	1092.4	22.9	5.7	17.0	1519	3150	5750		1390- 1246	1242	1089	8,6 8,5		7.6 7.7	21 Z 24 9	21.6 25.0	27.5 22.5	
10/26/93 10/26/93	10.30 11.30	1100.4 1101.4	22.9 22.7	5.7 5.7	17.0 17.0	1557 1555	3210 3200	5680 5670		1242	1095	943	8.5		7.6	25 0	25.2	23.5	
10/26/93	16 00	1105.9	22.7	5.7	17.0	1561	3200	5410	25.3	1169	1045	695	8.5		7.8	26 2	26.9	31.0	
10/26/93	17:30	1107.4	22.7	57	17.0	1565 1558	3220 3210	5630 5720		1188 1240	1045 1094	896 942	8.5 8.5		7.6 7.6	26 6 25.1	26.9 25.2	28 0 24.5	
10/27/93 10/27/93	11.00 11.30	1111.5 1112.0	22.5 22.6	5.7 57	17.0 17.0	1582	3210	5720		1237	1090	939	8.5	6.9	7.6	25 2	25.4	25.0	0.031
10/27/93	12:00	1112.5	22.6	57	17 0	1561	3210	5710		1237	1090	938	8.5		7.6	25 3	25.4	25.0	
10/27/93 10/28/93	12:30	1113.0 1123.3	22.7 22.7	57	17.0 17.0	1581 1537	3210 3160	5680 5800		1231 1271	1085 1122	933 970	8.5 8.5	6.9 6.9	7.6 7.7	- 25 3 23 7	25.5 24 2	25.0 27.5	0.031 0.030
10/28/93	13.30 14:00	1123.3	22.7	5.7	17.0	1539	3160	5750	23.1	1263	1116	963	85	6.9	7.7	24.0	24.4	27.5	0.029
10/28/93	17:30	1127.3	22.7	5.7	17.0	1548	3190 3110	5820 5650		1253 1206	. 1105	956 910	8.5 8.5	7.0	7.7 7.8	24 7 26 1	24.9 26 0	23.0 20.5	0.026
10/29/93 10/29/93	11:30 14:00	1136 1 1138.6	22.6 22.7	5.7 5.7	17.0 17.0	1493 1495	3090	5660		1181	1038	892	8.4	6.9	7.6	26.4	26 6	26.5	0.028
10/29/93	15:00	1139.6	22.0	57	17.1	1495	3080	5590		1180	1035	885 878	8.5		7,6	26.6	26.9	28.0	
10/29/93 11/01/93	16:00	1140.6	22.8	5.7	17.0 17.0	1497 1539	3080 3160	5600 5660		1170	1027 1251	1095	8.5 8.5		76 7.6	26.8 20.7	27.1 20.9	28.5 18.5	0,028 0.033
11/01/93	12:00 12:30	1145.6 1146.1	22.7 22.6	57 5.7	17.0	1534	3150	5750		1396	1247	1088	8.5		7.6	20 8	20.9	19.0	
	14.50	1170.1		- 1															

Date	Time	Elapsed Time (houre)	Feed (L/min)	Flowrate - Reject (L/min)	Permezia (L/min)	Feed (uS/cm)	interstage (uS/cm)	G Reject (uS/cm)	onductivity Permeate (uS/cm)	Feed (kPa}	Pressure Interstage (kPa)	Reject (kPa)	Raw Feed	pH RC Feed	Reject	Raw Feed (deg C)	Temperature RO Feed (deg C)	Amblent (deg C)	Turbidity Filter Effi. (ritu)
	13 00	1146-6	22 7	57	17.0	1534	3140	5730	21.4	1397	1245	1087	8.5	6.9	76	20.8	210	20 0	0 031
1 1/0 1/93 1 1/02/93	10 30	1161 4	22.2	57	17 0	1538	3170	5510	216	1127	987	843	84	69	77	26 2	27 8	24 5	0.086
11/02/93	11 30	1162 4	22 5	57	17.0	1560	3260	5730	26 2	1121	981	841	8.4	6.9	76	26 3	28 4	25 0	0.064 0.046
11/03/93	12 00	1173 5 1174 0	22.7 22.7	57 57	17 0 17 0	1562 1564	3230 3230	5670 5800	25.0 25 4	1225 1224	1078 1079	930 929	8.5 8.5	6.7	7.6 7.6	24 7 24.7	25 1 25 1	27 0 27 1	0 048
1 1/03/93 1 1/04/93	12 30 14 30	1184 9	22.5	57	170	1518	3140	5690	25 6	1204	1058	906	8.5	70	76	25 5	25 8	25 0	0 032
11/04/93	16 00	1186-4	22.9	57	17 0	1523	3150	5680	26.0	1204	1059	908	8.5	7.0	76	25 5	25 5	22 5	0 031
1 1/04/93	16.30 17.00	1186 9 1187 4	22 8 22 6	57 57	17.0 17.0	1522 1523	3140 3150	5650 5720	26 C 26 3	1222 1223	1075 1075	925 925	8.5 8.5	69 69	76 7.6	25 4 25 4	25 4 25 2	21.0 19.0	0.031 0.031
1 1/04/93 1 1/05/93	09.00	1196.6	22.7	57	17 0	1504	3130	5750	23.0	1329	1177	1021	85	6.9	6.1	22 3	22 1	17 0	0 030
1 1/05/93	13 00	1199.6	22.7	57	17 0	1501	3100	5760	23.4	1291	1142	990 968	8.6	68	7.7	22 8	23 1 23 8	25.0	0 026
11/05/93	16 00	1202 6 1204 1	22.6 22.5	57 57	17.0 17.0	1510 1507	3130 3130	5800 5720	24 7 25 1	1267 1268	1119	900 968	8.6 8.6	69 69	7.6 7.6	23.6 23.7	23 6	23.5 22 0	0 025
1 1/05/93 1 1/08/93	17 30 11 00	1210 0	22.3	57	17.0	1444	3010	5460	18.2	1500	1348	1 192	8.7	6.9	7.7	17.7	18 0	20.0	0 057
11/08/93	11 30	1210 5	22 6	57	17 0	1445	3030	5630	18 6	1493 1490	1344 1340	1192	8.7	6.9	7,7	17.7	18 0	210	0.059
1 1/08/93	12 30	1211 5	22.5 22.0	57 57	17 0 17 0	1447 1449	3020 3020	5620 5650	19 4 19 8	1490	1340	1165	6.7 6.7	6.9 6 9	7.7	179 181	18 2 18 5	21 0 23.0	0 058 0 058
1 1/08/93 1 1/09/93	13 00 10 30	1212 0 1221 2	22.0	57	17 0	1520	3140	5600	26 0	1221	1074	920	8.4	6.9	7.7	24 7	24 8	23.5	0.047
1 1/09/93	13 30	1224 2	22 8	57	17 0	1519	3120	5620	26.1	1200	1053	900	8.5	69	1.7	25 3	25 6	26 5	0 056
11/09/93	16 00	1226.7	22 7	57	17.0	1533 1566	3160 3230	5630 5740	27.8 27.2	1180 1222	1035 1072	886 918	85	69 69	1.1	25 9 25 0	26 1 25 0	26 0 20.0	0.056 0.030
11/11/93	10 00	1232.1 1233 1	22 7 22 7	57 57	17 Q 17 Q	1565	3240	5740	27.1	1215	1065	913	8.5	69	7.7	250	25.0	21.0	0.030
11/11/93	12 00	1234.1	22 7	57	17.0	1562	3230	5720	27.3	1214	1064	913	85	69	7.7	25 1	25 2	22 5	0.030
11/11/93	12 30	1234.6	22 7	57	17 0	1561	3230	5730	27.2	1208 1571	1061 1412	909 1249	85 86	69 69	7.7	25 1	25 2	23.0	0 031
1 1/ 12/93	08 47	1243 5	22.6	57 57	17 0 17.0	1543 1539	3200 3200	5960 5980	21.0	1559	1401	1239	8.6	69	7.7	16 6 16 7	16 3 16 5	13.0 13.5	0 033 0 028
1 1/ 12/93 1 1/ 12/93	10 14 13 00	1245 0 1247 8	22.8 22.8	57	170	1543	3200	5980	215	1544	1388	1227	86	69	7.7	16 8	16 7	13 5	0 027
11/12/93	15 30	1250 3	22.7	57	170	1544	3210	5980	21.6	1544	1388	1227	8.6	69	77	17 1	16 9	12 5	0.026
1 1/ 15/93	11 00	1256 1	22 5	57 57	17 O 17.0	1482 1492	3090 3090	5650 5600	19.7 21.1	1494 1485	1340 1332	1183	8 <u>7</u> 86	69 6.9	1.7 1.7	17 4 17 4	17 4 17 5	15.5 16 7	0.052
1 1/ 15/93 1 1/ 16/93	11-30 10-30	1256 6 1266 9	22.5 22.7	57	17.0	1544	3190	5770	23.5	1399	1244	1085	8.7	6.9	7.7	20 0	196	116	0,035
1 1/ 16/93	11 30	1267 9	22 7	57	17 0	1530	3170	5690	23 9	1383	1228	1067	8.7	69	7.7	20 0	20 0	14 0	0.031
11/16/93	13 30	1269 9	22.6	57	17.0	1523	3140	5620	24.0	1366 1366	1213 1213	1055 1054	8.5 8.6	69 66	7.7	20 1	20 2	18 1	0.030
1 1/ 16/93	14 40	1270 9 1279 3	22.9 22.5	57 57	17 0 17 0	1527 1537	3150 3150	5730 5620	24 3 23.9	1300	1213	1054	8.5	69	1.1	20 3 20 6	20 3 20 6	18.8 18 3	0.030
11/17/93 11/17/93	11 30 12 00	1279.8	22.5	5.7	170	1528	3140	5620	23.6	1376	1221	1062	8.5	6.9	1.7	20.6	20 7	19 1	0 030
11/17/93	12 30	1280.3	22.6	57	17.0	1526	3140	5630	23 6	1374	1220	1062	8.5	69	7.7	20 6	20.7	19 6	0 030
11/18/93	11 00	1289.9	22.9	57	17.0	1523 1522	3140 3130	5690 5640	21.7	1465 1420	1309 1268	1148 1108	8.6 8.5	6.9 6.9	7.7 7.7	18.5 19.2	18.4 19.3	16.7 19.3	0 032 0 031
1 1/ 18/93 1 1/ 18/93	14 00 15 30	1292 9 1294 4	22 8 22.9	57 57	17.0 17.0	1524	3140	5670	23.1	1417	1261	1101	8.5	69	7.9	19.5	19.6	17.8	0 031
1 1/ 18/93	16 30	1295 4	22 7	57	17.0	1529	3150	5630	23.6	1411	1258	1 102	8.5	69	7.7	19.6	19.6	16.8	0.029
1 1/ 19/93	14 44	1308.0	22 8	57	17.0	1466	3050	5540	26.9	1159 1155	1011 1009	860 658	8.5 8.5	69 69	7.7	27.1	26.6	22 5	0 025
11/19/93	16.40	1309 9	22.7 22.7	57 57	17.0 17.0	1473 1499	3060 3040	5440 5230	29.4 21.0	1153	1005	650	8.5	68	7.7	26.8 28.0	26.6 26.7	18.8 20.4	0.029 0.061
(1/22/93 (1/22/93	12 00 12 30	1315.6 1316.1	22.1	57	17.0	1500	3140	5500	23 2	1109	968	826	8.5	6.9	7.7	28 0	27.8	22.0	0.071
1 1/23/93	11 00	1328.4	22.4	5.7	17.0	1538	3200	5650	24.4	1231	1083	937	8.5	69	7.7	24.1	23.8	16 1	0.067
11/23/93	11 30	1328.9	22 2	57	170	1534 1534	3190 3200	5740 5840	23.2 28.7	1224	1081 1083	936 936	8.5 8.5	6.9 6 5	7.1 7.7	24.0 24.2	23.9 24.0	16 9 17 7	0.070 0.067
1 1/23/93 1 1/23/93	14.30 15 19	1331.9 1332.7	22.5 22.2	5.7 5.7	17.0 17.0	1530	3200	5820	28.8	1227	1082	937	8.5	6.8	7.7	24.3	24 1	18.0	0.055
11/24/93	10 30	1340.0	22.7	57	17.0	1538	3160	5620	27.0	1324	1171	1015	8.5	69	7.7	21.7	21 5	15.5	0.043
1/24/93	11 00	1340.5	22.5	57	17.0	1540	3180	5720	27.1 26.6	1321 1321	1170 1170	1013 1013	8.5 8.5	6.8 6.8	7.7	21.7	21.5	15.4	0.044
11/24/93 11/24/93	12 00	1341.5	22.8 22.8	57 57	17.0 17.0	1536 1535	3170 3170	5730 5710	26.6	1321	1168	1013	8.5	6.8	1.1 7.1	217	216	16.5 16.9	0.050
1 1/29/93	12.30 11.30	1342.0 1352.7	22.8	57	17.0	1513	3100	5640	21.8	1472	1315	1154	8.5	6.9	7.7	17.6	17.7	19.2	0.025
11/29/93	12.00	1353.2	22.6	57	17.0	1514	3100	5580	22.1	1464	1309	1148	8.5	6.9	17	17.7	17.8	19.4	0.025
11/30/93	10.30	1362.1	22.6	57	17.0	1536	3160	5650 5700	25.3 25.5	1421	1265 1262	1105 1102	8.5 8.5	6.9 6 6	7.7 7.7	16 8 16 8	18.7 18.6	14.0 15.0	0.024
1 1/30/93 1 1/30/93	11 00 15 00	1362.8 1366.6	22.7 22.7	57 57	17.0 17.0	1530 1539	3150 3170	5810	25.3	1404	1251	1093	8.5	6.8	7.7	19.2	19.1	17.0	0.024
1 1/30/93	16 00	1367.6	22 8	57	17.0	1540	3160	5740	26.2	1386	1233	1078	8.5	89	7.7	19 3	19 3	17 1	0,024
12/01/93	11 30	1372.9	22 2	57	17.0	1526	3150	5660	21.5	1319 1328	1172 1179	1022 1032	8.5 8-5	68 69	1.7	20.5	20 5	17.1	0.051
12/01/93	12 00	1373.4	22.3	57 57	17.0 17.0	1530 1534	3160 3170	5780 5670	22 4 23 5	1320	1178	1032	8.5	69	1.7 7.7	20.5 20.5	20.5 20.6	17 0 18.0	0.050 0.053
12/01/93 12/02/93	12 30 14 30	1373 9 1384.7	22.3 22.7	57	17.0	1506	3060	5630	25.1	1354	1202	1043	8.5	69	7.7	19.7	20 1	21.2	0 042
12/02/93	18.00	1386.2	22 7	57	17.0	1516	3110	5630	26.7	1346	1195	1039	85 85	69	7.7	20.2	20.3	19.6	0.043
12/03/93	10 31	1395.7	22.8	57	17.0	1496	2906 3070	5380 5590	25.6 25.5	1360 1327	1206 1127	1046 1020	8.5	69 68	7.7	19.8 20.6	19 9 20 8	18.0 23.1	0 031 0 025
12/03/93 12/03/93	13 53 15 02	1399.0 1400.2	22.8 22.7	57 57	17.0 17.0	1489 1495	3080	5660	26.1	1326	1173	1020	8.5	6.8	7.7	20 8	20 8	23.1	0 024
12/03/93	15.46	1400.2	22 7	57	17.0	1502	3090	5670	26 9	1326	1173	1020	8.5	6.9	1.1	20.7	20 8	21.1	0 024
12/07/93	11 00	1417.5	22 2	57	17.0	1465	2748	5570	18.0	1570	1414	1254	86	69		14.9	15 0	14.7	0 055

1

İ

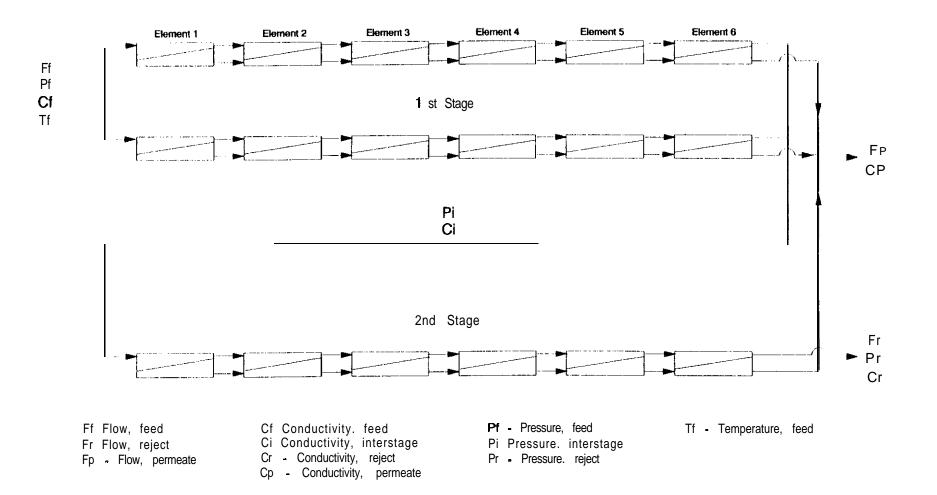
D -1-	• • •	Elapsed Time	Feed	Flowrate Reject (L/min)	Permeate (L/min)	Feed (uS/cm)	Interstage	ctivity · · · · · Reject (uS/cm)	Permeate (uS/cm)	Feed (kPa)	Pressure - Interstage (kPs)	Reject (kPa)	Raw Feed	pH RO Feed	Reject	Raw Feed (deg C)	Temperature RO Feed (deg C)	Ambient (deg C)	Turbidity Filter Effi. (ntu)
Dete	l imme	(hours)	(Umin)	(Cunut)	-		•	. ,	•	1551	1393	1230	86	68		15 3	15 5	19.6	0.044
12/07/93	13 30	1420 0	22 8 22 6	57 57	17 0 17 0	1464 1483	3030 3060	5640 5670	216 23.1	1531	1393	1214	88	6.9	17	15 B	16.0	17.7	0.041
12/07/93 12/07/93	15 00 17 00	1421 5 1423 5	22 4	57	17 0	1495	3090	5760	24 2	1529	1372	1212	8.6	6.9	7.7	16 3	16 2	13 8 19 4	0 037 0 040
12/09/93	15 00	1440 6	22 6	57	17.0	1545	3190	5800 5690	28 7 30.7	1289 1257	1139 1106	985 956	85	69 6.9	76	216	21 3 22 4	16 4	0 039
12/09/93	16 30	1442 1 1442 6	22 8 22 7	57 57	17.0 17.0	1553 1550	3210 3210	5630	30.8	1257	1107	956	8.5	6.0	78	22.4	22 2	14 9	0 039
12/09/93 12/10/93	17,00 13 34	1453 3	23 0	57	17.0	1496	3080	5750	24.4	1356	1202	1043	8.5	6.9	78	20 2	19.8	23.7 24 1	0.027 0.026
12/10/93	14 53	1454 6	23 0	57	17.0	1511	3120	5820 5720	26.9 28.0	1295 1295	1143 1143	986 988	8.5 8.5	69 6.9	78	20 8 20 9	21 2 21 2	25 6	0 023
12/10/93 12/13/93	15 22	1455 1 1465 5	22.8 22.7	57 57	17 0 17.0	1522 1458	3120 3000	5300	18.8	1420	1264	1100	8.5	7.0	78	18.0	176	13.6	0 069
12/13/93	10.30 11.00	1465 0	22.9	57	17.0	1467	3010	5370	20.6	1392	1239	1079 1076	8.5 8.5	69 69	7.6 7.8	18.4 18.7	18 1 18 6	14 5 16.3	0 073 0 070
12/13/93	12 00	1467.0	22.8	5.7	17.0 17.0	1471 1472	3030 3040	5480 5520	20.5 20.1	1381 1374	1229 1220	1063	8.5	69	7.8	19.0	18.9	15.9	0.071
12/13/93 12/14/93	12.30 11.00	1467.5 1476 6	22 7 22 4	57 57	17.0	1539	3170	5720	23.9	1592	1432	1266	8.5	6.9	7.8	14.6	14.5	98	0 039
12/14/93	14 00	1479.6	22.7	5.7	17.0	1535	3170	5900	23.6	1589	1429	1265	6.5	6.9 6 9	7.8	14.8 14.8	14 7 14 7	12 1 12 0	0.037 0.037
12/14/93	15 00	1480 6	22.6	57	17.0	1534	3180 3090	5940 6160	23.8 24.1	1584 1449	1425 1293	1262	6.5 8.5	6.9	7.8 78	17 3	17.1	106	0.030
12/15/93 12/15/93	11 00 11 30	1487.3 1487.8	22 5 22 5	57 5.7	17.0 17.0	1440	2990	5600	24.9	1448	1292	1131	8.5	6.9	7.8	17.4	17 0	114	0 029
12/15/93	13 30	1468.3	22.5	57	17.0	1435	2987	5570	25.0	1447	1291	1131	8.5	6.9 7.0	78	17.4 16.7	17.1	11 3 10 4	0 029 0 029
12/16/93	11.00	1499 2	22.7	5.7	17.0	1475	3050 3040	5670 5700	25.5 25,3	1476 1448	1319 1293	1155 1133		69	-	17.0	16.9	-13.3	0 028
12/16/93	14 30	1502.7 1510.5	22.8 22.8	57 57	170 170	1474 1482	3060	5700		1667	1504	1335	-	6.9		12.4	12 6	13.9	0.028
12/17/93	17 00 10 24	1510.5	22.8	5.7	17.0	1462	3010	5670		1667	1505	1336 1321	-	6.9 6.8	-	12.5	12.6 13.0	150 158	0 029 0 028
12/17/93	12 52	1513.4	22.7	5.7	17.0	1452	3020 3260	5710 5860		1648 1144	1487 997	1321	8.5	69		26,1	25.6	12 3	0.047
12/20/93 12/20/93	11 00	1517.6	22.5 22.7	57 57	17 0 17.0	1568	3240	5690		1128	982	836	8.5	69		26.4	26 0	15 6	0.045
12/20/93	13 30 16 00	1520 3 1522 8	22.7	57	17 0	1581	3270	5710		1141	995 992	848 846	8.5	6.9 6 9	-	26.6 26 6	25.8 25.9	13.8 12.0	0.044 0.047
12/20/93	17 00	1523.8	22.5	57	17.0	1580 1560	3270 3210	3800 5730		1140 1317	1163	846 1009	8.5	69		20.0	20 2	16.0	0 030
12/21/93 12/21/93	14 30	1528 3 1528 8	22 7 22.7	57 57	17.0 17.0	1560	3210	5670		1314	1161	1007	-	6.9	•	20.5	20.3	177	0.030
12/21/93	15 00 16 00	1529.8	22.7	57	17.0	1568	3200	5750		1305		996	•	6.9	•	20.6	20 5 20 5	17.2 14.6	0 027 0 027
12/21/93	16 30	1530.3	22.7	57	17 0	1571	3220	5810 5550		1306 1152		998 854		6.9		20.7 25.3	20.5	14.0	0 027
12/22/93	11 30	1540.3 1541.8	22.7 22.8	57 57	17.0 17.0	1522 1523	3150 3150	5570		1152	1004	853	-	6.9		25.4	25.1	17. t	0.027
12/22/93	13 00 14.00	1542.8	22.9	57	17 0	1517	3130	5540		1141	996	848	•	6.9	•	25.5		19 1	0.027
12/22/93	15 00	1543.8	22.7	57	17.0	1529	3160	5610 5980		1141 1464	995 1309	649 1151		69 69		25.6 16 3		18.1 18.1	0.029
12/23/93 12/23/93	14:00	1551.8	22.7 22.6	5.7 57	16 9 17.0	1541 1541	3160 3160	5980		1459		1143		69		16.5		18.3	0.029
12/23/93	15 00 17 00	1552.8 1554.8	22.0	5.7	17.0	1558	3210	5990		1472		1154	-	6.8	•	16.9		12.6	0.026
12/27/93	14 50	1558.0	22.7	5.7	17.0	1488	3070 3080	5540 5530		1561 1548		1240 1231		7.0	-	14.6 14.6		18 1 19,2	
12/27/93 12/27/93	15.13	1558.4 1560.2	22 2 22.4	57 5.7	17.0 17.0	1495 1503		5630		1555		1236		69		14.6	14.9	19 5	0.068
12/28/93	17 00 12 59	1568.2	22.7	57	17.0	1558	3220	5730		1134		837	-	6.9	•	25.9		19.6	
12/28/93	13.42	1568.9	22.7	5.7	17.0	1554		5120 5740		1124		827 829		6.8 6.9		26.1 26.3		20.6 20 3	
12/28/93 12/29/93	15 00	1570.2 1579.1	22.7 22.7	57 5.7	17 0 17.0	1560		5790		1407		1095	-	6.9	-	19.5		19.4	0.026
12/29/93	13 06 15.31	1581.5	22.9	5.7	17 1	1543	3190	5810		1306		997	•	6.9	•	20.3		219	
12/30/93	09:30	1592.2	22.8	5.7	17.0	1545		6040 6020		1495		†173 1172		<u>6.9</u> 6.9		16.2 16.2		10 1 11 5	
12/30/93 12/30/93	10:00 11:00	1592.7 1593.7	22.6 22.7	5.7 5.7	17.0 17.0	1537 1532		5990		1460		1143		6.9		16.4	16.4	\$5.5	D 025
01/03/94	09.30	1093.7	23.3	5.7		1522	3160	5770		1371		1061	•	6.9	•	19 2		17.5	
01/03/94	11 30	1607.6	22,8	5.7		1526		5840		1307 1260		1002 956		6.9 6.9		20.4 21 3		24.2 16.7	
01/03/94 01/03/94	13:30	1609.6	22.4 22.6	5.7 57		1526 1538		5710 5740		1238		936		6.9		22 1		25.4	0.057
01/04/94	15:00 12:00	1611.1 1616.4	22.6			1536		5300	30.4	1330		1017	•	6,9	•	19.5		197	
01/04/94	13:30	1617.9	22.8	5.7	17.0	1531		5670		1306 1293		997 986	:	6.9 6.9		19.8 20.1		23.5 24.9	
01/04/94 01/04/94	15:00	1619.4	22.6			1550		5480 5480		1293		987		69		20.5		19.1	0.025
01/05/94	17:00 14:30	1621.4 1629.7	22.6 22.7	57				5550		1317		1007		6.9	•	19.5		20 4	
01/05/94	15:30	1630.7	22.7	57	17 0	1538		5610		1317		1007	-	69 6.9	•	19) 19)		197 174	
01/05/94 01/05/94	16.00	1831.2	22.8			1541		5690 5520		1331		1019	-	69		19.1		16.0	
01/07/94	16:30 13:30	1631.7 1645.1	22.6 22.8					5800) 41.9	1078	933	785	11	6.9	7.3				
01/06/94	13:30	1647.6	22.6			1570	3250	5800		1092				•···	7.3			17.0	
01/06/94	17.00	1648.6	22.7	5.7				5790 5940		1092		799 1035		6.9 6.9	7.3	19.8		14.0	
01/07/94 01/07/94	11:00	1654.7	22.9 22.6			1555		5940		1329				68		20.1	20.1	18 1	0.024
01/07/94	13:31 14:33	1657.2 1658.2	22.6				3200	5990	32.4	1323		1015	•	69		20 3		18 4	
01/07/94	15 00	1659.7	22 8			1565	3220	6000) 32.6	1322	1170	1015	•	69		20.0	20 2	16 3	0.024

		Elected.		- Flowrate			· · · · · · Condu	tivity			Pressure -			··· pH ···			Temperature	• • • • • • • •	Turbidity
		Elapsed Time	Feed	Reject	Permente	Feed	Interstage	Reject	Permente	Feed	Interstage	Reject	Raw Feed	RO Feed	Reject	Raw Feed	RO Feed	Ambient	Filter Effi.
Dete	Time	(hours)	(Limin)	(L/min)	(L/min)	(uS/cm)	(u\$/cm)	(uSÍcm)	(u\$/cm)	(kPa)	(kPa)	(HP#)				(deg v)	(deĝ C)	(ae ð e)	(mu)
					17 0	1525	3130	5740	23 8	1422	1266	1111		69		19 1	18.8	97	0 055
01/10/94	09.30	1660 9	22 5 22 6	57 57	170	1525	3120	5220	24.6	1420	1264	1108		69		19 1	18 9	127	0 050
01/10/94 01/10/94	10 30 13 30	1661 9 1664 9	22 6	57	170	1510	3100	5710	26 9	1366	1211	1058		69		20 4	20 1	16 8	0 049
01/11/94	13.30	1672 6	22 9	57	170	1540	3150	5760	29.6	1358	1200	1043	-	6.9	•	19.8	19.8	15 6	0 043
01/11/94	14 00	1675 1	22.9	57	17 0	1537	3130	5530	29 7	1344	1188	1032	-	6.9		20 2	20 2	19 0	0 043
01/11/94	16 30	1677 6	22 6	57	17 0	1551	3 180	5800	317	1332	1175	1023	•	69		20 8	20 6	16.6	0.042
01/12/94	13 30	1684 7	22 8	57	17 0	1521	3090	5750	27 9	1410	1251	1093	•	69	•	177	18 3 16 4	21 1 21 1	0 028 0 028
01/12/94	14 30	1685 7	22 7	57	17 0	1523	3120	5880	28 1	1409	1252	1093		69 6.9		18 6	16 7	18 3	0 028
01/12/94	16 00	1687 2	22 7	57	17 0	1533	3150	5940 5930	28 9 29 5	1401 1398	1242 1240	1085		6.9		18 7	16 7	17 3	0 027
01/12/94	16 30	1687 7	22 6	57	17 O 17 O	1535 1551	3150 3190	5850	37 6	1145	995	848	-	7.0		26 2	25 1	12 2	0 031
01/13/94	09 30	1698 3	22 7 22 5	57 57	17 0	1551	3190	5850	37 4	1132	982	834	-	70		26 3	26.1	16 5	0 031
01/13/94 01/13/94	10 30 11 30	1699 3 1700 3	22 9	57	17 0	1543	3180	5840	38.5	1132	98 1	833	-	69		26 3	26 2	17 6	0 026
01/13/94	14 00	1702 8	22 9	57	17.0	1545	3170	5830	39 1	1117	967	822	•	69		26 7	26 7	23 2	0 027
01/13/94	11 00	1709 1	22 7	57	17 0	1547	3170	5920	33 4	1261	1 105	951		69	•	218	21.9	19 8	0 032
01/14/94	11 30	1709 6	22 7	57	17 0	1547	3170	5880	33.4	1256	1 101	948	•	69	-	218	22.0	20.9	0 027
01/14/94	13 30	1711 6	22.7	57	17-1	1552	3170	5890	33.5	1254	1098	947	-	69	•	21 9	22.1	23 0	0.027 0.027
01/14/94	15 30	1713 6	22.8	57	17 0	1557	3170	5920	33.6	1245	1091	940	•	69 70	•	22 1 21 4	23.3 21.2	23.4 19 D	0.076
01/17/94	10 30	1715 0	22 4	57	17 0	1536	3160	5760	20.4	1303 1282	1151 1130	999 979	-	6.9		214		21.4	0.073
01/17/94	11 30	1716 0	22 3	57	17.0	1536 1545	3170 3160	5840 5820	26.4 32.6	1202	1086	937		69		22 7	22.9	26 7	0,068
01/17/94	15 30	1720 0	22 7	57 57	17 0 17.0	1545	3180	5740	33.7	1242	1090	941	•	69		22.9	22 9	215	0 064
01/17/94	17 00	1721 5 1727 1	22 4 22 9	57	17.0	1551	3160	5750	32.9	1255	1099	946		69		22 0	22 1	20 8	0.052
01/16/94 01/16/94	11 00 11 30	1727.6	22.9	57	17.0	1551	3160	5750	32.9	1255	1099	946	-	69		22 0	22.1	20 8	0 052
01/18/94	11 30	1728 6	22.9	57	17.0	1552	3160	5740	32.7	1255	1099	945		68		22 0	22.2	21.6	0 054
01/16/94	14 00	1730 1	22.8	57	17 0	1541	3150	5770	32.6	1230	1077	922	•	68		22 7	22.9	25.1	0.057
01/15/94	16 00	1732 1	22 2	57	17.0	1563	3160	5710	35.0	1213	1060	908	•	69	•	23.3	23.5	25 8	0.053
01/19/94	16 30	1738 3	22 9	57	17.0	1551	3160	5640	32.8	1272	1117	966	•	7,0	•	21.6	21.7	21.8	0.026
01/20/94	14 30	1756 5	23 1	57	17.0	1554	3240	6030	38.9	1099 1097	950 949	803 804	•	70 7.0		27.3 27.5	27.3 27.5	23.4 23.6	0 026 0 026
01/20/24	15 00	1757 0	22.7	57	17.0	1559	3210 3170	5880 5890	39.3 34.4	1206	1053	901		7.0		23 0		21.5	0.024
01/21/94	13 00	1765.9	22.7	57 57	17.0 17.0	1548 1557	3200	5950	34.6	1195	1043	892		7.0		23.5	23.8	24,9	0 024
01/21/94	15 30	1768.4	22.9 22.7	57	17.0	1561	3200	5930	35.5	1196	1043	894		7.0		23.7	23.7	21.7	0 024
01/21/94	16.30 14.00	1769.4 1773.0	22.3	57	17.0	1564	3240	5930	33.5	1098	957	809	-	70		27.3	26 B	17 B	0.066
D1/24/94 01/24/94	15 00	1774.0	22.2	57	17 0	1566	3250	5570	34.0	1101	954	812		7.1		27.3		17.5	0.068
01/24/94	16 00	1775.0	22 6	57	17.1	1569	3250	5560	34.7	1119	969	824	-	7.1		27.3		17.6	0.068
01/25/94	14 30	1783.6	22 7	57	17.0	1550	3160	5830	25.4	1602	1436	1272	-	7.1	•	16.5		10.0	0.029
01/25/94	15:30	1784.6	22.7	57	17.0	1544	3160	5750	27.4	1476	1311	1147	•	7.0		17.0		10.9	0 029
01/25/94	16.00	1785.1	22.6	57	17.0	1531	3140	5850	26.9	1517	1354	1191	-	7.1		15.4	15 3	15 8	0 027 0.027
01/27/94	10 00	1606.7	22 5	57	17,0	1594	3230	5950	32.3	1302 1249	1143 1091	990 938	-	7.0 7.0	•	23.1 22 9	21.3 22 1	66 67	0.027
01/27/94	11 00	1607.7	22.8	5.7	17.0	1557 1556	3190 3180	5810 5810	35.4 35.5	1250	1092	939		7.0		22 4	219	10 7	0.025
01/27/94	12:00	1808.7	22.9	57 57	17.0 17.0	1532	3140	5880	29.1	1408	1248	1089	-	7.0		18.1	17.8	14.3	0.025
01/28/94	14.00	1820.4	22 6 22,8	5.7	17.0	1540	3160	5930	29.6	1398	1240	1082	-	7,0	-	18.2	17.9	14.4	0 026
01/28/94	15:00 14.00	1821.4 1824.2	22.8	58	17.0	1522	3130	5800	24.8	1551	1388	1224	-	7.0		15.6	15.4	14 1	0.046
01/31/94	16:00	1626.2	22.9	57	17.0	1525	3120	5850	25.7	1526	1365	1204	-	7.0	-	16.0		15 8	0.048
01/31/94 02/01/94	15:00	1832.4	22.8	5.7	17.0	1528	3130	5780	28.7	1434	1273	1111	-	7.0	-	17.6		14.5	0 042
02/01/94	15.30	1832.9	22.8	57	17.0	1530	3120	5680	28.9	1435	1273	1116	-	7.1		17.6		13.8	0 040
02/01/94	16 00	1833 4	22.5	57	17.0	1530	3140	5660	29.2	1432	1273	1116	-	7.0	•	17.6		13.2	0 039 0 067
02/02/94	10 30	1642.3	22.4	57	17.0	1513	3090	5690	21.7 22.2	1412 1412	1253 1255	1095	-	7.0 7.0	•	17.5		13.9 15 3	0.068
02/02/94	11.00	1842.8	22.7	5.7	17.1	1510	3110	5510 5830	22.2	1395	1200	1080	-	7.0	-	17.5		18.0	0.066
02/02/94	13.00	1844.8	22.9	5.7	17.0	1509	3080 3120	5830	20.5	1387	1238	1072	-	7.0		18.7	18.4	15.7	0.064
02/02/94	15.00	1846.8	22.9	57	17.0 17.1	1517 1513	2789	5700	26.6	1494	1330	1166		7.0		16 0		9.6	0 052
02/03/94	10:00	1853.4	22.9	57 57	17.1	1508	3090	5730	27.2	1483	1319	1157	-	7.0	-	16.1	15.9	12.8	0.051
02/03/94	11:00	1854.4	22 6 22 9	57 57	17.0	1511	3080	5820	27.7	1461	1299	1139	-	7.0		16 4		15 1	0.046
02/03/94	15 30	1858.9 1859.4	22.9	57	17.0	1512	3080	5840	27.8	1459	1298	1138	-	7.0	-	16 4	16 5	15 1	0.045
02/03/94	16 00	1639.4		3,															

1

APPENDIX C

Analytical Data for the FilmTec BW-30 Element Testing


Analytical Data for the FilmTec BW30 Element Testing

561-Hour Data 8/13/93

CATIONS			RO Feed	Permeate.	Reject
Calcium Magnesium Sodium	Ca Mg Na	mg/L mg/L mg/L	29 4.1 285	<0.1 <0.1 4.0	111 8.1 1150
Potassium	K	mg/L	I.4	co. 1	5.4
Aluminum Barium Streatium	AI Ba	mg/L mg/L	0.17 0.06	co.04 <0 .002	<0.04 0.22
Strontium iron (total)	Sr Fe	mg/L mg/L	0.90	co.02	0.03
Iron (soluble)	Fe	mg/L	0.03	co.02	0.03
Manganese Phosphorus (total)	Mn P	mg/L mg/L	0.05	<0.005	0.05
Boron	В	mg/L	0.39	0.1	1.17
copper	Cu	ug/L	20 2	<3	10
Selenium Mercury	Se Hg	ug/L ug/L	<0.4	<2 co.4	7 <0.4
	ng	uy/L	-0. 4	00.4	~ 0.4
<u>ANIONS</u> Bicarbonate	HC03	mg/L	271	6.1	923
Carbonate	co3	mg/L	0	0	0
Chloride	CI	mg/L	231	1.5	959
Sulfate	so4 F	mg/L mg/l	141 1.8	0.5 0.03	736
Flouride Nitrate	r NO3	mg/L mg/L	7.5	0.4	29 30
Nitrite	NO2	mg/L	0.06	co.01	0.06
Ammonium Inorganic N (total)	NH4+	mg/L mg/L	1.8	0.1	7.1
Silica (total) Silica (dissolved)	SiO2	mg/L mg/L	22.9 22.3	<1 <1	85.8 83.2
Total Organic Carbon		mg/L	CI.0	<1.0	3.9
Heterotrophic Plate Count	HPC	CFU/mL	>5700	381	>5700
Alkalinity Hardness	as CaCO3 as CaC03	mg/L mg/L	90	1.0	352
Specific Conductance	Reported	µS/cm	1450	1 3	7200
Total Dissolved Solids	Reported	mg/L	665	25	3620
Total Dissolved Solids	Summation	mg/L	996	14	4036
pH Turbidity		ntu	8.2	5.6	7.7
cations		meq/L	14.38	0.20	56.70
Anions		meq/L	14.11	0.16	59.51
Ratio Cations: Anions			1.02	1.26	0.95

APPENDIX D

Generalized RO Process Diagram for Checking Data Reduction

APPENDIX E

RO Element Serial Numbers as Loaded in Pressure Vesselsy

RO Element Serial Numbers as Loaded in Pressure Vessels

Manufacturer FilmTec ; Model BW30-2540 ; Date 6/4/93

Stage 2, Vessel 1B, Elements 4-6

1	,			1
	A1690876	A1690405	A1690750	ł

Stage 2, Vessel 1 A, Elements 1-3

ľ			
	A1690854	A1690669	A1690416

Stage 1, Vessel 2B, Elements 4-6

1			
	A1690812	A1690760	A1690800
ί.	· · · · · · · · · · · · · · · · · · ·		

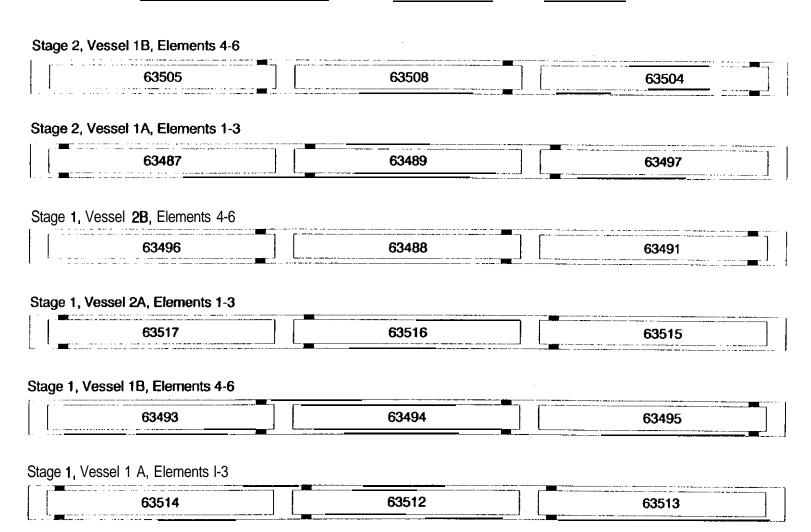
Stage 1, Vessel 2A, Elements I-3

1			
	AI 690770	A1690790	A1690796
Į			

Stags 1, Vessel 1B, Elements 4-6

Ľ				1
	A1690779	A1690814	A1690421	

Stage 1, Vessel 1 A, Elements 13


1				
	A1690782	A1690409	A1690819	

Note: Facing east from back of skid.

RO Element Serial Numbers as Loaded in Pressure Vessels

Manufacturer Desalination Systems ; Model Desal-3LP ; Date 7/21/94

1

Note: Facing east from back of skid.

APPENDIX F

Desal-3LP Element Test Data

Desal-3LP Element Test Data

Date	Time	Eiapsed Time (hours)	Feed (L/min)	Flowrates Reject (L/min)	Permeste (L/min)	Feed (uS/cm)	Conducti Interstage (uS/cm)	vities ···· Reject (uS/cm)	Permeate (uS/cm)	Feed (kPa)	Pressure Interstage (kPa)	Reject (kPa)	Raw Feed	RO Feed	Reject	Raw Feed (deg C)	Temperature RO Feed (deg C)	Ambient (deg C)	Turbidity Filter Effl. (ntu)
		27	23.0	57	17 0	1604	2591	5480	296	1495	1322	1127		7.3		26 1	26 3	24 6	0 025
07/22/94 07/22/94	10 15	37	23 3	57	17.0	1602	3000	5430	29 2	1471	1298	1101		76		26 2	26 6	27 3	0 024
07/22/94	13 51	61	23 4	57	17.0	1603	2995 3020	5600 5550	303 337	1402 1315	1231 1146	1039 955		74		270	277 296	341 303	0 027 0 024
07/22/94 07/25/94	16 25 11 15	819 1219	23 2 23 3	57 57	17.0	1618 1599	2400	5550	29.9	1316	1144	944	-	7.4		276	28 2	30 5	0 036
07/25/94	13 30	15 1	23 2	58	17 3	1610	2988	5660	34.5	1310	\$135	934	•	72		26 1	28.9	346	0 051
07/25/94	15 00	16 6	23 2	57	17 0	1606	2978	5680 5680	35.5 37.6	1276 1244	1104 1075	908 883		75 75		286 291	29 5 30 3	3-8 1 37 0	0 056 0 056
07/25/94 07/26/94	\$6.30 14.00	18 2 23 4	22.9 22.5	57 57	17.0 16.9	1615 1617	2997 3000	5630	37.6	1248	1080	887	•	7.4		286	29.6	35 7	0 033
07/26/94	15 00	24.4	22 9	57	17 1	1618	3020	5740	40 5	1234	1050	872 870	•	72		. 291	30.3 30.6	38 2 37.7	0.035
07/26/94	16 00	25 4	22 9	5.7	17.1	1621 1654	3030 3050	5760 5550	39.6 35.0	1231 1224	1049 1054	870 857		7.2 7.2		· 29.4 · 29.2	30.5	37.7	0.048
07/27/94 07/27/94	14 45 15 35	34 6 35.5	22.8 22.6	57 57	17 1 17 0	1657	3090	5700	33.1	1218	1050	658		7.3		29.5	30 3	33 5	0 067
07/27/94	16 45	36 6	22.9	57	16.9	1658	3100	5570	35.8	1218	1049	858 859	-	73		· 29.8 · 29.5	30-4 30-6	31.9 37 5	0.069 0.049
07/28/94	13 20	46.7 47.6	22 8 22 8	5.7	17.1 17.0	1669 1670	3130 3110	5750 5810	41 0 41.9	1216 1203	1049 1033	841		7.4		. 29.8	30 9	376	0.046
07/28/94 07/28/94	14.20 16.00	49.3	23.0	57 57	17.0	1677	3130	5740	42.9	1201	1032	840		7.4		. 303	31 2	37.2	0.040
07/29/94	12 00	55.8	22.7	5.7	170	1706	3210	5960	38.6	1298	1126 1097	931 900	•	75		· 273 · 277	26 0 28 9	32 9 35 6	0 023 0 047
07/29/94	13 35	57.3 58.4	23.0 22.7	57 56	17.1 17.0	1708 1712	3190 3200	5910 5910	39.9 39.7	1270 1250	1097	885		74		281	29 1	34 1	0 051
07/29/94 08/01/94	14.41 11.10	67.7	22.7	57	16.9	1709	3190	5900	36.2	1303	1128	928	•	7.4		- 26 9	27 3	27 5	0.055
08/01/94	14.30	71.0	23 1	5.7	17-1	1718	3200	5920	40.0	1276	1100 1084	904 887		7.3		· 27.7 · 27.9	286 290	36.1 36.7	0 051 0 053
08/01/94	15 20	719 795	22 9 22 8	57 5.7	17.0 17.0	1717	3190 3210	5990 5910	40.9 41 2	1256 1260	1088	894		7.5		27.8	28 7	32.4	0.035
08/02/94 08/02/94	13·30 14 56	80 2	23.0	5.r 5.7	17.0	1715	3200	6000	42.4	1244	1069	872	-	7.3		- 28.4	28 4	361	0.038
08/02/94	15 49	81.6	23.0	5.7	17.0	1719	3200	5870		1234	1060	865		7.4		- 29.7	29.7	365	0.038
06/02/94	16 48	82 6	22.8 22.9	5.7	17.0	1722	3210 3170	5780 5680	43.5 40.3	1226 1259	1055 1087	660 891	-	7.4		· 300 · 27.7	30 0 28,6	363 34.9	0.038 0.041
08/03/94 08/03/94	12 50 15 00	89-6 91.7	22.9	57 5.7	17 0 17 1	1683 1682	3170	5890	41.9	1237	1064	870		7.4		. 28.2	29 4	37.0	0.040
08/03/94	15 50	92 6	23.0	57	17.1	1609	3150	5830	42.6	1230	1058	663	-	7.4		· 28.4	276	368	0 039
08/04/94 08/04/94	11.55 13.10	101 4 102 7	22 6 22.8	57	17 O 17 O	1698 1698	3200 3200	5930 6030	389 418	1290 1257	1117 1086	922 694	-	7.6		· 27 2 · 27.5	27.7 28 5	313 362	0.043 0.042
08/04/94	14 50	102 7	23 0	5.7 57	17.0	1690	3170	5810		1235	1064	865		7.4		- 28.0	29.3	38 0	0.039
08/04/94	16 00	105.4	23 0	5.7	17.0	1701	3170	5890	42 6	1230	1059	862	-	7,4		· 283	296	38.3	0 039
08/05/94 08/05/94	14 25 15 00	113.2 113.8	22 6 22 8	5.7	17.0	1699 1711	3180 3180	5840 5940	43 5 44 6	1200 1196	1029 1026	835 830		7.7		· 290 · 292	30.3 30-5	42.0 42.5	0.036 0.037
08/05/94	16 30	115.2	23.2	5.7	17.0 17.0	1720	3190	5940	46.2	1183	1012	820		7.5		. 29.7	311	42 2	0.037
08/08/94	14 00	127.0	22 9	57	17 0	1701	3190	5850	43.0	1190	1017	819 808		7.3		- 30.0 - 30.2		35.6 37 2	0.093 0.089
08/08/94 08/08/94	15 30 16 30	129 5 130,5	22.9 22.9	5.7	17.0	1700 1703	3180 3200	5830 5910		1172 1169	1002 998	799		7.3		- 30.2		36,6	0.090
08/09/94	11 30	138.1	22.8	. 57 57	17.1 17.0	1703	3210	5930	44.6	1204	1033	645		7.3		- 29.5		30.6	0.065
08/09/94	14 09	140.8	22.8 22.8	57	17 0	1702	3200	5880		1170 1161	1000 990	806 798	•	7.3		- 30.2 - 33.8		314 35.5	0.060
08/09/94 08/10/94	16.33 15.30	143.1 161.1	22 9	57	171 169	1709	3230 3160	5870 5520		1162	992	795		7.5		- 30.8		36.2	0.079
06/10/94	16 44	162.4	22.8	5.7 5 7	17.0	1717	3210	5840	37.3	1148	978	784	-	7.5		- 31.1		37.6	0.098
06/11/94	15.13	171.2 172.7	22.7 22 8	5.7	17.0	1713	2607	5820 5790		1100 1104	933 936	740 743		7.3		- 32.2 - 32.2		39.7 39.6	0.058
08/11/94 08/12/94	15.47 16.25	169 5	22.9	57 57	17.1 17.0	1721 1695		5610		1181	1006	812		7.2		31.2		29.7	0.043
08/15/94	15 00	201.4	22.9	5.7	17.0	1726	3310	6040	45.9	1147	975	782	-	7.2		- 31.2		33.6	0.048
08/15/94	16.30 14.30	202 9 211.7	22.9 22 0	5.7	17.1	1730		6000		1147	974 975	780 806		. 73 . 73		- 31.5 · 30.6		32.6 35.9	0.051 0.035
08/16/94 08/16/94	16.00	213.1	22.2	5.0 5.0		1659 1665		6160 6190		1132	973	805	-	7.3		- 316		35 1	0.059
08/16/94	17:00	214.0	22.3	50		1670	3260	6150	45.2	1132	972			7.3		- 35.9		33 8	0.061
08/17/94 08/17/94	14-10 15:40	224.5 225.9	22.8 23.0	5.7	17.0	1686	3210	5730 5810		1193 1187	1020	827 813	-	7.3 73		- 29.6		35.3 33.8	0 028 0 045
08/17/94	16:50	227.1	23.0		17.1 17.0	1686 1685		5870		1176		808		73		. 30.2		33,8	0.053
08/18/94	14 06	242.9	22.8	57	17.0	1683	3120	5430		1200		814	-	. 73		- 29.4		35.0	0.041
08/18/94 08/18/94	14:50 16:00	243.6 244.7	23 2 22.5	3 .7	17.0	1687	3150	5460 5590		1213 1184	1032 1010			· 7.3 · 7.3		- 29.6 - 29.9		32.3 34.0	0.054 0.062
08/19/94	11.30	254.5	22 4	57 57	17.0 17.0	1692 1626		5660		1231	1055			7.3		- 286	29.9	29 9	0.038
08/19/94	12.50	255.9	22.9 22.7	57	17.1	1627	3080	5300		1208			-	. 7.3		- 28.9		331	0.041
08/19/94 08/19/94	14.49 15.50	257.8 258 9	22.6	5.7	17.0	1630 1633	3080 3080	5090 5390		1179	1007 997	814 504		· 7.3 · 7.3		· 29.4 · 29.7		35.3 35.6	0.039
08/22/94	14:50	279.7	23 0	5.7 5.7	17.0 17.0	1626		5440		1294	1113	899		- 7.3		- 26.9	27.7	31,9	0.122
08/22/94	15:30	260.4	22.8 22.5	57	16.9	1626	3080	5320		1260		895		. 1.3		- 27.1		32.4	0.100
08/23/94 08/23/94	15:21 16:20	291 8 292.9	22.5	5.7				5340 5360		1268 1283	1093	889 881		· 7.3 · 7.3		- 26.0 - 26.3		35.4 35.2	0.044 0.047
08/23/94	17 13	293.7	22.6	5.6			2090	5390		1258		881		. 73		- 26 5	27.5	34 4	0.041
08/24/94	14.50	303.7	23.0	5.7		1625		5580	37 9	1245	1068	866		. 73		- 26 9	28.0	36 8	0 0 36

Desal-3LP Element Test Data - Continued

Date	Time	Elapsed Time (hours)	Feed {L/min}	Flowrates Reject (Umin)	Permeste {L/min}	Feed (uS/cm)	Conducti Interstage {uS/cm}	ivities · · · · Reject (uS/cm)	Permeate (uS/cm)	Feed (kPa)	Pressure Interstage (kPa)	Reject (kPa)	Raw Feed	RO Feed	Reject	Raw Feed (deg C)	Temperature RO Feed (deg C)	Ambient (deg C)	Turbidity Filter Effi. (ntu)
08/24/94	15 58	304 8	22 7	57	17.0	1627	3050	5660	39.5	1237	1052	861		73		27 2	28 2	37.4	0 029
08/24/94	16 55	305 7	23 0	57	17.1	1635 1608	3060 2698	5610 5100	39.5 34.5	1237	1060	860	•	13		27 5	28 6	37 1	0 030
08/25/94 08/25/94	14 59 15 38	323 0 323 2	23 1 23 1	57 57	17:0 17:0	1608	3000	5300	367	1214 1213	1037 1034	826 824		73 7.3	-	28 9 28 9	29.9 30.1	367 363	0 075 0 061
08/25/94	16 52	324 0	23 4	57	17.0	1606	3010	5370	38.2	1210	1032	823		73		28 9	301	36 2	0 058
08/29/94	13 56	343.6	22 9	57	17.0	1597	3040	5350	43.0	1155	982	789		7.0		29.9	30 6	35 4	0 058
08/29/94	15 39	345 3	22 7	57	16 8	1600 1565	3020 2382	5450 5280	42 1 32 2	1133	963	769	•	73		30.6	31.4	35.4	0.043
08/30/94 08/30/94	15 00 16 00	352 O 353 O	23 4 22 9	57 57	17 0 16.9	1564	2362	5390	35 4	1292 1261	1108 1083	895 878		74		26 3 26 8	273 277	34 3 33 4	0 025 0 022
08/31/94	14 00	365 4	22 8	57	17 0	1557	2972	5260	36.6	1300	1121	922	-	73		25 7	26 3	29 0	0 020
08/31/94	15 30	366 9	23 0	57	17 0	1558	2967	5460	37.2	1279	1100	895	,	7.3		26 1	26 9	321	0 018
08/31/94	16 00	367 3	22 8	57	17.0 17.0	1557 1597	2960 3020	5380 5600	372 353	1280	1100	899	-	73		26.2	27 0	32 3	0 0 19
09/01/94 09/01/94	15 00 15 41	376 0 376 6	23 1 22 7	57 57	17.1	1597	3020	5610	35 8	1293	1117 1114	912 911		7.3 7.4		25 5 25 7	26 3 26 5	319	0 022 0 025
09/02/94	14 54	387 8	23 2	57	17.1	1601	3030	5590	36.8	1297	1117	912		7.4		25 9	26 6	33 1	0 022
09/02/94	15 36	388.5	22 9	57	17.0	1602	3030	5620	36.4 37 3	1281	1103	899	-	7.4		26 1	26 9	33 7	0 027
09/02/94 09/06/94	16 00 14 35	368 8 405 6	22 5 23 0	57 57	17 D 17 D	1601 1647	3030 3†10	5530 5730	373 40 B	1275	1099 1063	897 862	•	7.5 7.5		26 1	26 9	33 9	0 026
09/06/94	19.35	405 1	23 2	57	17 0	1651	3120	5710	40.8	1230	1063	852		7.5		27 4 27 6	28 5 28 7	370 372	0 055 0 060
09/06/94	15 51	406 9	22 9	57	17 2	1654	3120	5780	42 4	1231	1052	853		7.4		27 9	288	37 2	0 061
09/08/94	10.34	415 1	23 3	57	17 0 17 0	1628 1616	2920 3040	5600 5480	40 7 39 8	1297	1114	903	,	7.3		26 9	27 2	27 9	0 051
09/08/94 09/09/94	14 54 14 55	418 7 427 5	23 0 22 8	57 57	17 0	1638	3090	5290	42 5	1235 1225	1058 1049	858 847	-	73 73		276 274	28 4 28 2	35 8 37 3	0 041 0 024
09/09/94	15 16	427 9	22 8	57	17 0	1640	3090	5620	41.6	1213	1038	837		72		27 6	28 6	373	0 024
09/09/94	15 51	428 5	22 9	57	17 0	1642	3090	5650	41.4	1211	1038	835		7.4		27 7	28 8	37 8	0 027
09/12/94	17 09	440 5	23 0	57	17 0 17.0	1609 1603	3070 3070	5580 5250	32.7 30 9	1384	1200	993	•	72	•	24 2	24.3	25 6	0.051
09/14/94 09/14/94	09 02 11 51	452 0 454 5	23 Q 22.6	57 57	17.0	1597	3050	5650	32 1	1514 1413	1323 1231	1 106 1022		75 73		214 223	212	15 6 25 2	0 028 0 033
09/14/94	14 29	457 1	22 9	57	17 0	1600	3040	5720	34 3	1377	1196	987		72		23 2	23 8	313	0 0 36
09/14/94	15 57	458 6	22 8	57	17 Q	1608	3030	5500	35 5	1360	1179	974		73		23 8	24 6	32 2	0 021
09/15/94	15 27	463 7	22 8	57	17.0	1596 1590	2978 2986	5500 5540	35 9 37 1	1320	1140	931		73		24 5	25 3	34 6	0 024
09/15/94 09/16/94	16 01 15 12	464 3 475 2	23 0 23 1	57 57	17 O 17 O	1590	2996	5510	377	1320 1266	1140 1090	934 891		73 7.3	•	24 7 24 9	25 4 26 7	347 358	0 022 0 022
09/16/94	15 51	475 9	22 8	57	17.1	1571	2963	5440	37 0	1272	1094	891		7.4		25 2	26 4	347	0 020
09/21/94	12 47	468 3	22 7	57	17 0	1585	3010	5390	38 2	1301	1121	915		73		25 4	26 0	31 0	0 032
09/21/94	14 23	489 9	22 9	57 57	17.0	1584 157 1	3000 3000	5540 5400	39 0 39,3	1261	1083	881 680		72		26 0	26 9	33 0	0 030
09/23/94 09/23/94	14 49 15 55	500 8 501 9	22 8 22.9	57	17.1	1576	3010	5530	40.4	1261 1259	1082 1079	877		7.3 7.4		26.4 26.8	27 1 27 4	32 8 31 8	0 029 0 029
09/26/94	15 28	510 2	23 2	57	17 0	1587	3030	5450	38 5	1330	1142	929		7.4		25 3	260	31 1	0.048
09/26/94	15 50	5107	23 0	57	17.0	1586 1604	3030 3040	5480 5600	39 1 39.0	1310	1128	924	-	74		25 4	26 1	31 5	0 046
09/27/94	15 52	523 9	22 7	57 57	17 0 17 0	1569	3080	5630	38.0	1264 1373	1054	882 972		73		26.3	27 0	34 9	0 038
10/03/94 10/03/94	10 43 14 00	534 3 537 6	22 7 22 9	57	17 0	1586	3070	5590	37 8	1373	1183 1150	972 952		74		24 7 25 1	24 5 25 1	16 8 21 2	0 035 0.032
10/03/94	15 00	538 6	22 7	57	17.0	1589	3070	5600	38 0	1345	1159	952		7.3		25 2	25 2	217	0 028
10/03/94	16 00	539 6	22 9	57	17 0	1592 1573	3070 3030	5600 5640	389 31.1	1340	1154	947		73		25 3	25 3	218	0 026
10/04/94	14 32	546 6	22 9	57	17.0 17.0	15/3	3030	57 10	30.4	1556	1362 1351	1141 1135	71 71		72		20.4	16 2	0 064
10/04/94 10/04/94	15 58 16 08	547 7 548 2	22 9 22 5	57 57	17.0	1570	3030	5670	30.6	1542 1533	1343	1135	77		72		20 4 20 5	16 3 16 5	0 050 0 049
10/10/94	15 00	589 8	23 2	57	17.0	1526	2888	5260	29.2	1434	1239	1016	77		7.2		23 1	316	0.075
10/10/94	15 45	590.6	23 1	5.7	17.0	1535 1511	2916 2889	5340 4760	30.0 32.6	1401	1209	998	77		7.2		22 8	31.4	0 090
10/11/94	15 20	601.4	22 9	57 57	17.0 17.0	1515	2003	5490	32.9	1394 1387	1202 1195	988 983	77		72		23 4	29.3	0 153
10/11/94 10/12/94	16 00 15 00	602 0 613 2	22.9 23.0	57	17.0	1514	2912	5370	33.4	1393	1199	988	78		72		23 7 23 7	29 3 28 1	0.116 0.058
10/12/94	15 37	613 8	23 2	57	17.0	1515	2920	5430	35.4	1391	1196	983	7 6		71		23 9	27 7	0.056
10/14/94	14 34	636 7	23.0	57	17 0	1452	2816 2815	5170 5280	32.6 32.8	1446	1244	1028	78		74	22 3	22 3	20 8	0 061
10/14/94	15 40	637 3	23.0	57	17.0 17.0	1452 1452	2813	5230	32.9	1436 1439	1235 1237	1020 1022	78		73		22 5	20 4	0.055
10/14/94 10/17/94	16 01 15 12	637 7 649 0	23 0 22 6	57 57	17.0	1456	2800	5120	26 7	1657	1450	1224	78		73		22 5 17 2	198 235	0 056 0.054
10/17/94	15 40	649.4	22 9	57	17 0	1455	2808	5230	27.1	1656	. 1448	1221	78	73	72		17 3	23 6	0 051
10/18/94	15 19	660 6	22.9	57	17.0	1458	2805 2818	5130 5370	27.5 28.0	1606	1400	1176	78		7 2		18 2	25 4	0 044
10/16/94	15 41	660 9	230	57 57	17 0 17.0	1461 1458	2818	5300	28.0	1604 1541	1397 1337	1173 1118	79		72		18 3	25 1	0 043
10/19/94 10/19/94	15 07 15 53	672 6 673 4	23 0 22 8	57	17.0	1458	2817	5350	29.6	1541	1337	1118	7.8		72		195 196	25 8 25 9	0 042 0 041
10/19/94	15 55	6737	23 1	57	17 0	1460	2817	4900	29.7	1539	1334	1113	78		72		197	25 9	0 041
10/21/94	14 06	687 4	23.2	57	17 1	1442	2797 2793	5340 5300	31.4 30.8	1508	1300	1080	80	7.1	72	20 0	20 4	26 1	0 030
10/21/94	14 54	688 2	23 0	57 57	17 0 17 0	1444 1445	2793	5370	32.2	1485	1283	1065	80	72	72		20 9	27 0	0.030
10/21/94 10/24/94	15 56 16 00	689 2 695 6	23.1 22.6	97 5.7	17 0	1442	2793	5370	24 0	1472 1535	1267 1330	1050 1111	80		71		21 2 19 3	27 1 16 7	0 030 0 130
10/25/94	13 53	707.3	22 8	57	17 0	1448	2822	5130	29 4	1545	1338	1118	77		74	190	19.4	23 0	0 077

Desal-3LP Element Test Data - Continued

.

		Elapsed Time	Feed	Reject	Permeate	Feed	Conducti Interstage (uS/cm)	vities Reject (u5/cm)	Permeate (uS/cm)	Feed (kPa)	Pressure - Interstage (kPe)	Reject (kPa)	Raw Feed	pH RO feed	Reject	Raw Feed (deg C)	Temperature RO Feed (deg C)	Amblent (deg C)	Turbidity Filter Effi. (ntu)
Date	Time	(hours)	(Umin)	(Umin)	(Umin)	(uS/cm)	(uavem)	(uoreni)	(action)			•							
10/25/94	15 00	708 4	22 6	57	17.0	1448	2812	5370	30.1	1534 1532	1329	1110 1109	78 78	73	73	19-3 19-6	196 199	23 7 23 0	0.069 0.067
10/25/94	16 10	709 6	22 8	57	17 1	1450	2823	5370 5430	340.7 340-8	1532	1326 1319	1100	78	72	72	19.6	20 0	22 4	0.064
10/25/94	16 51	710 2	22 9	57	17.0 17.0	1450 1444	2831 2824	5360	30 2	1451	1249	1038	17	72	7 2	20 8	21 2	26 1	0.068
10/26/94	15 54	719 5	23 0 23 1	57 57	17.0	1444	2822	5240	31.0	1450	1248	1030	78	72	72	21.0	21 3	27.6	0 066
10/26/94 10/27/94	18 23 15 43	720 0 731 9	22 7	57	17.0	1442	2786	5060	34 5	1406	1206	993	7.6	73	72	21 5	22 2	29.0	0 056
10/27/94	16 41	732 8	22 9	57	17.0	1450	2802	5270	35.6	1404	1203	991	7.8	1.2	71	219	22.5	29.5	0 055 0 065
10/28/94	15 00	743 3	22 7	57	17.0	1442	2791	4990	337	1395 1403	1 195 1 196	982 980	78 7.7	7 2 7 2	73	22 1 22 3	22.6 22.8	28 2 28.0	0.063
10/28/94	15 45	744 1	22 9	57	17.0	1447	2797 2759	4750 5170	348 311	1544	1338	1117	77	71	70	18 5	19.1	25 7	0.064
10/31/94	15 23	755 5	22 9	57	17.0 17.0	1434 1437	2765	4710	31.2	1530	1325	1106	7.7	72	7.0		19 3	24 9	0.061
10/31/94	15.51	756.0 766.5	22.8 22.9	57	17.0	1430	2771	4670	30 3	1509	1305	1089	7.8	72	7.2		19 6	25 7	0.055
1 1/01/94 1 1/01/94	16 04 16 27	766.9	22.8	57	17.0	1431	2777	5210	30.6	1516	1310	1093	7.8	7 2	7.2		19.6	25.4	0.056
11/03/94	15 06	778 0	22.6	57	17.0	1433	2807	5180	27.3	1704	1493	1268	7.9	73	7.1	16 4 16 4	16.2 16.1	12 3 12 4	0.044 0.041
11/03/94	16 09	779 0	22 7	57	17 0	1433	2808	5140	27.2	1706 1743	1496 1530	1272 1303	7.9 7.8	73	7.1		15.5	12 4	0.057
11/04/94	15 49	789.7	22.6	57	17.0	1407	2744 2729	5010 5110	25 1 28.6	1743	1581	1353	7.8	7.1	6.8		14.0	16.7	0.038
11/07/94	15.21	802.0	22.6	5.7	17.0 17.0	1402 1418	2773	5210	26.0	1808	1593	1364	7.8	7,1	6.8		14.0	14.5	0.036
11/07/94	16 28	803 1	22.7 22.7	5.7 5.7	17.0	1398	2725	5070	28.5	1724	1511	1284	7.9	7.2	6 9		15 0	20.4	0.030
1 1/09/94 1 1/09/94	14 04 14:48	813.4 814.1	22 9	57	17.0	1407	2744	5100	29.2	1722	1509	1283	7,9	7.4	68		15 1	20.3	C 030
11/09/94	15 50	815.2	22 7	5.7	17.0	1417	2755	5160	29.1	1722	1507	1281	79	71	6.8		15 3	19.3	0 030
11/14/94	15 07	829.0	23.1	5.7	17 Q	1421	2748	5200	27.5	1717	1502 1487	1272 1258		6.6 7.0	67 66		153 156	19.2 16.8	0.125 0.082
11/14/94	16 03	829.9	22 7	5.7	16.9	1415		5180 5000	28.8 24.9	1700 1900	1682	1448		7.2	66		12 2	19.3	0.053
11/15/94	14 52	836.8	22 7	57		1393 1408	2697 2721	5130	24.7	1903	1685	1443		7.4	68		12 2	17 5	0.054
11/15/94	16 00	B38 0	22.6 22.7	57 57	16.9 16.9	1406		5160	24.5	1901	1685	1453		7.4	6.8		12 3	16 1	0.056
11/15/94 11/16/94	16.31 14 29	838.5 848 7	22.6	5.7		1412		5250	23.2	1920	1703	1473		7.2	7.0		12 1	14.0	0.053
11/16/94	14 56	849,1	22.6	57		1410		5316		1913	1695	1463		74	7.0			14.2	0 053
11/16/94	15 58	850 1	22.4	5.7	17.0	1410		5220	24.5	1930	1714	1482		7.3	7.0			13 2	0 053 0 056
11/21/94	15 27	872.7	22.6	57		1441	2250	4370	17.7 19 0	1981 1991	1759	1526		7.2	7.0			17 8 16 2	
1 1/2 1/94	16 02	673 2	22.7	57		1143 1130		4630	13.7	1780	1564	1336		7.3	7.3			18 9	0 063
11/22/94	14 54	884.0	22.6	57 57		1137	2249	4370		1739	1525	1300		7.4	7.1		14 8	18.7	0.067
1 1/22/94 1 1/22/94	15 39 16 37	884 5 885 7	22.7	57		1140		4370		1729	1516	1293		7.3	7.0			16 1	0.067
1 1/24/94	15 12	896.0	22.8	5,7		1122		4300		1723	1511	1284		7.2	70			21.0	0.079
12/24/94	15 51	896 7	22.8	57		1130		4310		1726	1512	1284		73	6.9			19.2	
1 1/28/94	15 42	908-1	22 5	57		1106		4170 4290		1997 1999	1778 1760	1545 1547		7.2 7.2	7.0 7.0			16.9 15.9	0,158
11/26/94	15 06	908.5	22 5	5.7		1108		4190		1883	1666	1430		7.1	6.7			18 1	0 129
1 1/29/94 1 1/29/94	15-55	920.2 920.5	22.8 22.8	57		1114		4160		1884	1669	1438		7.3	6.5			17.3	0,128
11/30/94	16-12 14-56	920.5	22.8	57		1128	-	4240	27.4	1401	1198	980		7.4	6.9			22.4	
1 1/30/94	15 55	933.0	23.1	5.7		1125		4090		1388	1187	973		7.0	6.9			21.9	
12/01/94	15.47	941.2	22.8	57		1122		3790		1554	1346	1121		7.2	7.0			20.6 18.0	
12/01/94	16 23	941.8	22.9	57		1129		4170 4230		1560	1351 1422	1125			6.8 7.2			15.5	
12/05/94	15.46	953.2	23.0	57		1 1 3 9 1 1 4 8		4370		1611	1403	1179			7.1			14.7	0 252
12/05/94 12/06/94	16.15	953.7 965.2	22.8 23.0	5.7 5.7		1152		4200		1689	1478	1251	7.7	71	7.0		14.7	14.9	
12/07/94	14 54 13 33	905.2	23.0	5.7				4260	23.4	1593	1365	1141			7.1			14.5	
12/07/94	15:06	975.0	23.0			1120		4190		1576	1366	1142			7.0			16.0	
12/07/94	16 11	976.0	22.9	57		1122		4170		1569	1360 1438	1137 1212			7.0			14.5 14.3	
12/08/94	15.35	982.9	23.5			1161		4250 4310		1648 1665		1212			8.8 6.8			14.3	
12/08/94	16.28	983.8	23.1	5.7		1158		4300		1841	1626	1390		7.6	0.6			14.1	0.496
12/12/94 12/14/94	16 05 14 01	992.7 995.6	22.5 22.6			1140		4310		1812	1597	1366		7.4	7.2			13.5	
12/14/94	14-01	995.0 996.6	24.1	5.7		1143		3980		1803	1587	1354			7.1			14.5	
12/14/94	16 29	998,1	22.9			1148		4210		1780	1565	1336			7.0			12.2	
12/19/94	15 53	1004.6	22.7	57	17 0	1179	2315	4230	32.1	1323	1104	912	7.9	69	6,9	1 22 9	23.0	12.5	0 276

APPENDIX G

Analytical Data for the Desal-3LP Element Testing

Analytical Data for the Desal-3LP Element Testing

				5-Hour 7/22/	Data 94			523-Hou 9/27/				996-Hoi 12/1		
			RO Feed	Interstage	Permeate	Reject	RO Feed	Interstage	Permeate	Reject	RO Feed	Interstage	Permeate	Reject
CATIONS														
Calcium	Ca	mg/L	95	190	<1	408	83	169	<1	308	59	107	<1	198
Magnesium	Mg	mg/L	17	32	<1	68	17	34	<1	62	11	21	<1	40
Sodium	Na	mg/L	210	395	4	810	210	360	6	780	168	305	2	540
Potassium	к	mg/L	7	13	<1	29	8	14	<1	28	6	12	<1	19
Aluminum	Al	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Barium	8a	mg/L	<0.1	0.2	<0.1	0.3	<0.1	<0.1	<0.1	0,1	<0.1	<0,1	<0.1	0.1
Strontium	Sr	mg/L	0.6	1.1	<0.1	2.5	0.5	1.1	<0.1	2.0	0.5	0.9	<0.1	1.6
kron	Fe	mg/L	0.21	<0.02	<0.02	<0.02	0.73	0.02	<0.02	0.03	0.24	<0.02	<0 02	<0.02
Manganese	Mn	mg/L	0.15	0.03	<0.01	0.06	0.08	0.03	<0.01	0.04	0 02	0.01	<0.01	0.02
Phosphorus (total)	Р	mg/L	0.15	0.6	<0.05	1.3	0.35	0.55	<0.05	0.9	<0.05	0.4	<0.05	0.75
Boron	8	mg/L	1.0	1.6	0.6	2.3	1.1	1.6	0.7	2.0	1.0	1.7	0.6	2.5
Copper	Cu	µg/Ł	-	•	-	-	3.3	2.3	3.8	3.1	1.3	1.0	<0.4	2.4
Selenium	Se	µg/L	-	-	•	-	1.0	2.6	<0.5	4.8	2.2	3.1	<0.4	6.4
Mercury	Hg	µg/L	-		-	-	<0.2	<0.2	<0.2	<0.2	0.2	<0.2	<0.2	<0.2
ANIONS				(00	_									
Bicarbonate	HCO3	mg/L	88	186	9	113	101	159	6	317	1 10	171	3	296
Carbonate	CO3	mg/L	9	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Chloride	CI	mg/L	270	500	5	1100	260	500	7	1000	190	330	3	580
Sulfate	SO4	mg/L	290	560	2	1200	290	540	<1	1100	220	450	0.6	770
Flouride	F	mg/L	0.8	0,9	<0.1	2.3	0.5	0.8	<0,1	19	0.7	0.6	<0 1	2.1
Nitrate	NO3	mg/L	1.3	2.6	<0.1	4.9	1.8	3.5	<0.1	6.2	3.5	5.8	07	11.1
Ndrite	NO2	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ammonium	NH4+	mg/L	<0.1	0.3	<0.1	0.9	<0.1	0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1
Inorganic N (total)	N	mg/L	0.3	0.6	0.0	1.8	0.4	0.9	<0.1	1.7				
Silica (total)	SiO2	mg/L	24	45	<1	95	18	36	<1	70	18	34	<1	65
Silica (dissolved)	0.01	mg/L	24	38	<1	84	18	32	<1	70	18	33	<1	56
Total Organic Carbon	тос	mg/L	<1.0	1.7	<1.0	2.9	<1.0	1.3	<1.0	23	<1.0	1.3	<1.0	1.8
Heterotrophic Plate Count	HPC	cfu/mL	>5700	3021	76	>5700	2380	1468	197	2452	2380	208	14	741
Alkalinity	as CaCO3	mg/L	88	153	8	93	83	130	5	260	90	140	<3	243
Hardness	as CaCO3	mg/L	309	609	<3	1300	279	564	<3	1030	194	355	<3	662
Specific Conductance	Reported	µS/cm	1430	2900	33	5600	1490	3000	40	4600	1100	1880	18	4100
Total Dissolved Solids	Reported	mg/L	940	1900	15	3770	990	1760	30	3780	720	1330	15	2270
Total Dissolved Solids	Summation	mg/L	990	1883	21	3742	978	1789	24	3616	774	1410	10	2470
pН			83	7.7	6.4	7.8	8.2	8.0	6.8	7,9	8.2	7.9	5 .5	8.0
Turbidity		กใน	1.4	0.3	0.1	0.5	6.8	0.3	0.2	0.2	3.0	0.15	0.1	0.1
Cations		meq/L	15.79	30 20	0,34	62.84	15.30	27.81	0 46	55.87	11.61	21.20	0.25	38.00
Anions		meq/L	15.46	28.90	0.33	58.07	15.08	28.05	0.30	56.51	11.84	21.61	0 16	37.53
Ratio Calions Anions		•	1.02	1.04	1.03	1.08	1.01	0.99	1.54	0 99	0.98	0.98	161	1 01

APPENDIX H

Proposed Saline Marsh Monitoring Program

Proposed Saline Marsh Monitoring Program

(July 5, 1994)

STUDY I. Bioproductivity: Sustaining Habitat With A Reverse osmosis Reject Stream

- 1. NBS · botanist will monitor plant growth quarterly
- 2. District personnel Will monitor plant growth weekly in both the control and experimental saline marshes. Written observations are to placed in both an Observation Bound Notebook and Observation Form. Copies of the Observation Forms are to be submitted monthly to the Wetland's Project Manager. If possible, the different species plant growth are to be measured weekly. Observation from plant growth by species will be ranked as follows:

Plant Health Rating Scale from USBR

0 = No effect

- 4, 5, 6 = Severe symptoms of conditions 1, 2, 3 and Possibility of some upper stem injury
- 7 = Severe 1, 2, 3 symptoms plus 50 percent (%) stem injury
- 8 = Severe 1, 2, 3 symptoms plus rhizome and stem injury; stem usually 75 percent (%) dead
- 9 = Upper leaves and stem dead except for remaining 4 to 5 cm above soil; strong possibility of severe rhizome damage
- 10 = Plant dead

Also, weekly Polaroid photographic records will be taken at eight (8) locations, and the photographs are permanently placed in a Photo-Logbook. In Figure 1, letters mark the photographic locations. On the photographs will be written the date and photographic location. In addition, monthly photographs on slide film will be taken at the same eight (8) locations as mentioned previously. Significant changes in plant health will also be photographed on slide film.

- Annually, benthic invertebrates are to be collected, counted 3. and identified, by USBR, District personnel and/or outside benthic invertebrate specialist (if funds are available). In both the control and experimental saline marshes, ten (10) random subsamplings will be collected into a large flat pan to form a composite sample. The random subsamplings will use either a core sampler or Petersen grab sampler. From the composite Sample, grids are placed and all benthic organisms within a grid are removed for counting and identification. This is done either by sifting through the sediments or utilizing a series of seives. Grids will be randomly selected until at least one hundred (100) organisms have been obtained from the composite sample. The benthic organisms are to be preserved in formalin, Lugol's solution or some other preservation media for later identification. These organisms are to be classified by family and/or genus. A diversity index will be used to quantify the biological information in both the control and experimental saline marshes.
- 4. Wildlife and other general observations, such as weather, are to be written daily in the Observation Bound Notebook and summarized weekly on the Observation Form. Again, the Wetland's Project Manager will receive monthly copies of the Observation Forms.

STUDY II. General Rater Quality And Accumulation of Toxics In Saline Marshes Sustained With A Reverse Osmosis Reject Stream

Semi-annually, water quality parameters will be measured by analyzing five (5) grab samples in the Saline Marshes. The five (5) sample locations are shown in figure 1, location #1, 4, 5 & 8 and the reject stream. Parameters to be measured will include:

> General Minerals - Ammonium (NH₂), Ammonia-N (NH,-N, Calcium (Ca), Magnesium (Mg), Potassium (X), Sodium (Na), Bicarbonate (HCO,), Carbonate (CO,), Hydroxide (OH), Chloride (Cl), Fluoride (F), Nitrate (NO,), Nitrate-N (NO,-N), Sulfate (SO,), Hardness (Hard), Total Dissolved Solids (TDS), Conductivity (EC), Boron (B) and pH

Miscellaneous - ortho-Phosphate (o-PO,), Total Phosphate-P (Total PO,-P), Suspended Solids (TSS), & Sodium, and Sodium Adsorption Ratio (SAR) Metals - Aluminum (Al), Antimony (Sb), Arsenic (As), Barium (Ba), Beryllium (Be), Cadmium (Cd), Total Chromium (Total Cr), Cobalt (Co), Copper (Cu), Iron (Fe), Lead (Pb), Manganese (Mn), Mercury (Hg), Nickel (Ni), Selenium (Se), Silver (Ag), Thallium (Tl), Zinc (Zn), and Boron (B)

If funding is available, Mercury (Hg), Selenium (Se), Copper (cu) and Boron (B) will be monitored more frequently (preferably, monthly) at the five (5) sampling sites mentioned above.

- 2. Conductivity (EC) and Temperature (and TDS by estimation) are to be monitored weekly at nine (9) sampling sites, locations #1 thru 8 in Figure 1 and the Reverse Osmosis (R.O.) reject line.
- 3. Monthly, Total Dissolved Solids (TDS @ 180°C) is to be monitored at nine (9) sampling sites , locations #1 thru 8 in Figure 1 and the Reverse Osmosis 'R.O.) reject line.
- 4. Annually, composite soil samples of the inlet and outlet of the Control and Experimental Saline Marshes (location #1, 4, 5, & 8 of Figure 1) are to be analyzed for metals (see above STUDY II Paragraph 1 "Metals"). At each sample location, a minimum of three (3) soil grab samples, 0-3 inches in depth using a core sampler or a Petersen grab sampler, are to be taken across the width of the marsh. These samples are then composited, in a large glass beaker, as one sample for each site. In addition to the "Metals" analyses, the following constituents will be tested for the soil samples.

Particle-size analysis (PSA), pH, Conductivity (EC), Sodium Adsorption Ratio (SAR), Cation Exchange Capacity (CEC), and Organic Matter Content

- 5. Annually, the primary species of plants (stems, tubers and leaves) are to be collected, marked and analyzed by an outside contract laboratory for toxic accumulation, specifically Metals (see above STUDY II Paragraph 1 "Metals"). A minimum of two (2) grams (dry weight) of plants are needed for analysis, however, five (5) grams (dry weight) will be optimal. Estimated wet weight needed will be approximately one hundred (100) grams.
- 6. Annually, the benthic invertebrates in the saline marshes are to be collected randomly (see above STUDY I Paragraph 3) and sent to an outside contract laboratory for analysis of Metal accumulation (see above STUDY II Paragraph 1 "Metals") . In addition to the collection of the benthic organisms, rinsing and purging are required for sample

preservation. Again, a minimum of two (2) grams (dry weight) of benthic invertebrates are needed for analysis, however, five (5) grams (dry weight) will be optimal. Estimated wet weight needed will be approximately one hundred (100) grams. Once this is collected, the <u>live</u> benthic organisms are rinsed with filtered ambient water and held in a beaker with the filtered ambient water for four (4)to six (6) hours. This time period allows for ingested materials to be purged from the benthic organisms. After the purging period, the ambient water is drained. Again, a final rinse is done with filtered ambient water and drained.

7. Flows will be monitored daily for the control and experimental saline marshes. Flow data will be recorded in the Observation Bound Notebook, and weekly summarized on the Observation Form. Monthly, the Wetland's Project Manager will receive copies of the Observation Forms.

STUDY III. controlling Wildlife Use of Evaporation Ponds.

1. Observations are to be made daily of wildlife use in the marshes or evaporation **cellss** and recorded in the Observation Bound Notebook. Weekly, the daily observations are to be summarized on the Observation Form. Also, a detailed weekly observation shall include signs of wildlife use such as tracks and **droppings** and be written down in both the Observation Bound Notebook and Observation Form. Again, the Wetland's Project Manager will receive monthly copies of the Observation Forms. Photographic records are to be kept of any significant findings, and the photographs will then be kept in the Photo-Logbook. On the photographs, the date, time and description of the photographs will be written down.

STUDY IV. The Presence Of **Toxics** In Evaporation Pond Concentrate.

- 1. Semi-annually, the water in the evaporation cells is to be sampled for metals (see above STUDY II Paragraph 1 "Metals") . A grab sample shall be taken at location I and II in Figure 1.
- 2. In addition, weather characteristics such as rainfall and evaporation (from the evaporation pan) are to be observed daily and written down in the Observation Bound Notebook. Weekly, the weather characteristics are to be summarized in the Observation Form, and monthly, copies sent to the wetlands Project Manager.

4

Proposed Saline Marsh Monitoring Program Summary

Daily

1. Wildlife and other observations such as weather, flow data, and pan evaporation rate are to be observed and written in the Observation Bound Notebook.

Weekly

Wildlife and other observations such as daily flow data, 1. weather, pan evaporation rate, are to summarized on the Observation Form.

2. Photographic records are to be taken of the Saline Marshes from eight (8) locations (see figure 1, A thru H), and the photographs are to be permanently placed in a photo-logbook.

3. Detailed wildlife use observations of the Saline Marshes and Evaporation Ponds and are to be written in the Observation Bound Notebook and Observation Form.

4. EC and Temperature (and TDS by summation) are to be monitored at locations #1 thru 8 in Figure 1 and at the R.O. Reject line.

Monthly

1. Copies of the Observation Forms are to be submitted to Wetland's Project Manager.

TDS @ 180°C are to be monitored at location #1 thru 8 in 2. Figure 1 and at the R.O. Reject line.

Slide photographes are to be taken of the Saline Marshes 3. from eight (8) location (see figure 1, A thru H), and the slides are to be stored in the photo-loqbook.

4. Five (5) grab samples (see Figure #1, 4, 5 & 8 and reject stream) will be monitored for Selenium (Se), Mercury (Hg), copper (Cu) and Boron (B) -- optional.

Quarterly_

NBS / botanist 1. will monitor plant growth. Dates: unknown

Semi-Annually 1 Five (5) grab samples (water) from the Saline Marshes (see Figure 1, \$1, 4, 5 & 8 and reject stream for sample locations) will be sampled for General Minerals, Metals and other constituents.

Dates: June 30th and January 30th

2. Two (2) grab samples (water) from the Evaporation Ponds (see Figure 1, I & II for sample locations) are to be sampled and analyzed for Metals. Dates: June 30th and January 30th

Annually

1. From ten (10) random subsamples collected to form a composite sample, benthic invertebrates are to be collected and split. One hundred (100) random specimens are to be preserved in preservation media and identified -- optional. For the other split, approximately one hundred (100) grams (wet weight) of specimens will be sent to an outside laboratory for Metals analyses. Dates: June 30th

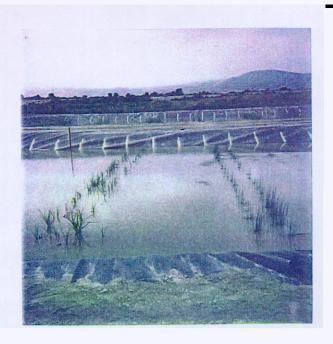
2. Four (4) composited sediment sample are to be analyzed for Metals (see figure 1, #1, 4, 5 & a for sample location. In addition to Metals analyses, Particle-Size Analysis (PSA), pH, Conductivity (EC), Sodium Adsorption Ratio (SAR), Cation Exchange capacity (CEC) and Organic Matter Content will be analyzed. Dates: June 30th

3. A minimum of two (2) grams (dry weight) for each plant species are to be collected and **sent** to an outside laboratory for Metals analyses. Dates: June 30th

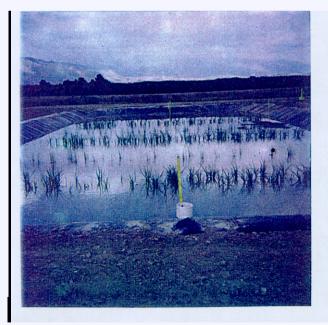
<u>Notes</u>

 If samples are to be held overnight, samples are to be preserved according to either the contract laboratory's preservation procedure or 18th Edition of Standard Methods.
 Dates are approximate days to sample.

HWORDPROCHWPARES DEVILEHISALENE2

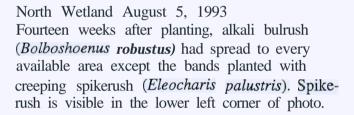

APPENDIX I

Pictorial Illustration of the Vegetation Establishment in the Saline Vegetated Wetlands through the Study Period


The following series of pictures show an abridged progression of the plant growth and establishment from May 1993 through August 1995. Photographs were taken by Ms. Stella Denison, EMWD biologist, and Ms. Joanna Crombie, EMWD Water Quality Specialist.

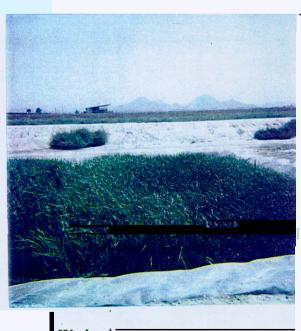
North Wetland • May 25, 1993 One month after planting. Four salinity tolerant species were planted in horizontal bands across the cell repeated three times to expose the plants to different positions along the salinity gradient.

South Wetland - May 25, 1993 One month after planting. Four salinity tolerant species were planted in horizontal bands across the cell repeated three times to expose the plants to different positions along the salinity gradient.



North Wetland - May 25, 1993 Same as above. Picture taken from west end.

South Wetland - May 25, 1993 Same as above. Picture taken from east



South Wetland August 5, 1993 Fourteen weeks after planting, alkali bulrush (*Bolboshoenus robustus*) had spread to every available area except the bands planted with creeping spikerush (*Eleocharis palustris*). Spikerush is the band in the center of the photo

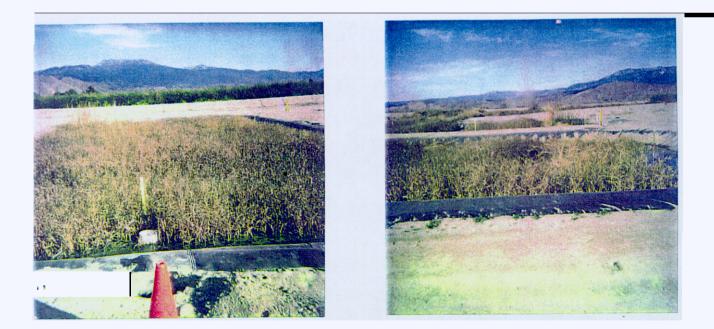
North Wetland - August 5, 1993 Same as above. Picture taken from west end. Only alkali bulrush is visible.

South Weitanu August 5, 1993 Same as above. Picture taken of west end. Spikerush is visible in band along left side of photo.

North Wetland • October 4, 1993 Over five months after planting, older alkali bulrush is browning due to cooler temperatures.

South Wetland - October 4, 1993 Over five months after planting, older alkali bulrush and spiketush are browning due to cooler temperatures and saline conditions.

North Wetland - October 4, 1993 Same as above, Picture taken from west end. Cattail (*Typha spp.*) recruits are visible in the left background.


South Wetland • October 4, 1993 Same as above.. Picture taken of east end. Spiketush is visible in left foreground, cattails are visible in left background, and younger, greener alkali bulrush is visible in left middle-ground.

North Wetland January 10, 1994 Eight months after planting, the majority of vegetation has senesced due to the colder temperatures. Picture taken from east end.

South Wetland January 10, 1994 Eight months after planting, the majority of vegetation has senesced due to the colder temperatures. Picture taken of east end, looking south.

North Wetland - January 10, 1994 Same as above. Picture taken from west end.


South Wetland January 10, 1994 Same as above. Picture iaken of east end, looking north.

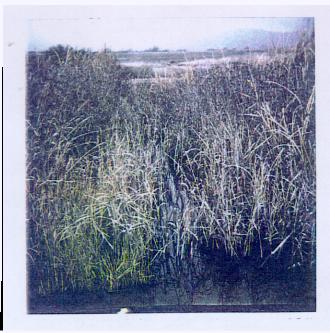
North Wetland - May 27 1994 Thirteen months after planting, the vegetation is lush and green after the spring rains. More cattail plants are visible on right side. A band of lush spikerush is visible on the left.

South Wetland - May 27. 1994 Thirteen months after planting, the vegetation is lush and green after the spring rains and no reject brine flow since February 9, 1994

North Wetland - May 27, 1994 Same as above. Picture taken from east end. Lush spikerush visible in foreground, cattail visible on the right, and alkali bulrush in background.

South Wetland - May 27, 1994 Same as above. Picture taken from east end, looking west. Cattail visible 0n left side. Lush alkali bulrush dominates rest of wetland.

North Wetland - August 26, 1994 Sixteen months after planting, cattail continues to spread. Alkali bulrush is still dominant, while a small spikerush stand is visible in the left foreground.


South Wetland - August 26, 1994 Sixteen months after planting, and five weeks of receiving reject brine flow, the older alkali bulrush plants are browning due to the higher water salinities.

North Wetland - August 26, 1994 Same as above. Picture taken from east end., Lush cattail and alkali bulrush are visible in the foreground.

South Wetland - August 26, 1994. Same as above. Picture taken from east end, looking west. Lush cattail visible on left side. Older alkali bulrush is browning.

North Wetland - January 13, 1995 Twenty and one half months after planting, the vegetation has mostly senesced due to the colder temperatures.

South Wetland - January 13, 1995

Twenty and one half **months** after planting, and almost six months of receiving reject brine flow, the vegetation has senesced due to the colder temperatures.

North Wetland January 13, 1995 Same as above. Picture taken from east end.

South Wetland - January 13, 1995 Same as above. Picture taken from east end, looking west

North Wetland - May 26, 1995 Twenty-five months after planting, the vegetation was lush and green after the spring rains and warm temperatures. Although the three main plant species were still present, cattails were becoming the dominant species.

South Wetland • May 26, 1995 Twenty-five months after planting, and nine months of receiving reject brine flow, the alkali bulrush and cattail came back at densities similar to the previous year. In contrast to the previous year, the plants were browner probably due to the higher water salinities.

North Wetland - May 26, 1995 Same as above. Picture taken from east end. Cattail was becoming the dominant species. A few hardstem bulrush recruits are visible in the left foreground.

South Wetland • May 26, 1995 Same as above. Picture taken from east end. looking west. More cattail are visible. Vegetation was browning due to water salinities.

North Wetland - August 28, 1995 Twenty-eight months after planting, cattail became the dominant species in the cell. High evaporation and low water flow stressed vegetation in the wetland.

South Wetland - August 28, 1995 Twenty-eight months after planting, twelve months of receiving reject brine flow, and high evaporation rates caused browning of the vegetation.

North Wetland - August 28, 1995 Same as above. Picture taken from east end.

South Wetland - August 28, 1995 Same as above. Picture taken from east end, looking west.

APPENDIX J

Electrical Conductivity (EC) and Total Dissolved Solids (TDS) Readings in the North and South Vegetated Wetlands Electrical Conductivity (EC) and Total Dissolved Solids (TDS) Readings In the North and South Vegetated Wetlands

Batto C. D3 Butto P P Butto P P Butto P P P P <th></th> <th></th> <th></th> <th></th> <th></th> <th>- North C</th> <th>eil</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th> South C</th> <th>:eii</th> <th></th> <th></th> <th></th>						- North C	eil								South C	:eii			
Let TD3 LC TD3 <thld3< th=""> <thld3< th=""> <thld3< th=""></thld3<></thld3<></thld3<>		Stat	ion 5	Stat	lon 6	Stat	ion 7	Stat	lon 8		Sta	tion 1	Sta	tion 2	Stat	tion 3		tion 4	
Difficial Derio desc Difficial Case Difficial Difficial Case Difficial	Date			EC	TDS	EC	TDS	EC.	<u>TDS</u>	AVG EC	EC	IDS	EC	IDS	_EC_	<u>TDS</u>	EC	<u>TDS</u>	AVG EC
ortificade 6470 4229 6770 4520 6470 4520 6470 4520 7780 4782 7780 4782 7780 4782 7780 4782 7780 4821 7780 4821 7780 4821 7780 4821 7780 4821 7780 4821 7800 4821 7800 4821 7800 4821 5800	07/13/93	6360	4134	6680	4342	8580	4277	8550	4258	6543	6520								
OTTARA 8250 4283 650 770 6400 9700 6400 5720 8400 9720 8400 9720 8400 9720 8400 9720 8400 9720 8400 9700 <th< td=""><td></td><td></td><td></td><td>6710</td><td>4362</td><td>6570</td><td>4271</td><td>6930</td><td>4505</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				6710	4362	6570	4271	6930	4505										
1777-000 5.00 1380 5.10 342 5203 5501 3422 5203 5501 3422 5403 3562 6213 6423 440 6511 6423 440 6511 6423 440 6511 6423 440 6511 6423 844 6511 6423 844 6511 6423 844 6511 6423 844 6511 6423 844 6511 6423 844 6511 6423 844 6401 844 6401 844 6401 8451 6423 8451 6423 8451 6423 8451 6423 8451 6423 8451 6423 8451 6423 8451 8423 8451 8423 8451 8423 8451 8423 8451 8423 8451 8423 8451 8433 8431 8431 8431 8431 8431 8431 8431 8431 8431 8431 8431 8431 8431 8431		6250	4063	6550															
BADD BADD BADD BADD BADD BADD BADD BADD AL20 AL43 HIB AL31 BADD AL22 BADD AL22 BADD AL22 BADD AL22 BADD AL22 BADD AL23 BADD	07/23/93																		
Book box Corport State																			
Booling Bool Heigh Tool Heigh Tool																			
bit 200 2270 4770 6702 6770 6682 1770 6682 1780 6477 7280 4776 6700 8700 6700 8700																		- + +- +	
Definition 1.480 1.58 4.770 3114 4710 3114 4710 3022 4808 0440 3228 6110 0420 220 4433 2020 6433 6200 6477 6880 7500 3227 6430 6431 6433																			
Definition 3570 252 7740 4692 7740 4698 9760 6444 10021 6514 8530 01/16/64 4500 2833 4190 2744 4300 2834 4100 2745 5200 4775 5200 4775 5200 4236 6500 4226 6500 4276 5500 4226 5500 4226 5500 4226 5500 4226 5500 4226 5500 4226 5500 4775 5500 4505 5500 4226 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 5500 4505 4500 4500 4500 4505																			
111024 3300 2275 9800 2470 9800 2824 4200 2825 4275 9800 270 6403 6500 4225 6500 4225 6500 4225 6500 4225 6500 4225 6500 4225 6500 4225 6500 4225 6500 4225 6500 4255 6500 4225 6500 4265 6530 4265 6530 4265 6530 4500 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7680</td><td>4992</td><td>7840</td><td>4966</td><td></td><td>6494</td><td>10021</td><td>6514</td><td>8833</td></t<>											7680	4992	7840	4966		6494	10021	6514	8833
1/12/104 1000 2833 4190 2724 4390 2824 4275 9800 9776 4400 9700 4385 9800 4537 5530 3775 5530								4250	2783	3875	5200	3380	6250	4063	6500	4225	8500	4225	6113
0172844 540 3573 5170 2500 1375 5170 1370 5500 1375 5700 1376 1375 1370 1375 1370 1375 1370 1375 1370 1375 1370 1375 1370 1375 1370 1375 1370 1375 1370 1375 1370 1375 1370 1375 1370 <						4360	2834	4500	2925	4275									
150 100 <td></td> <td>5525</td>																			5525
00110+ 1650 1073 1860 1170 1950 1288 1910 2200 1645 2000 2000 3150 2200 1645 2000 1650 2400 1500 2400 1500 2215 2300 1645 2200 1645 2200 1645 2200 1645 2200 1645 2200 1645 2200 1645 2200 1645 2200 1645 2200 1645 2200 1645 2200 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1645 2000 1640 2000 1640 2000 1640 2000 1640 2000 1640 2000 1640 <	02/24/94																		
331964 200 1465 2400 1960 2400 1960 2400 1960 2400 1960 2400 1960 2400 1960 2730 4400 2000 1065 2000 4465 2000 1465 2000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
COLZEGNA 1430 1430 1100 1170 1700 1100 1750 1138 1175 2300 1465 1100 1750 1138 2300 1450 1170 1580 1100 1770 1580 1100 1700 1100 1700 1100 1700 1100 1700 1100 1700 1100 1700 1100 1700 1100 1700 1100 1700 1100 1700																			
Outcode (H1996) 1200 1235 2200 1436 2125 2800 1820 2800																			
Del 1994 BS0 B18 1800 1170 2200 1923 1920 1923 1920 1923 1920 1923 1920 1923 1920 1923 1920 1923 2200 1923 2200 1923 2200 1923 2200 1923 2200 1925 2200 1925 2200 1925 2200 1925 2200 1925 2200 1925 2203 1926 1926 1925 2303 <																			
CALZTORAL SSG S																			
C5C0094 1550 1008 2200 2800 2800 2470 2800 2470 2700 2700 2700 2700 2700 2700 2700 2700 2700 1738 2200 1480 1707 1738 2200 1450 1203 1800 1770 1738 2200 1450 1203 1800 1273 1800 1770 1738 2200 1450 1203 1800 1273 1800 1770 1738 2200 1430 2201 1430 2200 1430 2200 1430 2200 1430 2200 1430 2200 1430 2200 1430 275 2300												488	1600						
Doc Doc DB3 1000 1000 1000 11000 1100 1100 1			1008	3200	2080	2900	1885	2900	1885	2638					3800	2470		2470	
000 500 520 1450 943 2700 1785 1993 1780 1130 2200 1430 3300 2145 2313 0041084 1100 1170 2000 1300 2200 1430 2300 2145 2403 3000 2145 2403 3000 2145 2400 1560 2100 1302 2200 1430 2300 1425 2400 1560 2100 1300 2145 2400 1560 2400 1560 2400 1560 2400 1560 2400 1580 2500 1625 2400 1580 2500 1690 2500 1690 2500 1690 2500 1690 2500 1690 2600 1690 2600 1690 2600 1690 2600 1690 2600 1690 2600 1600 1750 2600 430 6400 4160 500 3835 6200 430 6400 4160 6000 2600 </td <td>05/13/94</td> <td>1600</td> <td>1040</td> <td>2100</td> <td></td>	05/13/94	1600	1040	2100															
D01004 1100 715 1200 1975 1800 1170 2100 1986 3300 2146 3000 2275 2875 001704 1850 1203 2000 1300 2400 1560 2103 3000 1925 2400 1560 2500 1923 2400 1960 2103 3000 1985 3000 1985 2000 1923 2400 1960 2200 1426 2400 1960 2200 1923 2400 1983 3301 2101 1985 1983 3101 2101 1985 1983 1073 1983 <td< td=""><td>05/20/94</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	05/20/94																		
D001704 1900 1170 2000 1300 2200 1430 2000 1800 2103 2000 1900 2016 3000 1800 2103 2000 1800 2103 2000 1800 2103 2000 1800 2103 2000 1800 2103 2000 1800 2103 2400 1860 2600 1800 2200 1800 2200 1800 2200 1800 2200 1800 2200 1800 2200 1800 2200 1800 2200 1800 2200 1800 2200 1700 1175 2200 1800 2200 1700 1175 2200 1800 2300 1400 2200 1700 175 2200 1800 2300 1400 2200 1700 1175 1200 175 1200 175 1200 175 1200 175 1200 175 1200 175 1200 175 1200 175 1200 175 </td <td></td>																			
0022/04 1950 1200 1200 1200 1200 1200 1260 1250																			
07.01104 1700 1105 2100 1850 2200 1820 2275 2300 1495 2000 1800 2000 1800 2800 1900 2800 1900 2800 1900 2800 1900 2800 1900 2800 1900 2800 1900 2800 1900 2800 1900 2105 2800 1900 2105 2800 1900 1105 1800 2700 1755 3500 3835 5200 4030 6400 4160 6200 3835 5200 4030 6400 4160 6200 3835 6200 4030 6400 4160 6200 3835 6200 4030 6400 4160 6200 3835 6200 4335 6800 4420 6150 900 900 900 3835 6200 4335 6800 4420 6150 900 900 900 900 900 900 900 900 900 900 900																			
070004 050 018 1150 748 1400 910 1200 7760 1175 1250 813 1300 878 1700 1105 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1688 1073 1686 1073 1686 1073 1688 1073 1680 133 338 6400 4160 225 6500 3335 6200 4030 890 890 425 6800 4203 680 4100 6400 4160 6403 690 4225 6900 4355 6900 4225 6400 4100 6400 660 3900 5500 4225 6400 4100 6400 660												yn ddarddau y gada araanaa							
1950 1268 2200 1430 2300 1495 2000 1300 2213 2700 1755 2000 1755 3100 2016 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>613</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												613							
Operation 4400 280 853 1260 1200 1300 1313 5900 3835 6200 4030 6400 4160 6100 08/22/64 550 326 1250 413 1650 1203 1490 943 975 4600 2990 5900 3835 6200 4030 6400 4160 6225 08/08/04 650 423 1450 943 1250 813 1086 4500 2295 6900 4280 6500 4225 6800 4420 6150 09/1304 400 280 850 553 1250 813 1250 813 1900 3935 6200 4303 6500 4225 6800 4225 6800 4225 6800 4225 6400 4400 6500 4225 6400 4420 6303 6400 4400 580 6402 4475 100444 500 322 1200 780 1200								2600	1690	2263			2800	1820	2700	1755	3100	2015	2825
BR3074 300 228 950 423 1450 943 975 4600 2880 5900 3835 6000 3900 6100 3965 5500 3960 4100 3965 6500 4225 6600 4280 6500 4420 6550 4420 6550 4420 6550 4420 6550 4420 6550 4420 6550 4420 640					553	1950	1268	2000											
00000000 650 422 0000 650 1450 943 1250 613 1088 4500 2225 6600 4280 6700 4355 6800 4420 6150 09/13/04 400 280 953 553 1250 813 1200 780 925 6500 4225 6600 3900 5500 3575 5600 3640 5825 09/20744 500 358 1100 715 1450 943 963 5400 3510 6000 3900 5500 3575 5600 3640 5825 09/27/744 550 358 1100 710 1350 878 1100 6100 3965 6300 4026 6400 4160 8600 4420 6700 4355 6400 1101 450 750 488 583 4000 3126 4100 8600 4420 6700 4355 6700 4355 6700 4355	08/22/94	550																	
09/13/4 400 280 850 553 1250 813 1200 780 925 6500 4225 6200 4030 6500 4225 5400 4180 6400 09/27/04/ 550 358 1100 715 1450 943 903 5400 3510 6000 3900 5500 3575 5900 3640 5825 100/4/44 500 325 1200 780 1250 813 1400 910 1088 6200 4030 6500 4225 6400 4160 6400 10/116/4 450 293 1000 650 1200 780 1202 780 1205 6000 3900 6200 4180 6800 4425 6400 11/016/4 1200 780 1200 780 1202 780 1205 6000 3180 6200 4305 6400 4355 6400 11/016/4 1200 780																			
Op/20144 400 200 900 585 1100 715 1450 943 983 5400 3510 6000 3900 5500 3775 5600 3440 5825 09/20744 550 358 1100 715 1400 910 1350 878 1100 3965 6300 4025 8400 4420 6700 4355 6475 10/11/44 450 293 1000 650 1100 715 1250 813 950 6300 4095 6400 4180 6800 4420 6475 10/11/44 450 293 1000 755 750 488 583 4600 3185 6400 4180 6800 4420 6475 10/18/4 350 228 450 293 700 455 750 488 583 4600 3185 6400 3185 500 320 2475 3100 2475 3100 2475<																			
08/27/04 550 355 100 710 1350 878 1100 8100 3965 6300 4095 8800 4420 6700 4355 8475 100/4/94 500 325 1200 780 1220 813 1400 910 1088 8200 4030 6500 4225 8400 4160 8600 4420 6475 10/11/94 450 283 1000 715 1220 780 1200 780 1025 6000 3900 6200 4030 8700 4355 8700 4355 6400 11/01/94 350 228 450 293 700 455 750 488 563 4900 3185 4900 3185 5000 3250 500 3250 500 3250 500 3250 500 3250 4900 3185 4900 3185 4900 3250 5000 2235 3760 2405 3800 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
Dial Dial Dial Dial Dial Dial Dial Dial Base Base <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																			
10/11/14 450 283 1000 650 1100 715 1250 813 950 6300 4095 6400 4160 6600 4290 6900 4485 6550 10/11/8/4 600 390 1100 715 1200 780 1025 6000 3900 6200 4030 6700 4355 6700 4355 6400 11/01/9/4 350 228 450 293 700 455 750 488 583 4900 3185 5000 3250 5000 3250 5000 3250 4725 11/08/94 1200 780 850 520 800 520 800 283 438 3500 2275 3700 2405 3800 2470 3900 2535 3700 2405 3800 2470 3900 2535 3750 11/28/94 900 585 900 585 900 3600 2240 3800 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																			
10/18/4 600 390 1100 715 1200 780 1025 6000 3900 6200 4030 8700 4355 6700 4355 6400 11/01/94 350 228 450 293 700 455 750 488 583 4000 3185 4800 3120 4900 3185 5300 3445 4975 11/08/94 1200 780 850 553 950 618 1000 650 1000 4000 2400 3185 5300 3445 4975 11/15/94 500 325 350 228 450 293 438 3500 2275 3700 2405 3800 2470 3900 2535 3725 11/22/94 800 520 900 585 900 3600 2340 3800 2470 3900 2535 3700 12/20/94 900 585 900 585 900 3600 2340 3800 2470 3900 2535 3750 12/20/44 960																			
1101/94 350 228 450 293 700 455 750 488 583 4900 3185 4900 3185 5000 3185 5000 3185 5000 3185 5000 3250 5000 3250 4725 11/15/4 500 325 350 228 450 293 438 3500 2215 3700 2405 3800 2470 3900 2535 3700 2405 3800 2470 3900 2535 3700 2405 3800 2470 3900 2535 3700 2405 3800 2470 3900 2535 3700 2405 3800 2470 3900 2535 3700 2405 3800 2470 3900 2535 3700 2405 3800 2470 3800 2470 3900 2535 3750 12006/4 900 585 900 585 900 585 900 3600 2275 3700 2405 3800 2470 3900 2535 3750 12/13/94 950											6000	3900	6200		6700		6700	4355	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							455	750	488	583		3185	4800	3120	4900	3185	5300	3445	4975
11/22/94 800 520 700 455 800 520 900 585 900 3600 2340 3800 2470 3900 2535 3700 2405 3750 11/29/94 900 585 700 455 800 520 800 520 800 3500 2275 3700 2405 3800 2470 3800 2470 3900 2535 3700 2405 3900 2470 3700 2405 3800 2470 3700 2405 3800 2470 3700 2405 3900 2535 3750 12/13/94 950 618 650 553 1000 650 1000 650 950 3500 2276 3700 2405 3900 2535 3750 12/20/94 800 520 850 1000 650 900 585 975 634 969 3600 2470 3900 2535 3700 2405 3900 2535 3750 12/20/94 800 500 933 450 <		1200		850	553	950	618												
11/29/94 900 585 700 455 800 520 800 520 800 3500 2275 3700 2405 3800 2470 3800 2470 3700 12/08/94 1000 650 600 520 900 585 900 3600 2275 3700 2405 3900 2535 3750 12/13/94 950 618 850 553 1000 650 1000 650 950 3800 2470 3700 2405 3900 2535 3750 12/20/94 800 520 800 585 975 634 969 3600 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 <td< td=""><td>11/15/94</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	11/15/94																		
12/06/4 1000 650 600 520 900 585 900 3600 2340 3800 2470 3700 2405 3900 2535 3750 12/13/94 950 618 650 553 1000 650 1000 650 950 3600 2340 3800 2470 3700 2405 3900 2535 3750 12/13/94 950 618 650 553 1000 650 1000 650 950 3600 2340 3800 2470 3900 2535 3900 2535 3750 12/20/94 800 520 850 553 1000 650 1000 650 913 3600 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2435 3800 2470 3800 2435 3800 2435 3800 2436 3800 2436 3800 2436 3800 2435																			
12/13/04 950 618 850 553 1000 650 1000 650 950 3500 2275 3700 2405 3900 2535 3900 2535 3750 3800 2470 3800 2435 400 3800 2405 3800 2435 3800 2405 3800 2400 3800 2400 380																			
12/20/94 800 520 850 553 1000 650 1000 650 913 3800 2340 3800 2470 3800 2470 4000 2800 3800 3800 2470 3800 2470 4000 2800 3800 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2470 3800 2435 3800 2835 4100 2886 3825 3800 2430 3800 2433 4100 2886 3825 3800 2470 3900 2535 3900 2835 4100 2886 3925 3900 2635 3900 2635 3900 2635 3900 2635 3900 2635 3900 2635 3900 2635 3900 2635 3900 2635 3900 2635 3900 2635 3900 2635 3900 2635 3900 2630 3900 1250 1250 12																			
12/2794 1000 650 1000 650 900 585 975 634 969 3800 2470 3900 2635 3900 2635 4100 2666 3925 1000 650 900 585 750 488 800 520 863 1150 748 1200 780 1250 813 1200 863 1150 748 1200 780 1250 813 1200 863 1150 748 1200 780 1250 813 1200 813 1200 813 1200 813 1200 780 1260 813 1200 813 1200 813 1200 813 1200 813 1200 813 1200 813 1200 813 1200 813 1200 813 1200 813 1200 813 1200 813 1200 1440 910 1443 1493 1484 1300 845 1550 1313 <																			
1/03/05 450 293 450 293 400 280 438 1000 650 900 585 750 488 800 520 863 01/10/95 600 390 700 455 700 455 650 423 663 1150 746 1200 780 1250 813 1200 01/17/05 700 455 750 488 750 488 738 1300 845 1550 1008 1400 910 1400 910 1413 01/17/05 700 455 750 488 750 488 738 1300 845 1550 1008 1400 910 1413 01/24/95 700 455 800 520 800 520 780 1750 1138 1350 878 1250 813 1483 02/03/95 815 530 971 631 845 577 905 1776										+ · +									
01/10/95 600 390 700 455 700 455 650 423 663 1150 748 1200 780 1250 813 1200 01/17/85 700 455 750 488 750 488 760 488 738 1300 845 1550 1008 1400 910 1400 910 1413 01/124/95 700 455 800 520 850 553 800 520 788 1500 975 1750 1138 1350 878 1250 813 1493 02/03/95 815 530 971 631 945 614 888 577 905 1776 1138 1350 878 1250 813 1483 02/03/95 815 530 971 631 945 614 888 577 905 1776 1138 1350 878 1250 813 1495 02/03/9																			
01/17/85 700 455 750 488 750 488 750 488 738 1300 845 1550 1008 1400 910 1400 910 1413 01/17/85 700 455 800 520 855 800 520 788 1500 975 1760 1138 1350 878 1250 813 1483 02/03/95 815 530 971 631 945 614 888 577 905 1760 1138 1350 878 1250 813 1483 02/03/95 815 530 971 631 945 614 888 577 905 1746 1462 1490 1756 148 148 1483 148 148 1482 1490 1521 1413 1483 148 148 1493 1493 1493 1493 1493 1493 1493 1493 1493 1493 1493 <																			
01/24/85 700 455 800 520 853 800 520 788 1500 975 1750 1138 1350 878 1250 813 1483 02/03/95 815 530 971 631 945 614 888 577 905 1778 1160 1903 1172 1849 1200 1766 1148 1709 02/10/95 269 175 523 340 833 541 558 363 546 3400 2210 2280 1482 2340 1521 2210 1437 2558 02/17/85 319 207 537 349 540 351 484 1717 1116 2210 1437 1930 1255 1910 1242 1942 02/17/85 319 207 537 349 540 351 484 1717 1116 2210 1437 1930 1255 1910 1242 1942											1300								
02/03/95 815 530 971 631 945 614 888 577 905 1778 1160 1903 1172 1849 1200 1765 1160 1903 1172 1849 1200 1765 1160 1903 1172 1849 1200 1765 1160 1903 1172 1849 1200 1765 1140 1708 02/10/95 269 175 523 340 833 541 558 363 546 3400 2210 2280 1482 2340 1521 2210 1437 2558 02/17/95 319 207 537 349 540 351 484 1717 1116 2210 1437 1930 1255 1910 1242 1942 02/17/95 319 207 537 349 540 351 484 1717 1116 2210 1437 1930 1255 1910 1242 1942 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>553</td> <td></td>							553												
02/17/95 319 207 537 349 540 351 540 351 484 1717 1116 2210 1437 1930 1255 1910 1242 1942	02/03/95	815	530																
02/24/95 65 42 390 254 709 461 748 488 478 3150 2048 3830 2490 2320 1508 2400 1580 2925																			
	02/24/95	65	42	390	254	709	461	748	488	478	3150	2048	3830	2490	2320	1508	2400	1560	2925

Note: Shaded numbers indicate periods when the RO system was not operating, and therefore reject flow was unavailable.

Electrical Conductivity (EC) and Total Dissolved Solids (TDS) Readings in the North and South Vegetated Wetlands -Continued

					North C	ell								South (Cell			
	Stati	on 5	Stat	ion 6	Stat	ion 7	Stat	lion 8		Stat	lion 1	Sta	tion 2	Sta	tion 3	Sta	tion 4	
Date	EC.	TDS	EC	IDS	EC	IDS	EC	TDS	AVG EC	EC	TDS	EC	TDS	EC	TDS	EC_	TDS	AVG EC
03/06/95	t57	102	253	164	427	278	335	218	293	1707	1110	2990	1944	1790	1164	1980	1287	2117
03/24/95	135	88	221	144	354	230	398	259	277	2670	1738	3410	2217	3020	1963	3050	1983	3038
03/31/95	150	98	533	346	548	355	468	317	429	4160	2704	4260	2769	3850	25.03	4030	2620	4075
04/14/95	84	55	120	78	410	267	475	309	272	4400	2860	5260	3419	5940	3881	6360	4147	5495
06/09/95	88	57	287	187	408	265	941	612	431	7310	4752	6130	5285	7490	4869	7230	4700	7540
06/16/95	92	60	575	374	458	298	1112	723	559	8050	3933	6600	4290	7850	5109	7070	4596	6893
06/30/95	83	54	252	164	267	174	922	599	381	11680	7592	10400	6760	9770	6351	10130	6585	10495
07/07/95	151	98			1030	670			295	5060	3289	8630	5610	13680	6892	12220	7943	9698
08/04/95	260	169	510	332	490	319	720	468	495	7650	4973	8590	5584	9670	6286	9300	6045	8803
08/10/95	240	156	420	273	570	371	1020	663	563	8320	5408	9500	6175	10050	6533	9190	5974	9265
09/11/95	327	213	393	255	373	242	550	358	411	9680	6292	12640	8216	12120	7878	12080	7852	11630
09/22/95	75	49	540	355	496	322	298	194	354	12010	7807	12770	8301	11870	7588	12810	8197	12285
09/29/95	130	85	419	272	690	449	1337	869	644	8010	5207	10780	7007	11380	7397	11410	7417	10395
10/06/95	142	92	704	458	585	380	1730	1125	790	9120	5928	9790	6364	10440	6786	2970	1931	0608
Average for the S	tudy					Fr	om 01/18/94	6	1141.9						Fr	om 7/13/93		4923.6
Average for Augu	ist 1994 throu	gh August 1	995						715.2									4734.9
Average for Augu	at 1994 throug	gh October	1995						699.4									5292.8

APPENDIX K

Average Evaporation Pan and Precipitation Data Over Time Intervals Between Listed Dates

Average Evaporation and Precipitation Data over Time Intervals Between Listed Dates

		Pan Level	Water added		Average Evap.			-	Pan Level	Water added	D141	Average Evap.	D-1-4-11
Date	<u>Time</u>	Reading	<u>to level</u>	Difference	over Interval	Rainfali	Date	<u>Time</u>	Reading	to level	Difference	over interval	Rainfall
05/21/93	09:00	1.604					09/17/93	11:00	2.622		0.774	0.194	
05/24/93	09:00	1.058	4.131	0.548	0.183		1 09/20/93	06:00	1,958		0.664	0.221	
05/29/93	09:00	2.677		1.454	0.291		09/21/93	11:00	1,694		0.264	0.264	
06/02/93	09:00	1.640		1.028	0.257		1 09/22/93	10:00	1.521		0.173	0.173	
06/04/93	09:00	1.036	4.046	0.013	0.307	4 400	09/24/93	10:00	1.068	4.422	0.453	0.227	
06/07/93	09:00	4.290		1.246	0.415	1.490	1 09/28/93 1 10/01/93	10:00 10:00	2.989	3 888	1,433	0.358	
00/08/93	09:00 09:00	4.007 3.882		0.103 0.215	0.215		10/08/93	10:00	2.284	.1 ///00	1.582	0.348 0.318	
06/09/93 06/11/93	09:00	3.008		0.876	0.438		10/07/93	10:00	1.924	4,431	0.360	0.360	
06/14/93	09:00	1.980		1.028	0.342		10/11/93	10:00	3.866		0.565	0.141	
06/15/93	11:00	1,520		0.460	0,460		10/15/93	10:00	3.265		0.601	0.150	
06/16/93	11:00	1,146	3.970	0.374	0.374		10/19/93	10:00	3.073		0.192	0.048	
06/17/93	11:00	3.533		0.437	0.437		10/22/93	10:00	2.485	4,181	0.838	0.279	0.250
06/21/93	09:00	2.000		1,533	0.383		1 10/26/93	16:00	3.221		0.960	0.240	
06/22/93	09:00	1.623		0,377	0.377		1 10/29/93	10:00	2.180	4,540	1.781	0.594	0.740
06/24/93	09:00	0.970	3.533	0.653	0.327		1 11/02/93	10:00	3.693		0.847	0.212	
06/25/93	11:00	3.278		0.255	0.255		1 11/05/93	10:00	2.708	4.587	1.125	0.375	0.140
06/28/93	09:00	2.026		1.252	0.417		1 11/12/93	08:00	3.810		0.777	0.111	
06/29/93	11:00	1.572		0.454 0.448	0.454 0.448		1 11/15/93 1 11/19/93	11:00 13:00	3.657 3.174		0.153 0.483	0.051 0.121	
06/30/93	10:00	1.124 0.475	4,678	0.649	0.325		11/29/93	09:00	2.016		1.158	0.121	
07/02/93 07/06/93	09:00 11:00	2.786	4,0/0	1.892	0.323		11/30/93	09;00	1,918		0.098	0.098	
07/07/93	09:00	2.448		0.335	0,338		12/02/93	15:00	1.740		0.178	0.069	
07/09/93	09:00	1.683	4.521	0.765	0.363		12/03/93	10:00	1.641		0.099	0,099	
07/12/93	09:00	3.408		1.113	0.371		1 12/07/93	10:00	4.073	4.577	0.078	0.020	2.510
07/13/93	09:00	3.048		0.362	0,362		1 12/10/93	15:00	3.775		0.802	0,267	
07/14/93	09:00	2.762		0.284	0.284		1 12/13/93	09:00	3.913		0.062	0.021	0.200
07/15/93	10:00	2.434		0.328	0.328		12/17/93	10:00	3.822		0.091	0.023	
07/16/93	09:00	2.068	4.786	0.366	0.366		1 12/20/93	10:00	3.713		0.109	0.038	
07/19/93	09:00	3.673		1.113	0.371		12/23/93	14:00	3.439		0.274	0.091	
07/20/93	09:00	3,345		0.328	0.328		1 12/27/93	14:00	2,869		0.570	0.143	
07/23/93	09:00	2,594		0.751	0.250		1 12/28/93 1 12/29/93	12:00 13:00	2.774 2.637		0.095 0.137	0.095	
07/27/93	11:00	1.351	3.410	1.243 0.616	0.311 0.308		1 01/03/94	10:00	2.037		0.561	0.137 0.112	
07/29/93 07/30/93	17:00 09:30	0.735 3.334	4.561	0.076	0.076		1 01/07/94	10:00	1.460		0.816	0.154	
08/02/93	09:30	3.346	4.301	1.215	0.405		01/10/94	13:00	1.160	3.890	0.300	0.100	
08/03/93	09:30	3.015		0.331	0.331		01/11/94	10:00	3.770		0.120	0.120	
08/04/93	09:30	2.618		0.397	0.397		1 01/12/94	11:00	3.606		0.164	0.164	
08/05/93	09:30	2.218		0.402	0.402		01/13/94	11:00	3.464		0.142	0,142	
08/08/93	09:30	1.834	4.592	0,382	0.382		01/14/94	11:00	3,396		0.068	0.068	
08/09/93	09:30	3.361		1.231	0.410		E 01/17/94	09:00	2.976		0.420	0.140	
08/10/93	09;30	3.032		0.329	0.329		I 01/20/94	11:00	2.492		0.484	0.161	
08/13/93	09:30	1,941	4,873	1.091	0,364		01/25/94	11:00	2.608		0.084	0.017	0.200
08/16/93	09:30	3.823		1.050	0.350		I 01/26/94	11:00	2.569		0.039	0.039	
08/17/93	09:30	3.514		0.309	0.309		01/28/94 02/04/94	11:00 09:00	2.762 3.074		0.007 0.038	0.003	0.200 0.350
08/18/93	09:30	3,178		0.336 0.377	0.336 0.377		02/04/04	09:00	4.392		0.082	0.005 0.021	1.400
08/19/93 08/20/93	11:00	2.801 2.578	4.522	0.223	0.223		02/18/94	15:00	3.775		0.017	0.021	
08/20/93	10:30 08:00	3,310	4.322	1.212	0.404		02/22/94	13:00	4,242		0,033	0.008	0.500
08/24/93	07:00	2,937		0.373	0.373		02/25/94	15:00	3.812		0,430	0.143	
08/27/93	11:00	1,822	3.808	1.115	0.372		03/01/94	10:00	3.368		0,444	0.111	
06/30/93	08:00	2.857	0.000	0.949	0.318		03/08/94	14:00	2.788		0.680	0,053	
08/31/93	09:00	2.515		0.342	0.342		1 03/23/94	10:00	1.800		0.968	0.068	
09/01/93	09:00	2.240		0.275	0.275		1 03/24/94	10:00	1.672		0.128	0.125	
09/02/93	09:00	1,937		0.303	0.303		1 03/25/94	09:00	2.264		0.108	0,108	0.700
09/03/93	09:00	1.518	4.521	0.419	0.419		03/28/94	09:00	2.078		0.186	0.062	
09/07/93	09:00	2.606		1.915	0.479		1 03/31/94	09:00	1,739		0.339	0.113	
09/09/93	09:00	1.855		0.751	0.376		04/13/94	09:00	0.500	4.586	6.659	0.512	5,420
09/10/93	09:00	1.512	4.556	0.343	0.343		04/15/94	11:00 16:00	4.316 3.715		0.270	0.135	
09/13/93	09:00	3,396		1,160	0.387			1111	3.00		14-7617		

Note: Shaded numbers indicate periods when the RO system was not operating, and therefore reject flow was unavailable.

Average Evaporation and Precipitation Data over Time Intervals Between Listed Dates - Continued

Date	<u>Time</u>	Pan Level Reading	Water added <u>to level</u>	Difference	Average Evap. <u>over interval</u>	Rainfall	Date	Time	Pan Level Reading	Water added to level	Difference	Average Evap. <u>over interval</u>	<u>Rainfall</u>
04/22/94	16:00	3,187		0.528	0.176		09/27/94		1.185	4.183	0.183	0.183	
05/04/94	11:00	2A72	e se de de deser	0,715	0.060		1 09/28/94		3.8000		0.283	0.283	
05/06/94	13:00	2.087		0.385	0.193		1 09/30/94		3.220		0.680	0.340	
05/09/94	12:30	1.792	A 470	0.595	0.198	0.300	1 10/03/94		2.689		0.531	0.177	
05/12/94	15:45	0.900	3.996	0,892 0,206	0.297 0.208		1 10/04/94 1 10/05/94		2,5177 2,686		0.172 0.031	0.172	0.200
05/13/94	09:30 07:30	3,790 1,091		2,699	0.245		1 10/10/94		1.704		0.982	0.196	0.200
05/24/94 05/27/94	14:00	1.187	3.778	0.004	0.001	0,100	10/11/94		1.474		0.230	0.230	
06/03/94	09:00	1,414		2.364	0.338		10/12/94		1.242		0.232	0.232	
06/07/94	09:00	0.500	4,120	0.914	0.229		1 10/13/94		1.009	4.508	0.233	0.233	
06/13/94	11:30	2.029		2.091	0.349		I 10/14/94		4,235		0.273	0.273	
06/17/94	15:00	0.750	4.282	1.279	0.320		I 10/17/94		3.904		0.331	0.110	
06/21/94	10:30	2.825		1.457	0.364		I 10/18/94		3.700		0.204	0.204	
06/24/94	16:00	1.372	4,346	1.453	0.484		I 10/19/94		3.492		0.208	0.208	
07/01/94	16:30	1,475	4,482	2.871	0,410		I 10/21/94		3.157		0.335	0.168	
07/08/94	08:00	2.065		2.417	0.345		I 10/25/94		2.505		0.652 0.120	0.163 0.120	
07/11/94	15:00	0.750	1.812	1.315	0.438 0.656		I 10/26/94 I 10/27/94		2.385 2.253		0.120	0.120	
07/13/94	13:30	0.500	4,431	1.312 1.923	0.385		1 10/28/94		2.089		0.164	0.164	
07/18/94	15:30 08:00	2,508	4,144	2.008	0.287		1 10/31/94		1.721		0.368	0.123	
07/28/94	14:00	2.802		1.342	0.447		1 1/01/94		1.581		0.160	0.160	
07/27/94			of simulating actual	1.243	0.311		1 1/03/94		1.698		0.163	0.082	0.300
07/28/94			or this period is lost.	0.616	0.308		I 11/04/94		1.570		0.128	0.128	
07/29/94			•	0.076	0.076		1 11/07/94		1.257		0.313	0.104	
08/02/94				1.215	0,405		11/08/94		1,190		0.067	0.067	
08/03/94				0.331	0.331		1 11/10/94		0.988		0.202	0.101	0.500
08/04/94				0.397	0.397		1 11/14/94		1.081	3.772	0.407 0.109	0.102	0,500
08/05/94				0.402	0.402		11/15/94 11/16/94		0.972 3.576	3.112	0.246	0.109 0.246	0.050
08/08/94				0.382 1.231	0.382 0.410		1 11/17/94		3.595		0.000	0.000	0.019
08/09/94 08/10/94				0.329	0.329		11/18/94		3.352		0.293	0.293	0.050
08/11/94				1.091	0.364		1 11/21/94		3.141		0.211	0.070	
08/12/94				1.050	0.350		1 1/22/94		3.040		0,101	0.101	
08/15/94				0.309	0,309		1 11/23/94		2.914		0,126	0.126	
08/16/94				0.336	0,336		1 1/28/94		2.622		0.592	0,118	0.300
08/17/94				0.377	0.377		11/29/94		2.502		0.120	0.120	
08/18/94				0.223	0.223		11/30/94 12/01/94		2.493 2.274		0.009 0.219	0.009 0.219	
08/19/94				1.212	0.404		1 12/05/94		1,960		0.219	0.219	
08/22/94				0.373 1,115	0.373 0.372		1 12/08/94		1.922		0.038	0.038	
08/23/94				0.949	0.316		12/07/94		1.857		0.065	0.065	
08/24/94 08/25/94				0.342	0.342		12/08/94		1.673		0.184	0,184	
08/26/94				0.275	0.275		1 12/13/94		1.498		0.377	0.075	0.200
08/29/94				0.303	0,303		l 12/14/94		1.351		0.145	0.145	
08/30/94		3.161		0,303	0,303		12/19/94		0.943		0.408	0.082	
08/31/94		2.833		0.328	0.328		12/20/94		0.750	4.488	0.193	0.193	
09/01/94		2.540		0.293	0.293		1 12/21/94		4.388 4.274		0.100 0.164	0.100 0.164	0.050
09/02/94		2.234		0.306	0,306		12/22/94		4.310		0,164	0.164	0.050
09/06/94		0,750	4.655	1.484	0.371		12/29/94		4.310		0,500	0.083	0.500
09/07/94		4.263		0.392	0.392		1 12/30/94		4.348		0.082	0.082	0,100
09/09/94		3.454		0.809 1.028	0.405 0.343		01/09/95		3.638		1.710	0.171	1.000
09/12/94		2.426 2.161		0.265	0.265		01/10/95		3.592		0.046	0.048	
09/13/94 09/14/94		1,950		0.211	0.211		01/12/95	(((() (() () () () () () () () () () (6.292		0,200	Q.100	2.900
09/15/94		1.689		0.281	0.261		1 01/13/95		6.590	4,700	0.002	0.002	0.300
09/16/94		1.290	4.260	0.399	0.399		1 01/17/95		4,600		0.110	0,027	0,010
09/20/94		2,960		1.300	0,325		I 01/18/95		4,525	an a	0.075	0.075	
09/21/94		2.661		0,299	0.299		1 01/19/95		4,447		0.075	0.078	
09/22/94		2,400		0.261	0.261		01/20/95		4.430	0.906	0.337	0.337	0.320
09/26/94		1.368		1.032	0.258		01/23/95	3855255557	1,347		0.000	0.000	0.441

Average Evaporation and Precipitation Data over Time Intervals Between Listed Dates - Continued

<u>Date</u>	<u>Tíme</u>	Pan Level <u>Reading</u>	Water added <u>to level</u>	Difference	Average Evap. over interval	Rainfall	Date	Time	Pan Level <u>Reading</u>	Water added <u>to level</u>	Difference	Average Evap. <u>over interval</u>	<u>Rainfall</u>
01/24/95		1.379		0.409	0.102	0,441 0,326	i 06/02/95		2.596		0.164	0,164	
01/25/95	in constant.	1,705		-0.000 0.000	-0.000 0.000	0.605	1 08/06/95		1,492 1,084		1.104 0.408	0.368 0.408	
01/27/95		2.310 2.100		0.000	0.000	0.004	1 06/07/95	Y	1.202	1.498	-0.118	-0,118	
01/31/95		1.960		0,140	0.140		06/08/95		1.224	7,794	0.274	0.274	
12/01/95		1,901		0.059	0.059		06/09/95		0.500	1,723	0.724	0.724	
12/02/95		1,793		0,108	0,108		06/12/95		0,500	3.700	1.223	0:408	
2/03/95		1,743		0.050	0.050		1 06/13/05		3.458		0.244	0.244	
2/08/95		1.142		0.601	0.120		I 06/14/95		2.838		0.818	0.618	
2/09/95		1.074		0.068	0.068		I 06/15/95		2.438		0,402	0.402	
2/10/95		1.001	4,946	0.073	0.073		06/16/95		2.240		0.298	0.296	0.100
3/01/95		3.098		1.848	0.097	0,100	1 D6/19/95		1.838		0.654	0.218	0,250
3/02/95		3.104		0.094 0.057	0.094 0.057	0.200	I 06/20/95 I 06/21/95		1,436 3,840	4,349	0.400 0.509	0,400	
3/03/95 3/06/95		3.247 4.987		-0.020	-0.007	1.700	06/22/95	ini en la la com	3.598		0.242	0.242	
3/07/95		4.730		0.237	0.237	1.100	1 06/23/95		3.100		0.498	0.498	
3/08/95		4.687		0.043	0.043		1 06/26/95		1.894		1.206	0.402	
3/09/95		4.555		0.132	0.132		1 08/27/95		1.418		0.478	0.476	
3/10/95		4.511		0,044	0.044		06/28/95		1.032	4.175	0.386	0.386	
3/13/95		4.471		2.140	0.713	2.100	1 06/29/95		3.611		0.564	0,564	
03/14/95		4,401		0.070	0.070		1 06/30/95		3.200		0.411	0.411	
03/15/95		4.324		0.077	0.077		07/05/95		1.265		1.935	0.387	
03/18/95		4.285		0.059	0.059		(07/06/95		0.610		0.855	0.655	
03/17/95		4.120		0.145	0.145		1 07/07/95		0.001	4.659	0.609	0.609	
03/20/95 03/21/95		3.822		0.298	0.099 0.041		I 07/10/95		3.212 2.813		1.447 0.399	0.482	
03/22/95		3.781 4.139		0.041 0.042	0.041	0.400	1 07/12/95		2.490		0.323	0.399 0.323	
03/23/95		4.714		-0.575	-0.575	0,400	1 07/13/95		1.898		0.592	0.592	
03/27/95		4.378		0.336	0.084		1 07/14/95		1.431		0,467	0.467	
03/29/95		3,946	la a por tra apage da ancien	0.432	0.216		1 07/17/95		0.500		1,131	0.377	0.200
03/31/95	승규 민준이	3.668		0.280	0,140		1 07/18/95		0.010		0.490	0,490	
04/03/95	다 가 걸린 것	3,194		0.472	0.157		07/19/95		-0,500	4.666	0,510	0.510	
04/04/95		2.974		0.220	0.220		1 07/20/95		4.079		0.587	0.587	
04/06/95		2.689	×	0,285	0.142		1 07/21/95		3.697 2.186		0.382	0.382	
04/07/95 04/10/95		2,489 3,315	3 965	0,200	0,200		07/24/95		1.431		1.511 0.755	0.504 0.755	
04/11/95		3.112		0.203	0.203		07/26/95		1.454		-0.023	-0.023	
04/12/95		2.856		0.258	0.256		1 07/27/95		1.011	4.654	0.443	0.443	
04/13/95		2.570		0.286	0.286		07/28/95		4.086	1.001	0.588	0.568	
04/14/95		2.284		0.286	0.286		07/31/95		2.583		1.503	0.501	
04/20/95		3.640		0.000	0.000	1.558	08/02/95		1.809		0,774	0.387	
04/21/95		3.070		0.770	0.770		08/03/95		1.367		0.442	0.442	
04/24/95		2.241		0.829	0.276		1 08/04/95		0.026		1,341	1.341	
04/25/95		1,970		0.271	0.271		1 08/08/95		-0.750	4.351	0.776	0.194	
04/26/95		1.734		0.238	0.238 0.344		1 08/09/95 1 08/15/95		3.895 3.253		0.456	0.456	
04/27/95 05/01/95		1.390 0,750		0,344 0.640	0.160		1 08/16/95		0.625	3.613	0.642 2.628	0.107	
05/02/95		0,750	3.852	0.200	0.200		1 08/17/95		3.286	3.013	0.327	2.628 0.327	
05/03/95		3,634	3.032	0.218	0.218		1 08/21/95		1.884		1.402	0.327	
05/05/95		3.194		0.440	0.220		08/22/95		1.526		0.358	0.358	
05/08/95		3.130		0.264	0.088	0.200	08/24/95		0.500	4.470	1.028	0.513	
05/09/95		3,020		0.110	0.110		08/25/95		4.182		0.288	0.288	
05/11/95		2,557		0.463	0.231		1 08/28/95		3.038		1,144	0.381	
05/15/95		2,104		0.653	0.163	0.200	1 08/31/95		1.847		1,191	0.397	
05/19/95		1.415		0.689	0.172		1 09/01/95		1.454		0.393	0,393	
05/22/95		0.500	3.784	0.915	0.305		09/05/95		0.000	4,039	1,454	0.364	
05/26/95		3.513		0.271	0.068		1 09/08/95		3.763		0.276	0.276	
05/30/95		2.326		1.187	0.297		I 09/07/95		3.329		0.434	0.434	
05/31/85		1.975 2.700	5.239	0.351	0.351 0.470		1 09/08/95		2.921		0.408	0.408	

Average Evaporation and Precipitation Data over Time Intervals Between Listed Dates - Continued

Date	Time	Pan Level Reading	Water added to level	Difference	Average Evap. over interval	Rainfali
		-				
09/12/95		1.415	4.038	0.471	0.471	
09/13/95		3,757		0.281	0.281	
09/14/95		3.302		0.455	0.455	
09/15/95		2.844		0.458	0.458	
09/18/95		1.938		0.908	0.302	
09/19/95		1.588		0.350	0.350	
09/20/95		1.283		0.305	0.305	
09/21/95		1.092	4.052	0.191	0.191	
09/25/95		2.607		1,445	0.361	
09/27/95		2.038		0.569	0.285	
09/28/95		1.775		0,263	0.263	
09/29/95		1,628		0.147	0.147	
10/02/95		0.002	4.554	1.828	0.542	
10/03/95		4.099		0.455	0.455	
10/04/95		3.815		0.484	0.484	
10/05/95		3,301		0.314	0.314	
10/06/95		2,977		0,324	0.324	