Theory Based Process Modeling for Evaluation of Fuel Cells in Advanced Energy Systems

Rodney A. Geisbrecht National Energy Technology Laboratory

AIChE 2002 Spring National Meeting New Orleans, LA. March 11 - 15, 2002

Fuel Cell/Heat Engine Cycles in Hybrid Systems

	Fuel Cell Cycle (fuel side)		Heat Engine Firing	
	Topping	Bottoming	Direct	Indirect
Hybrids/V21 Programs				
SW	SOFC t-coflow-iir	-	GT	-
MTI	SOFC p-crossflow	-	-	GT
HW	SOFC p-coflow	-	-	GT
МСР	MCFC p-coflow	-	GT	-
FCE	MCFC p-crossflow-dir	-	-	GT
Other Concepts				
SOFC-PEMFC	SOFC p-coflow-iir	PEMFC p-coflow	-	-
POXHE-SOFC	-	SOFC p-crossflow	GT/ICE	-

Turbine Bottoming Cycle

Turbine Topping Cycle

SOFC-PEMFC Hybrid Sequestering Version

HRU - hydrogen recovery unit

Direct Fired Reforming Heat Engine-Bottoming Fuel Cell Hybrid

Motivation for Engine Based POX Reforming

Direct POX Reforming of CH4 with Dry Air to Equilibrium at 1400 F and 10 ATM.

Basic Aspects of Fuel Cell Process Modeling

- Heat and Material Balances System Integration
- Current Density Distribution Fuel Cell Sizing

Current Density Distribution for Coflow with Constant Resistivity

$$i_m/i_r = \{ (\int^{X_r} ((E_r - E_c) / (E - E_c)) dX) / X_r \}^{-1}$$

where: $i_m \equiv \text{average current density}$ $i_r \equiv \text{reference current density} = (E_r - E_c) / \Omega$

Typical Nernst Potential Curve for SOFC

1000C, 1 ATM, 1.5 Air:Fuel Equivalence Ratio, 50% Dry H2

Typical Current Density Distribution Index

Fuel Cell Process Model

Rating Stage Sequence

- splitters, mixers, heaters, restricted equilibrium reactors
- executed repeatedly during flowsheet convergence
- uses cell voltage or voltage efficiency as an input

Design Stage Sequence

- same models and physical properties packages
- executed once after flowsheet convergence
- uses a Fortran Tear Variable for discretized calculations

Important Features

- Reactant Manifolding
 - coflow, crossflow, counterflow
- Reaction Thermodynamics and Kinetics
 - reforming, shifting, carbon formation
- Temperature Effects
 - ohmic resistances, electrode activation
- Gas Diffusion Resistances
 - anode, cathode

Predicted V-I Curve with High Nernst Potential Losses

Co-flow SOFC @ 1000C/1ATM/Dry H2/2.5 AFR/95% Fuel Conversion.

Model vs SOFC Benchmark

SOFC Performance per FCHB, Fig. 5-11 at 1000C, 85% Fuel Utilization and 25% Air Utilization. Fuel (67% H2/22% CO/11% H2O).

Model vs PEMFC Benchmark

PEMFC Performance per Mark IV (Amphlett et al., 1995) for H2/ and Air at 70 C and 3 Atm.

SOFC Model Parameters

	PST (Kinoshita, 1988)	AES (Singhal, 1998)
cathode thickness, cm	0.07	0.22
anode thickness, cm	0.01	0.01
electrolyte thickness, cm	0.04	0.004
interconnect thickness, cm	0.04	0.0085
tube diameter, cm	1.27	2.2
interconnect chord length, cm	0.60	0.6 (estimated)

Derived from Kinoshita, 1988	Reference @ 1000C (FCHB)
Exp(-5.48+1210/(T+273.))	0.013
Exp(-4.51+4770/(T+273.))	0.5
Exp(-6.03-1100/(T+273.))	0.001
Exp(-6.01+10510/(T+273.))	10
	Derived from Kinoshita, 1988 Exp(-5.48+1210/(T+273.)) Exp(-4.51+4770/(T+273.)) Exp(-6.03-1100/(T+273.)) Exp(-6.01+10510/(T+273.))

Computed Network Equivalent Cell Resistance @ 1000C

ohm	-cm^2
-----	-------

PEMFC Model Parameters

D	•	4.	•	
ĸ	es 1	STI	VI	es
T Z	CDI		• •	CD

apparent cell resistivity, ohm-cm^2	0.35	derived from Fig. 6-3, FCHB for 7 mil Nafion 117
ionic resistivity, ohm-cm^2	0.19	7 mil Nafion at .09 S/cm (Jacoby, 1999)
apparent electronic resistivity, ohm-cm^2	0.16	
Activation		
Tafel slope, volts/decade	0.07	Amphlett et al.,1995
apparent exchange current density, mA/cm^2	0.04	(.0037 @ .15 mg/cm^2 Pt/C, Fischer and Wendt, 1996)
Diffusion		
limiting current density, mA/cm^2	1100	estimated/arbitrary cutoff point

Hypothetical Crossflow MCFC with DIR to Equilibrium

current density

temperature

Hypothetical Crossflow SOFC without DIR

high AFR

low AFR

Assuming AFR is Independently Variable

Acknowledgements

U.S. Department of Energy National Energy Technology Laboratory Office of Systems and Policy Support