

USNODC Seminar, September 2008

The Role of the Semantic Web in Oceanographic Data Management

British Oceanographic Data Centre

Presentation Overview

- > The Semantic Web
- > From codes to ontology
- ➤ The NERC DataGrid Vocabulary Server
- > Technology Usage Examples
 - Semantic cross-walk
 - SeaDataNet metadata content verification

Semantic Web

- ➤ The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation. (Tim Berners-Lee)
- ➤ In other words Web technology that delivers meaning for data and metadata
- ➤ A unit of data may be linked through a URN tag to a URL that returns an XML document stating what that data means and how it relates to other data

Semantic Web

- What does this mean in terms of oceanographic data management?
- We give data meaning in oceanographic management by tagging the data with metadata, often through the addition of codes to data streams
- Trouble is we don't always understand what each others' tags mean or how they relate
- The Semantic Web provides the framework for a distributed network delivering the information to overcome these misunderstandings

> What is a code?

My definition is:

* A tag attached to a data value that represents an object or information concept in the real world

> Ideally

Objects and concepts are:

- * Unambiguously defined
- * Universally understood
- * Unchanging

- Oceanographic data management is a long way from ideal
 - Long established practice has been to simply link a code to a short phrase of plaintext, such as

*74DS Discovery*06 Germany

 The mapping between this plaintext and the real world has been somewhat flexible to say the least

- Let us consider 'Discovery' as an example
- What did a 1980s oceanographic data manager understand by Discovery?
- > The British research vessel of course
- > But which one?
 - Scott's Antarctic Expedition ship
 - The NIO research vessel (Discovery II it was written on her bow)
 - The IOS (now NERC) research vessel

- > ICES (i.e. Harry) said
 - 74DI Scott's ship
 - 74DS NIO and IOS/NERC ships
- > NODC said
 - 74DI Scott's ship
 - 74DS NIO ship
 - 74E3 IOS/NERC ship
- ➤ ICES now recognise 74E3 as part of platforms group rationalisation
- ➤ But are we out of the woods?.....

Are these the same ship?

Lloyds say they are, so according to recognised domain governance we're OK

- ➤ The problem is that our modelling of the real world has been grossly oversimplified
- ➤ Let us consider how we could model ships by metadata – i.e. develop a 'ship' class
- The fundamental physical entity is the 'hull' identified, except for small boats, by an IMO number

- We could take IMO as the instance identifier (primary key in the relational world) of a class with the following attributes:
 - Name
 - Callsign and MMI number
 - Ownership and Flag
 - Vessel type classification
 - Size
 - Tonnage
 - Berths
 - Instrumentation configuration
- > All of these can vary with time

- So, our metadata model needs to formalise multiple attribute sets, each labelled with a valid time window
- Accessing this information resource (ship domain ontology) requires an intelligent, time-aware interface (Al mediator)
- ➤ Or we can 'cheat' by redefining the entity as an instance of a set of attributes (hull, name, call sign, governance) and giving this a 'ship code'
- Not ideal, but it's legacy compatible and seems to work

- ➤ In BODC we are currently building an organisation ontology modelling name changes, mergers and dissolutions
- ➤ Fronted by functions implemented as an SQL extension

• Current name: nmnow (code)

• Previous name: nmthen (code,date)

History: nmall (code)

- Building metadata knowledge resources requires large amounts of careful manual work
- Duplication of such work is a criminal waste
- ➤ Co-operation and sharing is the way to go
- ➤ The Semantic Web provides the infrastructure to make this possible

- ➤ This is a Semantic Web resource operated by BODC
 - Developed as part of the NERC DataGrid project
 - Adopted as the semantic element of the European Union SeaDataNet distributed data system

- The server 'payload' is an XML document covering concepts or groups of concepts (optionally organised into vocabularies)
- > Documents contain
 - Concept labels (names, abbreviations, URNs)
 - Concept definitions
 - Concept relationships to other concepts

- Concepts are represented by URNs that have the form:
 - SDN:list_id:list_version:term_id, e.g.
 - * SDN:P021:23:PHYC
 - * SDN:P021::PHYC (for current version)
 - URNs resolve to URLs by simple string substitution
 - * SDN = http://vocab.ndg.nerc.ac.uk/term
 - * P021 = P021 Null = current PHYC = PHYC
 - * Giving http://vocab.ndg.nerc.ac.uk/term/P021/current/PHYC
 - This returns the following XML document


```
<?xml version="1.0"?>
- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
     xmlns:skos="http://www.w3.org/2004/02/skos/core#"</pre>
    xmlns:dc="http://purl.org/dc/elements/1.1/">
- <skos:Concept rdf:about="http://vocab.ndg.nerc.ac.uk/term/P021/25/PHYC">
 <skos:externalID>SDN:P021:25:PHYC</skos:externalID>
 <skos:prefLabel>Phycobolin pigment concentrations in the water
    column</skos:prefLabel>
 <skos:altLabel>WC_PhycobolPig</skos:altLabel>
 <skos:definition>Concentration of phycobolin group pigments such as phycocyanin and phycoerythrin in the water column
 <dc:date>2008-03-11T11:56:27.531+0000</dc:date>
 <skos:minorMatch rdf:resource="http://vocab.ndg.nerc.ac.uk/term/P041/4/G905" />
 <skos:broadMatch rdf:resource="http://vocab.ndg.nerc.ac.uk/term/P031/8/B035" />
 <skos:broadMatch rdf:resource="http://vocab.ndg.nerc.ac.uk/term/P041/4/G378" />
 <skos:broadMatch rdf:resource="http://vocab.ndg.nerc.ac.uk/term/P051/0/002" />
 <skos:broadMatch rdf:resource="http://vocab.ndg.nerc.ac.uk/term/P051/0/014" />
 <skos:narrowMatch
    rdf:resource="http://vocab.ndg.nerc.ac.uk/term/P011/79/PHYCSPP4" />
 </skos:Concept>
 </rdf:RDF>
```


- More sophisticated access is also possible through:
 - HTTP-POX web service calls
 - SOAP web service calls
 - Interface clients

HTTP-POX service calls

- Any API method may be invoked using an HTTP get call
- Lists and terms specified in the get call parameters as URLs
- Delivers an appropriate XML document (BODCdesigned schema)
- Documentation at http://www.bodc.ac.uk/products/web_services/vocab/methods.html

SOAP web service calls

- WSDL may be found at http://vocab.ndg.nerc.ac.uk/
- Same output and documentation as HTTP-POX

>Interface clients

 Maris client set up for SeaDataNet at http://seadatanet.maris2.nl/v_bodc_vocab/welcome.aspx

 BODC clients at <u>http://vocab.ndg.nerc.ac.uk/</u> cover more vocabularies if interests extend beyond SeaDataNet

➤ Maris client home page

- ➤ Server Contents (2008-08-21)
 - 112 public lists
 - 122603 concepts
 - 78123 mappings (RDF triples)
- Server Usage 2008 (to 2008-08-21)
 - 2233803 total hits (2000000 of these attributable to robots)
 - 37462 vocabulary catalogue hits
 - 50458 vocabulary list downloads
 - 2085 vocabulary mapping queries

>What's Wrong With It?

- Historic version serving not implemented
 - * Current version served whatever version is requested
- Predicates (based on SKOS mappings) semantically limited
 - * More suited to a thesaurus than an ontology
 - * A richer predicate set exists in the triple store, but cannot be served without WSDL changes

- ➤ What's Wrong With It?
 - Vocabularies not labelled with content governance authority
 - Mappings restricted to concepts within the server
 - *If a vocabulary is to be included in a mapping then it must be loaded in the server
- Development continues to address these issues

Semantic Crosswalk Use Case

- ➤ BODC wishes to produce a GCMD DIF document from an EDMED V1.2 document
- ➤ The "parameter" sections of the two documents are populated using different vocabularies (BODC PDV and GCMD Science Keywords)
- This situation was usually addressed by having no parameter section in the output document
- > We can now do better.....

Semantic Crosswalk Use Case

➤ A list of BODC PDV terms as parameter URNs is obtained from the EDMED document, for example:

* SDN:P021:24:TEMP, SDN:P021:24:PSAL, SDN:P021:24:CPWC

This may then translated into a list of URLs

- * http://vocab.ndg.nerc.ac.uk/term/24/TEMP
- * http://vocab.ndg.nerc.ac.uk/term/24/PSAL
- * http://vocab.ndg.nerc.ac.uk/term/24/CPWC

Semantic Crosswalk Use Case

This list may be rolled into an HTTP get request thus:

- http://vocab.ndg.nerc.ac.uk/axis2/services/vocab/getRelatedRecordByTerm?subjectTerm =http://vocab.ndg.nerc.ac.uk/term/P021/current/TEMP&subjectTerm=http://vocab.ndg.nerc.ac.uk/term/P021/current/PSAL&subjectTerm=http://vocab.ndg.nerc.ac.uk/term/P021/current/CPWC&objectList=http://vocab.ndg.nerc.ac.uk/list/P041/current&predicate=255&inferences=true
- An XML document is returned containing the GCMD Science Keywords that map to the three BODC terms as both text strings and URLs
- ➤ The document may be reformatted using XSLT or XQuery to generate the "parameters" section for the DIF

- During SeaSearch an EDMED submission was repeatedly rejected by BODC, but the originators insisted there was nothing wrong with it
- The originators had built the document using vocabularies that had developed locally because no workable central governance was in place
- ➤ In SeaDataNet we were determined to prevent a recurrence of this situation by:
 - Installing vocabulary governance that works
 - Providing tools for partners to verify metadata
 CONTENT at source against master vocabularies

- > The content verification uses Semantic Web technology:
 - The SeaDataNet XML metadata schemas comprise two parts:
 - * The base schema describing the document structure
 - * Schema extension coded in Schematron describing controlled field content

- The base schema is served using a conventional online change control management system (BSCW)
- The schema extensions are added by a Web Service operated by the Russian NODC
- ➤ This builds the Schematron code using documents generated by Vocabulary Server calls based on URNs encoded in the metadata

- SeaDataNet partners may either:
 - Download the extended schema and verify their XML documents using generic XML tools like Oxygen
 - Upload their documents to and verify against the extended schema using a tool provided by the Russians.
- ➤ This significantly accelerates ingestion because issues of both structure and content are resolved prior to submission

That's All Folks

>Thank you for your attention

>Questions?

