
A�������.—Logistic regression has become increasingly popular for modeling nest success 
in terms of nest-specifi c explanatory variables. However, logistic regression models for nest 
fate are inappropriate when applied to data from nests found at various ages, for the same 
reason that the apparent estimator of nest success is biased (i.e. older clutches are more likely 
to be successful than younger clutches). A generalized linear model is presented and illustrated 
that gives ornithologists access to a fl exible, suitable alternative to logistic regression that is ap-
propriate when exposure periods vary, as they usually do. Unlike the Mayfi eld method (1961, 
1975) and the logistic regression method of Aebischer (1999), the logistic-exposure model re-
quires no assumptions about when nest losses occur. Nest survival models involving continu-
ous and categorical explanatory variables, multiway classifi cations, and time-specifi c (e.g. nest 
age) and random eff ects are easily implemented with the logistic-exposure model. Application 
of the model to a sample of Yellow-breasted Chat (Icteria virens) nests shows that logistic-
exposure estimates for individual levels of categorical explanatory variables agree closely 
with estimates obtained with Johnson’s (1979) constant-survival estimator. Use of the logistic-
exposure method to model time-specifi c eff ects of nest age and date on survival of Blue-winged 
Teal (Anas discors) and Mallard (A. platyrhynchos) nests gives results comparable to those re-
ported by Kle�  and Johnson (1982). However, the logistic-exposure approach is less subjective 
and much easier to implement than Kle�  and Johnson’s method. In addition, logistic-exposure 
survival rate estimates are constrained to the (0,1) interval, whereas Kle�  and Johnson esti-
mates are not. When applied to a sample of Mountain Plover (Charadrius montanus) nests, the 
logistic-exposure method gives results either identical to, or similar to, those obtained with 
the nest survival model in program MARK (White and Burnham 1999). I illustrate how the 
combination of generalized linear models and information-theoretic techniques for model 
selection, along with commonly available statistical so	 ware, provides ornithologists with a 
powerful, easily used approach to analyzing nest success. Received 23 April 2003, accepted 14 
January 2004.
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.—La regresión logística se ha hecho cada vez más popular para modelar el éxito de 
nidifi cación en términos de variables explicativas específi cas para los nidos. Sin embargo, los 
modelos de regresión logística para el éxito de los nidos son inapropiados cuando se aplican a 
datos de nidos de diferentes edades, por la misma razón que el estimador aparente del éxito de ni-
difi cación está sesgado (i.e. nidadas más viejas son probablemente más exitosas que nidadas más 
jóvenes). Aquí se presenta e ilustra un modelo lineal generalizado que les brinda a los ornitólogos 
una alternativa fl exible y adecuada a la regresión logística que es apropiada cuando los períodos 
de exposición varían, como sucede a menudo. A diferencia del método de Mayfi eld (1961, 1975) 
y del modelo de regresión logística de Aebischer (1999), el modelo logístico de exposición no 
requiere suponer cuándo ocurre la pérdida de los nidos. Los modelos de supervivencia de los ni-
dos que incluyen variables explicativas continuas y categóricas, clasifi caciones de múltiples vías 
y efectos temporales específi cos (e.g. edad del nido) y aleatorios, son implementados fácilmente 
con el modelo logístico de exposición. La aplicación del modelo a una muestra de nidos de Icteria 
virens mostró que las estimaciones de los niveles individuales de variables categóricas explicati-
vas coinciden en gran medida con las obtenidas con el estimador de supervivencia constante de 
Johnson (1979). El uso del método logístico de exposición para modelar los efectos temporales 
específi cos de la edad y fecha del nido en relación con la supervivencia de nidos de Anas discors 
y A. platyrhynchos brinda resultados comparables con aquellos suministrados por Kle�  y Johnson 
(1982). Sin embargo, el enfoque del modelo logístico de exposición es menos subjetivo y mucho 
más fácil de implementar que el método de Kle�  y Johnson. Además, las estimaciones de la tasa 
de supervivencia del método logístico de exposición están restringidas al intervalo (0,1), mientras 
que las estimaciones de Kle�  y Johnson no lo están. Cuando el método logístico de exposición 
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 of various factors 
on natality and mortality is crucial to under-
standing the dynamics of an animal popula-
tion. Nest success is an important component 
of natality for many species of birds. Methods 
for estimating nest success have received con-
siderable a� ention in the ornithological and bio-
metrics literature (e.g. Mayfi eld 1961, Johnson 
1979, Kle�  and Johnson 1982, Bromaghin and 
McDonald 1993, Aebischer 1999, Rotella et al. 
2000, Stanley 2000, Dinsmore et al. 2002). In a 
typical nesting study, investigators periodically 
search for nests, discover them at various stages 
of development (ages), and revisit them one or 
more times to monitor status until nests either 
succeed (i.e. eggs hatch or nestlings fl edge) 
or fail. Thus, time from discovery to expected 
date of termination (hatch or fl edge) varies 
among clutches. Because presence of an adult is 
o	 en used as a primary cue for locating nests, 
clutches that survive for only a short time are 
easily missed by investigators and tend to be 
underrepresented in samples. Mayfi eld (1961, 
1975) observed that older clutches, because 
they are closer to hatching (or fl edging), are 
more likely to be successful than younger ones 
and that the apparent estimator of nest success 
(proportion of observed clutches that are suc-
cessful) overestimates actual nest success. He 
proposed an ad hoc estimator based on calculat-
ing a daily survival rate, assumed constant from 
day to day and nest to nest, and raising it to a 
power equal to the number of days from initia-
tion to a successful outcome. To calculate daily 
survival rate, one fi rst computes daily mortality 
rate by dividing number of nest failures by total 
exposure days for all nests under observation 
during the period of interest. Because clutches 
typically are not monitored daily, the date of 
failure, and hence the period of exposure, for 
failed nests is unknown and must be assumed. 
Mayfi eld assumed that failure would occur 
midway between visits. Whereas Mayfi eld 
based his midpoint assumption on studies of 
passerine species in which intervals between 
visits to nests were short, Miller and Johnson 

(1978) recommended that unsuccessful water-
fowl nests be credited with surviving only 40% 
of the interval between visits (the “40-percent 
Mayfi eld estimator”) to account for longer visi-
tation intervals typical of waterfowl studies.

Johnson (1979) provided the mathemati-
cal framework for Mayfi eld’s method and 
developed a large-sample variance estimator. 
Johnson (1979) and Bart and Robson (1982) 
developed a maximum-likelihood estimator 
that does not require knowledge of the date of 
nest loss (the “Johnson estimator”). Comparing 
Mayfi eld’s estimator, the 40-percent Mayfi eld 
estimator, and the Johnson estimator on sev-
eral data sets, Johnson (1979) observed that 
Mayfi eld’s method and the more computation-
ally intensive Johnson estimator gave similar 
results, especially when visitation intervals 
were short. The 40-percent Mayfi eld estima-
tor performed slightly be� er than the original 
Mayfi eld method when applied to data sets 
with longer intervals between visits. Johnson 
concluded that Mayfi eld’s method, perhaps 
with an adjustment in exposure for infrequently 
visited nests, is adequate when data are lim-
ited but recommended the Johnson estimator 
for comprehensive analyses of large data sets. 
Although Mayfi eld’s concern over bias in the 
apparent estimator was slow to gain recogni-
tion, his method or suitable modifi cation is now 
widely used.

A frequent goal of nesting studies is to under-
stand how nest success varies in response to 
changes in one or more explanatory variables. 
Mayfi eld’s method can be used to address that 
objective, if the assumption of constant daily 
survival can be met and if samples of nests are 
adequate to estimate a daily survival rate for 
each combination of levels of the explanatory 
variables. The la� er is a serious problem with 
continuous explanatory variables. For example, 
a study looking at the eff ect of distance from 
a nest to the nearest habitat edge may result 
in a sample of hundreds of nests, each having 
a diff erent value for the explanatory variable, 
distance to edge. In situations like that, logistic 

es aplicado a una muestra de nidos de Charadrius montanus, los resultados son idénticos o simi-
lares a los obtenidos con el modelo de supervivencia de nidos del programa MARK (White y 
Burnham 1999). Aquí muestro cómo la combinación de modelos lineales generalizados y técnicas 
de información teóricas de selección de modelos, junto con paquetes estadísticos comúnmente 
disponibles, les brindan a los ornitólogos un enfoque poderoso y fácil de usar para analizar el 
éxito de nidifi cación.
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regression (Hosmer and Lemeshow 1989), which 
models probability of success as a function of 
the explanatory variables, has become increas-
ingly popular (e.g. Hanski et al. 1996, Maxson 
and Riggs 1996, Burhans and Thompson 1999, 
Willson and Gende 2000, Zane� e and Jenkins 
2000, Davidson and Knight 2001).

Several variants of logistic regression have 
been used. In one variant, each nesting a� empt 
is treated as a Bernoulli trial, and nest fate (suc-
cess or failure) is related to the various explana-
tory variables without regard to the length 
of time the nest was under observation (e.g. 
Frederick and Collopy 1989, Maxson and Riggs 
1996, Willson and Gende 2000). That approach 
is analogous to using the apparent estimator 
of nest success and suff ers from the same bias 
noted by Mayfi eld and others. 

In a second variant, diff erences in exposure 
period are accounted for by including the 
number of exposure days for each nest (e.g. 
Pasitschniak-Arts et al. 1998) or each nest-check 
interval (e.g. Garre� son and Rohwer 2001) as an 
explanatory variable in the logistic regression. 
That approach is incorrect, because the eff ect of 
exposure period is not additive on the logistic 
scale, yet the analysis treats it as such.

Aebischer (1999) proposed a logistic regres-
sion approach that considers each nest-day as 
a Bernoulli trial. The unit of analysis is the nest, 
the response variable is number of days of suc-
cessful observation at the nest, and number of 
Bernoulli trials is equal to number of nest-days. 
By defi nition, number of days of successful 
observation is either equal to (for successful 
nests) or one less than (for unsuccessful nests) 
the number of nest-days. Aebischer’s method 
works well when nests are visited daily (and, 
therefore, number of nest-days is known 
exactly) but is problematic when visits are not 
daily and nest-days must be estimated. To illus-
trate the problem, consider a nest that is found 
on 1 May and revisited on 4 May. For the clutch 
to survive the interval, it must survive three 
nest-days (i.e. 1 May, 2 May, and 3 May). Thus, 
a successful clutch is credited with three days of 
successful observation during three nest-days. 
If the clutch does not survive the interval, a rea-
sonable assumption might be that it survived 
day 1 (1 May) but did not survive day 2 (2 May), 
giving rise to one day of successful observation 
in two nest-days. That assumption is akin to 
Mayfi eld’s midpoint assumption. Now consider 

a clutch found on 1 May and revisited on 5 May. 
If that clutch survives the interval, clearly the 
number of days of successful observation and 
the number of nest-days is four. But if the clutch 
fails, do we assume that it fails on day 2 (2 May) 
or day 3 (3 May)? Johnson (1979) used prob-
ability theory to show that the clutch would be 
expected to fail between day 2 and day 3. Thus, 
consistent application of either of the proposed 
failure dates (2 May or 3 May) would lead to a 
bias, the direction of which would be positive in 
one case and negative in the other. The problem 
of unknown failure date is exacerbated as inter-
vals become longer and Mayfi eld’s midpoint 
assumption becomes more tenuous. Mayfi eld 
(1975) and Miller and Johnson (1978) were able 
to eff ectively deal with that issue by allowing 
for fractional nest-days and by pooling nest-
days across relatively large samples of nests. In 
a logistic-regression context, however, nest-days 
must take on integer values. Moreover, pooling 
across nests, which would tend to reduce the 
bias, does not occur, because individual nests 
are sample units.

The nest survival model available in program 
MARK (White and Burnham 1999) allows daily 
nest survival to be rigorously modeled as a func-
tion of nest-, group-, and time-specifi c explana-
tory variables (Dinsmore et al. 2002). The model 
allows visitation intervals to vary and requires 
no assumptions about when nest losses occur. 
Program MARK uses encounter histories of 
individual nests and likelihood-based proce-
dures to estimate regression coeffi  cients for 
explanatory variables included in the model. 
Values for time-specifi c explanatory variables, 
such as age, date, and precipitation, are allowed 
to vary daily. For ornithologists willing to learn 
program MARK, its nest survival model pro-
vides a highly fl exible and powerful alternative 
to traditional constant-survival methods.

In addition to estimating daily survival rates 
and relating them to continuous or categorical 
explanatory variables, interest o	 en lies in com-
paring daily survival rates among groups of nests. 
Johnson (1979) provided a large-sample t-test for 
comparing daily survival rates between two 
categories of nests, and Johnson (1990) extended 
the method to more than two categories. Sauer 
and Williams (1989) provided a chi-square test 
statistic that can be used to test for homogeneity 
among several survival rates and investigator-
defi ned hypotheses. Aebischer (1999) used 
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generalized linear models and likelihood-
ratio theory to develop hypothesis-testing proce-
dures for complex Mayfi eld models for nests that 
were visited daily or for which date of failure 
could otherwise be determined.

Biologists are realizing that model selection 
and parameter estimation should be empha-
sized over hypothesis testing to advance our 
understanding of many ecological problems 
(Cherry 1998, Johnson 1999, Anderson et al. 
2000). The information-theoretic approach 
(Burnham and Anderson 2002) off ers an alterna-
tive paradigm for model selection and inference 
that is less subjective than statistical hypothesis 
testing.

Here, I off er a straightforward alternative 
to logistic regression, based on a generalized 
linear model that allows for varying visitation 
intervals. The method is easily implemented 
with readily available statistical so	 ware and 
requires no assumptions about when nest losses 
occur. I demonstrate the method by applying 
it to previously published data sets and illus-
trate how it can be used to model the eff ects 
of various biological and nonbiological factors 
on daily nest survival. I compare parameter 
estimates obtained from this method with esti-
mates generated by the nest survival model 
in program MARK, and discuss similarities 
and diff erences in the two approaches. The 
examples I give illustrate how the combination 
of generalized linear models and information-
theoretic methods for model selection (along 
with commonly available statistical so	 ware) 
provides ornithologists with a powerful and 
unifi ed, yet easily implemented, approach to 
analyzing nest success data. 
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An alternative to logistic regression is based on a 
special class of statistical models known as generalized 
linear models (Nelder and Wedderburn 1972), which 
consist of three components: a random component 
identifying the probability distribution of the response, 
which must be a member of the exponential fam-
ily; a systematic component that is a linear predictor 
function of explanatory variables; and a link function 
relating the linear predictor to the expected value of 
the random component. A link function must be mono-
tonic and diff erentiable with respect to the unknown 
parameter or parameters. The logistic  regression model 

is a generalized linear model with a binomial response 
distribution, a systematic component based on the lo-
gistic function (Hosmer and Lemeshow 1989), and the 
logit link function (log

e
[p/(1 – p)], where p is the prob-

ability of a success).
Consider a single nest from a random sample of 

nests from some hypothetical population. Let t be 
the length of an observation interval (in days) for 
that nest. The probability that the clutch survives the 
interval is θ = st, where s is a daily survival rate that 
depends on the value of some explanatory variable 
x. The random component of our generalized linear 
model is the binomial distribution with probability of 
success equal to θ.

The daily survival rate is modeled in terms of x 
through the choice of an appropriate predictor func-
tion, which in our case should yield values between 
zero and one. As is done in logistic regression, we use 
the S-shaped logistic function.

  (1)

The systematic component of our generalized linear 
model is then [s(x)]t.
Next, we consider the function

  (2)

The above function is monotonic and diff erentiable 
with respect to θ, and it can be shown that g(θ) = 
β

0
 + β

1
x, which satisfi es the criteria for a link func-

tion in a generalized linear model. Those three com-
ponents—the binomial response distribution, the 
predictor function given in Expression 1, and the link 
function given in Expression 2—completely specify 
our generalized linear model. The model (herea	 er 
“the logistic-exposure model”) is similar to the logis-
tic regression model but diff ers in the form of the link 
function. The logistic-exposure link function contains 
an exponent (1/t) in the numerator and denominator 
that is not present in the logistic-regression link func-
tion. The exponent is necessary to account for the fact 
that probability of surviving an interval depends on 
interval length.

Assumptions underlying the logistic-exposure 
model are that all nests survive or fail independently 
of one another and that daily survival probabilities 
are homogeneous among nest-days having the same 
values of explanatory variables. The fi rst of those is 
standard for Mayfi eld-like estimators. The second 
assumption is much less restrictive than that which 
is necessary for Mayfi eld’s method, namely that 
daily survival rates must be homogeneous within and 
among nests.

 In terms of analysis, the parameters of interest are 
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the regression coeffi  cients (βk) that describe the eff ects 
of the explanatory variable(s) on daily survival rate. 
A	 er the regression coeffi  cients have been estimated, 
daily survival rate estimates for various values of 
the explanatory variable(s) can be computed from 
Expression (1). Estimates of the regression coeffi  cients 
are obtained by the method of maximum likelihood, 
just as in logistic regression. Although the likelihood 
function must be maximized numerically and there 
are no explicit formulas for the regression coeffi  -
cients, estimates and their standard errors are easily 
obtained with commonly available statistical so	 ware 
(e.g. S, SAS).

To illustrate the method, I consider data on dep-
redation rates of 46 Yellow-breasted Chat (Icteria 
virens) nests (Burhans and Thompson 1999). The 
authors used logistic regression on nest fates to 
evaluate eff ects of nest parasitism (parasitized vs. 
not parasitized) and average patch size (small vs. 
large). Because both explanatory variables are cat-
egorical and take on only two values, we can estimate 
depredation rates for each category using standard 
estimators and compare them with estimates ob-
tained with logistic regression on nest fates, and 
with estimates obtained with the logistic-exposure 
method. Somewhat surprisingly, apparent rates 
and those obtained with the Johnson estimator are 
similar for parasitized nests (Table 1), assuming 22 
days from nest initiation to fl edging (Thompson and 
Nolan 1973). However, apparent rates, because of the 
bias noted by Mayfi eld, are considerably lower than 
Johnson estimates for nests that were not parasitized. 
As expected, estimates from logistic regression on 
nest fates are similar to apparent rates, especially for 
nests that were not parasitized. 

I used PROC GENMOD (SAS Institute 1997; 
Appendix 1) to fi t a logistic-exposure model to the 
Yellow-breasted Chat data. Estimated nest depre-
dation rates were generally greater than both the 
apparent rates and estimates derived from logistic re-
gression on nest fates (Table 1). Logistic-exposure esti-
mates from the model without an interaction between 
parasitism status and patch size were somewhat 
similar to Johnson estimates, and logistic-exposure 

estimates from the model that included an interaction 
term were identical to Johnson estimates.

The logistic-exposure model, like logistic regres-
sion, also can be used with continuous explanatory 
variables. As an example, consider the 1976 sample 
of Blue-winged Teal (Anas discors) nests from Kle�  
and Johnson (1982; Table 2). The sample of nests is 
from a 37-km stretch of right-of-way along Interstate 
94 in Stutsman and Kidder counties, North Dakota. 
Investigators recorded the perpendicular distance from 
each nest to the road surface. Mayfi eld nest success for 
220 nests (sample size diff ers slightly from Kle�  and 
Johnson) was 28.6%, but hatch rates appeared to be 
greater for nests closer to the road (Table 2). I used 
PROC GENMOD to fi t a logistic-exposure model of 
daily survival rate involving a linear term for distance 
to the road (ROAD). Coeffi  cients for the constant term 
and ROAD were 3.6665 (SE = 0.1985) and –0.0161 (SE = 
0.0080), respectively. Substituting those values into 
Expression 1 and evaluating the function over the 
range of observed values for ROAD gives a logistic-
exposure model in which estimates of daily mortality 
rate (1 – daily survival rate) are close to Mayfi eld esti-
mates for nests closer to the road (≤25.3 m), but larger 
than the Mayfi eld estimate for nests farthest from 
the road (>25.3 m; Fig. 1). Under the linear logistic-
exposure model, the odds ratio (Hosmer and Lemeshow 
1989) for an increase of 10 m from the road is e10(–0.0161) = 
0.85 (95% confi dence interval = [0.72, 1.00]); that is, for 
every 10-m increase in distance to the road, the daily 
survival rate decreased by a factor of 0.85. 

T���
 1. Comparison of several estimates of depredation rate of Yellow-breasted Chat nests (Burhans and 
Thompson 1999), including observed depredation rate (Apparent), Johnson’s (1979) estimator, logistic 
regression of observed nest depredations assuming no interaction between parasitism status and patch size, 
logistic-exposure model assuming no interaction, and logistic-exposure model allowing for interaction.

 Estimated nest depredation rate (%)

 
Logistic 

 Logistic-exposure

Parasitized Patch size n Apparent Johnson regression No interaction Interaction

Yes Large 10   70 68 72 73 68
 Small   3 100 99 93 97 99
No Large 13   31 47 29 39 47
 Small 20   65 71 66 73 71

T���
 2. Mayfi eld nest success rate of Blue-winged 
Teal in relation to distance from an interstate 
high way in North Dakota, 1976 (Kle�  and Johnson 
1982).

 Distance to highway (m)

 0–12.8 12.9–25.3 25.4–49.7

Number of nests 74 73 73
Exposure days 1,278 1,204 977
Daily mortality rate 0.030 0.032 0.049
Mayfi eld success (%) 35.8 32.6 18.0
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Here, I consider examples involving cat-
egorical and time-specifi c, continuous explana-
tory variables, and use Akaike’s Information 
Criterion (AIC; Burnham and Anderson 2002) 
to rank candidate models. I re-analyze four data 
sets previously examined by Kle�  and Johnson 
(1982) for variation in daily survival rates 
related to nest age and date. The data sets are 
of Mallard (A. platyrhynchos) and Blue-winged 
Teal nests found along Interstate 94 right-of-
way in 1976 and 1977. Basic information on each 
data set is given in table 1 of Kle�  and Johnson 
(1982), with the exception of the previously 
noted discrepancy in sample size in the 1976 
Blue-winged Teal data set.

Kle�  and Johnson (1982) used probability 
theory to partition nest losses and exposure 
days into 5-day age classes (AGE) and 10-day 
calendar periods (DATE), and calculated daily 

mortality rates for each combination of AGE 
and DATE. They then used analysis of variance 
methods to fi t various models involving linear 
and quadratic eff ects of AGE (A and AA), linear 
and quadratic eff ects of DATE (D and DD), and 
interaction between AGE and DATE (AD). They 
also considered joint linear models in AGE (A1 + 
A2), which intersect at the 11–15 day AGE cate-
gory. Mean-square error and signifi cance levels 
of each eff ect were used to compare models.

I treated each visitation interval for a nest as 
an observation and computed the average age 
(in days) and average date (Julian) during each 
interval. For example, a 6-day-old nest found on 
day 140 and revisited on day 147 was assigned 
an age of 9 days and a date of 143. I used PROC 
GENMOD to fi t logistic-exposure models that 
included the same terms considered by Kle�  
and Johnson (1982). In addition, I considered 
a constant-survival logistic-exposure model 
(CONSTANT) in which time of loss is unknown. 
I used a second-order variant of AIC (AIC

c 
;
 

Burnham and Anderson 2002) to rank candidate 
models from most to least supported. I used the 
number of observation intervals as the sample 
size (n) when computing AIC

c
. Values of ∆AIC

c
, 

the diff erence in AIC
c
 between the model in 

question and the one with lowest AIC
c 
, were 

computed for each model. Small values of 
∆AIC

c
 indicate models that have substantial 

support that should be considered when mak-
ing inferences (Burnham and Anderson 2002). I 
also computed the Akaike weight (wi; Burnham 
and Anderson 2002) that can be considered as 
the weight of evidence supporting model i.

For the 1976 Blue-winged Teal data set, no 
single model stands out as clearly best (Table 3). 
The model involving a linear eff ect of age has the 
lowest AIC

c
 and largest wi, followed closely by 

the CONSTANT model. Either model has more 
support than the A + D model, which is Kle�  and 
Johnson’s (1982) best-fi � ing model. For Mallards 
in 1976, the A1 + A2 model has the most support 
and is also Kle�  and Johnson’s (1982) best-fi � ing 
model. For Blue-winged Teal in 1977, the A1 + A2 
model stands out as clearly best and is consistent 
with fi ndings of Kle�  and Johnson (1982). A linear 
eff ect of age is the best-fi � ing model for Mallards 
in 1977, whereas Kle�  and Johnson (1982) 
selected the A1 + A2 model. Inspection of the plot 
of raw daily mortality rates (m) versus nest age 
reveals why the A1 + A2 model was Kle�  and 
Johnson’s (1982) best-fi � ing model (Fig. 2). The 

F��. 1. Daily mortality rate of Blue-winged Teal 
nests in relation to distance from an interstate high-
way in North Dakota, 1976 (Klett and Johnson 1982). 
Filled circles denote daily mortality rates (Mayfield 
1961) for nests grouped into three categories on the 
basis of distance to highway edge. Distance categories 
are 0–12.8 m (n = 74; median = 8.8), 12.9–25.3 m (n = 
73; median = 20.4), and 25.4–49.7 m (n = 73; median = 
31.9). The solid line denotes fitted values from a 
logistic-exposure model involving a linear term for 
distance to the highway edge.
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logistic-exposure model, although linear in the 
logistic scale, implies a curvilinear relationship 
between m and age that closely matches the raw 
data, and, therefore, Kle�  and Johnson’s (1982) 
A1 + A2 model. That illustrates an important 

advantage of the linear logistic-exposure model, 
namely, that it has one fewer parameter than 
Kle�  and Johnson’s (1982) A1 + A2 model and is, 
therefore, more parsimonious.

As an alternative to analyzing the four data 
sets separately, the logistic-exposure method 
can be used to analyze them comprehensively, 
allowing for eff ects of species (S) and year (Y). 
To illustrate, I used AIC

c
 to evaluate 24 candi-

date models, including the CONSTANT model; 
models involving various combinations of Y, S, 
A, D, and AD; and models involving combina-
tions of Y, S, A1, A2, and D. Before proceeding 
with the analysis, it is advisable to examine the 
adequacy of the global model (candidate model 
with the most parameters) for goodness-of-fi t 
(Anderson and Burnham 2002). Failure of the 
global model to adequately portray variation 
in the data would indicate either a structural 
problem with the model (e.g. omission of an 
important explanatory variable), or perhaps 
an invalid assumption (e.g. assuming that sur-
vival rates are homogeneous when they are 
not). Hosmer and Lemeshow (1989) proposed a 
test based on grouping the values of estimated 
probabilities into deciles and calculating a 
Pearson chi-square statistic (Ĉ) from the 2 × 10 
table of observed and expected outcomes. In the 
present example, Ĉ = 4.07 for the model involv-
ing Y, S, A, D, and AD, which, when compared 
to a chi-square distribution with df = 8, gives P = 
0.85. Thus, the global model fi ts the data well.

F��. 2. Daily mortality rate of Mallard nests along an 
interstate highway in North Dakota in 1977, in rela-
tion to number of days since initiation. Filled circles 
and short-dashed line denote observed mortality rates 
from figure 1 of Klett and Johnson (1982). The solid 
line is the logistic-exposure model involving a linear 
effect of age. Long-dashed lines represent 90% confi-
dence limits for the logistic-exposure age model.

T���
 3. Eff ects of nest age and date on daily mortality rates of Mallard and Blue-winged Teal nests along 
an interstate highway in North Dakota, 1976–1977 (Kle�  and Johnson 1982). Scaled values of Akaike’s 
Information Criterion (∆AIC

c
) and Akaike weights (wi) are presented for nine logistic-exposure models. 

�������� is a constant-survival model; A and D represent linear eff ects of age and date; AA and DD represent 
quadratic eff ects; AD represents the interaction; and A1 and A2 represent linear eff ects of age for <13 and 
≥13 days.

 1976 1977

 Blue-winged Teal Mallard Blue-winged Teal Mallard

Model ∆AIC
c
 wi ∆AIC

c
 wi ∆AIC

c
 wi ∆AIC

c
 wi

SCONSTANT 0.22 0.18 0.42 0.22 7.39 0.01 8.98 <0.01
SA 0.00 0.21 b 2.16 0.09 2.77 0.10 0.00 0.31 b

SA + AA 1.96 0.08 1.57 0.12 2.18 0.14 1.80 0.13
SA1 + A2 1.17 0.11 0.00 0.27 a,b 0.00 0.41 a,b 1.43 0.15 a

SA + D 0.65 0.15 a 3.60 0.04 4.47 0.04 1.26 0.17
SA + D + AD 1.62 0.09 5.64 0.02 5.75 0.02 2.84 0.08
SA + AA + D 2.62 0.06 2.92 0.06 3.84 0.06 3.15 0.06
SA1 + A2 + D 1.83 0.08 1.15 0.15 1.52 0.19 2.86 0.07
SA + AA + D + DD 3.36 0.04 4.87 0.02 5.58 0.03 5.20 0.02

a Kle�  and Johnson’s (1982) best-fi � ing models.
b Best-fi � ing logistic-exposure models on the basis of AIC

c
.
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Of the 24 candidate models, the two most 
supported models had ∆AIC

c
 values <1 and 

Akaike weights >0.2 (Table 4). Both models 
involved eff ects for species, year, and either 
linear or joint-linear eff ects of age. Year was 
obviously an important eff ect, occurring in 
all models with Akaike weights >0.001. Age 
eff ects, whether linear or joint-linear, were also 
important, occurring in all models with Akaike 
weights >0.01. Burnham and Anderson (2002) 
advocate taking a weighted average of param-
eter estimates across all models, using the wi as 
weights, and computing variance estimates that 
refl ect both uncertainty in parameter estimates 
from a given model and uncertainty in select-
ing that model. Model averaging supported the 
above fi ndings and indicated that date eff ects, 
including the age × date interaction, were neg-
ligible (Table 5), which suggests that estimated 
hatch rates for each species–year combination 
could be calculated as the product of age-
specifi c daily survival rates (Johnson 1979). 
That method resulted in estimated Mallard 
hatch rates equal to 0.19 and 0.53, compared 
with Kle�  and Johnson’s (1982) estimates of 
0.17 and 0.43 for 1976 and 1977, respectively. 
Blue-winged Teal hatch rates were 0.26 and 0.59 
in 1976 and 1977, respectively, compared with 
Kle�  and Johnson’s (1982) 0.30 and 0.51.

R�
��� E��
��� �
� M��
� M��
��

Well-designed nesting studies o	 en feature 
replication in space, time, or both. The aim of 
multisite, multiyear studies is to help ensure 
that results are as broadly applicable as possible 
by considering spatial and temporal variation 
in the process under study. If the study sites or 
study years can reasonably be assumed to rep-
resent a random sample from some larger set of 
sites or years, then those factors are most appro-
priately modeled as random eff ects. In contrast, 
variables of specifi c interest, such as habitat 
type or management treatment, are typically 
treated as fi xed eff ects. Mixed models include 
both random and fi xed eff ects. Generalized lin-
ear mixed models (Breslow and Clayton 1993) 
allow for inclusion of random eff ects in general-
ized linear models. Random eff ects are typically 
assumed to follow normal distributions with 
zero mean and unknown variances, termed 
“variance components.”

I illustrate use of the logistic-exposure 

method in a mixed-model se� ing with data 
from Reynolds et al. (2001). Systematic searches 
for duck nests were conducted in two cover 
types (Conservation Reserve Program [CRP] 
fi elds and planted cover on U.S. Fish and 

T���
 4. Model selection criteria for the six most 
supported logistic-exposure models of daily 
survival rate of Mallard and Blue-winged Teal nests 
found along an interstate highway in North Dakota, 
1976–1977 (Kle�  and Johnson 1982). Twenty-four 
candidate models, including a constant-survival 
model; models involving various combinations of 
eff ects for year (Y) and species (S), linear eff ects 
of nest age (A), date (D), and their interaction 
(AD); and models involving combinations of Y, 
S, linear eff ects of age for nests <13 (A1) and ≥13 
days (A2), and D were considered. K is the number 
of parameters in the model, Log

e
(L) is the value 

of the maximized log-likelihood function, AIC
c
 is 

Akaike’s Information Criterion adjusted for small-
sample bias, ∆AIC

c
 is the scaled value of AIC

c
, and 

wi is the Akaike weight. The remaining candidate 
models had ∆AIC

c
 > 3.6 and wi < 0.05.

Model K Log
e
(L) AIC

c
 ∆AIC

c
 wi

SY + S + A1 + A2 5 –669.2 1,348.5 0.0 0.29
SY + S + A 4 –670.6 1,349.1 0.7 0.21
SY + A1 + A2 4 –671.1 1,350.3 1.8 0.12
SY + S + A1 + A2 + D 6 –669.2 1,350.5 2.0 0.11
SY + A 3 –672.4 1,350.9 2.4 0.09
SY + S + A + D 5 –670.5 1,351.1 2.7 0.08

T���
 5. Model-averaged estimates of regression 
coeffi  cients from logistic-exposure models relating 
daily survival rate of Mallard and Blue-winged 
Teal nests (Kle�  and Johnson 1982) to year, a linear 
eff ect of nest age, a linear eff ect of Julian date, age 
× date interaction, and joint-linear eff ects of age for 
nests <13 and ≥13 days old. Standard errors refl ect 
both uncertainty in parameter estimates from 
a given model and uncertainty in selecting that 
model (Burnham and Anderson 2002). 

Eff ect Coeffi  cient Standard error

Intercept 4.055 0.476
Species
 Mallard –0.175 0.104
 Blue-winged Teal  0 0
Year
 1976 –0.966 0.153
 1977  0 0
Age 0.011 0.011
Date <0.001 0.002
Age × date <0.001 <0.001
Age <13 –0.042 0.026
Age ≥13 0.007 0.007
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Wildlife Service Waterfowl Production Areas 
[WPAs]) on a sample of 10.4-km2 plots from 
the U.S. prairie pothole region. Reynolds et al. 
(2001) treated the plots as random eff ects in a 
randomized block design and used ANOVA to 
estimate the diff erence in daily survival rates 
between the two cover types. I used PROC 
NLMIXED (SAS Institute 1999; Appendix 2) to 
fi t a logistic-exposure model to data for 2,698 
Blue-winged Teal nests from 97 plots that were 
searched in 1992–1995. The model included 
cover type as a fi xed eff ect and plot as a random 
eff ect. The estimated diff erence in the logit scale 
between CRP and WPA cover types was 0.0097, 
with a standard error of 0.0577. An approximate 
95% confi dence interval for the logit diff erence is 
0.0097 ± 2 × 0.0577, which includes zero and sup-
ports the conclusion of Reynolds et al. (2001) that 
nests in CRP cover and nests in WPA cover sur-
vived at about the same rate. The logistic-expo-
sure approach has at least two advantages over 
Reynolds et al.’s approach: (1) estimated survival 
rates are constrained to the (0,1) interval with the 
logistic-exposure approach; and (2) the logistic-
exposure model can be used with group-, nest-, 
and time-specifi c explanatory variables, whereas 
Reynolds et al.’s approach can be used only with 
group-specifi c explanatory variables.

L�������-E������
 C�����
� ���� P������ 
MARK

Dinsmore et al. (2002) used the nest sur-
vival model in program MARK to model the 
daily survival of Mountain Plover (Charadrius 
montanus) nests as a function of the sex of the 
incubating adult, year, linear, and quadratic 
terms for time (T and TT), and linear terms for 
nest age (AGE), maximum daily temperature 
(TEMP), and daily precipitation (PRECIP). 
Twelve candidate models were ranked on the 
basis of AIC

c
 values. I used PROC GENMOD 

to apply the logistic-exposure method to each 
of the 12 candidate models and computed AIC

c
 

for each model. I averaged daily values of AGE, 
T, TEMP, and PRECIP within each observation 
interval ( = 4.3 days, n = 1,336) and used the 
averages as explanatory variables in logistic-
exposure models.

Three of the 12 candidate models (SCONSTANT , 
SSEX, and SYEAR) did not involve time-specifi c 
eff ects. Deviance values from those three 
models were identical for the logistic-exposure 
and program MARK methods (Table 6). 
Deviance is a measure of discrepancy between 
observed and fi � ed values and is defi ned as 
–2× the diff erence of the log likelihood of the 

T���
 6. Model selection results of analyzing daily survival rates of Mountain Plover nests (Dinsmore et al. 
2002) with the logistic-exposure (L-E) method, compared with results of using the nest survival model of 
program MARK. Explanatory variables are sex, year, nest age (AGE), precipitation (PRECIP), maximum 
temperature (TEMP), and linear (T) and quadratic (TT) eff ects of time. Program MARK used daily values 
for AGE, PRECIP, TEMP, T, and TT; whereas logistic-exposure results are based on average values for each 
observation interval. K is the number of parameters, and wi is the Akaike weight. Deviance is a measure of 
discrepancy between observed and fi � ed values and is defi ned as –2× the diff erence of the log likelihood of 
the model of interest and the saturated model for the data. Program MARK results are from Dinsmore et al. 
(2002).

 Deviance AIC
c
 ∆AIC

c
 wi

Model  K MARK L-E MARK L-E MARK L-E MARK L-E

SSEX+AGE+T+TT+PRECIP 6 858.29 855.57 870.39 867.64 0.00 0.00 0.56 0.83
SSEX+AGE+T+TT 5 862.09 862.03 872.15 872.07 1.76 4.44 0.23 0.09
SSEX+AGE  3 868.12 868.11 874.14 874.12 3.75 6.49 0.09 0.03
SSEX+AGE+T+TT+TEMP 6 862.06 862.01 874.16 874.07 3.76 6.43 0.09 0.03
SSEX+AGE+T 4 868.05 868.04 876.10 876.07 5.71 8.44 0.03 0.01
SSEX+T+TT 4 888.92 889.02 896.97 897.05 26.58 29.41 0.00 0.00
SYEAR+T+TT 8 885.07 885.14 901.25 901.25 30.85 33.62 0.00 0.00
SSEX+T 3 895.61 895.61 901.64 901.63 31.25 33.99 0.00 0.00
SSEX 2 897.76 897.76 901.77 901.76 31.38 34.13 0.00 0.00
SCONSTANT 1 902.29 902.29 904.29 904.29 33.90 36.65 0.00 0.00
SYEAR 6 893.30 893.30 905.40 905.36 35.01 37.72 0.00 0.00
SYEAR+T 7 891.54 891.54 905.68 905.62 35.29 37.99 0.00 0.00
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model of interest and the saturated model for 
the data (McCullagh and Nelder 1989). The 
saturated model contains a parameter for each 
data point, thus providing a perfect fi t to the 
data, and the maximum possible log likeli-
hood. Logistic-exposure and program MARK 
results for all models involving time-specifi c 
eff ects were nearly identical, except for the 
model involving PRECIP. Both methods identi-
fi ed that model as the most supported on the 
basis of AIC

c
 (Table 6). The best-fi � ing logistic-

exposure model (standard errors are shown 
below in parentheses) was 

log
e 
(s/[1 – s]) = 

 3.71 + 0.38 × SEX + 0.06 × AGE – 
 (0.43)  (0.17) (0.01)

 0.06 × T + 0.001 × TT – 2.09 × PRECIP
 (0.03) (0.0004) (0.79)

Dinsmore et al.’s (2002) best-fi � ing model was

log
e
 (s/[1 – s]) =

 3.23 + 0.37 × SEX + 0.06 × AGE –
 (0.61) (0.17) (0.01)

 0.06 × T + 0.001 × TT – 1.08 × PRECIP
 (0.04) (0.0007) (0.48)

The logistic-exposure method estimated a 
stronger negative eff ect of precipitation than 
program MARK. In addition, the logistic-
exposure model resulted in a smaller deviance 
value, which suggests that it fi t the data be� er 
than the program MARK model.

D��������


More than 40 years have passed since 
Mayfi eld (1961) drew a� ention to the bias in 
the apparent estimator of nest success. In that 
time, numerous papers have been published 
that emphasized or illustrated Mayfi eld’s point, 
off ered solutions to the problem, evaluated or 
compared alternative estimators, and assessed 
the infl uence of various violations in assump-
tions. The bias in the apparent estimator of 
nest success is now widely recognized, and 
Mayfi eld’s method or some suitable alterna-
tive has become the norm for estimating nest 
success. 

Despite all the a� ention the problem has 
received, numerous papers have appeared 

recently that present results of logistic regres-
sion analyses on nest fate (e.g. Hanski et al. 
1996, Burhans and Thompson 1999, Willson 
and Gende 2000). In many papers, the authors 
employed Mayfi eld’s method (or some alterna-
tive [e.g. Bart and Robson 1982]) for estimating 
nest success, indicating that they were aware of 
the bias in apparent nest success, yet they con-
ducted logistic regression analyses on what is 
essentially apparent nest success (e.g. Frederick 
and Collopy 1989, Maxson and Riggs 1996, 
Zane� e and Jenkins 2000). I suspect that authors 
recognized the bias associated with logistic 
regression on nest fate, but were unsure how to 
deal with it. For example, Burhans et al. (2002) 
acknowledged that their logistic models did not 
account for the eff ect of exposure period. They 
a� empted to minimize the eff ect by locating 
nests early in incubation, so that exposure would 
not vary greatly among nests. Pasitschniak-Arts 
et al. (1998) and Garre� son and Rohwer (2001) 
also recognized the problem and tried to deal 
with it by including number of exposure days as 
an explanatory variable in their logistic regres-
sion models. Willson and Gende (2000) were 
obviously aware of the problem and justifi ed 
their use of logistic regression by noting that 
apparent and Mayfi eld nest success rates were 
“closely correlated.”

Whatever the reason for its misuse, logistic 
regression (in which the unit of analysis is the 
nest and nest fate is the response) is inappropri-
ate when applied to a sample of nests found at 
various ages, unless inactive nests can be found 
with the same probability as active ones. Those 
are exactly the same conditions under which the 
apparent estimator of nest success is unbiased, 
and those conditions rarely occur in real-world 
nesting studies.

Fortunately for ornithologists, the logistic-
exposure model provides access to all the advan-
tages of logistic regression, while accounting 
for the bias noted by Mayfi eld (1961, 1975) and 
others. The diff erence between logistic regres-
sion and the logistic-exposure model is in the 
link function. The link function for the logistic-
exposure model contains a “nuisance” variable, 
refl ecting the fact that nests vary in their expo-
sure time. This link function will always yield 
an estimate of the daily survival rate between 0 
and 1. Because it is a generalized linear model, 
the logistic-exposure model can be implemented 
using any generalized linear-models so	 ware 
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that accepts user-defi ned link functions. Analysts 
who are familiar with logistic regression tech-
niques should have li� le diffi  culty implementing 
the logistic-exposure method.

The primary strength of logistic regression 
lies in dealing with explanatory variables that 
are measured on a continuous scale. The logistic-
exposure model makes this type of analysis pos-
sible with nest success data, as illustrated by the 
example relating daily survival of Blue-winged 
Teal nests to distance to a highway. Standard 
summary statistics for presenting logistic 
regression results, such as odds ratios, are 
equally applicable to logistic-exposure models. 

One alternative to the logistic-exposure 
approach involves collapsing continuous explan-
atory variables into two or more categories and 
comparing daily survival rates among them (e.g. 
Winter et al. 2000). That procedure has several 
drawbacks. First, the choice of categories, includ-
ing how many and how broad, is arbitrary and 
is o	 en dictated by sample-size considerations 
rather than by other, possibly more relevant, 
criteria. Second, loss of information occurs, par-
ticularly when sample sizes are small, leading 
either to imprecise daily survival-rate estimates 
for categories with limited sample sizes or to 
unsatisfactorily broad categories. 

Another alternative to the logistic-exposure 
model is the logistic regression approach of 
Aebischer (1999), which can be considered a 
special case of the logistic-exposure model in 
which visits to nests occur daily. For most stud-
ies of nesting birds, especially when the period 
under study is more than a few days, daily vis-
its are either logistically infeasible or ill-advised 
because of the potential eff ects of increased 
disturbance on nest survival. The logistic-

exposure model requires only that the length 
of the interval and fate of the clutch during the 
interval be known. Aebischer’s (1999) method 
can be used when visitation intervals are longer 
than one day, but it requires that failure dates 
for unsuccessful nests be assumed (Table 7). 
Although the midpoint assumption, which can 
lead to partial exposure days, may be acceptable 
with Mayfi eld’s estimator, it is problematic with 
Aebischer’s (1999) method, for which observa-
tion days must be integers. Johnson (1979) rec-
ommended the unknown-date-of-loss Johnson 
estimator over Mayfi eld’s method for compre-
hensive analyses of large data sets. By way of 
analogy, the unknown-date-of-loss logistic-
exposure model would be expected to perform 
be� er than Aebischer’s (1999) method.

Time-specifi c eff ects.—The logistic-exposure 
approach can be used to model eff ects of time-
specifi c variables (Table 7). Logistic-exposure 
analyses of four Mallard and Blue-winged Teal 
data sets for time-specifi c eff ects of nest age 
and date gave results similar to those reported 
by Kle�  and Johnson (1982), who used a cum-
bersome analytic method. Because the logistic-
exposure model is based on the S-shaped 
 logistic function, estimates of daily survival rate 
are constrained between 0 and 1, which is not 
the case for Kle�  and Johnson’s (1982) method. 
In addition, nonlinear eff ects can sometimes 
be modeled using fewer parameters with the 
logistic-exposure model than with Kle�  and 
Johnson’s (1982) method.

Length of visitation intervals is a consider-
ation when designing nesting studies in the 
presence of possible time-specifi c eff ects. More-
frequent visits mean shorter intervals and more 
precise information on time-specifi c eff ects. 

T���
 7. Key diff erences and similarities among fi ve methods for analyzing nest success. Assumptions common 
to all methods (e.g. that clutches survive or fail independently of one another) are not listed.

  Mayfi eld  Johnson  Aeibischer  Dinsmore et al. Logistic-exposure
  (1961, 1975) (1979) (1999) (2002) (this article)

Explanatory variables
 Group-specifi c (categorical) Yes Yes Yes Yes Yes
 Nest-specifi c (continuous) No No Yes Yes Yes
 Time-specifi c (e.g. age) No No No Yes Yes
Complex models possible No No Yes Yes Yes
Mixed models possible No No No No Yes
Hand-calculations possible Yes No No No No
Assumptions
 Survival is constant day-to-day Yes Yes Yes No No
 Failure dates are known Yes No Yes No No
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However, increasing visitation frequency can 
increase disturbance to the nest and elevate con-
cerns over potential observer eff ects (Götmark 
1992). That important issue must be considered 
regardless of the method of analysis that is 
used. Kle�  and Johnson (1982) recommended 
that, when the objective is to estimate the hatch 
rate of duck nests with minimum bias, nest 
searches should be made approximately weekly 
throughout the nesting season during the hours 
when most laying occurs. If time-specifi c eff ects 
are likely, I would add that duck nests also 
should be rechecked at approximate one-week 
intervals to facilitate estimation of time-specifi c 
eff ects. More-frequent visits are necessary for 
passerines and other species with nesting peri-
ods considerably shorter than those of ducks.

Random eff ects and mixed models.—With data 
from Reynolds et al. (2001), I illustrated how the 
logistic-exposure method can be applied in a 
mixed-model se� ing using commonly available 
so	 ware. The method can be used with group-, 
nest-, or time-specifi c eff ects (Table 7). Each ran-
dom eff ect contributes one parameter (variance 
component) to the model. In contrast, each fi xed 
eff ect contributes one parameter for each level 
of the eff ect. When using information criteria, 
such as AIC, to evaluate mixed models, analysts 
need to be wary of values generated by certain 
so	 ware packages that fail to include the vari-
ance components in the parameter count.

Model selection.—Deciding which variables 
to include in a model and the form in which 
to include them is critically important in many 
types of data analyses, including analyses of 
nest success. Information-theoretic techniques 
for model selection have numerous advantages 
over traditional methods that are based on some 
form of hypothesis-testing, step-wise, or best-
subsets procedure (Burnham and Anderson 
2002). Information-theoretic methods based 
on AIC are well suited for logistic-exposure 
modeling of nest success. Hopefully, by identi-
fying and reporting all models that are at least 
somewhat supported by the data and applying 
model-averaging techniques, ornithologists can 
avoid situations in which two or more investi-
gators studying the same question report con-
fl icting results because of uncertainty in model 
selection.

Comparison with program MARK.—The nest 
survival model in program MARK and the 
logistic-exposure method gave similar results 

when used to model survival of Mountain 
Plover nests (Dinsmore et al. 2002). Deviance 
values were identical for models not involving 
time-specifi c eff ects, and only slightly diff erent 
for models that included time-specifi c eff ects of 
nest age, time, temperature, or precipitation. 
Parameter estimates for the eff ects of nest age 
and time were nearly identical in the program 
MARK and logistic-exposure analyses, but the 
estimated precipitation eff ect was stronger (but 
in the same direction) in the logistic-exposure 
analysis. Those results can be explained by 
examining the assumptions that underlie each 
method. Consider a clutch that is found on day 
1 and revisited t days later. Let θ denote the 
probability that the clutch survives the interval. 
In program MARK, θ is modeled as a prod-
uct of day-specifi c survival rates: θMARK = s(x

1
) 

s(x
2
)…s(xt–1

), where s(x) is the logistic function 
given in Expression (1), and x

1
, x

2
,…xt–1

 are daily 
values of the explanatory variable x. Denote the 
variance among the s(xi)’s as σ2. Implicit in the 
logistic-exposure approach is an assumption of 
constant daily survival within each interval of 
observation: θL–E = [s( )]t–1, where  is the aver-
age of the xi’s. If x is non-time-specifi c, then σ2 = 
0 and θMARK = θL–E, and the two methods are 
equivalent. If x is time-specifi c, then θMARK ≠ θL-E 
(in general), and the two approaches diff er.

The magnitude of the diff erence | θMARK – 
θL–E | will depend on the magnitude of σ2. As 
σ2 increases, we can expect | θMARK – θL–E | to 
increase. Three factors contribute to the value 
of σ2: (1) length of the observation interval, 
(2) strength of the time-specifi c eff ect (β), and 
(3) variance in xi. Length of the observation 
interval is under the control of the investigator 
and can usually be kept suffi  ciently short (e.g. 
3–5 days for passerine species and 7–10 days 
for waterfowl). It seems reasonable to expect 
that most time-specifi c eff ects will be relatively 
weak (i.e. small changes in x will result in 
small changes in s[x]) and will not contribute 
substantially to σ2, especially when observa-
tion intervals are short. Variance in xi is the 
one factor that probably has the most potential 
to substantially elevate the value of σ2. Values 
of variables, such as nest age and time, change 
sequentially one day at a time; therefore, their 
variance should be suffi  ciently small not to 
pose a concern. In contrast, weather-related 
variables, such as precipitation, can experience 
sudden and extreme shi	 s in values from one 
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day to the next and result in dramatic fl uctua-
tions in the daily survival rate. When such an 
event occurs within an observation interval, the 
value of σ2 may increase, causing | θMARK – θL–E | 
to increase. That appears to be what happened 
with the Mountain Plover data. Interestingly, 
however, the fi t of the logistic-exposure model 
was be� er than that of the program MARK 
model.

In addition to how time-specifi c eff ects are 
modeled, other diff erences and some similari-
ties exist in the logistic-exposure and program 
MARK approaches. Neither method requires 
that failure dates be known (Table 7). Probably 
the most important diff erence between the two 
methods is in the computer so	 ware used to 
perform the analyses. Analysts who are familiar 
with program MARK should have li� le dif-
fi culty using the nest survival model available 
in that program. Analysts who have not used 
program MARK, but who know how to use 
logistic regression or generalized linear-models 
so	 ware, such as SAS PROC LOGISTIC (SAS 
Institute 1997) or the S function GLM (Hastie 
and Pregibon 1992), will likely fi nd the logistic-
exposure method easier to use than program 
MARK. One advantage of program MARK is 
that AIC model-selection and model-averaging 
capabilities are built into the so	 ware, whereas 
these computations entail additional pro-
gramming in SAS, although macros for per-
forming the computations are available (see 
Acknowledgments).

Both the logistic-exposure model and program 
MARK are likelihood-based methods, relying on 
iterative procedures to maximize the likelihood 
function. The logistic exposure-method, as 
implemented with PROC GENMOD, does not 
require that starting values for the parameters 
be specifi ed. I did not experience any diffi  culties 
ge� ing PROC GENMOD to converge. On the 
other hand, program MARK can be sensitive to 
the choice of starting values for the parameters, 
sometimes leading to convergence problems (S. 
J. Dinsmore pers. comm.).

Recommendations.—In typical situations 
where the apparent estimator of nest success 
is inappropriate, logistic regression on nest 
fate is also inappropriate. The logistic-exposure 
model presented here gives ornithologists access 
to a  fl exible, suitable alternative to logistic regres-
sion that is appropriate when exposure periods 
vary. In addition, the information-theoretic 

approach to model selection provides a frame-
work that can be easily and consistently fol-
lowed by ornithologists involved in analyses of 
nest success data. I believe that the advantages 
aff orded by the information-theoretic approach 
make it a logical choice over traditional hypoth-
esis-testing methods. Used together, the logis-
tic-exposure model and AIC provide a unifi ed 
analysis tool that has potential to markedly 
accelerate our understanding of factors that 
infl uence nest success.

Although I developed the logistic-exposure 
method to facilitate complex modeling of daily 
nest survival rates (i.e. models with multiple 
explanatory variables of diff erent types with or 
without interactions), I recommend the method 
for simple models also. For example, because 
it is a unifi ed approach, the logistic-exposure 
method can be used instead of the Mayfi eld 
method to estimate nest success for one or more 
populations of nests for which daily survival 
rates are assumed constant. That approach 
obviates the assumption that nest failure dates 
are known (e.g. Mayfi eld’s midpoint assump-
tion; Table 7). Furthermore, daily survival-rate 
estimates obtained with the logistic-exposure 
method under the assumption of constant daily 
survival can be directly compared with results 
from previous studies that reported daily sur-
vival rates, including those that used Mayfi eld’s 
or Johnson’s method. The major advantage of 
using the logistic-exposure method for simple 
models is that the appropriateness of those 
models can be judged by comparing them to 
more complex models via information-theoretic 
techniques, thereby providing objective justifi -
cation (or lack thereof) for a simple model.
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available macros for performing the computations, 
please see www.npwrc.usgs.gov/resource/tools/
nestsurv/nestsurv.htm.
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A��

��� 1. Code for estimating daily nest survival 
rates with the logistic-exposure model and PROC 
GENMOD (SAS Institute 1997). In this example, 
there are two explanatory variables, parasitism 
status (parastat) and patch size (patsize). The 
CLASS statement identifi es the variables as 
categorical. Code is shown for the model without 
interaction.

/* Read in one observation for each interval of 
exposure on each nest. */
data chats;
 length survive $3;
 input nest_id parastat$ patsize$ expos survive;
 trials=1;
 if survive=’yes’ then surv=1; else surv=0;
cards;  /* sample data follow */
1 yes large 4 yes
1 yes large 3 no
2 no small 6 yes
2 no small 4 yes
more data
proc genmod data = chats;
 class parastat patsize;
 a = 1/expos;
 fwdlink link = log((_mean_**a)/(1-_mean_**a));
 invlink ilink = (exp(_xbeta_)/(1+exp(_xbeta_
)))**expos;
 model surv/trials = parastat patsize/ dist=binomial;
run;

A��

��� 2. PROC NLMIXED (SAS Institute 1999) 
code for estimating daily nest survival rates with a 
logistic-exposure model that includes both a fi xed 
(cover type) and random eff ect (study plot). 

/* Read in one observation for each interval of 
exposure on each nest. */
data bwt;
 length survive $3 cover $3;
 input nestid cover plot expos survive;
 if survive=’yes’ then surv=1;  else surv=0;
 if cover = ’wpa’ then treat=0;      /* create dummy 
variable for cover type */
 if cover=’crp’ then treat=1; 
cards;
1 wpa 101 7 yes
1 wpa 101 5 no
2 crp 101 6 yes
3 crp 101 4 yes
more data
proc sort data=bwt; by plot;
proc nlmixed data=bwt;
 parms a=3 b=0 s2u=1;
 eta = a + b*treat + u;
 expeta = exp(eta);
 s = expeta / (1 + expeta);
 p = s**expos;
 model surv ~ binomial(1,p);
 random u ~ normal(0,s2u) subject=plot;
run;


