## NEONATAL VACCINATION AND AUTOIMMUNITY

### Paul-Henri Lambert Centre of Vaccinology & Department of Pathology University of Geneva

Tysons Corner -20043

# IMMUNOLOGICAL SAFETY OF NEONATAL VACCINATION

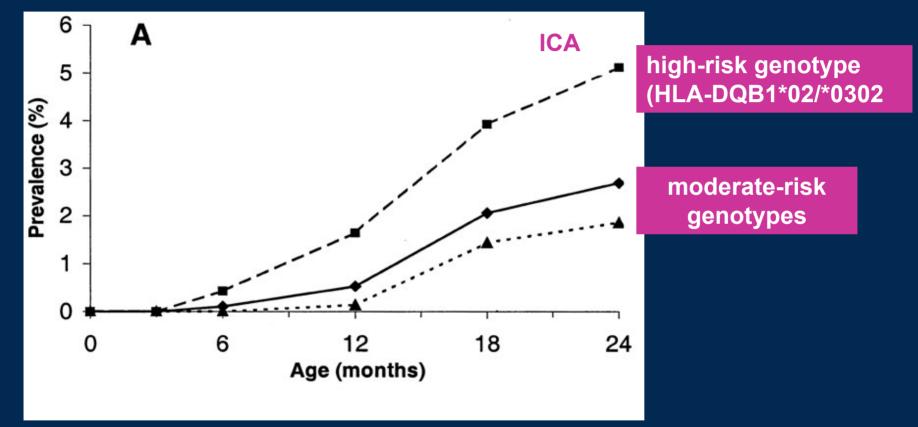
In a context of neonatal immunological immaturity, is there a risk that

<u>non-specific</u> bystander effects of vaccination or
 <u>specific</u> vaccine-induced responses

would trigger or induce autoimmune diseases?

# SOME AUTOIMMUNE DISEASES CAN HAVE AN EARLY ONSET (< 12 MONTHS)

## SOME AUTOIMMUNE DISEASES CAN HAVE AN EARLY ONSET (< 12 MONTHS)


#### TYPE 1 DIABETES

## Type 1 diabetes importance of genetic background

|                                            | Risk of diabetes |
|--------------------------------------------|------------------|
| Monozygotic twin of patient with type 1 DM | 1/2              |
| DR3/IDDM 17 homozygote                     | 1/3              |
| DQ8/DQ2 sibling type 1 DM                  | 4/10             |
| DQ8/DQ2 general population                 | 1/20             |
| Dizygotic twin of patient with type 1 DM   | 1/20             |
| Sibling of patient with type 1 DM          | 1/20             |
| US population                              | 1/300            |

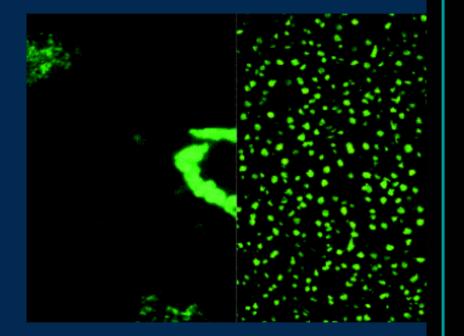
Robles DT & Eisenbarth GS., J Autoimmun 2001 May;16(3):355-62

## Frequency of Islet Cell Antibodies from 0-2 yr (Finland)



Kimpimäki T., 2002, Journal of Clinical Endocrinology & Metabolism. 87: 4572-4579

## SOME AUTOIMMUNE DISEASES CAN HAVE AN EARLY ONSET (< 12 MONTHS)


#### TYPE 1 DIABETES

AUTOIMMUNE HEPATITIS – (AIH)

# AUTO-IMMUNE HEPATITIS (AIH)

**TYPE 1** 

#### **TYPE 2**



anti- smooth muscle & antinuclear antibodies

antibodies to cytochrome CYP450-2D6 role of HCV? of HSV?

#### SOME AUTOIMMUNE DISEASES CAN HAVE AN EARLY ONSET (< 12 MONTHS)

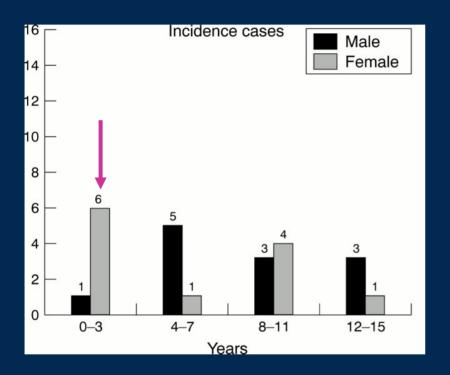
TYPE 1 DIABETES

AUTOIMMUNE HEPATITIS – TYPE 2 (AIH)

IDIOPATHIC THROMBOCYTOPENIC PURPURA (ITP)

## Idiopathic Thrombocytopenic Purpura (ITP) in infancy

#### **Age Distribution of 79 Infants With ITP**


| Age range (months) | No. (%) |
|--------------------|---------|
| 2–6                | 11 (14) |
| 7–12               | 15 (19) |
| 13–18              | 30 (38) |
| 19–24              | 23 (29) |

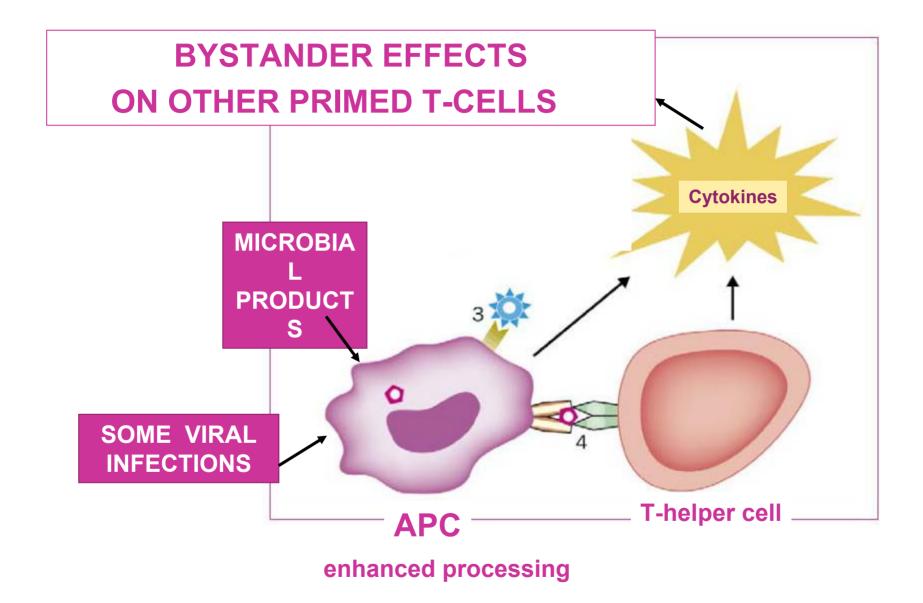
Sandoval C, Pediatr Blood Cancer 2004;42:109–112

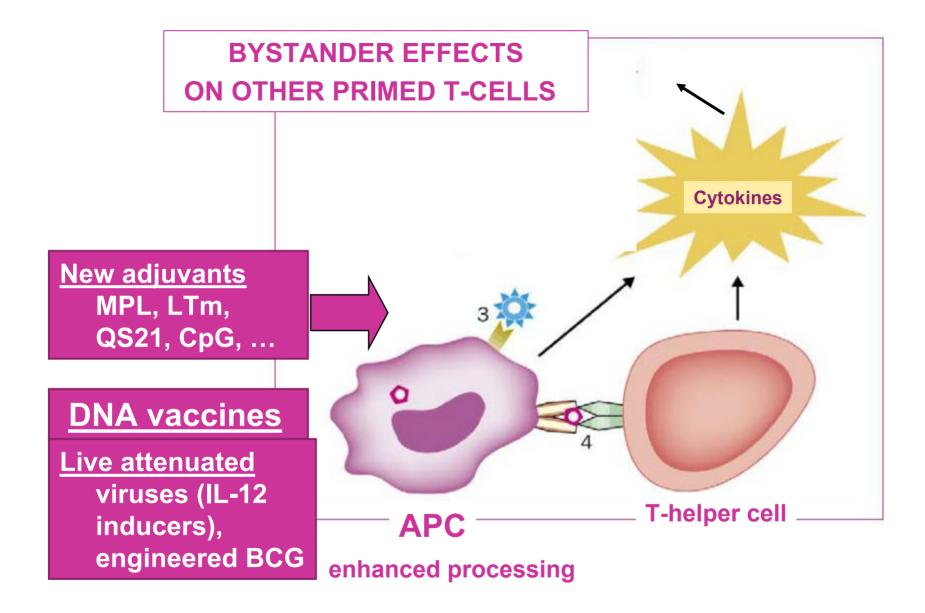
## SOME AUTOIMMUNE DISEASES CAN HAVE AN EARLY ONSET (< 12 MONTHS)

- TYPE 1 DIABETES
- AUTOIMMUNE HEPATITIS TYPE 2 (AIH)
- IDIOPATHIC THROMBOCYTOPENIC PURPURA (ITP)
- JUVENILE CHRONIC ARTHRITIS (JCA)

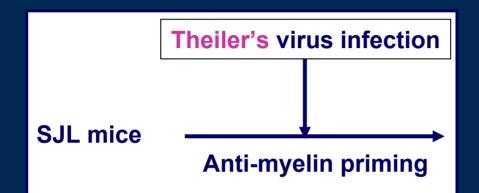
# **Juvenile Chronic Arthritis**




Norway 1985-94 Annual incidence of JCA: 22.6/100,000 children < 16 yr (42% HLA-B27 positive)


*Moe N, Clin Exp Rheumatol.* 1998;16:99-101

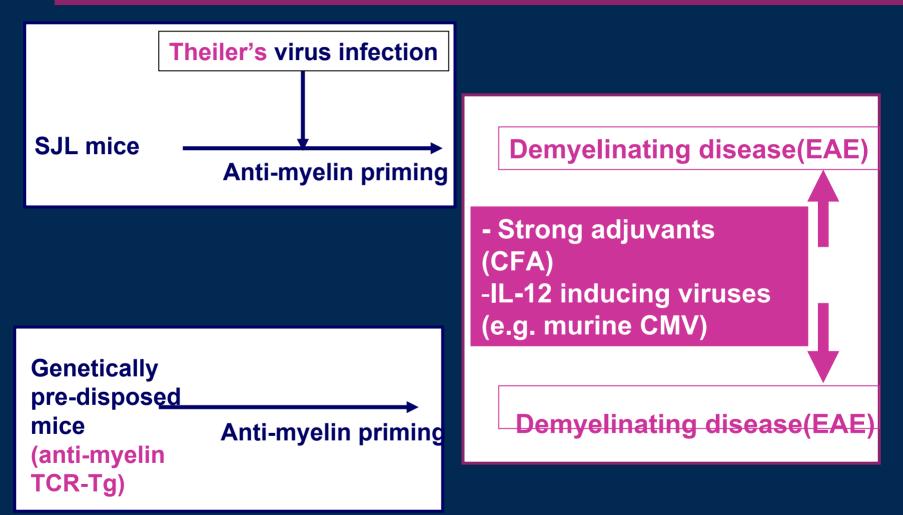
JCA in relation to age and sex in Southern Germany von Koskull et al., Ann Rheum Dis 2001;60:940


### In a context of neonatal immunological immaturity, is there a risk that vaccines would trigger an autoimmune disease through

## BYSTANDER ACTIVATION?






# Autoimmune experimental encephalitis (EAE): silent priming



### no clinical disease

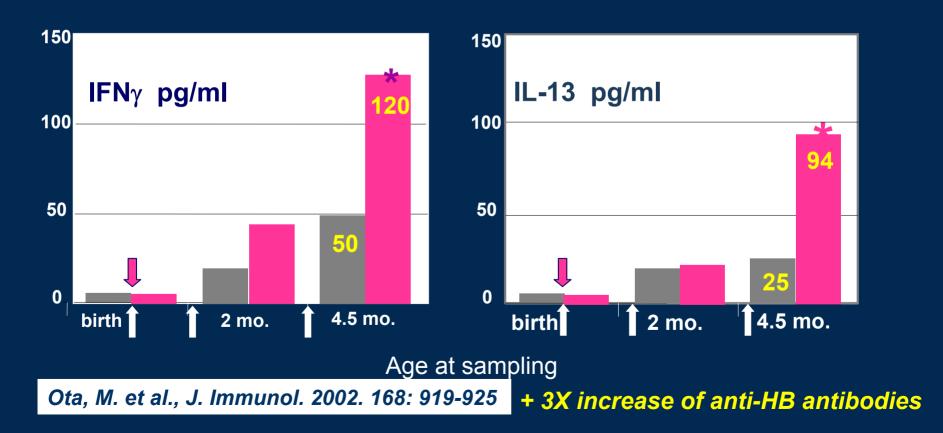
Genetically pre-disposed mice Anti-myelin priming (anti-myelin TCR-Tg)

#### Autoimmune experimental encephalitis (EAE): triggering



Theil DJ, Tsunoda I, Rodriguez F, Whitton JL, Fujinami RS, J Neurovirol 2001; 7:220-227. Segal BM, Chang JT ,Shevach EM., J Immunol 2000; 164:5683-5688.

#### SOME INFECTIONS CAN TRIGGER AN UNDERLYING SILENT AUTOIMMUNE DISEASE


#### Human Influenza <u>infection</u> in adults Triggering of exacerbations of relapsing Multiple Sclerosis in 33% of patients, within the following 6 weeks

De Keyser J, Zwanikken C, Boon M., J Neurol Sci 1998 ;159:51-3



## Effect of neonatal BCG Hepatitis B vaccine response

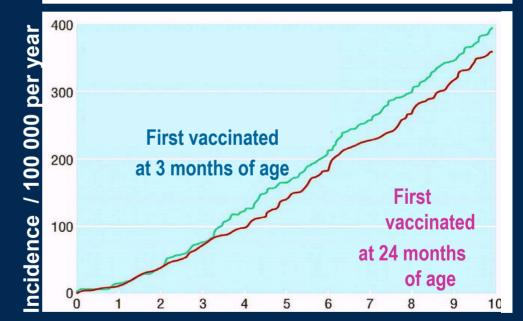
Hep B at birth + 6, 10 wks Hep B at birth + 6, 10 wks + BCG at birth



## NEONATAL VACCINATION AND AUTOIMMUNE DISEASES

#### NO SIGNIFICANT EFFECT OF BCG AT BIRTH ON EPIDEMIOLOGY OF TYPE 1 DIABETES

- The cumulative incidence of childhood diabetes mellitus in Sweden is unaffected by BCG-vaccination.
   Dahlquist G, et al., 1995;38:873-4
- Bacille Calmette-Guerin vaccination and incidence of IDDM in Montreal, Canada
   Parent ME,etal., Diabetes Care. 1997;20:767-72.


### Childhood vaccinations, vaccination timing, and risk of type 1 diabetes

No significant association between childhood vaccines and risk of type 1 diabetes

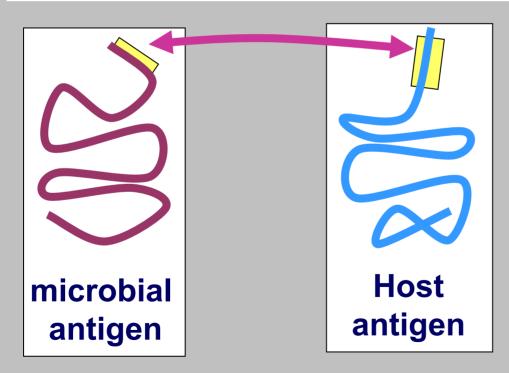
DTP, DTaP, HepB, Hib, MMR, varicella

> DeStefano F, et al., Pediatrics 2001;108:E112

Type 1 Diabetes and Hib Vaccination (Finnish Birth Cohort Study)

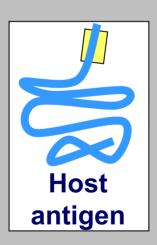


Age when diabetes diagnosed (years) Karvonen M, et al., BMJ, 1999; 318:1169-72 Non antigen-specific effects of live or adjuvanted vaccines:

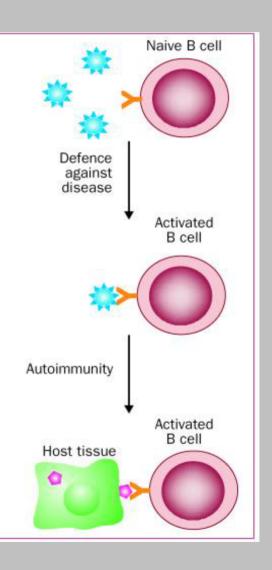

- usually time-limited
- often localised to regional lymph nodes
- negatively influenced by regulatory mechanisms (e.g. CD4<sup>+</sup> CD25<sup>+</sup> T cells)

## NEONATAL VACCINATION AND AUTOIMMUNE DISEASES

The potential risk of <u>triggering an underlying</u> <u>autoimmune disease</u> through non-specific bystander effects (new adjuvants, some live vaccines) is very limited ... but <u>should not be ignored</u> during vaccine development. In a context of neonatal immunological immaturity, is there a risk that vaccines would trigger an autoimmune disease through


## MOLECULAR MIMICRY?

# B-CELL EPITOPE MIMICRY





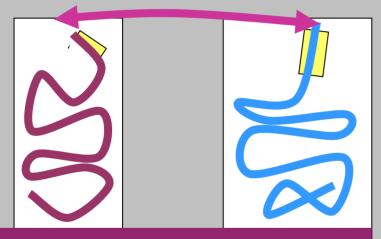




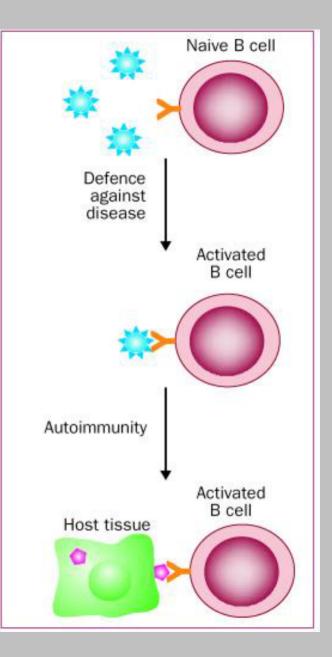





# **B-CELL EPITOPE MIMICRY**

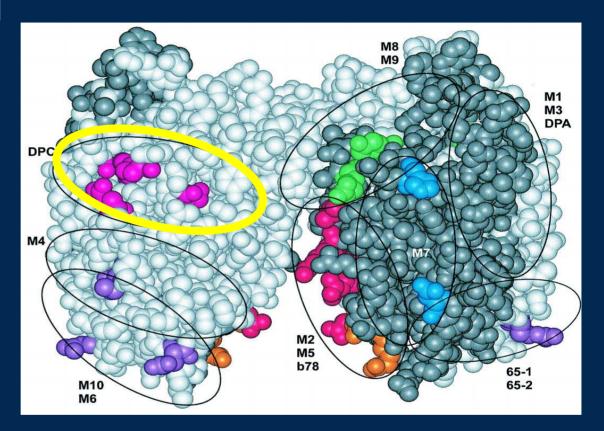

# Particular importance for polysaccharide vaccines

Structural homologies involving oligosaccharide (repetitive epitopes) can be sufficient to <u>select</u> <u>out</u> a vaccine antigen


e.g.

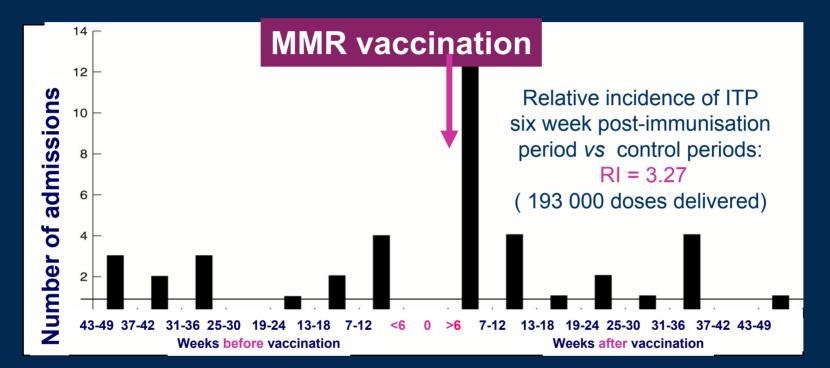
- <u>Group B mening.</u>: capsular PS & NCAM-polyalpha-2,8-NeuAc
- <u>Campylobacter</u> LPS and gangliosides

# B-CELL EPITOPE MIMICRY




for peptidic antigens extensive sequence homology and/or conformation similarity are required




GAD65 islet cell antigen mapped with antibodies from <u>type I</u> <u>diabetes</u> patients

Schwartz H.L. et al., J. Mol. Biol. (1999) 287, 983



B-cell epitopes <u>seen by auto-antibodies</u> are surface exposed, conformational, discontinuous

#### **Idiopathic Thrombocytopenic Purpura and MMR**



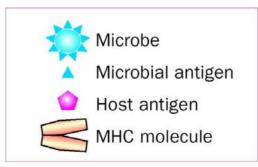
E Miller, et al., Arch Dis Child 2001;84:227-229

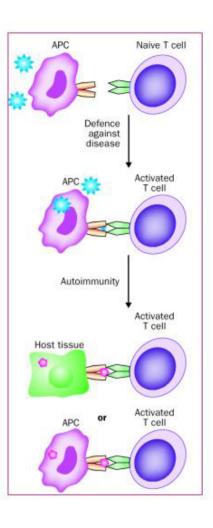
## **ITP and MMR**

- -Increase in platelet-associated immunoglobulin (2/3 pt)
- -Circulating antiplatelet autoantibodies against glycoprotein IIb/IIIa (1/3 pt)

Nieminen U, Peltola H, Syrjala MT, Makipernaa A, Kekomaki R., Acta Paediatr 1993; 82(3):267-70

| Post-MMR vaccination | Post-infection   |
|----------------------|------------------|
| 1 / 22 300 to        | Rubella 1 / 3000 |
| 1 / 100 000 doses    | Measles 1 / 6000 |


\*Peltola H, Heinonen OP, Valle M, Paunio M, Virtanen M, Karanko V, Cantell K., N Engl J Med. 1994;331:1397-402; \*Jonville-Bera AP, Autret E, Galy-Eyraud C, Hessel L., Pediatr Infect Dis J. 1996;15:44-8


# T-CELL EPITOPE MIMICRY

#### **Small linear peptides**

CD4<sup>+</sup> : 11-20 AA peptides with 9-mer core binding peptide (HLA-class II)

CD8<sup>+</sup> : 8-10 AA peptides with 2 main anchor residues (HLA class I binding)





# NEW VACCINES AND T-CELL EPITOPE MIMICRY

Sequence homologies (6-9 mer peptides) with human proteins can be extremely frequent

### Tetanus Toxin vs 15,000 Human Proteins

| Peptide | Matching level | Hu. proteins with |
|---------|----------------|-------------------|
| size    | (common aa)    | pept. similarity  |
| 6-mer   | 6/6            | 209               |
|         | 5/6            | >11,000           |
| 7-mer   | 7/7            | 9                 |
|         | 6/7            | 758               |
| 8-mer   | 8/8            | 0                 |
|         | 7/8            | 95                |
| 9-mer   | 8/9            | 8                 |
|         | 7/9            | 434               |
|         |                | 434               |

J. Thonnard 2002, pers. communic.

## NEW VACCINES AND T-CELL EPITOPE MIMICRY

- 1. Sequence homologies with human proteins? (data bank, 6-9 mer peptides)
- 2. Common T cell epitopes?, using epitope prediction methods (algorithms, structural modeling)

## Common T cell epitopes?

#### **Quite frequent**

Mimicking peptides on unrelated proteins can often be appropriately processed and bind to the same HLA alleles

a TT epitope that can bind to DRB1 can be found as well on 12 unrelated human proteins Peptide-binding groove

### FROM MIMICKING T CELL EPITOPES TO AUTOIMMUNE DISEASES: WHAT IS NEEDED?

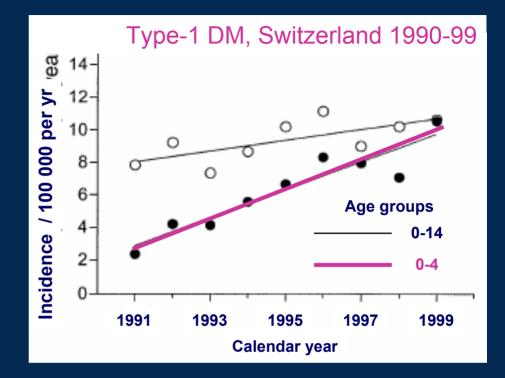
| LIMITING FACTORS                              | STRINGEN<br>CY         |
|-----------------------------------------------|------------------------|
| 1. APC- MHC BINDING                           | low                    |
| 2. RECOGNITION BY<br>AUTO-REACTIVE T<br>CELLS | low<br>degenerac<br>y! |
|                                               |                        |

# Mimicry is everywhere ....

### FROM MIMICKING T CELL EPITOPES TO AUTOIMMUNE DISEASES: WHAT IS NEEDED?

| LIMITING FACTORS                                         | STRINGENCY         |            |
|----------------------------------------------------------|--------------------|------------|
|                                                          |                    | Mimicry is |
| 1. APC- MHC BINDING                                      | low                | everywhere |
| 2. RECOGNITION BY AUTO-REACTIVE<br>TCR                   | low<br>degeneracy! |            |
| 3. CO-STIMULATORY SIGNALS                                | +++                |            |
| 4. OVERPASSING REGULATORY<br>MECHANISMS (e.g. CD4+CD25+) | +++                |            |
| 5. LOCAL INFLAMMATION IN TARGET<br>ORGAN                 | +++                |            |
|                                                          |                    |            |

# FROM MIMICKING T CELL EPITOPES TO AUTOIMMUNE DISEASES: WHAT IS NEEDED?


| LIMITING FACTORS                                         | STRINGENCY         |                     |
|----------------------------------------------------------|--------------------|---------------------|
| 1. APC- MHC BINDING                                      | low                | RISK IN<br>NEONATES |
| 2. RECOGNITION BY AUTO-<br>REACTIVE TCR                  | low<br>degeneracy! |                     |
| 3. CO-STIMULATORY SIGNALS                                | +++                | LOWER               |
| 4. OVERPASSING REGULATORY<br>MECHANISMS (e.g. CD4+CD25+) | +++                | ?                   |
| 5. LOCAL INFLAMMATION IN<br>TARGET ORGAN                 | +++                | LOWER               |

# NEONATAL VACCINATION AND AUTOIMMUNE DISEASES

# RISK OF COINCIDENTAL TEMPORAL ASSOCIATION

OF VACCINATION WITH AUTOIMMUNUNE DISEASES?

Rising incidence of autoimmune diseases



Schoenle EJ et al., Diabetologia, 2001, 44:286-289

## Rising incidence of autoimmune diseases

Increasingly crowded vaccination calendar

Mass vaccination in Al-susceptible age groups

# Rising incidence of autoimmune X diseases

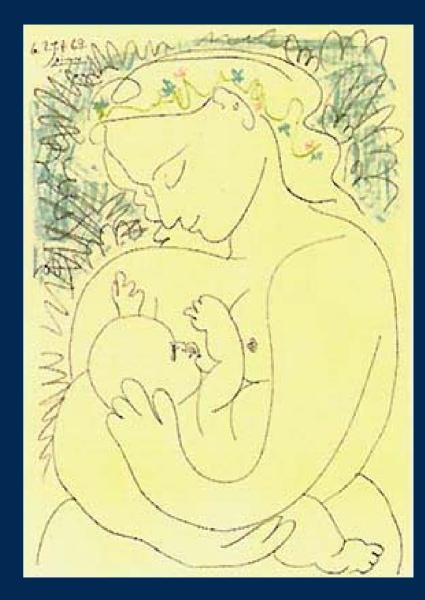
Increasingly crowded vaccination calendar

Mass vaccination in Al-susceptible age groups

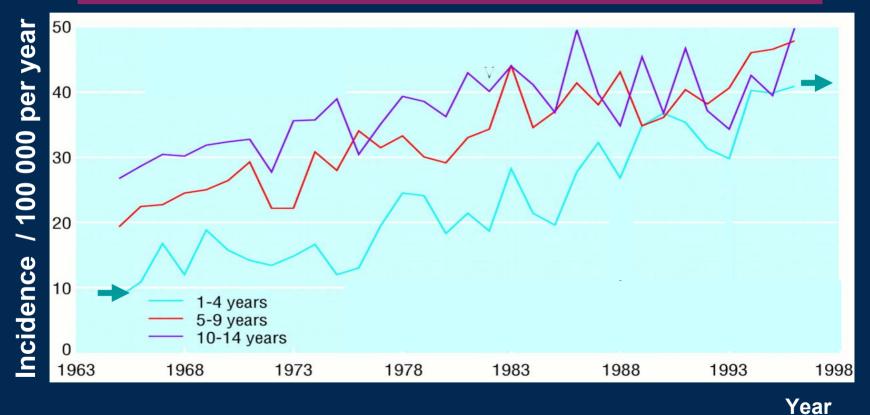
## INCREASING RISK OF COINCIDENTAL TEMPORAL ASSOCIATION AID-VACCINATION

# RISK OF AUTOIMMUNE DISEASE AFTER NEONATAL VACCINATION?

□ Probably lower than at 3 months if same vaccine is used:


lower APC responses to innate immunity signals
thymic maturation OK (repertoire), regulatory responses?
lower antibody responses can be expected

# RISK OF AUTOIMMUNE DISEASE AFTER NEONATAL VACCINATION?


- □Probably lower than at 3 months if same vaccine is used
- □If « stronger » adjuvants have to be used, it is wise to monitor
  - <u>clinical signs</u> of diabetes, arthritis, liver disease and ITP
  - markers (at 6 & 12 mo.) of type-1 DM (ICA,
  - AAI) and type 2 AHI (anti-CYP2B6); platelet count
  - if suspicion, assess <u>genetic background</u> (e.g. high risk type-1 DM genotypes, HLA-B27)

# NEONATAL VACCINATION IS FEASIBLE

# It may even be safer ...



### THE INCIDENCE OF SOME AUTOIMMUNE DISEASES IS RISING



From: Karvonen M, Cepaitis Z, Tuomilehto J., BMJ, 1999; 318:1169-72

## Comparison of peptide sequences in human myelin proteins and HBsAg

Tsuchida et al (1994); Pelfrey et al (1993).

#### PFPTIDF % SIMILARITY / % AMINO ACID POSITION **IDENTITY** IN HBsAa (amino acid position) PLP<sub>40-60</sub> 116-165 75/35 75/63 PLP<sub>80-88</sub> 83-90 PLP253-261 89/33 171-185 78/44 11-30 **MAG**8-16 MAG406-414 71/57 162-168 MAG<sub>509-517</sub> 89/44 175-190 MAG<sub>556-564</sub> 78/33 190-200 MBP110-118 100/67 31-45 **MOG**7-15 88 / 50 87-94 **MOG**<sub>133-141</sub> 75/25 21-28 MOG<sub>157-165</sub> 78/22 24-32 MOG<sub>164-172</sub> 71/43 203-209 MOG<sub>221-229</sub> 71/57 204-212 MOG<sub>240-248</sub> 75/25 15-24 MOG<sub>422-430</sub> 78/33 13-21

#### All peptides bind to HLA-A2

PLP = Proteolipid protein; MAG = Myelin-associated glycoprotein MBP = Myelin basic protein; MOG = Myelin oligodendrocyte glycoprotein

# The example of Lyme vaccine

In Lyme Disease, the <u>natural infection</u> (Borrelia sp) can be complicated by a chronic antibiotic-resistant arthritis.

This arthritis is considered as an AI complication due to recognition of a microbial T cell epitope (Osp-A) that is mimicking an epitope of human lymphocyte protein LFA-1 (A Steere et al.)

A registered <u>Lyme vaccine</u> does contain Osp-A: risk of Al arthritis? No joint disease nor other Al side effects observed after vaccination.

Importance of infection-induced local inflammation?

# Mimicry of host antigens is not sufficient to induce AID.

- This would particularly require:
- <u>co-stimulatory</u> signals,
- escaping normal regulatory mechanisms,
- local inflammation in target organ

 Most often, occasional vaccine-induced autoimmune responses do not lead to any disease (differing from infection-induced responses)

# IMMUNOLOGICAL SAFETY OF NEONATAL VACCINATION?

#### Could neonatal vaccination lead to:

- inappropriate responses to the targeted pathogen: disease enhancement (RSV?) / tolerance? *not seen with Polio/HepB*
- 2. modified responses to other antigens- *as seen with BCG*
- 3. immunological overload? *no evidence*
- 4. induction or triggering of an autoimmune disease?