Study of the ¹⁴O(?,p)¹⁷F Reaction in Stellar Explosions with an HRIBF Radioactive Beam

Artist's Conception of an X-ray Burst

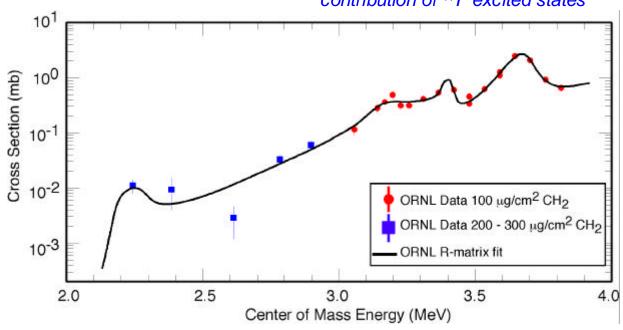
17_F target radioactive beam detectors

Experimental Setup for the ¹⁷F(p,?)¹⁴O Measurement at HRIBF

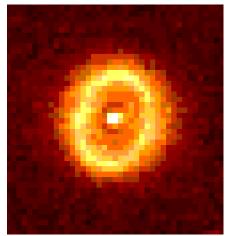
¹⁴O(?,p)¹⁷F reaction **triggers X-ray Bursts** and is important in the synthesis of elements in Nova Explosions

Need to measure the reaction yield as a function of energy

A ¹⁷F radioactive beam and a CH₂ target were used to measure the **inverse** ¹⁷F(p,?) ¹⁴O reaction at ORNL's HRIBF


Measured cross section at 21 energies with beam intensities up to 10⁶ particles / s covering the entire range of interest for astrophysics

Gives first firm experimental basis for ¹⁴O(?,p)¹⁷F reaction rate in stellar explosions (ground state transitions only)


Results differ from previous predictions

Future studies planned to determine

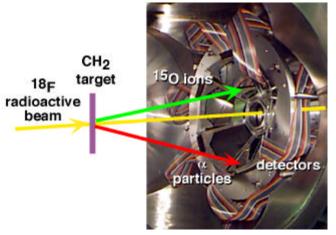
contribution of ¹⁷F excited states

Study of the ¹⁸F(p,?)¹⁵O & ¹⁸F(p,?)¹⁹Ne Reactions in Stellar Explosions with HRIBF Radioactive Beams

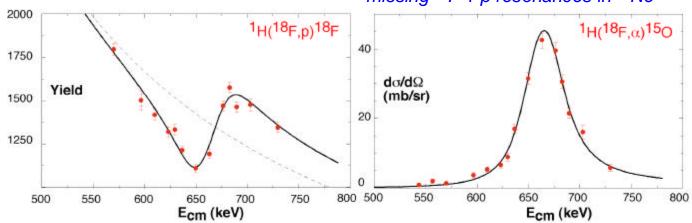
Hubble Space Telescope Image Of Exploding Star Nova V1974 [Univ. Wyoming & Space Telescope Science Institute]

Uncertainty in ¹⁸F + p reactions gives factor of ~300 uncertainty in ¹⁸F production in nova explosions

This uncertainty makes it impossible to determine the required sensitivity of ?ray satellites searching for this longlived radioactive isotope in explosion ashes


Previous measurements have serious discrepancies

A ¹⁸F radioactive beam and a CH₂ target were used to measure ¹⁸F(p,?)¹⁵O & ¹⁸F(p,p)¹⁸F at ORNL's HRIBF


Precision parameters determined for a

19Ne resonance dominating the 18F + p
reactions; discrepancies resolved

Future studies planned to search for missing ¹⁸F + p resonances in ¹⁹Ne

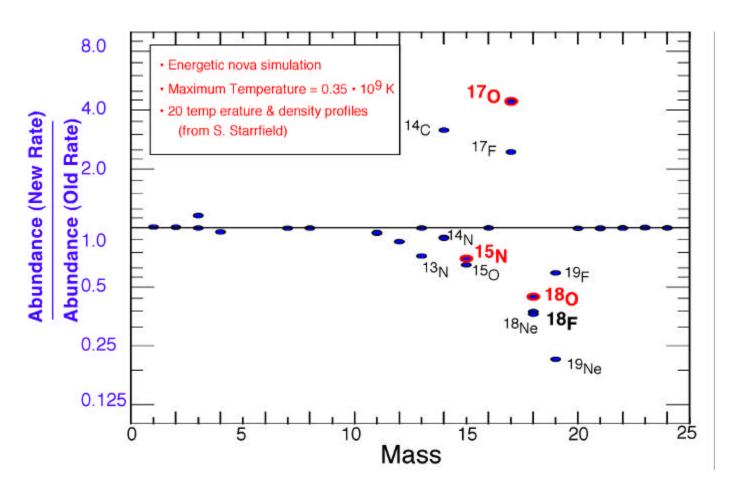
Experimental Setup for the ¹⁸F(p,?)¹⁵O Measurement at HRIBF

Astrophysical Implication of ¹⁷F(p,p)¹⁷F Measurement at HRIBF

Experimental Goal: Search for Missing ¹⁷F + p Resonance in ¹⁸Ne

9 unsuccessful experimental searches with stable beams

New HRIBF Measurement with a ¹⁷F radioactive beam in 1999 –


first unambiguous evidence for resonance

precise determination of resonance perties

APS Dissertation Award 2001 - Dan Bardayan

Astrophysical Implications

change ¹⁷F + p fusion rate by up to factor of 100 in novae change predictions of synthesis of some isotopes such as ¹⁷O by up to a factor of 5

