

Risk Assessment for Guiding Public Health Risk-Based Inspection in Poultry Slaughter

Janell Kause, Director Risk Assessment Division February 6, 2008

NACMPI February 5-6,2008

- Evaluate the public health impact associated with changes in inspection activities
- Risk Management Questions
 - Can FSIS reallocate inspectors in young chicken slaughter plants without significant negative impact on microbiological prevalence in the plants?
 - How will the relocation of on-line inspectors to off-line duties, or other areas within or outside the plant, affect human illness?
 - Where within the establishment can relocated inspection activities have the most impact toward reducing microbial prevalence and corresponding human illness?
 - What is the uncertainty about these effects?

Model

- Stochastic simulation model
- Multiple variable logistic regression
- "Pair wise" observations to evaluate variations in personnel assignments and inspection activities in FSIS poultry slaughter facilities with the prevalence of *Salmonella* on young chicken

Model

 Modeled the relationship between changes in *Salmonella* prevalence on young chicken and corresponding attributable human illness

 Independently peer reviewed in 2006 (OMB requirement under the Information Quality Act)

Data

- 2,395 paired observations (CY2003-2005)
- Salmonella prevalence: FSIS verification testing data from 154 chicken poultry establishments
- Inspection Activities: FSIS performance based Inspection system
- FSIS data on personnel assignment profiles for each establishment (on-line/off-line staffing)

Multivariate Regression/Stochastic Model

 Dependent Variable: Salmonella prevalence on young poultry

- Independent variables:
 - <u>Structural variables</u>: date, type of inspection (SIS, 24.8%; Maestro, 19.8%, NELS, 19.5%, Mixed, 16.5%, HIMP, 13.2%, Nu-Tech, 6.1%), and volume

Multivariate Regression/Stochastic Model

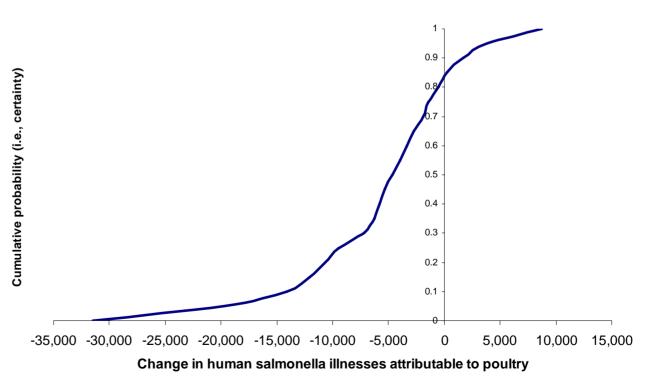
- Independent variables (continued):
 - Decision-tracking variables
 - ✓ number of scheduled procedures performed
 - ✓ number of unscheduled procedures performed
 - ✓ aggregated into procedure categories
 - ✓ number of on-line and off-line inspectors
 - Performance deficiency variables
 - ✓ number of scheduled not performed procedures
 - ✓ number of non-compliant procedures recorded
 - ✓ aggregated into procedure categories

Human Illness Attributed to Salmonella on Young Chicken

Step	Input	Salmonella	Data Source/Estimation
1	Incidence of salmonellosis among the	14.4/100,00	FoodNet Annual Report
	U.S. population	0	for 2003 ⁹
2	Population estimate 2003	290,788,976	US Census Bureau ¹⁰
3	Underreporting multiplier	38	Mead et al. ⁷
4	Foodborne fraction	0.95	Mead et al. ⁷
5	Poultry attribution fraction	0.3351	Food Safety Research
			Consortium ^{11;12}
6	Young chicken fraction	0.838	ERS ¹³
7	Total illnesses	1,591,197	Step = 1 x 2 x 3
8	Total foodborne illnesses	1,511,637	Step = 4 x 7
9	Total foodborne illnesses from poultry	498,840	Step = 5 x 8
10	Total foodborne illnesses from young		
	chickens	424,389	Step = 6 x 9

Note: A Poisson uncertainty distribution used to incorporate variability in salmonellosis cases per year and uncertainty about the relationship between changes *Salmonella* prevalence at the establishment and attributed cases of salmonellosis (Powell, 2000).

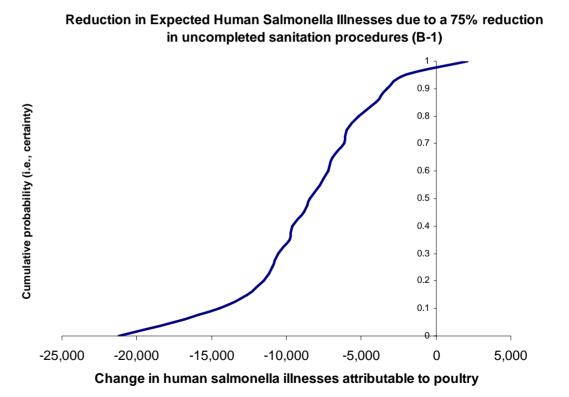
Model Estimates


- Public health benefit of FSIS personnel performing additional wholesomeness, sanitation, sampling and other off-line procedures tailored to mitigate Salmonella contamination on poultry
- Model showed an association between six types of off-line procedures and a decrease in human illness:
 - 1. Increased unscheduled sanitation procedures
 - 2. Increased unscheduled sampling procedures
 - 3. Decreased unperformed sampling procedures
 - 4. Decreased unperformed HACCP procedures
 - 5. Decreased unperformed sanitation procedures
 - 6. Decease in non-compliances for sanitation procedures

Scenario: Public Health Impact of Decreasing Unperformed Sampling Procedures

•75% decrease in unperformed sampling procedures

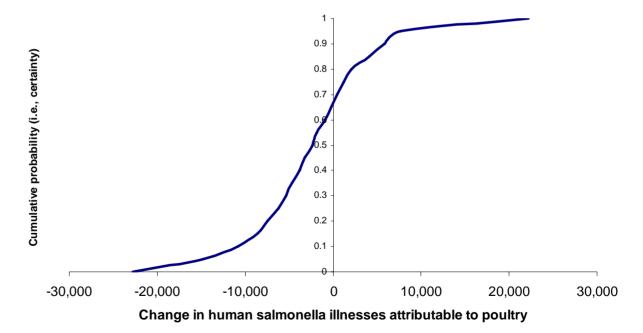
 Salmonellosis cases reduced by 5,482 (approx. 85% of model iterations) Reduction in Expected Human Salmonella Illnesses due to a 75% reduction in uncompleted sampling procedures (B-5)



Scenario: Public Health Impact of Decreasing Unperformed Sanitation Procedures

•75% decrease in unperformed sanitation procedures

 Salmonellosis cases
expected to be reduced by
8,592 (95% of model
iterations)



Scenario: Public Health Impact of A Decrease in Noncompliances for Sanitation Procedures

•75% decrease in noncompliances for sanitation procedures

 Salmonellosis cases expected to be reduced by 2,321 (65% of model iterations) Reduction in Expected Human Salmonella Illnesses due to a 75% decrease in non compliances for scheduled sanitation procedures (NC-1)

Summary of Model Results

- An increase in number of off-line inspection procedures is associated with reduced human illness from *Salmonella* on young chicken.
- A <u>decrease</u> in the number of <u>unperformed</u> sampling, sanitation, and HACCP procedures are all associated with an expected reduction in human illness from *Salmonella* on young chicken.

Summary of Model Results

- An <u>increase</u> in the number of <u>scheduled</u> sampling, random facility sanitation, and some wholesomeness procedures are associated with an expected reduction in human illness from *Salmonella* on young chicken.
- An <u>increase</u> in the number of <u>unscheduled</u> sampling, and sanitation procedures are associated with an expected reduction in human illness from *Salmonella* on young chicken.
- Other procedures did not show much association with reduced Salmonella on young chicken.

Questions?