

W. Kramer Draft Dissertation 30

Chapter 3: Performance - Sustained System

Performance for HPC Systems - The SSP

Method

3.1 Chapter Summary

The class of performance evaluation factors is clearly important as indicated in

the analysis described in Chapter 2. This chapter explains the Sustained Systems

Performance (SSP) method, which provides a process for evaluating system

performance across any timeframe. SSP is a simple but powerful method in the sense

that it can be applied to any set of systems, any workload and/or benchmark suite and

for any time period. SSP measures time to solution across different application areas

and it can be used to evaluate absolute performance and performance relative to cost

(in dollars, energy or other value propositions).

While the formula development in this chapter is meant to be complete, it should

not be intimidating since the SSP method can be described in a straightforward

explanation in Section 3.1.1 below.

3.1.1 The Basic SSP Concept

SSP uses one or more benchmarks to compare the performance of two or more

systems using time to solution as the primary performance indicator. Each benchmark

has one or more problem sets which, together with the benchmark, determine a

unique test. Each test has a total operational count (Floating Point Operations – Flops

from a single reference system - are used in this work, but other operations can be

W. Kramer Draft Dissertation 31

used if appropriate) that can be determined with code profiling or static analysis. For

each test on each system, a per processor performance rate is determined by

measuring and/or projecting the time to completion of the test on the system. The per-

processor rate of each test is determined by dividing the total operation count by the

runtime of the test and then again dividing the number of processors used in the test.

Once the per processor performance rate is determined for each test, a single per

processor performance rate can be calculated with a composite function such as an

arithmetic or geometric mean. To determine the Sustained System Performance of a

system, the composite per processor rate is multiplied by the total number of

computational processors in the entire system.

Systems may change in time due to upgrades and/or additions. Comparing two or

more systems may also be complicated because technology may be introduced at

different times. If one needs to compare systems that are available at different times,

or will change over time, the SSP for each phase can be determined for each time

period or phase. The SSP for each phase of a solution can be added together,

essentially integrating the performance of the system(s) over some time period. This

gives the potential of the system to handle the represented by the tests work over its

targeted time period. Once the potential of the system is determined, it can be

compared to cost functions such as initial hardware costs, total cost of ownership or

energy usage, to determine the relative value of one solution for comparison with

other solutions.

W. Kramer Draft Dissertation 32

The end result is a method that assesses any system over any timeframe. The

workload representation can be arbitrarily complex or simple and span any number of

application domains. The systems can be compared for performance and/or price

performance using SSP.

3.2 Introduction

Assessing performance of systems is a well studied field that stems from the

earliest days of computers. The use of benchmarks to represent the work a system is

expected to support is an accepted approach and the details of the many variants of

benchmarking will not be repeated here. Instead the reader is pointed to many of the

references listed.

One key feature, that is almost universally agreed upon is that the best way to

assess how appropriate a system is at solving a problem is how long the system takes

to solve a real problem. SSP is a unique method that uses any set of benchmarks and

tests to evaluate performance, taking into account the fact systems and technology

evolve over time. As shown in this chapter and the next, SSP can be implemented to

measure and compare time to solution across different usage domains.

This chapter uses a running example to illustrate the definitions and formulas

discussed below. The data for the example is similar to actual data provided in

evaluating systems for purchase, but has been simplified. The next chapter has a more

complete, almost real world, example of using the SSP method, with data refined

from an actual procurement of systems, to illustrate the method in full.

W. Kramer Draft Dissertation 33

For this simplified example, consider an evaluation of systems 1, 2, and 3, under

consideration for purchase for a fixed amount of money. To understand the

performance of these systems, the targeted workload is represented by three

benchmarks; A, B, and C. The benchmarks may be industry standard tests, simple

kernels, pseudo applications or full applications; it does not matter for the example.

Each benchmark has a single problem data set associated with it that runs at a fixed

concurrency (e.g. number of MPI tasks), but the concurrencies do not have to be the

same across applications. Therefore, this example uses three tests.

3.3 Buying Technology at the Best Moment

Whenever someone buys technology based electronic components, the decision

making process is influenced by Moore‟s Law
7
. This is true whether the technology is

consumer electronics, personal computers or a supercomputer. The fundamental

question for the purchaser is:

“If I wait a little bit longer, I can get a system with better performance for

the same cost. Should I wait?”

This question becomes critical when selecting HPC systems due to high cost and

long lead times of these very large systems. Determining the time to purchase a single

system from a single vendor may be a simpler question because one only has to

assess how long to wait and how much better the later system would be. However,

just going to the local computer store shows the simple case never exists because

different systems from different vendors with different options are available at

different times. How does someone decide what to do?

W. Kramer Draft Dissertation 34

The primary motivation of this chapter and the following one is to discuss how

the Sustained System Performance (SSP) Test
8
 addresses the “when to buy” question

as well as “what to buy” question. SSP does this by providing a quantitative

assessment of measured performance over time. If the test components are properly

chosen, SSP provides a good expectation of the on-going – or sustained –

performance the system produces. Furthermore, SSP can be used to represent a

complex workload with a metric that is meaningful to the users of the technology.

The metric can be made arbitrarily complex or left simple, so it can represent a wide

range of usage and circumstances.

While the SSP concept can be applied to almost any technology, we will focus

here on how SSP can be used to evaluate HPC Systems. This chapter discusses the

SSP approach and the methods used to calculate SSP. The next chapter will

investigate the use of SSP in both theoretical analysis and in real world purchases.

3.4 Good Benchmark Tests Should Serve Four Purposes

Benchmark tests are approximations of the real work a computer system can

accomplish. In other words, benchmark tests estimate the potential of computer

systems to solve a set of problems.

Benchmark tests have four purposes, each one distinct. Benchmark tests are made

up of computer programs and the input data sets that state a problem the program to

solve. One set of computer code can exhibit different behavior based on the problem

being solved and the parameters involved. Each purpose of the benchmark tests

W. Kramer Draft Dissertation 35

influences the selection and the characteristics of the benchmarks as well. The four

purposes of benchmarks are:

1. Evaluation and/or selection of a system from among its competitors.

2. Validating the selected system actually works the way it is expected to operate

once a system is built and/or arrives at a site. This purpose may be more

important than the first and is particularly key when systems are specified and

selected based on performance projections rather than actual runs on the

actual hardware.

3. Assuring the system performance stays as expected throughout the systems

lifetime (e.g. after upgrades, changes, and regular use.)

4. Helping guide future system designs.

The sophistication of the approximation represented by the benchmarks depends

on the fidelity needed to represent the true workload. Later in this chapter, there is a

more complete discussion of the relationship between benchmark selection and their

ability to represent a workload. Comparison measures can range from assessing the

peak capability of the hardware to using many full application tests with a range of

problem data sets. In between full applications and simple peak rates are simple

performance probes (e.g., Linpack and GUPS), micro kernels (ping-ping, stream,

Livermore Loops, etc.) and limited and pseudo applications (e.g. NAS Parallel

Benchmarks
9
 - also known as the NPBs, SPEC

10
, etc).

Most reports in the literature discuss only the first of these four purposes

benchmarks play in the life of a system. The majority of tests claim to do well on the

W. Kramer Draft Dissertation 36

first goal and possibly one other of the goals, but few are effective in all. Take as an

example the widely discussed LINPACK benchmark
11

 that is used to determine in the

HPC Top 500 List
12

. Linpack
13

 is a single test that solves Ax=b with dense linear

equations using Gaussian elimination with partial pivoting. For matrix A, that is size

M x M, Linpack requires 2/3 M
2
 + 2M

2
 operations. The latest Linpack benchmark

implementation, HPL, can run on any number of processors, but in order to provide

enough work to each processor, the size of the A matrix has to increase, not only

taking more memory, but increasing the wall clock time of the run. This is weak

scaling.

Linpack is used to evaluate computer systems, as demonstrated by the Top 500

list, is occasionally used as a specification, thereby serving the first purpose of a

benchmark. In a limited way, Linpack is used to validate whether a system meets

expectations at time of arrival. The limited use of Linpack for this purpose is due to

the fact that Linpack correlates very well with peak performance, but there are many

applications whose performance does not correlate with Linpack. Further, running

Linpack at scale takes a long time. Linpack also has little to add to future architectural

improvements, except possibly as a regression test to insure architectures continue to

do well with dense, cache friendly computations. Since Linpack only partially

addresses purpose 1 and 2, and does not address 3 or 4, it is a less meaningful

indicator of how well as system is able to process work.

3.5 Definitions for SSP

There are a few global definitions to resolve before proceeding.

W. Kramer Draft Dissertation 37

Definition Explanation
CPU = core =

processor
For the sake of simplicity, we will use the term processor or CPU as our

concurrent element for now, where processor is identical to a single core

for multi-core chips.

Some processors are created with component “sub processors”. For

example take the case of the Cray X1/X1e. Most people use it as one

high performance vector processor, called a Multi-streaming Processor

(MSP)14. However, the MSP is made up of four Single Stream Vector

Processors, each identical, that can be used in unison or independently.

Hence, for this system, a CPU can be defined as either a Multi-

streaming Processor or a Single Stream Vector Processor, as long as the

analysis is consistent.

Another architectural variation is a standard processor integrated with

accelerators. An example of this is the IBM/Sony/Toshiba “Cell”

processor introduced in 200515,16. The cell processor consists of a Power

PC integrated on chip with eight Synergistic Processing Elements

(SPEs). Each SPE can execute an independent instruction stream.

Further, a Cell processor may be combined with a commodity processor

such in the LANL “Roadrunner” system17 which uses one AMD

Opteron processor in conjunction with a Cell processor. In this case the

integration is not necessarily on-chip. Other systems proposed

integrating commodity processors with graphics processing units and/or

FPGAs.

In the cell case, there are several choices regarding the definition of

CPU. One is to define the CPU as the integrated unit Power PC and the

SPEs (the “cell”). This would be a homogenous unit. Alternatively, one

could define multiple CPU types – the PPC, the SPE, and the non-

embedded commodity process, providing a heterogeneous set of CPUs.

The SSP methodology allows either definition as one CPU or as a

number of independent CPUs. If the latter, then the system will be

treated as a heterogeneous system. Being able to use the appropriate

definition for a processing element and to allow a system to have

different types of processing elements is important in making the

evaluation method apply to a large range of applications.

Heterogeneous

System

A computing system with more than one type of processor architecture

and/or processor speed combinations available for computational work.

Homogeneous

System

A computing system with only one type of processor architecture/speed

available for computational work.
Table 3-1: Sustained System Performance Definitions

W. Kramer Draft Dissertation 38

3.6 Constants

The tables below have all the indices for each constant or variable. For the sake of

simplicity, one or more indices may be omitted if it does not cause confusion for that

part of the analysis.

Definition Explanation

I The number of different applications used in the evaluation.

Ji The number of data sets each application executes. The number of problem

data sets may be different for different applications. So Ji is the number of

data sets for application i for 1 ≤ i ≤ I. If all applications have the same

number of data sets, then just J is used.

S The number of systems in the evaluation.

Ks The number of evaluation periods/phases for system s, where 1 ≤ s ≤ S. K

may be different for different systems. ks is the kth phase of system s. Ks is the

total number of phases for system s. 1 ≤ ks ≤ Ks

As,k The number of different processor types in system s during phase k. An

example of a system with different processors is the IBM/Sony/Toshiba Cell

processor which may be considered to have two processors types. Another

example could be a system with a mix of AMD and Intel processors. Later it

will be used to index processor types, so 1 ≤  ≤ As,k

Ls,k The number of cost components for system s during each phase k. Cost

components are used to develop a cost function that can later be used to

determine the value of a system. For example, a system may have costs for

hardware, software, maintenance, electrical power, etc. Not all costs apply to

every phase, since some phases may involve only software improvements.
Table 3-2: SSP Definitions

3.7 Variables

Definition Explanation Units

Generic

[Used in this

work]

fi,j The total reference operation count of application

i executing data set j. The reference operation

count is determined once for each

application/data set combination. It can be

determined by static analysis or by using

hardware/software performance counters on a

reference system. Examples of tests that have

reference operation counts pre-defined are the

NAS Parallel Benchmarks, LINPACK and the

Livermore Loops.

Using a single reference count for all systems

tested results in an evaluation of time to solution

being compared.

Operations

[Flops, MIPs, Ops]

W. Kramer Draft Dissertation 39

It is recognized that executing application i with

data set j on a given system may actually generate

a higher or lower operation count on a given

system. It may be appropriate that a specific

application be used on one or more data sets in

order to fully evaluate a system.

The typical HPC measure is Floating Point

operations (Flops). Other metrics may be the

appropriate work output measure. (e.g. for

climate it could be in simulated years).

The total amount of work operations may change

for different concurrencies and on different

systems. fi,j is the reference amount of work done

on a chosen reference system and thus remains

constant for the analysis for every i and j.

[Simulated Years]

mα,i,j The concurrency of application i executing data

set j for processor type α. Often, the concurrency

of an application/data set is the same as that used

to set the reference operation count.

It is important to note the concurrency element is

not fundamental to the evaluation, but, being able

to consistently determine the total number of

concurrent elements for a test suite is important

for overall performance and value assessment.

Initially, concurrency can be considered as the

number of CPUs an application uses for a given

data set j. The concurrency can be allowed to be

different if the processors are dramatically

different. For example, a Cray system might have

both scalar and vector processors with a factor of

4 or difference in performance. It may be

appropriate to adjust the concurrency due to the

large difference in performance for the same data

set.

If the same data set is used at different

concurrencies across all systems, it is treated as a

different data set so there is a one to one mapping

of operations counts and concurrency (a new j so

to speak). Likewise, if an application is used

more than once with two different concurrencies,

it can be considered another application.

For some analyses, it is possible to allow

different concurrencies on each system s for a

given i,j. The advantage is providing the

opportunity to run an application of optimal

scalability. While the SSP method works with

this approach since per-processor performance

can be calculated for each system, it typically

adds complexity to use the same data to

[Processors]

W. Kramer Draft Dissertation 40

understand individual application performance.

For systems where there is a choice of the

defining CPU in different manners, such as with

vector processors or Cell technology,

concurrency is defined relative to the choice of

the different CPU components.

a,i,j The work done in each concurrent unit for

application i for data set j on processor type α.

Equation 3-1: Work per-processor

ji,,

ji,

ji,,
m

f
 a



 

Note that ai,j does not imply what a’i,j would be if

the test were run with a different concurrency m’i,j

Ops/Concurrent

Unit

[Flops/Processor]

t s,k,,i,j The time to completion for application i running

data set j on processor type α. There is timing and

hence performance for each phase k of each

system s for each processor type. Most references

recommend wall clock time as the best time with

good reasons, but others (user CPU time, overall

CPU time) are frequently seen.

Time [seconds]

p s,k,,i,j The per processor performance of application i

executing data set j on processor type α on system

s during phase k.

Equation 3-2: Per-processor performance

 t ,i,js,k 





,ji,,

ji,

ji,,k,s,

ji,,

ji,,k,s,

m

f

t

a
 p




Important Note

Since fα,i,j is a fixed value based on a reference

system, as long as the concurrency mα,i,j is held

constant for all systems, the performance per

processor for system s, running application i, with

test case j, relies solely on the time it takes to

solve the problem on system s. Hence, this is a

comparison of time to solution for the

application.

Ops/(proc*sec)

[Flops/sec/

processor]

wi The weight assigned to application i. Weights

may be the proportion of time the application

used in the past, or the amount of time or

resources the corresponding science area is

authorized to use. wi values do not change for a

given evaluation. If wi is the same for all i, then

the analysis is unweighted.

Later in this work there is a significant discussion

on whether and when weights should be used.

W. Kramer Draft Dissertation 41

The SSP methodology accommodates either

weighted or unweighted approaches.

W The one dimensional array of length I containing

the weights wi

Ps,k,α

P*s,k,α

An array of all ps,k,,i,j for a given phase k,

processor type α and system s

P*s,k,α is a sub-set of ps,k,,i,j where ps,k,,i,j are

selected by some criteria. For example, the

criteria may use only the results from the largest

data set runs.

τ s,k The starting time of evaluation phase k for system

s

Days, months,

years, etc.

[months]

τ o The start of the evaluation period. This can either

be arbitrarily set or it can be set to the earliest

period for any of the systems being evaluated.

Days, months,

years

[months]

τ eval The length of the evaluation period. τ eval is set to

be the same for all systems in a given evaluation.

Days, months,

years

[months]

τ max The end time for the evaluation period. τ max = τ o +

τ eval

Days, months,

years

[months]

N s,k,α The number of computational processors of type

 in system s during evaluation period k. N s,k,α≥

mα,i,j, In other words, there have to be enough

processors of type  in the system to run

application i executing data set j for processor

type α.

A system may consist of different types of

processors indicated as . Systems that run

parallel applications, frequently have  = 1 at

least for the processors expected to do the

computational workload. In this case, the 

notation may be omitted. Such a system is called

homogeneous. Alternatively, if  > 1, the system

is called heterogeneous.

cs,k,l The cost of factor l for time phase k of system s,

where 1 ≤ l ≤ Ls,k.

A cost factor may be the cost of hardware, the

cost of software, the on-going costs of operating a

system, etc. It is possible to evaluate cost in great

detail and therefore have large numbers of cost

factors, such as the cost and number of each

memory DIMM and each CPU chips making Ls,k

very large. However, often system costs are

presented as aggregated prices for a system.

Indeed, most vendors make it difficult to know

the true cost factors of a system. Again, SSP can

accommodate any degree of detail

Currency

[Dollars]



(W,Ps,k,α)

The composite per processor performance

function for the set of weights W, and the set of

Ops/(proc*sec)

[Flops/s/processor]

W. Kramer Draft Dissertation 42

per processor performance P for performance

phase k for processor type α on system s. This

will be discussed in detail later.

SSPs,k Sustained System Performance for system s for

phase k.

Equation 3-3: Sustained System Performance for

system s during phase k

   



A

ksks

ks

NPWSSP ks

,

1
, ,,,,,




Operations/time

[Flops/sec]

Potencys The potential of a system s to produce useful

work results over a period of time. Potency was

chosen for this term since it means “capacity to

be, become, or develop;”18

Equation 3-4: A system‟s potency is a reflection of its

ability to do productive work.



s
Potency 

k1

sK

 s,kSSP 
s,k1

min( ,
max)

s,k
min( ,

max) ; s,k 
max

There will be more discussion of systems with

phases in Chapter 4.

Operations

[Flops]

Note: it is possible

to consider Potency

as a rate

[Flops/sec]

multiplied by a

time period [day,

months, years…].

Hence Potency is

can also be

expressed more as

integrated

performance over

time.

[e.g.

TFlops/sec*Years

or

GFlops/sec*Month

s]

Costs The cost of system s. Cost is composed of

different components cs,k,l.

Equation 3-5: Costs are used for setting value of a
solution



sCost  cs,k,l
l1

s,kL


k1

sK



Currency

[Dollars]

Values The ratio of potency to cost for system s

Equation 3-6: Value of a solution is its potency relative

to its cost

Operations/Currenc

y

[Flops/$]

W. Kramer Draft Dissertation 43

Cost

Potency
Value

s

s

s


Potency and Cost are influenced by the number of

processors, Ns,k,, but the degree of influence

cannot be assumed to be equivalent for many

reasons including economies of scale and

business strategies.
Table 3-3: Formula‟s for determining the SSP.

3.8 Running Example Part 1 – Applications

Our running example has 3 benchmarks; A, B, and C, each with one problem set.

Hence I = 3. Each benchmark uses only MPI so there is a mapping of one MPI task to

one CPU. Since each benchmark has only one data set, J = 1, it is omitted for clarity.

Three systems are evaluated, each with uniform processors, so S = 3. = 1 and is

omitted for clarity.

Table 3-4 below summarizes the benchmarks‟ characteristics. The operation

counts can be determined in a variety of ways, but most systems today have a utility

to either count the number of operations for a problem run.

Application Total

Operation

Count, f

GFlops

Concurrency,

m

Processors

Work done in

each task, a.

GFlops/processor

A 549,291 384 1430

B 310,842 256 1214

C 3,143,019 2,048 1535

Table 3-4: This table shows the basic performance characteristics for the three benchmarks in our example

W. Kramer Draft Dissertation 44

Before examining the proposals for the systems, it is possible to assume these

benchmarks were run on a baseline system, such as NERSC‟s Power 3 system

Seaborg. Table 3-5 shows the per processor performance of these runs.

Application Wall Clock Runtime,

t

Seconds

Per Processor

Performance, p

Gflops/sec/processor

A 42,167 0.034

B 9,572 0.127

C 12,697 0.121

Table 3-5: Baseline performance of benchmarks on an existing system.

3.9 Aligning the Timing of the Phases

Evaluations should have the same period of performance for all systems. Since

systems have different timings for availability or delivery, aligning these periods is

necessary for a fair comparison.

Additionally, for each system, there can be more than one phase of system

evolution. A phase is characterized by the system having different components and/or

additional components that make the potency different than the previous phase. The

cost of each phase, as well as the potency maybe different as well. For the evaluation

there is a period set, τeval to limit the length of the evaluation period. τeval is often

related to how long the technology is to be used. NERSC uses 36 months and DOD-

HPC Modernization program uses four years
19

.

W. Kramer Draft Dissertation 45

Systems are unlikely to be delivered at exactly the same time and it is not

equitable to use the individual system delivery times as the starting point since the

price/performance ratio of a system delivered later is almost certainly less than one

delivered earlier – all other things being equal. However, another consequence of

later delivery is lost computing opportunities. A simple thought experiment shows

why this is important. Suppose an organization has two choices: have a 100 teraflop/s

system deployed in January 1, 2007 or a 500 teraflop/s system deployed in January 2,

2012. Assume they have the same real cost and assume sustained performance of the

2012 system is also five times that of the 2007 system. A valid question could be

along the lines of “How long is it before the organization has the same potency as it

will in April 1, 2013?” The answer is it takes 1.25 years of use of the 2012 system to

provide the same potency as the 2007 system. The impact of choosing to wait for the

system with the better price/performance ratio is the organization has no computing

for 5 years at all, and then takes 1.25 years to make up the lost computing power.

So, are the two systems equal in value to the organization? It depends on the

organizational goals and many factors such as whether the same number of people

can gain the same insight in 25% of the wall clock time and whether there are

opportunities lost by having no computing for 5 years. What is clear is, the phase

boundaries have to be adjusted for each system in the evaluation in order to fairly

represent the value of different solutions. The adjustments that have to be made are

straightforward. Algorithms for the adjustments are shown in the Table 3-3:

Formula‟s for determining the SSP.

W. Kramer Draft Dissertation 46

 First, the system with the earliest delivery date is identified, which sets the

starting point, τ o to be beginning of the evaluation period. It may be that the

organization needs a system by a certain time, so the evaluation period has to start no

later than a given deadline. In this case, τ o can set to the earliest of the First System

Arrival/”No Later Than” deployment time set by the evaluators – whichever is

earliest.

Not only can different systems arrive for use at different times, it may be that the

best overall solution is to have systems evolve through time, based on optimizing

different price points. A way of describing the timing of each phase a system goes

through, which is τ s,k is needed. For each system s, there will be one or more stages,

indicated by k.

Because solutions cannot wait indefinitely for the ending time τ max, the evaluation

must be set by the evaluators, and is specified as τ max = τ o + τ eval. Once τ o and τ max

are determined, all the systems solutions being evaluated need to be adjusted to that

interval. This is done by adjusting the starting period of all the systems to τ o, and

assigning the performance and cost for a system during this period to be 0. Likewise,

for the systems whose delivery would take them past τ max, no performance or cost is

counted for that system.

Figure 3-1and Figure 3-2show the impact of these adjustments. Figure 3-1 shows

two systems being evaluated. System 1 arrives and is deployable before System 2 and

has a single phase. System 2 arrives and is deployed after System 1 and has an

improvement part way through the evaluation process, triggering the second phase.

W. Kramer Draft Dissertation 47

τeval

Figure 3-1: The proposed deployment time and SSP of two systems.

Assuming System 1 is deployed before any time limitation such as τ NLT, the

deployment of System 1 defines τ o for both systems. Since System 2 arrives after τ o,

the performance and cost for System 2 is set to 0 until it arrives. The end of the

evaluation period is also set based on System 1 arrival/deployment time. After these

adjustments are used the evaluation periods are shown in Figure 3-2.

SSP

τ 0 = τ1,1
Ti

m

e

τ

2

,

1

τ2,2 τmax

max

W. Kramer Draft Dissertation 48

τeval

Figure 3-2: SSP performance chart after periods are aligned. For clarity τ́2,k replaces τ2,k

3.10 Running Example Part 2 – Systems

Our running example assumes three different systems are being evaluated. System

1 has a high per processor performance, but each processor is relatively expensive.

Because it is under development, it can only be delivered 9 months after System 2.

System 2 is a system that is currently available for immediate delivery and consists of

processors that are modest in performance, but are also relatively inexpensive.

System 3 is a system that has per processor performance that is close to System 2.

While part of the system can be delivered immediately, ¾ of the system is delayed by

4 months due to manufacturing backlog. Furthermore, the first ¼ of System 3 will

perform 20% slower until the rest of system is delivered. System 3‟s per processor

cost is lower than either System 1 or System 2.

SSP

Ti

m

e

τ
́
2,2 τ́2,3 τmax

max

τ

́ 2,1 = τ 0 =

τ1,1

W. Kramer Draft Dissertation 49

For simplicity, assume other aspects of the systems are identical except for the

cost. Note the “cost” can be any calculation – from only initial hardware cost to

complete total cost of ownership. The costs in the example approximate 6 years Total

Cost of Ownership for this scale system.

Table 3-6 indicates the system parameters for the running example. The time

period of the evaluation is set at 36 months – a typical time period during which large

systems have the most impact.

System Delivery

Delay

Months

Number of

Compute

Processors

Cost

Dollars

System 1 9 9,000 $59,000,000

System 2 0 10,000 $68,000,000

System 3

 - Phase 1

 - Phase 2

0

6

3,500

14,000

$57,000,000

Table 3-6: Specifications of solutions being considered

From this information one cannot determine the solution that is the best value.

The benchmark runtimes for the three systems is shown in Table 3-7, and the

resulting per processor performance in Table 3-8.

Runtimes in seconds of

Benchmarks on each

System

A B C

W. Kramer Draft Dissertation 50

System 1 3810 1795 2303

System 2 3598 2010 3170

System 3

 - Phase 1

 - Phase 2

4930

4103

2622

2185

2869

2391

Table 3-7: Benchmark Runtimes in Seconds for Three Systems

Per Processor Performance in

GFlops/s of Benchmarks on

each System

A B C

System 1 .375 .676 .666

System 2 .398 .604 .484

System 3

 - Phase 1

 - Phase 2

.290

.348

.463

.556

.535

.642

Table 3-8: Per processor performance of three benchmarks

3.11 The Composite Performance Function (W,P)

The composite performance function can be chosen in different ways. There are

many possible functions, depending on the data and goals. Several may be

appropriate for a given evaluation. Which functions are appropriate for different

W. Kramer Draft Dissertation 51

performance measures is an on-going discussion and is covered in [Bucher and

Martin87]
20

, [Flemming and Wallace86]
21

, [Smith88]
22

, [Lilja2000]
23

, [Hennessey

and Patterson]
24

, [John and Eeckhout]
25

, [Helin and Kaski]
26

, and [Mashey2004]
27

.

The SSP method can use any appropriate composite. Hence, this section does not try

to do an exhaustive study of all possible functions, but rather is a general discussion

of several likely functions and how to implement them.

Recall wi and Ps,k, as defined above. Some of the more typical composite

functions are Arithmetic Mean, Harmonic Mean and Geometric Mean – all of which

can use either weighted or unweighted data. More advanced statistical functions could

be used such as the t test or an Analysis of Variance
28

.

Equation 3-7, Equation 3-8, and Equation 3-9 show the implementation of the

three more common means. If wi = 1 for all i, then the means are unweighted.

Equation 3-7: Weighted Arithmetic Mean

Equation 3-8: Weighted Harmonic Mean



 




 


I

i

i

I

i j
ji

i

wAM

w

J
w

i

p

1

1 1
,






 

 


I

i j
ji

i

I

i

J

j

i

wHM J w

w

i

i

p1 1
,

1 1

W. Kramer Draft Dissertation 52

Equation 3-9: Weighted Geometric Mean

3.12 The Only Real Metric – How Long Does a System Take to

Solve a Problem

The number of operations a computer uses to solve a given problem varies

dramatically based on the computer architecture, its implementation, and the

algorithm used to solve the problem. While this has been the case from the dawn of

computing, the problem of deciphering how much work is done by different systems

has gotten harder with time. Early performance results on distributed memory

computers were so notorious for providing misleading information that it prompted

Dr. David Bailey to publish his Twelve Ways to Fool the Masses When Giving

Performance Results on Parallel Computers
29

 paper in 1994. In this paper, 7 of the 12

ways (ways 2, 3, 4, 6, 8, 9, and 10) relate to using measurements that are misleading

for comparisons that vary depending on the computer system being used or doing a

subset of the problem. New processors and increasing scale compound this problem

by causing more and more basic computer operations to be done for a given amount

of usable work. Different algorithms, programming languages and compilers all

influence performance in addition to the computer architecture and implementation.
30

Many performance evaluators recognize that Time To Solution is the best –

maybe only – meaningful measure of the potential a computer provides to address a

problem. If the system is to be used for a single application, assessing time to solution

 








 

 



















 I

i

J i

j

wi
ji

w

p

I

i

J i

j i

wGM

1 1
,

1 1

1

W. Kramer Draft Dissertation 53

is relatively straight forward. One takes an application, tests the systems with one or

more problem sets and compares the time it takes for the application to solve the

problem. An example of this approach is a metric commonly used by the climate

modeling community which is the number of simulated years per unit of wall clock

time. Weather forecasting has similar metrics – the wall clock time it takes to produce

a given forecast. Chemical and materials simulations could have a similar measure –

the time it takes to simulate a compound with a fixed number of atoms, for example.

In these cases, as long as the algorithm and problem (the same resolution, the same

precision of modeling physical processes, etc.) remains unchanged, there is a fair

comparison based on time to solutions.

A more challenging, but more commonly occurring situation is when computer

systems are evaluated for use with different applications and/or domains because

there is no common unit of work that can be used for comparison. That is, it is not

meaningful, for example to compare the number of years a climate simulation

produces in a given wall clock time to the size of a protein that is folded in a chemical

application. Similarly, if the problems or physics the algorithms represent change

within an application area, the comparison of the amount work done is not clear cut.

Finally, if the implementation of an application has to fundamentally change for a

computer architecture the number of operations may dramatically different.

It is common, therefore, for performance evaluators to use the number of

instructions executed per second (also known as operations per second) or other less

W. Kramer Draft Dissertation 54

meaningful measures methods (e.g. peak performance, Top-500 lists, etc.), This

approach leads to easily misunderstanding comparative results.

SSP solves this problem since the operation count used in the calculation of SSP

is fixed once for the benchmark test and is based on the problem solution executing

on a reference (presumably efficient) system. If the problem is also fixed, the only

invariant is the time the test takes to run to solution on each system.

3.12.1 Comparison Based on Time to Solution

To show SSP is a measure of time to solution if the operation count is based on a

reference count, consider the following. For each combination of an application and

problem set, i,j, the number of operations fi,j is fixed as is the concurrency, mi,j. As

shown above,

jisji

ji

jisji

ji

jis
tm

f

tm

f
p

,,,

,

,,,

,

,,

1
*

*


Equation 3-10: The per processor performance for a test depends on the time to complete that test

For simplicity, but without loss of generality, assume an unweighted composite

function. Again for simplicity, use the standard mean and assume all the processors in

a system are homogeneous and there is a single phase. The per processor performance

can be expressed as

W. Kramer Draft Dissertation 55

I

t

I

m

f

I

tm

f

P

I

i

J

j ji

I

i

J

j ji

ji
I

i

J

j jiji

ji

s


   


1 1 ,1 1 ,

,

1 1 ,,

,
)

1
(

*

)()
1

*(

Equation 3-11: Per processor performance for a system depends on time to solution

The equation of SSP performance between two system, s and s’ with the same

number of computer processors, N, can be expressed as follows:















jis

jis

jis

jis

ji

ji

ji

ji

jisji

ji

jisji

ji

s

s

t

t
N

I
t

I
t

I
m

f

I
m

f

I
tm

f
N

I
tm

f
N

SSP

SSP

,,'

,,'

,,'

,,

,

,

,

,

,,',

,

,,,

,

'

*

)
1

(

)
1

(

*

(

(

)
1

**

)
1

**

Equation 3-12: Comparing SSP values is equivalent to comparing time to solution

Hence, SSP compares the sum of the time to solution for the tests. From this, it

is clear that if the number of processors is different for the two systems, then the SSP

is a function of the times to solution and the number of processors. It the systems

have multiple phases, the SSP comparison is dependent on the time to solutions for

the test, the number of processors for each phase and the start time and duration for

each phase. This can be further extended for heterogeneous processors and/or for

different composite functions without perturbing the important underlying fact the

SSP compares time to solution.

3.13 Attributes of Good Metrics

There are benefits of using different composite methods, based on the data. The

approach of using the harmonic mean was outlined in a 1982 Los Alamos technical

W. Kramer Draft Dissertation 56

report
31

 [Bucher and Martin1982]. It should be noted that at the time, the workload

under study was a classified workload with a limited number of applications. In fact,

the authors dealt with “five large codes”. The paper outlines the following process.

1. Workload Characterization: Conduct a workload characterization study using

accounting records to understand the type and distribution of jobs run on your

systems.

2. Representative Subset: Select a subset of programs in the total workload that

represent classes of applications fairly and understand their characteristics.

This included the CPU time used, the amount of vectorization, the rate of

Floating Point Operation execution and I/O requirements.

3. Weighing the influence of the Applications: Assign weights according to

usage of CPU time of those programs on the system.

4. Application Kernels: Designate portions (kernels) of the selected programs to

represent them. These kernels should represent key critical areas of the

applications that dominate the runtime of the applications.

5. Collect Timing: Time the kernels on the system under test using wall clock

time.

6. Compute a Metric: Compute the weighted harmonic mean of kernel execution

rates to normalize the theoretical performance of the system to a performance

that would likely be delivered in practice on the computing center‟s mix of

applications.

W. Kramer Draft Dissertation 57

Bucher and Martin were focused on the evaluation of single processors – which

was the norm at the time. As stated, the implementation of this methodology suffers

from some pragmatic problems:

1. It is difficult to collect an accurate workload characterization given that many

tools for collecting such information can affect code performance and even

the names of the codes can provide little insight into their function or

construction (the most popular code, for instance, is „a.out‟).

2. Most HPC Centers support a broad spectrum of users and applications. The

resulting workload is too diverse to be represented by a small subset of

simplified kernels. For example, at NERSC, there are on the order of 500

different applications used by the 300-350 projects every year.

3. The complexity of many supercomputing codes has increased dramatically

over the years. The result is that extracting a kernel is an enormous software

engineering effort and maybe enormously difficult. Furthermore, most HPC

codes are made up of combinations of fundamental algorithms rather than a

single algorithm.

4. The weighted harmonic mean of execution presumes the applications are

either serial (as was the case when the report was first written) or they are run

in parallel at same level of concurrency. However, applications are typically

executed at different scales on the system and the scale is primarily governed

by the science requirements of the code and the problem data set.

5. This metric does not take into account other issues that play an equally

important role in decisions such as the effectiveness of the system resource

W. Kramer Draft Dissertation 58

management, consistency of service, or the reliability/fault-tolerance of the

system. The metric also is not accurate in judging heterogeneous processing

power within the same system – something that may be very important in the

future.

John and Eeckhout
32

 indicate the overall computational rate of a system can be

represented as the arithmetic mean of the computational rates of individual

benchmarks if the benchmarks do not have an equal number of operations.

Nevertheless, there are attributes of making a good choice of a composite function.

Combining the criteria from [Smith1988]
33

 and [Lilja2000]
34

 provides the following

list of good attributes.

 Proportionality – a linear relationship between the metric used to estimate

performance and the actual performance. In other words, if the metric

increases by 20%, then the real performance of the system should be expected

to increase by a similar proportion.

o A scalar performance measure for a set of benchmarks expressed in

units of time should be directly proportional to the total time

consumed by the benchmarks.

o A scalar performance measure for a set of benchmarks expressed as a

rate should be inversely proportional to the total time consumed by the

benchmarks.

W. Kramer Draft Dissertation 59

 Reliability means if the metric shows System A is faster than System B, it

would be expected that System A outperforms System B in a real workload

represented by the metric.

 Consistency so that the definition of the metric is the same across all systems

and configurations.

 Independence so the metric is not influenced by outside factors such as a

vendor putting in special instructions that just impact the metric and not the

workload.

 Ease of use so the metric can be used by more people.

 Repeatability meaning that running the test for the metric multiple times

should produce close to the same result.

SSP reflects these attributes. There has been a series of papers debating which

mean is most appropriate for performance evaluations for at least 16 years. In fact

there have been disagreements in the literature about the use of the geometric mean as

an appropriate measure. Note that the SSP method allows any mean, or other

composite function, to be used equally well in the calculation and different means are

appropriate for different studies. Hence, this section discusses the attributes of

different means and the summary of the papers, but does not draw a single

recommendation. That depends on the data and the goal of the study.

The arithmetic mean is best used when performance is expressed in units of time

such as seconds and is not recommended when performance is expressed as

performance ratios, speedups [Smith1988] or normalized values [Flemming and

Wallace1986]. The arithmetic mean alone may be inaccurate if the performance data

W. Kramer Draft Dissertation 60

has one or more values that are far from the mean (outlier). In that case, the arithmetic

mean together with the standard deviation or a confidence interval is necessary to

accurately represent the best metric. [John2004]
35

 concludes the weighted arithmetic

mean is appropriate for comparing execution time expressed as speedups for

individual benchmarks, with the weights being the execution times.

The harmonic mean is less susceptible to large outliers and is appropriate when

the performance data is represented as rates. The unweighted harmonic mean for a

system phase can be expressed as total operation count for all benchmarks divided by

the total time of all benchmarks as shown in Equation 3-8.

Use of geometric means as a metric is not quite as settled. [Smith1988] says it

should never be used a metric, while [Flemming and Wallace1986] indicates it is the

appropriate mean for normalized numbers regardless of how they were normalized.

They also note it addresses the issue of data that has a small number of large outliers.

This paper also points out the geometric means can be used for numbers that are not

normalized initially, but when the resulting means are then normalized to draw

further insight.

[Mashey2004] examines the dispute and identifies that there are reasons to use all

three means in different circumstances. Much of the previous work assumed some

type of random sampling from the workload in selecting the benchmarks. This paper

notes that geometric means have been used in many common benchmark suites such

as the Livermore FORTRAN Kernels
36

 and the Digital Review CPU 2
37

 benchmarks.

This paper organizes benchmark studies into three categories, and each has its

W. Kramer Draft Dissertation 61

appropriate methods and metrics. The first and most formal category is WCA

(Workload Characterization Analysis), which is a statistical study of all the

applications in a workload, including their frequency of invocation and their

performance. WCA is equivalent to the methodology outlined in Bucher and Martin.

This type of analysis provides a statistically valid random sampling of the workload.

Of course, WCA takes a lot of effort and is rarely done for complex workloads. WCA

also cannot be done with standard benchmark suites such as NPB or SPEC. While

such suites may be related to a particular workload, by their definition, they cannot be

random samples of a workload.

The Workload Analysis with Weights (WAW) is possible after extensive WCA

because it requires knowledge of the workload population. It can predict workload

behavior under varying circumstances.

The other type of analysis in [Mashey2004] is the SERPOP (Sample Estimation

of Relative Performance of Programs) method. In this category, a sample of a

workload is selected to represent a workload. However, the sample is not random and

cannot be considered a statistical sample. SERPOP methods occur frequently in

performance analysis, and many common benchmark suites including SPEC, NPB as

well as many acquisition test suites fit this classification. In SERPOP analysis, the

workload should be related to SERPOP tests, but SERPOP does not indicate at all the

frequency of usage or other characteristics of the workload.

The impact of the assumptions in early papers (fixed time periods, random

samples, etc.) that discuss the types of means are not valid for SERPOP analysis.

W. Kramer Draft Dissertation 62

Because of this, the geometric mean has several attributes that are appropriate for

SERPOP analysis. In particular, [Mashey2004] concludes geometric means are

appropriate to use for ratios since taking ratios converts unknown runtime

distributions to log-normal distributions. Furthermore, geometric means are the

appropriate mean for SERPOP analysis without ratios when there are many reasons

the distribution of a workload population is better modeled by a log-normal

distribution.

3.13.1 Running Example Part 3 – Holistic Analysis

For our running example, the arithmetic mean will be used to calculate the SSP

and Solution Potential.

System

Evaluation

using SSP

Average Per

Processor

Performance

GFlops/s

System SSP

using the

mean of the

three

benchmarks

GFlops/sec *

Months

Solution

Potential

GFlops/s *

Months

Solution

Value

GFlops/s-

Months/

Million $

System 1 .573 5,155 139,180 2,359

System 2 .495 4,953 178,294 2,622

System 3 225,426 3,955

W. Kramer Draft Dissertation 63

 - Phase 1

 - Phase 2

.429

.515

1,503

7,214

9,017

216,426

Table 3-9: Per processor performance of three benchmarks

While System 1 has the highest per processor performance, because it is delivered

quite a bit later than the other systems, it has the lowest potential and value. System 2,

even though it is delivered at full scale earliest, has the middle value. System 3, with

two phases clearly has the highest value for the evaluation using these benchmarks.

3.14 Chapter Conclusion

The SSP method is flexible and comprehensive, yet is an easy concept to

understand. It uses the most meaningful measure for computer users to make its

comparisons – time to solution. The method works with any set of performance tests

and for both homogeneous and heterogeneous systems. The benchmarks can have as

many data sets as needed and be scaled to the desired degree of precision and effort.

W. Kramer Draft Dissertation 64

Chapter 4: Practical Use of Sustained System

Performance for HPC Systems - How SPP

works in Evaluation and Selection

4.1 Chapter Summary

This chapter provides a number of examples using the SSP method to evaluate

and vet large systems. It traces the evolution of the SSP method over a 10 year effort

as it became more sophisticated and effective. Large HPC systems are complex and

evaluated/purchased only once every three to five years. Hence 10 years gave the

opportunity to have and assess four generations of SSP. As part of the observations of

SSP, it can be seen that the SSP method gives both the purchaser and the supplier of

systems protection. The supplier has freedom to adjust the schedule of deliverables

and the purchaser is protected by a guarantee of a fixed amount of performance

delivered in a certain time period. The degree of adjustments can be constrained as

well, so it is possible to arrange incentives for early delivery or delivery of more

effective systems.

4.2 Review of Chapter 3

Chapter 3 discusses the SSP method for overall performance assessment that is

one method to evaluate the Performance of a system. While SSP is not the only

measure used to assess a system‟s potential to solve a set of problems, it is one of the

few that, if properly constructed, can be used for all four purposes of benchmarks.

Section 3.8 discussed a simplified example of a problem. This chapter takes the SSP

approach from the previous chapter and examines the use of SSP in different real

world evaluations and selection issues in a variety of circumstances.

W. Kramer Draft Dissertation 65

4.3 A Real World Problem, Once Removed

It is not possible to disclose the details of actual procurement submissions or

evaluations since the information is provided by vendors to the requesting

organization for evaluation and selection and is considered proprietary. However, it is

possible to craft a summary that is based on real world information from such a

procurement that is sufficient to properly illustrate the use of SSP.

Imagine an organization evaluating large scale systems for a science or

engineering workload. The organization determines functional and performance

requirements and creates a benchmark suite of applications and other tests. It then

solicits and receives information from potential vendors as to how well their

technology meets the requirements and performs according to the benchmarks. In

many cases the response is a combination of actual measurements and projections.

For simplicity, assume the only distinguishing characteristics under evaluation are the

specified benchmark performance on a per processor basis shown in Table 4-1. They

are the set of p,s,k,,i,j that was defined in Table 3-2: SSP Definitions

There are five proposed systems (S= 5). Five application benchmarks are used to

calculate the SSP, so I = 5. While the applications run at medium to high

concurrency, they operate at different concurrencies. Each application has been

profiled on a reference system so its operation count is known for particular problem

sets. In this case, each application has one problem, so Ji = 1 for this discussion.

Further, assume these systems are composed of homogeneous processors so α= 1, so

it, too, is set to 1.

W. Kramer Draft Dissertation 66

As defined in Table 3-3, in order to calculate the per processor rate of the

applications, ps,k,1,i,1, the total operation count of the benchmark is divided by the

concurrency of the benchmark to give the average per processor operation count and

then divided again by the wall-clock runtime of the benchmark. Four of the five

systems proposed had phased technology introduction, with each of these having

Ks=2.

The cost data includes basic hardware and software system costs and the

operating and maintenance costs for three years from the delivery of the earliest

system. In order to protect the proprietary information provided by vendors, the cost

data is expressed relative to the lowest cost proposed. Delivery times all are relative

to the earliest system delivery and set to the number of months after the system with

the earliest delivery time

W. Kramer Draft Dissertation 67

 System 1 System 2 System 3 System 4 System 5

Phase 1

Application Benchmark 1 GFlops/sec per Processor 0.31 0.20 0.74 N/A 0.22

Application Benchmark 2 GFlops/sec per Processor 0.40 0.30 1.31 N/A 0.06

Application Benchmark 3 GFlops/sec per Processor 1.35 0.17 0.64 N/A 1.19

Application Benchmark 4 GFlops/sec per Processor 1.00 2.34 5.99 N/A 1.12

Application Benchmark 5 GFlops/sec per Processor 0.49 0.51 1.02 N/A 0.45

Delivery Months after earliest delivery 3 0 6 N/A 0

Number of Processors 768 512 512 N/A 512

Phase 2

Application Benchmark 1 GFlops/sec per Processor 0.31 0.19 0.74 0.10 0.22

Application Benchmark 2 GFlops/sec per Processor 0.40 0.34 1.31 0.30 0.06

Application Benchmark 3 GFlops/sec per Processor 1.35 0.16 0.64 0.39 1.19

Application Benchmark 4 GFlops/sec per Processor 1.00 1.54 5.99 0.92 1.12

Application Benchmark 5 GFlops/sec per Processor 0.49 0.26 1.02 0.14 0.45

Delivery Months after earliest delivery 12 22 18 3 6

Number of Processors 1536 1024 1408 5120 2048

Cost Factor Relative cost among proposals 1.65 1.27 1.27 1.16 1.00

Table 4-1: Per processor performance, p, for each system, phase and benchmark for a hypothetical system purchase. These responses are anonymized and
adjusted from actual vendor responses for major procurements. Systems 1, 2, 3, and 5 are proposed to be delivered in two phases. System 4 is a single

delivery. The per-processor performance of five application benchmarks is shown. The systems would be delivered at different times. The table shows the
delivery date relative to the earliest system.

W. Kramer Draft Dissertation 68

Figure 4-1: System parameters for Phases 1. Note System 4 is a single phase and it shown in the Phase 2 chart.

Figure 4-2: System parameters for Phases 2.

Figure 4-1 and Figure 4-2 show the same data as in Table 4-1, but in graphical

form. The challenge of an organization is to use this data to decide which system is

the best value for the organization‟s mission and workload. As can be seen in Figure

4-1and Figure 4-2, the answer of which option provides the system with the best

0

100

200

300

400

500

600

700

800

900

0.00

1.00

2.00

3.00

4.00

5.00

6.00

System 1 System 2 System 3 System 4 System 5

N
u

m
b

e
r

o
f

C
P

U
s

G
F

o
p

s
/s

e
c
 p

e
r

p
ro

c
e
s
s
o

r

Systems

Phase 1 Performance

ABM 1

ABM 2

ABM 3

ABM 4

ABM 5

Number of CPUs

0

1000

2000

3000

4000

5000

6000

0.00

1.00

2.00

3.00

4.00

5.00

6.00

System 1 System 2 System 3 System 4 System 5

N
u

m
b

e
r

o
f

C
P

U
s

G
F

lo
p

s
/s

e
c
 p

e
r

p
ro

c
e
s
s
o

r

Systems

Phase 2 Performance

ABM 1

ABM 2

ABM 3

ABM 4

ABM 5

Number of CPUs

W. Kramer Draft Dissertation 69

value is not obvious from the benchmark performance alone. Without understanding

the number of CPUs in different systems, the timing of different phases and the cost

of the different systems, an evaluation runs the risk of not picking best value system.

4.4 Different Composite Functions

As discussed in Chapter 3, different composite functions can be used for SSP

calculations – including all three means. The best composite function to use depends

on the data and the evaluation goals. Table 4-2 shows using geometric and arithmetic

means and the impact they have on SSP Potency and value. Notice that the ordering

of the system value is the same regardless of whether the arithmetic or geometric

mean is used. For the rest of this example case, the unweighted geometric mean will

be used for the composite function since the applications were selected are a non-

random sample, so this is a SERPOP analysis as discussed in Section 3.13 above.

 System 1 System 2 System 3 System 4 System 5

Potencys -

Geometric

Mean

GFlops

GFlops/sec*Mont

hs

26,486 9,474 41,074 45,959 24,587

Values -

Geometric

Mean

Normalized

(GFlops/sec*Mon

ths)/$

564 271 1450 1201 781

Potencys -

Arithmetic

Mean

GFlops

GFlops/sec*Mont

hs

31,037 15,081 61,077 62,570 39,236

Values -

Arithmetic

Mean

Normalized

(GFlops/sec*Mon

ths)/$

661 403 2,156 1,635 1,246

Ratio of

Arithmetic vs.

Geometric

 1.17 1.49 1.49 1.36 1.60

Table 4-2: SSP Performance results using geometric and arithmetic means, and the impact on SSP Potency and
Value.

W. Kramer Draft Dissertation 70

4.5 Impact of Different Means

The relationship of means is HM ≤ GM ≤ AM
38

. Comparing the results of

arithmetic mean and geometric mean show there are differences in the expected

performance of the system. Note the ratio of performance between systems is not

equal between means but in every case, the geometric mean is lower than the

arithmetic. Furthermore, using the arithmetic mean, the order of best to worst price

performance is Systems 3, 4, 5, 1 and 2. Using the geometric mean, the order is 3, 4,

5, 1 and 2. So the ordering of the system is preserved regardless of the mean used in

this situation. In another example, running the SSP-4 test suite (discussed in detail

later in this chapter) on different technology systems at Lawrence Berkeley National

Laboratory (LBNL) (systems named Seaborg, Bassi and Jacquard) and Lawrence

Livermore National Laboratory (LLNL) (system name Thunder) using the arithmetic,

harmonic and geometric means changes the absolute value of the SSP, but does not

change the order of performance estimates.

 Seaborg

(LBNL)

Bassi

(LBNL)

Jacquard

(LBNL)

Thunder

Cluster

(LLNL)

Computational

Processors

6224 888 4096 640

Arithmetic

SSP-4

1,445 1,374 689 2,270

Geometric

SSP-4

902 835 471 1,637

Harmonic

SSP-4

579 570 318 1,183

Table 4-3: Another example of using different means that do not change the ordering of system performance

W. Kramer Draft Dissertation 71

Since the ordering of the means is consistent, and the harmonic mean is less

appropriate as a composite function for benchmarks that change their concurrency,

the arithmetic or geometric means are used at NERSC and their affects are discussed

in Sections 3.11 and 4.4. For the examples in Section 3.2, the arithmetic mean is used.

4.6 System Potency

Delivery of each system as in our example would occur at different times.

Graphing the monthly values of the SSP for each system over time as shown in

Figure 4-3 differentiates some of the systems. For example, System 2, despite having

good per processor performance, had a low Potency since it has relatively few CPUs.

To be the best value it would have to be 5 or 6 times less expensive than other

alternatives. At the end of the evaluation period, System 3 provided the best sustained

performance, followed by system 4. Yet, System 3 was upgraded after System 2 and

5, and System 4 had only a single phase so it is not clear from this graph which

system has the most potency, let alone the best value.

Figure 4-3: A graph of the example SSP value over time for the five systems. This is using the geometric mean as
the composite function.

Anonymized SSP Evaluation

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Month from initial system

S
S

P
 G

F
lo

p
/s

System 1

System 2

System 3

System 4

System 5

W. Kramer Draft Dissertation 72

As a thought experiment, think about the situation where there are two systems,

and System 1 is twice as fast as System 2. In other words, it has an SSP1,k = 2 *

SSP2,k. Assume further, System 1 is also twice as expensive System 2. The first thing

to recall is having twice the SSPs,k, does not mean the system has twice the Potency.

In order to have twice the Potency, the two systems have to be available at the exact

same time. This may be case with a commodity such as at a local computer store but

is highly unlikely for HPC systems. Nonetheless, if the two systems arrived at

identical times, and the Potency of System 1 was twice that of System 2, and the cost

of System 1 was twice that System 2, they would have the same value with regard to

the SSP. Further, in most major system evaluations, there are multiple cost functions

evaluated – for example the Initial System Cost and the Total Cost of Ownership.

Having all the cost functions identical is also unlikely.

But even if the Value of the two systems is exactly identical, that only reflects the

performance component based on the selected benchmark tests. The overall value of

the systems will almost certainly be different if the other aspects of PERCU are added

to the evaluation. Or evaluators may choose to add second order benchmark tests,

possibly to reflect use cases that are less important but to increase the accuracy of the

SSP for the real workload as the “tie breaker”.

4.7 Using Time to Solution in SSP

The way to calculate an SSP value using time to solution for the tests is

straightforward and illustrated below.

W. Kramer Draft Dissertation 73

Tests (a)

Tasks

(b)

Reference

GFlop

Count

(c)

Measured Wall

Clock Time to

Solution (Sec) for

the Evaluated

System

(d)

Processing

rate per

core

(GFlops/s)

CAM 240 57,669 408 0.589

GAMESS 1024 1,655,871 2811 0.575

GTC 2048 3,639,479 1492 1.190

IMPACT-T 1024 416,200 652 0.623

MAESTRO 2048 1,122,394 2570 0.213

MILC 8192 7,337,756 1269 0.706

PARATEC 1024 1,206,376 540 2.182

Geometric

Mean

(GFlops/s)

 0.7

Number of

Compute

Cores

 N

SSP .7*N

Table 4-4: Example calculation of a system's SSP value

Table 4-4 shows this calculation for the SSP-5 suite with a typical runtime for the

tests. As discussed above, the GFlop reference count (column c) is created on a

W. Kramer Draft Dissertation 74

reference system and does not change. In this case the reference system was the

NERSC Cray XT-4 with dual core processors. For each test, the rate per core (column

e) is the GFlop count divided by the number of tasks (column b) and divided by the

time to solution (column d). Test rates per core are then composited, in this example

with the geometric mean, determining the overall per core processing rate.

The per core processing rate is then multiplied by the number of compute cores in

the system. In this case, if the system were to have 100,000 cores, the SSP value

would be 70 TFlops/s. The SSP suites can have more or less tests and can be scaled to

any degree.

4.8 The Evolution of the NERSC SSP - 1998-2006

The SSP concept evolved at NERSC through four generations of system

evaluations dating back to 1998. It serves as a composite performance measurement

of codes from scientific applications in the NERSC workload including fusion

energy, material sciences, life sciences, fluid dynamics, cosmology, climate

modeling, and quantum chromodynamics. For NERSC, the SSP method encompasses

a range of algorithms and computational techniques and manages to quantify system

performance in a way that is relevant to scientific computing problems using the

systems that are selected.

The effectiveness of a metric for predicting delivered performance is founded on

its accurate mapping to the target workload. A static benchmark suite will eventually

fail to provide an accurate means for assessing systems. Several examples, including

LINPACK, show that over time, fixed benchmarks become less of a discriminating

W. Kramer Draft Dissertation 75

factor in predicting application workload performance. This is because once a simple

benchmark gains traction in the community, system designers customize their designs

to do well on that benchmark. The Livermore Loops, SPEC, LINPACK, NAS Parallel

Benchmarks (NPB), etc. all have this issue. It is clear LINPACK now tracks peak

performance in the large majority of cases. Simon and Strohmaier
39

 showed, through

statistical correlation analysis that within two Moore‟s Law generations of technology

and despite the expansion of problem sizes, only three of the eight NPBs remained

statistically significant distinguishers of system performance. This was due to system

designers making systems that responded more favorably to the widely used

benchmark tests with hardware and software improvements.

Thus, long-lived benchmarks should not be a goal – except possibly as regression

tests to make sure improvements they generate stay in the design scope. There must

be a constant introduction/validation of the “primary” tests that will drive the features

for the future, and a constant “retirement” of the benchmarks that are no longer strong

discriminators. On the other hand, there needs to be consistency of methodology and

overlapping of benchmark generations so there can be comparison across generations

of systems. Consequently, the SSP metric continues to evolve to stay current with

current workloads and future trends by changing both the application mix and the

problem sets. It is possible to compare the different measures as well so long running

trends can be tracked.

W. Kramer Draft Dissertation 76

SSP is designed to evolve as both the systems and the application workload does.

Appendix C shows the codes that make up the SSP versions over time. Appendix B

shows the SSP version performance results on NERSC production systems.

Next is a description and evaluation of the four generations of the SSP metric.

4.8.1 SSP-1 (1998) - The First SSP Suite

The first deployment of the SSP method, designated SSP-1, was used to evaluate

and determine the potency for the system called NERSC-3. This system was

evaluated and selected in a fully open competition. SSP-1 used the unweighted

arithmetic mean performance of the six floating point NAS parallel benchmarks
40

, in

particular, the NAS Version 2.3 Class C benchmarks running at 256 MPI tasks.

Additionally, the NERSC-3 acquisition used 7 full application benchmarks to

evaluate systems but these applications were not part of the SSP-1 calculation. The

NPB Benchmarks were used for the first SSP because they were well known to the

vendor community, so the addition of the SSP method was less threatening to

vendors, thereby encouraging participation. Further, analysis showed the NPBs had a

relationship to a range of the applications of the time period. The applications

benchmarks discussed in this section are shown in Appendix C.

The NPBs were selected for SSP-1 for several reasons.

1. The procurement benchmark suite was developed using a 696 processor Cray

T3E-900. Some applications selected from the workload were too large to get

accurate reference instruction counts using the tools existing at the time. So an

W. Kramer Draft Dissertation 77

accurate reference flop count could not be established for several application/data

set combinations that were used for the application benchmarks. Thus fi,j could

not be accurately established for some values of i and j. On the other hand, the

flop count for each NPB was analytically defined and validated by running on

single processor systems for each problem size so fi,j was well known.

2. The NERSC-3 application benchmarks were a fixed problem size and vendors

were allowed to choose the best concurrency for problem scaling in an attempt to

determine the strong scaling characteristics of the proposed systems. The added

complexity of each system using different concurrency was judged too risky for

the first implementation of the SSP method. The fixed concurrency of the NPB

codes was easier to implement for vendors for the new SSP method.

3. The NPB suite represented many fundamental algorithms used in the NERSC

workload. For example, the NPB CG (Conjugate Gradient) test was similar to the

2D sparse matrix calculations in SuperLU41 library test code and Quantum

Chromo Dynamics (QCD) application. The Fourier Transform (FT) test related to

Paratec42, which uses a global Fast Fourier Transform (FFT).

4. NERSC staff were familiar with the NPBs and could accurately interpret their

implications for NERSC applications. Likewise the NPBs were well understood

by the vendor community and had proven easily portable to the potential systems,

making their use less effort for vendors.

4.8.1.1 Assessment of SSP-1

The use of the NPBs as the SSP-1 metric was successful in several ways.

W. Kramer Draft Dissertation 78

1. Vendors provided benchmark data for almost all the configurations

proposed in part because the NPBs were well understood, easily portable

and tested. The benchmarks had been ported to almost all the architectures

and vendors were familiar with the implementation of the codes.

2. Feedback from the vendor community indicated* preference towards

composite metrics such as SSP rather than a series of individual tests each

with a performance requirement. This is because vendors were concerned

about the number of individual benchmarks that represented many

individual metrics – each with a risk of failure. Further, vendors indicated a

willingness to agree to more aggressive composite goals since they had less

risk than agreeing to perform for multiple discrete tests.

3. As shown in Section 4.8.5 below, the SSP-1 addressed a number of issues in

making the system fully productive throughout its life time.

4.8.2 SSP-2 (2002) - The First Application Based SSP Suite

For SSP-2, performance profiling tools had advanced sufficiently to obtain

accurate floating point and other operation counts of the application/problem set

combinations at the scale needed. The SSP-2 metric used internal timing values of

five application benchmarks: GTC
43

, MADCAP
44

, milc
45

, Paratec
46

, and SEAM
47

.

SSP-2 was based on a fixed reference operation count of all floating point operations

in 5 benchmarks. All system had homogeneous processors, so α = 1. In calculating

* Private communication from vendors during RFP debriefing.

W. Kramer Draft Dissertation 79

SSP-2, one problem set was used for each application. All applications used the same

concurrency and had to be run on the different systems at the specified concurrency.

The composite function for SSP-2 was the unweighted harmonic mean, expressed

as the total operation count of all benchmark/problem set combinations divided by the

total time of all the application runs. All the operation counts fi,j for each application

was summed. The per processor operation counts, a,i,j, of each application i summed

to 1,014 GFlops per processor.

4.8.2.1 Assessment of SSP-2

The use of application codes was successful and resulted in the user community

having more confidence that the SSP-2 metric represented the true potential of the

system to perform their applications. As indicated in Section 4.6, the evaluation of the

system for which SSP-1 was developed also required a separate set of application test

codes be run. SSP-2, because it used full application tests, meant vendors did not

have to run a set of special codes for SSP-2 and a different set of codes for

application testing. The fixed concurrency of the five codes made the SSP calculation

simpler, but also led to some vendors failing to provide all the required data in their

proposal because of issues of getting large benchmarking resources.

The biggest issue identified in the second generation of SSP was using the

harmonic mean as the composite function. The harmonic mean resulted in essentially

a weighted average, with the weight being the relative computational intensity of the

applications. Computational intensity is the ratio of memory operations to arithmetic

operations, with higher numbers indicating a code does more arithmetic operations

W. Kramer Draft Dissertation 80

per memory reference.
48

 Paratec was the most computationally intensive code in the

SSP-2 test with a computational intensity almost three times that of the next code.

Using an unweighted harmonic mean meant Paratec had more influence in the final

SSP value than the other benchmarks, even though the material science area

represented about 1/10
th

 of the overall NERSC workload. Fortunately, this imbalance

did not have significant detrimental impact on user satisfaction with the selected

system since Paratec was both computationally and communication intensive as it did

significant communication with global Message Passing Interface (MPI) library calls

and a global FFT as well as significant dense linear algebra. However, further

analysis showed that if a different application code had been chosen that was not both

computational and communication intensive, the potential existed to have a

significant bias in the SSP-2 metric that was not intended. Hence, the SSP-3 version

moved to the geometric mean to reduce this potential issue.

4.8.3 SSP-3 (2003) – Balancing Complexity and Cost

SSP-3 was intentionally scaled down in order to select a modest size system.

Selecting a benchmark suite has to take into account both the size of the target system

and the expected amount of resources system vendors will be willing to use to

provide results. The evaluators must balance these issues because the resources

vendors invest to do benchmarking depends, in large part, on the eventual purchase

price of the system. Since NCSb was a system about 1/5
th

 the dollar value of NERSC-

3, the benchmark suite had to be correspondingly simpler and smaller – both in the

number of codes and the concurrency of the codes.

W. Kramer Draft Dissertation 81

SSP-3 consisted of three applications and three NPB codes. The applications were

CAM3
49

, GTC and Paratec with a problem size that ran efficiently on 64 processors.

SSP-3 had three NAS Parallel benchmarks: FT, Multi-Grid (MG) and Block Tri-

diagonal (BT) from the NPB version 2.4 release using the Class D problem size

running with a concurrency of 64 tasks.

4.8.3.1 Assessment of SSP-3

The SSP-3 codes were used to validate the delivered system and to assess

sustained performance and consistency in performance. There was a very good

response to the RFP in the number of proposals submitted. Also, all vendors provided

all benchmark results. In some ways, the simplification in concurrency made SSP-3

too easy and too low in terms of concurrency to stress test the entire system when it

was delivered. This meant other tests had to be used to detect deficiencies, which

actually did exist and were rectified. Hence, simplifying the SSP codes to have

vendors expend less up front effort made diagnosis of the system problems less

efficient causing longer time between system delivery and full operation. This also

added back end risk to NERSC of having less confidence the problems were

identified before production. One example of these other tests that needed to be added

is discussed in detail in Chapter 7 on consistency.

4.8.4 SSP-4 (2006) - SSP at Larger Scale

SSP-4 consisted of the geometric mean of seven full application benchmarks:

Madbench
50

, Paratec, CAM 3.0, GAMESS
51

, SuperLU, PMEMD
52

 each with one

large problem data set as the test problem. For SSP-4, the each benchmark ran at

W. Kramer Draft Dissertation 82

differing concurrency, ranging from 240 tasks to 2,048 tasks. SSP-4 was used for the

NERSC-5 procurement. The goal of the average SSP performance for the first 36

months was 7.5 to 10 TFlops/s. SSP-4 was the first SSP to allow heterogeneous

processors within a system to be considered.

4.8.4.1 Assessment of SSP-4

The SSP-4 used more application codes than any SSP to date, including one with

a concurrency of 2,048. This seemed to have struck a good balance between the

number and size of the benchmarks because all vendors provided complete data for

the SSP applications – while several did not provide data for non-SSP applications.

4.8.4.2 SSP Results for NERSC-5

SSP-4 was used in the selection and acceptance testing of NERSC-5, which

turned out to be a Cray XT-4 system. The first observation is that all bidders provided

data for all SSP-4 applications, not just at the required concurrency for the SSP-4

calculation, but at the other concurrencies as well. This may indicate that the mix of

codes and concurrencies were a reasonable compromise between the needs of the

facility and that of the vendors who offered systems.

SSP-4 was also the first time a Department of Energy‟s Office of Science site and

the Department of Defense sponsored HPC Modernization Program coordinated the

use of the same application benchmark, GAMESS with same problem sets. This

cooperation was intended to reduce the effort for bidders to provide data and to be

responsive the High End Computing Revitalization Task Force (HECRTF) Workshop

report, which urged government agencies to coordinate benchmark requirements.

W. Kramer Draft Dissertation 83

SSP-4 not only evaluated the systems offered and was used to validate the XT-4

during acceptance testing, but it also was used to evaluate two different Light Weight

Operating System (LWOS) implementations*, at scale, on the same hardware. This

was the first such study at extreme scale of 19,320 cores.

Initially the NERSC XT-4 was delivered with the Cray Virtual Node (CVN)
53

light weight operating system (also known as a microkernel) operating system and

SSP and other evaluation tests (ESP, full configuration tests, micro kernels,

consistency, etc.) were used to assess it. After several months, the first release of the

Cray Linux Environment (CLE)
54

 light weight operation system emerged from the

development process. The NERSC XT-4 was the first platform to move fully to CLE

and remains the largest platform running CLE today.

* On the XT-4 hardware, Cray offered two Light Weight Operating Systems (LWOS) – the Catamount Virtual

Node (CVN) and the Cray Linux Environment (CLE)* for the compute nodes. CVN* is an extension of the

Catamount kernel developed at Sandia National Laboratory for the XT family, originally created for the single

core per node XT-3. It uses a master-slave implementation for the dual core XT-4. CVN provides minimal

functionality, being able to load an application into memory and start execution, and manage communication

over the Seastar Interconnect. Among many things, CVN does not support demand paging or user memory

sharing, but does use the memory protection aspects of virtual memory for security and robustness, the latter to a

limited extent. CVN does not support multiple processes per core and only has one file system interface.

The CLE (also commonly known as the Compute Node Linux kernel, which was Cray‟s pre-announcement

designation)* system, based on SUSE 9.2 during this comparison, separates, as much as practicable, computation

from service. The dominant components of CLE are the compute nodes that run application processes. Service

nodes provide all system services and are scaled to the level required to support computational activities with

I/O or other services. The High Speed Network (HSN) provides communication for user processes and user

related I/O and services.

Each CLE compute node is booted with a version of Linux and a small RAM root file system that contains the

minimum set of commands, libraries and utilities to support the compute node‟s operating environment. A

compute node‟s version of Linux has almost all of the services and demons found on a standard server disabled

or removed in order to reduce the interference with the application. The actual demons running vary from

system to system but include init, file system client(s), and/or application support servers. CLE had specific

goals to control OS jitter while maintaining application performance. CLE uses a user space implementation of

the Sandia National Laboratory developed Portals interconnect driver that is multithreaded and optimized for

Linux memory management. CLE also addressed I/O reliability and metadata performance

W. Kramer Draft Dissertation 84

The evaluation period for CVN and CLE each lasted six to eight weeks between

the late spring and early fall of 2007. During this time, the LWOSs were

progressively presented with more challenging tests and tasks, in all the areas of

PERCU. The evaluation period can be considered as evolving through three phases

that each has a different focus – albeit still approaching the system holistically. The

first was a test of all functionality. Did the systems have all the features that were

required and did they produce the expected (correct) results? The second phase was

performance assessment when the systems were tested to determine how fast and how

consistently they processed work. The third phase was an availability and

performance assessment of the system‟s ability to run a progressively more complex

workload while at the same time determining the general ability to meet the on-going

system metrics. By the end of the third phase, a large part of the entire NERSC

workload ran on the system, although with some limitations and a different

distribution of jobs than is seen in production.

W. Kramer Draft Dissertation 85

Figure 4-4 shows the SSP-4 application runtimes for both CVN and CLE running

on the system hardware. The seven contributing applications to the SSP-4 metric are

five large applications (CAM, GAMESS, GTC, Paratec and PMEMD) and two X-

large applications (MadBench and MILC). The runtimes for five of the seven SSP-4

applications are lower on CLE than on CVN. GAMESS shows the most

improvement, 22%, followed by Paratec at almost 14%. The GAMESS‟ CLE runtime

resulted from combining MPI and shared memory (SHMEM) communications in

different sections of the code since MPI-alone or SHMEM-alone implementations ran

longer on CLE than on CVN. Because GAMESS already supported MPI and

SHMEM methods, it was not tremendously hard, albeit somewhat tricky to combine

the two. The need to mix communication libraries resulted from different

SSP Application Timing Comparision

0

500

1000

1500

2000

2500

3000

3500

La
rg

e
A
pp

lic
at
io
ns

C
A
M

G
A
M
ES

S
G
TC

M
ad

B
en

ch

Pa
ra

te
c

PM
EM

D
M
IL
C

X
-L

ar
ge

 A
pp

lic
at

io
ns

M
ad

B
en

ch

M
IL
C

Application

T
im

e
 i

n
 S

e
c
o

n
d

s
 (

L
o

w
e
r
 i

s
 B

e
tt

e
r
)

Average CVN Times

Average CLE Times

Figure 4-4: The SSP-4 application runtimes for two Light Weight Operating Systems running on the
same XT-4 hardware. Note that most of the runtimes for CNL are lower than for CVN.

W. Kramer Draft Dissertation 86

implementations of the Portals low-level communication library on CLE and CVN

that changed the relative performance advantages between using the MPI and

SHMEM Application Programming Interfaces (APIs). The improved Paratec timing

was due in part to optimizing message aggregation in one part of the code. Two

codes, PMEMD and showed better runtimes on CVN by 10% and 1% respectively.

Figure 4-5 shows the SSP composite performance for CLE is 5.5% better than

CVN, which was surprising. CVN was in operation on multiple systems for several

years before the introduction of CLE, and the expectation set by the Cray and others

was using Linux as a base for a LWOS would introduce performance degradation

while providing increased functionality and flexibility. The fact CLE out performs

CVN, both on the majority of the codes and in the composite SSP was a pleasant

surprise and helped convince NERSC and other sites to quickly adopt CLE.

Sustained System Performance Metric for the Cray XT-4

17.6 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.4

SSP

SSP Metric (TFlops/s)

Average CLE Times

Average CVN Times

Figure 4-5: The SSP-4 metric for the same XT-4 hardware running two different microkernels - the
Catamount Virtual Node (CVN) and Cray's Linux Environment (CLE). It was a surprise that CLE

outperformed CVN.

W. Kramer Draft Dissertation 87

4.8.4.3 Comparing Dual and Quad Core Implementations

SSP-4 was used to assess the change in system potency from using dual core

processors to using quad core processors instead, with most of the rest of the system

remaining intact. The dual core processors were AMD running at 2.6 GHz, each with

2 operations per clock. The quad core implementation used AMD running at 2.3 GHz

and with 4 operations per clock. The other change was to change the memory from

667 MHz DDR-2 memory (2 GB per core) to 800 MHz DDR-2.

Comparing the SSP-4 results, the dual core ran at .99 MFlops/s per core (NERSC-

5-Dual Core, with 19,320 compute processors, which has a system potency of 19.2

TFLops/s) and the quad core .98 MFlops/s per core (NERSC-5 Quad Core, 38,640

compute processors, which has a system potency of 37.98 TFLops/s). No special

quad core optimizations were done on the codes other than to exploit standard

compiler switches. The fact the performance was almost double, despite having a

10% lower clock, was the result of faster memory and the compiler‟s ability to use the

two extra operations per clock.

4.8.5 SSP-5 (2008) – An Sharable SSP Suite

In 2008, the SSP-5 suite was released and became the first suite with complete

access to all the tests. Compared to SSP-4, the SSP-5 suite changed two applications,

updated versions of other applications, increased problem sizes, and increased

application scale. SSP-5 adds emphasis on strong scaling applications because of the

increase of multi-core CPUs.

W. Kramer Draft Dissertation 88

The other major change for SSP-5 is the concept of base and fully optimized

cases. Since the same applications and problem cases were used in both, they

reflected a general scientific workload.

 The base case can be considered as the way users will initially migrate to a

new system. The existing applications base case is designed to represent a

system‟s Potency with a modest effort of porting. In most cases, such

porting to move an application, recompile with a reasonable selection of

options, and to link in the appropriate system-specific libraries takes a

couple of days.

 The fully optimized case, using the same applications and problem cases,

was designed to reflect the sustained performance “best possible” case for

the application. The fully optimized case can be considered a user

spending significant time to restructure algorithms, redistribute the

problems, and reprogram the applications for special architectural features.

It also allows for code tuning and optimization.

These changes allow SSP-5 to determine how much added potency does a system

have, if one were to fully exploit all architectural features to the maximum amount

possible. Most users will take the easiest path – reflected in the base case, but some

may spend the effort to better optimize their application. The base and fully optimized

cases give the range of expectations for systems.

W. Kramer Draft Dissertation 89

4.8.5.1 The Base Case

The base case limits the scope of optimization and allowable concurrency to

prescribed values. It also limits the parallel programming model to MPI only

implementations of the tests. Modifications to the applications are permissible only

for limited purposes listed below:

 To enable porting and correct execution on the target platform but changes

related to optimization are not permissible.

 There are certain minimal exceptions to using the prescribed base concurrency

o a) Systems with hardware multithreading

o b) If there is insufficient memory per node to execute the application.

In this case, the applications must still solve the same global problem,

using the same input files as for the target concurrency when the MPI

concurrency is higher than the original target and using the same input

files as for the target concurrency when the MPI concurrency is higher

than the original target.

 To use library routines as long as they currently exist in a supported set of

general or scientific libraries.

 Using source preprocessors, execution profile feedback optimizers, etc. which

are allowed as long as they are, or will be, available and supported as part of

the compilation system for the full-scale systems.

 Use of only publicly available and documented compiler switches shall be

used.

W. Kramer Draft Dissertation 90

4.8.5.2 The Fully Optimized Case

In the fully optimized case, it is possible to optimize the source code for data

layout and alignment or to enable specific hardware or software features. Some of the

features the fully optimized case anticipated include:

 Using Hybrid OpenMP+MPI for concurrency.

 Using vendor-specific hardware features to accelerate code.

 Running the benchmarks at a higher or lower concurrency than the targets.

 Running at the same concurrency as the targets but in an “unpacked”

mode of not using every processor in a node.

o When running in an unpacked mode, the number of tasks used in

the SSP calculation for that application must be calculated using

the total number of processors blocked from other use.

In the fully optimized case, changes to the parallel algorithms are also permitted

as long as the full capabilities of the code are maintained; the code can still pass

validation tests; and the underlying purpose of the benchmark is not compromised.

Any changes to the code may be made so long as the following conditions are met:

 The simulation parameters such as grid size, number of particles, etc.,

should not be changed.

 The optimized code execution still results in correct numerical results.

W. Kramer Draft Dissertation 91

 Any code optimizations must be available to the general user community,

either through a system library or a well-documented explanation of code

improvements.

 Any library routines used must currently exist in a supported set of general

or scientific libraries, or must be in such a set when the system is

delivered, and must not specialize or limit the applicability of the

benchmark code nor violate the measurement goals of the particular

benchmark code.

 Source preprocessors, execution profile feedback optimizers, etc. are

allowed as long as they are, available and supported as part of the

compilation system for the full-scale systems.

 Only publicly available and documented compiler switches shall be used.

The same code optimizations must be made for all runs of a benchmark at

different scales. For example, one set of code optimizations may not be made for the

smaller concurrency while a different set of optimizations are made for the larger

concurrency. Any specific code changes and the runtime configurations used must be

clearly documented with a complete audit trail and supporting documentation

identified.

4.8.5.3 Assessment of SSP-5

SSP-5 was released in August 2008. As of this writing, it is too early assess its

effectiveness. It was created based on the experiences with SSP-4 and recognizing the

W. Kramer Draft Dissertation 92

increase in the potential for system to have accelerators, multi-cores and special

architectural features that will not be exploited without code modification.

Preliminary results include runs on several architectures including the Cray XT-4, the

IBM Power-5 and IBM Blue Gene and several commodity clusters.

4.8.5.4 SSP Results for NERSC-5

The first system to use the SSP-5 is NERSC‟s Cray XT-4. On that system, the

base case provided 13.5 TFlops/s on the dual core system, and 26 TFlops/s on the

quad core system.

The code and benchmark rules can be downloaded from the current NERSC-6

web site, http://www.nersc.gov/projects/procurements/NERSC6.

4.9 Experiences and Impact of SSP

The impact of the SSP methodologies can be seen in a number of ways as

described in the following examples.

4.9.1 Revisiting the Real World, Once Removed Example

In the example from Section 3-2, determining the system with the best value,

from the individual data was not clear. Using Equation 3-5, a single overall system

wide potency measure was obtained for each system. The potency measure was

compared with price cost to yield an overall price performance measure – as shown in

Equation 3-6. The assessment period was 36 months and (W,P) continued to use

the arithmetic mean.

http://www.nersc.gov/projects/procurements/NERSC6

W. Kramer Draft Dissertation 93

Table 4-4 shows the integrated system-wide potency for all the systems in the

example, and the relative price performance. Recall the price of each system is

proprietary as well as the specific details of the configuration. Hence the cost data is

relative to the lowest cost system. Assuming all other factors (effectiveness,

reliability, consistency, and utility) are equivalent, System 3 has the best overall price

performance, followed by System 4.

W. Kramer Draft Dissertation 94

S
y
st

em
 1

S
y
st

em
 2

S
y
st

em
 3

S
y
st

em
 4

S
y
st

em
 5

Phase 1 System

SSP - Arithmetic

Mean

GFlops/sec 544.5 360.5 993.1 311.4

Phase 2 System

SSP - Arithmetic

Mean

GFlops/sec 1,089 511 2,731 1,896 1,246

Potency -

Arithmetic Mean

GFlops/sec*Months*

Pflops†

31,037

80,448

15,081

39,090

61,077

158,312

62,570

162,648

39,236

101,699

Average Potency-

Arithmetic Mean

GFlops/sec*Months

PFlops

 862

2,235

419

1,085

1,697

4,398

1,738

4,518

1,090

 2,825

Potency for

relative cost -

Arithmetic Mean

using normalized

cost

GFlops/sec*Months

per cost unit

 661 403 2,156 1,635 1,246

Table 4-4: The Potency and average SSP over time, using the arithmetic mean as (W,P) and 36 months as the performance period.

* Assumes all months are 30 days
† Assumes a month has 2,592,000 seconds.

W. Kramer Draft Dissertation 95

Peak vs SSP

0

100

200

300

400

Oct-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02

Months since installation

N
P

B
 G

Fl
op

/s

0

1

2

3

4

5

6

P
ea

k
TF

lo
p/

s

Measured SSP Gflop/s Planned SSP System Gflop/s

Planned Peak System Tflop/s Actual Peak System Tflop/s

4.9.2 Risks of Using Peak Performance as A Selection Criteria

There are many reasons why decisions should not be made based on peak

performance, or even benchmarks that closely correlate with peak performance. SSP-

1 was used to evaluate and manage the NERSC-3 system. Watching the system

evolve is an excellent example of SSP being used not only to evaluate and select

systems but also to assess on-going performance, the third purpose of benchmarking.

The NERSC-3 system was delivered in two major phases – with the first phase

consisting of IBM Power 3
55

 (“winterhawk") CPUs and a TBMX
56

 interconnect

originally planned from Oct 1999 to April 2001. The second phase, planned to start in

April 2001, was one of the first systems with the Power 3+ (“nighthawk”) CPU
57

s

connected with the IBM ”colony” High Performance Switch
58

. The schedule and

performance levels were agreed upon so the average SSP performance was 155

Figure 4-6: Peak vs. Measured SSP-1 performance

W. Kramer Draft Dissertation 96

GFlops/sec over the first 36 months of the contract. In Figure 4-6, the expected SSP

of the two phases is shown as the dark blue line. The Phase 1 system was to start

production service in Oct 1999 with an SSP of more than 40 GFlops/sec, and it would

be replaced with a Phase 2 system in April 2001 at 238 GFlops/sec. Phase 2 actually

had two sub phases, a and b. The difference between the two sub phases was strictly

software improvements. All the phase 2 hardware was deployed at the beginning of

Phase 2a so the Phase 2a and 2b systems had the same peak performance of 3.5

TFlops/s.

The full potency of performance could not be realized at initial Phase 2 delivery.

The hardware configuration of Phase 2 was a number of 16 CPU SMP nodes, each

with two Colony interconnect adaptors. The Colony HPS switch was the first IBM

interconnect that allowed multiple adaptors in a node. The software to use more than

one adaptor was only planned to be available eight months after the hardware

delivery. The system performance of Phase 2a was limited by the interconnect

bandwidth. NERSC-3 showed significantly increased performance once the second

adaptor was usable, eventually reaching 365 GFlops/sec as the overall SSP. Clearly,

the peak performance parameters of the system did not reflect the actually

performance potency of the system until the software allowed full use of the

interconnect performance.

Figure 4-6 shows another valuable aspect of SSP. Contractually, the Potency

starts accumulating only after system acceptance, which occurred later than expected

for Phase 1 and Phase 2. This was due to various issues, including delays in

W. Kramer Draft Dissertation 97

manufacturing, parts availability and software problems that prevented reliable use of

the system. The acceptance of the Phase 1 system occurred in April 2000 rather than

October 1999 and the acceptance of the Phase 2a system was July 2001 rather than

April 2001. On the other hand, the software to exploit the second adapter was

delivered earlier than the eight-month delay originally expected, arriving in October

2001. The early delivery of the dual plane software provided a measured performance

improvement earlier than planned and partially offset the other delays. The system

configuration was adjusted after Phase 2b acceptance so the average of the SSP did

meet the required 36-month average.

The SSP method gives both the purchaser and the supplier protection. The

supplier has the freedom to adjust the schedule of deliverables and the purchaser is

protected by a guarantee of a agreed upon amount of performance delivered in a

certain time period. The degree of adjustments can be constrained as well. For

example, a purchaser probably does not want all the performance delivered in the last

month of the 3-year period, so there may be limits on when the phases are delivered.

4.10 SSP as an On-Going Measure

As mentioned above, benchmarks can be on-going assessments of systems to help

assure systems continue to operate as expected. In order to be effective as an on-

going performance assessment, benchmarks must be run often enough to provide

enough samples for trend analysis in an on-going assessment*. Running the

benchmarks as a regression test after system changes is one approach – but is limited

* In fact, they need to run often to provide enough samples for variation analysis as discussed in

Chapter 8.

W. Kramer Draft Dissertation 98

in the number of observations that can be obtained. This also means there is little

context to judge significant changes versus random errors. An improvement is

running benchmarks regularly – at least weekly to have an understanding that the

system performs properly. Further, the benchmarks should run alongside the regular

workload as a production job rather than in special circumstances such as on a

dedicated system. This allows a better assessment of what the user community sees

for performance, especially if the benchmark suite is drawn from the application

workload itself. In order to be effective in assessing on-going performance, the

benchmark suite should:

1. Be reflective of the workload itself

2. Be able to run within the normal scheduling parameters of the system

3. Run while the normal workload is running

4. Balance running long enough to assess system performance but short

enough not to consume undue amounts of system resource

Figure 4-7: Runtimes of the SSP-2 component benchmarks over an extended time.

Performance of individual SSP Codes (MF)

0

500

1,000

1,500

2,000

2,500

3,000

10/2
4/2

003

2/2
4/2

004

6/2
4/2

004

10/2
4/2

004

2/2
4/2

005

6/2
4/2

005

10/2
4/2

005

Dates

R
u

n
 T

im
e

in
 S

ec
o

n
d

s
(s

m
al

le
r

is
 b

et
te

r)

gtc

madcap

milc

paratec

seam3d

W. Kramer Draft Dissertation 99

Figure 4-7 shows the runtimes of the SSP-2 components over two years on the

NERSC-3/3E. The runs were done several times a week and ran as standard

production jobs. Several insights are notable. First, the runtimes are consistent, with a

few exceptions. . Note the large spike in runtime. For the most part, the runtimes are

within the expected variation of non-dedicated systems. At several points, several of

the codes take longer to run, indicating something on the system may be had a

detrimental impact on performance, particularly since they appear to be clustered in

approximately the same time period. The large spikes are an indicator possibly

something is amiss. Once the trend is noticed, further investigation is probably

needed to determine whether there is a system problem. This data can also be used to

judge the consistency of the system that is discussed in detail in Chapter 7.

Figure 4-8 indicates the composite SSP-2 values over time. The green line is the

required contractual performance negotiated. The graph shows that several times the

actual performance was less than expected. This indicated system issues that were

then corrected to return the system to its expected performance levels.

W. Kramer Draft Dissertation 100

Figure 4-8: SSP validated performance on-going performance of the IBM Power 3 system using SSP-2. The line
slight above 600 is the contract required metric.

4.10.1 Guarding Against Performance Degradation – NERSC-3

The NERSC-3, Phase 1 system had a persistent degradation of performance,

measured both by SSP-1 and user applications. The system slowed down by

approximately 5% every month until it was fully rebooted, a process that took close

to 3 hours. A reboot would return the system to the expected performance level. This

improper behavior was only detected because of proactively running the SSP-1

benchmarks. Since the system was in place less than 18 months and it took time to

detect the pattern of gradual loss in performance, it was not possible to definitively

determine the cause of the slowdown before the system was replaced with the Phase 2

system. However, recognizing the degradation meant a work around of rebooting the

system every month was worthwhile.

0

100

200

300

400

500

600

700

800

10/
24/2

003

2/2
4/2

00
4

6/2
4/2

00
4

10/
24/2

004

2/2
4/2

00
5

6/2
4/2

00
5

10/
24/2

005

Date

S
y

s
te

m
 S

S
P

 (
G

fl
o

p
/s

)

W. Kramer Draft Dissertation 101

4.11 Validating SSP-4 With a Real Workload

One important question is, “Does the SSP metric reflect the actual workload that

runs on a given system?” This is determined by the careful selection of the

component codes that make up the SPP. Once a year, all the projects at NERSC

submit a proposal for computer time allocation. Since 2004, every project was

required to provide performance data on the application codes they use. The

performance data from running jobs is at scale. A NERSC staff member, David

Skinner, implemented the Integrated Performance Monitor (IPM) tool, to assist users

profiling their applications and collecting the required data. IPM
59

 provides an

integrated method to collect data from hardware performance counters. The 2006

proposal submissions for NERSC allocations were reviewed to determine the

characteristics of the workload, showing how well the applications ran during

2004/2005.

There were 813 separate performance submissions from 316 different project

submissions that had used NERSC systems in the previous period. A performance

submission is considered unique if the combined project ID, code name, and

concurrency are unique. There were 279 unique submissions reported. NERSC

supports a wide range of science disciplines, and the code submissions reflect that as

well. Table 4-5 compares the amount of time used and the number of performance

data submissions of performance data for applications, both by science discipline.

The percentages are aligned, but not exactly because each science area has different

numbers of applications and projects. The main point of the comparison is that the

performance data covers roughly the same areas as the usage profiles. Since the SSP

W. Kramer Draft Dissertation 102

approximates the actual application performance, even with somewhat of an

underestimation, it is reasonable to assume the SSP reflects the workload.

Science Area Percent of

Computational

Usage in

Allocation Year

(AY) 2005

Percent of

Performance

Submissions

based on Data

from AY 2005

Accelerator Physics 5% 7%

Applied Mathematics, Mathematics

and Computer Science

4% 4%

Astrophysics 12 % 7%

Chemistry 13% 12%

Climate and Environmental Science 8% 7%

Engineering 5% 1%

Fusion Energy 29% 20%

Geosciences 2 % 2%

Life Science 8% 4%

Material Science 9% 30%

Quantum ChrymoDynamics (QCD) 8% 3%
Table 4-5: The table comparing the amount of time used by science discipline and the number of performance data

submissions of performance data for applications. The percentages are aligned but not exactly because each
science area has different numbers of applications and projects. The main point of the comparison is that the

performance date covers roughly the same areas as the usage profiles.

The performance data submissions and the amount of time used by science

disciplines are consistent. The science areas with the larger usage are also the science

areas with more performance data. Therefore, it is reasonable to use the performance

submissions to make general observations of the overall workload, as is done in Table

4-6.

Table 4-6 compares the SSP and measured performance for the applications on

NERSC‟s most parallel system, Seaborg, which is a 6,756 processor SP-3. The result

of using SSP-1 is an average SSP of 115 MFlop/s per processor on Seaborg and SSP-

2 is 214 MFlop/s per processor. The average actual performance reported by the user

community was 191 MFlop/s per processor. Figure 4-9 shows the number of

W. Kramer Draft Dissertation 103

performance profile submission by discipline area, along with average per processors

performance that were reported.

Data Characteristic Amount

Number of Different Projects 316

Number of Different Submissions 813

Number of Different Submissions based on

Seaborg runs

720

Unique Codes 279

Minimum Concurrency 1

Maximum Concurrency 32,768

Seaborg average reported per processor

performance

191

MFlops/s

SSP-1 per CPU performance 115

MFlops/s

SSP-2 per CPU performance 214

MFlops/s
Table 4-6: Summary of performance data reported by science projects running at NERSC.

Figure 4-9: Collected hardware performance data for science discipline areas and the CPU Performance data
measured using IPM for over 270 applications.

Comparing the profile data from the NERSC user community with the SSP-1 and

SSP-2 measures indicated the SSP method is a valid estimate of a systems

performance for at least the NERSC workload.

Performance of a Diverse Science Workload on Seaborg

0

50

100

150

200

250

nu
cl
ea

r p
hy

si
cs

ac
ce

le
ra

to
rs

ap
pl
ie
d

m
ath

as
tro

ph
ys

ic
s

ch
em

is
try

cl
im

at
e

C
S

en
gi
ne

er
in
g

en
vi
ro

nm
en

t

fu
si
on

ge
os

ci
en

ce
s

lif
e s

ci
en

ce

m
at

er
ia
ls

m
at

h
Q
C
D

Science Areas

N
u

m
b

e
r

o
f

s
a
m

p
le

s

-

50

100

150

200

250

300

P
e
r

C
P

U
 P

e
rf

o
rm

a
n

c
e
 (

G
F

lo
p

/s
)

Number of Codes Reports

Per CPU Performance (Gflop/s)

W. Kramer Draft Dissertation 104

4.12 Chapter Conclusion

This chapter demonstrates different ways the SSP method can be used to assess

and evaluate systems. This method provides the ability to define sustained

performance estimates based on time to solution that are correlated with the actual

workload on the system, yet use much fewer applications. The SSP method has been

refined several times, and with each refinement, the version of the SSP is explained

and assessed. The SSP method is shown to be usable to assure continued system

performance.

The SSP method provides a good overall expectation of potency and value for a

system. It also is attractive to vendors who prefer composite tests instead of discrete

tests. SSP provides realistic assessments of the potency and value of HPC systems.

