Highlight Carbon Sequestration Science Workshop

Time: May 22-24, 2001

Place: NETL-Pittsburgh

Initiator: Curt White

Organizer: Howard Herzog

Prepared by
H. P. Loh and Pat Le
Process Engineering Division
July 20, 2001

Speakers

TOPIC	SPEAKER	AFFILIATION
Overview	Howard Herzog	MIT
Capture technology	Harry Andus	Aube Energy and Environment
Economics	Howard Herzog	MIT
Geochemistry	Bill Gunter	Alberta Research Council
Oil and gas reservoirs	Vello Kuuskraa	Advanced Research International
Coal bed methane	Gunter, Kuuskraa	(above)
Aquifers	Bill Gunter	(above)
Ocean sequestration	Howard Herzog	MIT
Chemical absorption	Gary Rochelle	Univ. of Texas
Chemical conversion	Chunshan Song	Penn State
Public perception	David Keith	СМИ

Carbon Capture Cost Analysis

- Based on <u>Economic Evaluation of Leading</u> <u>Technology Options for Sequestration of</u> <u>Carbon Dioxide</u>
 - A master of science thesis (J. David, MIT, May 2000) supervised by Howard Herzog
 - Available at http://sequestration.mit.edu/pdf/JeremyDavid.pdf

Analysis Approach

- Analyzed 14 studies for three power cycles -IGCC (6), PC (4), and NGCC (4)
- All 14 study results are adjusted to a common economic basis:

Capacity Factor75% (6570 hrs/yr)

Capital Charge Rate 15%/yr

-Coal Price (LHV) \$1.24/MBtu

Natural Gas (LHV) \$2.93/MBtu

 Performance parameters of the same power cycle are averaged and used as the input for analysis of each power cycle

MEA Systems Today

- Demonstrated, commercially mature
- Reasonable rates of absorption and stripping
- Energy use prohibitive
- Corrosion inhibitors to use carbon steel
- Cheap amine = Makeup costs acceptable
 - Significant oxidative and thermal degradation
 - Pretreatment for SO₂ removal needed

MEA Process Conditions

FEED GAS		FLUE GAS	NATURAL GAS
Pressure	(atm)	1	10-100
Gas Rate	(Mcfm)	1-3	0.001-0.1
CO ₂ Partial Pressure	(atm)	0.1	1-10
Oxygen	(%)	0.02-0.1	0-0.01
Energy/Capital Cost		1	0.1

MEA Systems for Flue Gas

Monoethanolamine

- -Fluor Daniel
- -ABB Lummus
- Praxair
- Hindered amines
 - Mitsubishi

Geological Storage

- Depleted oil and gas reservoirs
- EOR recovery
- Depleted coal bed methane (CBM) reservoirs
- Enhanced CBM (ECBM) recovery
- Deep aquifers

CO₂-EOR

- Production technology is mature
- Focused on monitoring and maximizing CO₂ uptake
- Proposed commercial projects
 - -Weyburn project, Saskachewan
 - BP project, Alaska North Slope

CO₂-EOR Expertise Required

- Geology: location of storage reservoirs
- Hydrogeology movement of fluids
- Geotechnical movement of solids
- Geochemical mass transfer and fluid-rock interaction

CO₂-EOR Industry Activity

- Considerable value-added CO₂ sequestration is already underway in U.S. Oil fields
- Off-the-shelf oil field technology can be adapted for CO₂ sequestration
- Several EOR projects in Texas, Colorado, Oklahoma, Wyoming, and Saskatchewan

CO₂-EOR Economics (Shell Projects)

- Capital costs \$0.8/Bbl
- O&M \$2.70/Bbl
- CO₂ purchase: 5Mcf/Bbl @ \$0.65/Mcf
- Shell concludes that a conventional CO₂ EOR project would be economic at \$18 per barrel of oil

CO₂-EOR Unknown and Barriers

- How much CO₂ is actually being sequestered?
- What is the long-term security/safety of sequestered CO₂?
- What is the long-term effect on the reservoirs of CO₂?
- What is the added cost of sequestration in ongoing EOR projects?

Enhanced Coal Bed Methane (ECBM)

- Technology is immature
- Require basic research and technical demonstration
- Value added recovery of CH₄
- Demonstration projects
 - San Juan Basin, New Mexico
 - Fenn-Big Valley, Alberta

ECBM Screening Criteria

- Homogeneity
- Simple structure
- Permeability > 1 milli-darcey
- Depth 300-1,500 meters

ECBM Pilots

Burlington Resources Allison Unit	BP Tiffany Unit	Alberta Research Council
San Juan Basin	San Juan Basin	Alberta Basin
 4 injectors 9 producers, 3 Mcfd injected 5 years of injection history 	 12 injectors 34 producers Mid-2001 ARI/BP/DOE joint monitoring projects 	 Single-well short- term test completed plan 5-spot once funding in place

Representative Perception of Environmental NGO on Sequestration

- Oceanic sequestration a non-starter
- Energy penalty matters
- Sources of CO₂ matters (fossil vs biomass)
- Must not be an excuse for delay
- Must not be an excuse for reduced effort on biomass
- Might support if technologies could accelerate action on mitigation
 - Based on interviews conducted by David Keith (CMU)

