

R-96-01

MARICOPA GROUND WATER TREATMENT STUDY

Water Treatment Technology Program Report No. 15

February 1996

U.S. DEPARTMENT OF THE INTERIOR Bureau of Reclamation Technical Service Center Environmental Resources Team Water Treatment Engineering and Research Group

REPORT DOCUMENTATION PAGE			Form Approved			
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruct			CIMB NO. 0/0443188			
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information.						
22202-4302, and to the Office of Management an	d Budget, Paperwork Reduction Report (0704-01	88), Washington DC 20503.	The contract same righter, car isor, sting for the			
1. AGENCY USE ONLY (Leave Blank	() 2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED			
4. TITI F AND SUBTITI F	rebluary 1990	1'IIIdi	5. FUNDING NUMBERS			
Maricopa Ground Water Tre	eatment Study —					
Water Treatment Technology	Program Report No. 15		P R			
6. AUTHOR(S) Pohert A Juronko and M	lichollo Chanman Wilhort					
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		6. PERFORMING ORGANIZATION			
Bureau of Reclamation			REPORT NUMBER			
Technical Service Center			R-96-01			
Denver CO 802230007						
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING			
Bureau of Reclamation			AGENCY REPORT NUMBER			
PO Box 25007			DIBR			
Denver CO 802250007						
11. SUPPLEMENTARY NOTES						
Hard copy available at the	Technical Service Center, De	enver, Colorado				
12a. DISTRIBUTION/AVAILABILITY	12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE					
Available from the National Operations Division 5285 P						
\mathcal{P}						
13. ABSTRACT (Maximum 200 words)						
The Bureau of Reclamation, in cooperation with the GRIC (Gila River Indian Community) and the cities of						
Avondale and Chandler, Arizona, performed this field study to determine the suitability of several water						
treatment processes on groun	nd water that contains high	levels of nitrate, chlorid	le, and total dissolved solids.			
This report provides general	discussion of three water	treatment processes-ED	(electrodialysis), RO (reverse			
osmosis), and NF (nanofiltra	ation). Pilot scale testing of This report recommonds the	ED and RO reduced c	oncentrations of nitrate, total			
of the study area Cost proje	ections presented in this report	t contain criteria to as	sist in the choice between FD			
NF water treatment.	citoris presenteu in tims repor					
14. SUBJECT TERMSwater trea	atment/ desalting/ nanofiltrat	ion/ electrodialysis/ 1	reverse 15. NUMBER OF PAGES			
osmosis/ ground water/ nitra	ate/ total dissolved solids/ V	Vater Treatment Techno				
Program	Program					
17. SECURITY CLASSIFICATION	16. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICAT	TION 20. LIMITATION OF ABSTR ACT			
17. SECURITY CLASSIFICATION OF REPORT UL	16. SECURITY CLASSIFICATION OF THIS PAGE UL	19. SECURITY CLASSIFICAT OF ABSTRACT UL	TION 20. LIMITATION OF ABSTR ACT			
17. SECURITY CLASSIFICATION OF REPORT UL	16. SECURITY CLASSIFICATION OF THIS PAGE UL	19. SECURITY CLASSIFICAT OF ABSTRACT UL	TION 20. LIMITATION OF ABSTR ACT			

R-96-01

MARICOPA GROUND WATER TREATMENT STUDY

Water Treatment Technology Program Report No. 15

by

Robert A. Jurenka Michelle Chapman-Wilbert

Water Treatment Engineering and Research Group Environmental Resources Team Technical Service Center Denver, Colorado

*

February 1996

BUREAU OF RECLAMATION

ACKNOWLEDGMENTS

We would like to thank all of the people at the cities of **Avondale** and Chandler and the GRIC (**Gila** River Indian Community) who made this field study a success. Special thanks go to Steve Mitchell (Avondale) and Clifford **Antone** (**GRIC**) for their expert assistance in monitoring and keeping the equipment running properly. We also want to thank Jim Mitchell and Esmie **Avilla** of the City of **Avondale** for their support and the **staff** at Westech Laboratories, Inc., for their prompt attention.

U.S. Department of the Interior Mission Statement

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally-owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of **all** our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

CONTENTS

	Р	age
1.	Executive summary	1
2.	Introduction 2.1 Purpose and scope 2.2 Background 2.2 Statement	2 2 3
3.	Contaminants of concern	4
4.	Applicable water treatment processes4.1 General4.2 ED (electrodialysis)4.3 RO (reverse osmosis)	4 4 8 9
5.	Pilottestdescription5.1Sitepreparationandpilotplantequipment5.2Processselection	13 13 14 14 17 17 17 17 17 18 18 18 18
6.	Pilot test results and conclusions 6.1 Results 6.1.1 Pretreatment system 6.1.2 Electrodialysis system 6.1.2.1 Nitrate reduction 6.1.2.2 Total dissolved solids reduction 6.1.3 Reverse osmosis 6.1.3.1 Operational data 6.1.3.2 Performance degradation 6.1.3.3 Membrane autopsy and SEM (scanning electron microscopy) analysis 6.2.1 Electrodialysis 6.2.2 Reverse osmosis	$\begin{array}{c} 21\\ 21\\ 21\\ 21\\ 25\\ 29\\ 42\\ 42\\ 49\\ 49\\ 49\\ 49\\ 49\\ \end{array}$
7.	Full scale treatment 7.1 General 7.1 General 7.2 Comparison between reverse osmosis and nanofiltration 7.3 Electrodialysis 7.3.1 EDR (electrodialysis reversal) 7.4 Nanofiltration 7.5 Brine production and disposal options 7.5.2 Brine disposal 7.5.2.1 Evaporation	50 50 52 55 56 58 58 58 58 58 58

CONTENTS — CONTINUED

Page

	7.5.2.2 Spray irrigation 7.5.2.3 Wetlands 7.5.2.3 Wetlands 7.5.2.3 Wetlands	59 59
8. '	Treatment costs8.1 General8.2 Brine disposal8.3 Electrodialysis8.3.1 Construction cost8.3.2 Operations and maintenance costs8.4 Nanofiltration8.4.1 Construction cost8.4.2 Operations and maintenance costs8.5 Cost analysis	$ \begin{array}{r} 60 \\ 60 \\ 61 \\ 65 \\ 65 \\ 66 \\ 66 \\ 67 \\ 67 \\ \end{array} $
9.	Conclusions ,	68
10.	. Recommendations ,	70
11.	. References	71

TABLES

Table

1	Available ground water analyses for well s5	.:	'19 7
2	Analytical requirements for RO and ED piloting	-	
3	Electrodialysis operating parameters (Ashahi Glass Co., Ltd)	•	20
4	Reverse osmosis operating parameters		20
5	Electrodialysis water quality data	•	25
6	RO saltrejections		41
7	Bacterial counts during RO testing	• •	41
8	RO piloting results on contaminants of concern		49
9	Typical NF salt rejections and expected water quality	• •	56
10	Comparison of brine disposal costs considering land value	• •	62
11	Construction and operations and maintenance costs, 2-Mgal/d electrodialysis plant	•	65
12	Construction and operations and maintenance costs, 2-Mgal/d nanofiltration plant		66
13	Life cycle costs for ground water treatment options without brine disposal	• •	67
14	Life cycle costs for ground water treatment options with brine disposal	. .	68

FIGURES

Figure

1	Avondale well s5 location map and site plan	 . 5
2	Transfer of ions in an electrodialysis stack (Ashahi Glass Co., Ltd.)	 8
3	Flow within an electrodialysis stack	10
4	Electrodialysis flow spacers	 11
5	Cut-away diagram of a spiral-wound RO element (Conlon, 1991)	 12
6	Reverse osmosis pilot plant equipment	 15
7	Electrodialysis pilot plant equipment	16

CONTENTS - CONTINUED

FIGURES - CONTINUED

Figure

8	Effectiveness of the pretreatment system in controlling turbidity	22
9	Relation between conductivity of ED streams and TDS concentration	23
10	Nitrate removal with selective electrodialysis	24
11	Effect of detention time on product quality	26
12	Effect of voltage on ED salt removal	27
13	Relation between power consumption and ED product water quality	28
14	RO system flow rates	31
15	RO feed temperature	33
16	RO system conductivities	35
17	RO permeate conductivities ·····	35
18	RO system pressures	37
19	RO pressure drops by stage	39
20	RO average net driving pressure	43
21	RO normalized permeate flow	45
22	SEM photographs	47
23	Cost comparison: NF, RO and ED	51
24	Electrodialysis water treatment system	54
25	Nanofiltration water treatment system	57
26	Comparison of evaporation and spray irrigation costs with and without land value	63

APPENDIXES

Appendix

А	Electrodialysis test data	73
В	Reverse osmosis test data	83
С	Generalized NF process diagram for checking data reduction	89
D	Analytical data for reverse osmosis testing	93
Е	RO element serial numbers as loaded in pressure vessels	97
F	Memorandum of petrographic examination of used membranes	101

ACRONYMS AND ABBREVIATIONS

ADEQ	Arizona Department of Environmental Quality
BPV	back pressure valve
cfu	colony forming units
ED	electrodialysis
EDR	electrodialysis reversal
ENR	Engineering News Record
EPA	Environmental Protection Agency
FCV	flow control valve
GRIC	Gila River Indian Community
HDPE	high density polyethylene
HPC	heterotrophic plate count
ICP	inductively-coupled plasma
LOTW	locally-owned treatment works
MCL	maximum contaminant level
Mgal	million gallons
NF	nanofiltration
NPF	normalized permeate flow
NDP	net driving pressure
ntu	nephelometric turbidity unit
O&M	operations and maintenance
PID	proportional integral derivative
PLC	programmable logic controller
RO	reverse osmosis
SDI	silt density index
SDWA	Safe Drinking Water Act
SEM	scanning electron microscopy
SR	salt rejection
TCF	temperature correction factor
TDS	total dissolved solids
TFC	thin-film composite
THM	trihalomethane
THMFP	trihalomethane formation potential
ТОС	total organic carbon

CHEMICAL FORMULAS

aluminum ion
barium ion
calcium ion
calcium carbonate
calcium hydroxide (hydrated lime)
chloride ion
chlorine
chlorine dioxide
ferrous ion
ferric ion
hydrogen ion
bicarbonate ion
water
sulfuric acid
sodium ion

CHEMICAL FORMULAS - CONTINUED

Na_2CO_3	sodium	carbonate	(soda	ash)
Ni ⁺²	nickel	ion		
NO,	nitrate	ion		
0 ₃	ozone			
SiO ₂	silica			
$SO_4^{\overline{-2}}$	sulfate	ion		

USEFUL TERMS

Blending mixing of desalted water with un-desalted water to obtain the following advantages: the addition of hardness and alkalinity from undesalted water helps to reduce the corrosivity of the product water; the amount of post-treatment chemical and the water treatment plant size are reduced, thereby lowering capital and operating costs.

Concentrate (or brine) • the salt waste stream produced as a byproduct of RO or nanofiltration treatment of water containing salts.

Electrodialysis • a water treatment process that removes dissolved salts from water using a direct current electrical potential.

Electrodialysis reversal - an automatic operating feature of some ED units that reverses the electrical potential applied to the two electrodes about every 15 minutes to promote cleaning of the unit.

Locally-owned treatment works - the facility that accepts and treats the community's wastewater.

Membrane selectivity - the ability of a membrane to selectively remove certain ions over others by being composed of selectively charged ionic groups.

Nanofiltration - a selective form of reverse osmosis that has a lower rejection rate for monovalent ions than multivalent ions, and thus, can operate at significantly lower operating pressures than RO membranes.

Net driving pressure • pressure available to force water through the membrane, and is calculated as follows:

$$NDP = P_f - P_p - P_o$$

where:

 P_{f} = average feed pressure (average of feed and reject pressures)

 P_p = pressure in the permeate line (gauge pressure) P_p = average osmotic back pressure of the feed water (estimated by averaging the TDS feed and reject concentrations, in mg/l, and dividing by 100)

Normalized permeate flow - the total permeate flow adjusted to standard temperature (25 °C) and to normalized **NDP** at startup, and is calculated as follows:

$$NPF = NDP_{startup}/NDP_{today} \mathbf{x} TCF \mathbf{x} F_{p}$$

where:

TCF = temperature correction factor F_n = permeate flow

USEFUL TERMS — CONTINUED

Permeate • the product water from a desalting process.

Pre-treatment - treatment units located upstream from a desalting process necessary to remove compounds that are detrimental to the membranes and which would shorten the life of the desalter.

Recovery • the amount of product water attainable, expressed as a percent of the feed flow.

Rejection • the rate at which an ion is removed, expressed as a percent:

$$= (1 - C_P / C_F) \times 100$$

where: C_P = the product ion concentration C_F = the feed ion concentration

Reverse osmosis • the process of applying to water in contact with a semi-permeable membrane, a pressure in excess of its osmotic pressure, so that **clean** water permeates through the membrane; ions in the water do not pass through the membrane, but are collected separately.

Silt density index - a measure of the fouling potential of the feed from colloidal-size materials.

Total dissolved solids • inorganic salts, organic matter, or dissolved gases that do not filter readily from water. Results of analyses are either reported directly from the laboratory or **from** the sum of ions reported from the laboratory.

From	To	Multiply by
ft in ft ² kgal Mgal acre-ft lb/in ² °F	m m ² m ³ m ³ kPa °C	3.048 000 E-01 2.540 000 E-02 9.290 304 E-02 3.785 412 3.785 412 E+3 1.233 489 E+3 6.894 757 $t_c = (t_F - 32)/1.8$

SI METRIC CONVERSIONS

1. EXECUTIVE SUMMARY

Reclamation (Bureau of Reclamation) and the study participants of the GRIC (Gila River Indian Community) and the cities of Avondale and Chandler, Arizona, pursued a pilot study to determine the suitability of several water treatment processes on ground water that contains high levels of nitrate, chloride, and TDS (total dissolved solids). This report summarizes the work performed during a 6-week pilot test at the city of Avondale's well s5, a well representative of water quality problems found at wells used by the three study participants. The report also provides general discussion of the three principal water treatment processes-ED (electrodialysis), RO (reverse osmosis), and NF (nanofiltration), as well as recommendations of which process to use at actual well sites. Planning level cost estimates are provided to compare the options available.

Pilot scale testing of both electrodialysis and reverse osmosis, with adequately pretreated ground water, reduced concentrations of nitrate, TDS, and chloride in Avondale's well s5 to the levels indicated below:

	_	Electrodialvsis			Reverse Osmosis		
	Raw Water	Finished Water	Pct Removed	Raw I Water	Finished Water	Pct Removed	
Nitrate, mg/L	9.7	3.7	62	9.0	0.8	91	
TDS, mg/L	1700	970	43	1467	41.6	97	
Chloride, mg/L	760	240	68	557	10.7	98	

Subsequent to this study's pilot testing, certain manufacturers of nanofiltration membranes claimed significant improvements of nitrate removal with their newly developed, thin-film composite membranes. After comparing advantages and disadvantages of RO to NF, this report recommends the use of nanofiltration membranes or electrodialysis membranes for ground waters typical of the study area (i.e., when the ionic character of the ground water does not warrant the high salt removal rates from reverse osmosis).

Cost projections presented in this report favor the use of electrodialysis or nanofiltration water treatment as follows:

• When the TDS of a ground water is about 1100 mg/L or less, and the nitrate concentration is about 23 mg/L or less, electrodialvsis is recommended.

• When several contaminants of concern are present in the raw water and the TDS is greater than 1100 mg/L, then <u>nanofiltration</u> is the recommended process based on capital, operating, maintenance, and replacement costs.

Concentrate disposal is recommended to be accomplished at the LOTW (locally-owned treatment works). Costs for treatment will increase significantly if brine disposal is accomplished by either evaporation or spray irrigation systems. The concentrations of ions in the waste stream from an ED or NF water treatment plant are not hazardous, but may be toxic to microorganisms in a LOTW. However, the dilution effect from other wastewater flows is expected to eliminate this potentially adverse condition.

The total **present worth** of a **2-Mgal/d** (million gallons per day) (product) electrodialysis plant, excluding brine disposal, is **\$6,729,900**; for nanofiltration, also excluding brine disposal, total present worth is **\$6,780,600**, based on the assumptions made in this report and the life cycle cost analysis for 20 years at an interest rate of 6.5 percent.

The total **annualized cost** of a **2-Mgal/d** (product) electrodialysis plant, excluding brine disposal, is \$610,900 (**\$0.84/1000** gal); for nanofiltration, also excluding brine disposal, total annualized cost is \$615,500 (**\$0.84/1000** gal), based on the assumptions made in this report and the life cycle cost analysis for 20 years at an interest rate of 6.5 percent.

The total **present worth** of a **2-Mgal/d** (product) electrodialysis plant, including brine disposal, is \$10,929,000; for nanofiltration, also including brine disposal, total present worth is \$10,077,200, based on the assumptions made in this report and the life cycle cost analysis for 20 years at an interest rate of 6.5 percent.

The total **annualized cost** of a **2-Mgal/d** (product) electrodialysis plant, including brine disposal, is \$992,100 (\$1.36/1000 gal); for nanofiltration, also including brine disposal, total annualized cost is \$914,700 (\$1.25/1000 gal), based on the assumptions made in this report and the life cycle cost analysis for 20 years at an interest rate of 6.5 percent.

2. INTRODUCTION

2.1 Purpose and Scope

This ground water treatment study has been prepared for the cities of Avondale and Chandler and the GRIC (Gila River Indian Community), all in Arizona. These cooperating partners, together with the Bureau of Reclamation, have jointly funded this study to evaluate selected ground water treatment options. Each cooperating partner is faced with many challenges of growth in an arid climate where water is a precious and limited natural resource. One of these challenges is the need to provide a reasonable level of water treatment to ensure the delivery of safe and palatable drinking water to their residents.

The cooperating partners agreed to use Avondale's well **s5** because it shares many of the characteristic "problem" contaminants found in their sources of water that exceed primary and secondary drinking water standards. These parameters are nitrates, chlorides, and TDS (total dissolved solids). A **6-week** pilot test period targeting two water treatment processes ensued to confirm process performance and efficiency. Based on the results of this testing, process recommendations and cost estimates are provided, along with design considerations for scale-up. The cost estimates include both capital and O&M (operation and maintenance) costs for a full-scale treatment plant with a capacity of 2 Mgal/d.

The cost estimates contained in this report are to be used as planning estimates for decision making and not as final estimates of construction. The cost estimates were obtained from several sources, but predominantly from Reclamation's "Cost Estimation Program," a computer program that modifies and updates the EPA's (Environmental Protection Agency) construction cost curves found in Volume 2 of **EPA-600/2-79-162b** for water treatment processes. O&M cost estimates include current prices for electric power and, when available, chemicals and supplies. Materials, equipment, and labor are based on updated Bureau of Labor Statistics and *Engineering News Record* indices.

The final treatment process recommendations made in this report should be integrated with other design factors that address each community's comprehensive needs. In this way, each community can assess individual issues such as capacity, water sources, level of treatment, and location to determine appropriate treatment.

2.2 Background

The Bureau of Reclamation, long known for its expertise in dam building, has recently redirected its mission from water resource development to water resource management. Reclamation now emphasizes water management practices that promote efficient use of water, multiple uses of water, and water reuse. Understanding water treatment problems and implementing efficient water treatment systems is one example of how best to use the limited amount of water available. Reclamation has developed an expertise in water treatment and pre-treatment, especially in the area of desalting, and advocates processes that minimize water loss or promote reuse of generated wastewater.

To better understand how various water treatment processes work and to confirm that such processes will work successfully on certain contaminated water, Reclamation owns and operates a **6-gal/min** mobile pilot water treatment plant. A programmable controller can select conventional treatment with up to seven different chemical feed systems; advanced treatment such as ion exchange or granular activated carbon; desalting using either nanofiltration, reverse osmosis or electrodialysis; or as many as four types of disinfection.

Information about the mobile pilot plant was obtained by the cooperating partners, who formulated an agreement with Reclamation to perform this work. Each cooperating partner completed a questionnaire prior to the piloting period. The questionnaire allowed Reclamation to obtain site specific information about each community. From this information, the following commonalities were noted:

- The aquifer being tapped is generally of good quality, but can contain localized high concentrations of nitrates, TDS, turbidity, chloride, fluoride, and sometimes iron and manganese.
- New wells are drilled to avoid poorer water quality areas
- Wellhead treatment is preferred over centralized, larger treatment plants
- The combined capacity of wells for treatment is 1000 to 2000 gal/min
- An overall decline of aquifer water levels and water production exists.

For these reasons, each community is interested in knowing what type of treatment will work best for them, taking into consideration reusing as much of the water as possible. The **6-week** pilot test program was formulated, reviewed with each partner on February 9, 1995, and performed from March 7 to April 18, 1995. The site selected for this study is well s5 in the City of Avondale, a suburb about 40 miles west of Phoenix, Arizona. Figure 1 is a location map and site plan of well s5, which is located on the southeast corner of Main and 2nd streets in Avondale. This **500-foot-deep** well has a 24-inch-diameter surface casing for 30 feet and a 16-inch-diameter well casing to full depth that is screened from 185 feet to 480 feet. The **125-horsepower** pump is set 185 feet below grade and is equipped with a low water cut-off alarm. Piping at the **wellhead** is lo-inch diameter and includes a pump control valve and air release valve. Prior to and throughout the pilot test, the well was flushed to waste by city personnel. Water for the pilot test was diverted daily to an off-line **10,000-gallon** horizontal tank using **4-inch-diameter** pipe.

3. CONTAMINANTS OF CONCERN

Primary drinking water standards of the SDWA (Safe Drinking Water Act) are established to protect consumer health and welfare. Secondary SDWA standards, for secondary contaminants, provide guidelines regarding taste, odor, color and other aesthetic aspects of water. Water contaminants above the Primary SDWA levels common to all three communities and present at the City of Avondale's well **s5** are nitrates and turbidity.

Nitrates may occur naturally or may be found in agricultural areas where fertilizer or secondary treated effluent has been applied. Pollution from leaking wastewater treatment units such as septic tanks may also produce nitrates. Concentrations of nitrates in drinking water above 10 mg/L as nitrogen have been found harmful to humans, especially infants.

Turbidity is a measure of the suspended material in water and is measured by the transmission of light passing through the water. Sources of the suspended material can be inorganic such as clay or silt, or organic such as plankton, bacteria, or algae.

Secondary contaminants common to all three communities and present at the City of Avondale's well **s5** are chloride and TDS.

Sources of chloride include leaching of marine sediment or the residue left **from** evaporated sea water, brine, or a pollution source. All waters contain some chloride, and surface waters usually contain more chloride than ground water (Corbitt, 1990).

Total dissolved constituents in water consist mainly of inorganic salts, organic compounds, and dissolved gases. As water seeps downward over rocks and soils, it picks up and dissolves some of the minerals. These dissolved solids are not typically captured on a filter, and most of the inorganic dissolved solids are in the ionic form. Because these substances contribute to the capacity of a sample to pass an electric current, measuring this capacity through specific conductance is also a measure of dissolved solids.

Table 1 presents the historic record of measured water quality parameters for well **s5** that existed prior to piloting. The primary or secondary MCL (maximum contaminant levels) for these measured parameters are also shown.

4. APPLICABLE WATER TREATMENT PROCESSES

4.1 General

Treatment processes producing an effluent which fully complies with both Primary and Secondary limits of the SDWA were considered for piloting.

For pretreatment, that is, treatment of raw water prior to desalting, a determination of the amount of dissolved versus undissolved iron and manganese was made to see if an oxidation step was necessary. Oxidation would be required if transition metals (i.e., iron and manganese) were dissolved or soluble. Because no appreciable amount of dissolved iron or manganese was found in the most current sample of well water, oxidation followed by settling would not be required. Based on size and characteristics of the suspended solids, direct filtration was piloted for turbidity removal. A coagulant aid, ferric sulfate, flocculation, and clarification would be available if turbidity levels after filtration exceeded acceptable limits.

Α

Table 1. • Available ground water analyses for well s5.

Date: Parameter:	Mar. 9, '76	Sep. 30, '76	Aug. 8, '79	Oct. 10, '79	Dec. 20, '94	Average Value	Prim Secor	ary or dary MCL
Cations:								
Calcium	236.00	277.00		121.00	190.00	206.00		
Magnesium	79.00	99.00		162.00	72.00	103.00		
Sodium	123.00	125.00		143.00	140.00	132.75		
Iron	0.05	0.35		0.11	1.30	0.45	S	0.3
Barium				0.69	0.11	0.40	p	1.00
Manganese	0.05	0.05		0.05	0.08	0.06	S	0.05
Anions:								
Sulfate	180.00	160.00		203.00	250.00	198.25	S	250.00
Chloride	548.00	710.00		769.00	650.00	669.25	S	250.00
Nitrate (as Nitrogen)	26.00	29.00		1.70	13.00	17.43	Р	10.00
Fluoride	0.19	0.15		0.25	0.31	0.23	P	4.00
Alkalinity, as CaC03	140.60	172.00		152.00	160.w	156.00		
Hardness, as CaC03	920.00	1080.00	998.00		770.w	942.w		
Copper	0.05	0.05		0.05	0.08	0.06	р	1.30'
Zinc	0.05	0.05		1.61	<0.05	0.44		5.00
Trace Metals Summary	< MCL	< MCL						
Physical:								
Turbidity	<5.00	<5.00			13.00	7.60	Р	0.5
Total Susp'd Solids			3.20			3.20		
Solids Residue	1407.00	1761.00				1584.00		
Sp. Resistance	430.00	400.00				415.00		
Color	<5.00	<5.00			3.00	4.30	S	15.00*
Odor	<3.00	<3.00			2.00	2.70	S	3.00*
Total Dissolved Solids			2448.00		1800.00	2124.00	S	500.00
рH	7.40			7.70	7.39	7.50	S	6.5 to 8.5

Notes:

Boldface type indicates value exceeds the allowable limit as set by the Safe Drinking Water Act.

p=Primary Drinking Water Act limit, s= Secondary Drinking Water Act limit,

. Copper requires treatment when the concentration exceeds the action level of 1.3 mg/L.

• Color, 15 color units; Odor, 3 threshold odor number

Average value is computed using the detection limit when the lab reports less than the detection limit.

On 1/23/95, a dissolved iron concentration of <0.05 ppm was noted.

Common types of water treatment processes that remove nitrate and dissolved salt from water are membrane separation, distillation, and to a limited degree, ion exchange and lime softening. Because the level of sulfates and other ions in the raw water was appreciable and these ions would compete with nitrate in an anion exchange system (i.e., these competing ions would be removed preferentially before nitrate ion), an anion exchange system was eliminated from further consideration. Because lime softening achieves only partial compliance with SDWA limits and its chemistry is well known, piloting this process was considered but was determined to be of little benefit to the participating communities. The use of membrane separation processes in the water treatment field has grown significantly in the recent past because of technological improvements and specialization of the membranes themselves. Membrane separation processes use either hydrostatic pressure or electric charge to separate ions from the water. In electrodialysis, a pair of electrodes work with **cationic** and anionic membranes to allow ions to pass through and be separated from the product water. In reverse osmosis, a hydrostatic pressure is applied to brackish or sea water, forcing clean product water through the membrane.

Typically, RO membranes remove 90 to 99 percent of most ions. The rejection of ED is about 55 to 60 percent per stage. Thus, ED systems are arranged by number of stages, depending on feed-water quality being treated, and the product water quality goal. For example, treating a water of 2,000 mg/L TDS will require two ED stages. RO systems are also staged but not for rejection purposes. They are staged for increased production (Morin, 1994).

4.2 ED (electrodialysis)

An ED unit, shown on figure 2, has anion and cation transfer membranes stacked between a positively charged anode, and a negatively charged cathode. As feed water (or diluting stream) containing dissolved salts passes between alternate membrane pairs, negatively charged ions are attracted toward the anode and are allowed to pass through the anion transfer membrane. The positively charged ions are drawn toward the cathode and are allowed to pass through the cation transfer membranes. A portion of the feed stream, termed the concentrating stream, is used to carry the dissolved salts out of the system.

Transfer of Ions In Electrodialysis

Figure 2. - Transfer of ions in an electrodialysis stack (Asahi Glass Co., Ltd.).

Figure 3 shows how the four separate streams flow through the stack. They are kept separate within framed nylon spacers that are set between each membrane pair. Because of the way they are cut, the spacers disperse water over the entire active area of the membrane and then collect it into the proper channel at the other end as shown on figure 4. When the stack of membrane and spacers is properly compressed with the peripheral bolts, water does not leak from the spacer channels. Although some water molecules are transferred with the ions, ED membranes are not permeable to unassociated whole water molecules, only to dissociated water, i.e., hydrogen and hydroxide ions. Some regrouping of H^+ and OH^- occurs on the other side of the membrane, but it is insignificant compared to the volume of water passing through the system.

ED membranes are formed from polymers with charged chemical groups or elements incorporated into the membrane matrix. For instance, cation transfer membranes have fixed negative ion groups, such as the sulfonate group, SO,, and positively charged, relatively freely moving counter ions, such as Na^+ . Conversely, anion transfer membranes have positively charged fixed groups and negatively charged counter ions. The fixed ion groups repel like-charged ions in the feed solution while attracting oppositely charged ions, which are allowed to pass through.

ED membranes are much more durable than RO membranes and can tolerate **pH** from 1 to 10 for cleaning. They are not sensitive to chlorine and can tolerate a temperature as high as 46" C. They can be removed from the unit and scrubbed if necessary. If the concentrate stream becomes too saturated, salts may begin to adsorb onto the membrane surface, which increases electrical resistance within the unit. These solids can usually be washed off easily by turning off the power supply and letting water circulate through the stack. ED membranes have a life expectancy of at least 10 years. If operated correctly, they can last twice as long.

4.3 RO (Reverse Osmosis)

Reverse osmosis is a pressure-driven membrane process. The reverse osmosis process uses a semipermeable membrane to allow certain (water) molecules and ions to pass through while retaining others. A major portion of the water's impurity (dissolved salts) remains behind and is discharged as a waste stream, while relatively pure (product or permeate) water emerges at near atmospheric pressure. A typical operating pressure range for reverse osmosis is 200 to 400 lb/in² for brackish water and 800 to 1000 lb/in² for sea-water desalination. Ion rejections achieved with RO usually are in the 90 to 99 percent range. Factors that may influence overall operation and efficiency are temperature, feed-water composition, salinity, and recovery.

Reverse osmosis semipermeable membranes are either a hollow fine fiber material or a spirally wound or rolled sheet. Spiral wound membranes are most popular for brackish water treatment and will be the focus of this study. In spiral wound membranes, the semipermeable sheet is rolled up with a spacer material in the same pressure vessel. This arrangement allows separation of the treated water from the concentrated water and passage through the vessel to separate outlets on the vessel's end. Figure 5 shows two views of a spiral wound membrane.

Figure 3. - Flow within an electrodialysis stack.

The anode and cathode washes flow through spacers next to either electrode. Electrode washes carry the byproducts of electrode reactions out of the system. The byproducts are hydrogen formed in the cathode spacer and oxygen and chlorine gas formed in the anode spacer. If the chloride is not removed, chlorine gas may form. Acid is added to the cathode wash to neutralize the sodium hydroxide which forms in the cathode compartment.

Concentrate Spacer

Figure 4. - Electrodialysis flow spacers (Asahi Glass Co., Ltd.).

Figure 5. • Cut-away diagram of a spiral-wound RO element (Conlon, 1991).

Reverse osmosis can be used to reduce the concentration of both nitrates and dissolved solids to drinking water standards as specified by EPA. Rejection of **divalent** ions (Ca^{2+} , Mg^{2+} , SO_4^{2-}), monovalent ions (Na^+ , Cl^- , HCO_3^- , NO;), and **organics** are typically around 97 percent. Other applications for reverse osmosis membranes include the removal of color, THM (trihalomethane) precursors, TOC (total organic carbon), and radium.

Reverse osmosis requires extensive pretreatment to prevent the membranes from fouling, biofouling, or scaling. Fouling is the clogging of a membrane from suspended solids like colloids, silt, and clays, or from upstream equipment such as particles from pump packings, pipe fibers, and filter media. As previously discussed, the means to remove fouling agents is pretreatment filtration. Cartridge filters are typically used upstream from the RO unit to remove these contaminants. Fouling on the membrane surface caused by the accumulation of live or dead suspended biomass is referred to as biofouling. Some bacteria can grow with no light or oxygen and can destroy metals and membranes. They also can reproduce at alarmingly fast rates. Algae, a one-celled plant that usually requires light for cell metabolism, and other microorganisms, such as fungi, can also biofoul membranes. For these reasons, when reverse osmosis is used, it is important to disinfect and filter the feed water to remove all biological agents.

Scaling is the formation of a crust layer attributable to a precipitation or crystallization of a salt compound or solid. When feed water is concentrated, the amount or concentration of those ions that were rejected (unable to pass through the semi-permeable membrane with the water) increases to a point where insufficient water is available to keep the ion soluble and precipitation or scaling occurs. Because the concentration of both monovalent and **divalent** ions increases in RO as the water passes through each element, the likelihood of scaling is high. Antiscalants are commonly used in RO pretreatment to prevent scaling of the membranes. An antiscalant raises the solubility limit and thus inhibits chemical precipitation.

Reverse osmosis, like ED, will have waste stream disposal requirements that need to be considered for full scale operation. These requirements include the concentrate stream from the RO reject and the backwash wastewater from the filters used in pretreatment.

5. PILOT TEST DESCRIPTION

5.1 Site Preparation and Pilot Plant Equipment

Prior to starting the 6-week pilot test, the City of Avondale, with help from the City of Chandler and the **Gila** River Indian community, provided the following at Avondale's well s5:

- ZOO-ampere, single-phase power
- 15,000 gal/d of raw well water
- Drain line for 6 gal/min to the sanitary sewer system
- Deionized water
- Forklift and operators for equipment offloading
- Level concrete pad, 8 feet by 40 feet by 8 inches
- Secured area with vehicular access
- Sanitation facilities
- Professional analytical services for control testing

This work enabled the pilot plant to run on an acceptable and reliable power supply, receive adequate flow, dispose of finished water, and operate in a safe and efficient manner for the duration of the test.

Reclamation's Mobile Water Treatment Pilot Plant was used at **Avondale** for the field testing described herein. This pilot plant incorporates skid-mounted equipment to test numerous unit treatment processes, including: chemical precipitation, oxidation (ozone and permanganate), ion exchange, activated carbon, and membrane separation. Most of the process equipment is controlled by a PLC (programmable logic controller). Automatic data acquisition and a **35-kilowatt** generator is available but was not required at this location.

Figures 6 and 7 diagram the treatment processes that were pilot tested at Avondale. Water from well **s5** was pumped into an existing IO,OOO-gallon tank which provided about 1.5 days of storage for testing. The individual skid-mounted equipment shown on figures 6 and 7 were then used to measure flows, check turbidity and **pH** levels, add **coagulants** as necessary, remove the turbidity, disinfect, and add antiscalant prior to the ED or RO skids, respectively. Upon completion of treatment, both the product water and the concentrated waste stream were recombined prior to disposal to the city's sanitary sewer.

5.2 Process Selection

The following two treatment processes were selected to solve the problems of high turbidity, nitrates, chlorides, and TDS:

- Pressure clarifier, multi-media filtration, and ED with selective anion and nonselective cation membranes manufactured by Asahi Glass Co., Ltd.
- Pressure clarifier, multi-media filtration, and RO with polymer addition and **pH** adjustment. Membranes elements were manufactured by the Dow Filmtec Co.

5.2.1 Electrodialysis - An Asahi DB-0-1136 system was used for pilot studies in Avondale. The system contains regular CMT (cation transfer membrane); but the anion transfer membrane is selective AST (against sulfate ion). This selectivity means that other anions, like chloride and nitrate, are transferred in preference to sulfate. Some sulfate is transferred, but slowly. Using this membrane provides two benefits: (1) nitrate transfer is higher than with regular anion transfer membrane and (2) because sulfate is **left** in the product stream, less scaling occurs in the concentrate stream and higher recoveries are possible. The **CMT/AST** combination was chosen for the **Avondale** site because anticipated levels of nitrate in the water analysis were considered too high to remove using non-selective membranes.

The following are advantages of using ED over RO:

- Lower operating pressure
- Low energy requirement
- More tolerant of turbidity excursions
- Can produce a less concentrated waste stream
- Does not require antiscalant
- Quieter to operate
- Šmaller footprint
- Membrane durability

Figure 6. - Reverse osmosis pilot plant equipment.

Figure 7. • Eiectrodialysis pilot plant equipment.

The proportion of salts removed with one pass through the membrane depends on resistance within the ED stack, flow rate of the demineralized stream, desired reduction in TDS, and the voltage applied. The feed and bleed systems were used to attain the minimum TDS level possible. Feed water was mixed with the demineralized stream and recycled to the ED stack at a ratio of **1**:10. Raw water was blended with the concentrating stream at a ratio of **1**:10. The overall design recovery was 90 percent.

Use of antiscalants was not necessary during the ED pilot operation because sulfate and carbonate ions were not concentrated in the reject waste stream. This is because of the selectivity of the membranes and the addition of acid to the concentrate stream caused the bicarbonate to convert to carbon dioxide.

5.2.2 **Reverse Osmosis** - Reverse osmosis was selected for field testing because of its ability to produce water which completely meets or exceeds drinking water standards at high overall net recoveries. Reverse osmosis allows high quality RO product water to be blended with other water so that the total amount produced per day costs less and the amount of the byproduct waste stream is also less.

Reducing the turbidity is a necessary requirement for pretreating the water prior to RO. This improvement can be achieved by the addition of a polymer to enhance the settling of suspended solids (i.e., iron, manganese) and the use of a clarifier and a dual media gravity filter. The other concern is biological fouling of the membrane. Laboratory results imply that a biological concern will not exist, but if biological fouling is noticed, the use of chloramine disinfection will be implemented.

5.3 Pilot Test Objectives

5.3.1 Electrodialysis - The principal objectives of the electrodialysis testing were to:

- Determine adequate pre-treatment requirements.
- Determine conditions under which a unit using anion selective membranes removes enough nitrate to meet drinking water standards.
- Determine conditions under which the CMT/AST membrane configuration produce water with a TDS concentration of 500 mg/L or less.
- Determine the volume and water quality characteristics of the waste stream produced.

5.3.2 Reverse Osmosis

The principal objectives of the reverse osmosis testing were to:

- Determine adequate pretreatment requirements.
- Evaluate the overall performance of the FilmTec BW30-2540 membrane for reducing nitrate and TDS in the well s5 water.
- Assess blending opportunities (RO permeate with pretreated well water) to maximize net recoveries.

- Determine potential long-term adverse effects on the membranes from colloidal fouling, biofouling, or scaling.
- Determine the volume and water quality characteristics of the waste stream produced.

5.4 Test Procedures

5.4.1 Pretreatment System - Turbidity, conductivity, **pH**, and temperature of water from the well, detention tank, pressure clarifier, and media filter were monitored at least twice per day. These tests determined the raw water quality and the effect of these tanks, plus contact with air, on temperature and suspended solids removal. The media filters were backwashed when rises in turbidity or pressures in the pretreatment system were observed.

For both the pretreatment and the two desalting processes of electrodialysis and reverse osmosis, the water quality parameters listed in table 2 were submitted to Westech Analytical Services, Inc., in Phoenix, for process performance evaluation.

5.4.2 Electrodialysis - Electrodialysis tests were designed to identify maximum performance parameters of the Asahi CMT/AST membrane configuration by varying detention time and voltage. Table 3 presents the recommended and experimental ranges of the operating test parameters used at the site. Detention time can be varied by adjusting feed water flow into the diluate and concentrate tanks. When the feed flow to the diluate tank equals the product outlet flow, the detention time can be determined from the diluate tank volume (110 liters):

Detention =
$$\frac{V_d}{F_{fd}}$$

where V_d is the diluate tank volume and F_{fd} is the equilibrium flow rate to the diluate tank.

Increasing the detention time simulates increased membrane area. The diluting stream flows through the stack at 92 L/min, so the contents of the diluting tank will pass through the stack once in about 1.2 minutes. With a **5-minute** detention time, the contents of the diluting tank will pass through the stack about 4.2 times. This time is comparable to increasing the membrane area 4.2 times.

No. Passes =
$$\frac{F_{rd} * Det}{V_d}$$

where F_{rd} is the diluate flow rate to the stack (92 L/min), V_d is the diluate tank volume (110 liters), and *Det* is the detention time (5 minutes).

At the start of the test, both diluate and concentrate were filled with well water. The power supply was set at the test voltage and/or current, and the system was operated for the calculated detention time. Samples were taken from the feed stream, diluate and concentrate tanks, and diluate and concentrate return flow from the stack. Resistance within the stack was monitored by recording power supply current and measuring voltage across the stack. Conductivity, temperature, **pH**, and nitrate concentration were measured for each sample.

5.4.3 **Reverse Osmosis** - The reverse osmosis system design parameters that were followed for this test are summarized in table 4.

		Number Samples/Rear	of	Responsibility		Containar	Minimum	Maximum
Parameter	Units	(RO)	(FD)	for Testing/Recording	Preservation	Type	Volume (ml)	Holding Time
1 didificition	enne	(110)	(LD)	tor resting/recording	1163617411011	1)00	volume (m)	Totaling Time
Flow	L/min	Many	Many	Operator				
Temperature	deg C	Many	Many	Operator				
р. рН	Ū	Many	Many	Operator				
Turbidity	NTU	Maný	Many	Operator		-	•	
Conductivity	uS/cm	Many	Many	Operator				
Silt Density Index (SDI)		Many	Many	Operator, SDI Test kit		•		
Calcium, Ca	mg/L	3	3		Store at 4 deg C	Plastic	200	28 days
Magnesium, Mg	mg/L	3	3	Professional Lab	Store at 4 deg C	Plastic	200	28 days
Sodium, Na	mg/L	3	3	Professional Lab	Store at 4 deg C	Plastic	200	28 days
Potassium, K	mg/L	3	3	Professional Lab	Store at 4 deg C	Plastic	200	28 days
Aluminum, Al (total) · '	mg/L	3	3	Professional Lab	Nitric, < pH 2	Plastic	250	8 months
Iron, Fe (total)	mg/L	3	3	Operator, Hach	Nitric, < pH 2	Plastic	256	6 months
Manganese, Mn (total)	mg/L	3	3	Operator, Hach	Nitric, < pH 2	Plastic	250	6 months
Bicarbonate, HCO3	mg/L	3	3	Professional Lab	Store at 4 deg C	Plastic. glass	100	14 days
Chloride, Cl	mg/L	3	3	Professional Lab	Store at 4 deg C	Plastic, glass	50	28 days
Sulfate, SO4	mg/L	3	3	Professional Lab	Store at 4 deg C	Plastic, glass	50	28 days
Nitrate, NO3	mg/L	3	3	Professional Lab	Store at 4 deg C	Amber plastic, glass	100	48 hours
Hardness (as CaC03)	mg/L	3	3	Professional Lab	Nitric, < pH 2	Plastic, glass	100	6 months
Alkalinity (as CaC03)	mg/L	3	3	Professional Lab	Store at 4 deg C	Plastic, glass	100	14 days
Silica, SiO2	mg/L	3	3	Professional Lab	Store at 4 deg C	Plastic	-	28 days
Total Organic Carbon (TOC)	mg/L	3	4	Professional Lab	4 deg C; HCI, < pH 2 & 4 drops 10% ST.	Amber glass: TFE cap	100	7 days
Standard Plate Count (SPC)	CFUs/mL	3	4	Professional Lab	Store at 4 deg C	Sterilized glass, plastic	100	8 hours
Headloss	psig	Many		Operator				
Backwash (B/W) Frequency	hours	Many		Operator				

NOTES:

RO = Reverse Osmosis ED = Electrodialysis

Parameter	Recommended Value	Experimental Range
Number of membrane pairs	100	92
Membrane area/pair	414 cm ²	N/A
Spacer thickness	0.15 cm	N/A
Diluate flow to stack	92 L/min	84 - 87 (max obtainable)
Concentrate flow to stack	12.3 L/min	11 - 13
Cathode wash flow	3 L/min	3
Anode wash flow	1.5 L/min	1.5 • 3
Feed flow to diluate tank	10 L/min	6.5 - 13.5
Feed flow to concentrate tank	1.6 L/min	l - 3
Recovery	86 pct	up to 93 pct
Current	4.2 Amps	2.75 (max is 3.0)
Voltage	79 Volts	50 • 110
Cathode wash pH	2	-2
Concentrate pH	5	2 • 7.8

Table 3. - Electrodialysis operating parameters (Asahi Glass Co., Ltd.).

Table 4. • Reverse osmosis operating parameters.

Parameter	Recommended Value			
Configuration	12:6, 2 stage (refer to appendix C or E)			
Element	FilmTec BW30-2540			
Recovery	80 pct			
Initial feed pressure	225 lb/in ² @ 25 °C			
Feed flow	18.2 L/min (4.8 gal/min)			
Projected permeate TDS	50 mg/L			

The following chemicals were added to the flow stream during the RO pilot test:

Antiscalant - Hypersperse AF 200[™] @ 3.0 p/m
Sulfuric acid for pH adjustment to 7.0

- Ferric sulfate, if needed for turbidity control

The RO system was operated for nearly 700 hours to observe any potential membrane degradation from colloidal fouling, biofouling, or scaling. System startup was at operating pressures required to achieve 80-percent recovery. Process instrument data were manually recorded four times per day. Just prior to data collection, the operator adjusted the system pressure to 210 Ib/in^2 (gage) by adjusting the BPV (back pressure valve) on the high pressure pump recycle line and the FCV (flow control valve) on the concentrate line.

An SDI (silt density index) measurement of the cartridge filter effluent stream was made once a day. SDI is a measure of fouling potential of the feed from colloidal-size materials.

Samples of the feed, interstage, permeate, and concentrate (reject) streams were collected after 4, 364, and 720 hours of operation. These samples were sent to a contract laboratory for the analyses listed in table 2. The 5-µm cartridge filter elements on the RO skid were changed about every 3 to 4 days. A PID (proportional integral derivative) controlled chemical feed pump was used to regulate the addition of sulfuric acid for feed **pH** adjustment. A 5-percent solution of the antiscalant was prepared about every 4 days and added with a manually-controlled chemical feed pump.

6. PILOT TEST RESULTS AND CONCLUSIONS

6.1 Results

6.1.1 Pretreatment System - The effectiveness of the pressure clarifier and pressure multimedia filter in removing turbidity is shown on figure 8. The pressure clarifier alone was able to produce water below 1 ntu (nephelometric turbidity unit) for 5 days. On the fifth day, the turbidity coming out of the pressure clarifier was higher than that of the well water. This parameter was used as an indication of when to backwash the media filters.

The pressure clarifier reduced the load on the multi-media filters, but after pumping the well for 2 weeks, the turbidity dropped from 15 to 8 ntu. The pressure clarifier was removing most of the turbidity without chemical additives and one backwash cycle per week. Recorded historic nitrate levels had been as high as 29 mg/L as nitrogen; however, during the test period, the nitrate concentration was much lower and ranged from 5.7 to 7.4 mg/L as nitrogen.

6.1.2 Electrodialysis System - The first task in interpreting the ED results was to determine the relationship between conductivity and concentration for the well water, ED product, and concentrate streams. Water analyses were performed on the three waters twice **during ED** testing. A supplemental analysis was performed on the product water at the end of testing. This final sample had the lowest conductivity. Figure 9 shows conductivity data correlated with reported TDS.

6.1.2.1 Nitrate reduction - The ED system brought nitrate levels down to 3 mg/L or less at all operation settings as shown on figure 10. Nitrate levels in the well water fell from 9.7 mg/L at the start of testing to a stable concentration of about 5.5 mg/L by the end of the first week. This level is substantially less than historical levels of 29 mg/L. One possible explanation for the reduction in nitrate levels is that nitrate had been accumulating in the well and/or in the aquifer near the column pipe and was flushed out after 1 week of operation. It is recommended that nitrate be monitored on this well for a year before committing to a treatment technology geared toward nitrate removal.

Figure 8. • Effectiveness of the pretreatment system in controlling turbidity.

Figure 9. • Relation between conductivity of ED streams and TDS concentration.

23

6.1.2.2 Total Dissolved Solids Reduction - Reducing TDS to drinking water levels with this system would be more difficult than it would have been if standard CMT/AMT ED membranes had been used. The lowest product salinity attained was 613 mg/L TDS while operating at 100 volts, 1.71 amperes, **83-percent** recovery, and with an H-minute detention time. At these operating conditions, chlorine gas production in a full scale plant would warrant controlling the fumes. This off-gas could be used to disinfect product water before distribution, thereby saving on the cost of chlorine.

A summary of the electrodialysis water quality data for the feed, product, and reject flow streams is found in table 5. Results of variation in detention time and voltage studies are presented on figures 11 and 12. In general, the effect of increasing voltage was greater than increasing detention time. The maximum voltage recommended for this ED stack, however, is 100 volts. If the experimental system was to produce water with a TDS of 500 mg/L, the detention time would have to be about 27 minutes, or 32 times the membrane area contained in the pilot study, assuming that the performance would continue as it had at shorter detention times. Figure 11 seems to indicate that the detention time would not be much different for lower voltages.

Table	5.	٠	Electrodialysis	water	quality	data.
-------	----	---	-----------------	-------	---------	-------

Ion	Feed	Product	Reiect	Percent Reduction
Aluminum	0.69	0.39	1.70	43.48
Calcium	210.00	92.00	590.00	56.19
Magnesium	84.00	50.00	290.00	40.48
Manganese	0.11	0.06	0.30	45.45
Potassium	4.00	2.60	9.30	35.00
Sodium	140.00	120.00	220.00	14.29
Bicarbonate	170.00	130.00	2.00	23.53
Chloride	760.00	240.00	2000.00	68.42
Nitrate	9.70	3.70	42.00	61.86
Sulfate	260.00	230.00	1300.00	11.54
Total (Sum)	1200.00	604.00	3344.00	49.67
TDS (Reported)	1700.00	970.00	4200.00	42.94

Power requirement for the various operating modes is depicted on figure 13. All of the modes fall close to a line that would indicate a power requirement of about 0.6 kWh/m^3 to produce water with 500 mg/L TDS from the water tested.

The complete operational data for the ED system are found in appendix A.

Figure 13. • Relation between power consumption and ED product water quality.

6.1.3 **Reverse Osmosis** - The testing described below was designed to determine the following:

- 1. The overall performance of the FilmTec BW30-2540 reverse osmosis membrane element in reducing TDS and nitrate levels in well s5 ground water.
- 2. The potential long-term adverse effects on the membranes from fouling and/or scaling.
- 3. The blending ratio (RO permeate with filtered well water) to achieve high overall net recoveries.

6.1.3.1 Operational data. A total of 720 hours of operation accrued on the RO elements during this test phase. The raw data collected by the plant operators and other calculated values are tabulated in appendix B. Flow, temperature, conductivity, and pressure data are also graphically depicted on figures 14 through 20.

Figure 14 shows the system flow rates of feed, reject, stage 1 (vessels 1 and 2) product flows, and stage 2 product flows. These flows were allowed to fluctuate while the feed pressure was held constant at 210 lb/in^2 . An 80-percent recovery of desalted water (permeate) was achieved during this test. The total amount of permeate recovered is the summation of the following three flows:

- Stage 1, vessel 1 permeate (orange symbols)
- Stage 1, vessel 2 permeate (yellow symbols)
- Stage 2 permeate (blue symbols)

Figure 15 shows both the diurnal and long-term variation in feed temperature. This measurement was taken at the feed end of the first stage. Temperature has a significant effect on membrane performance and is used in later calculations of net permeate flow, which is normalized to 25 "C.

Figure 16 displays system conductivities as μ S/cm (microsiemens per centimeter). For better resolution, figure 17 shows an expanded view of the permeate conductivities. Note that the permeate conductivities gradually decrease throughout the test period, but so does the feed conductivity.

Figure 18 plots the RO system's operating pressures in pounds per square inch (lb/in^2) , for the entire 720-hour test period, for the feed, interstage, and reject stages. It is interesting to note that although the feed pressure was manually maintained at 210 lb/in^2 , the interstage and reject pressures show marked decreases at 320 and 470 hours of operation. These pressure drops are attributable to scaling and/or fouling of the membranes as later discussed in section 6.1.3.2. Figure 19 shows the pressure drops across the first and second stages. The pressure drops across the first stage at about hours 320 and 470 indicate that it was this stage that was affected. Appendix C contains a diagram that shows the location of the RO data obtained during the pilot test.

Figure 14. RO system flow rates

Maricopa Groundwater Treatment Study

Figure 17. RO permeate conductivities.

Figure 18. RO system pressures

Figure 19. RO pressure drops by stage

Chemical analyses were performed at 4,364, and 720 hours into the test program on the four separate RO process streams of feed, interstage, permeate (combined), and reject, for the following constituents:

- Cations (Ca, Mg, Na, K)
- Anions (HCO,, Cl, SO,, NO,, F)
- Metals (Al, Ba, Sr, Fe, Mn, P)
- Silica

Results of these analyses are shown in appendix D.

Table 6 summarizes the amount of salt rejected, in percent removed, for each of the 3 analytical rounds for the RO pilot system. The values shown as ">" result from the permeate concentration falling below the detection limit. As shown, the average reduction in all ions including TDS, nitrates, and chlorides exceeds 90 percent.

Table 6. - RO salt rejections.

Ion	3.5hour	364-hour	720-hour	Average
Calcium	99.71	99.75	99.37	99.61
Magnesium	99.70	99.64	99.30	99.55
Sodium	96.07	93.33	91.88	93.76
Bicarbonate	92.50	90.63	96.76	93.29
Chloride	99.02	97.92	97.17	98.04
SO_4	>98.2	>97.8	>97.9	98.00
Nitrate as N	>94.1	91.67	88.76	91.50
TDS (Sum)	96.87	97.07	97.53	97.16
Average				96.36

In addition to the analyses indicated above, bacteriological tests of standard (heterotrophic) plate counts were run on well water and RO product and concentrate flows. Plate counts taken on well water at **364-** and 720-hour sampling times were high at 6400 and 3600 cfu/mL (colony forming units per milliliter), respectively. These data are summarized in table 7.

Table 7. Bacterial counts during RO testing (cfu/mL).

Source	3.5-hour	364-hour	720-hour
Feed	380	6,400	3,600
Combined Product	110	21	320
Concentrate	320	No Data	19,000

At least one SDI measurement was performed on the RO feed water, downstream of the 5μ cartridge filter, each day of testing. SDI is a measure of fouling potential of the feed from colloidal-size materials. The maximum SDI specified by the manufacturer for the BW-30 reverse osmosis membrane is 5.0. Forty SDI tests were performed during the 6-week test period, with values ranging from 0.07 to 6.17. The average SDI was 2.02 with a standard deviation of 1.45.

6.1.3.2 Performance degradation. - Figures 20 and 21 present the average *NDP* (net driving pressure) and *NPF* (normalized permeate flow) for this test.

The **NPF** can be used to monitor the degree to which membranes are being fouled or if damage is occurring. It is commonly used to determine the time at which membranes should be chemically cleaned. A decrease in **NPF** with time is expected, and for the thin-film composite membranes used in this study, a 15- to 20-percent decline over a 3- to 5-year period might be anticipated. The roughly 11-percent drop in **NPF** experienced in this test program over a 720-hour test period is excessive by comparison.

Two possible causes were considered for this decline in system performance: (1) the deposition of silt and colloidal particles or metal precipitates such as iron oxide on the membrane surface and (2) biofouling. During the **6-week** pilot test, the well water received the following pretreatment: stored in a 10,000 gallon storage tank; screened with a **40-µm** (opening) basket strainer; additional settling; media clarification and filtration; and **0.1-µm** cartridge filtration.

At times, the water from the 10,000-gallon storage tank was noticeably red, the same color of sediment found inside the 10,000-gallon storage tank. Throughout the pilot test, the intake skid's duplex basket strainer collected fine material that coated the strainer, and a marked decrease in flow was noted. It became evident that the material was smaller than 40 pm when tanks downstream from the strainer also were coated with the reddish material.

In addition, these process tanks, which were just upstream from the desalting equipment, collected an algal bloom. This algae was removed from the tanks, piping, and upstream treatment units at the midpoint of the pilot test period by shock chlorination, after which the tanks were covered with a solid plastic tarp. Evidence of algae passing onto the RO cartridge filter was found when this filter was changed daily and, on occasion, was found to be green in color.

6.1.3.3 Membrane autopsy and SEM (Scanning Electron Microscopy) analysis - Autopsies were performed on May 2, 1995, on 2 of the 18 RO elements, one of the lead elements in stage 1 (serial No. A2495040, refer to appendix E) and the mid-element in stage 2 (serial No. A2495047). Initial observations of the lead element membrane surface revealed substantial amounts of a brown-gray, fibrous solid material plastered against the inlet end. Second, the vexar (plastic feed-water/brine spacer located between membrane envelopes) showed signs of being pushed into the element between the layers of membrane leaf. Similar material was found in the middle element of the second stage, but to a lesser degree.

Two l-inch-square membrane samples were cut from the second leaf of each element for SEM (scanning electron microscopy) imaging to determine if a particular contaminant or biological cell structure could be identified to cause membrane plugging. Some of the samples were gold-coated to enhance the imaging resolution and detail. On both lead and second stage elements, cylindrical shaped silicon fragments and carbon-rich, irregularly shaped particles were found along with minor amounts of biological material. On the lead element, few to several irregularly shaped iron- and chromium-rich particles were found. No attempt was made to classify specific bacterial types/strains because, based on the quantities found, these strains were believed to play a minor role in the decreased performance of the membranes. Figure 22 shows two of the photographs that were found on these membranes. The complete memorandum of results of the SEM analysis is included in appendix F.

Figure 22a. - SEM photograph of numerous fragments of silicon-rich cylindrical particles found in both the first and second stage RO elements.

Figure 22b. - SEM photograph of bacteria present in the second stage element.

6.2 Conclusions

6.2.1 Electrodialysis • The following conclusions were reached as a result, of this test phase:

- Adequate pretreatment to remove turbidity and biological organisms **from** attacking the ED membranes is required for successful long-term ED performance. No such problems were encountered during this pilot test.
- The electrodialysis process, using Asahi nitrate (anion) specific membranes, achieved a 6%percent reduction in nitrates, a 68-percent reduction in chloride, and a 43-percent reduction in TDS. The nitrate specific membranes produced an effluent that met the nitrate MCL, but that level was still over the 500 mg/L secondary MCL for TDS.
- For every 100 gallons of well water treated, the ED process piloted was able to produce 80 gallons of water (80-percent recovery) of the quality shown in table 5.

6.2.2 **Reverse Osmosis** • The following conclusions were reached as a result of this test phase:

• RO effectively reduced the concentrations of all contaminants of concern to below **MCLs**. The average TDS rejection for the **720-hour** test was 97.2 percent. Specific ions of interest were removed as follows.

Constituent	Percent Rejection	Permeate Average Concentration (mg/L)
Nitrates	91.5	0.8
Chloride	98.0	11.1
TDS	97.2	41.7

Table 8. - RO piloting results on contaminants of concern.

- Average TDS (summation of ions [appendix **D**]) for feed and permeate were 1467 and 42 **mg/L**, respectively. By blending NF permeate and filtered well water at a ratio of about **1:0.47**, a net overall recovery of **8**7 percent at 500 **mg/L** TDS could be achieved.
- **NPF** (normalized permeate flow) dropped by about 11 percent during the 6 weeks of testing as shown on **figure** 21. During this same period, while the feed pressure was held constant at 210 **lb/in²**, the pressure of the interstage decreased **from** about 181 to 144 **lb/in²** (fig. 18) with similar drop in reject pressure noted. The membrane autopsy, SEM analysis, and high heterotrophic plate counts indicate scaling and biofouling occurred.
- Although historic bacteria counts were low in the well water, the decision not to disinfect prior to the RO unit resulted in the deposition of biological matter onto the cartridge filter. Biofouling may have contributed to decreased membrane performance. Chloramine, or chlorination with dechlorination, would provide more effective control; however, feed water with high microbial populations and subsequent

residual cell components of microorganisms killed during disinfection would have to be removed.

• Colloids from either well water or the IO,OOO-gallon tank bottom may have contributed to the decline of membrane performance through membrane fouling. A pretreatment system, such as a series of bag or cartridge filters, can be used to eliminate this water quality condition.

7. FULL SCALE TREATMENT

7.1 General

The cities of **Avondale** and Chandler and the **Gila** River Indian community have many choices and decisions to make regarding the construction of full scale water treatment plants. Among these choices are plant location and size, level of treatment, and the method of disposing of any residuals generated in the treatment process.

Each of the cooperating partners has indicated a need to provide **wellhead** treatment at wells that produce a volume of between 1 to 2 Mgal/d. This report presents treatment plant options at 2-Mgal/d capacity and, in section 8, presents planning level construction cost estimates for consideration in final design.

As previously discussed, well **s5** historically contained nitrate and turbidity which exceeded Primary SDWA limits, and chloride and TDS which exceeded Secondary SDWA limits. Based on this information, Reclamation was asked to perform pilot testing at well **s5** using processes that would remove or reduce these contaminants to acceptable levels. The full scale treatment alternatives presented in this report were planned to cover electrodialysis and reverse osmosis, the two processes piloted. However, since the start of this study, developments in thin film composite membranes have occurred so that now nanofiltration membranes are available which are selective to remove multivalent ions and also achieve high removals of nitrate. A brief review of the differences between RO and NF follows.

7.2 Comparison Between Reverse Osmosis and Nanofiltration

A review of operating, maintenance, and capital costs between RO membranes and the new thin film composite nanofiltration membranes was performed and is presented on figure 23. As shown, nanofiltration and electrodialysis are cheaper to operate than RO and are preferred when contaminant concentration levels do not warrant the high removals of RO.

Reverse osmosis and nanofiltration are membrane separation processes which use high pressure to separate the solids or ions in the water. The major difference between nanofiltration and reverse osmosis is the size of the openings in the membranes and the ability of each to selectively reject various dissolved solids. Membrane openings in reverse osmosis range between 1 and 15 angstroms, whereas in nanofiltration they range between 8 and 80 angstroms. Some dissolved ions may pass through membranes but the net ionic charge on both sides of the membrane must balance. An equivalent charge of anions and cations must pass at the same time. This process is more likely to occur with nanofiltration membranes because of the larger pores than RO membranes. **Divalent** cations such as calcium, sodium, magnesium, and manganese must bring two monovalent anions with them to pass through a nanofiltration membrane and therefore are less likely to pass through.

Figure 23. • Cost comparison: NF, RO, and ED.

A significant operational difference between these two processes is that RO operates at 200 to 400 lb/in^2 for brackish water desalination, whereas nanofiltration runs at pressures usually below 100 lb/in^2 . Actual operating pressures are proportional to the amount of dissolved solids or salts in the flow stream.

Nanofiltration membranes offer the following advantages over reverse osmosis membranes:

- Reduced operating pressures, which subsequently reduce operating costs
- Higher recovered product water

Nanofiltration membranes are generally used to treat low TDS waters where the reduction of hardness ions is desirable; hence, they are often referred to as softening membranes. The rejection of **divalent** ions (Ca^{2+} , Mg^{2+} , SO_4^{2-}) and **organics** having a molecular weight above 200 is very high, typically above 95 percent. Monovalent ions (Na^+ , Cl^- , HCO_3^-) are rejected at typically 60 to 70 percent. Typical applications for nanofiltration include the removal of TDS, hardness, color, THM precursors, TOC, and radium.

Based on the above considerations, the full-scale treatment plant descriptions and costs are for electrodialysis and nanofiltration. Each of these membrane treatment processes requires adequate pretreatment to protect the membranes from scaling and biofouling. These pretreatment steps, for both options, include predisinfection for bacterial control and filtration for suspended solids reductions. Included in the estimate for each desalting option is the addition of an antiscalant and acid to adjust the chemical make-up of the feed to be compatible with the membranes and a cartridge filter which removes any suspended material greater than 0.5µm, that may have passed through the dual media filter.

7.3 Electrodialysis

A result of electrodialysis pilot testing is that it successfully removes nitrate, but only partially removes the TDS. This treatment process may not always produce water which meets all **MCLs**. Additionally, ED produces more waste flow than nanofiltration, though the waste stream from electrodialysis contains ions that are less concentrated than the waste stream from nanofiltration. Therefore, the ED waste stream can be easier to dispose of from a regulatory standpoint. Electrodialysis is recommended in those instances where nitrates are a problem and the TDS is below 1100 mg/L.

Advantages of an electrodialysis system are:

- ED does not require pressurization. Distribution line pumps can be used **to** pump water through the system. This capability also means that ED can be a much quieter process than NF and will be more acceptable in a residential area.
- Selective ED does not concentrate sulfate in the waste stream, so adding antiscalants is unnecessary, and scaling of the membranes and waste disposal system will decrease.
- ED systems have a longer life expectancy than NF systems because the spiral wound configuration of NF is difficult **to** clean and the fouling layers are formed under pressure and are difficult to dislodge. ED systems are not pressurized and the fouling layers are adsorbed to the membrane through the influence of the electrical potential.

When the electrical current is turned off, **foulants** can be cleaned off quite easily with a low **pH** rinse. The units can even be taken apart and scrubbed if necessary.

Disadvantages of an electrodialysis system are:

- They produce more of a waste stream than NF.
- Systems like the one used in the pilot study are produced in Japan. Acquisition of equipment, parts, or supplies for these systems will take longer than locally available supplies. ED is manufactured in Canada and **Ionics** is a company in the United States that produces EDR systems.
- A single stage ED system can only remove 50 percent of the dissolved solids. If a source water has more than 1000 mg/L TDS, ED product would need to be blended with higher quality water from a different source or run through a second stage to meet drinking water standards.

A full-scale electrodialysis ground water treatment plant, sized to produce 2.0 Mgal/d of product water, would require a raw water influent flow rate of 2.5 MgaL/d and would produce a brine flow of 0.5 Mgal/d. The entire treatment process is likely to consist of the following unit processes as shown on figure 24: raw water pumping, predisinfection using either chloramine or chlorination and dechlorination, filtration, electrodialysis, post-chlorination with adequate detention time, and finished water pumping. The brine produced from this process would contain the ions as shown in table 5. Brine production and disposal is further discussed in section 7.5.

The following are the primary ED design factors which must be considered for a full-scale operation (Mason and **Kirkham**, 1959):

• Composition of the feed water-Only ionized substances can be separated with ED. Uncharged solutes are generally unaffected by the electrical current. The feed water must conduct the current through the stack. If the concentration of ions is very low, as with RO permeate, the process will require much more power to remove more ions than if the conductivity is higher. Current is given by Ohm's Law:

I = E/R

where I = current, E = voltage, and R = resistance

If the resistance of the feed water doubles (conductivity is cut in half), the voltage will have to be doubled to maintain the same current.

• Membrane selectivity-The selectivity of the membrane, or how exclusively it transfers ions of one charge, depends on the concentration of ions embedded in its framework and the thickness of the membrane. Other factors that affect selectivity are related to the concentration and type of salts in the diluting and concentrating streams. High salt concentration and low temperatures decrease membrane selectivity because of the higher osmotic pressure gradient with high concentration and the lower ionic mobilities at low temperatures.

Figure 24. • Electrodialysis water treatment system-Maricopa Ground Water Treatment Study-2.0 Mgal/d.

ъ 4

.

Faraday's Law - Faraday's Law suggests that the passage of 96,500 amperes of electric current for 1 second will transfer one gram equivalent of salt. This quantity, 96,500 ampere-seconds, is known as a Faraday. The gram equivalent of an ion is its MW (molecular weight) in grams, divided by its charge, and is expressed as N (normality), or gram equivalents per liter. A gram equivalent of sodium is 23 grams (MW 23/1 charge), and a gram equivalent of calcium is 20 grams (MW 40/2 charge). If the composition of the water is not known, the gram equivalence can be estimated assuming the dissolved solids are entirely sodium chloride. For instance, if the TDS is 5000 mg/L, then the normality of the solution is 0.086 N (5000 mg/L ÷ 58,400 mg per equivalent). The current required to remove a given number of gram equivalents is calculated with Faraday's Law as follows:

$$I = \frac{F * F_d * \Delta N}{e^* N}$$

where:

Ι	=	direct electric current in amperes
F	=	Faraday's constant = 96,500 ampere seconds/ equivalent
۸۸		= change in normality of demineralized stream between the inlet and
		outlet of the membrane stack
F_d	=	flow rate of the demineralized stream through the stack (L/s)
e	=	current efficiency
Ν	Ξ	number of cell pairs
V	=	current efficiency
Ν	=	number of cell pairs

The voltage requirement is calculated from Ohm's Law, which states that "the potential (E) of an electrical system is equal to the product of current (I) and the system resistance (R)." E is expressed in volts, I in amperes, and R in ohms. The resistance of the membrane is made up of four components: the resistance of the cation membrane, the resistance of the anion membrane, the resistance of the concentrate stream, and the resistance of the demineralized stream. Overall resistance decreases with higher temperature and solution concentration and with increasing percentages of sodium or chloride ions in the solution.

7.3.1 EDR (Electrodialysis Reversal) - Because many recently built plants are using electrodialysis reversal and this report recommends ED in certain applications, EDR should also be considered because it improves the longevity of ED membranes. In 1975, the ED process was advanced by the development of the reversal feature. EDR is an automatic operating feature that regularly reverses the electrical potential. This feature assists in washing out scale that may have adhered to the membranes during operation, thereby keeping them cleaner for longer periods (Morin, 1994). The concentrate stream is then converted to the feed stream, and the feed stream becomes the concentrate stream. This process requires more plumbing and electrical systems than ED. Also, a period of off-specification water production at each flow reversal occurs that must be directed to waste. Reversing the flow increases the life of the electrodes and helps clean the membranes. When the membranes are operated in the same direction all the time, **precipitants** (scale and foulants) can build up on the concentrate side walls.

7.4 Nanofiltration

A proposed flow scheme for nanofiltration is shown on figure 25. This scheme is based on an overall rejection of salts of 88.6 percent, a value that was derived from a previous pilot study using nanofiltration membranes and applying the rejection rates of salts found to those salts that are present at well s5. The nanofiltration option includes blending with partially treated ground water so that the volume of water treated by nanofiltration is reduced.

In nanofiltration, like RO, pretreatment is critical to protect the membranes from either plugging from scale deposits and/or turbidity, or fouling from microbiological attack. For the ground water found in well s5, pretreatment for nanofiltration is recommended to consist of disinfection to destroy bacteria, filtration to remove the dead microbiological wastes, antiscalant, post-chlorination with adequate detention time, and finished water pumping.

Using the feed-water concentrations of parameters measured during the 6-week RO pilot test, the likely ion concentrations of a nanofiltration product and reject water are shown in table 9 along with expected rejection rates. Blending product water with water that is available either from other wells or already in the distribution system will provide water that is both safe and palatable. The concentrate from the nanofiltration process can also be mixed with locally available water to lower the ion concentrations, thereby lending itself to the disposal options described in the following section.

Ion	Feed	Product	Reject	Percent Reduction
Calcium	186.67	3.73	918.40	98.40
Magnesium	79.00	1.58	388.68	98.50
Sodium	153.33	3.07	754.40	83.00
Bicarbonate	160.00	3.20	787.20	89.00
Chloride	556.67	11.13	2738.80	78.30
Nitrate as N	9.01	0.18	44.31	78.00
Sulfate	250.00	5.00	1230.00	97.40
TDS (Sum)	1800.00	36.00	8856.00	88.60

Table 9. • Typical NF salt rejections and expected water quality.

Notes: 1. Feed concentration is the average concentration found. during RO testing.

2. Product and reject concentrations are based on an 80-percent product water recovery, no blending.

3. Product concentrations will be higher with blending.

4. Reject concentrations will be lower with blending.

5. Percent rejections are based on test results from Filmtec NF-90-2540 membranes.

Advantages of a nanofiltration system are:

- NF systems are produced by several companies in the United States, so parts, consulting assistance, and training for the operators would be readily available.
- NF membranes, such as Filmtec NF-90 series membranes, can remove 90 percent of TDS, so it should be adequate for sites with up to 5000 mg/L TDS (Filmtec).

.

Figure 25. • Nanofiltration water treatment system-Maricopa Ground Water Treatment Study-2.0 Mgal/d.

Disadvantages of a nanofiltration system are:

• NF systems need trained operators. Changes in the feed-water characteristics can have adverse affects on the system. Cartridge filters must be replaced promptly when needed. The membranes must be cleaned when performance begins to decline. If maintenance is put off, or the system is not monitored closely, the membranes can be irreversibly damaged within a very short time.

7.5 Brine Production and Disposal Options

7.5.1 Brine production - Brine, or concentrate, is the waste stream resulting from either ED or the NF process. This waste stream contains the concentrated impurities (dissolved salts) which, for well **s5**, are estimated in table 5 for ED and in table 9 for the NF process. At these concentrations, the waste is characterized as having a high salt content. Although not hazardous, this high salt content may be toxic to certain microbiological organisms in a wastewater treatment system.

At a rate of 2.0 Mgal/d, about 0.5 Mgal/d of brine will be produced from the electrodialysis process, and about 0.39 Mgal/d can be expected from the nanofiltration process.

7.5.2 Brine disposal - The most common means of concentrate disposal include

- Surface water discharge
- Discharge to sewers
- Land application (i.e., spray irrigation)
- Injection wells
- Evaporation ponds (Mickley et al., 1993)

In addition, much work has been done lately regarding the use of wetlands as a treatment technique prior to final disposal. These choices are all restricted from a regulatory standpoint. Several brine concentrators are available which can reduce the volume of the waste stream further. These concentrators, because of their high cost, are recommended for use in areas where no other option for brine disposal exists.

Discharge to a nearby surface water, if allowed with minimal treatment, would be the least costly brine disposal option. Surface water discharges are regulated by the Clean Water Act and, as such, would require permit restrictions. It is highly unlikely that the ADEQ (Arizona Department of Environmental Quality), under the National Pollutant Discharge Elimination System program, would allow a high saline discharge to any of the surface waters that run toward the already salt-rich Colorado River. Cost-prohibitive treatment requirements or blending with sufficient volumes of another water source to reduce the concentrations to acceptable levels is worth considering, but will likely make this option infeasible.

Discharging concentrate to a local wastewater treatment plant is the easiest means of disposal. If this option exists for the study participants at little or no cost, it is highly recommended, based on economics and impacts to lands when other options are considered.

Ground water injection is possible; however, an aquifer protection permit is required. This option is also likely to be cost prohibitive because of extremely low discharge limits. In addition, one must prove that injection of the brine is not adversely impacting sub-surface

aquifers. This proof can be obtained with geohydraulic modeling of the aquifer when the aquifer characteristics are known and understood.

The three remaining options for brine disposal are evaporation, spray irrigation, and the creation of wetlands. The ADEQ must approve such a plan through their regulatory submittal process. In some cases, the permittee must show that local ground water will not be impacted by water that may percolate through the soil.

The final selection of the type of disposal depends on many factors. Combinations of these options are also possible and may satisfy several goals of the **Gila** River Indian Community, or the cities of **Avondale** or Chandler. The actual alignment and elevations between the sewer or disposal site and the full scale water treatment plant will determine whether a gravity pipeline or pumps with a force main are needed.

'7.5.2.1 Evaporation - Evaporation ponds, like wetlands, can create a natural environment which can attract waterfowl and brine tolerant plants. Although not as attractive as a wetland area, a series of evaporation ponds in a desert environment could be a welcome sight to the public if properly planned. For electrodialysis, an evaporative drying pond of about 80 surface acres would evaporate the 0.5 Mgal/d of brine generated, based on an evaporation rate of 7 feet per year. For nanofiltration, an evaporative drying pond of about 63 surface acres would evaporate the 0.39 Mgal/d of brine, based on the same evaporation rate. The evaporation rate, 7.0 feet per year, was derived after reviewing 56 years of historical precipitation rates for the Phoenix area (7.66 in/yr) and 21 years of historical evaporation data from Arizona University's experiment station in Mesa (92.71 in/yr).

The pond area can be separated into several ponds to suit the desired goals and objectives of this disposal option. The liner for the ponds is likely to be PVC (polyvinylchloride) or HDPE (high-density polyethylene). A force main system from the plant to the pond, a storage tank at the plant sized for 5 days production, and a pump station operating at 5 times the daily reject flow rate are essential components of this system.

7.5.2.2 Spray Irrigation - In the arid southwest, it is critically important to place a high priority on both water conservation and reuse of wastewater to lower water consumption. For this reason, the use of brine from either the electrodialysis or nanofiltration process, to irrigate salt-tolerant plants, is an important consideration for brine disposal. This option affords the benefits of a reduction in water demands and the creation of green, landscaped areas around selected land uses.

>

Landscaped areas such as open space, greenbelts, golf courses, highway medians, and resort complexes that use appropriate salt-tolerant grasses and foliage can be irrigated at an application rate of about 0.3 inches per day. At this rate, the acreage required to dispose of the brine from the electrodialysis and nanofiltration processes is 62 and 50 acres, respectively. Irrigation systems typically require storage in the form of a tank or lined holding pond, a pump station sized for twice the average daily flow, (for a **12-hour** per day operation), and a distribution network of pressure piping to the irrigation sites.

7.5.2.3 Wetlands - A wetlands in a desert environment is aesthetically pleasing. A wetlands environment supports several salt-tolerant plants and will attract various species of waterfowl and animals. In **Hemet**, California, alkali bulrush and spikerush plants have survived and flourished in brine from an RO demonstration plant.

More than 800 acres of palustrine wetlands are mapped along the **Gila** River channel, within the GRIC, south from the confluence with the Salt River. These scrub/shrub wetlands were described by Rae as overgrown with pure stands of exotic winter-deciduous salt-cedars (*Tamarix ramoissima*) (Mock and Walker, 1993).

A 2-Mgal/d product water treatment facility requires a wetland area of 3.1 acres to dispose of the 0.5 Mgal/d of brine produced from electrodialysis, and a 2.4-acre wetland is required to dispose of the 0.39 Mgal/d of brine produced from the nanofiltration. This area is based on an application rate of 6 in/d, which is the application rate in use at Hemet California, a site similar in climate to the Phoenix area. Other main features of a wetland brine disposal system would be a storage tank or lined holding pond, a pump station to transfer the brine from the plant to the wetland, and a force main to convey the brine from the treatment plant to the wetland.

8. TREATMENT COSTS

8.1 General

Cost estimates for constructing a **2-Mgal/d** water treatment plant and corresponding yearly operations and maintenance costs are presented for the electrodialysis and nanofiltration processes. The choice of which process to use and whether or not full compliance is achieved with both Primary and Secondary SDWA standards depends on specific well-water quality.

Capital cost estimates are based on a combination of direct quotes from manufacturers plus allowances for installation or Reclamation's cost estimation program which uses cost curves prepared by the EPA. This program uses the raw water quality from the site and current indices from both the Bureau of Labor Statistics and the *Engineering News Record*, to calculate both construction and O&M cost estimates.

Capital costs are for individual treatment units, including all equipment, but do not include costs for land ownership, rights of way, special sitework, easements, or yard and offsite piping. Also not included are costs for an intake structure, grit removal equipment, or buildings for chemical feed and storage, administration, or a laboratory. Legal administrative and engineering costs for permitting, water quality monitoring, testing, and modeling are not included, nor are general contractor overhead and profit, fees for engineering, legal, and fiscal services, and interest during construction. For these reasons, the cost estimates found herein are valuable for a comparison of the alternatives presented and are not final construction estimates.

The basis for Reclamation's cost estimation program is the Environmental Protection Agency's Research and Development manual numbered **EPA-600/2-79-162a** and titled, "Estimating Water Treatment Costs" (Gumerman et al., 1979). Each unit process is defined in terms of the following eight subcategories: excavation and sitework, manufactured equipment, concrete, steel, labor, pipe and valves, electrical equipment and instrumentation, and housing. These subcategories are linked to various cost indices and, for this report, have been updated to November 1995. Each unit's estimate includes a standby or spare unit plus a **15-percent** allowance for miscellaneous and contingency items.

Operations and maintenance costs are updated for electrical energy costs, maintenance materials, chemicals, and labor. Chemical costs are estimated from recent contacts with

chemical supply companies or from a chemical periodical. Labor has been estimated at \$25.00 per hour and the cost of electricity is **\$0.07/kWh**.

This report recommends that consideration be given to centralized treatment to reduce the number of treatment plants and associated costs. If this approach is followed, a new water treatment plant may be larger in size than the **2-Mgal/d** plant size estimated and the cost per daily gallon of product water will be lower than that presented because of economies of scale.

Costs for the water treatment plant, without brine disposal, are identified separately because of the higher level of uncertainty associated with brine disposal options. Water treatment plant costs common to both ED and NF are listed below. Sections 8.3 and 8.4 list plant components unique to ED and NF, respectively.

Raw water pumping is included because the pressure at the well may be insufficient to pump the water to a centralized plant. Prechlorination, using chlorine gas fed at 3 mg/L, is added to destroy microorganisms found in the raw water. Post-chlorination, also fed at 3 mg/L, is added to provide final disinfection and to meet regulatory requirements of a chlorine residual in the distribution system. A concrete clearwell, sized at 42,000 gallons, provides 30 minutes detention for post-chlorination and also is a **wetwell** for finished water pumping. This pumping is sized at 2 **Mgal/d**, and, like the raw water pumping, includes some valving, instrumentation, piping, and electrical work.

8.2 Brine Disposal

The range of costs associated with the disposal of brine from either the ED or the NF water treatment process is significant. If, as this report recommends, each cooperating partner can enter into an agreement with a locally owned treatment works for wastewater to accept the waste stream at a minimal charge, then the costs for water treatment and brine disposal are attractive. If such an agreement can not be reached, then the costs for disposing of the waste stream may approximate those identified in table 10 for an evaporation pond system or a spray irrigation system.

Evaporation will encompass 90 and 70 acres of total land area for the ED and NF water treatment processes, respectively, based on an evaporation rate of 7 feet per year. Spray irrigation encompass 335 and 308 acres of total land area for the ED and NF water treatment processes, respectively, based on applying irrigation water at 0.3 in/d (9 ft/yr).

An evaporation pond system, and to a greater degree, a spray irrigation system, are land intensive and compound the uncertainty of non-sewer disposal options because of the cost of land. Table 10 presents, for both ED and NF concentrate waste streams, (0.5 Mgal/d and 0.39 Mgal/d, respectively) brine disposal costs for these options, with and without land costs. Figure 26 illustrates these options in bar chart form. Also shown on figure 26 is a scenario which is based on a 50-percent split between evaporation and spray irrigation. Costs are presented in tables 11 and 12 for ED and NF, with and without brine disposal. This brine disposal cost is based on the 50-percent combination option, an option which may be more appropriate than complete evaporation or spray irrigation as a non-sewer disposal option.

Table 10. • Comparison of brine disposal costs considering land value.

Item	Construction Costs wi	thout I and cost
	Electrodialysis	Nanofiltration
Evaporation Pond	·	
Pond System. Complete	\$4,320,000	\$3,360,000
Total	\$4,320,000	\$3,360,000
Spray Irrigation		
Header	\$71.800	\$53.000
Submain	\$110,400	\$71.800
Laterals	\$331,200	8303.600
Sprinklers	\$64.100	\$58.800
Pumping	\$16,600	\$13,200
Storage	\$500.000	\$390,000
Total	\$1,094,100	\$890,400

ltem	Construction Costs	with Land costs
	Electrodialysis	Nanoliltration
Evaporation Pond		
Pond System, Complete	\$4,320,000	\$3,360,000
Land cost @\$5,000/ac.	\$450.000	\$350,000
Total	\$4,770,000	\$3,710,000
Spray Irrigation		
Header	\$71,800	\$53.000
Submain	\$110,400	\$71,800
Laterals	\$331.200	\$303.600
Sprinklers	\$64,100	\$58.800
Pumping	\$16.600	\$13,200
Storage	\$500.000	\$390.000
Land cost @ \$3,000/ac.	\$1,008,000	\$924.000
Total	\$2,102,100	\$1,814,400

Notes:

Costs are in Nov. 1995 dollars.

Costs for evaporation system are from USBOR estimates. Costs for spray irrigation

are from AWWA's Membrane Concentrate Disposal " reference

Storage costs are for 1 day volume at \$1.00 per gal. Spray irrigation systems is not underdrained.

Land area for evaporation is 90 and 70 acres for ED & NF, respectively.

Land area for spray irrigation is 335 and 308 acres for ED & NF, respectively.

Cost per acre for spray irrigation is less than for evaporation due to economy of scale.

Assuming	50%	evaporation	and	50%	spray	irrigation:

Item	Construction Costs w	vithout I and cost
	Electrodialysis	Nanofiltration
Evaporation Pond	\$2,160,000	\$1,680,000
Spray Irrigation	<u>\$547,050</u>	<u>\$445,200</u>
Total w/o Land Costs	\$2,707,050	\$2.125.200
O&M @ 5% of Construction	\$135,353	\$106,260

8.3 Electrodialysis

ED is likely to provide water that meets the SDWA limits when the well water is less than 1100 mg/L TDS and 23 mg/L nitrate. This process operates at 80-percent recovery.

8.3.1 Construction Cost - The total estimated construction cost for an electrodialysis plant producing 2.0 Mgal/d of potable water is \$2,141,600, as shown in table 11. The cost estimates for electrodialysis include the following assumptions:

- · Raw feed flow for pretreatment and pumping is 2.5 Mgal/d
- Product flow is 2.0 Mgal/d
- Concentrate flow is 0.5 Mgal/d
- A rapid-rate, gravity filter using sand and anthracite and sized at 5 gal/min/ft², or about 350 square feet with centrifugal backwash pump
- A polymer feed system to feed sodium bisulfite, a dechlorination agent, at a feed rate of 2 mg/L
- Electrodialysis system with acid and antiscalant, cartridge filtration, and chemicals for cleaning and membrane replacement costs every 15 years

ltem	Construction Cos	t Ooerations and Maintenance Cost
Raw Water Pumping	\$37,300	\$13,000
Chlorine Disinfection	37,400	17,100
Gravity Filtration	179,500	42,600
Filter Backwash Pump	148,200	7,100
Polymer Addition	40,900	11,100
Electrodialysis	1,462,200	290,900
Post Chlorination	37,400	17,100
Clearwell	84,000	4,200
Finished Water Pumping:	34,700	5,300
Building, 2000 sf @ \$40.00/sf	80,000	8,000
Subtotal	\$2,141,600	\$416, 400
Combined brine disposal system	n 2,707,100	135, 400
TOTAL COST	\$4,848,700	\$551,800

Table 11. • Construction and operations and maintenance costs, 2-Mgal/d electrodialysis plant.

Note: Brine disposal is accomplished by 50 **pct** to an evaporation pond and 50 **pct** through spray irrigation. Land costs are not included.

If disposal of the brine is not to a LOTW, but to a combined evaporation/spray irrigation system, the construction cost estimate is **\$4,848,700** and disposal facilities would include about 40 acres of evaporation pond and about 160 acres of irrigable land area.

8.3.2 Operations and Maintenance Cost - The total estimated annual operations and maintenance cost for a **2.0-Mgal/d** (product) electrodialysis water treatment plant is \$416,400, without brine disposal and \$551,800 with brine disposal, as shown in table **11**.

8.4 Nanofiltration

A water treatment plant which employs the nanofiltration process will remove all Primary and Secondary drinking water contaminants to levels below their maximum contaminant level. In fact, the nanofiltration process works so well that blending with water of lower water quality will still produce a product with the desired levels. The conclusions from the piloting performed in this study and the salt rejections observed at a nanofiltration pilot operation in Lake Havasu City, Arizona, indicate that a full scale water treatment plant that produces 2.0 Mgal/d of water can operate at a net recovery of about 84 percent, as illustrated on figure 25.

8.4.1 Construction Cost - The above described nanofiltration water treatment plant, shown schematically on figure 25, excluding brine disposal, is estimated to cost **\$2,295,900**, as shown in table 12. The cost estimates for nanofiltration include the following assumptions:

- Raw feed flow for pretreatment and pumping is 2.39 Mgal/d
- . Product flow is 2.0 Mgal/d
- Concentrate flow is 0.39 Mgal/d
- A rapid-rate, gravity filter using sand and anthracite and sized at 5 gal/min/ft², or about 332 square feet with centrifugal backwash pump
- A polymer feed system to feed sodium bisulfite, a dechlorination agent, at a feed rate of 2 mg/L
- A nanofiltration system with acid and antiscalant, cartridge filtration, chemicals for cleaning and membrane replacement costs every 3 years

Table 12. • Construction and operations and maintenance costs, **2-Mgal/d** nanofiltration plant.

ltem	Construction	Cost	Operations and Maintenance Cost
Raw Water Pumping	\$37, 300		\$13,000
Chlorine Disinfection	36, 400		16,800
Gravity Filtration	175,900		42,000
Filter Backwash Pump	148,200		7,100
Polymer Addition	40, 700		10,800
Nanofiltration	1,478,300		268,600
Post Chlorination	36, 400		16,800
Clearwell	84, 000		4,200
Finished Water Pumping:	34, 700		5,300
Building, 5600 sf @ \$40.00/sf	224, 000		22.400
Subtotal	\$2,295,900		\$407,000
Combined brine disposal system	2,125,200		106,300
TOTAL COST	\$4,421,100		\$513,300

Note: Brine disposal is accomplished by **50 pct to** an evaporation pond and 50 **pct** through spray irrigation. Land costs are not included.

If disposal of the brine is not to a LOTW, but to a combined evaporation/spray irrigation system, the construction cost estimate is \$4,421,100 and disposal facilities would include about 32 acres of evaporation pond and about 140 acres of **irrigable** land area.

8.4.2 Operations and Maintenance Costs - The total estimated annual operations and maintenance cost for a 2.0-Mgal/d, ground water treatment plant using nanofiltration is \$407,000 without brine disposal and \$513,300 with brine disposal, as shown in table 12.

8.5 Cost Analysis

A life cycle cost analysis, using the construction and O&M cost estimates found in tables 11 and 12, is presented in tables 13 and 14. The analysis is presented both in terms of total present worth and total annual cost. A final cost per 1000 gallons of treated water is also shown. This analysis assumes a 20-year life, no salvage value, and interest at 6.5 percent. Table 13 reflects the water treatment costs without brine disposal, and table 14 includes the 50-percent combined evaporation/spray irrigation system described in section 8.2, without land costs.

Basic Assumptions					
Study Period	20	years			
Annual Interest Rate	б.	5 pct			
Capital Recovery Factor	0.0	0908			
Present Worth Factor	11	.019			
	Ekctrodialysis Nanofiltration				
Capital Cost	\$ 2,141,600	\$ 2,295,900			
Present Worth of Annual Operating Cost	\$ 4,588,300	\$ 4,484,700			
Total Present Worth	\$ 6,729,900	\$ 6,780,600			
² Annualized Capital Cost	\$ 194,500	\$ 208,500			
Annual Operating Cost	\$ 416,400	\$ 407,000			
Total Annualized Cost	\$ 610,900	\$ 615,500			
³ Annualized cost/1000 Gal of Product	\$ 0.84	\$ 0.84			

Table 13. - Life cycle costs for ground water treatment options without brine disposal.

¹ Present worth of Annual Operating Cost is Annual O&M cost times the Present Worth Factor ² Annualized Capital Cost is Capital cost times Capital Recovery Factor

³ Total annualized cost/(365x2.000)

Basic Assumptions						
Study Period	20 years					
Annual Interest Rate	6.5 pct					
Capital Recovery Factor	0.0908					
Present Worth Factor	11.019					
	Electrodialysis	Nanofiltration				
Capital Cost	\$ 4,848,700	\$ 4,421,100				
'Present Worth of Annual Operating Cost	\$ 6,080,300	\$ 5,656,100				
Total Present Worth	\$10,929,000	\$10,077,200				
² Annualized Capital Cost	\$ 440,300	\$ 401,400				
Annual Operating Cost	\$ 551,800	\$ 513,300				
Total Annualized Cost	\$ 992,100	\$ 914,700				
³ Annualized cost/1000 Gal of Product	\$ 1.36	\$ 1.25				

Table 14. • Life cycle costs for ground water treatment options with brine disposal.

¹ Present worth of Annual Operating Cost is Annual O&M cost times the Present Worth Factor

² Annualized Capital Cost is Capital cost times Capital Recovery Factor

³ Total annualized cost/(365x2,000)

9. CONCLUSIONS

This report concludes the following:

1. When nitrate or TDS are excessive in ground water, electrodialysis, reverse osmosis, and nanofiltration can be used to successfully reduce these contaminants to safe levels.

2. Nanofiltration and electrodialysis have nearly equal costs and both are considerably cheaper to install and operate than a reverse osmosis system.

3. Electrodialysis or nanofiltration should be considered for water treatment of ground water in the study area when nitrates and TDS are present. Combining flows from several wells for treatment in a centralized water treatment plant is generally cheaper than individual wellhead treatment. If ground water contains **TDS** in excess of 1100 mg/L, then nanofiltration is preferred because it removes more of these contaminants than electrodialysis. If the ground water has TDS of 1100 mg/L or less and nitrate of 23 mg/L or less, then electrodialysis is preferred because of lower pretreatment and operational requirements.

4. Contaminants of concern which exceeded SDWA limits prior to piloting were nitrate, chloride, turbidity, and TDS. For most of the 6-week piloting period, the levels of nitrates averaged less than half of what had historically been found and were just below the MCL. Fortunately, the nitrate levels were substantial enough to evaluate the performance of the electrodialysis membranes. Chlorides and TDS, found in the raw well water during piloting, were above SDWA limits. The sulfate concentration increased from an average of 181 mg/L prior to testing to 240 mg/L during the 6-week pilot test period.

		Electrodialvsis		Reverse Osmosis		
	Raw Water	Finished Water	Pct Removed	Raw Water	Finished Water	Pct Removed
Nitrate, mg/L	9.7	3.7	62	9.0	0.8	91
TDS, mg/L	1700	970	43	1467	41.6	97
Chloride, mg/L	760	240	68	557	10.7	98

5. Pilot scale testing of both electrodialysis and reverse osmosis, with adequately pretreated ground water, reduced the concentrations of nitrate, TDS, and chloride in Avondale's well **s5** to the levels indicated below:

• Reverse osmosis achieved such a high reduction in ions that its product water fully complies with Primary and Secondary SDWA parameters, even with blending. The blending ratio, computed after reviewing the pilot test results, is **82-percent** reverse osmosis product water to H-percent filtered water. The overall average rejection rate for drinking water contaminants was 96.4 percent.

• The electrodialysis process, using Asahi nitrate specific membranes, achieved a **62**percent reduction in nitrates and a 43-percent reduction in TDS. The nitrate specific membranes produced an effluent that met the nitrate MCL, but that was still over the MCL for TDS. As the piloting period progressed, the average nitrate concentration decreased to **8.8 mg/L**.

6. Planning level construction cost estimates for a **2-Mgal/d** (product) treatment plant using ED and the unit operations in table 11 range from **\$2,141,600** (**\$1.08/Mgal/d**) without brine disposal to **\$4,848,700** (**\$2.42/Mgal/d**) with brine disposal using an equal combination of evaporation and spray irrigation and excluding land costs. Yearly O&M cost estimates range from \$416,400 without brine disposal to \$551,800 with brine disposal.

7. Planning level construction cost estimates for a **2-Mgal/d** product treatment plant using **NF** and the unit operations listed in table 12 range from **\$2,295,900** (**\$1.15/Mgal/d**) without brine disposal to **\$4,421,400** (**\$2.21/Mgal/d**) with brine disposal using an equal combination of evaporation and spray irrigation and excluding land costs. Yearly O&M cost estimate ranges from \$407,000 without brine disposal to \$513,300 with brine disposal.

8. A **2-Mgal/d** water treatment plant that uses electrodialysis or nanofiltration and the unit operations displayed on figures 24 or 25 will generate about 500,000 and 390,000 gal/d, respectively, of concentrate. This wastewater can be disposed of to a locally owned **wastewater** treatment works, to an evaporation pond, or in a reclaimed water capacity such as a spray irrigation system that could lower irrigation water demands. The creation of a wetland is another possible brine disposal option.

9. The total **present** worth of a **2-Mgal/d** (product) electrodialysis plant, excluding brine disposal, is **\$6,729,900**; for nanofiltration, also excluding brine disposal, total present worth is **\$6,780,600** based on the assumptions made in this report and the life cycle cost analysis for 20 years at an interest rate of 6.5 percent.

10. The total **annualized cost** of a **2-Mgal/d** (product) electrodialysis plant, excluding brine disposal, is \$610,900 (**\$0.84/1000** gal); for nanofiltration, also excluding brine disposal, total annualized cost is \$615,500 (**\$0.84/1000** gal) based on the assumptions made in this report and the life cycle cost analysis for 20 years at an interest rate of 6.5 percent.

11. The total **present worth** of a **2-Mgal/d** (product) electrodialysis plant, including brine disposal, is **\$10,929,000**; for nanofiltration, also including brine disposal, total present worth is **\$10,077,200** based on the assumptions made in this report and the life cycle cost analysis for 20 years at an interest rate of 6.5 percent.

12. The total **annualized cost** of a **2-Mgal/d** (product) electrodialysis plant, including brine disposal, is \$992,100 (**\$1.36/1000** gal.); for nanofiltration, also including brine disposal, total annualized cost is \$914,700 (**\$1.25/1000** gal), based on the assumptions made in this report and the life cycle cost analysis for 20 years at an interest rate of 6.5 percent.

10. RECOMMENDATIONS

Based on the conclusions noted above, the following recommendations are made:

1. As witnessed during this study's 6-week pilot test, water quality in well **s5** fluctuated from historic nitrate levels that averaged 19 mg/L to an average for this pilot test of 8.8 mg/L. Prior to deciding on a specific ground water treatment scheme for any well, recent water quality data on the well for a period of at least 1 year should be obtained and reviewed.

2. Based on the pilot test results for electrodialysis and reverse osmosis, wells with TDS and nitrates substantially above the MCLs of 500 mg/L and 10 mg/L, respectively, are recommended to be treated with nanofiltration membranes. The electrodialysis process was successful in nitrate removal; however, the pressure membrane process was superior in reducing salts or dissolved solids to safe levels.

3. Electrodialysis is recommended for wells where the nitrates are about 23 mg/L or less and the TDS are about 1100 mg/L or less.

4. If either of the cities of **Avondale** or Chandler, or the **Gila** River Indian Community, pursue treating ground water with nanofiltration or electrodialysis, the process concentrate is recommended to he disposed of to the locally-owned treatment works. If this option is infeasible, then brine disposal to either evaporation ponds, a spray irrigation system, or to a wetland system that uses plants having a tolerance for salt water is recommended. The latter two alternatives offer the benefits of water reuse and may lower total water demands for the owner.

11. REFERENCES

Asahi Glass Co., Ltd., HPD Incorporated, "Brackish Water Desalination," May 1992.

- Chapman-Wilbert, Michelle, *Water Treatment Cost Estimation Program and User Manual*," Bureau of Reclamation Water Treatment Technology Program, draft.
- Conlon, W.J., "Membrane Processes," Chapter 11, Water Quality and Treatment -A Handbook of Community Water Supplies, 4th ed., American Water Works Association, McGraw Hill, Inc., New York, NY, 1991.
- Corbitt, **R.A.**, *Standard Handbook* of *Environmental Engineering*, McGraw Hill Inc., 1990, pp. 5-13.
- Filmtec Corporation, "Quick Reference Guide for the NF70 Nanofiltration Membranes," no date indicated.
- Gumerman, R.C., R.L. Culp, and S.P. Hansen, Estimating Water Treatment Costs, Vol. 2, EPA-600/2-79-162. Cincinnati, Ohio, August 1979, p. 6.
- Mason, E.A., and T.A. Kirkham, "Design of Electrodialysis Equipment," Chemical Engineering Progress: Symposium Series, Adsorption, Dialysis, and Ion Exchange, No. 24, Vol. 55, 1959, pp. 173-189.
- Mickley, M., R. Hamilton, L. Gallegos, and J. Truesdall, "Membrane Concentrate Disposal," American Water Works Association Research Foundation, 1993, p. 274.
- Mock, P., and S. Walker, "Gila River Indian Community, Water Quality Assessment Report," 1992 Section 305 (b) Report, CH₂M-Hill Engineering, June 1993, pp. 11-14.
- Morin, O.J. "Membrane Plants in North America," *Journal of the American Water Works Association,* December 1994, p. 49.
APPENDIX A

Electrodialysis Test Data

ED Data:								
	pril 4, 1994, Ave	ondale. AZ						
	ariation in Volta	ge						
Cell Pair5 = 92		-						1
Becovery:	0.83	0 02	0.02	0 02	0 02	0 02	0 02	'
	0.05	0.03	0.03	0.03	0.03	0.03	0.03	0.83
-	10	10	10	10	10	10	10	10
Fc	2	2	2	2	2	2	2	2
Total stack Flow L/min	95	95	95	95	95	95	95	95
Diluate Recycle L/min	a 3	a 3	a 3	a 3	a 3	a 3	a3	a 3
								uu
volts	4.6	55	6.4	74	a 3	0.2	101	110
Current	1 42	1 7 2	1 96	2 02	2 00	. J 2	2 20	110
	1.43	1.72	1.00	2.03	2.00	2.2	2.39	2.43
T OT Passes	a.3	a.3	a.3	a.3	a.3	a.3	a.3	a.3
Cond Feed	2.56	2.53	2.52	2.51	2.49	2.49	2.49	2.49
pH Feed	7.43	-7.46	7.44	7.48	7.45	7.49	7.47	7.47
Ea/L Fd	0.029	170.028	0.028	170.028	0.023	0.028	0.028	0.028
Ed mo/l	1772 65		1744 95		1724 18	1724 18	1724 18	1724 18
Cond D:	1 622	1 61	4 550	4 4 4 2	4.92	4 360	4 974	4.0
	7.022	1.01	1.552	1.442	1.33	1.200	1.271	1.2
	1.29	/.39	/.41	1.30	/.31	1.33	1.21	7.21
	0.011	0.011	0.011	0.010	0.009	0.009	0.009	0.008
Dimg/L	1123.14	11 14.83	1074.67:.	998.50	920.95	878.01	880.09	830.93
Cond Do	1.495	1.491	1.423	1.308	1.17	1.113	1.048	0.987
pH Do	7.34	7.38	7.37	7.39	7.25	7.32	7.22	7.17
Fa/i Do	0 011	0.011	0.010	0 009	0 008	0 008	0 007	0.007
Do ma/	1035 20	1022 42	096 24	005 74	910 16	ml 60	725.88	600 44
Cond C	1035.20	1032.43	000.04	200.71	010.10	7.74	725.00	088.44
	5.92	6.61	6.81	7.02	7.39	7.74	a.05	a.29
pH Ci	2.84	2.83	6.96	6.38	6.06	5.99	7.89	6.41
Eq/L Ci	, 0.075	0.084.	0.988	0.089	0.093	0.098	0.102	0.105
Cimg/L	4099	4577	4716	4861	6117	5359	5574	5740
Cond Co	6.31	7.16	7.57	7.82	8.17	a.54	a.94	9.16
nH	3.08	2.98	6.98	6.48	6.33	6.26	7.85	6 4 9
	0 0 8 0	0.001"	0.006	0.000	0.103	0 108	. 0112	0.446
	1000	0.031	0.030	5445	5657	0.100	• 0.110	-0.110
Comg/L	4005	4330	5292	5415	0001	5913	6190	0343
								4
VI	46.6	55.4	64.1	74.3	83.2	91.7	100.8	110.3
V2	1.23	1.45	1.945	1.8	1.18	1.76	2.02	1.81
V3	3.7	4.03	4.38	4.6	4.75	4.94	5.16	5.36
V4	41.3	49.7	57.5	67	76.6	84.6	92.4	102.4
Difference	0.37	0.22	0.275	0.9	0.67	0.4	1.22	0.73
Vicell	0 500	0 598	0 696	0 804	0 902	1 000	1.098	1 106
	0.000	0.530	0.636	0 729	0.002	0.020	1 004	1.130
V4/Cell	0.449	0.540	0.025	0.720	0.035	0.920	1.004	1.113
Delta N: F-Do	0.018	0.018	0.018	0.019	0.020	0.020	0.021	0.021
Delta N: Di-Do	0.001	0.001	0.001	0.001	0.001	0.001	0.0016	0.002
Delta N: Co-F	0.051	0.062	0.067	0.071	0.075	0.020	0.085	0.088
Delta N: Co-Ci	0.005	0.007	0.010	0.010	0.010	0.010	0.011	0.011
Ave Delta N:	0.067	6.077	0.095	0.100	0.106	0.106	0:133	0.128
Delta TDS E-Do	737	719	760	832	914	953	998	1041
	151	113	700	0.02	314	333	330	1041
	0.4.40		• • • • •	0.400	0 4 4 0	0.400		
	0.140	0.070	0.030	0.100	0.140	0.160	0.200	0.260
pH: Do-Di	0.050	-0.010	-0.040	0.010	-0.060	-0.010	-0.050	-0.040
pH: Co-Ci	0.240	0.150	0.020	0.100	0.270	0.270	-0.040	0.080
Rstack Ohms	32.168	31.977	34.409	36.453	39.904	41.818	42.259	45.267
in	0 699	0.581	0.538	0.493	0.481	0.455	0.418	0.412
Efficiency per cell	0.000	0.001	0.000	90+10 92 N	0 80	0.400	0 07	0 02
	0.02	2 025 05	0.30 2 AEE DE	0.00 2 105 05	0.03 2 975 AF	0.04 2 64 E 04	0.31 2 ACE AF	2 215 05
	4./0E-U0	3.335-03	3.40E-U3	3. IUE-03	2.0/ 2-03	2.040-03	2.402-00	2.310-03
m=Fr/Fp	7.917	7.917	7.917	7.917	7.917	7.917	7.917	7.917
Dil Balance	0.409	0.389	0.414	0.414	0.480	0.454	0.654	0.609
Conc Balance	1.011	1 .000	0.977	0.976	0.985	0.988	0.983	0.989
Average Concentration	0.020	0.022	0.022	0.021	0.021	0.021	0.022	0.022
Demin fraction 1pass	0.078	0 074	0 083	0 093	0.120	0 122	0.175	0 178
Domin fraction tot	0.0.0	0.014	0.003	0.033	0.705	0.122	0.726	0.170
Demin fraction tot	0.034	0.630	0.646	0.6/3	0.705	0.720	0./36	U./511

ED Data:												
	\pril 5, 1994.	Avondale, AZ	Z									
	/ariation in	Detention Time				Variation in Voltage						
Cell Pairs = 92												
Recovery:	0.83	0.83	0.83	0.84	0.83	0. 93	0.93	0.93	0.93			
Fd	12	10.6	8.8	7.6	5.9	13 5	13 5	13.5	13 5			
Fc	2,45	2.2	1.8	1.5	1.2	10.0	1	1	10.0			
Total stack Flow L/min	95	95	95	95	95	92	q9	9	1 Q 9			
Diluate Recycle / /min	83	83	83	83	83	80	80	80	6 V 2 V			
		00	00	03		00	00	00	80			
volts	100	100	100	100	100	5.0	70	0.0	110			
Current	9 49	9 97	9 0 9	1 0	1 71	JU 1 29	/ U 9	90 04	110			
t of Paceae	£ 0	4. 4 I 7 0	6.UJ	1. 3	1, /1	1.36	۵ ۲ ۵	2.4 r 0	2.15			
m VI F 23353	0.9	1.8	9.4	10.9	14. 1	5.9	5.9	5. 9	5.9			
Cond Food	9 95	9 91	9 99	9 91	0 91	9 91	0 00	9 9 9	0 00			
DH Food	2.30 7 47	2.31 7 49	6.36 7 51	2. JI 7 51	2.31 7 17	2. JI 7 59	2.32	2.32	2.32			
	1.4/	1.44	1.01 0.000	1. 31	1.4/	1.32	1. 34	/. 52	1.52			
	U. UZO	U. UZO	0.020	0.026	0.026	U. 626	U. U26	0. 026	0.026			
	1627.23	1099.04	1 1056.46	1599.54	1.022.0	1 707	1000.40	1000.46	1666.46			
	1.29/	1.309	1.105	1.035	U. 957	1.735	1.583	1.509	1.383			
	7.15	8.81	7.18	7.2	7.07	7.48	7.43	7.39	7.39			
	0.009	0.009	0.008	U. U67	0.007	0.012	0.011	0.011	- 0. 010			
Di mg/L	898.09	906.40	765.15	716.68	662.67	1201.38	1096.13	1644. 89	957.64			
Cond Do	1.11	1.05	0.979	0.912	0.83	1.606	1.435	1.273	1.135			
pH Do	7.1	6.72	7.13	7.14	7.01	7.51	7.41	7.33	7.27			
Eq/L Do	0.008	0.007	0.007	0.006	0.006	0.011	0.010	0.009	0.008			
Do mg/L	768.61	727.06	677.90	631.51	574.73	1112.06	993.65	881.48	785.92			
Cond Ci	8.49	5.09	7.05	7.69	8.57	7.84	9. 79	11.79	13. 21			
l pH Ci	2.37	3.65	7.76	7.87	5.69	7.39	3. 21	3.02	5.72			
Eq/LCi	0.107	0.064	0.089	0.097	0.108	: 0.099	0.124	0.149	- 0. 167			
Ci mg/L	5879	3525	4882	5325	5934	5429	6779	8164	9147			
Cond Co	9. 21	6.02	7.83	8.42	9.19	8.41	10.67	12.35	14.09			
pH Co	2.49	4.33	7.7	7.83	6.02	7.37	6.01	3.8	6.66			
Eq/L Co	0.117	0.076	0.099	0.107	0.116	0.106	It. 135	0.156	0.178			
Comg/L	6377	4168	5422	5830	6364	5823	7388	8552	9756			
·····									-			
V1	100.2	99.9	100	100	99. 9	50.3	70.5	89.9	110. 1			
V2	1. 33	1.97	1.86	1.88	1.05	1.77	1.2	1.2	1.33			
v3	5.11	5.35	5.34	5.3	5.25	44.6	64.8	83.2	102.8			
v4	92.7	91.8	91.3	91.6	92.6	3.64	4.3	4.86	5.65			
Difference	1.06	0.78	1.5	1.22	1	0.29	0. 2	0.64	0.32			
V/cell	1.087	1.087	1.087	1.067	1.087	0.543	0.761	0.978	1.196			
V4/cell	1.008	0.998	0.992	0.996	1.007	0.040	0.047	0.053	0.061			
Delta N:F-Do	0.019	0.019	0.019	0.020	0.020	0.015	0.016	0.017	0.018			
Detta N: Di-Do	0.00132	0.0018	0.0009	0.0009	0.0009	0.001	0.001	0.002	0.002			
Deita N: Co-F	0.090	0.050	0.073	0.081	0.090	0.080	0.109	0.130	0.152			
Delta N: Co-Ci	0.009	0.012	0.010	0.009	0.008	0.007	0.011	0.007	0.011			
Ave Deita N:	0.109	0.146	0.096	0.091	0.084	0.080	0.109	0.109	0.137			
Delta TDS F-Do	859	872	929	968	1025	487	613	725	821			
		0.2							01			
pH: F-Do	0.320	- 1, 390	0.330	0.310	0.400	0.040	0.090	0.130	0,130			
pH: Do-Di	- 0. 050	- 2, 090	- 0. 050	- 0. 080	4,060	0,030	- 0 020	- 0, 060	-0.120			
nH: Co-Ci	0 120	0.680	-0.060	- 0. 040	0.330	- 0 020	2 800	0 780	0 340			
	0.140	0.000	0.000	0.010		0.040	w. 000	0.700	0.010			
Rstack Ohms	40.161	44 053	49.261	52 632	58 480	37.879	35 000	37, 500	40 000			
in	0 /09	0 //1	0 102	0 596	0 525	0 758	0 500	0 417	10.000			
Efficiency per cell	0.40%	1 19	0.433	0.020	0.303	1 06	0.000	0. 11/	0.304			
Dolta Nt/(min*Volt)	2 605-05	2 27E_06	0.03 2 MELAE	1 705_05	1 425-05		3 855-05	3915-05 1	0.0/			
Det CU I AN (COURT A AIR)	2.030-00	2.07 2-00	6.UHE-UU	1.796-03	1.705-00	7.35⊆*05	0.002-00	J.41E-03 /				
m=Er/Eo	R 571	7 100	8 069	10 440	12 200	6 245	6 315	6 215	6 945			
	U. J/4 0 K09	1.466 0 010	0.30% 0.49%	10.440	19.990	U. 343 0 490	0.343	U. 34J A 694	0.343			
	0.302	U. 01U 0 017	U. 433 0. 079	U. 400 0 070	U. U.S A ADA	U. 42U 1 000	U. 444 1 A91	U. Uð4 1 077	0.679			
Autorice Balance	1.02/	0.917	0.9/2	0.9/8	U. 986 0 090	1.039	1.031	1.0/7	1.001			
Average Concentration	0.022	0.017	0.019	0.020	U. U&U A 199	0.024	0.026	U. UZ6	0.030			
Demin maction 1pass	U. 144	0.198	0.114	U. 119	0.133	0.074	0.093	U. 156	U. 179			
Demin Iraciontot	0.704	0.715	0.735	0.752	0.7751	0.564	0.612	V. 656	U. 6931			
								1				

ED Data:													
					March 10, 1994, Avondale, AZ								
	/ariation in	Dt, V=85			Variation in Voltage								
Cell Pairs = 92]	L	-							
Recovery:	0.93	0.93	0.93	0.93	0.87	0.87	0.87	0.87	0.87				
Fd	1 2	10. 5	9	7.5	87	87	87	87	87				
Fc	0.846	0.769	0.648	0.57	13	13	13	13	13				
Total stack Flow L/min	92	92	92	92	100	100	900	100	100				
Diluate Recycle L/min	80	80	80	80	87	87	8 7	87	87				
,					No Recycle				• ·				
Volts	85	85	85	85	61	70	85	90	98				
Current	2.16	2.1	2.09	1.98	1.27	1.44	1.74	1.85	2.06				
# of Passes	6.7	7.6	8,9	10.7	1.0	1.0	1.0	1.0	1.0				
									1.0				
Cond Feed	2 32	2 32	2 32	2 31	2 58	2 48	2 37	2 5	2 57				
pH Feed	7 55	7 52	7 52	7 56	6 63	7 02	2 36	7 41	7 37				
Eg/ Ed	0 026	0 026	0 026	0.026	0 029	0 028	0 027	0 028	0 029				
Ed mail	1606 46	1606.46	1806.46	1599 54	1786 50	1717 25	1641 08	1731.10	1779 57				
Cond Di	1, 295	1.278	1.209	1, 108		1111.00			1110.01				
	7 35	7 26	7 17	7 03									
Fo/ Di	0,009	n nñg	0 009	0.008									
	896 71	RR4 Q4	837 16	767.22				4					
Cond Do	1 151	1 004	1 065	0 000	9 4 4	9 41	9 96	9 96	9 20				
	1. 151	1.094	1.005	0.900	2.44	2.41 7.11	2.30	2.30	2.39				
	0.008	1.20	7.14	0.007	1.07	/.11 4665 70	7.31	/.40	7.43				
	197.00	757 52	/3/.43 0.008	SV.UU/	100.017	1000.10	1034.10 0.017	1034.10 0.01/	0.017				
Condici	10.04	14.50	10.4	10 10					1004.93				
	13.84	14.50	10.4	18.12									
	2.79	2.42	2.19	1.90	 								
	0500	10000		1011				÷					
	9083	10082	00011	1204/									
Cond co	04176	0.4164	06207	08298	3.62	3.85	3.98	4.38	4.49				
pH Co	3.1	2.53	2.25	1.99	6.79	7.03	7.2	7.31	7.34				
Eq/L Co	0.180	0.189	0.212	- 0233	0.046	0.049	0.050	0.055	0.057				
Co mg/L	9874	10345	11612	12727	2507	2666	2756	3033	3109				
4				Ι	1								
V1	85	85.1	85.2	85.1	46.6								
√2	1.15	1.12	1	1.1	1.23								
v3	79	79.1	79.1	78.3	3.7								
V4	4.74	4.68	4.68	4. 71	41.3								
Di i rence	0.11	0.2	0.42	0.99	0.37	0	0	0	0				
V/cell	0.924	0.924	0.924	0.924	0.663	0. 761	0.924	0.978	1.065				
V4/ceil	0.052	0.051	0.051	0.051	0.449	0.000	0.000	0.000	0.000				
Delta N:F-Do	0.018	0.018	0.019	0.019	0.012	0.011	0.010	0.011	0.012				
Delta N: Di-Do	0.061	0.001	0.001	0.001	- 0. 017	- 0. 017	- 0. 017	- 0. 017	- 0. 017				
Delta N: Co-F	0.154	0.163	0.186	0.207	0.017	0. 021	0.024	0.027	0.028				
Delta N: Co-Ci	0.005	0. 005	0.005	0. 003	0.046	0.049	0.050	0.055	0.057				
Ave Delta N:	0.073	0.081	0.069	0. 054	- 0. 451	- 0. 423	- 0. 397	- 0. 364	- 0.365				
Delta TDS F-Do	809	849	869	915	97	48	7	97	125				
pH: F-Do	0.200	0.260	0.350	0.530	6.630	7.020	2.360	7.410	7.370				
pH: Do-Di	- 0. 020	- 0. 030	- 0. 030	- 0. 030	7.070	7.110	7.310	7.460	7.430				
pH: Co-Ci	0.310	0.110	0.060	0.030	6.796	7.030	7.200	7.310	7.340				
Rstack ohms	39.352	40.476	40.670	43. 367	48.031	48.811	48.851	48.649	47.573				
in	0.463	0.476	0.478	0.510	0.787	0.694	0.575	0.541	0.485				
Efficiencypercell	0.59	0.67	0.57	0.48	8. 21	- 5. 14	- 3. 99	- 3. 44	- 3. 09				
Delta Nt/(min*Volt)	3.17E-05	2.84E-05	2.46E-05	2.10E-05	1.94E-04	1.56E-04	1.18E-04	1.28E-04	1.23E-04				
m=Fr/Fp	7.162	8.164	9.536	11.400	1.000	1.000	1.006	1.000	1.600				
Dil Balance	0.429	0.620	0. 551	0.531	-0.593	- 0. 609	- 0. 625	- 0. 592	- 0. 583				
Conc Balance	1. 084	1.076	1.067	1.062	0.000	0.000	0.000	0.000	0.000				
Average Concentration	0 030	0 0.01	0 033	1.00£ 0.026	0 025	0.025	0.024	0.025	0.025				
Deminfractionlnass	0. 111	0.144	0.119	0.108	5.000				5. 020				
Demin fraction tot	0.689	0.704	0.712	0. 739	1 0.407	0.391	0.375	0.408	0.417				
Dema Huccion LUL	0.000	01101	0.718	5 0.	1- 0.107	0,001							

ED Data:									
Cell Pairs = 92									
Recovery:	0.55	0.55	0.55	0.55	0.78	0.78	0.78	0.78	0.78
Fd	16	16	16	16	10.6	10.6	10.6	10.6	10.6
Fc	13	13	13	13	3	3	3	3	3
Total stack Flow L/min	100	100	100	100	100	100	100	100	100
	87	87	87	87	87	87	87	87	87
)ituate Re	cvcle		•	Dt=10 vary	v 07	07	•	07
volts	60	70	80	90	60	- 70	8.1	٥٥	9.5
current	1 32	1 54	1 76	1 98	1 74	2 05	2 3 4	2 5 8	2 60
# of Passas	5.4	5.4	5.4	5.4	8.2	2.05	2.34	2.00	2.09
To Passes	5.4	5.4	5.4	J.4	0.2	0.2	0.2	0.2	8.2
Cond. Food	2 2 2	9 90	0.40	4 00	2.04	0.75	2.02		
Cond Feed	2.32	6.69 	2.13	1.00	2.64	2.75	2.03	2.56	2.32
	6.66	7.03	7.26	7.54	7.55	7.54	7.61	7.55	7.79
	0.026	0.026	0.024	0.021	0.033	0.031	0.030	0.029	0.026
Fd mg/L	1606.46	1685.69	1474.90	1301.79	2035.77	1904.21	1821.12	1772.65	1606.46
Cond Di									
pH Di									
Eq/L Di							11		
Dimg/L									
Cond Do	2.24	2.22	2	1.8	2.23	1.98	2.33	1.813	^{~~} 1.9
PH DO	6.4	7.09	7.3	7.49	7.68	7.65	7.84	7.73	7.83
Fall Do	0.016	0.016	0.014	0.013	0.016	0.0140	0.016	0.013	0.013
Do mo/	156f 07	1537 22	1384 88	1246 30	1544 14	1371.03	1613 39	1255 39	1315.64
Cond Ci				12.10.00					
		(-rea)		ficses:			(462) *** ***		9.415.ii
		196 a 51			100 (1997) a."			ERN .	
CI mg/L					HUCKE				
Cond Co	3.29	3.35	3.46	3.481	4.8	5.25	6.06	6.24	6.78
pH Co	6.79	7.04	, 7.19	7.32	7.37	7.36	7.53	7.39	7.45
Eg/L Co	0.042	0.042	0.044	0.044	0.061	0.066	0.077	0.079	0.086
comg/L	2278	2320	2398	2410	3324	3635	4196	4321	4695
V1					ļ				
V2									
V3									
v 4									
Difference		0	0	0	0	0	0	0	0
	0.652	0 761	0 870	0 078	0.652	0 761	0 000	0 079	1 0 2 2
	0.052	0.701	0.070	0.970	0.052	0.761	0.880	0.978	1.033
v4/cell	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.040	0.010	0.040	0 000	0.017	0.047	0.040	0.040	0.040
Delta N: F-DO	0.010	0.010	0.010	0.008	0.017	0.017	0.013	0.016	0.013
	-0.016	-0.016	-0.014	-0.013	-0.016	-0.014	-0.016	-0.013	-0.013
Detta N: Co-F	0.016	0.017	0.020	0.023	0.028	0.035	0.047	0.050	0.060
Delta N: CO-CI	0.042	0.042	0.044	0.044	0.081	0.066	0.077	0.079	0.086
Ave Delta N:	-0.417	-0.406	-0.329	-0.266	-0.290	-0.176	-0.217	-0.043	-0.026
Delta TDS F-Do	55	48	90	55	492	533	208	517	291
1									
pH: F-Do	6.660	7.030	7.260	7.548	7.556	7.540	7.610	7.550	7.796
pH: Do-Di	6.400	7.090	7.300	7.496	7.680	7.650	7.840	7.730	7.830
pH: Co-Ci	6.790	7.040	7.190	7.320	7.370	7.360	7.530	7.390	7.456
[
Rstack Ohms	45.455	45.455	45.455	45.455	34.483	34.146	34.615	34.884	35.316
1/1	0.758	0.649	0.568	0.505	0.575	0 488	0 427	0 388	0 372
Efficiency par cell	-5 52	1 61	.2 27	.2 35	-2 91	.1 56	_1 62	_0 20	_0 17
Delta Nt/(min*\/olt)	3 165_05	2655-05	2 275-06	1 73	3 52 -05	2 955-05	1 085.05	2 175-05	1 635-05
	0.102-00	£.00E-00	2.27	1.132-00	0.022-00	2.336-00	1.30E-00	2.17 2-00	1.002-00
		3 440	0.440	0 440	7 353	7	7	7 050	7
	3.448	3.448	3.448	3.440 0.074	1.303	1.353	1.353	1.353	1.353
	-2.088	-2.097	-2.031	-2.0/1	-3.498	-3.320	4.085	-3.200	-3.///
Conc Balance	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Average Concentration	0.021	0.021	0.019	0.018	0.023	0.022	0.025	0.022	0.023
Demin fraction 1 pass					J				
Demin fraction tot	0.394	0.392	0.411	0.400	0.524	0.548	0.444	0,556	0.486

Call Pairs = 92 D.78 D.78 D.89 D.80 D.80 <thd.80< th=""> D.80 D.80</thd.80<>	ED Data:									
Call Pairs = 92 Constant R c c v e r y : 0.78 0.78 0.80 <			11-Mar							
Call Pairs - 92 Call Pair			Data							
R c cov c r y : F4 0.78 0.78 0.78 0.80	Cell Pairs = 92		l							
fd 10.6 10.6 12 13 3	Recovery:	0.78	0.78	0.80	0.80	0.80	0.80	0.80	0.80	0.80
FC ISA ISA <thisa< th=""> <thisa< th=""> <thisa< th=""></thisa<></thisa<></thisa<>	F d	10.6	10.6	12	12	12	12	12	1 2	12
Total stack How L/min 100	Fc	3	3	3	3	3	3	3	3	3
bit Lust Recycle Unin 67 87 </td <td>Total stack Flow L/min</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td>	Total stack Flow L/min	100	100	100	100	100	100	100	100	100
Uaits DE=8, vary V P18, vary V Current 2.4 2.4 2.4 2.5 2.6 2.7 2.8 8.8 90 Current 2.4 2.4 2.4 2.5 2.6 2.7 2.8 8.3 8.3 of Passes 8.2 7.3 7.	Diluate Recycle Umin	87	87	67	87	87	87	87	99	99
Valits 72 72 72 72 72 72 72 72 72 72 72 72 72 73 83 83 83 Cond Feed 7.41				Dt=8.8, var	уV				Dt =10.6, var	y V
Current # of Passes 2.4 2.4 2.4 2.5 2.6 2.7 2.8 2.45 2.55 # of Passes 8.2 8.2 7.3 7.3 7.3 7.3 7.3 7.3 8.3 8.3 Ond Feed 2.73 2.74 2.73 7.34 7.34 7.34 7.34 7.34 7.34 7.34 7.35 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.24 7.15 7.24 7.15 7.24 7.15 7.24 7.15 7.24 7.15 7.24 7.15 7.24 7.15 7.24 7.15 7.24 7.15 7.24 7.15 7.24 7.25 7.26	Volts	72	72	72	a 2	84	89	95	85	90
i 0	Current	2.4	2.4	2.4	2.5	2.6	2.7	2.8	2.45	2.55
Cond Feed 2.73 2.76 2.7 2.74 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 7.34 7.35 7.35 7.35 7.35 7.34 7.35 7.34 7.34 7.34 7.34 7.34 7.34 7.34 7.34 7.35 7.34 7.34 7.35 7.34 7.35 7.34 7.36 7.35 7.34 7.36 7.37 7.36 7.36 7.36 7.36 7.36 7.37 7.36 7.37 7.36	# of Passes	8.2	8.2	7.3	7.3	7.3	7.3	7.3	8.3	8.3
Cond Feed 7.41 7.31 8.80.59 1887.29 1893.65 1887.29 1893.65 1887.29 1635 7.24 7.15 5.51 7.2 7.71 5.55 7.24 7.33 7.34 7.33 7.34										
pH Read 7.41	Cond Feed	2.73	2.76	2.7	2.7	2.74	2.73	2.74	2.73	2.72
Endle Fd 6.831 0.031 0.030 0.031	pH Feed	7.41	7.41						7.34	7.34
Fd mg/L cond Di pri Di EqL Di Di mg/L 1890.38 1.73 191.1.3 1.73 169.53 1.73 187.29 1.73 197.29 1.601 1983.24 1.73 199.38 1.73 197.21 1.469 198.4.45 1.469 Di mg/L Cond Do 1.71 1.73 1.71 1.654 1.601 1.038 1.87.29 1.690.36 1897.29 1.690.36 1897.29 1.690.36 1897.29 1.690.36 1897.29 1.690.36 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.71 1.51 1.88 0.011 0.011 0.011 0.011 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.000	Eq/L Fd	0.631	0. 031	0.030	0.030	0.031	0.031	0.031	0.031	0.031
Cond Di 1.738 1.7 1.654 1.601 1.58 1.57 1.469 1.451 EqL Di	Fd mg/L	1890.36	1911.13	1669.59	1869. 59	1897.29	1890.36	1897.29	1690.36	1883.44
pH Di ExpL Di DimgL 7.35 (0.012 0.012 0.012 0.011 0.010 0.	Cond Di		1.738	1.7	1.654	1.601	1.58	1.57	1.469	1.455
ExpL Di Dimg/L. Cond Do 0.012 0.012 0.011 0.010 0.010 0.010 0.000 916.79 3090.87 Cond Ci 194.75 1094.06 1038.66 1024.81 98326 96665 8.79 3.90 8.75 3.90 916.79 3090.87 2.91 3.31 7.35 9.43 8.99 9.43 8.99 9.43 8.99 9.43 8.99 9.43 8.93 9.119 0.118 6530 6433 9.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119	pH Di		7.35						7.24	7.15
DimpL Cond 1203.46 1177.15 1145.30 1198.66 1094.06 1667.13 107.19 1007.50 Cond 0 1.71 1.581 1.88 1.5 1.48 1.24 1.386 1.334 1.314 1.31 EqL Do 0.012 0.011 0.011 0.010 0.011 0.010 0.010 0.011 <t< td=""><td>Ec/ Di</td><td></td><td>0.012</td><td>0.012</td><td>0.012</td><td>0.011</td><td>0.011</td><td>0.011</td><td>0. MD</td><td>0.010</td></t<>	Ec/ Di		0.012	0.012	0.012	0.011	0.011	0.011	0. MD	0.010
Cond Do 1.71 1.83 1.58 1.51 1.48 1.42 1.394 1.314 7.31 PH Do 7.24 0.01 0.011 0.011 0.010 0.000 916.79 3090.87 2.91 3.8 2.91 3.8 2.91 3.31 0.011 0.011 0.011 0.111	Di ma/L		1203.46	1177.15	1145.30	1108.66	1094.06	1667.13	1017.19	1007 50
pH 100 7.33 7.24 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.009 Cond 0.012 0.011 0.014 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.009 Cond 0.723 7.56 98326 98667 8.70 8.65 2.91 3.31 EqU.Co 0.017 7.56 9.43 8.29 9.44 8.29 9.74 9.44	Cond Do	1, 71	1, 581	1.58	1.5	1.48	1.42	1.396	1 324	1 314
Expuse 0.012 0.011 0.011 0.011 0.010 0.011 0.010 0.010 0.011 0.011 0.011 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.0111 0.011 0.011 <	pH no	7 33	7.24						7 94	7 07
Do mg/L Cond 1184.07 1094.05 1038.66 1024.81 98326 9663 91.61 98.73 909.87 Cod Ci 6.73 3.08 0.085 0.111 98.326 96.63 8.70 8.65 Eq/L Ci Cima/L 0.085 0.085 0.111 <		0 012	0 011	0.011	0.011	0 010	0 010	0 01 0	0 009	0 009
Cond Cl pH Cl CaringAL Toth of B-75 Toth of B-75 <thtoth of<br="">B-75 <thtoth b-75<="" of="" th=""> Toth</thtoth></thtoth>		1184 07	1094 75	1094 06	1038.66	1024 81	98326	96665	916 79	909 87
Arrow Barrow Barrow </td <td>Cond Ci</td> <td>1104.07</td> <td>6 75</td> <td>1004.00</td> <td></td> <td>101-1.01</td> <td>00020</td> <td>00000</td> <td>8 70</td> <td>8 65</td>	Cond Ci	1104.07	6 75	1004.00		101-1.01	00020	00000	8 70	8 65
Eq. C1 GingZL Cond Co 0.085 4674 0.085 4674 0.085 4674 0.085 4674 0.0111 5990 0.0111 5000 0.0111 5000 0.0111 5000 0.0111 5000 0.0111 5000 0.0111 5000 0.0111 5000 0.0111 5000 0.010 0.001 0.00			3 08						9 01	2 21
Carried Cond Cond Co			0.085	11 F		1		e (A 111	"C+ 169
Chingh Condition C	Cime/		4674					2	6090	5000
Control 1.1.3 <	Cond Co	7 93	7 56						9.43	9 9 9
μr Lo 1.33 0.335 0.335 0.111 <th< td=""><td></td><td>9 04</td><td>7.30</td><td></td><td></td><td></td><td></td><td>1</td><td>2 91</td><td>5.25 1 97</td></th<>		9 04	7.30					1	2 91	5.25 1 97
Corr Corr <th< td=""><td></td><td>£. 54 € 001</td><td>0.006</td><td></td><td></td><td>р1 — на</td><td></td><td></td><td>0 110</td><td>4.07</td></th<>		£. 54 € 001	0.006			р1 — на			0 110	4.07
Construct 3000 3233 Addition Ad		0.091	U. U3U E92E						0.115	U. 110 6499
V1 72.4 v2 1.68 v3 4.68 v4 65.7 Bifference 0.34 0	Comg/E	2000	5235			i			0330	0433
v2 1.6.3 v2 1.6.8 v3 4.68 V4 65.7 Difference 0.34 0 </td <td>1/4</td> <td>79 4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1/4	79 4								
v2 1.00 v3 4.68 V4 65.7 Difference 0.34 0 </td <td>v I</td> <td>1 69</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	v I	1 69								
V3 4.08 V4 65.7 Difference 0.34 0	V2	1.00								
V4 b3.7 0 <td>V3</td> <td>4.08</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	V3	4.08								
Difference 0.34 0 <	V4	65.7		0	0	٥	0	0	0	
V. cell 0. 783 0. 783 0. 783 0. 891 0. 913 0. 967 1. 033 0. 924 0. 978 V4/cell 0. 714 0. 000 0. 001 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 <td>DIFFERENCE</td> <td>0.34</td> <td>0 700</td> <td>0 700</td> <td>0 001</td> <td>0 010</td> <td>0 007</td> <td>1 000</td> <td>0 004</td> <td>0</td>	DIFFERENCE	0.34	0 700	0 700	0 001	0 010	0 007	1 000	0 004	0
V4/Cen 0.714 0.000 0.001 <t< td=""><td></td><td>0.783</td><td>0.783</td><td>0.783</td><td>0.891</td><td>0.913</td><td>0.967</td><td>1.033</td><td>0.924</td><td>0.978</td></t<>		0.783	0.783	0.783	0.891	0.913	0.967	1.033	0.924	0.978
Delta N: F-Do 0.019 0.020 0.019 0.020 0.020 0.021 0.011 0.011	V4/Celi	0.714	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Defta N: F-Bo 0.019 0.020 0.019 0.020 0.020 0.021 0.011							0.004	0.004	0.004	0.001
Delta N: Di-Do 0.012 0.001 0.000 0.000 0.000	Delta N: F-Do	0.019	0.020	0.019	0.020	0.020	0.021	0.021	0.021	0.021
Delta N: Co-F 0.061 0.065 -0.030 -0.031 -0.031 -0.031 0.089 0.087 Delta N: 0.091 0.010 0.000<	Delta N: Di-Do	-0.012	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Delta N: Co-Ci 0.091 0.010 0.000	Della N: Co-F	0.061	0.065	- 0. 030	- 0. 030	- 0. 031	- 0. 031	- 0. 031	0.089	0.087
Ave Delta N: 0.070 0.115 0.037 0.047 0.037 0.049 0.053 0.055 0.053 Delta TDS F-Do 706 816 776 831 872 907 931 974 974 pH: F-Do 7.410 0.060 0.000 0.	Delta N: Co-Ci	0.091	0.010	0.000	0.000	0.000	0.000	0.000	0.008	0.008
Delta TDS F-Do 706 816 776 831 872 907 931 974 974 pH: F-Do 7.410 0.060 0.000 <td>Ave Delta N:</td> <td>0.070</td> <td>0.115</td> <td>0.037</td> <td>0.047</td> <td>0.037</td> <td>0.049</td> <td>0.053</td> <td>0.055</td> <td>0.053</td>	Ave Delta N:	0.070	0.115	0.037	0.047	0.037	0.049	0.053	0.055	0.053
pH: F-Do 7.410 0.060 0.000	Delta TDS F-Do	706	816	776	831	872	907	931	974	974
pH: F-Do 7.410 0.060 0.000					_					
pH: Do-Di pH: Co-Ci 7. 330 -0.110 0.000<	pH: F-Do	7.410	0.060	0.000	0.000	0.000	0.000	0.000	0.100	0.190
pH: Co-Ci 2.940 0.300 0.000	pH: Do-Di	7.330	- 0. 110	0.000	0.000	0.000	0.000	0.000	0.000	- 0. 080
Rstack Ohms 30.000 30.000 30.000 32.800 32.308 32.963 33.929 34.694 35.294 i/i 0.417 0.417 0.417 0.400 0.365 0.370 0.357 0.408 0.392 Efficiency per cell 0.51 0.84 0.27 0.33 0.25 0.32 0.33 0.39 0.39 0.37 Del ta Nt/(min*Volt) 3.16E-65 3.37E-05 3.68E-05 3.35E-05 3.21E-05 3.05E-05 3.05E-05 2.87E-05 m=Fr/Fp 7.353 7.353 6.667 6.6	pH: Co-Ci	2.940	0.300	0.000	0.000	0.000	0.000	0.000	0.300	1.560
Rstack Ohms 30.000 30.000 30.000 32.800 32.308 32.963 33.929 34.694 35.294 i/i 0.417 0.417 0.417 0.400 0.365 0.370 0.357 0.408 0.392 Efficiency per cell 0.51 0.84 0.27 0.33 0.25 0.32 0.33 0.39 0.37 Del ta Nt/(min*Volt) 3.16E-65 3.37E-05 3.68E-05 3.33E-05 3.35E-05 3.21E-05 3.05E-05 3.05E-05 2.87E-05 m=Fr/Fp 7.353 7.353 6.667 <td></td>										
in 0.417 0.417 0.417 0.400 0.365 0.370 0.357 0.408 0.392 Efficiency per cell 0.51 0.84 0.27 0.33 0.25 0.32 0.33 0.399 0.371 Del ta Nt/(min*Volt) 3.16E-65 3.37E-05 3.68E-05 3.33E-05 3.35E-05 3.21E-05 3.05E-05 3.05E-05 2.87E-05 m=Fr/Fp 7.353 7.353 6.667 <td< td=""><td>Rstack 0hms</td><td>30.000</td><td>30.000</td><td>30.000</td><td>32.800</td><td>32.308</td><td>32.963</td><td>33.929</td><td>34.694</td><td>35.294</td></td<>	Rstack 0hms	30.000	30.000	30.000	32.800	32.308	32.963	33.929	34.694	35.294
Efficiency per cell 0.51 0.84 0.27 0.33 0.25 0.32 0.33 0.39 0.37 Del ta Nt/(min*Volt) 3.16E-65 3.37E-05 3.68E-05 3.33E-05 3.35E-05 3.21E-05 3.05E-05 3.05E-05 2.87E-05 m=Fr/Fp 7.353 7.353 6.667	in	0.417	0.417	0.417	0.400	0.365	0.370	0.357	0.408	0.392
Delta NU/(min*Volt) 3. 16E-65 3.37E-05 3.68E-05 3.33E-05 3.32E-05 3.21E-05 3.05E-05 3.05E-05 2.87E-05 m=Fr/Fp 7. 353 7. 353 6. 667 6.	Efficiency per cell	0. 51	0.84	0.27	0.33	0.25	0.32	0.33	0.39	0.37
m=Fr/Fp 7.353 7.353 6.667 <	Del ta Nt/(min*Volt)	3. 16E-6	5 3.37E-05	3.68E-05	3.33E-05	3.35E-05	3.21E-05	3.05E-05	3.05E-05	2.87E-05
m=Fr/Fp 7.353 7.353 6.667 <			ļ							
Dil Balance -2.889 0.434 0.307 0.387 0.291 0.365 0.414 0.335 0.326 Conc Balance 0.000 0.971 0.000 0.000 0.000 0.000 0.000 0.000 1.031 1.031 Average Concentration 0.023 0.023 0.012 0.012 0.012 0.012 0.011 0.013 0.013 Demin fraction 1 pass 0.6607 0.641 0.633 0.652 0.661 0.674 0.680 0.696 0.697	m=Fr/Fp	7.353	7.353	6.667	6.667	6.667	6.667	6.667	6.667	6.667
Conc Balance 0.000 0.971 0.000 0.000 0.000 0.000 0.000 1.031 1.031 Average Concentration 0.023 0.023 0.012 0.012 0.012 0.012 0.011 0.013 0.013 Demin fraction 1 pass 0.607 0.641 0.633 0.652 0.661 0.674 0.680 0.696 0.697	Dil Balance	- 2. 889	0.434	0.307	0.387	0. 291	0.365	0.414	0.335	0.326
Average Concentration 0.023 0.023 0.012 0.012 0.012 0.012 0.011 0.013	Conc Balance	0.000	0. 971	0.000	0.000	0.000	0.000	0.000	1.031	1.031
Demin fraction 1 pass 0.090 0.071 0.093 0.076 0.101 0.111 0.099 0.097 Demin fraction tot 0.607 0.641 0.633 0.652 0.661 0.674 0.680 0.696 0.697	Average Concentration	0.023	0.023	0.012	0.012	0.012	0.012	0.011	0.013	0.013
Demin fraction tot 0.607 0.641 0.633 0.652 0.661 0.674 0.680 0.696 0.697	Demin fraction 1 pass		0.090	0. 071	0.093	0.076	0. 101	0. 111	0.099	0.097
	Demin fraction tot	0.607	0. 641	0.633	0.652	0.661	0.674	0.680	Q. 696	0.697

ED Data:									
			12-Mar		13-Mar			14-Mar	
			V=98 vary [)t					
Coll Pairs = 92			,, .						
	0.00	0.00	0.70	0.70	0.04				
Recovery:	0.80	0.00	0.79	0.76	0.84	0.78	0.78	0.75	0.75
Fd	12	12	7.5	6.5	10.5	7	7	6	6
Fc	3	3	2	2	2	2	2	2	2
Total stack Flow L/min	100	100	97	96.5	96	96.5	96. 5	94.9	94.9
Diluate Recycle L/min	99	99	8.5	85	84	84.5	84.5	83	83
					•••	0110	01.0	00	00
14	0.0	107	0.0	04	100	100	100		
VOLUS	98	107	98	30	100	100	100	104	104
Current	2.65	2.75	2.11	2.01	2.16	2.04	2	1.66	1.71
# of Passes	8.3	8.3	11.3	13.1	8.0	12.1	12.1	13.8	13.8
Cond Feed	2.73	2.73	2.36	2.13	2.35	2.4	2.49	25	2 61
nH Feed	7 33	7 34	7 51	7 47	7 49	7 41	7 39	7 97	7 43
	0 021	0 021	0 097	0.004	0.026	0.007	0 000	0.000	7.45
Ewuru	0.031	0.031	0.027	0.024	0.020	0.027	0.028	0. 028	0.029
Fd mg/L	1890.36	1890.38	W4.16	14/4.90	1627.23	1661.66	1724.1	3 1731.10	1807.27
Cond Di	1.415	1.394	1.176	1.057	1.49	1.317	1.408	1.362	1.58
pH Di	7.21	7.19	7.34	7.25	7.29	7.2	7.25	7.39	7.36
Eo/L Di	0.010	0.010	0.008	0.007	6.011	0.009	0.010	0.010	0.011
Dima/	979.80	965.28	814 31	731.91	1031.74	911 94	974.96	943 10	1094 06
Cond Do	1 962	1 910	1 0/9	1 051	1 20.9	1 1 6 0	1 070	1 921	1 0 2 0
	1.600	1.419	1.046	1.001	1.308	1.109	1.2/8	1. 251	1.238
	7.21	/.1/	1.32	1.28	/. Z9	/.14	1.14	7.38	7.4
Eq/L Do	0.009	0.009	0.007	0.007	0.009	0.008	0.009	0.009	0.009
Do mg/L	874.55	844.08	721.52	727.75	905.71	809,46	884.94	866.24	871.09
Cond Ci	8.61	8.78	6.02	5.8	6.86	8.05	6.69	5.94	5.96
pH Ci	5 57	6 19	7 27	6 95	7 14	2 38	6	5 67	6 59
En/ Ci	0 100	0.444	0.079	0.072	0.097	0.402	0.005	0.07	0.35
	0,103	2000	. 0.078 	1040	4750	U.1UZ	0.000	0.073	0.075
Cimg/L	5962	0000	: 4 300	4010	4/50	·0074	4632	4113	4127
cond co	9.52	9.66	6.89	6.37	7.62	8.51	7.44	6.82	9.88
pH Co	6.07	6.35	7.31	6.95	7.18	2.42	6.13	5. 98	6.65
Eq/L Co	0.120	0.122	0.987	0.081	0.096	0.168	0. 094	0.086	0.125
Co ma/L	6592	6689	4771	4411	5276	5893	5152	4722	6841
1			0.9 5		100 1	100 1	100	102 0	102 0
			90. 0		100.1	100.1	100	103.0	103.0
v2			2.95		3.072	2. 1	2. Z	3.33	2.01
v3			5		4.75	4.47	4.5	4.38	4.38
v4			90.3		92	93.4	93	95.7	97.3
Difference	0	0	0.25		0.278	0.13	0.3	0.39	0.11
V/cell	1.065	1.163	1.065	1 065	1.087	1.087	1.087	1, 130	1, 130
VA/cell	0 000	0 000	0.082	0.000	1 000	1 015	1 011	1 040	1 058
¥-#/061	0.000	0.000	0. 302	0 000	1.000	1.015	1.011	1.040	1. 058
		0 000	0.010	0.047	0.017	0 040		0 0 1 0	
Deita N:F-Do	0.022	0.022	0.019	0.017	0.017	0.019	0.019	0.019	0.020
Deita N: Di-Do	0.001	0.901	0.001	0. 00C	0.001	0.001	0.001	0. 001	0.002
Delta N: Co-F	0.090	0.091	0.061	0.057	0.070	0. 081	0.066	0. 058	0. 098
Delta N: Co-Q	0.012	0.011	0.011	0.007	0. 010	0.066	0.009	0.011	0.050
Ave Delta N:	0.059	0.067	0.106	0.043	0.112	0.079	0. 096	0,099	0.389
Delta TDS F-Do	1016	1046	919	747	79.9	852	830	865	920 920
DORE (DO I = DO	1010		515	, 11			000	005	530
	0 100	0 4 5 0	0 170	0 100	0 100	0 010		0 000	0 070
	0.120	U. 150	0.170	0.180	0.130	0.210	0.140	- 0. 020	0.070
pH: Do-Di	0.000	-0.020	- 0. 020	- 0. 01	0.000	- 0. 060	- 0. 110	- 0. 010	0.040
pH: Co-Ci	0.500	0.160	0.040	0.040	0.040	0.040	0.130	0.310	0.060
ľ									
Rstack Ohms	36.981	38,905	46.445	48, 756	46.296	49, 020	50,900	62,651	60, 819
in	0 377	0.264	0 474	0 100	2 A L D	0 490	0 500	0 809	0 595
	0.077	0. 304	0.00	U. 400 A 90	U. 403 A AA	0.100	0.000	1 14	0. J0J
	0.39		0.88	U. 38	0.90	U. UÖ	U. 04	1. U4 4 847 85	3. 90 4 405 05
Deita NV(Min"VOIL)	2.70E-05	2.315-00	1.73E-05	1.295-05	2.15E-05	1.00E-00	1.5/E-05	1.34E-05	1.42E-05
			l						
m=Fr/Fp	6.667	6.667	10. 211	11.353		10.722	10.722	11.663	11.863
Dil Balance	0.345	0.394	0.529	0.029	0.000	0.632	0.544	0.602	1.486
Conc Balance	1.002	1.007	0.932	0.965	3.282	1.011	0.956	0,919	0.641
Average Concentration	0 019	0 019	0 018	0 017	0 091	0 091	0 020	0 010	0 09/
Domin fraction 4 page	0.013	0.012	0.010	0.01/	0.0%1	0.021	0.020	0.013	0.04
Demin fraction tot	0.10/	0.120	0.114	0.008	0.122	U. 116 0.00"	0.092	0.081	U. 294
Demin traction tot	0.710	0.720	0.723	U. 691	U. 651	U. 695	U. 678	0.686	0.698

ED	Demonstration	Water	Analyses
----	---------------	-------	----------

			1 O-Mar-95	i		14-Mar-95	i i i i i i i i i i i i i i i i i i i	1-Jul-95
	Original Feed	Feed 1	Diluate 1	Concentrate 1	Feed 2	Diluate 2	Concentrate 2	Diluate 3
<u>Cations</u>								
Aluminum	3.9E-1	6.9E-1	3.9E-1	1.7E+0	7.3E-1	3.0E-1	1.8E+0	
Ammonium				-		-		
Calcium	1.8E+2	2.1E+2	9.2E+1	5.9E+2	2.0E+2	6.0E+1	6.0E+2	4.8E+1
Copper			•					
Hydrogen	2.4E-8	2.4E-8	1.7E-7	1.2E-6	2.4E-8	4.2E-8	1 .OE-6	5.8E-7
Ferrous	1.9E-2		•	9.1E-1				•
Ferric	0.55.4		5 07 4					•
Magnesium	8.5E+1	8.4E+1	5.0E+1	2.9E+2	8.2E+1	3.6E+1	2.9E+2	2.6E+1
Manganese	8.1 E-2	1.IE-1	6.0E-2	3.0E-1	7.0E-2	045.0	2.0E-1	0.05.0
Potassium	4.8E+0	4.0E+0	2.66+0	9.3E+0	3./E+U	2.1E+0	8.9E+0	2.6E+0
Sodium		1.4E+2	1.2E+2	2.25+2	1.0E+2	1.26+2	2.86+2	1.1 E+2
Anions								
Bicarbonate	1.9E+2	1.7E+2	1.3E+2	2.0E+0	1.6E+2	1.1E+2	1.2E+2	8.1 E+0
Carbonate	-	-	-			-	-	-
Chloride	5.6E+2	7.6E+2	2.4E+2	2.0E+3	6.8E+2	1.7E+2	2.2E+3	1.1E+2
Fluoride	-	-	-	-		•	-	-
lodide		-	-	•				-
Hydroxide	4.2E-7	1 .OE-14	6.0E-8	8.3E-9	4.2E-7	2.4E-7	9.5E-9	1.7E-8
Nitrate	1.1E+1	9.7E+0	3.7E+0	4.2E+1	9.1 E+0	2.5E+0	5.2E+1	•
Phosphate (3)	-	-	-		-	-	-	-
Phosphate (2)		-	-		-			
Phosphate (1)		-	-			-		-
Sulfate	2.3E+2	2.6E+2	2.3E+2	1.3E+3	2.6E+2	6.6E+0	5.0E+2	2.2E+2
Bisulfate		-	-			•		-
Sulfite		-	-	-	-			
Bisulfite Sulfide			-	-	-	•		-
Totals mg/L	991	1200) 604	3344	1109	289	2872	336
TDS reported mg/L:	1420) 1700	970	4200) 1700	790	5000	613
Conductivity		2.560) 1.813	6.240	2.610	1.256	6.88	0.974
Eq/mS/cm		1.2E-2	7.7E-3	1.4E-2	1.1E-2	5.5E-3	1.1E-2	8.0E-3

Appendix A: ED Data

Nitrate Removal Data

Date	10-Mar 15:30	10-Mar 16:30	11-Mar 8:30	11-Mar 12:00	12-Mar 14:00	13-Mar 12:45	14-Mar 6:00	14-Mar 16:00
Well	7.3	6.4	5.6	5.7	5.6	5.4	6.4	5.5
Diluate	3.2	3.1	2.9	2.4	2.1	2.4	2.5	1.6
Concentrate	22.1	16.2	10.4	2 0	18	17	19.5	16.8

Turbidity Data

	0-Mar 10:30	10-Mar 13:30	1 I-Mar 9:30	1 I-Mar 15:50	12-Mar 14:00	13-Mar 8:00	14-Mar 8:00	14-Mar 16:00
Well	15.3	6.6	6.9	6.1	5.3	7.2	3	6
Pressure Clarifier	3.1	1.4	0.5	1.6	0.9	0.4	4	3
Pressure Multi Media Filter	0.8	0.6	0.2	0.7	0.2	0.2	0.2	2

APPENDIX B

Reverse Osmosis Test Data

Maricopa Groundwater Treatment Study

Reverse Osmosis Test Data

Appendix B

B 4	 F4		Flowrates			Cand		Conductivity	Demeste	Dermesia		Pressure	D .1	Ten	nperature	- Turbidity
Time	Leea	rteject	Stage 1/1	Stage 1/2	Stage 2			Stage 1/1	Stage 1/2	Stage 2		Interstage	Reject	1-990	1-000	cart. filter
(hours)	(L/min)	(L/min)	(L/min)	(L/min)	(L/min)	(uS/cm)	(uS/cm)	(uS/cm)	(uS/cm)	(us/cm)	(lb/in2)	(ib/in2)	(lb/in2)	(deg F)	(deg C)	(utu)
1.0	22.4	3.9	7.7	7.6	4.0	2600	13360	43	41	101	203	176	169	84.3	29.1	0. 184
2.3	22.1	3.6	7.6	7.5	4.3	2010	13440	4/	42	106	202	178	168	85.3	29.6	0. 110
25.8	21.6	3.7	7.4	6.8	3.6	2620	13040	50	42	105	200	176	167	82.4	28.0	0.071
45.2	20.6	3. 5	7: o	6.7	3.5	2660	12700	40	40	101	202	179	169	78.3	25.7	0.088
46.8	21.1	3.7	7.1	6.7	4.1	2660	13110	45	40	105	203	180	170	80,6	27.0	0.084
40.4	21.1	3.5	7.3	7.0	4.0	2660	13300	47	41	109	200	177	167	82.5	28.1	0.080
51.1	21.4	3.5	7.4	7.2	4.2	2670	13400	46	40	109	200	177	167	83.2	28.4	0.074
67.8	20.8	3.6	a. 7	6.4	3.5	2670	13170	49	42	108	200	177	167	79.2	26.2	0. 125
70.8	21.3	3.5	6.9	6.7	3.7	2690	13330	48	42	112	198	175	165	81.9	27.7	0.078
72.9	21.8	3.8	7.2	7.0	3.7	2690	13560	47	42	114	200	176	166	\$3.7	28.7	0.068
74.8	22.1	3.5	7.6	7.4	4.1	2690	13620	48	42	116	202	177	167	64.2	29.0	0.082
95.3	22.0	3.6	7.7	7.4	4.3	2600	13300	43	38	a4	210	184	174	80.8	27.1	0.088
96.3	22.4	3.6	7.8	7.5	4.2	2580	13400	43	29	86	210	184	174	61.8	27.7	0.084
98.1	22.6	3.6	7.8	7.6	4.5	2570	13420	43	38	102	209	183	173	62.4	28 0	0.061
00.3	22.8	3.6	7.6	7.6	4.4	2570	13470	43	38	`9 1	209	183	173	83.9	28.8	0.054
114.6	21.7	3.6	7.5	7.3	4.3	2550	12890	40	35	93	212	186	176	77.6	25.3	0.054
118.8	22.6	3.5	7.6	7 4	4.2	2610	13560	- 44	32	104	209	183	173	61.4	27.4	0.052
123 0	22.6	3.6	79	7.6	3.9	2700	13780	- 44	39	108	210	164	174	83.9	28.8	0.048
182.6	21.0	3.5	7.2	6.8	3.5	2750	13530	42	38	78	216	190	181	74 3	23.5	0.045
185.6	20.9	is	7.0	6.9	4 2	2750	13290	36	32	84	207	182	174	77.0	25.0	0.045
168.1	21.2	34	7:0	6.6	4 0	2670	13360	35	39	83	206	181	172	76.9	24.9	0.042
171 1	99 1	36	7.6	7.4	Å Ö	2720	13530	35	31	84	210	183	173	79.7	28 5	0.048
185.9	91 /	3.6	7.1	6.8	3.0	2680	13000	33	29	72	217	190	140	73.4	20.0	0.043
lwo	91 5	3.8	73	6.9	4.6	2680	13050	33	32	78	216	188	178	75.8	23.0	0.043
101 R	91.6	37	73	71	4.0	2690	13090	34	31	83	214	187	177	78.5	24.3 94.7	0.040
101.0	21.0	37	73	7.1	4.5	2690	13110	35	32	a4	216	199	177	78.9	24.7	0.041
154.1	22 1	3.7	7.9	67	4.2	2630	13130	39	27	77	210	101	181	74 1	24.0 92 A	0.042
211. I 915. 1	22.4	3.7	7.5	7 1	48	2630	13190	35	31	95	206	in	169	S0: 5	20.4	0.063
210.1	22.2	3.0	7 2	7.1		2620	13450	39	30	91	207	179	169	81 B	20.0	0.000
A 10.1	22.3	3.0	7.J 6.6	6.9	2.2	2810	13070	32	30		916	198	179	76.9	27.0	0.042
233.8	22.0	3.U 3.A	70	0.2	3.3	2010	42050	33	32	DR	210	100	173	70.0	24.4	0.040
237.1	21.0	3.0	7.0	72	4.1	2680	13600	Ã	31		210	132	172	82.0	20.2	0.040
241. I 959 4	22.0	3.0	84	83	4 , 4	2000	13100	33	37	100	210	185	174	75.0	27.5	0.040
200.1	21.8	3.7		0.0	J. S 4 1	2000	19290	ñ	26	105	£14 910	104	174	/ 5. 0	29.2	0.040
261.1	21.0	3.0	0.0	6. / 7 4	4.1	20/0	13230	48	42	100	210	170	172	77.6	25.3	0.046
288.1	23.0	3.0	7.3	7.1	4.6	2000	13360		33	110	200	1/9	108	04.2	29.0	0.000
284.0	22.2	3.6	6.6	5.8	4.1	2710	13030	30	32	07	210	404	173	/8.5	20.0	0.045
267.1	22.0	3.0	0.8	0.8		2120	13710	37	36	100	208	101	1/1	61.7	27.0	0.041
290.1	22.8	3.5	7.4	1.4		2720	13/10	40	30	100	207	178	108	85.0	28.4	0.030
294.1	23.0	3.6	7.7	1.4	4.0	2/10	13740	3/		103	207	1/6	105	8.66	29.9	0.039
307.3	22.0	3.6	6.6	0.7	3.6	2080	13390	30	32	00	211	164	174	79.2	26.2	0.036
314.3	23.1	3.6	7.4	7.2	4.3	2/10	13900	4/	44	80	205	177	167	85.0	29.4	0.050
331.1	24.4	3.2	7.4	7.4	4.4	2640	14690	34	30	a4	236	204	185	76.7	24.0	0.041
3421	22.4	3.2	7.4	7.4	3.4	2530	14190	48	39	121	199	165	156	84.6	29.2	0. 392
354.6	21.8	3.6	6.6	6.2	3.7	2510	13350	35	32	80	210	175	166	81.1	27.3	0. 125
360.1	21.1	3.3	6.6	6.7	4.3	2290	13110	38	32	83	201	163	153	84.1	28.9	0.300
366.1	21.9	3.5	6.8	a. 3	3.8	2520	13610	39	34	101	206	168	159	84.3	29.1	0.057
378.6	21.1	3.6	6.9	a. 4	4: o	2500	13900	35	32	88	208	172	163	61.0	27.2	0.041
385.5	22.2	3.5	7.3	6.9	4.2	2550	13640	38	34	96	205	171	161	86.3	30.2	0.042
587.0	22.7	3.7	7.2	6.7	3.6	2560	13450	38	34	96	207	171	161	86.3	30.2	0.036
404.6	22.5	3.8	7.3	6.9	4.4	2550	13280	34	30	85	215	180	169	80.9	27.2	0.035
405.6	22.6	3.6	7.6	7.1	4.6	2540	13550	37	32	92	214	181	168	82.4	26:0	0.041
408.4	226	3.5	7: o	6.6	4.3	2500	13490	38	34	103	207	166	157	65.6	26.6	0.042

.

Appendix B Maricopa Groundwater Treatment Study

Reverse Osmosis Test Data

			Flowrates					Conductivity	· · • • • • · ·			Pressure		··· Temp	erature	Turbidity
Elapsed	Feed	Reject	Permette	Permeate Stage 1/2	Permente Stage 2	Feed	Reject	Permeste Stage 1/1	Permeete Stege 1/2	Permeete Starre 2	Feed	Interstage	Reject	Feed	Feed	Food - after
(hours)	(L/min)	(L/min)	(L/min)	(L/min)	(L/min)	(uS/cm)	(uS/cm)	(uS/cm)	(uS/cm)	(uS/cm)	(lb/in2)	(lb/in2)	(ib/in2)	(deg F)	(deg C)	(ntu)
409.8	22.8	3.5	7.5	7.1	4.5	2500	13420	40	37	105	211	170	181	87.0	30.6	0.036
428.4	21.8	3.6	7.0	6.9	4.4	2520	13000	35	32	88	210	173	163	81.1	27.3	0.051
430.2	22.4	3.5	9.0	8.7	4.7	2450	13050	40	91	90	209	170	161	84.2	29.0	0.036
433.1	23.2	3.6	7.4	6.2	4.5	2390	12480	34	31	89	210	167	157	87.2	30.7	0.114
433.6	23.9	3.6	7.9	7.6	3.7	2380	12790	34	30	90	211	170	160	87.5	30.8	0.092
450.6	22.1	3.7	6.7	6.5	4.3	2360	12380	34	30	82	206	166	157	81.3	27.4	0.044
453.5	23.6	3.6	7.6	7.2	4.2	2340	12180	32	29	81	210	170	160	83.3	28.5	0.133
455.8	23.8	3.6	7.8	7.3	4.6	2380	12870	32	30	87	210	170	160	85.2	29.6	0.067
458.5	24.1	3.6	7.8	7.4	4.8	2380	12940	37	33	95	210	109	159	87.0	30.6	0.057
475.0	18.2	3.6	6.9	5.4	3.5	2380	11830	37	50	95	209	150	140	81.3	27.4	0.125
478.2	19.3	3.6	6.2	4.7	3.3	2370	11330	36	40	96	210	145	137	83.5	28.6	0.098
480.6	20.1	3.6	5.2	5.4	3.8	2350	11020	38	44	101	210	145	135	60.3	30.2	0.000
401.7	20.4	3.5	0.0	5.1	3.7	23/0	11//0	30	40	100	211 910	140	137	07.0	31.0	0.000
499.3	19.7	3,4 9.4	0.2	5.0	3.4	2370	12000	35		91 01	210	101	144	81.3	27.4	0.204
501.0	20.2	3.4	0.1	J.V 82	3.2	2300	12280	45	33	08	210	154	145	85.3	20.4	0.124
608.0	21.0	34	0.0	0.2	3.0	2200	12200	14		66	210	164	144	85.3	20.0	0.121
524.4	16.2	2.9	6.0	U.2	3.1	2200	11000	39	Ã		210	145	136	80.4	26.0	0.154
528.8	16.4	31	50	77	3.2	2270	ilwo	35	44	94	211	143	135	81.6	27.6	0.127
529.4	18.1	32	62	47	28	2280	11920	34	45	96	210	147	139	83.0	28.3	0.095
532.4	10.3	31	61	56	25	2300	11950	34	42	96	210	148	139	82.8	28.2	0.092
547.0	17.7	3.1	6.0	5.5	2.9	2290	11290	33	41	91	207	143	135	78.1	25.6	0.057
550.8	18.2	3.8	5.4	4.3	3.1	2320	10520	35	44	90	209	141	131	61.1	27.3	0.079
579.1	16.7	3.5	5.6	4.5	3.0	2420	11290	35	42	90	210	145	136	78.2	25.7	0.056
582.1	18.2	3.5	5.7	4.8	3.0	2430	11380	36	43	94	208	143	134	79.9	26.6	0.060
584.6	19.2	3.6	6.0	5.2	3.3	2220	10520	35	40	90	210	141	132	82.0	27.8	0.177
587.3	19.2	3.6	6.2	5.3	3.3	2370	11250	36	42	96	210	142	133	83.4	28.6	0.009
595.1	10.1	3.6	5.9	5.3	3.4	2340	11160	35		89	210	146	137	79.2	26.2	0.053
597.8	10.3	3.7	6.2	5.5	3.5	2340	11050	36	40	92	210	145	135	81.7	27.6	0.048
600.3	le. 7	3.6	6.5	5.7	3.9	2330	11300	36	40	96	209	143	133	84.3	29.1	0.050
602.6	20.3	3.6	6.8	5.9	3.7	2310	11150	37	41	100	210	143	133	86.2	30.1	0.052
618.1	19.6	3.6	6.6	5.8	3.8	2290	11140	35	38	91	210	145	135	79.9	26.6	0.061
621.8	19.8	3.6	6.6	5.8	3.9	2290	11000	36	39	92	210	144	134	82.7	28.2	0.047
626.4	21.0	3.7	7.1	6.2	3.8	2150	10460	36	39	94	210	140	130	07.3	30.7	0.061
643.1	20.3	3.6	6.8	6.0	3.9	2170	10650	34	37	90	210	144	135	0U.0	20.9	0.053
047.0	20.4	3.6	6.4	5.8	3.5	2170	11000	30	30	91	210	143	134	99.0	20.0	0.054
001.1	20.2	3.6	6.4	5.7	3.6	2170	1020	34	30	V1	210	143	130	80.4	28.0	0.051
000.0	20.0	3.6	6.3	5.7	3.7	2130	10640	33	30		210	144	194	82.5	26.1	0.055
603.6	198	3.0	0,3	5.7	3./	2130	10390	39	97	85	210	174	134	80.4	26.9	0.061
605.6	10.5	3.0	0.3	0.0	3.7	21/0	10530	34	38	ÅÅ	210	143	133	81.4	27.4	0.047
898.6	20.4	3.0	0.2	0.0	3.0	2100	9550	32	35	81	210	140	130	83.0	28.3	0.156
699.8	20.2	3.0	0.4	5.0	3.7	2140	10480	<u>34</u>	37	88	210	142	132	82.1	27.8	0.082
714.1	18.6	3.0	0.2	5.0	3.0	2190	10070	31	34	76	210	148	138	73.8	23.2	0.058
717.3	18.7	3.6	8.1	5.2	3.0	2220	10330	32	35	80	210	147	137	76.3	24.8	0.053
719.8	10.1	3.6	80	54	34	2320	10970	34	37	80	210	146	136	78.4	25.8	0.046
722.3	19.3	3.6	6.2	54	3.7	2390	11220	37	40	95	210	145	135	79.9	26.6	0.050
741.1	16.0	3.6	4.6	33	23	2400	10260	34	79	86	210	138	129	72.5	22.5	0.099
744.1	17.3	3.6	5.1	3.6	2.2	2460	10700	37	111	95	210	138	129	76.4	24.7	0.061
747.1	18.0	3.4	6.2	4.7	3.5	2130	9580	35	91	91	210	133	124	79.3	26.3	0.006
763.1	16.0	3.4	6.1	4.4	3.4	2480	10270	34	73	85	210	139	130	71.9	22.2	0.064
765.1	15.4	3.4	6.0	3.7	3.3	2480	9930	35	99	87	210	136	127	73.3	22.9	0.045
767.1	15.6	3.4	6.0	3.9	2.5	2480	10000	36	100	91	210	136	127	75.1	23.9	0.059
789.1	16.0	3.4	5.8	3.7	3.0	2480	10410	36	93	90	210	136	127	74.5	23.6	0.054

Appendix B Maricopa Groundwater Treatment Study Reverse Osmosis Test Data

Page 3

Elapsed Time (hours)	Delta Stage 1 (lb/in2)	P Stage 2 (lb/in2)	Temperature Correction Factor (TCF)	inverse Temp. Correction Factor (1/TCF)	Average Feed Pressure (Ib/in2)	Feed Cf (molt)	Concentration Reject Cr (mg/L)	Average (Cf+Cr)/2 (mg/L)	Average Osmosis Pressure (Ib/In2)	Average Net Driving Pressure (tb/in2)	Normalized Permeets Flow (L/min)
		.	(· -·)						,		44.4
1.0	25	9	1.126	0.888	186.0	1492	7864	4578	45.8	146.2	
2.3	24	10	1.145	0.874	185.0	14/3	/56/	4530	45.3	139.7	17.0
25.8	24		1.092	0.915	183.6	1000	6022	4632	46.3	137.2	16.7
43.2	23	1X	1.022	0.0/8	180.0	1682	7085	4807	40.0	130.8	17.2
40.0	23	10	1.001	0.043	169.5	4674	7855	4713	47.0	130.0	17.1
611	23	10	1 107	0.014	103.5	1559	7825	4692	46.0	138.8	17.4
67.8	23	10	1.107	0.964	183.5	1664	8207	4936	40.0	134.1	16 7
70.6	23	10	1.083	0.923	161.5	1604	7949	4777	47.5	133.7	16.7
72.9	24	10	1.115	0.896	183.0	1558	7854	4706	47.1	135.9	16.6
74.9	25	10	1.125	0.889	184.5	1546	7826	4696	46.9	18.6	11.3
95.3	26	10	1.064	0.940	182.0	1578	8074	4826	46.3	143.7	17.0
96.3	26	10	1.083	0.023	192.0	1539	7991	4785	47.6	144.4	17.5
98.1	26	10	1.092	0.915	181.0	1520	7938	4729	47.3	143.7	17.8
99.3	26	10	1.119	0.894	191.0	1484	7777	4631	46.3	144.7	11.1
114.6	28	10	1.010	0.990	184.0	1631	8247	4939	40.4	144.8	18.3
110.0	20	10	1.075	0.830	191.0	1550	7066	4001	40.0	142.4	17.0
147.6	20	10	1.110	0.0	102.0	1840	9007	6472	47.0	144.4	10.0
165.6	25		1 000	1.041	180.6	1777	8587	5162	51 1)	145.5	17.9
103.0	25	ğ	0.999	I.000 I.061	169 0	1728	8645	5186	51.8	137.1	16.0
171.1	27	10	1 045	0.957	181.5	1681	8363	5022	50.2	141.3	16.2
165.0	27	10	0.948	1.055	198.5	1827	8860	5344	53.4	145.1	16.1
188.9	27	10	0.983	1.018	106.5	1762	8561	6171	51.7	144.6	18.4
181.6	27	10	0.993	1.007	195,5	1751	8519	5135	51.4	144. 1	18.6
194.1	28	11	0.999	I. 001	198.5	1741	8483	6112	61.1	le. 4	18.2
211.1	28	10	0.958	1.044	200.0	1774	8855	5314	53.1	146.9	16.1
215.1	28	9	1.059	0.944	187.5	1804	8047	4826	48.3	139.2	15.4
218.1	28	10	1.078	0.927	188.0	1570	8050	4815	48.1	139.9	17.5
233.8	28	10	0.964	1.016	107.0	1714	8061	5147	51.5	145.6	15.8
237.1	28	10	1.007	0.893	191.0	16/5	03//	0020	00.3	140.7	17.6
241:1	30	10	1.000	0.021	190.0	1764	9809	4037	40.4	141.0	17.3
200.1	20	11 Q	1 010	0 990	101.0	1708	8484	5086	50.9	141.7	10.0
201.1	30	10	1 125	0.889	189 0	1523	7688	4805	46.1	140.1	18.4
284.6	27	10	1.030	0.971	191.5	1700	8688	5194	51.9	139.6	17.3
287.1	28	10	1.080	0.926	190.0	1627	8202	4915	49.1	140.8	16.5
286.1	28	10	1.139	0.878	188.0	1543	7777	4680	46.6	141.4	16.6
294.1	29	10	1.158	0.05	187.5	1515	7683	4599	46.0	141.5	16.8
307.3	27	10	1.037	0.964	192.5	1676	8344	5010	50.1	142.4	16.4
314.3	28	10	1.139	0.878	186.0	1537	7885	4711	47.1	138.9	16.8
331.1	32	9	0.996	1.004	215.5	1713	9063	5688	56.9	158.6	17.0
3421	34	0	1.132	0.884	177.5	1444	8101	4773	47.7	129.8	17.4
354.6	35		1.070	0.935	188.0	1516	8085	4791	47.9	140.1	15.5
380.1	38	1x	1.122	0.891	177.0	1318	7545	4432	44.3	1327	16.6
365.1	38	9	1.126	U.088	1526	1446	/808	4082	40.3	136.2	15.4
378.6	50	10	1.000	0.837	103.5	1013	7670	407	1 5	130.8	10./
300.0	34	10	1.103	0.000	103.0	1499	7472	4447	44 K	130.0	10.1
367.0 404 B	30	11	1.103	0.000	164.0	1422 1548	8040	4797	48 0	144.0	10.1
405 R	33	19	1 092	0.915	191 0	1502	8015	4758	40.U 17 G	143 4	17.0
408.4	41	9	1.154	0.867	1520	1400	7555	4470	44.8	137.2	15.9

Elapsed Time (hours)	Delta Stage 1 (b(n2)	P Stage 2	Temperature Correction Factor	Inverse Temp. Correction Factor	Average Feed Pressure	Feed Cf	Concentration Reject Cr	Average (CH-Cr)/2	Average Osmosis Pressure	Average Net Driving Pressure	Normalized Permeate Flow
(nouro)	(mune)	(ionina)	(101)	(1101)	(1041112)	(inder)	(11912)	(11)	(interita)	(101112)	(Crum)
409.8	41	9	1.176	0.850	186.0	1374	7373	4973	43.7	1423	16.0
426.4	37	10	1.070	0.935	186.5	1522	7854	4688	46.9	139.0	17.2
430.2	39	9	1.125	0.889	185.0	1408	7498	4453	44.5	140.5	19.9
433.1	43	10	1.100	0.040	185.5	1309	6071	4072	40.7	1440	15.1
450.6	40		1 073	0.932	181.5	1421	7455	4438	AA A	137 1	16.7
453.5	40	10	1,108	0.902	105.0	1364	7101	4232	42.3	142.7	16.8
455.8	40	10	1.143	0.875	155.0	1346	7277	4312	U. 1	141.8	17.2
458.5	41	10	1.176	0.850	184.5	1308	7110	4209	42.1	1424	16.7
475.0	59	10	1.073	0.932	174.6	1433	7124	4278	42.6	131.7	16.7
478.2	64	9	1.112	0.899	173.5	1377	6584	3981	39.8	133.7	13.4
400.0	50		1.163	0.860	173.0	1322	6436	3559	38.9	134.1	13.5
401.7	50		1.191	0.040	174.0	1/27	7124	3033 4275	30.4	133.0	13.3
501.8	54		1 107	0.904	177.5	1343	7007	4175	41.8	135 7	14.5
505.6	56	, j	1.145	0.874	177.5	1287	6933	4110	41.1	136 4	14.9
506.1	56	10	1.145	0.874	177.0	1287	6938	4113	41.1	135.9	14.2
524.4	66	9	1.057	0.948	173.6	1387	7125	4258	42.6	130.9	14.2
526.6	68	8	1.078	0. 027	173.0	1360	6939	4150	41.5	131.5	13.4
529.4	63	8	1.103	0.907	174.5	1336	6963	4159	41.6	132.9	13.1
532.4	62	9	1.099	0.910	174.5	1352	7023	4187	41.9	132.6	13.7
547.0		8	1.018	0.902	1/1.0	1453	/104	4308	43.1	127.9	15.5
579 1	00	10	1.070	0.935	173.0	1402	7152	4949	30.6	131.2	128
582.1			1.020	0.000	171 0	1407	6992	4245	42 4	128.0	13.9
584.6			1.065	0.921	171.0	1322	6263	3793	37.0	133.1	14.1
587.3	66	. Š	1.110	0.901	171.5	1370	6548	3964	39.6	131.9	14.2
595.1	64	9	1.037	0.964	173.5	1458	6955	4206	42.1	131.4	15.0
597.8	65	10	1.080	0.926	172.5	1400	6611	4005	40.1	132.4	14.8
600.3	66	10	1.126	0.888	171.0	1337	6483	3010	39.1	131.8	15.2
002.6	67	10	1.161	0.861	171.5	1285	6205	374s	37.5	134.0	14.0
010.1	55	10	1.049	0.903	172.5	1417	0003	4137	41.4	131.1	16.5
828.4	70	10	1.000	0.011	172.0	1340	5720	2448	30.4 34.6	132.0	15.7
643.1			1.102	0.040	172.5	1324	6619	3972	39.7	132.8	187
647.6	67	ě	1.112	0.899	1720	1261	6392	3027	38.3	133.7	14.8
651.1	67	8	1.101	0.861	172.6	1206	6132	3670	36.7	135.8	14.0
666.8	66	10	1.057	0.946	172.0	1302	6606	3954	39.5	132.5	15.7
669.3	06	10	1.094	0.914	172.0	1258	6264	3771	37.7	134.3	15.0
603.6	66	10	1.057	0.945	1720	1320	6349	3838	38.4	133.0	IS. 4
090.0	67	10	1.075	0.930	1/1.0	1311	0331	3621	50.2	133.3	15.0
090.0	70	10	1.103	0.907	170.0	1131	6220	3303	33.6	138.4	14.1
714 1	62	10	1.087	1 043	171.0	1484	6822	3/01	37.6	133.0	14.8
717.3	63	10	0.990	1.010	173.5	1449	6743	4096	41.0	132.5	181
710.8	64	10	1.023	0.977	173.0	1405	6926	4198	42.0	131.0	15.5
722.3	65	10	1.049	0.953	172.1	1472	6912	4192	41.0	130.6	15.7
741.1	72	9	0.935	1.070	169.5	1659	7090	4374	43.7	125.8	122
744.1	72	9	0.991	1.009	169.5	1603	6974	4289	42.9	126.6	124
747.1	77	9	1.039	0.963	107.0	1325	5960	3643	35.4	130.6	14.0
763.1	71	9	0.926	1.080	170.0	1730	7164	4447	44.5	125.5	16.8
703.1 707 1	74	9	0.947	1.050	100.5	1063	67/15	4230	42.4	120.1	15.3
769 1	74		0.973	1.020	186.5	1662	6978	4320	43.9	120.7	14.1
			0.007	1.007	200.0	1006		1080	10.6	160.0	14.0

Appendix B Maricopa Groundwater Treatment Study

APPENDIX C

Generalized RO Process Diagram For Checking Data Reduction Maricopa Groundwater Treatment Study

APPENDIX D

Analytical Data For Reverse Osmosis Testing Maricopa Groundwater Treatment Study

Appendix D Analytical Data for Reverse Osmosis Testing

		3.5-Hour Data					:	864-Hour	Data		720-Hour Data			
			Well	Feed	Permeate	Reject	Well	Eeed	Permeate	Reject	Well	Feed	Permente	Reject
CALIONS Calaium	<u></u>	malt	100	180	0.52	000	190	100	0.47	(celo'd) 1188 30	190	400	1.0	700
Megnenium	Ma	mal	180	81	0.33	200	78	100	0.47	1100.38	7.0	180	1.2	/00
Sodium	Ne	ma/l	01 150	150	5.0	£30 810	180	150	0.20	480.33	78	180	0.00	300 850
Ooteesium	K	ma/L	3.0	3.9	<1	91	3.9	4.7	<1	29 41	44	4.3	2.0	19
Aluminum	ÂI	ma/L	0.78	0.75	<0.20	3.3	0.65	0.61	<0.20	3. 82	0.68	4.5	<0.0	24
Benyllium	Be	mg/L						<0.0005	<0.0005	0.00	<0.0005	<0.0005	<0.0005	<0.000
Chromium	Cr	mg/L			•			0.004	<.004	0.00	0.035	0.005	<0.004	0.017
Iron	Fe	mg/L	0.34	<0.05	0.13	0.18	0.37	<0.05	<0.05	0.00	0.66	<0.05	<0.05	0.07
Manganese	Min	mg/L	CO. 05	<0.05	<0.05	0. 22	<0.05	<0.05	<0.05	0.00	<0.05	<0.05	<0.05	0.08
Copper	Cu	mg/L			•	•		0.005	~0.005	0.03	0.007	9.005	<0.005	0.011
Cadmlum	Cd	mg/L						<0.0005	0.0017	0.00	< 0.0005	<0.0005	<0.0005	< 0.0005
Mercury	Hg	mg/L					<0.001	<0.001	<0.001	0.00	<0.001	<0.001	<0.001	<0.001
Lead	РЬ	mg/L			•		•	<0.005	~0.005	0.00	<0.005	<0.005	<0.005	<0.005
Antimony	Sb	mg/L	•					CO. 004	<0.004	0.00	<0.004	<0.004	<0.004	<0.004
ANIONS														
Bicarbonate	HCO3	mg/L	160	180	12	810	160	160	15	022.29	160	160	520	360
Chloride	CI	mg/L	820	810	8	3500	510	530	11	3258.48	520	530	15	2500
Sulfate	SO4	mg/L	250	280	<5	1700	230	230	<5	1439.14	240	240	<5	1400
Nitrate (N)	NO3 (N)	mg/L	12	8.5	<0.50	89	8.8	9	0.75	52.37	5.68	9. 52	1.07	38.0
Arsenic	As	mg/L	•	•		•		<0.004	4.004	0.00	0.006	<0.004	<0.004	<0.004
	002						11	10	-0.24	0.00	0.7		0.05	
Sili cu (total)	5102	mg/L	•				11	10	NU.21	82.37	21	25	0.35	110
Total Organic Carbon	тос	mg/L	<0.5	1.7	1.1	5.7	a. 5	<0.5	<0.5	0.00	0.8	0.7	so. 5	1.2
Standard Plate count	SPC	ctu	380	380	110	320	8400	8400	21	39935.31	1700	3600	320	19000
Alkalinity		mg/L	180	180	12	810	160	180	15	922.29	180	180	520	380
Conductivity (ops)		u\$/cm		2 88		13 11		9 5		15 84		9 46	-	10 /1
Total Dissolved Solids	TDS (sum)	mg/L	1600	1500	47	8600	1400	1400	41	8544. 48	1500	1500	37	8800
Cations(Ca,Mg,Na,K)		meq/L	22.77	22.27	0. 30	104.55	22. 80	22.48	0.48	138.02	22. 31	23.05	0.87	97.93
Anions(HCO3,CI,SO4)		meq/L	25.32	25.88	0.37	144.12	21.80	22.36	0.58	136.99	22.29	22.57	8.94	105.57
Ratio Anions:Cations		•	1.11	1. 15	1. 21	1.38	0.96	1.00	1. 18	0.99	1.00	0. 98	13.34	1.06

APPENDIX E

Reverse Osmosis Element Serial Numbers As Loaded in Pressure Vessels

Appendix E. - RO Element serial numbers as loaded in pressure vessels.

out

66

APPENDIX F

Memorandum of Petrographic Examination of Used Membranes Maricopa Groundwater Treatment Study

IN REPLY REFER TO:

D-8340 RES-3.40

United States Department of the Interior

BUREAU OF RECLAMATION Reclamation Service Center P.O. Box 25007 Building 67, Denver Federal Center Denver, Colorado 80225-0007

NC/ 7 1235

MEMORANDUM

- To: Group Manager, Water Treatment Engineering and Research Attention: R. Jurenka, D-8230
- From: K. E. **Krill** Geologist, Earth Sciences and Research Laboratory
- Subject: Petrographic Examination of Contaminants from Used Water Treatment Membranes - Maricopa Groundwater Pilot Project - City of Avondale, Arizona

Earth Sciences and Research Laboratory Referral No. 8340-95-32

Petrographic referral code: 95-10

INTRODUCTION

Four samples were submitted to the Petrographic Laboratory by R. Jurenka, Water Treatment Engineering and Research Group, for examination. The samples were collected from Well No. 5 in March and April, 1995, and were labeled and identified as follows:

membrane No. 2495040, first stage element; well-water sediment (submitted on filter paper); scrapings from back of membrane No. 2495047; and membrane No. 2495047, second stage element.

The purpose of the examination was to identify and/or characterize any materials which may plug the active surface of the membranes, with emphasis on any biological materials.

٩

PETROGRAPHIC EXAMINATION AND RESULTS

Petrographic examination consisted of scanning electron microscope (SEM) and energy dispersive spectroscope (EDS) analysis of representative portions of the submitted samples. SEM photomicrographs and EDS results, consisting of qualitative elemental compositions, are included in the attached appendix 1.

Numerous types of materials to which membrane plugging may be attributable were present on the submitted samples. Two types of biological materials, diatom fragments and bacteria, were present in small amounts in the samples from the first and second stage elements, respectively. Diatom fragments are portions of silica walls secreted by these single-celled plants. Other types of particles, present in greater numbers, included:

- numerous broken fragments of cylindrically shaped, silicon-rich particles in the first stage element and in scrapings from the back of the second stage element;
- few to several irregularly shaped, iron- and chromium-rich particles in the first stage element;
- some carbon-rich filaments or strands in the first stage element; and

 numerous irregularly shaped, carbon-rich particles and particle masses in all four submitted samples which also exhibited notable silicon, sulfur, and aluminum.

Biological materials, diatom fragments and bacteria, were present in only trace to minor amounts in the first and second stage elements, and likely play only a minor role in membrane surface plugging.

R.E. Trill

١

Attachment

cc: D-8230 (Jurenka), D-8340 (3)

Appendix 1:

Scanning Electron Photomicrographs and

Energy Dispersive Spectra of Particles

Present in Examined Membrane Elements -

Maricopa Groundwater Pilot Project,

Well No. 5 -

City of Avondale, Arizona

-ray Display 1

790 FS

Diatom fragments were present in the examined first stage element sample.

Scanning electron photomicrographs of bacteria present in second stage membrane element from Maricopa Well No. 5.

ray Disp

Numerous broken fragments of silicon-rich, cylindrically shaped particles are present in the first stage element and in SCrapingS from the back of the second stage element.

ray Display 1

Few to several iron- and chromium-rich, irregularly shaped particles are present in the first stage element.

Some carbon-rich filaments or strands are present in the first stage element. 115

ray Display 1

117 Numerous carbon-rich, irregularly shaped particles and particle masses occur in all four submitted samples. Analyses also indicated notable silicon, sulfur, and aluminum in these samples. 249 FS