
1.Exploratory Data Analysis

This chapter presents the assumptions, principles, and techniques necessary to gain
insight into data via EDA--exploratory data analysis.

1. EDA Introduction

What is EDA?1.  

EDA vs Classical & Bayesian2.  

EDA vs Summary3.  

EDA Goals4.  

The Role of Graphics5.  

An EDA/Graphics Example6.  

General Problem Categories7.  

2. EDA Assumptions

Underlying Assumptions1.  

Importance2.  

Techniques for Testing
Assumptions

3.  

Interpretation of 4-Plot4.  

Consequences5.  

3. EDA Techniques

Introduction1.  

Analysis Questions2.  

Graphical Techniques: Alphabetical3.  

Graphical Techniques: By Problem
Category

4.  

Quantitative Techniques5.  

Probability Distributions6.  

4. EDA Case Studies

Introduction1.  

By Problem Category2.  

Detailed Chapter Table of Contents
References
Dataplot Commands for EDA Techniques

1. Exploratory Data Analysis

http://www.itl.nist.gov/div898/handbook/eda/eda.htm [5/1/2006 9:56:13 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/eda44.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


1.   Exploratory Data Analysis - Detailed Table of
Contents  [1.]

This chapter presents the assumptions, principles, and techniques necessary to gain insight into
data via EDA--exploratory data analysis.

EDA Introduction  [1.1.]

What is EDA?  [1.1.1.]1.  

How Does Exploratory Data Analysis differ from Classical Data Analysis?  [1.1.2.]

Model  [1.1.2.1.]1.  

Focus  [1.1.2.2.]2.  

Techniques  [1.1.2.3.]3.  

Rigor  [1.1.2.4.]4.  

Data Treatment  [1.1.2.5.]5.  

Assumptions  [1.1.2.6.]6.  

2.  

How Does Exploratory Data Analysis Differ from Summary Analysis?  [1.1.3.]3.  

What are the EDA Goals?  [1.1.4.]4.  

The Role of Graphics  [1.1.5.]5.  

An EDA/Graphics Example  [1.1.6.]6.  

General Problem Categories  [1.1.7.]7.  

1.  

EDA Assumptions  [1.2.]

Underlying Assumptions  [1.2.1.]1.  

Importance  [1.2.2.]2.  

Techniques for Testing Assumptions  [1.2.3.]3.  

Interpretation of 4-Plot  [1.2.4.]4.  

Consequences  [1.2.5.]

Consequences of Non-Randomness  [1.2.5.1.]1.  

Consequences of Non-Fixed Location Parameter  [1.2.5.2.]2.  

5.  

2.  

1. Exploratory Data Analysis

http://www.itl.nist.gov/div898/handbook/eda/eda_d.htm (1 of 8) [5/1/2006 9:55:58 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Consequences of Non-Fixed Variation Parameter  [1.2.5.3.]3.  

Consequences Related to Distributional Assumptions  [1.2.5.4.]4.  

EDA Techniques  [1.3.]

Introduction  [1.3.1.]1.  

Analysis Questions  [1.3.2.]2.  

Graphical Techniques: Alphabetic  [1.3.3.]

Autocorrelation Plot  [1.3.3.1.]

Autocorrelation Plot: Random Data  [1.3.3.1.1.]1.  

Autocorrelation Plot: Moderate Autocorrelation  [1.3.3.1.2.]2.  

Autocorrelation Plot: Strong Autocorrelation and Autoregressive
Model  [1.3.3.1.3.]

3.  

Autocorrelation Plot: Sinusoidal Model  [1.3.3.1.4.]4.  

1.  

Bihistogram  [1.3.3.2.]2.  

Block Plot  [1.3.3.3.]3.  

Bootstrap Plot  [1.3.3.4.]4.  

Box-Cox Linearity Plot  [1.3.3.5.]5.  

Box-Cox Normality Plot  [1.3.3.6.]6.  

Box Plot  [1.3.3.7.]7.  

Complex Demodulation Amplitude Plot  [1.3.3.8.]8.  

Complex Demodulation Phase Plot  [1.3.3.9.]9.  

Contour Plot  [1.3.3.10.]

DEX Contour Plot  [1.3.3.10.1.]1.  

10.  

DEX Scatter Plot  [1.3.3.11.]11.  

DEX Mean Plot  [1.3.3.12.]12.  

DEX Standard Deviation Plot  [1.3.3.13.]13.  

Histogram  [1.3.3.14.]

Histogram Interpretation: Normal  [1.3.3.14.1.]1.  

Histogram Interpretation: Symmetric, Non-Normal,
Short-Tailed  [1.3.3.14.2.]

2.  

Histogram Interpretation: Symmetric, Non-Normal,
Long-Tailed  [1.3.3.14.3.]

3.  

Histogram Interpretation: Symmetric and Bimodal  [1.3.3.14.4.]4.  

Histogram Interpretation: Bimodal Mixture of 2 Normals  [1.3.3.14.5.]5.  

14.  

3.  

3.  

1. Exploratory Data Analysis

http://www.itl.nist.gov/div898/handbook/eda/eda_d.htm (2 of 8) [5/1/2006 9:55:58 AM]



Histogram Interpretation: Skewed (Non-Normal) Right  [1.3.3.14.6.]6.  

Histogram Interpretation: Skewed (Non-Symmetric) Left  [1.3.3.14.7.]7.  

Histogram Interpretation: Symmetric with Outlier  [1.3.3.14.8.]8.  

Lag Plot  [1.3.3.15.]

Lag Plot: Random Data  [1.3.3.15.1.]1.  

Lag Plot: Moderate Autocorrelation  [1.3.3.15.2.]2.  

Lag Plot: Strong Autocorrelation and Autoregressive
Model  [1.3.3.15.3.]

3.  

Lag Plot: Sinusoidal Models and Outliers  [1.3.3.15.4.]4.  

15.  

Linear Correlation Plot  [1.3.3.16.]16.  

Linear Intercept Plot  [1.3.3.17.]17.  

Linear Slope Plot  [1.3.3.18.]18.  

Linear Residual Standard Deviation Plot  [1.3.3.19.]19.  

Mean Plot  [1.3.3.20.]20.  

Normal Probability Plot  [1.3.3.21.]

Normal Probability Plot: Normally Distributed Data  [1.3.3.21.1.]1.  

Normal Probability Plot: Data Have Short Tails  [1.3.3.21.2.]2.  

Normal Probability Plot: Data Have Long Tails  [1.3.3.21.3.]3.  

Normal Probability Plot: Data are Skewed Right  [1.3.3.21.4.]4.  

21.  

Probability Plot  [1.3.3.22.]22.  

Probability Plot Correlation Coefficient Plot  [1.3.3.23.]23.  

Quantile-Quantile Plot  [1.3.3.24.]24.  

Run-Sequence Plot  [1.3.3.25.]25.  

Scatter Plot  [1.3.3.26.]

Scatter Plot: No Relationship  [1.3.3.26.1.]1.  

Scatter Plot: Strong Linear (positive correlation)
Relationship  [1.3.3.26.2.]

2.  

Scatter Plot: Strong Linear (negative correlation)
Relationship  [1.3.3.26.3.]

3.  

Scatter Plot: Exact Linear (positive correlation)
Relationship  [1.3.3.26.4.]

4.  

Scatter Plot: Quadratic Relationship  [1.3.3.26.5.]5.  

Scatter Plot: Exponential Relationship  [1.3.3.26.6.]6.  

Scatter Plot: Sinusoidal Relationship (damped)  [1.3.3.26.7.]7.  

26.  

1. Exploratory Data Analysis

http://www.itl.nist.gov/div898/handbook/eda/eda_d.htm (3 of 8) [5/1/2006 9:55:58 AM]



Scatter Plot: Variation of Y Does Not Depend on X
(homoscedastic)  [1.3.3.26.8.]

8.  

Scatter Plot: Variation of Y Does Depend on X
(heteroscedastic)  [1.3.3.26.9.]

9.  

Scatter Plot: Outlier  [1.3.3.26.10.]10.  

Scatterplot Matrix  [1.3.3.26.11.]11.  

Conditioning Plot  [1.3.3.26.12.]12.  

Spectral Plot  [1.3.3.27.]

Spectral Plot: Random Data  [1.3.3.27.1.]1.  

Spectral Plot: Strong Autocorrelation and Autoregressive
Model  [1.3.3.27.2.]

2.  

Spectral Plot: Sinusoidal Model  [1.3.3.27.3.]3.  

27.  

Standard Deviation Plot  [1.3.3.28.]28.  

Star Plot  [1.3.3.29.]29.  

Weibull Plot  [1.3.3.30.]30.  

Youden Plot  [1.3.3.31.]

DEX Youden Plot  [1.3.3.31.1.]1.  

31.  

4-Plot  [1.3.3.32.]32.  

6-Plot  [1.3.3.33.]33.  

Graphical Techniques: By Problem Category  [1.3.4.]4.  

Quantitative Techniques  [1.3.5.]

Measures of Location  [1.3.5.1.]1.  

Confidence Limits for the Mean  [1.3.5.2.]2.  

Two-Sample t-Test for Equal Means  [1.3.5.3.]

Data Used for Two-Sample t-Test  [1.3.5.3.1.]1.  

3.  

One-Factor ANOVA  [1.3.5.4.]4.  

Multi-factor Analysis of Variance  [1.3.5.5.]5.  

Measures of Scale  [1.3.5.6.]6.  

Bartlett's Test  [1.3.5.7.]7.  

Chi-Square Test for the Standard Deviation  [1.3.5.8.]

Data Used for Chi-Square Test for the Standard Deviation  [1.3.5.8.1.]1.  

8.  

F-Test for Equality of Two Standard Deviations  [1.3.5.9.]9.  

Levene Test for Equality of Variances  [1.3.5.10.]10.  

Measures of Skewness and Kurtosis  [1.3.5.11.]11.  

5.  

1. Exploratory Data Analysis

http://www.itl.nist.gov/div898/handbook/eda/eda_d.htm (4 of 8) [5/1/2006 9:55:58 AM]



Autocorrelation  [1.3.5.12.]12.  

Runs Test for Detecting Non-randomness  [1.3.5.13.]13.  

Anderson-Darling Test  [1.3.5.14.]14.  

Chi-Square Goodness-of-Fit Test  [1.3.5.15.]15.  

Kolmogorov-Smirnov Goodness-of-Fit Test  [1.3.5.16.]16.  

Grubbs' Test for Outliers  [1.3.5.17.]17.  

Yates Analysis  [1.3.5.18.]

Defining Models and Prediction Equations  [1.3.5.18.1.]1.  

Important Factors  [1.3.5.18.2.]2.  

18.  

Probability Distributions  [1.3.6.]

What is a Probability Distribution  [1.3.6.1.]1.  

Related Distributions  [1.3.6.2.]2.  

Families of Distributions  [1.3.6.3.]3.  

Location and Scale Parameters  [1.3.6.4.]4.  

Estimating the Parameters of a Distribution  [1.3.6.5.]

Method of Moments  [1.3.6.5.1.]1.  

Maximum Likelihood  [1.3.6.5.2.]2.  

Least Squares  [1.3.6.5.3.]3.  

PPCC and Probability Plots  [1.3.6.5.4.]4.  

5.  

Gallery of Distributions  [1.3.6.6.]

Normal Distribution  [1.3.6.6.1.]1.  

Uniform Distribution  [1.3.6.6.2.]2.  

Cauchy Distribution  [1.3.6.6.3.]3.  

t Distribution  [1.3.6.6.4.]4.  

F Distribution  [1.3.6.6.5.]5.  

Chi-Square Distribution  [1.3.6.6.6.]6.  

Exponential Distribution  [1.3.6.6.7.]7.  

Weibull Distribution  [1.3.6.6.8.]8.  

Lognormal Distribution  [1.3.6.6.9.]9.  

Fatigue Life Distribution  [1.3.6.6.10.]10.  

Gamma Distribution  [1.3.6.6.11.]11.  

Double Exponential Distribution  [1.3.6.6.12.]12.  

Power Normal Distribution  [1.3.6.6.13.]13.  

6.  

6.  

1. Exploratory Data Analysis

http://www.itl.nist.gov/div898/handbook/eda/eda_d.htm (5 of 8) [5/1/2006 9:55:58 AM]



Power Lognormal Distribution  [1.3.6.6.14.]14.  

Tukey-Lambda Distribution  [1.3.6.6.15.]15.  

Extreme Value Type I Distribution  [1.3.6.6.16.]16.  

Beta Distribution  [1.3.6.6.17.]17.  

Binomial Distribution  [1.3.6.6.18.]18.  

Poisson Distribution  [1.3.6.6.19.]19.  

Tables for Probability Distributions  [1.3.6.7.]

Cumulative Distribution Function of the Standard Normal
Distribution  [1.3.6.7.1.]

1.  

Upper Critical Values of the Student's-t Distribution  [1.3.6.7.2.]2.  

Upper Critical Values of the F Distribution  [1.3.6.7.3.]3.  

Critical Values of the Chi-Square Distribution  [1.3.6.7.4.]4.  

Critical Values of the t* Distribution  [1.3.6.7.5.]5.  

Critical Values of the Normal PPCC Distribution  [1.3.6.7.6.]6.  

7.  

EDA Case Studies  [1.4.]

Case Studies Introduction  [1.4.1.]1.  

Case Studies  [1.4.2.]

Normal Random Numbers  [1.4.2.1.]

Background and Data  [1.4.2.1.1.]1.  

Graphical Output and Interpretation  [1.4.2.1.2.]2.  

Quantitative Output and Interpretation  [1.4.2.1.3.]3.  

Work This Example Yourself  [1.4.2.1.4.]4.  

1.  

Uniform Random Numbers  [1.4.2.2.]

Background and Data  [1.4.2.2.1.]1.  

Graphical Output and Interpretation  [1.4.2.2.2.]2.  

Quantitative Output and Interpretation  [1.4.2.2.3.]3.  

Work This Example Yourself  [1.4.2.2.4.]4.  

2.  

Random Walk  [1.4.2.3.]

Background and Data  [1.4.2.3.1.]1.  

Test Underlying Assumptions  [1.4.2.3.2.]2.  

Develop A Better Model  [1.4.2.3.3.]3.  

Validate New Model  [1.4.2.3.4.]4.  

Work This Example Yourself  [1.4.2.3.5.]5.  

3.  

2.  

4.  

1. Exploratory Data Analysis

http://www.itl.nist.gov/div898/handbook/eda/eda_d.htm (6 of 8) [5/1/2006 9:55:58 AM]



Josephson Junction Cryothermometry  [1.4.2.4.]

Background and Data  [1.4.2.4.1.]1.  

Graphical Output and Interpretation  [1.4.2.4.2.]2.  

Quantitative Output and Interpretation  [1.4.2.4.3.]3.  

Work This Example Yourself  [1.4.2.4.4.]4.  

4.  

Beam Deflections  [1.4.2.5.]

Background and Data  [1.4.2.5.1.]1.  

Test Underlying Assumptions  [1.4.2.5.2.]2.  

Develop a Better Model  [1.4.2.5.3.]3.  

Validate New Model  [1.4.2.5.4.]4.  

Work This Example Yourself  [1.4.2.5.5.]5.  

5.  

Filter Transmittance  [1.4.2.6.]

Background and Data  [1.4.2.6.1.]1.  

Graphical Output and Interpretation  [1.4.2.6.2.]2.  

Quantitative Output and Interpretation  [1.4.2.6.3.]3.  

Work This Example Yourself  [1.4.2.6.4.]4.  

6.  

Standard Resistor  [1.4.2.7.]

Background and Data  [1.4.2.7.1.]1.  

Graphical Output and Interpretation  [1.4.2.7.2.]2.  

Quantitative Output and Interpretation  [1.4.2.7.3.]3.  

Work This Example Yourself  [1.4.2.7.4.]4.  

7.  

Heat Flow Meter 1  [1.4.2.8.]

Background and Data  [1.4.2.8.1.]1.  

Graphical Output and Interpretation  [1.4.2.8.2.]2.  

Quantitative Output and Interpretation  [1.4.2.8.3.]3.  

Work This Example Yourself  [1.4.2.8.4.]4.  

8.  

Airplane Glass Failure Time  [1.4.2.9.]

Background and Data  [1.4.2.9.1.]1.  

Graphical Output and Interpretation  [1.4.2.9.2.]2.  

Weibull Analysis  [1.4.2.9.3.]3.  

Lognormal Analysis  [1.4.2.9.4.]4.  

Gamma Analysis  [1.4.2.9.5.]5.  

Power Normal Analysis  [1.4.2.9.6.]6.  

9.  

1. Exploratory Data Analysis

http://www.itl.nist.gov/div898/handbook/eda/eda_d.htm (7 of 8) [5/1/2006 9:55:58 AM]



Power Lognormal Analysis  [1.4.2.9.7.]7.  

Work This Example Yourself  [1.4.2.9.8.]8.  

Ceramic Strength  [1.4.2.10.]

Background and Data  [1.4.2.10.1.]1.  

Analysis of the Response Variable  [1.4.2.10.2.]2.  

Analysis of the Batch Effect  [1.4.2.10.3.]3.  

Analysis of the Lab Effect  [1.4.2.10.4.]4.  

Analysis of Primary Factors  [1.4.2.10.5.]5.  

Work This Example Yourself  [1.4.2.10.6.]6.  

10.  

References For Chapter 1: Exploratory Data Analysis  [1.4.3.]3.  

1. Exploratory Data Analysis

http://www.itl.nist.gov/div898/handbook/eda/eda_d.htm (8 of 8) [5/1/2006 9:55:58 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


1. Exploratory Data Analysis

1.1.EDA Introduction

Summary What is exploratory data analysis? How did it begin? How and where
did it originate? How is it differentiated from other data analysis
approaches, such as classical and Bayesian? Is EDA the same as
statistical graphics? What role does statistical graphics play in EDA? Is
statistical graphics identical to EDA?

These questions and related questions are dealt with in this section. This
section answers these questions and provides the necessary frame of
reference for EDA assumptions, principles, and techniques.

Table of
Contents for
Section 1

What is EDA?1.  

EDA versus Classical and Bayesian

Models1.  

Focus2.  

Techniques3.  

Rigor4.  

Data Treatment5.  

Assumptions6.  

2.  

EDA vs Summary3.  

EDA Goals4.  

The Role of Graphics5.  

An EDA/Graphics Example6.  

General Problem Categories7.  

1.1. EDA Introduction
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.1.What is EDA?

Approach Exploratory Data Analysis (EDA) is an approach/philosophy for data
analysis that employs a variety of techniques (mostly graphical) to

maximize insight into a data set;1.  

uncover underlying structure;2.  

extract important variables;3.  

detect outliers and anomalies;4.  

test underlying assumptions;5.  

develop parsimonious models; and6.  

determine optimal factor settings.7.  

Focus The EDA approach is precisely that--an approach--not a set of
techniques, but an attitude/philosophy about how a data analysis should
be carried out.

Philosophy EDA is not identical to statistical graphics although the two terms are
used almost interchangeably. Statistical graphics is a collection of
techniques--all graphically based and all focusing on one data
characterization aspect. EDA encompasses a larger venue; EDA is an
approach to data analysis that postpones the usual assumptions about
what kind of model the data follow with the more direct approach of
allowing the data itself to reveal its underlying structure and model.
EDA is not a mere collection of techniques; EDA is a philosophy as to
how we dissect a data set; what we look for; how we look; and how we
interpret. It is true that EDA heavily uses the collection of techniques
that we call "statistical graphics", but it is not identical to statistical
graphics per se.

1.1.1. What is EDA?
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History The seminal work in EDA is Exploratory Data Analysis, Tukey, (1977).
Over the years it has benefitted from other noteworthy publications such
as Data Analysis and Regression, Mosteller and Tukey (1977),
Interactive Data Analysis, Hoaglin (1977), The ABC's of EDA,
Velleman and Hoaglin (1981) and has gained a large following as "the"
way to analyze a data set.

Techniques Most EDA techniques are graphical in nature with a few quantitative
techniques. The reason for the heavy reliance on graphics is that by its
very nature the main role of EDA is to open-mindedly explore, and
graphics gives the analysts unparalleled power to do so, enticing the
data to reveal its structural secrets, and being always ready to gain some
new, often unsuspected, insight into the data. In combination with the
natural pattern-recognition capabilities that we all possess, graphics
provides, of course, unparalleled power to carry this out.

The particular graphical techniques employed in EDA are often quite
simple, consisting of various techniques of:

Plotting the raw data (such as data traces, histograms,
bihistograms, probability plots, lag plots, block plots, and Youden
plots.

1.  

Plotting simple statistics such as mean plots, standard deviation
plots, box plots, and main effects plots of the raw data.

2.  

Positioning such plots so as to maximize our natural
pattern-recognition abilities, such as using multiple plots per
page.

3.  

1.1.1. What is EDA?
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.2.How Does Exploratory Data Analysis
differ from Classical Data Analysis?

Data
Analysis
Approaches

EDA is a data analysis approach. What other data analysis approaches
exist and how does EDA differ from these other approaches? Three
popular data analysis approaches are:

Classical1.  

Exploratory (EDA)2.  

Bayesian3.  

Paradigms
for Analysis
Techniques

These three approaches are similar in that they all start with a general
science/engineering problem and all yield science/engineering
conclusions. The difference is the sequence and focus of the
intermediate steps.

For classical analysis, the sequence is

Problem => Data => Model => Analysis => Conclusions

For EDA, the sequence is

Problem => Data => Analysis => Model => Conclusions

For Bayesian, the sequence is

Problem => Data => Model => Prior Distribution => Analysis =>
Conclusions

1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?
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Method of
dealing with
underlying
model for
the data
distinguishes
the 3
approaches

Thus for classical analysis, the data collection is followed by the
imposition of a model (normality, linearity, etc.) and the analysis,
estimation, and testing that follows are focused on the parameters of
that model. For EDA, the data collection is not followed by a model
imposition; rather it is followed immediately by analysis with a goal of
inferring what model would be appropriate. Finally, for a Bayesian
analysis, the analyst attempts to incorporate scientific/engineering
knowledge/expertise into the analysis by imposing a data-independent
distribution on the parameters of the selected model; the analysis thus
consists of formally combining both the prior distribution on the
parameters and the collected data to jointly make inferences and/or test
assumptions about the model parameters.

In the real world, data analysts freely mix elements of all of the above
three approaches (and other approaches). The above distinctions were
made to emphasize the major differences among the three approaches.

Further
discussion of
the
distinction
between the
classical and
EDA
approaches

Focusing on EDA versus classical, these two approaches differ as
follows:

Models1.  

Focus2.  

Techniques3.  

Rigor4.  

Data Treatment5.  

Assumptions6.  
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1. Exploratory Data Analysis
1.1. EDA Introduction
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.1.Model

Classical The classical approach imposes models (both deterministic and
probabilistic) on the data. Deterministic models include, for example,
regression models and analysis of variance (ANOVA) models. The most
common probabilistic model assumes that the errors about the
deterministic model are normally distributed--this assumption affects the
validity of the ANOVA F tests.

Exploratory The Exploratory Data Analysis approach does not impose deterministic
or probabilistic models on the data. On the contrary, the EDA approach
allows the data to suggest admissible models that best fit the data.

1.1.2.1. Model
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1. Exploratory Data Analysis
1.1. EDA Introduction
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.2.Focus

Classical The two approaches differ substantially in focus. For classical analysis,
the focus is on the model--estimating parameters of the model and
generating predicted values from the model.

Exploratory For exploratory data analysis, the focus is on the data--its structure,
outliers, and models suggested by the data.

1.1.2.2. Focus
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1. Exploratory Data Analysis
1.1. EDA Introduction
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.3.Techniques

Classical Classical techniques are generally quantitative in nature. They include
ANOVA, t tests, chi-squared tests, and F tests.

Exploratory EDA techniques are generally graphical. They include scatter plots,
character plots, box plots, histograms, bihistograms, probability plots,
residual plots, and mean plots.

1.1.2.3. Techniques
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1. Exploratory Data Analysis
1.1. EDA Introduction
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.4.Rigor

Classical Classical techniques serve as the probabilistic foundation of science and
engineering; the most important characteristic of classical techniques is
that they are rigorous, formal, and "objective".

Exploratory EDA techniques do not share in that rigor or formality. EDA techniques
make up for that lack of rigor by being very suggestive, indicative, and
insightful about what the appropriate model should be.

EDA techniques are subjective and depend on interpretation which may
differ from analyst to analyst, although experienced analysts commonly
arrive at identical conclusions.

1.1.2.4. Rigor
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1. Exploratory Data Analysis
1.1. EDA Introduction
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.5.Data Treatment

Classical Classical estimation techniques have the characteristic of taking all of
the data and mapping the data into a few numbers ("estimates"). This is
both a virtue and a vice. The virtue is that these few numbers focus on
important characteristics (location, variation, etc.) of the population. The
vice is that concentrating on these few characteristics can filter out other
characteristics (skewness, tail length, autocorrelation, etc.) of the same
population. In this sense there is a loss of information due to this
"filtering" process.

Exploratory The EDA approach, on the other hand, often makes use of (and shows)
all of the available data. In this sense there is no corresponding loss of
information.

1.1.2.5. Data Treatment
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1. Exploratory Data Analysis
1.1. EDA Introduction
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.6.Assumptions

Classical The "good news" of the classical approach is that tests based on
classical techniques are usually very sensitive--that is, if a true shift in
location, say, has occurred, such tests frequently have the power to
detect such a shift and to conclude that such a shift is "statistically
significant". The "bad news" is that classical tests depend on underlying
assumptions (e.g., normality), and hence the validity of the test
conclusions becomes dependent on the validity of the underlying
assumptions. Worse yet, the exact underlying assumptions may be
unknown to the analyst, or if known, untested. Thus the validity of the
scientific conclusions becomes intrinsically linked to the validity of the
underlying assumptions. In practice, if such assumptions are unknown
or untested, the validity of the scientific conclusions becomes suspect.

Exploratory Many EDA techniques make little or no assumptions--they present and
show the data--all of the data--as is, with fewer encumbering
assumptions.

1.1.2.6. Assumptions
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.3.How Does Exploratory Data Analysis
Differ from Summary Analysis?

Summary A summary analysis is simply a numeric reduction of a historical data
set. It is quite passive. Its focus is in the past. Quite commonly, its
purpose is to simply arrive at a few key statistics (for example, mean
and standard deviation) which may then either replace the data set or be
added to the data set in the form of a summary table.

Exploratory In contrast, EDA has as its broadest goal the desire to gain insight into
the engineering/scientific process behind the data. Whereas summary
statistics are passive and historical, EDA is active and futuristic. In an
attempt to "understand" the process and improve it in the future, EDA
uses the data as a "window" to peer into the heart of the process that
generated the data. There is an archival role in the research and
manufacturing world for summary statistics, but there is an enormously
larger role for the EDA approach.

1.1.3. How Does Exploratory Data Analysis Differ from Summary Analysis?
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.4.What are the EDA Goals?

Primary and
Secondary
Goals

The primary goal of EDA is to maximize the analyst's insight into a data
set and into the underlying structure of a data set, while providing all of
the specific items that an analyst would want to extract from a data set,
such as:

a good-fitting, parsimonious model1.  

a list of outliers2.  

a sense of robustness of conclusions3.  

estimates for parameters4.  

uncertainties for those estimates5.  

a ranked list of important factors6.  

conclusions as to whether individual factors are statistically
significant

7.  

optimal settings8.  

Insight into
the Data

Insight implies detecting and uncovering underlying structure in the
data. Such underlying structure may not be encapsulated in the list of
items above; such items serve as the specific targets of an analysis, but
the real insight and "feel" for a data set comes as the analyst judiciously
probes and explores the various subtleties of the data. The "feel" for the
data comes almost exclusively from the application of various graphical
techniques, the collection of which serves as the window into the
essence of the data. Graphics are irreplaceable--there are no quantitative
analogues that will give the same insight as well-chosen graphics.

To get a "feel" for the data, it is not enough for the analyst to know what
is in the data; the analyst also must know what is not in the data, and the
only way to do that is to draw on our own human pattern-recognition
and comparative abilities in the context of a series of judicious graphical
techniques applied to the data.

1.1.4. What are the EDA Goals?
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.5.The Role of Graphics

Quantitative/
Graphical

Statistics and data analysis procedures can broadly be split into two
parts:

quantitative●   

graphical●   

Quantitative Quantitative techniques are the set of statistical procedures that yield
numeric or tabular output. Examples of quantitative techniques include:

hypothesis testing●   

analysis of variance●   

point estimates and confidence intervals●   

least squares regression●   

These and similar techniques are all valuable and are mainstream in
terms of classical analysis.

Graphical On the other hand, there is a large collection of statistical tools that we
generally refer to as graphical techniques. These include:

scatter plots●   

histograms●   

probability plots●   

residual plots●   

box plots●   

block plots●   

1.1.5. The Role of Graphics

http://www.itl.nist.gov/div898/handbook/eda/section1/eda15.htm (1 of 2) [5/1/2006 9:56:15 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/6plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm


EDA
Approach
Relies
Heavily on
Graphical
Techniques

The EDA approach relies heavily on these and similar graphical
techniques. Graphical procedures are not just tools that we could use in
an EDA context, they are tools that we must use. Such graphical tools
are the shortest path to gaining insight into a data set in terms of

testing assumptions●   

model selection●   

model validation●   

estimator selection●   

relationship identification●   

factor effect determination●   

outlier detection●   

If one is not using statistical graphics, then one is forfeiting insight into
one or more aspects of the underlying structure of the data.

1.1.5. The Role of Graphics
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.6.An EDA/Graphics Example

Anscombe
Example

A simple, classic (Anscombe) example of the central role that graphics
play in terms of providing insight into a data set starts with the
following data set:

Data
  X              Y
10.00           8.04
 8.00           6.95
13.00           7.58
 9.00           8.81
11.00           8.33
14.00           9.96
 6.00           7.24
 4.00           4.26
12.00          10.84
 7.00           4.82
 5.00           5.68

Summary
Statistics

If the goal of the analysis is to compute summary statistics plus
determine the best linear fit for Y as a function of X, the results might
be given as:

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
Slope = 0.5
Residual standard deviation = 1.237
Correlation = 0.816

The above quantitative analysis, although valuable, gives us only
limited insight into the data.

1.1.6. An EDA/Graphics Example
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Scatter Plot In contrast, the following simple scatter plot of the data

suggests the following:

The data set "behaves like" a linear curve with some scatter;1.  

there is no justification for a more complicated model (e.g.,
quadratic);

2.  

there are no outliers;3.  

the vertical spread of the data appears to be of equal height
irrespective of the X-value; this indicates that the data are
equally-precise throughout and so a "regular" (that is,
equi-weighted) fit is appropriate.

4.  

Three
Additional
Data Sets

This kind of characterization for the data serves as the core for getting
insight/feel for the data. Such insight/feel does not come from the
quantitative statistics; on the contrary, calculations of quantitative
statistics such as intercept and slope should be subsequent to the
characterization and will make sense only if the characterization is
true. To illustrate the loss of information that results when the graphics
insight step is skipped, consider the following three data sets
[Anscombe data sets 2, 3, and 4]:

 X2     Y2       X3     Y3       X4     Y4
10.00   9.14    10.00   7.46     8.00   6.58
 8.00   8.14     8.00   6.77     8.00   5.76
13.00   8.74    13.00  12.74     8.00   7.71

1.1.6. An EDA/Graphics Example

http://www.itl.nist.gov/div898/handbook/eda/section1/eda16.htm (2 of 5) [5/1/2006 9:56:15 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm


 9.00   8.77     9.00   7.11     8.00   8.84
11.00   9.26    11.00   7.81     8.00   8.47
14.00   8.10    14.00   8.84     8.00   7.04
 6.00   6.13     6.00   6.08     8.00   5.25
 4.00   3.10     4.00   5.39    19.00  12.50
12.00   9.13    12.00   8.15     8.00   5.56
 7.00   7.26     7.00   6.42     8.00   7.91
 5.00   4.74     5.00   5.73     8.00   6.89

Quantitative
Statistics for
Data Set 2

A quantitative analysis on data set 2 yields

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
Slope = 0.5
Residual standard deviation = 1.237
Correlation = 0.816

which is identical to the analysis for data set 1. One might naively
assume that the two data sets are "equivalent" since that is what the
statistics tell us; but what do the statistics not tell us?

Quantitative
Statistics for
Data Sets 3
and 4

Remarkably, a quantitative analysis on data sets 3 and 4 also yields

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
Slope = 0.5
Residual standard deviation = 1.236
Correlation = 0.816 (0.817 for data set 4)

which implies that in some quantitative sense, all four of the data sets
are "equivalent". In fact, the four data sets are far from "equivalent"
and a scatter plot of each data set, which would be step 1 of any EDA
approach, would tell us that immediately.

1.1.6. An EDA/Graphics Example
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Scatter Plots

Interpretation
of Scatter
Plots

Conclusions from the scatter plots are:

data set 1 is clearly linear with some scatter.1.  

data set 2 is clearly quadratic.2.  

data set 3 clearly has an outlier.3.  

data set 4 is obviously the victim of a poor experimental design
with a single point far removed from the bulk of the data
"wagging the dog".

4.  

Importance
of
Exploratory
Analysis

These points are exactly the substance that provide and define "insight"
and "feel" for a data set. They are the goals and the fruits of an open
exploratory data analysis (EDA) approach to the data. Quantitative
statistics are not wrong per se, but they are incomplete. They are
incomplete because they are numeric summaries which in the
summarization operation do a good job of focusing on a particular
aspect of the data (e.g., location, intercept, slope, degree of relatedness,
etc.) by judiciously reducing the data to a few numbers. Doing so also
filters the data, necessarily omitting and screening out other sometimes
crucial information in the focusing operation. Quantitative statistics
focus but also filter; and filtering is exactly what makes the
quantitative approach incomplete at best and misleading at worst.

The estimated intercepts (= 3) and slopes (= 0.5) for data sets 2, 3, and
4 are misleading because the estimation is done in the context of an
assumed linear model and that linearity assumption is the fatal flaw in
this analysis.

1.1.6. An EDA/Graphics Example
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The EDA approach of deliberately postponing the model selection until
further along in the analysis has many rewards, not the least of which is
the ultimate convergence to a much-improved model and the
formulation of valid and supportable scientific and engineering
conclusions.

1.1.6. An EDA/Graphics Example
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.7.General Problem Categories

Problem
Classification

The following table is a convenient way to classify EDA problems.

Univariate
and Control

UNIVARIATE

Data:

A single column of
numbers, Y.

Model:

y = constant + error

Output:

A number (the estimated
constant in the model).

1.  

An estimate of uncertainty
for the constant.

2.  

An estimate of the
distribution for the error.

3.  

Techniques:

4-Plot●   

Probability Plot●   

PPCC Plot●   

CONTROL

Data:

A single column of
numbers, Y.

Model:

y = constant + error

Output:

A "yes" or "no" to the
question "Is the system
out of control?".

Techniques:

Control Charts●   

1.1.7. General Problem Categories
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Comparative
and
Screening

COMPARATIVE

Data:

A single response variable
and k independent
variables (Y, X1, X2, ... ,
Xk), primary focus is on
one (the primary factor) of
these independent
variables.

Model:

y = f(x1, x2, ..., xk) + error

Output:

A "yes" or "no" to the
question "Is the primary
factor significant?".

Techniques:

Block Plot●   

Scatter Plot●   

Box Plot●   

SCREENING

Data:

A single response variable
and k independent
variables (Y, X1, X2, ... ,
Xk).

Model:

y = f(x1, x2, ..., xk) + error

Output:

A ranked list (from most
important to least
important) of factors.

1.  

Best settings for the
factors.

2.  

A good model/prediction
equation relating Y to the
factors.

3.  

Techniques:

Block Plot●   

Probability Plot●   

Bihistogram●   

Optimization
and
Regression

OPTIMIZATION

Data:

A single response variable
and k independent
variables (Y, X1, X2, ... ,
Xk).

Model:

y = f(x1, x2, ..., xk) + error

Output:

Best settings for the factor
variables.

Techniques:

Block Plot●   

REGRESSION

Data:

A single response variable
and k independent
variables (Y, X1, X2, ... ,
Xk). The independent
variables can be
continuous.

Model:

y = f(x1, x2, ..., xk) + error

Output:

A good model/prediction
equation relating Y to the
factors.

1.1.7. General Problem Categories
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Least Squares Fitting●   

Contour Plot●   

Techniques:

Least Squares Fitting●   

Scatter Plot●   

6-Plot●   

Time Series
and
Multivariate

TIME SERIES

Data:

A column of time
dependent numbers, Y.
In addition, time is an
indpendent variable.
The time variable can
be either explicit or
implied. If the data are
not equi-spaced, the
time variable should be
explicitly provided.

Model:

yt = f(t) + error
The model can be either
a time domain based or
frequency domain
based.

Output:

A good
model/prediction
equation relating Y to
previous values of Y.

Techniques:

Autocorrelation Plot●   

Spectrum●   

Complex Demodulation
Amplitude Plot

●   

Complex Demodulation
Phase Plot

●   

ARIMA Models●   

MULTIVARIATE

Data:

k factor variables (X1, X2, ... ,
Xk).

Model:

The model is not explicit.

Output:

Identify underlying
correlation structure in the
data.

Techniques:

Star Plot●   

Scatter Plot Matrix●   

Conditioning Plot●   

Profile Plot●   

Principal Components●   

Clustering●   

Discrimination/Classification●   

Note that multivarate analysis is
only covered lightly in this
Handbook.

1.1.7. General Problem Categories

http://www.itl.nist.gov/div898/handbook/eda/section1/eda17.htm (3 of 4) [5/1/2006 9:56:15 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3/contour.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/6plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/starplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterb.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterc.htm
http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc55.htm


1.1.7. General Problem Categories

http://www.itl.nist.gov/div898/handbook/eda/section1/eda17.htm (4 of 4) [5/1/2006 9:56:15 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


1. Exploratory Data Analysis

1.2.EDA Assumptions

Summary The gamut of scientific and engineering experimentation is virtually
limitless. In this sea of diversity is there any common basis that allows
the analyst to systematically and validly arrive at supportable, repeatable
research conclusions?

Fortunately, there is such a basis and it is rooted in the fact that every
measurement process, however complicated, has certain underlying
assumptions. This section deals with what those assumptions are, why
they are important, how to go about testing them, and what the
consequences are if the assumptions do not hold.

Table of
Contents for
Section 2

Underlying Assumptions1.  

Importance2.  

Testing Assumptions3.  

Importance of Plots4.  

Consequences5.  

1.2. EDA Assumptions

http://www.itl.nist.gov/div898/handbook/eda/section2/eda2.htm [5/1/2006 9:56:16 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


1. Exploratory Data Analysis
1.2. EDA Assumptions

1.2.1.Underlying Assumptions

Assumptions
Underlying a
Measurement
Process

There are four assumptions that typically underlie all measurement
processes; namely, that the data from the process at hand "behave
like":

random drawings;1.  

from a fixed distribution;2.  

with the distribution having fixed location; and3.  

with the distribution having fixed variation.4.  

Univariate or
Single
Response
Variable

The "fixed location" referred to in item 3 above differs for different
problem types. The simplest problem type is univariate; that is, a
single variable. For the univariate problem, the general model

response = deterministic component + random component

becomes

response = constant + error

Assumptions
for Univariate
Model

For this case, the "fixed location" is simply the unknown constant. We
can thus imagine the process at hand to be operating under constant
conditions that produce a single column of data with the properties
that

the data are uncorrelated with one another;●   

the random component has a fixed distribution;●   

the deterministic component consists of only a constant; and●   

the random component has fixed variation.●   

Extrapolation
to a Function
of Many
Variables

The universal power and importance of the univariate model is that it
can easily be extended to the more general case where the
deterministic component is not just a constant, but is in fact a function
of many variables, and the engineering objective is to characterize and
model the function.

1.2.1. Underlying Assumptions
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Residuals Will
Behave
According to
Univariate
Assumptions

The key point is that regardless of how many factors there are, and
regardless of how complicated the function is, if the engineer succeeds
in choosing a good model, then the differences (residuals) between the
raw response data and the predicted values from the fitted model
should themselves behave like a univariate process. Furthermore, the
residuals from this univariate process fit will behave like:

random drawings;●   

from a fixed distribution;●   

with fixed location (namely, 0 in this case); and●   

with fixed variation.●   

Validation of
Model

Thus if the residuals from the fitted model do in fact behave like the
ideal, then testing of underlying assumptions becomes a tool for the
validation and quality of fit of the chosen model. On the other hand, if
the residuals from the chosen fitted model violate one or more of the
above univariate assumptions, then the chosen fitted model is
inadequate and an opportunity exists for arriving at an improved
model.

1.2.1. Underlying Assumptions
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1. Exploratory Data Analysis
1.2. EDA Assumptions

1.2.2. Importance

Predictability
and
Statistical
Control

Predictability is an all-important goal in science and engineering. If the
four underlying assumptions hold, then we have achieved probabilistic
predictability--the ability to make probability statements not only
about the process in the past, but also about the process in the future.
In short, such processes are said to be "in statistical control".

Validity of
Engineering
Conclusions

Moreover, if the four assumptions are valid, then the process is
amenable to the generation of valid scientific and engineering
conclusions. If the four assumptions are not valid, then the process is
drifting (with respect to location, variation, or distribution),
unpredictable, and out of control. A simple characterization of such
processes by a location estimate, a variation estimate, or a distribution
"estimate" inevitably leads to engineering conclusions that are not
valid, are not supportable (scientifically or legally), and which are not
repeatable in the laboratory.

1.2.2. Importance
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1. Exploratory Data Analysis
1.2. EDA Assumptions

1.2.3.Techniques for Testing Assumptions

Testing
Underlying
Assumptions
Helps Assure the
Validity of
Scientific and
Engineering
Conclusions

Because the validity of the final scientific/engineering conclusions
is inextricably linked to the validity of the underlying univariate
assumptions, it naturally follows that there is a real necessity that
each and every one of the above four assumptions be routinely
tested.

Four Techniques
to Test
Underlying
Assumptions

The following EDA techniques are simple, efficient, and powerful
for the routine testing of underlying assumptions:

run sequence plot (Yi versus i)1.  

lag plot (Yi versus Yi-1)2.  

histogram (counts versus subgroups of Y)3.  

normal probability plot (ordered Y versus theoretical ordered
Y)

4.  

Plot on a Single
Page for a
Quick
Characterization
of the Data

The four EDA plots can be juxtaposed for a quick look at the
characteristics of the data. The plots below are ordered as follows:

Run sequence plot - upper left1.  

Lag plot - upper right2.  

Histogram - lower left3.  

Normal probability plot - lower right4.  

1.2.3. Techniques for Testing Assumptions
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Sample Plot:
Assumptions
Hold

This 4-plot reveals a process that has fixed location, fixed variation,
is random, apparently has a fixed approximately normal
distribution, and has no outliers.

Sample Plot:
Assumptions Do
Not Hold

If one or more of the four underlying assumptions do not hold, then
it will show up in the various plots as demonstrated in the following
example.

1.2.3. Techniques for Testing Assumptions
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This 4-plot reveals a process that has fixed location, fixed variation,
is non-random (oscillatory), has a non-normal, U-shaped
distribution, and has several outliers.

1.2.3. Techniques for Testing Assumptions
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1. Exploratory Data Analysis
1.2. EDA Assumptions

1.2.4. Interpretation of 4-Plot

Interpretation
of EDA Plots:
Flat and
Equi-Banded,
Random,
Bell-Shaped,
and Linear

The four EDA plots discussed on the previous page are used to test the
underlying assumptions:

Fixed Location:
If the fixed location assumption holds, then the run sequence
plot will be flat and non-drifting.

1.  

Fixed Variation:
If the fixed variation assumption holds, then the vertical spread
in the run sequence plot will be the approximately the same over
the entire horizontal axis.

2.  

Randomness:
If the randomness assumption holds, then the lag plot will be
structureless and random.

3.  

Fixed Distribution:
If the fixed distribution assumption holds, in particular if the
fixed normal distribution holds, then

the histogram will be bell-shaped, and1.  

the normal probability plot will be linear.2.  

4.  

Plots Utilized
to Test the
Assumptions

Conversely, the underlying assumptions are tested using the EDA
plots:

Run Sequence Plot:
If the run sequence plot is flat and non-drifting, the
fixed-location assumption holds. If the run sequence plot has a
vertical spread that is about the same over the entire plot, then
the fixed-variation assumption holds.

●   

Lag Plot:
If the lag plot is structureless, then the randomness assumption
holds.

●   

Histogram:
If the histogram is bell-shaped, the underlying distribution is
symmetric and perhaps approximately normal.

●   

Normal Probability Plot:●   

1.2.4. Interpretation of 4-Plot
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If the normal probability plot is linear, the underlying
distribution is approximately normal.

If all four of the assumptions hold, then the process is said
definitionally to be "in statistical control".

1.2.4. Interpretation of 4-Plot

http://www.itl.nist.gov/div898/handbook/eda/section2/eda24.htm (2 of 2) [5/1/2006 9:56:17 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


1. Exploratory Data Analysis
1.2. EDA Assumptions

1.2.5.Consequences

What If
Assumptions
Do Not Hold?

If some of the underlying assumptions do not hold, what can be done
about it? What corrective actions can be taken? The positive way of
approaching this is to view the testing of underlying assumptions as a
framework for learning about the process. Assumption-testing
promotes insight into important aspects of the process that may not
have surfaced otherwise.

Primary Goal
is Correct and
Valid
Scientific
Conclusions

The primary goal is to have correct, validated, and complete
scientific/engineering conclusions flowing from the analysis. This
usually includes intermediate goals such as the derivation of a
good-fitting model and the computation of realistic parameter
estimates. It should always include the ultimate goal of an
understanding and a "feel" for "what makes the process tick". There is
no more powerful catalyst for discovery than the bringing together of
an experienced/expert scientist/engineer and a data set ripe with
intriguing "anomalies" and characteristics.

Consequences
of Invalid
Assumptions

The following sections discuss in more detail the consequences of
invalid assumptions:

Consequences of non-randomness1.  

Consequences of non-fixed location parameter2.  

Consequences of non-fixed variation3.  

Consequences related to distributional assumptions4.  

1.2.5. Consequences
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1. Exploratory Data Analysis
1.2. EDA Assumptions
1.2.5. Consequences

1.2.5.1.Consequences of Non-Randomness

Randomness
Assumption

There are four underlying assumptions:

randomness;1.  

fixed location;2.  

fixed variation; and3.  

fixed distribution.4.  

The randomness assumption is the most critical but the least tested.

Consequeces of
Non-Randomness

If the randomness assumption does not hold, then

All of the usual statistical tests are invalid.1.  

The calculated uncertainties for commonly used statistics
become meaningless.

2.  

The calculated minimal sample size required for a
pre-specified tolerance becomes meaningless.

3.  

The simple model: y = constant + error becomes invalid.4.  

The parameter estimates become suspect and
non-supportable.

5.  

Non-Randomness
Due to
Autocorrelation

One specific and common type of non-randomness is
autocorrelation. Autocorrelation is the correlation between Yt and
Yt-k, where k is an integer that defines the lag for the
autocorrelation. That is, autocorrelation is a time dependent
non-randomness. This means that the value of the current point is
highly dependent on the previous point if k = 1 (or k points ago if k
is not 1). Autocorrelation is typically detected via an
autocorrelation plot or a lag plot.

If the data are not random due to autocorrelation, then

Adjacent data values may be related.1.  

There may not be n independent snapshots of the
phenomenon under study.

2.  

1.2.5.1. Consequences of Non-Randomness
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There may be undetected "junk"-outliers.3.  

There may be undetected "information-rich"-outliers.4.  

1.2.5.1. Consequences of Non-Randomness
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1. Exploratory Data Analysis
1.2. EDA Assumptions
1.2.5. Consequences

1.2.5.2.Consequences of Non-Fixed
Location Parameter

Location
Estimate

The usual estimate of location is the mean

from N measurements Y1, Y2, ... , YN.

Consequences
of Non-Fixed
Location

If the run sequence plot does not support the assumption of fixed
location, then

The location may be drifting.1.  

The single location estimate may be meaningless (if the process
is drifting).

2.  

The choice of location estimator (e.g., the sample mean) may be
sub-optimal.

3.  

The usual formula for the uncertainty of the mean:

may be invalid and the numerical value optimistically small.

4.  

The location estimate may be poor.5.  

The location estimate may be biased.6.  

1.2.5.2. Consequences of Non-Fixed Location Parameter
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1. Exploratory Data Analysis
1.2. EDA Assumptions
1.2.5. Consequences

1.2.5.3.Consequences of Non-Fixed
Variation Parameter

Variation
Estimate

The usual estimate of variation is the standard deviation

from N measurements Y1, Y2, ... , YN.

Consequences
of Non-Fixed
Variation

If the run sequence plot does not support the assumption of fixed
variation, then

The variation may be drifting.1.  

The single variation estimate may be meaningless (if the process
variation is drifting).

2.  

The variation estimate may be poor.3.  

The variation estimate may be biased.4.  

1.2.5.3. Consequences of Non-Fixed Variation Parameter
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1. Exploratory Data Analysis
1.2. EDA Assumptions
1.2.5. Consequences

1.2.5.4.Consequences Related to
Distributional Assumptions

Distributional
Analysis

Scientists and engineers routinely use the mean (average) to estimate
the "middle" of a distribution. It is not so well known that the
variability and the noisiness of the mean as a location estimator are
intrinsically linked with the underlying distribution of the data. For
certain distributions, the mean is a poor choice. For any given
distribution, there exists an optimal choice-- that is, the estimator
with minimum variability/noisiness. This optimal choice may be, for
example, the median, the midrange, the midmean, the mean, or
something else. The implication of this is to "estimate" the
distribution first, and then--based on the distribution--choose the
optimal estimator. The resulting engineering parameter estimators
will have less variability than if this approach is not followed.

Case Studies The airplane glass failure case study gives an example of determining
an appropriate distribution and estimating the parameters of that
distribution. The uniform random numbers case study gives an
example of determining a more appropriate centrality parameter for a
non-normal distribution.

Other consequences that flow from problems with distributional
assumptions are:

Distribution The distribution may be changing.1.  

The single distribution estimate may be meaningless (if the
process distribution is changing).

2.  

The distribution may be markedly non-normal.3.  

The distribution may be unknown.4.  

The true probability distribution for the error may remain
unknown.

5.  

1.2.5.4. Consequences Related to Distributional Assumptions
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Model The model may be changing.1.  

The single model estimate may be meaningless.2.  

The default model

Y = constant + error

may be invalid.

3.  

If the default model is insufficient, information about a better
model may remain undetected.

4.  

A poor deterministic model may be fit.5.  

Information about an improved model may go undetected.6.  

Process The process may be out-of-control.1.  

The process may be unpredictable.2.  

The process may be un-modelable.3.  

1.2.5.4. Consequences Related to Distributional Assumptions
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1. Exploratory Data Analysis

1.3.EDA Techniques

Summary After you have collected a set of data, how do you do an exploratory
data analysis? What techniques do you employ? What do the various
techniques focus on? What conclusions can you expect to reach?

This section provides answers to these kinds of questions via a gallery
of EDA techniques and a detailed description of each technique. The
techniques are divided into graphical and quantitative techniques. For
exploratory data analysis, the emphasis is primarily on the graphical
techniques.

Table of
Contents for
Section 3

Introduction1.  

Analysis Questions2.  

Graphical Techniques: Alphabetical3.  

Graphical Techniques: By Problem Category4.  

Quantitative Techniques: Alphabetical5.  

Probability Distributions6.  

1.3. EDA Techniques
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1. Exploratory Data Analysis
1.3. EDA Techniques

1.3.1. Introduction

Graphical
and
Quantitative
Techniques

This section describes many techniques that are commonly used in
exploratory and classical data analysis. This list is by no means meant
to be exhaustive. Additional techniques (both graphical and
quantitative) are discussed in the other chapters. Specifically, the
product comparisons chapter has a much more detailed description of
many classical statistical techniques.

EDA emphasizes graphical techniques while classical techniques
emphasize quantitative techniques. In practice, an analyst typically
uses a mixture of graphical and quantitative techniques. In this section,
we have divided the descriptions into graphical and quantitative
techniques. This is for organizational clarity and is not meant to
discourage the use of both graphical and quantitiative techniques when
analyzing data.

Use of
Techniques
Shown in
Case Studies

This section emphasizes the techniques themselves; how the graph or
test is defined, published references, and sample output. The use of the
techniques to answer engineering questions is demonstrated in the case
studies section. The case studies do not demonstrate all of the
techniques.

Availability
in Software

The sample plots and output in this section were generated with the
Dataplot software program. Other general purpose statistical data
analysis programs can generate most of the plots, intervals, and tests
discussed here, or macros can be written to acheive the same result.

1.3.1. Introduction
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1. Exploratory Data Analysis
1.3. EDA Techniques

1.3.2.Analysis Questions

EDA
Questions

Some common questions that exploratory data analysis is used to
answer are:

What is a typical value?1.  

What is the uncertainty for a typical value?2.  

What is a good distributional fit for a set of numbers?3.  

What is a percentile?4.  

Does an engineering modification have an effect?5.  

Does a factor have an effect?6.  

What are the most important factors?7.  

Are measurements coming from different laboratories equivalent?8.  

What is the best function for relating a response variable to a set
of factor variables?

9.  

What are the best settings for factors?10.  

Can we separate signal from noise in time dependent data?11.  

Can we extract any structure from multivariate data?12.  

Does the data have outliers?13.  

Analyst
Should
Identify
Relevant
Questions
for his
Engineering
Problem

A critical early step in any analysis is to identify (for the engineering
problem at hand) which of the above questions are relevant. That is, we
need to identify which questions we want answered and which questions
have no bearing on the problem at hand. After collecting such a set of
questions, an equally important step, which is invaluable for maintaining
focus, is to prioritize those questions in decreasing order of importance.
EDA techniques are tied in with each of the questions. There are some
EDA techniques (e.g., the scatter plot) that are broad-brushed and apply
almost universally. On the other hand, there are a large number of EDA
techniques that are specific and whose specificity is tied in with one of
the above questions. Clearly if one chooses not to explicitly identify
relevant questions, then one cannot take advantage of these
question-specific EDA technqiues.

1.3.2. Analysis Questions
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EDA
Approach
Emphasizes
Graphics

Most of these questions can be addressed by techniques discussed in this
chapter. The process modeling and process improvement chapters also
address many of the questions above. These questions are also relevant
for the classical approach to statistics. What distinguishes the EDA
approach is an emphasis on graphical techniques to gain insight as
opposed to the classical approach of quantitative tests. Most data
analysts will use a mix of graphical and classical quantitative techniques
to address these problems.

1.3.2. Analysis Questions
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1. Exploratory Data Analysis
1.3. EDA Techniques

1.3.3.Graphical Techniques: Alphabetic

This section provides a gallery of some useful graphical techniques. The
techniques are ordered alphabetically, so this section is not intended to
be read in a sequential fashion. The use of most of these graphical
techniques is demonstrated in the case studies in this chapter. A few of
these graphical techniques are demonstrated in later chapters.

Autocorrelation
Plot: 1.3.3.1

Bihistogram:
1.3.3.2

Block Plot: 1.3.3.3 Bootstrap Plot:
1.3.3.4

Box-Cox Linearity
Plot: 1.3.3.5

Box-Cox
Normality Plot:

1.3.3.6

Box Plot: 1.3.3.7 Complex
Demodulation

Amplitude Plot:
1.3.3.8

Complex
Demodulation

Phase Plot: 1.3.3.9

Contour Plot:
1.3.3.10

DEX Scatter Plot:
1.3.3.11

DEX Mean Plot:
1.3.3.12

1.3.3. Graphical Techniques: Alphabetic
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DEX Standard
Deviation Plot:

1.3.3.13

Histogram:
1.3.3.14

Lag Plot: 1.3.3.15 Linear Correlation
Plot: 1.3.3.16

Linear Intercept
Plot: 1.3.3.17

Linear Slope Plot:
1.3.3.18

Linear Residual
Standard Deviation

Plot: 1.3.3.19

Mean Plot: 1.3.3.20

Normal Probability
Plot: 1.3.3.21

Probability Plot:
1.3.3.22

Probability Plot
Correlation

Coefficient Plot:
1.3.3.23

Quantile-Quantile
Plot: 1.3.3.24

Run Sequence
Plot: 1.3.3.25

Scatter Plot:
1.3.3.26

Spectrum: 1.3.3.27 Standard Deviation
Plot: 1.3.3.28

1.3.3. Graphical Techniques: Alphabetic
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Star Plot: 1.3.3.29 Weibull Plot:
1.3.3.30

Youden Plot:
1.3.3.31

4-Plot: 1.3.3.32

6-Plot: 1.3.3.33

1.3.3. Graphical Techniques: Alphabetic
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.1.Autocorrelation Plot

Purpose:
Check
Randomness

Autocorrelation plots (Box and Jenkins, pp. 28-32) are a
commonly-used tool for checking randomness in a data set. This
randomness is ascertained by computing autocorrelations for data
values at varying time lags. If random, such autocorrelations should
be near zero for any and all time-lag separations. If non-random,
then one or more of the autocorrelations will be significantly
non-zero.

In addition, autocorrelation plots are used in the model identification
stage for Box-Jenkins autoregressive, moving average time series
models.

Sample Plot:
Autocorrelations
should be
near-zero for
randomness.
Such is not the
case in this
example and
thus the
randomness
assumption fails

This sample autocorrelation plot shows that the time series is not
random, but rather has a high degree of autocorrelation between
adjacent and near-adjacent observations.

1.3.3.1. Autocorrelation Plot
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Definition:
r(h) versus h

Autocorrelation plots are formed by

Vertical axis: Autocorrelation coefficient

where Ch is the autocovariance function

and C0 is the variance function

Note--Rh is between -1 and +1.

Note--Some sources may use the following formula for the
autocovariance function

Although this definition has less bias, the (1/N) formulation
has some desirable statistical properties and is the form most
commonly used in the statistics literature. See pages 20 and
49-50 in Chatfield for details.

●   

Horizontal axis: Time lag h (h = 1, 2, 3, ...)●   

The above line also contains several horizontal reference
lines. The middle line is at zero. The other four lines are 95%
and 99% confidence bands. Note that there are two distinct
formulas for generating the confidence bands.

If the autocorrelation plot is being used to test for
randomness (i.e., there is no time dependence in the
data), the following formula is recommended:

where N is the sample size, z is the percent point
function of the standard normal distribution and  is
the. significance level. In this case, the confidence
bands have fixed width that depends on the sample
size. This is the formula that was used to generate the
confidence bands in the above plot.

1.  

●   

1.3.3.1. Autocorrelation Plot
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Autocorrelation plots are also used in the model
identification stage for fitting ARIMA models. In this
case, a moving average model is assumed for the data
and the following confidence bands should be
generated:

where k is the lag, N is the sample size, z is the percent
point function of the standard normal distribution and

 is. the significance level. In this case, the confidence
bands increase as the lag increases.

2.  

Questions The autocorrelation plot can provide answers to the following
questions:

Are the data random?1.  

Is an observation related to an adjacent observation?2.  

Is an observation related to an observation twice-removed?
(etc.)

3.  

Is the observed time series white noise?4.  

Is the observed time series sinusoidal?5.  

Is the observed time series autoregressive?6.  

What is an appropriate model for the observed time series?7.  

Is the model

Y = constant + error

valid and sufficient?

8.  

Is the formula  valid?9.  

1.3.3.1. Autocorrelation Plot
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Importance:
Ensure validity
of engineering
conclusions

Randomness (along with fixed model, fixed variation, and fixed
distribution) is one of the four assumptions that typically underlie all
measurement processes. The randomness assumption is critically
important for the following three reasons:

Most standard statistical tests depend on randomness. The
validity of the test conclusions is directly linked to the
validity of the randomness assumption.

1.  

Many commonly-used statistical formulae depend on the
randomness assumption, the most common formula being the
formula for determining the standard deviation of the sample
mean:

where  is the standard deviation of the data. Although
heavily used, the results from using this formula are of no
value unless the randomness assumption holds.

2.  

For univariate data, the default model is

Y = constant + error

If the data are not random, this model is incorrect and invalid,
and the estimates for the parameters (such as the constant)
become nonsensical and invalid.

3.  

In short, if the analyst does not check for randomness, then the
validity of many of the statistical conclusions becomes suspect. The
autocorrelation plot is an excellent way of checking for such
randomness.

Examples Examples of the autocorrelation plot for several common situations
are given in the following pages.

Random (= White Noise)1.  

Weak autocorrelation2.  

Strong autocorrelation and autoregressive model3.  

Sinusoidal model4.  

Related
Techniques

Partial Autocorrelation Plot
Lag Plot
Spectral Plot
Seasonal Subseries Plot

Case Study The autocorrelation plot is demonstrated in the beam deflection data
case study.

1.3.3.1. Autocorrelation Plot
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Software Autocorrelation plots are available in most general purpose
statistical software programs including Dataplot.

1.3.3.1. Autocorrelation Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.1. Autocorrelation Plot

1.3.3.1.1.Autocorrelation Plot: Random
Data

Autocorrelation
Plot

The following is a sample autocorrelation plot.

Conclusions We can make the following conclusions from this plot.

There are no significant autocorrelations.1.  

The data are random.2.  

1.3.3.1.1. Autocorrelation Plot: Random Data

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3311.htm (1 of 2) [5/1/2006 9:56:30 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Discussion Note that with the exception of lag 0, which is always 1 by
definition, almost all of the autocorrelations fall within the 95%
confidence limits. In addition, there is no apparent pattern (such as
the first twenty-five being positive and the second twenty-five being
negative). This is the abscence of a pattern we expect to see if the
data are in fact random.

A few lags slightly outside the 95% and 99% confidence limits do
not neccessarily indicate non-randomness. For a 95% confidence
interval, we might expect about one out of twenty lags to be
statistically significant due to random fluctuations.

There is no associative ability to infer from a current value Yi as to
what the next value Yi+1 will be. Such non-association is the essense
of randomness. In short, adjacent observations do not "co-relate", so
we call this the "no autocorrelation" case.

1.3.3.1.1. Autocorrelation Plot: Random Data
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.1. Autocorrelation Plot

1.3.3.1.2.Autocorrelation Plot: Moderate
Autocorrelation

Autocorrelation
Plot

The following is a sample autocorrelation plot.

Conclusions We can make the following conclusions from this plot.

The data come from an underlying autoregressive model with
moderate positive autocorrelation.

1.  

Discussion The plot starts with a moderately high autocorrelation at lag 1
(approximately 0.75) that gradually decreases. The decreasing
autocorrelation is generally linear, but with significant noise. Such a
pattern is the autocorrelation plot signature of "moderate
autocorrelation", which in turn provides moderate predictability if
modeled properly.

1.3.3.1.2. Autocorrelation Plot: Moderate Autocorrelation
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Recommended
Next Step

The next step would be to estimate the parameters for the
autoregressive model:

Such estimation can be performed by using least squares linear
regression or by fitting a Box-Jenkins autoregressive (AR) model.

The randomness assumption for least squares fitting applies to the
residuals of the model. That is, even though the original data exhibit
randomness, the residuals after fitting Yi against Yi-1 should result in
random residuals. Assessing whether or not the proposed model in
fact sufficiently removed the randomness is discussed in detail in the
Process Modeling chapter.

The residual standard deviation for this autoregressive model will be
much smaller than the residual standard deviation for the default
model

1.3.3.1.2. Autocorrelation Plot: Moderate Autocorrelation
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.1. Autocorrelation Plot

1.3.3.1.3.Autocorrelation Plot: Strong
Autocorrelation and
Autoregressive Model

Autocorrelation
Plot for Strong
Autocorrelation

The following is a sample autocorrelation plot.

Conclusions We can make the following conclusions from the above plot.

The data come from an underlying autoregressive model with
strong positive autocorrelation.

1.  

1.3.3.1.3. Autocorrelation Plot: Strong Autocorrelation and Autoregressive Model
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Discussion The plot starts with a high autocorrelation at lag 1 (only slightly less
than 1) that slowly declines. It continues decreasing until it becomes
negative and starts showing an incresing negative autocorrelation.
The decreasing autocorrelation is generally linear with little noise.
Such a pattern is the autocorrelation plot signature of "strong
autocorrelation", which in turn provides high predictability if
modeled properly.

Recommended
Next Step

The next step would be to estimate the parameters for the
autoregressive model:

Such estimation can be performed by using least squares linear
regression or by fitting a Box-Jenkins autoregressive (AR) model.

The randomness assumption for least squares fitting applies to the
residuals of the model. That is, even though the original data exhibit
randomness, the residuals after fitting Yi against Yi-1 should result in
random residuals. Assessing whether or not the proposed model in
fact sufficiently removed the randomness is discussed in detail in the
Process Modeling chapter.

The residual standard deviation for this autoregressive model will be
much smaller than the residual standard deviation for the default
model

1.3.3.1.3. Autocorrelation Plot: Strong Autocorrelation and Autoregressive Model
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.1. Autocorrelation Plot

1.3.3.1.4.Autocorrelation Plot: Sinusoidal
Model

Autocorrelation
Plot for
Sinusoidal
Model

The following is a sample autocorrelation plot.

Conclusions We can make the following conclusions from the above plot.

The data come from an underlying sinusoidal model.1.  

Discussion The plot exhibits an alternating sequence of positive and negative
spikes. These spikes are not decaying to zero. Such a pattern is the
autocorrelation plot signature of a sinusoidal model.

Recommended
Next Step

The beam deflection case study gives an example of modeling a
sinusoidal model.

1.3.3.1.4. Autocorrelation Plot: Sinusoidal Model
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1.3.3.1.4. Autocorrelation Plot: Sinusoidal Model
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.2.Bihistogram

Purpose:
Check for a
change in
location,
variation, or
distribution

The bihistogram is an EDA tool for assessing whether a
before-versus-after engineering modification has caused a change in

location;●   

variation; or●   

distribution.●   

It is a graphical alternative to the two-sample t-test. The bihistogram
can be more powerful than the t-test in that all of the distributional
features (location, scale, skewness, outliers) are evident on a single plot.
It is also based on the common and well-understood histogram.

Sample Plot:
This
bihistogram
reveals that
there is a
significant
difference in
ceramic
breaking
strength
between
batch 1
(above) and
batch 2
(below)

From the above bihistogram, we can see that batch 1 is centered at a
ceramic strength value of approximately 725 while batch 2 is centered
at a ceramic strength value of approximately 625. That indicates that
these batches are displaced by about 100 strength units. Thus the batch

1.3.3.2. Bihistogram
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factor has a significant effect on the location (typical value) for strength
and hence batch is said to be "significant" or to "have an effect". We
thus see graphically and convincingly what a t-test or analysis of
variance would indicate quantitatively.

With respect to variation, note that the spread (variation) of the
above-axis batch 1 histogram does not appear to be that much different
from the below-axis batch 2 histogram. With respect to distributional
shape, note that the batch 1 histogram is skewed left while the batch 2
histogram is more symmetric with even a hint of a slight skewness to
the right.

Thus the bihistogram reveals that there is a clear difference between the
batches with respect to location and distribution, but not in regard to
variation. Comparing batch 1 and batch 2, we also note that batch 1 is
the "better batch" due to its 100-unit higher average strength (around
725).

Definition:
Two
adjoined
histograms

Bihistograms are formed by vertically juxtaposing two histograms:

Above the axis: Histogram of the response variable for condition
1

●   

Below the axis: Histogram of the response variable for condition
2

●   

Questions The bihistogram can provide answers to the following questions:

Is a (2-level) factor significant?1.  

Does a (2-level) factor have an effect?2.  

Does the location change between the 2 subgroups?3.  

Does the variation change between the 2 subgroups?4.  

Does the distributional shape change between subgroups?5.  

Are there any outliers?6.  

Importance:
Checks 3 out
of the 4
underlying
assumptions
of a
measurement
process

The bihistogram is an important EDA tool for determining if a factor
"has an effect". Since the bihistogram provides insight into the validity
of three (location, variation, and distribution) out of the four (missing
only randomness) underlying assumptions in a measurement process, it
is an especially valuable tool. Because of the dual (above/below) nature
of the plot, the bihistogram is restricted to assessing factors that have
only two levels. However, this is very common in the
before-versus-after character of many scientific and engineering
experiments.

1.3.3.2. Bihistogram
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Related
Techniques

t test (for shift in location)
F test (for shift in variation)
Kolmogorov-Smirnov test (for shift in distribution)
Quantile-quantile plot (for shift in location and distribution)

Case Study The bihistogram is demonstrated in the ceramic strength data case
study.

Software The bihistogram is not widely available in general purpose statistical
software programs. Bihistograms can be generated using Dataplot

1.3.3.2. Bihistogram
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.3.Block Plot

Purpose:
Check to
determine if
a factor of
interest has
an effect
robust over
all other
factors

The block plot (Filliben 1993) is an EDA tool for assessing whether the
factor of interest (the primary factor) has a statistically significant effect
on the response, and whether that conclusion about the primary factor
effect is valid robustly over all other nuisance or secondary factors in
the experiment.

It replaces the analysis of variance test with a less
assumption-dependent binomial test and should be routinely used
whenever we are trying to robustly decide whether a primary factor has
an effect.

Sample
Plot:
Weld
method 2 is
lower
(better) than
weld method
1 in 10 of 12
cases

This block plot reveals that in 10 of the 12 cases (bars), weld method 2
is lower (better) than weld method 1. From a binomial point of view,
weld method is statistically significant.

1.3.3.3. Block Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda333.htm (1 of 4) [5/1/2006 9:56:32 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Definition Block Plots are formed as follows:

Vertical axis: Response variable Y●   

Horizontal axis: All combinations of all levels of all nuisance
(secondary) factors X1, X2, ...

●   

Plot Character: Levels of the primary factor XP●   

Discussion:
Primary
factor is
denoted by
plot
character:
within-bar
plot
character.

Average number of defective lead wires per hour from a study with four
factors,

weld strength (2 levels)1.  

plant (2 levels)2.  

speed (2 levels)3.  

shift (3 levels)4.  

are shown in the plot above. Weld strength is the primary factor and the
other three factors are nuisance factors. The 12 distinct positions along
the horizontal axis correspond to all possible combinations of the three
nuisance factors, i.e., 12 = 2 plants x 2 speeds x 3 shifts. These 12
conditions provide the framework for assessing whether any conclusions
about the 2 levels of the primary factor (weld method) can truly be
called "general conclusions". If we find that one weld method setting
does better (smaller average defects per hour) than the other weld
method setting for all or most of these 12 nuisance factor combinations,
then the conclusion is in fact general and robust.

Ordering
along the
horizontal
axis

In the above chart, the ordering along the horizontal axis is as follows:

The left 6 bars are from plant 1 and the right 6 bars are from plant
2.

●   

The first 3 bars are from speed 1, the next 3 bars are from speed
2, the next 3 bars are from speed 1, and the last 3 bars are from
speed 2.

●   

Bars 1, 4, 7, and 10 are from the first shift, bars 2, 5, 8, and 11 are
from the second shift, and bars 3, 6, 9, and 12 are from the third
shift.

●   

1.3.3.3. Block Plot
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Setting 2 is
better than
setting 1 in
10 out of 12
cases

In the block plot for the first bar (plant 1, speed 1, shift 1), weld method
1 yields about 28 defects per hour while weld method 2 yields about 22
defects per hour--hence the difference for this combination is about 6
defects per hour and weld method 2 is seen to be better (smaller number
of defects per hour).

Is "weld method 2 is better than weld method 1" a general conclusion?

For the second bar (plant 1, speed 1, shift 2), weld method 1 is about 37
while weld method 2 is only about 18. Thus weld method 2 is again seen
to be better than weld method 1. Similarly for bar 3 (plant 1, speed 1,
shift 3), we see weld method 2 is smaller than weld method 1. Scanning
over all of the 12 bars, we see that weld method 2 is smaller than weld
method 1 in 10 of the 12 cases, which is highly suggestive of a robust
weld method effect.

An event
with chance
probability
of only 2%

What is the chance of 10 out of 12 happening by chance? This is
probabilistically equivalent to testing whether a coin is fair by flipping it
and getting 10 heads in 12 tosses. The chance (from the binomial
distribution) of getting 10 (or more extreme: 11, 12) heads in 12 flips of
a fair coin is about 2%. Such low-probability events are usually rejected
as untenable and in practice we would conclude that there is a difference
in weld methods.

Advantage:
Graphical
and
binomial

The advantages of the block plot are as follows:

A quantitative procedure (analysis of variance) is replaced by a
graphical procedure.

●   

An F-test (analysis of variance) is replaced with a binomial test,
which requires fewer assumptions.

●   

Questions The block plot can provide answers to the following questions:

Is the factor of interest significant?1.  

Does the factor of interest have an effect?2.  

Does the location change between levels of the primary factor?3.  

Has the process improved?4.  

What is the best setting (= level) of the primary factor?5.  

How much of an average improvement can we expect with this
best setting of the primary factor?

6.  

Is there an interaction between the primary factor and one or more
nuisance factors?

7.  

Does the effect of the primary factor change depending on the
setting of some nuisance factor?

8.  

1.3.3.3. Block Plot
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Are there any outliers?9.  

Importance:
Robustly
checks the
significance
of the factor
of interest

The block plot is a graphical technique that pointedly focuses on
whether or not the primary factor conclusions are in fact robustly
general. This question is fundamentally different from the generic
multi-factor experiment question where the analyst asks, "What factors
are important and what factors are not" (a screening problem)? Global
data analysis techniques, such as analysis of variance, can potentially be
improved by local, focused data analysis techniques that take advantage
of this difference.

Related
Techniques

t test (for shift in location for exactly 2 levels)
ANOVA (for shift in location for 2 or more levels)
Bihistogram (for shift in location, variation, and distribution for exactly
2 levels).

Case Study The block plot is demonstrated in the ceramic strength data case study.

Software Block plots can be generated with the Dataplot software program. They
are not currently available in other statistical software programs.

1.3.3.3. Block Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.4.Bootstrap Plot

Purpose:
Estimate
uncertainty

The bootstrap (Efron and Gong) plot is used to estimate the uncertainty
of a statistic.

Generate
subsamples
with
replacement

To generate a bootstrap uncertainty estimate for a given statistic from a
set of data, a subsample of a size less than or equal to the size of the data
set is generated from the data, and the statistic is calculated. This
subsample is generated with replacement so that any data point can be
sampled multiple times or not sampled at all. This process is repeated
for many subsamples, typically between 500 and 1000. The computed
values for the statistic form an estimate of the sampling distribution of
the statistic.

For example, to estimate the uncertainty of the median from a dataset
with 50 elements, we generate a subsample of 50 elements and calculate
the median. This is repeated at least 500 times so that we have at least
500 values for the median. Although the number of bootstrap samples to
use is somewhat arbitrary, 500 subsamples is usually sufficient. To
calculate a 90% confidence interval for the median, the sample medians
are sorted into ascending order and the value of the 25th median
(assuming exactly 500 subsamples were taken) is the lower confidence
limit while the value of the 475th median (assuming exactly 500
subsamples were taken) is the upper confidence limit.

1.3.3.4. Bootstrap Plot
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Sample
Plot:

This bootstrap plot was generated from 500 uniform random numbers.
Bootstrap plots and corresponding histograms were generated for the
mean, median, and mid-range. The histograms for the corresponding
statistics clearly show that for uniform random numbers the mid-range
has the smallest variance and is, therefore, a superior location estimator
to the mean or the median.

Definition The bootstrap plot is formed by:

Vertical axis: Computed value of the desired statistic for a given
subsample.

●   

Horizontal axis: Subsample number.●   

The bootstrap plot is simply the computed value of the statistic versus
the subsample number. That is, the bootstrap plot generates the values
for the desired statistic. This is usually immediately followed by a
histogram or some other distributional plot to show the location and
variation of the sampling distribution of the statistic.

Questions The bootstrap plot is used to answer the following questions:

What does the sampling distribution for the statistic look like?●   

What is a 95% confidence interval for the statistic?●   

Which statistic has a sampling distribution with the smallest
variance? That is, which statistic generates the narrowest
confidence interval?

●   

1.3.3.4. Bootstrap Plot
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Importance The most common uncertainty calculation is generating a confidence
interval for the mean. In this case, the uncertainty formula can be
derived mathematically. However, there are many situations in which
the uncertainty formulas are mathematically intractable. The bootstrap
provides a method for calculating the uncertainty in these cases.

Cautuion on
use of the
bootstrap

The bootstrap is not appropriate for all distributions and statistics (Efron
and Tibrashani). For example, because of the shape of the uniform
distribution, the bootstrap is not appropriate for estimating the
distribution of statistics that are heavily dependent on the tails, such as
the range.

Related
Techniques

Histogram
Jackknife

The jacknife is a technique that is closely related to the bootstrap. The
jackknife is beyond the scope of this handbook. See the Efron and Gong
article for a discussion of the jackknife.

Case Study The bootstrap plot is demonstrated in the uniform random numbers case
study.

Software The bootstrap is becoming more common in general purpose statistical
software programs. However, it is still not supported in many of these
programs. Dataplot supports a bootstrap capability.

1.3.3.4. Bootstrap Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.5.Box-Cox Linearity Plot

Purpose:
Find the
transformation
of the X
variable that
maximizes the
correlation
between a Y
and an X
variable

When performing a linear fit of Y against X, an appropriate
transformation of X can often significantly improve the fit. The
Box-Cox transformation (Box and Cox, 1964) is a particularly useful
family of transformations. It is defined as:

where X is the variable being transformed and  is the transformation
parameter. For  = 0, the natural log of the data is taken instead of
using the above formula.

The Box-Cox linearity plot is a plot of the correlation between Y and
the transformed X for given values of . That is,  is the coordinate
for the horizontal axis variable and the value of the correlation
between Y and the transformed X is the coordinate for the vertical
axis of the plot. The value of  corresponding to the maximum
correlation (or minimum for negative correlation) on the plot is then
the optimal choice for .

Transforming X is used to improve the fit. The Box-Cox
transformation applied to Y can be used as the basis for meeting the
error assumptions. That case is not covered here. See page 225 of
(Draper and Smith, 1981) or page 77 of (Ryan, 1997) for a discussion
of this case.

1.3.3.5. Box-Cox Linearity Plot
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Sample Plot

The plot of the original data with the predicted values from a linear fit
indicate that a quadratic fit might be preferable. The Box-Cox
linearity plot shows a value of  = 2.0. The plot of the transformed
data with the predicted values from a linear fit with the transformed
data shows a better fit (verified by the significant reduction in the
residual standard deviation).

Definition Box-Cox linearity plots are formed by

Vertical axis: Correlation coefficient from the transformed X
and Y

●   

Horizontal axis: Value for ●   

Questions The Box-Cox linearity plot can provide answers to the following
questions:

Would a suitable transformation improve my fit?1.  

What is the optimal value of the transformation parameter?2.  

Importance:
Find a
suitable
transformation

Transformations can often significantly improve a fit. The Box-Cox
linearity plot provides a convenient way to find a suitable
transformation without engaging in a lot of trial and error fitting.

Related
Techniques

Linear Regression
Box-Cox Normality Plot

1.3.3.5. Box-Cox Linearity Plot
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Case Study The Box-Cox linearity plot is demonstrated in the Alaska pipeline
data case study.

Software Box-Cox linearity plots are not a standard part of most general
purpose statistical software programs. However, the underlying
technique is based on a transformation and computing a correlation
coefficient. So if a statistical program supports these capabilities,
writing a macro for a Box-Cox linearity plot should be feasible.
Dataplot supports a Box-Cox linearity plot directly.

1.3.3.5. Box-Cox Linearity Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.6.Box-Cox Normality Plot

Purpose:
Find
transformation
to normalize
data

Many statistical tests and intervals are based on the assumption of
normality. The assumption of normality often leads to tests that are
simple, mathematically tractable, and powerful compared to tests that
do not make the normality assumption. Unfortunately, many real data
sets are in fact not approximately normal. However, an appropriate
transformation of a data set can often yield a data set that does follow
approximately a normal distribution. This increases the applicability
and usefulness of statistical techniques based on the normality
assumption.

The Box-Cox transformation is a particulary useful family of
transformations. It is defined as:

where Y is the response variable and  is the transformation
parameter. For  = 0, the natural log of the data is taken instead of
using the above formula.

Given a particular transformation such as the Box-Cox transformation
defined above, it is helpful to define a measure of the normality of the
resulting transformation. One measure is to compute the correlation
coefficient of a normal probability plot. The correlation is computed
between the vertical and horizontal axis variables of the probability
plot and is a convenient measure of the linearity of the probability plot
(the more linear the probability plot, the better a normal distribution
fits the data).

The Box-Cox normality plot is a plot of these correlation coefficients
for various values of the  parameter. The value of  corresponding
to the maximum correlation on the plot is then the optimal choice for

.

1.3.3.6. Box-Cox Normality Plot
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Sample Plot

The histogram in the upper left-hand corner shows a data set that has
significant right skewness (and so does not follow a normal
distribution). The Box-Cox normality plot shows that the maximum
value of the correlation coefficient is at  = -0.3. The histogram of the
data after applying the Box-Cox transformation with  = -0.3 shows a
data set for which the normality assumption is reasonable. This is
verified with a normal probability plot of the transformed data.

Definition Box-Cox normality plots are formed by:

Vertical axis: Correlation coefficient from the normal
probability plot after applying Box-Cox transformation

●   

Horizontal axis: Value for ●   

Questions The Box-Cox normality plot can provide answers to the following
questions:

Is there a transformation that will normalize my data?1.  

What is the optimal value of the transformation parameter?2.  

Importance:
Normalization
Improves
Validity of
Tests

Normality assumptions are critical for many univariate intervals and
hypothesis tests. It is important to test the normality assumption. If the
data are in fact clearly not normal, the Box-Cox normality plot can
often be used to find a transformation that will approximately
normalize the data.

1.3.3.6. Box-Cox Normality Plot
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Related
Techniques

Normal Probability Plot
Box-Cox Linearity Plot

Software Box-Cox normality plots are not a standard part of most general
purpose statistical software programs. However, the underlying
technique is based on a normal probability plot and computing a
correlation coefficient. So if a statistical program supports these
capabilities, writing a macro for a Box-Cox normality plot should be
feasible. Dataplot supports a Box-Cox normality plot directly.

1.3.3.6. Box-Cox Normality Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.7.Box Plot

Purpose:
Check
location and
variation
shifts

Box plots (Chambers 1983) are an excellent tool for conveying location
and variation information in data sets, particularly for detecting and
illustrating location and variation changes between different groups of
data.

Sample
Plot:
This box
plot reveals
that
machine has
a significant
effect on
energy with
respect to
location and
possibly
variation

This box plot, comparing four machines for energy output, shows that
machine has a significant effect on energy with respect to both location
and variation. Machine 3 has the highest energy response (about 72.5);
machine 4 has the least variable energy response with about 50% of its
readings being within 1 energy unit.

1.3.3.7. Box Plot
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Definition Box plots are formed by

Vertical axis: Response variable
Horizontal axis: The factor of interest

More specifically, we

Calculate the median and the quartiles (the lower quartile is the
25th percentile and the upper quartile is the 75th percentile).

1.  

Plot a symbol at the median (or draw a line) and draw a box
(hence the name--box plot) between the lower and upper
quartiles; this box represents the middle 50% of the data--the
"body" of the data.

2.  

Draw a line from the lower quartile to the minimum point and
another line from the upper quartile to the maximum point.
Typically a symbol is drawn at these minimum and maximum
points, although this is optional.

3.  

Thus the box plot identifies the middle 50% of the data, the median, and
the extreme points.

Single or
multiple box
plots can be
drawn

A single box plot can be drawn for one batch of data with no distinct
groups. Alternatively, multiple box plots can be drawn together to
compare multiple data sets or to compare groups in a single data set. For
a single box plot, the width of the box is arbitrary. For multiple box
plots, the width of the box plot can be set proportional to the number of
points in the given group or sample (some software implementations of
the box plot simply set all the boxes to the same width).

Box plots
with fences

There is a useful variation of the box plot that more specifically
identifies outliers. To create this variation:

Calculate the median and the lower and upper quartiles.1.  

Plot a symbol at the median and draw a box between the lower
and upper quartiles.

2.  

Calculate the interquartile range (the difference between the upper
and lower quartile) and call it IQ.

3.  

Calculate the following points:

L1 = lower quartile - 1.5*IQ
L2 = lower quartile - 3.0*IQ
U1 = upper quartile + 1.5*IQ
U2 = upper quartile + 3.0*IQ

4.  

The line from the lower quartile to the minimum is now drawn
from the lower quartile to the smallest point that is greater than
L1. Likewise, the line from the upper quartile to the maximum is
now drawn to the largest point smaller than U1.

5.  

1.3.3.7. Box Plot
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Points between L1 and L2 or between U1 and U2 are drawn as
small circles. Points less than L2 or greater than U2 are drawn as
large circles.

6.  

Questions The box plot can provide answers to the following questions:

Is a factor significant?1.  

Does the location differ between subgroups?2.  

Does the variation differ between subgroups?3.  

Are there any outliers?4.  

Importance:
Check the
significance
of a factor

The box plot is an important EDA tool for determining if a factor has a
significant effect on the response with respect to either location or
variation.

The box plot is also an effective tool for summarizing large quantities of
information.

Related
Techniques

Mean Plot
Analysis of Variance

Case Study The box plot is demonstrated in the ceramic strength data case study.

Software Box plots are available in most general purpose statistical software
programs, including Dataplot.

1.3.3.7. Box Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.8.Complex Demodulation Amplitude
Plot

Purpose:
Detect
Changing
Amplitude in
Sinusoidal
Models

In the frequency analysis of time series models, a common model is the
sinusoidal model:

In this equation,  is the amplitude,  is the phase shift, and  is the
dominant frequency. In the above model,  and  are constant, that is
they do not vary with time, ti.

The complex demodulation amplitude plot (Granger, 1964) is used to
determine if the assumption of constant amplitude is justifiable. If the
slope of the complex demodulation amplitude plot is zero, then the
above model is typically replaced with the model:

where  is some type of linear model fit with standard least squares.
The most common case is a linear fit, that is the model becomes

Quadratic models are sometimes used. Higher order models are
relatively rare.

1.3.3.8. Complex Demodulation Amplitude Plot
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Sample
Plot:

This complex demodulation amplitude plot shows that:

the amplitude is fixed at approximately 390;●   

there is a start-up effect; and●   

there is a change in amplitude at around x = 160 that should be
investigated for an outlier.

●   

Definition: The complex demodulation amplitude plot is formed by:

Vertical axis: Amplitude●   

Horizontal axis: Time●   

The mathematical computations for determining the amplitude are
beyond the scope of the Handbook. Consult Granger (Granger, 1964)
for details.

Questions The complex demodulation amplitude plot answers the following
questions:

Does the amplitude change over time?1.  

Are there any outliers that need to be investigated?2.  

Is the amplitude different at the beginning of the series (i.e., is
there a start-up effect)?

3.  

1.3.3.8. Complex Demodulation Amplitude Plot
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Importance:
Assumption
Checking

As stated previously, in the frequency analysis of time series models, a
common model is the sinusoidal model:

In this equation,  is assumed to be constant, that is it does not vary
with time. It is important to check whether or not this assumption is
reasonable.

The complex demodulation amplitude plot can be used to verify this
assumption. If the slope of this plot is essentially zero, then the
assumption of constant amplitude is justified. If it is not,  should be
replaced with some type of time-varying model. The most common
cases are linear (B0 + B1*t) and quadratic (B0 + B1*t + B2*t2).

Related
Techniques

Spectral Plot
Complex Demodulation Phase Plot
Non-Linear Fitting

Case Study The complex demodulation amplitude plot is demonstrated in the beam
deflection data case study.

Software Complex demodulation amplitude plots are available in some, but not
most, general purpose statistical software programs. Dataplot supports
complex demodulation amplitude plots.

1.3.3.8. Complex Demodulation Amplitude Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.9.Complex Demodulation Phase Plot

Purpose:
Improve the
estimate of
frequency in
sinusoidal
time series
models

As stated previously, in the frequency analysis of time series models, a
common model is the sinusoidal model:

In this equation,  is the amplitude,  is the phase shift, and  is the
dominant frequency. In the above model,  and  are constant, that is
they do not vary with time ti.

The complex demodulation phase plot (Granger, 1964) is used to
improve the estimate of the frequency (i.e., ) in this model.

If the complex demodulation phase plot shows lines sloping from left to
right, then the estimate of the frequency should be increased. If it shows
lines sloping right to left, then the frequency should be decreased. If
there is essentially zero slope, then the frequency estimate does not need
to be modified.

Sample
Plot:

1.3.3.9. Complex Demodulation Phase Plot
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This complex demodulation phase plot shows that:

the specified demodulation frequency is incorrect;●   

the demodulation frequency should be increased.●   

Definition The complex demodulation phase plot is formed by:

Vertical axis: Phase●   

Horizontal axis: Time●   

The mathematical computations for the phase plot are beyond the scope
of the Handbook. Consult Granger (Granger, 1964) for details.

Questions The complex demodulation phase plot answers the following question:

Is the specified demodulation frequency correct?

Importance
of a Good
Initial
Estimate for
the
Frequency

The non-linear fitting for the sinusoidal model:

is usually quite sensitive to the choice of good starting values. The
initial estimate of the frequency, , is obtained from a spectral plot. The
complex demodulation phase plot is used to assess whether this estimate
is adequate, and if it is not, whether it should be increased or decreased.
Using the complex demodulation phase plot with the spectral plot can
significantly improve the quality of the non-linear fits obtained.

1.3.3.9. Complex Demodulation Phase Plot
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Related
Techniques

Spectral Plot
Complex Demodulation Phase Plot
Non-Linear Fitting

Case Study The complex demodulation amplitude plot is demonstrated in the beam
deflection data case study.

Software Complex demodulation phase plots are available in some, but not most,
general purpose statistical software programs. Dataplot supports
complex demodulation phase plots.

1.3.3.9. Complex Demodulation Phase Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.10.Contour Plot

Purpose:
Display 3-d
surface on
2-d plot

A contour plot is a graphical technique for representing a
3-dimensional surface by plotting constant z slices, called contours, on
a 2-dimensional format. That is, given a value for z, lines are drawn for
connecting the (x,y) coordinates where that z value occurs.

The contour plot is an alternative to a 3-D surface plot.

Sample Plot:

This contour plot shows that the surface is symmetric and peaks in the
center.

1.3.3.10. Contour Plot
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Definition The contour plot is formed by:

Vertical axis: Independent variable 2●   

Horizontal axis: Independent variable 1●   

Lines: iso-response values●   

The independent variables are usually restricted to a regular grid. The
actual techniques for determining the correct iso-response values are
rather complex and are almost always computer generated.

An additional variable may be required to specify the Z values for
drawing the iso-lines. Some software packages require explicit values.
Other software packages will determine them automatically.

If the data (or function) do not form a regular grid, you typically need
to perform a 2-D interpolation to form a regular grid.

Questions The contour plot is used to answer the question

How does Z change as a function of X and Y?

Importance:
Visualizing
3-dimensional
data

For univariate data, a run sequence plot and a histogram are considered
necessary first steps in understanding the data. For 2-dimensional data,
a scatter plot is a necessary first step in understanding the data.

In a similar manner, 3-dimensional data should be plotted. Small data
sets, such as result from designed experiments, can typically be
represented by block plots, dex mean plots, and the like (here, "DEX"
stands for "Design of Experiments"). For large data sets, a contour plot
or a 3-D surface plot should be considered a necessary first step in
understanding the data.

DEX Contour
Plot

The dex contour plot is a specialized contour plot used in the design of
experiments. In particular, it is useful for full and fractional designs.

Related
Techniques

3-D Plot

1.3.3.10. Contour Plot
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Software Contour plots are available in most general purpose statistical software
programs. They are also available in many general purpose graphics
and mathematics programs. These programs vary widely in the
capabilities for the contour plots they generate. Many provide just a
basic contour plot over a rectangular grid while others permit color
filled or shaded contours. Dataplot supports a fairly basic contour plot.

Most statistical software programs that support design of experiments
will provide a dex contour plot capability.

1.3.3.10. Contour Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.10. Contour Plot

1.3.3.10.1.DEX Contour Plot

DEX Contour
Plot:
Introduction

The dex contour plot is a specialized contour plot used in the analysis of
full and fractional experimental designs. These designs often have a low
level, coded as "-1" or "-", and a high level, coded as "+1" or "+" for each
factor. In addition, there can optionally be one or more center points.
Center points are at the mid-point between the low and high level for each
factor and are coded as "0".

The dex contour plot is generated for two factors. Typically, this would be
the two most important factors as determined by previous analyses (e.g.,
through the use of the dex mean plots and a Yates analysis). If more than
two factors are important, you may want to generate a series of dex
contour plots, each of which is drawn for two of these factors. You can
also generate a matrix of all pairwise dex contour plots for a number of
important factors (similar to the scatter plot matrix for scatter plots).

The typical application of the dex contour plot is in determining settings
that will maximize (or minimize) the response variable. It can also be
helpful in determining settings that result in the response variable hitting a
pre-determined target value. The dex contour plot plays a useful role in
determining the settings for the next iteration of the experiment. That is,
the initial experiment is typically a fractional factorial design with a fairly
large number of factors. After the most important factors are determined,
the dex contour plot can be used to help define settings for a full factorial
or response surface design based on a smaller number of factors.

1.3.3.10.1. DEX Contour Plot
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Construction
of DEX
Contour Plot

The following are the primary steps in the construction of the dex contour
plot.

The x and y axes of the plot represent the values of the first and
second factor (independent) variables.

1.  

The four vertex points are drawn. The vertex points are (-1,-1),
(-1,1), (1,1), (1,-1). At each vertex point, the average of all the
response values at that vertex point is printed.

2.  

Similarly, if there are center points, a point is drawn at (0,0) and the
average of the response values at the center points is printed.

3.  

The linear dex contour plot assumes the model:

where  is the overall mean of the response variable. The values of
, , , and  are estimated from the vertex points using a

Yates analysis (the Yates analysis utilizes the special structure of the
2-level full and fractional factorial designs to simplify the
computation of these parameter estimates). Note that for the dex
contour plot, a full Yates analysis does not need to performed,
simply the calculations for generating the parameter estimates.

In order to generate a single contour line, we need a value for Y, say
Y0. Next, we solve for U2 in terms of U1 and, after doing the
algebra, we have the equation:

We generate a sequence of points for U1 in the range -2 to 2 and
compute the corresponding values of U2. These points constitute a
single contour line corresponding to Y = Y0.

The user specifies the target values for which contour lines will be
generated.

4.  

The above algorithm assumes a linear model for the design. Dex contour
plots can also be generated for the case in which we assume a quadratic
model for the design. The algebra for solving for U2 in terms of U1
becomes more complicated, but the fundamental idea is the same.
Quadratic models are needed for the case when the average for the center
points does not fall in the range defined by the vertex point (i.e., there is
curvature).

1.3.3.10.1. DEX Contour Plot
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Sample DEX
Contour Plot

The following is a dex contour plot for the data used in the Eddy current
case study. The analysis in that case study demonstrated that X1 and X2
were the most important factors.

Interpretation
of the Sample
DEX Contour
Plot

From the above dex contour plot we can derive the following information.

Interaction significance;1.  

Best (data) setting for these 2 dominant factors;2.  

Interaction
Significance

Note the appearance of the contour plot. If the contour curves are linear,
then that implies that the interaction term is not significant; if the contour
curves have considerable curvature, then that implies that the interaction
term is large and important. In our case, the contour curves do not have
considerable curvature, and so we conclude that the X1*X2 term is not
significant.

1.3.3.10.1. DEX Contour Plot
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Best Settings To determine the best factor settings for the already-run experiment, we
first must define what "best" means. For the Eddy current data set used to
generate this dex contour plot, "best" means to maximize (rather than
minimize or hit a target) the response. Hence from the contour plot we
determine the best settings for the two dominant factors by simply
scanning the four vertices and choosing the vertex with the largest value
(= average response). In this case, it is (X1 = +1, X2 = +1).

As for factor X3, the contour plot provides no best setting information, and
so we would resort to other tools: the main effects plot, the interaction
effects matrix, or the ordered data to determine optimal X3 settings.

Case Study The Eddy current case study demonstrates the use of the dex contour plot
in the context of the analysis of a full factorial design.

Software DEX contour plots are available in many statistical software programs that
analyze data from designed experiments. Dataplot supports a linear dex
contour plot and it provides a macro for generating a quadratic dex contour
plot.

1.3.3.10.1. DEX Contour Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.11.DEX Scatter Plot

Purpose:
Determine
Important
Factors with
Respect to
Location and
Scale

The dex scatter plot shows the response values for each level of each
factor (i.e., independent) variable. This graphically shows how the
location and scale vary for both within a factor variable and between
different factor variables. This graphically shows which are the
important factors and can help provide a ranked list of important
factors from a designed experiment. The dex scatter plot is a
complement to the traditional analyis of variance of designed
experiments.

Dex scatter plots are typically used in conjunction with the dex mean
plot and the dex standard deviation plot. The dex mean plot replaces
the raw response values with mean response values while the dex
standard deviation plot replaces the raw response values with the
standard deviation of the response values. There is value in generating
all 3 of these plots. The dex mean and standard deviation plots are
useful in that the summary measures of location and spread stand out
(they can sometimes get lost with the raw plot). However, the raw data
points can reveal subtleties, such as the presence of outliers, that might
get lost with the summary statistics.

Sample Plot:
Factors 4, 2,
3, and 7 are
the Important
Factors.

1.3.3.11. DEX Scatter Plot
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Description
of the Plot

For this sample plot, there are seven factors and each factor has two
levels. For each factor, we define a distinct x coordinate for each level
of the factor. For example, for factor 1, level 1 is coded as 0.8 and level
2 is coded as 1.2. The y coordinate is simply the value of the response
variable. The solid horizontal line is drawn at the overall mean of the
response variable. The vertical dotted lines are added for clarity.

Although the plot can be drawn with an arbitrary number of levels for a
factor, it is really only useful when there are two or three levels for a
factor.

Conclusions This sample dex scatter plot shows that:

there does not appear to be any outliers;1.  

the levels of factors 2 and 4 show distinct location differences;
and

2.  

the levels of factor 1 show distinct scale differences.3.  

Definition:
Response
Values
Versus
Factor
Variables

Dex scatter plots are formed by:

Vertical axis: Value of the response variable●   

Horizontal axis: Factor variable (with each level of the factor
coded with a slightly offset x coordinate)

●   

1.3.3.11. DEX Scatter Plot
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Questions The dex scatter plot can be used to answer the following questions:

Which factors are important with respect to location and scale?1.  

Are there outliers?2.  

Importance:
Identify
Important
Factors with
Respect to
Location and
Scale

The goal of many designed experiments is to determine which factors
are important with respect to location and scale. A ranked list of the
important factors is also often of interest. Dex scatter, mean, and
standard deviation plots show this graphically. The dex scatter plot
additionally shows if outliers may potentially be distorting the results.

Dex scatter plots were designed primarily for analyzing designed
experiments. However, they are useful for any type of multi-factor data
(i.e., a response variable with 2 or more factor variables having a small
number of distinct levels) whether or not the data were generated from
a designed experiment.

Extension for
Interaction
Effects

Using the concept of the scatterplot matrix, the dex scatter plot can be
extended to display first order interaction effects.

Specifically, if there are k factors, we create a matrix of plots with k
rows and k columns. On the diagonal, the plot is simply a dex scatter
plot with a single factor. For the off-diagonal plots, we multiply the
values of Xi and Xj. For the common 2-level designs (i.e., each factor
has two levels) the values are typically coded as -1 and 1, so the
multiplied values are also -1 and 1. We then generate a dex scatter plot
for this interaction variable. This plot is called a dex interaction effects
plot and an example is shown below.

1.3.3.11. DEX Scatter Plot
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Interpretation
of the Dex
Interaction
Effects Plot

We can first examine the diagonal elements for the main effects. These
diagonal plots show a great deal of overlap between the levels for all
three factors. This indicates that location and scale effects will be
relatively small.

We can then examine the off-diagonal plots for the first order
interaction effects. For example, the plot in the first row and second
column is the interaction between factors X1 and X2. As with the main
effect plots, no clear patterns are evident.

Related
Techniques

Dex mean plot
Dex standard deviation plot
Block plot
Box plot
Analysis of variance

Case Study The dex scatter plot is demonstrated in the ceramic strength data case
study.

Software Dex scatter plots are available in some general purpose statistical
software programs, although the format may vary somewhat between
these programs. They are essentially just scatter plots with the X
variable defined in a particular way, so it should be feasible to write
macros for dex scatter plots in most statistical software programs.
Dataplot supports a dex scatter plot.

1.3.3.11. DEX Scatter Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.12.DEX Mean Plot

Purpose:
Detect
Important
Factors with
Respect to
Location

The dex mean plot is appropriate for analyzing data from a designed
experiment, with respect to important factors, where the factors are at
two or more levels. The plot shows mean values for the two or more
levels of each factor plotted by factor. The means for a single factor are
connected by a straight line. The dex mean plot is a complement to the
traditional analysis of variance of designed experiments.

This plot is typically generated for the mean. However, it can be
generated for other location statistics such as the median.

Sample
Plot:
Factors 4, 2,
and 1 are
the Most
Important
Factors

This sample dex mean plot shows that:

factor 4 is the most important;1.  

factor 2 is the second most important;2.  

factor 1 is the third most important;3.  

1.3.3.12. DEX Mean Plot
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factor 7 is the fourth most important;4.  

factor 6 is the fifth most important;5.  

factors 3 and 5 are relatively unimportant.6.  

In summary, factors 4, 2, and 1 seem to be clearly important, factors 3
and 5 seem to be clearly unimportant, and factors 6 and 7 are borderline
factors whose inclusion in any subsequent models will be determined by
further analyses.

Definition:
Mean
Response
Versus
Factor
Variables

Dex mean plots are formed by:

Vertical axis: Mean of the response variable for each level of the
factor

●   

Horizontal axis: Factor variable●   

Questions The dex mean plot can be used to answer the following questions:

Which factors are important? The dex mean plot does not provide
a definitive answer to this question, but it does help categorize
factors as "clearly important", "clearly not important", and
"borderline importance".

1.  

What is the ranking list of the important factors?2.  

Importance:
Determine
Significant
Factors

The goal of many designed experiments is to determine which factors
are significant. A ranked order listing of the important factors is also
often of interest. The dex mean plot is ideally suited for answering these
types of questions and we recommend its routine use in analyzing
designed experiments.

Extension
for
Interaction
Effects

Using the concept of the scatter plot matrix, the dex mean plot can be
extended to display first-order interaction effects.

Specifically, if there are k factors, we create a matrix of plots with k
rows and k columns. On the diagonal, the plot is simply a dex mean plot
with a single factor. For the off-diagonal plots, measurements at each
level of the interaction are plotted versus level, where level is Xi times
Xj and Xi is the code for the ith main effect level and Xj is the code for
the jth main effect. For the common 2-level designs (i.e., each factor has
two levels) the values are typically coded as -1 and 1, so the multiplied
values are also -1 and 1. We then generate a dex mean plot for this
interaction variable. This plot is called a dex interaction effects plot and
an example is shown below.

1.3.3.12. DEX Mean Plot
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DEX
Interaction
Effects Plot

This plot shows that the most significant factor is X1 and the most
significant interaction is between X1 and X3.

Related
Techniques

Dex scatter plot
Dex standard deviation plot
Block plot
Box plot
Analysis of variance

Case Study The dex mean plot and the dex interaction effects plot are demonstrated
in the ceramic strength data case study.

Software Dex mean plots are available in some general purpose statistical
software programs, although the format may vary somewhat between
these programs. It may be feasible to write macros for dex mean plots in
some statistical software programs that do not support this plot directly.
Dataplot supports both a dex mean plot and a dex interaction effects
plot.

1.3.3.12. DEX Mean Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.13.DEX Standard Deviation Plot

Purpose:
Detect
Important
Factors with
Respect to
Scale

The dex standard deviation plot is appropriate for analyzing data from a
designed experiment, with respect to important factors, where the
factors are at two or more levels and there are repeated values at each
level. The plot shows standard deviation values for the two or more
levels of each factor plotted by factor. The standard deviations for a
single factor are connected by a straight line. The dex standard deviation
plot is a complement to the traditional analysis of variance of designed
experiments.

This plot is typically generated for the standard deviation. However, it
can also be generated for other scale statistics such as the range, the
median absolute deviation, or the average absolute deviation.

Sample Plot

This sample dex standard deviation plot shows that:

1.3.3.13. DEX Standard Deviation Plot
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factor 1 has the greatest difference in standard deviations between
factor levels;

1.  

factor 4 has a significantly lower average standard deviation than
the average standard deviations of other factors (but the level 1
standard deviation for factor 1 is about the same as the level 1
standard deviation for factor 4);

2.  

for all factors, the level 1 standard deviation is smaller than the
level 2 standard deviation.

3.  

Definition:
Response
Standard
Deviations
Versus
Factor
Variables

Dex standard deviation plots are formed by:

Vertical axis: Standard deviation of the response variable for each
level of the factor

●   

Horizontal axis: Factor variable●   

Questions The dex standard deviation plot can be used to answer the following
questions:

How do the standard deviations vary across factors?1.  

How do the standard deviations vary within a factor?2.  

Which are the most important factors with respect to scale?3.  

What is the ranked list of the important factors with respect to
scale?

4.  

Importance:
Assess
Variability

The goal with many designed experiments is to determine which factors
are significant. This is usually determined from the means of the factor
levels (which can be conveniently shown with a dex mean plot). A
secondary goal is to assess the variability of the responses both within a
factor and between factors. The dex standard deviation plot is a
convenient way to do this.

Related
Techniques

Dex scatter plot
Dex mean plot
Block plot
Box plot
Analysis of variance

Case Study The dex standard deviation plot is demonstrated in the ceramic strength
data case study.

1.3.3.13. DEX Standard Deviation Plot
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Software Dex standard deviation plots are not available in most general purpose
statistical software programs. It may be feasible to write macros for dex
standard deviation plots in some statistical software programs that do
not support them directly. Dataplot supports a dex standard deviation
plot.

1.3.3.13. DEX Standard Deviation Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.14.Histogram

Purpose:
Summarize
a Univariate
Data Set

The purpose of a histogram (Chambers) is to graphically summarize the
distribution of a univariate data set.

The histogram graphically shows the following:

center (i.e., the location) of the data;1.  

spread (i.e., the scale) of the data;2.  

skewness of the data;3.  

presence of outliers; and4.  

presence of multiple modes in the data.5.  

These features provide strong indications of the proper distributional
model for the data. The probability plot or a goodness-of-fit test can be
used to verify the distributional model.

The examples section shows the appearance of a number of common
features revealed by histograms.

Sample Plot

1.3.3.14. Histogram
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Definition The most common form of the histogram is obtained by splitting the
range of the data into equal-sized bins (called classes). Then for each
bin, the number of points from the data set that fall into each bin are
counted. That is

Vertical axis: Frequency (i.e., counts for each bin)●   

Horizontal axis: Response variable●   

The classes can either be defined arbitrarily by the user or via some
systematic rule. A number of theoretically derived rules have been
proposed by Scott (Scott 1992).

The cumulative histogram is a variation of the histogram in which the
vertical axis gives not just the counts for a single bin, but rather gives
the counts for that bin plus all bins for smaller values of the response
variable.

Both the histogram and cumulative histogram have an additional variant
whereby the counts are replaced by the normalized counts. The names
for these variants are the relative histogram and the relative cumulative
histogram.

There are two common ways to normalize the counts.

The normalized count is the count in a class divided by the total
number of observations. In this case the relative counts are
normalized to sum to one (or 100 if a percentage scale is used).
This is the intuitive case where the height of the histogram bar
represents the proportion of the data in each class.

1.  

The normalized count is the count in the class divided by the2.  

1.3.3.14. Histogram
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number of observations times the class width. For this
normalization, the area (or integral) under the histogram is equal
to one. From a probabilistic point of view, this normalization
results in a relative histogram that is most akin to the probability
density function and a relative cumulative histogram that is most
akin to the cumulative distribution function. If you want to
overlay a probability density or cumulative distribution function
on top of the histogram, use this normalization. Although this
normalization is less intuitive (relative frequencies greater than 1
are quite permissible), it is the appropriate normalization if you
are using the histogram to model a probability density function.

Questions The histogram can be used to answer the following questions:

What kind of population distribution do the data come from?1.  

Where are the data located?2.  

How spread out are the data?3.  

Are the data symmetric or skewed?4.  

Are there outliers in the data?5.  

Examples Normal1.  

Symmetric, Non-Normal, Short-Tailed2.  

Symmetric, Non-Normal, Long-Tailed3.  

Symmetric and Bimodal4.  

Bimodal Mixture of 2 Normals5.  

Skewed (Non-Symmetric) Right6.  

Skewed (Non-Symmetric) Left7.  

Symmetric with Outlier8.  

Related
Techniques

Box plot
Probability plot

The techniques below are not discussed in the Handbook. However,
they are similar in purpose to the histogram. Additional information on
them is contained in the Chambers and Scott references.

Frequency Plot
Stem and Leaf Plot
Density Trace

Case Study The histogram is demonstrated in the heat flow meter data case study.

1.3.3.14. Histogram
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Software Histograms are available in most general purpose statistical software
programs. They are also supported in most general purpose charting,
spreadsheet, and business graphics programs. Dataplot supports
histograms.

1.3.3.14. Histogram
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.14. Histogram

1.3.3.14.1.Histogram Interpretation: Normal

Symmetric,
Moderate-
Tailed
Histogram

 Note the classical bell-shaped, symmetric histogram with most of the
frequency counts bunched in the middle and with the counts dying off
out in the tails. From a physical science/engineering point of view, the
normal distribution is that distribution which occurs most often in
nature (due in part to the central limit theorem).

Recommended
Next Step

If the histogram indicates a symmetric, moderate tailed distribution,
then the recommended next step is to do a normal probability plot to
confirm approximate normality. If the normal probability plot is linear,
then the normal distribution is a good model for the data.

1.3.3.14.1. Histogram Interpretation: Normal
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1.3.3.14.1. Histogram Interpretation: Normal
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.14. Histogram

1.3.3.14.2.Histogram Interpretation:
Symmetric, Non-Normal,
Short-Tailed

Symmetric,
Short-Tailed
Histogram

1.3.3.14.2. Histogram Interpretation: Symmetric, Non-Normal, Short-Tailed
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Description of
What
Short-Tailed
Means

For a symmetric distribution, the "body" of a distribution refers to the
"center" of the distribution--commonly that region of the distribution
where most of the probability resides--the "fat" part of the distribution.
The "tail" of a distribution refers to the extreme regions of the
distribution--both left and right. The "tail length" of a distribution is a
term that indicates how fast these extremes approach zero.

For a short-tailed distribution, the tails approach zero very fast. Such
distributions commonly have a truncated ("sawed-off") look. The
classical short-tailed distribution is the uniform (rectangular)
distribution in which the probability is constant over a given range and
then drops to zero everywhere else--we would speak of this as having
no tails, or extremely short tails.

For a moderate-tailed distribution, the tails decline to zero in a
moderate fashion. The classical moderate-tailed distribution is the
normal (Gaussian) distribution.

For a long-tailed distribution, the tails decline to zero very slowly--and
hence one is apt to see probability a long way from the body of the
distribution. The classical long-tailed distribution is the Cauchy
distribution.

In terms of tail length, the histogram shown above would be
characteristic of a "short-tailed" distribution.

The optimal (unbiased and most precise) estimator for location for the
center of a distribution is heavily dependent on the tail length of the
distribution. The common choice of taking N observations and using
the calculated sample mean as the best estimate for the center of the
distribution is a good choice for the normal distribution (moderate
tailed), a poor choice for the uniform distribution (short tailed), and a
horrible choice for the Cauchy distribution (long tailed). Although for
the normal distribution the sample mean is as precise an estimator as
we can get, for the uniform and Cauchy distributions, the sample mean
is not the best estimator.

For the uniform distribution, the midrange

midrange = (smallest + largest) / 2

is the best estimator of location. For a Cauchy distribution, the median
is the best estimator of location.

Recommended
Next Step

If the histogram indicates a symmetric, short-tailed distribution, the
recommended next step is to generate a uniform probability plot. If the
uniform probability plot is linear, then the uniform distribution is an
appropriate model for the data.

1.3.3.14.2. Histogram Interpretation: Symmetric, Non-Normal, Short-Tailed

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33e2.htm (2 of 3) [5/1/2006 9:56:37 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm


1.3.3.14.2. Histogram Interpretation: Symmetric, Non-Normal, Short-Tailed

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33e2.htm (3 of 3) [5/1/2006 9:56:37 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


1. Exploratory Data Analysis
1.3. EDA Techniques
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1.3.3.14.3.Histogram Interpretation:
Symmetric, Non-Normal,
Long-Tailed

Symmetric,
Long-Tailed
Histogram

Description of
Long-Tailed

The previous example contains a discussion of the distinction between
short-tailed, moderate-tailed, and long-tailed distributions.

In terms of tail length, the histogram shown above would be
characteristic of a "long-tailed" distribution.

1.3.3.14.3. Histogram Interpretation: Symmetric, Non-Normal, Long-Tailed
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Recommended
Next Step

If the histogram indicates a symmetric, long tailed distribution, the
recommended next step is to do a Cauchy probability plot. If the
Cauchy probability plot is linear, then the Cauchy distribution is an
appropriate model for the data. Alternatively, a Tukey Lambda PPCC
plot may provide insight into a suitable distributional model for the
data.

1.3.3.14.3. Histogram Interpretation: Symmetric, Non-Normal, Long-Tailed
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1.3.3.14. Histogram

1.3.3.14.4.Histogram Interpretation:
Symmetric and Bimodal

Symmetric,
Bimodal
Histogram

Description of
Bimodal

The mode of a distribution is that value which is most frequently
occurring or has the largest probability of occurrence. The sample
mode occurs at the peak of the histogram.

For many phenomena, it is quite common for the distribution of the
response values to cluster around a single mode (unimodal) and then
distribute themselves with lesser frequency out into the tails. The
normal distribution is the classic example of a unimodal distribution.

The histogram shown above illustrates data from a bimodal (2 peak)
distribution. The histogram serves as a tool for diagnosing problems
such as bimodality. Questioning the underlying reason for
distributional non-unimodality frequently leads to greater insight and

1.3.3.14.4. Histogram Interpretation: Symmetric and Bimodal
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improved deterministic modeling of the phenomenon under study. For
example, for the data presented above, the bimodal histogram is
caused by sinusoidality in the data.

Recommended
Next Step

If the histogram indicates a symmetric, bimodal distribution, the
recommended next steps are to:

Do a run sequence plot or a scatter plot to check for
sinusoidality.

1.  

Do a lag plot to check for sinusoidality. If the lag plot is
elliptical, then the data are sinusoidal.

2.  

If the data are sinusoidal, then a spectral plot is used to
graphically estimate the underlying sinusoidal frequency.

3.  

If the data are not sinusoidal, then a Tukey Lambda PPCC plot
may determine the best-fit symmetric distribution for the data.

4.  

The data may be fit with a mixture of two distributions. A
common approach to this case is to fit a mixture of 2 normal or
lognormal distributions. Further discussion of fitting mixtures of
distributions is beyond the scope of this Handbook.

5.  

1.3.3.14.4. Histogram Interpretation: Symmetric and Bimodal
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1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.14. Histogram

1.3.3.14.5.Histogram Interpretation:
Bimodal Mixture of 2 Normals

Histogram
from Mixture
of 2 Normal
Distributions

Discussion of
Unimodal and
Bimodal

The histogram shown above illustrates data from a bimodal (2 peak)
distribution.

In contrast to the previous example, this example illustrates bimodality
due not to an underlying deterministic model, but bimodality due to a
mixture of probability models. In this case, each of the modes appears
to have a rough bell-shaped component. One could easily imagine the
above histogram being generated by a process consisting of two
normal distributions with the same standard deviation but with two
different locations (one centered at approximately 9.17 and the other
centered at approximately 9.26). If this is the case, then the research
challenge is to determine physically why there are two similar but
separate sub-processes.

1.3.3.14.5. Histogram Interpretation: Bimodal Mixture of 2 Normals
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Recommended
Next Steps

If the histogram indicates that the data might be appropriately fit with
a mixture of two normal distributions, the recommended next step is:

Fit the normal mixture model using either least squares or maximum
likelihood. The general normal mixing model is

where p is the mixing proportion (between 0 and 1) and  and  are
normal probability density functions with location and scale
parameters , , , and , respectively. That is, there are 5
parameters to estimate in the fit.

Whether maximum likelihood or least squares is used, the quality of
the fit is sensitive to good starting values. For the mixture of two
normals, the histogram can be used to provide initial estimates for the
location and scale parameters of the two normal distributions.

Dataplot can generate a least squares fit of the mixture of two normals
with the following sequence of commands:

RELATIVE HISTOGRAM Y
LET Y2 = YPLOT
LET X2 = XPLOT
RETAIN Y2 X2 SUBSET TAGPLOT = 1
LET U1 = <estimated value from histogram>
LET SD1 = <estimated value from histogram>
LET U2 = <estimated value from histogram>
LET SD2 = <estimated value from histogram>
LET P = 0.5
FIT Y2 = NORMXPDF(X2,U1,S1,U2,S2,P)

1.3.3.14.5. Histogram Interpretation: Bimodal Mixture of 2 Normals
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1.3.3.14.6.Histogram Interpretation:
Skewed (Non-Normal) Right

Right-Skewed
Histogram

Discussion of
Skewness

A symmetric distribution is one in which the 2 "halves" of the
histogram appear as mirror-images of one another. A skewed
(non-symmetric) distribution is a distribution in which there is no such
mirror-imaging.

For skewed distributions, it is quite common to have one tail of the
distribution considerably longer or drawn out relative to the other tail.
A "skewed right" distribution is one in which the tail is on the right
side. A "skewed left" distribution is one in which the tail is on the left
side. The above histogram is for a distribution that is skewed right.

Skewed distributions bring a certain philosophical complexity to the
very process of estimating a "typical value" for the distribution. To be

1.3.3.14.6. Histogram Interpretation: Skewed (Non-Normal) Right
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specific, suppose that the analyst has a collection of 100 values
randomly drawn from a distribution, and wishes to summarize these
100 observations by a "typical value". What does typical value mean?
If the distribution is symmetric, the typical value is unambiguous-- it is
a well-defined center of the distribution. For example, for a
bell-shaped symmetric distribution, a center point is identical to that
value at the peak of the distribution.

For a skewed distribution, however, there is no "center" in the usual
sense of the word. Be that as it may, several "typical value" metrics are
often used for skewed distributions. The first metric is the mode of the
distribution. Unfortunately, for severely-skewed distributions, the
mode may be at or near the left or right tail of the data and so it seems
not to be a good representative of the center of the distribution. As a
second choice, one could conceptually argue that the mean (the point
on the horizontal axis where the distributiuon would balance) would
serve well as the typical value. As a third choice, others may argue
that the median (that value on the horizontal axis which has exactly
50% of the data to the left (and also to the right) would serve as a good
typical value.

For symmetric distributions, the conceptual problem disappears
because at the population level the mode, mean, and median are
identical. For skewed distributions, however, these 3 metrics are
markedly different. In practice, for skewed distributions the most
commonly reported typical value is the mean; the next most common
is the median; the least common is the mode. Because each of these 3
metrics reflects a different aspect of "centerness", it is recommended
that the analyst report at least 2 (mean and median), and preferably all
3 (mean, median, and mode) in summarizing and characterizing a data
set.

Some Causes
for Skewed
Data

Skewed data often occur due to lower or upper bounds on the data.
That is, data that have a lower bound are often skewed right while data
that have an upper bound are often skewed left. Skewness can also
result from start-up effects. For example, in reliability applications
some processes may have a large number of initial failures that could
cause left skewness. On the other hand, a reliability process could
have a long start-up period where failures are rare resulting in
right-skewed data.

Data collected in scientific and engineering applications often have a
lower bound of zero. For example, failure data must be non-negative.
Many measurement processes generate only positive data. Time to
occurence and size are common measurements that cannot be less than
zero.

1.3.3.14.6. Histogram Interpretation: Skewed (Non-Normal) Right
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Recommended
Next Steps

If the histogram indicates a right-skewed data set, the recommended
next steps are to:

Quantitatively summarize the data by computing and reporting
the sample mean, the sample median, and the sample mode.

1.  

Determine the best-fit distribution (skewed-right) from the

Weibull family (for the maximum)❍   

Gamma family❍   

Chi-square family❍   

Lognormal family❍   

Power lognormal family❍   

2.  

Consider a normalizing transformation such as the Box-Cox
transformation.

3.  

1.3.3.14.6. Histogram Interpretation: Skewed (Non-Normal) Right
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1.3.3.14.7.Histogram Interpretation:
Skewed (Non-Symmetric) Left

Skewed Left
Histogram

The issues for skewed left data are similar to those for skewed right
data.
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1.3.3.14.8.Histogram Interpretation:
Symmetric with Outlier

Symmetric
Histogram
with Outlier

Discussion of
Outliers

A symmetric distribution is one in which the 2 "halves" of the
histogram appear as mirror-images of one another. The above example
is symmetric with the exception of outlying data near Y = 4.5.

An outlier is a data point that comes from a distribution different (in
location, scale, or distributional form) from the bulk of the data. In the
real world, outliers have a range of causes, from as simple as

operator blunders1.  

equipment failures2.  

day-to-day effects3.  

batch-to-batch differences4.  

anomalous input conditions5.  

1.3.3.14.8. Histogram Interpretation: Symmetric with Outlier
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warm-up effects6.  

to more subtle causes such as

A change in settings of factors that (knowingly or unknowingly)
affect the response.

1.  

Nature is trying to tell us something.2.  

Outliers
Should be
Investigated

All outliers should be taken seriously and should be investigated
thoroughly for explanations. Automatic outlier-rejection schemes
(such as throw out all data beyond 4 sample standard deviations from
the sample mean) are particularly dangerous.

The classic case of automatic outlier rejection becoming automatic
information rejection was the South Pole ozone depletion problem.
Ozone depletion over the South Pole would have been detected years
earlier except for the fact that the satellite data recording the low
ozone readings had outlier-rejection code that automatically screened
out the "outliers" (that is, the low ozone readings) before the analysis
was conducted. Such inadvertent (and incorrect) purging went on for
years. It was not until ground-based South Pole readings started
detecting low ozone readings that someone decided to double-check as
to why the satellite had not picked up this fact--it had, but it had gotten
thrown out!

The best attitude is that outliers are our "friends", outliers are trying to
tell us something, and we should not stop until we are comfortable in
the explanation for each outlier.

Recommended
Next Steps

If the histogram shows the presence of outliers, the recommended next
steps are:

Graphically check for outliers (in the commonly encountered
normal case) by generating a box plot. In general, box plots are
a much better graphical tool for detecting outliers than are
histograms.

1.  

Quantitatively check for outliers (in the commonly encountered
normal case) by carrying out Grubbs test which indicates how
many sample standard deviations away from the sample mean
are the data in question. Large values indicate outliers.

2.  

1.3.3.14.8. Histogram Interpretation: Symmetric with Outlier
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1.3.3.15.Lag Plot

Purpose:
Check for
randomness

A lag plot checks whether a data set or time series is random or not.
Random data should not exhibit any identifiable structure in the lag plot.
Non-random structure in the lag plot indicates that the underlying data
are not random. Several common patterns for lag plots are shown in the
examples below.

Sample Plot

This sample lag plot exhibits a linear pattern. This shows that the data
are strongly non-random and further suggests that an autoregressive
model might be appropriate.

1.3.3.15. Lag Plot
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Definition A lag is a fixed time displacement. For example, given a data set Y1, Y2
..., Yn, Y2 and Y7 have lag 5 since 7 - 2 = 5. Lag plots can be generated
for any arbitrary lag, although the most commonly used lag is 1.

A plot of lag 1 is a plot of the values of Yi versus Yi-1

Vertical axis: Yi for all i●   

Horizontal axis: Yi-1 for all i●   

Questions Lag plots can provide answers to the following questions:

Are the data random?1.  

Is there serial correlation in the data?2.  

What is a suitable model for the data?3.  

Are there outliers in the data?4.  

Importance Inasmuch as randomness is an underlying assumption for most statistical
estimation and testing techniques, the lag plot should be a routine tool
for researchers.

Examples Random (White Noise)●   

Weak autocorrelation●   

Strong autocorrelation and autoregressive model●   

Sinusoidal model and outliers●   

Related
Techniques

Autocorrelation Plot
Spectrum
Runs Test

Case Study The lag plot is demonstrated in the beam deflection data case study.

Software Lag plots are not directly available in most general purpose statistical
software programs. Since the lag plot is essentially a scatter plot with
the 2 variables properly lagged, it should be feasible to write a macro for
the lag plot in most statistical programs. Dataplot supports a lag plot.

1.3.3.15. Lag Plot
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1.3.3.15.1.Lag Plot: Random Data

Lag Plot

Conclusions We can make the following conclusions based on the above plot.

The data are random.1.  

The data exhibit no autocorrelation.2.  

The data contain no outliers.3.  

Discussion The lag plot shown above is for lag = 1. Note the absence of structure.
One cannot infer, from a current value Yi-1, the next value Yi. Thus for a
known value Yi-1 on the horizontal axis (say, Yi-1 = +0.5), the Yi-th
value could be virtually anything (from Yi = -2.5 to Yi = +1.5). Such
non-association is the essence of randomness.

1.3.3.15.1. Lag Plot: Random Data
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1.3.3.15.1. Lag Plot: Random Data
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1.3.3.15.2.Lag Plot: Moderate
Autocorrelation

Lag Plot

Conclusions We can make the conclusions based on the above plot.

The data are from an underlying autoregressive model with
moderate positive autocorrelation

1.  

The data contain no outliers.2.  

1.3.3.15.2. Lag Plot: Moderate Autocorrelation
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Discussion In the plot above for lag = 1, note how the points tend to cluster (albeit
noisily) along the diagonal. Such clustering is the lag plot signature of
moderate autocorrelation.

If the process were completely random, knowledge of a current
observation (say Yi-1 = 0) would yield virtually no knowledge about
the next observation Yi. If the process has moderate autocorrelation, as
above, and if Yi-1 = 0, then the range of possible values for Yi is seen
to be restricted to a smaller range (.01 to +.01). This suggests
prediction is possible using an autoregressive model.

Recommended
Next Step

Estimate the parameters for the autoregressive model:

Since Yi and Yi-1 are precisely the axes of the lag plot, such estimation
is a linear regression straight from the lag plot.

The residual standard deviation for the autoregressive model will be
much smaller than the residual standard deviation for the default
model

1.3.3.15.2. Lag Plot: Moderate Autocorrelation
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1.3.3. Graphical Techniques: Alphabetic
1.3.3.15. Lag Plot

1.3.3.15.3.Lag Plot: Strong Autocorrelation
and Autoregressive Model

Lag Plot

Conclusions We can make the following conclusions based on the above plot.

The data come from an underlying autoregressive model with
strong positive autocorrelation

1.  

The data contain no outliers.2.  

1.3.3.15.3. Lag Plot: Strong Autocorrelation and Autoregressive Model
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Discussion Note the tight clustering of points along the diagonal. This is the lag
plot signature of a process with strong positive autocorrelation. Such
processes are highly non-random--there is strong association between
an observation and a succeeding observation. In short, if you know
Yi-1 you can make a strong guess as to what Yi will be.

If the above process were completely random, the plot would have a
shotgun pattern, and knowledge of a current observation (say Yi-1 = 3)
would yield virtually no knowledge about the next observation Yi (it
could here be anywhere from -2 to +8). On the other hand, if the
process had strong autocorrelation, as seen above, and if Yi-1 = 3, then
the range of possible values for Yi is seen to be restricted to a smaller
range (2 to 4)--still wide, but an improvement nonetheless (relative to
-2 to +8) in predictive power.

Recommended
Next Step

When the lag plot shows a strongly autoregressive pattern and only
successive observations appear to be correlated, the next steps are to:

Extimate the parameters for the autoregressive model:

Since Yi and Yi-1 are precisely the axes of the lag plot, such
estimation is a linear regression straight from the lag plot.

The residual standard deviation for this autoregressive model
will be much smaller than the residual standard deviation for the
default model

1.  

Reexamine the system to arrive at an explanation for the strong
autocorrelation. Is it due to the

phenomenon under study; or1.  

drifting in the environment; or2.  

contamination from the data acquisition system?3.  

Sometimes the source of the problem is contamination and
carry-over from the data acquisition system where the system
does not have time to electronically recover before collecting
the next data point. If this is the case, then consider slowing
down the sampling rate to achieve randomness.

2.  

1.3.3.15.3. Lag Plot: Strong Autocorrelation and Autoregressive Model
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.15. Lag Plot

1.3.3.15.4.Lag Plot: Sinusoidal Models and
Outliers

Lag Plot

Conclusions We can make the following conclusions based on the above plot.

The data come from an underlying single-cycle sinusoidal
model.

1.  

The data contain three outliers.2.  

Discussion In the plot above for lag = 1, note the tight elliptical clustering of
points. Processes with a single-cycle sinusoidal model will have such
elliptical lag plots.

1.3.3.15.4. Lag Plot: Sinusoidal Models and Outliers
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Consequences
of Ignoring
Cyclical
Pattern

If one were to naively assume that the above process came from the
null model

and then estimate the constant by the sample mean, then the analysis
would suffer because

the sample mean would be biased and meaningless;1.  

the confidence limits would be meaningless and optimistically
small.

2.  

The proper model

(where  is the amplitude,  is the frequency--between 0 and .5

cycles per observation--, and  is the phase) can be fit by standard
non-linear least squares, to estimate the coefficients and their
uncertainties.

The lag plot is also of value in outlier detection. Note in the above plot
that there appears to be 4 points lying off the ellipse. However, in a lag
plot, each point in the original data set Y shows up twice in the lag
plot--once as Yi and once as Yi-1. Hence the outlier in the upper left at
Yi = 300 is the same raw data value that appears on the far right at Yi-1
= 300. Thus (-500,300) and (300,200) are due to the same outlier,
namely the 158th data point: 300. The correct value for this 158th
point should be approximately -300 and so it appears that a sign got
dropped in the data collection. The other two points lying off the
ellipse, at roughly (100,100) and at (0,-50), are caused by two faulty
data values: the third data point of -15 should be about +125 and the
fourth data point of +141 should be about -50, respectively. Hence the
4 apparent lag plot outliers are traceable to 3 actual outliers in the
original run sequence: at points 4 (-15), 5 (141) and 158 (300). In
retrospect, only one of these (point 158 (= 300)) is an obvious outlier
in the run sequence plot.

Unexpected
Value of EDA

Frequently a technique (e.g., the lag plot) is constructed to check one
aspect (e.g., randomness) which it does well. Along the way, the
technique also highlights some other anomaly of the data (namely, that
there are 3 outliers). Such outlier identification and removal is
extremely important for detecting irregularities in the data collection
system, and also for arriving at a "purified" data set for modeling. The
lag plot plays an important role in such outlier identification.

1.3.3.15.4. Lag Plot: Sinusoidal Models and Outliers
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Recommended
Next Step

When the lag plot indicates a sinusoidal model with possible outliers,
the recommended next steps are:

Do a spectral plot to obtain an initial estimate of the frequency
of the underlying cycle. This will be helpful as a starting value
for the subsequent non-linear fitting.

1.  

Omit the outliers.2.  

Carry out a non-linear fit of the model to the 197 points.3.  

1.3.3.15.4. Lag Plot: Sinusoidal Models and Outliers
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.16.Linear Correlation Plot

Purpose:
Detect
changes in
correlation
between
groups

Linear correlation plots are used to assess whether or not correlations
are consistent across groups. That is, if your data is in groups, you may
want to know if a single correlation can be used across all the groups or
whether separate correlations are required for each group.

Linear correlation plots are often used in conjunction with linear slope,
linear intercept, and linear residual standard deviation plots. A linear
correlation plot could be generated intially to see if linear fitting would
be a fruitful direction. If the correlations are high, this implies it is
worthwhile to continue with the linear slope, intercept, and residual
standard deviation plots. If the correlations are weak, a different model
needs to be pursued.

In some cases, you might not have groups. Instead you may have
different data sets and you want to know if the same correlation can be
adequately applied to each of the data sets. In this case, simply think of
each distinct data set as a group and apply the linear slope plot as for
groups.

Sample Plot

1.3.3.16. Linear Correlation Plot
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This linear correlation plot shows that the correlations are high for all
groups. This implies that linear fits could provide a good model for
each of these groups.

Definition:
Group
Correlations
Versus
Group ID

Linear correlation plots are formed by:

Vertical axis: Group correlations●   

Horizontal axis: Group identifier●   

A reference line is plotted at the correlation between the full data sets.

Questions The linear correlation plot can be used to answer the following
questions.

Are there linear relationships across groups?1.  

Are the strength of the linear relationships relatively constant
across the groups?

2.  

Importance:
Checking
Group
Homogeneity

For grouped data, it may be important to know whether the different
groups are homogeneous (i.e., similar) or heterogeneous (i.e., different).
Linear correlation plots help answer this question in the context of
linear fitting.

Related
Techniques

Linear Intercept Plot
Linear Slope Plot
Linear Residual Standard Deviation Plot
Linear Fitting

1.3.3.16. Linear Correlation Plot
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Case Study The linear correlation plot is demonstrated in the Alaska pipeline data
case study.

Software Most general purpose statistical software programs do not support a
linear correlation plot. However, if the statistical program can generate
correlations over a group, it should be feasible to write a macro to
generate this plot. Dataplot supports a linear correlation plot.

1.3.3.16. Linear Correlation Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.17.Linear Intercept Plot

Purpose:
Detect
changes in
linear
intercepts
between
groups

Linear intercept plots are used to graphically assess whether or not
linear fits are consistent across groups. That is, if your data have
groups, you may want to know if a single fit can be used across all the
groups or whether separate fits are required for each group.

Linear intercept plots are typically used in conjunction with linear slope
and linear residual standard deviation plots.

In some cases you might not have groups. Instead, you have different
data sets and you want to know if the same fit can be adequately applied
to each of the data sets. In this case, simply think of each distinct data
set as a group and apply the linear intercept plot as for groups.

Sample Plot

This linear intercept plot shows that there is a shift in intercepts.
Specifically, the first three intercepts are lower than the intercepts for

1.3.3.17. Linear Intercept Plot
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the other groups. Note that these are small differences in the intercepts.

Definition:
Group
Intercepts
Versus
Group ID

Linear intercept plots are formed by:

Vertical axis: Group intercepts from linear fits●   

Horizontal axis: Group identifier●   

A reference line is plotted at the intercept from a linear fit using all the
data.

Questions The linear intercept plot can be used to answer the following questions.

Is the intercept from linear fits relatively constant across groups?1.  

If the intercepts vary across groups, is there a discernible pattern?2.  

Importance:
Checking
Group
Homogeneity

For grouped data, it may be important to know whether the different
groups are homogeneous (i.e., similar) or heterogeneous (i.e., different).
Linear intercept plots help answer this question in the context of linear
fitting.

Related
Techniques

Linear Correlation Plot
Linear Slope Plot
Linear Residual Standard Deviation Plot
Linear Fitting

Case Study The linear intercept plot is demonstrated in the Alaska pipeline data
case study.

Software Most general purpose statistical software programs do not support a
linear intercept plot. However, if the statistical program can generate
linear fits over a group, it should be feasible to write a macro to
generate this plot. Dataplot supports a linear intercept plot.

1.3.3.17. Linear Intercept Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.18.Linear Slope Plot

Purpose:
Detect
changes in
linear slopes
between
groups

Linear slope plots are used to graphically assess whether or not linear
fits are consistent across groups. That is, if your data have groups, you
may want to know if a single fit can be used across all the groups or
whether separate fits are required for each group.

Linear slope plots are typically used in conjunction with linear intercept
and linear residual standard deviation plots.

In some cases you might not have groups. Instead, you have different
data sets and you want to know if the same fit can be adequately applied
to each of the data sets. In this case, simply think of each distinct data
set as a group and apply the linear slope plot as for groups.

Sample Plot

This linear slope plot shows that the slopes are about 0.174 (plus or
minus 0.002) for all groups. There does not appear to be a pattern in the
variation of the slopes. This implies that a single fit may be adequate.

1.3.3.18. Linear Slope Plot
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Definition:
Group
Slopes
Versus
Group ID

Linear slope plots are formed by:

Vertical axis: Group slopes from linear fits●   

Horizontal axis: Group identifier●   

A reference line is plotted at the slope from a linear fit using all the
data.

Questions The linear slope plot can be used to answer the following questions.

Do you get the same slope across groups for linear fits?1.  

If the slopes differ, is there a discernible pattern in the slopes?2.  

Importance:
Checking
Group
Homogeneity

For grouped data, it may be important to know whether the different
groups are homogeneous (i.e., similar) or heterogeneous (i.e., different).
Linear slope plots help answer this question in the context of linear
fitting.

Related
Techniques

Linear Intercept Plot
Linear Correlation Plot
Linear Residual Standard Deviation Plot
Linear Fitting

Case Study The linear slope plot is demonstrated in the Alaska pipeline data case
study.

Software Most general purpose statistical software programs do not support a
linear slope plot. However, if the statistical program can generate linear
fits over a group, it should be feasible to write a macro to generate this
plot. Dataplot supports a linear slope plot.

1.3.3.18. Linear Slope Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.19.Linear Residual Standard
Deviation Plot

Purpose:
Detect
Changes in
Linear
Residual
Standard
Deviation
Between
Groups

Linear residual standard deviation (RESSD) plots are used to
graphically assess whether or not linear fits are consistent across
groups. That is, if your data have groups, you may want to know if a
single fit can be used across all the groups or whether separate fits are
required for each group.

The residual standard deviation is a goodness-of-fit measure. That is,
the smaller the residual standard deviation, the closer is the fit to the
data.

Linear RESSD plots are typically used in conjunction with linear
intercept and linear slope plots. The linear intercept and slope plots
convey whether or not the fits are consistent across groups while the
linear RESSD plot conveys whether the adequacy of the fit is consistent
across groups.

In some cases you might not have groups. Instead, you have different
data sets and you want to know if the same fit can be adequately applied
to each of the data sets. In this case, simply think of each distinct data
set as a group and apply the linear RESSD plot as for groups.

1.3.3.19. Linear Residual Standard Deviation Plot
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Sample Plot

This linear RESSD plot shows that the residual standard deviations
from a linear fit are about 0.0025 for all the groups.

Definition:
Group
Residual
Standard
Deviation
Versus
Group ID

Linear RESSD plots are formed by:

Vertical axis: Group residual standard deviations from linear fits●   

Horizontal axis: Group identifier●   

A reference line is plotted at the residual standard deviation from a
linear fit using all the data. This reference line will typically be much
greater than any of the individual residual standard deviations.

Questions The linear RESSD plot can be used to answer the following questions.

Is the residual standard deviation from a linear fit constant across
groups?

1.  

If the residual standard deviations vary, is there a discernible
pattern across the groups?

2.  

Importance:
Checking
Group
Homogeneity

For grouped data, it may be important to know whether the different
groups are homogeneous (i.e., similar) or heterogeneous (i.e., different).
Linear RESSD plots help answer this question in the context of linear
fitting.

1.3.3.19. Linear Residual Standard Deviation Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33j.htm (2 of 3) [5/1/2006 9:56:48 AM]



Related
Techniques

Linear Intercept Plot
Linear Slope Plot
Linear Correlation Plot
Linear Fitting

Case Study The linear residual standard deviation plot is demonstrated in the
Alaska pipeline data case study.

Software Most general purpose statistical software programs do not support a
linear residual standard deviation plot. However, if the statistical
program can generate linear fits over a group, it should be feasible to
write a macro to generate this plot. Dataplot supports a linear residual
standard deviation plot.

1.3.3.19. Linear Residual Standard Deviation Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.20.Mean Plot

Purpose:
Detect
changes in
location
between
groups

Mean plots are used to see if the mean varies between different groups
of the data. The grouping is determined by the analyst. In most cases,
the data set contains a specific grouping variable. For example, the
groups may be the levels of a factor variable. In the sample plot below,
the months of the year provide the grouping.

Mean plots can be used with ungrouped data to determine if the mean is
changing over time. In this case, the data are split into an arbitrary
number of equal-sized groups. For example, a data series with 400
points can be divided into 10 groups of 40 points each. A mean plot can
then be generated with these groups to see if the mean is increasing or
decreasing over time.

Although the mean is the most commonly used measure of location, the
same concept applies to other measures of location. For example,
instead of plotting the mean of each group, the median or the trimmed
mean might be plotted instead. This might be done if there were
significant outliers in the data and a more robust measure of location
than the mean was desired.

Mean plots are typically used in conjunction with standard deviation
plots. The mean plot checks for shifts in location while the standard
deviation plot checks for shifts in scale.

1.3.3.20. Mean Plot
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Sample Plot

This sample mean plot shows a shift of location after the 6th month.

Definition:
Group
Means
Versus
Group ID

Mean plots are formed by:

Vertical axis: Group mean●   

Horizontal axis: Group identifier●   

A reference line is plotted at the overall mean.

Questions The mean plot can be used to answer the following questions.

Are there any shifts in location?1.  

What is the magnitude of the shifts in location?2.  

Is there a distinct pattern in the shifts in location?3.  

Importance:
Checking
Assumptions

A common assumption in 1-factor analyses is that of constant location.
That is, the location is the same for different levels of the factor
variable. The mean plot provides a graphical check for that assumption.
A common assumption for univariate data is that the location is
constant. By grouping the data into equal intervals, the mean plot can
provide a graphical test of this assumption.

Related
Techniques

Standard Deviation Plot
Dex Mean Plot
Box Plot

1.3.3.20. Mean Plot
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Software Most general purpose statistical software programs do not support a
mean plot. However, if the statistical program can generate the mean
over a group, it should be feasible to write a macro to generate this plot.
Dataplot supports a mean plot.

1.3.3.20. Mean Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.21.Normal Probability Plot

Purpose:
Check If Data
Are
Approximately
Normally
Distributed

The normal probability plot (Chambers 1983) is a graphical technique
for assessing whether or not a data set is approximately normally
distributed.

The data are plotted against a theoretical normal distribution in such a
way that the points should form an approximate straight line.
Departures from this straight line indicate departures from normality.

The normal probability plot is a special case of the probability plot.
We cover the normal probability plot separately due to its importance
in many applications.

Sample Plot

The points on this plot form a nearly linear pattern, which indicates
that the normal distribution is a good model for this data set.

1.3.3.21. Normal Probability Plot
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Definition:
Ordered
Response
Values Versus
Normal Order
Statistic
Medians

The normal probability plot is formed by:

Vertical axis: Ordered response values●   

Horizontal axis: Normal order statistic medians●   

The observations are plotted as a function of the corresponding normal
order statistic medians which are defined as:

N(i) = G(U(i))

where U(i) are the uniform order statistic medians (defined below) and
G is the percent point function of the normal distribution. The percent
point function is the inverse of the cumulative distribution function
(probability that x is less than or equal to some value). That is, given a
probability, we want the corresponding x of the cumulative
distribution function.

The uniform order statistic medians are defined as:

m(i) = 1 - m(n) for i = 1
m(i) = (i - 0.3175)/(n + 0.365) for i = 2, 3, ..., n-1
m(i) = 0.5(1/n) for i = n

In addition, a straight line can be fit to the points and added as a
reference line. The further the points vary from this line, the greater
the indication of departures from normality.

Probability plots for distributions other than the normal are computed
in exactly the same way. The normal percent point function (the G) is
simply replaced by the percent point function of the desired
distribution. That is, a probability plot can easily be generated for any
distribution for which you have the percent point function.

One advantage of this method of computing probability plots is that
the intercept and slope estimates of the fitted line are in fact estimates
for the location and scale parameters of the distribution. Although this
is not too important for the normal distribution since the location and
scale are estimated by the mean and standard deviation, respectively, it
can be useful for many other distributions.

The correlation coefficient of the points on the normal probability plot
can be compared to a table of critical values to provide a formal test of
the hypothesis that the data come from a normal distribution.

Questions The normal probability plot is used to answer the following questions.

Are the data normally distributed?1.  

What is the nature of the departure from normality (data
skewed, shorter than expected tails, longer than expected tails)?

2.  

1.3.3.21. Normal Probability Plot
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Importance:
Check
Normality
Assumption

The underlying assumptions for a measurement process are that the
data should behave like:

random drawings;1.  

from a fixed distribution;2.  

with fixed location;3.  

with fixed scale.4.  

Probability plots are used to assess the assumption of a fixed
distribution. In particular, most statistical models are of the form:

response = deterministic + random

where the deterministic part is the fit and the random part is error. This
error component in most common statistical models is specifically
assumed to be normally distributed with fixed location and scale. This
is the most frequent application of normal probability plots. That is, a
model is fit and a normal probability plot is generated for the residuals
from the fitted model. If the residuals from the fitted model are not
normally distributed, then one of the major assumptions of the model
has been violated.

Examples Data are normally distributed1.  

Data have fat tails2.  

Data have short tails3.  

Data are skewed right4.  

Related
Techniques

Histogram
Probability plots for other distributions (e.g., Weibull)
Probability plot correlation coefficient plot (PPCC plot)
Anderson-Darling Goodness-of-Fit Test
Chi-Square Goodness-of-Fit Test
Kolmogorov-Smirnov Goodness-of-Fit Test

Case Study The normal probability plot is demonstrated in the heat flow meter
data case study.

Software Most general purpose statistical software programs can generate a
normal probability plot. Dataplot supports a normal probability plot.

1.3.3.21. Normal Probability Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.21. Normal Probability Plot

1.3.3.21.1.Normal Probability Plot:
Normally Distributed Data

Normal
Probability
Plot

The following normal probability plot is from the heat flow meter data.

Conclusions We can make the following conclusions from the above plot.

The normal probability plot shows a strongly linear pattern. There
are only minor deviations from the line fit to the points on the
probability plot.

1.  

The normal distribution appears to be a good model for these
data.

2.  

1.3.3.21.1. Normal Probability Plot: Normally Distributed Data
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Discussion Visually, the probability plot shows a strongly linear pattern. This is
verified by the correlation coefficient of 0.9989 of the line fit to the
probability plot. The fact that the points in the lower and upper extremes
of the plot do not deviate significantly from the straight-line pattern
indicates that there are not any significant outliers (relative to a normal
distribution).

In this case, we can quite reasonably conclude that the normal
distribution provides an excellent model for the data. The intercept and
slope of the fitted line give estimates of 9.26 and 0.023 for the location
and scale parameters of the fitted normal distribution.

1.3.3.21.1. Normal Probability Plot: Normally Distributed Data
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.21. Normal Probability Plot

1.3.3.21.2.Normal Probability Plot: Data
Have Short Tails

Normal
Probability
Plot for
Data with
Short Tails

The following is a normal probability plot for 500 random numbers
generated from a Tukey-Lambda distribution with the  parameter equal
to 1.1.

Conclusions We can make the following conclusions from the above plot.

The normal probability plot shows a non-linear pattern.1.  

The normal distribution is not a good model for these data.2.  

1.3.3.21.2. Normal Probability Plot: Data Have Short Tails
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Discussion For data with short tails relative to the normal distribution, the
non-linearity of the normal probability plot shows up in two ways. First,
the middle of the data shows an S-like pattern. This is common for both
short and long tails. Second, the first few and the last few points show a
marked departure from the reference fitted line. In comparing this plot
to the long tail example in the next section, the important difference is
the direction of the departure from the fitted line for the first few and
last few points. For short tails, the first few points show increasing
departure from the fitted line above the line and last few points show
increasing departure from the fitted line below the line. For long tails,
this pattern is reversed.

In this case, we can reasonably conclude that the normal distribution
does not provide an adequate fit for this data set. For probability plots
that indicate short-tailed distributions, the next step might be to generate
a Tukey Lambda PPCC plot. The Tukey Lambda PPCC plot can often
be helpful in identifying an appropriate distributional family.

1.3.3.21.2. Normal Probability Plot: Data Have Short Tails
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.21. Normal Probability Plot

1.3.3.21.3.Normal Probability Plot: Data
Have Long Tails

Normal
Probability
Plot for
Data with
Long Tails

The following is a normal probability plot of 500 numbers generated
from a double exponential distribution. The double exponential
distribution is symmetric, but relative to the normal it declines rapidly
and has longer tails.

Conclusions We can make the following conclusions from the above plot.

The normal probability plot shows a reasonably linear pattern in
the center of the data. However, the tails, particularly the lower
tail, show departures from the fitted line.

1.  

A distribution other than the normal distribution would be a good
model for these data.

2.  

1.3.3.21.3. Normal Probability Plot: Data Have Long Tails
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Discussion For data with long tails relative to the normal distribution, the
non-linearity of the normal probability plot can show up in two ways.
First, the middle of the data may show an S-like pattern. This is
common for both short and long tails. In this particular case, the S
pattern in the middle is fairly mild. Second, the first few and the last few
points show marked departure from the reference fitted line. In the plot
above, this is most noticeable for the first few data points. In comparing
this plot to the short-tail example in the previous section, the important
difference is the direction of the departure from the fitted line for the
first few and the last few points. For long tails, the first few points show
increasing departure from the fitted line below the line and last few
points show increasing departure from the fitted line above the line. For
short tails, this pattern is reversed.

In this case we can reasonably conclude that the normal distribution can
be improved upon as a model for these data. For probability plots that
indicate long-tailed distributions, the next step might be to generate a
Tukey Lambda PPCC plot. The Tukey Lambda PPCC plot can often be
helpful in identifying an appropriate distributional family.

1.3.3.21.3. Normal Probability Plot: Data Have Long Tails
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.21. Normal Probability Plot

1.3.3.21.4.Normal Probability Plot: Data are
Skewed Right

Normal
Probability
Plot for
Data that
are Skewed
Right

Conclusions We can make the following conclusions from the above plot.

The normal probability plot shows a strongly non-linear pattern.
Specifically, it shows a quadratic pattern in which all the points
are below a reference line drawn between the first and last points.

1.  

The normal distribution is not a good model for these data.2.  

1.3.3.21.4. Normal Probability Plot: Data are Skewed Right
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Discussion This quadratic pattern in the normal probability plot is the signature of a
significantly right-skewed data set. Similarly, if all the points on the
normal probability plot fell above the reference line connecting the first
and last points, that would be the signature pattern for a significantly
left-skewed data set.

In this case we can quite reasonably conclude that we need to model
these data with a right skewed distribution such as the Weibull or
lognormal.

1.3.3.21.4. Normal Probability Plot: Data are Skewed Right
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.22.Probability Plot

Purpose:
Check If
Data Follow
a Given
Distribution

The probability plot (Chambers 1983) is a graphical technique for
assessing whether or not a data set follows a given distribution such as
the normal or Weibull.

The data are plotted against a theoretical distribution in such a way that
the points should form approximately a straight line. Departures from
this straight line indicate departures from the specified distribution.

The correlation coefficient associated with the linear fit to the data in
the probability plot is a measure of the goodness of the fit. Estimates of
the location and scale parameters of the distribution are given by the
intercept and slope. Probability plots can be generated for several
competing distributions to see which provides the best fit, and the
probability plot generating the highest correlation coefficient is the best
choice since it generates the straightest probability plot.

For distributions with shape parameters (not counting location and
scale parameters), the shape parameters must be known in order to
generate the probability plot. For distributions with a single shape
parameter, the probability plot correlation coefficient (PPCC) plot
provides an excellent method for estimating the shape parameter.

We cover the special case of the normal probability plot separately due
to its importance in many statistical applications.

1.3.3.22. Probability Plot
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Sample Plot

This data is a set of 500 Weibull random numbers with a shape
parameter = 2, location parameter = 0, and scale parameter = 1. The
Weibull probability plot indicates that the Weibull distribution does in
fact fit these data well.

Definition:
Ordered
Response
Values
Versus Order
Statistic
Medians for
the Given
Distribution

The probability plot is formed by:

Vertical axis: Ordered response values●   

Horizontal axis: Order statistic medians for the given distribution●   

The order statistic medians are defined as:

N(i) = G(U(i))

where the U(i) are the uniform order statistic medians (defined below)
and G is the percent point function for the desired distribution. The
percent point function is the inverse of the cumulative distribution
function (probability that x is less than or equal to some value). That is,
given a probability, we want the corresponding x of the cumulative
distribution function.

The uniform order statistic medians are defined as:

m(i) = 1 - m(n) for i = 1
m(i) = (i - 0.3175)/(n + 0.365) for i = 2, 3, ..., n-1
m(i) = 0.5**(1/n) for i = n

In addition, a straight line can be fit to the points and added as a
reference line. The further the points vary from this line, the greater the

1.3.3.22. Probability Plot
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indication of a departure from the specified distribution.

This definition implies that a probability plot can be easily generated
for any distribution for which the percent point function can be
computed.

One advantage of this method of computing proability plots is that the
intercept and slope estimates of the fitted line are in fact estimates for
the location and scale parameters of the distribution. Although this is
not too important for the normal distribution (the location and scale are
estimated by the mean and standard deviation, respectively), it can be
useful for many other distributions.

Questions The probability plot is used to answer the following questions:

Does a given distribution, such as the Weibull, provide a good fit
to my data?

●   

What distribution best fits my data?●   

What are good estimates for the location and scale parameters of
the chosen distribution?

●   

Importance:
Check
distributional
assumption

The discussion for the normal probability plot covers the use of
probability plots for checking the fixed distribution assumption.

Some statistical models assume data have come from a population with
a specific type of distribution. For example, in reliability applications,
the Weibull, lognormal, and exponential are commonly used
distributional models. Probability plots can be useful for checking this
distributional assumption.

Related
Techniques

Histogram
Probability Plot Correlation Coefficient (PPCC) Plot
Hazard Plot
Quantile-Quantile Plot
Anderson-Darling Goodness of Fit
Chi-Square Goodness of Fit
Kolmogorov-Smirnov Goodness of Fit

Case Study The probability plot is demonstrated in the airplane glass failure time
data case study.

Software Most general purpose statistical software programs support probability
plots for at least a few common distributions. Dataplot supports
probability plots for a large number of distributions.

1.3.3.22. Probability Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33m.htm (3 of 4) [5/1/2006 9:56:52 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm#importance
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/eda44.htm#PROBPLOT


1.3.3.22. Probability Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33m.htm (4 of 4) [5/1/2006 9:56:52 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.23.Probability Plot Correlation
Coefficient Plot

Purpose:
Graphical
Technique for
Finding the
Shape
Parameter of
a
Distributional
Family that
Best Fits a
Data Set

The probability plot correlation coefficient (PPCC) plot (Filliben
1975) is a graphical technique for identifying the shape parameter for
a distributional family that best describes the data set. This technique
is appropriate for families, such as the Weibull, that are defined by a
single shape parameter and location and scale parameters, and it is not
appropriate for distributions, such as the normal, that are defined only
by location and scale parameters.

The PPCC plot is generated as follows. For a series of values for the
shape parameter, the correlation coefficient is computed for the
probability plot associated with a given value of the shape parameter.
These correlation coefficients are plotted against their corresponding
shape parameters. The maximum correlation coefficient corresponds
to the optimal value of the shape parameter. For better precision, two
iterations of the PPCC plot can be generated; the first is for finding
the right neighborhood and the second is for fine tuning the estimate.

The PPCC plot is used first to find a good value of the shape
parameter. The probability plot is then generated to find estimates of
the location and scale parameters and in addition to provide a
graphical assessment of the adequacy of the distributional fit.

1.3.3.23. Probability Plot Correlation Coefficient Plot
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Compare
Distributions

In addition to finding a good choice for estimating the shape
parameter of a given distribution, the PPCC plot can be useful in
deciding which distributional family is most appropriate. For example,
given a set of reliabilty data, you might generate PPCC plots for a
Weibull, lognormal, gamma, and inverse Gaussian distributions, and
possibly others, on a single page. This one page would show the best
value for the shape parameter for several distributions and would
additionally indicate which of these distributional families provides
the best fit (as measured by the maximum probability plot correlation
coefficient). That is, if the maximum PPCC value for the Weibull is
0.99 and only 0.94 for the lognormal, then we could reasonably
conclude that the Weibull family is the better choice.

Tukey-Lambda
PPCC Plot for
Symmetric
Distributions

The Tukey Lambda PPCC plot, with shape parameter , is
particularly useful for symmetric distributions. It indicates whether a
distribution is short or long tailed and it can further indicate several
common distributions. Specifically,

 = -1: distribution is approximately Cauchy1.  

 = 0: distribution is exactly logistic2.  

 = 0.14: distribution is approximately normal3.  

 = 0.5: distribution is U-shaped4.  

 = 1: distribution is exactly uniform5.  

If the Tukey Lambda PPCC plot gives a maximum value near 0.14,
we can reasonably conclude that the normal distribution is a good
model for the data. If the maximum value is less than 0.14, a
long-tailed distribution such as the double exponential or logistic
would be a better choice. If the maximum value is near -1, this implies
the selection of very long-tailed distribution, such as the Cauchy. If
the maximum value is greater than 0.14, this implies a short-tailed
distribution such as the Beta or uniform.

The Tukey-Lambda PPCC plot is used to suggest an appropriate
distribution. You should follow-up with PPCC and probability plots of
the appropriate alternatives.

1.3.3.23. Probability Plot Correlation Coefficient Plot
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Use
Judgement
When
Selecting An
Appropriate
Distributional
Family

When comparing distributional models, do not simply choose the one
with the maximum PPCC value. In many cases, several distributional
fits provide comparable PPCC values. For example, a lognormal and
Weibull may both fit a given set of reliability data quite well.
Typically, we would consider the complexity of the distribution. That
is, a simpler distribution with a marginally smaller PPCC value may
be preferred over a more complex distribution. Likewise, there may be
theoretical justification in terms of the underlying scientific model for
preferring a distribution with a marginally smaller PPCC value in
some cases. In other cases, we may not need to know if the
distributional model is optimal, only that it is adequate for our
purposes. That is, we may be able to use techniques designed for
normally distributed data even if other distributions fit the data
somewhat better.

Sample Plot The following is a PPCC plot of 100 normal random numbers. The
maximum value of the correlation coefficient = 0.997 at  = 0.099.

This PPCC plot shows that:

the best-fit symmetric distribution is nearly normal;1.  

the data are not long tailed;2.  

the sample mean would be an appropriate estimator of location.3.  

We can follow-up this PPCC plot with a normal probability plot to
verify the normality model for the data.

1.3.3.23. Probability Plot Correlation Coefficient Plot
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Definition: The PPCC plot is formed by:

Vertical axis: Probability plot correlation coefficient;●   

Horizontal axis: Value of shape parameter.●   

Questions The PPCC plot answers the following questions:

What is the best-fit member within a distributional family?1.  

Does the best-fit member provide a good fit (in terms of
generating a probability plot with a high correlation
coefficient)?

2.  

Does this distributional family provide a good fit compared to
other distributions?

3.  

How sensitive is the choice of the shape parameter?4.  

Importance Many statistical analyses are based on distributional assumptions
about the population from which the data have been obtained.
However, distributional families can have radically different shapes
depending on the value of the shape parameter. Therefore, finding a
reasonable choice for the shape parameter is a necessary step in the
analysis. In many analyses, finding a good distributional model for the
data is the primary focus of the analysis. In both of these cases, the
PPCC plot is a valuable tool.

Related
Techniques

Probability Plot
Maximum Likelihood Estimation
Least Squares Estimation
Method of Moments Estimation

Case Study The PPCC plot is demonstrated in the airplane glass failure data case
study.

Software PPCC plots are currently not available in most common general
purpose statistical software programs. However, the underlying
technique is based on probability plots and correlation coefficients, so
it should be possible to write macros for PPCC plots in statistical
programs that support these capabilities. Dataplot supports PPCC
plots.

1.3.3.23. Probability Plot Correlation Coefficient Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.24.Quantile-Quantile Plot

Purpose:
Check If
Two Data
Sets Can Be
Fit With the
Same
Distribution

The quantile-quantile (q-q) plot is a graphical technique for determining
if two data sets come from populations with a common distribution.

A q-q plot is a plot of the quantiles of the first data set against the
quantiles of the second data set. By a quantile, we mean the fraction (or
percent) of points below the given value. That is, the 0.3 (or 30%)
quantile is the point at which 30% percent of the data fall below and
70% fall above that value.

A 45-degree reference line is also plotted. If the two sets come from a
population with the same distribution, the points should fall
approximately along this reference line. The greater the departure from
this reference line, the greater the evidence for the conclusion that the
two data sets have come from populations with different distributions.

The advantages of the q-q plot are:

The sample sizes do not need to be equal.1.  

Many distributional aspects can be simultaneously tested. For
example, shifts in location, shifts in scale, changes in symmetry,
and the presence of outliers can all be detected from this plot. For
example, if the two data sets come from populations whose
distributions differ only by a shift in location, the points should lie
along a straight line that is displaced either up or down from the
45-degree reference line.

2.  

The q-q plot is similar to a probability plot. For a probability plot, the
quantiles for one of the data samples are replaced with the quantiles of a
theoretical distribution.

1.3.3.24. Quantile-Quantile Plot
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Sample Plot

This q-q plot shows that

These 2 batches do not appear to have come from populations
with a common distribution.

1.  

The batch 1 values are significantly higher than the corresponding
batch 2 values.

2.  

The differences are increasing from values 525 to 625. Then the
values for the 2 batches get closer again.

3.  

Definition:
Quantiles
for Data Set
1 Versus
Quantiles of
Data Set 2

The q-q plot is formed by:

Vertical axis: Estimated quantiles from data set 1●   

Horizontal axis: Estimated quantiles from data set 2●   

Both axes are in units of their respective data sets. That is, the actual
quantile level is not plotted. For a given point on the q-q plot, we know
that the quantile level is the same for both points, but not what that
quantile level actually is.

If the data sets have the same size, the q-q plot is essentially a plot of
sorted data set 1 against sorted data set 2. If the data sets are not of equal
size, the quantiles are usually picked to correspond to the sorted values
from the smaller data set and then the quantiles for the larger data set are
interpolated.

1.3.3.24. Quantile-Quantile Plot
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Questions The q-q plot is used to answer the following questions:

Do two data sets come from populations with a common
distribution?

●   

Do two data sets have common location and scale?●   

Do two data sets have similar distributional shapes?●   

Do two data sets have similar tail behavior?●   

Importance:
Check for
Common
Distribution

When there are two data samples, it is often desirable to know if the
assumption of a common distribution is justified. If so, then location and
scale estimators can pool both data sets to obtain estimates of the
common location and scale. If two samples do differ, it is also useful to
gain some understanding of the differences. The q-q plot can provide
more insight into the nature of the difference than analytical methods
such as the chi-square and Kolmogorov-Smirnov 2-sample tests.

Related
Techniques

Bihistogram
T Test
F Test
2-Sample Chi-Square Test
2-Sample Kolmogorov-Smirnov Test

Case Study The quantile-quantile plot is demonstrated in the ceramic strength data
case study.

Software Q-Q plots are available in some general purpose statistical software
programs, including Dataplot. If the number of data points in the two
samples are equal, it should be relatively easy to write a macro in
statistical programs that do not support the q-q plot. If the number of
points are not equal, writing a macro for a q-q plot may be difficult.

1.3.3.24. Quantile-Quantile Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.25.Run-Sequence Plot

Purpose:
Check for
Shifts in
Location
and Scale
and Outliers

Run sequence plots (Chambers 1983) are an easy way to graphically
summarize a univariate data set. A common assumption of univariate
data sets is that they behave like:

random drawings;1.  

from a fixed distribution;2.  

with a common location; and3.  

with a common scale.4.  

With run sequence plots, shifts in location and scale are typically quite
evident. Also, outliers can easily be detected.

Sample
Plot:
Last Third
of Data
Shows a
Shift of
Location

This sample run sequence plot shows that the location shifts up for the
last third of the data.

1.3.3.25. Run-Sequence Plot
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Definition:
y(i) Versus i

Run sequence plots are formed by:

Vertical axis: Response variable Y(i)●   

Horizontal axis: Index i (i = 1, 2, 3, ... )●   

Questions The run sequence plot can be used to answer the following questions

Are there any shifts in location?1.  

Are there any shifts in variation?2.  

Are there any outliers?3.  

The run sequence plot can also give the analyst an excellent feel for the
data.

Importance:
Check
Univariate
Assumptions

For univariate data, the default model is

Y = constant + error

where the error is assumed to be random, from a fixed distribution, and
with constant location and scale. The validity of this model depends on
the validity of these assumptions. The run sequence plot is useful for
checking for constant location and scale.

Even for more complex models, the assumptions on the error term are
still often the same. That is, a run sequence plot of the residuals (even
from very complex models) is still vital for checking for outliers and for
detecting shifts in location and scale.

Related
Techniques

Scatter Plot
Histogram
Autocorrelation Plot
Lag Plot

Case Study The run sequence plot is demonstrated in the Filter transmittance data
case study.

Software Run sequence plots are available in most general purpose statistical
software programs, including Dataplot.

1.3.3.25. Run-Sequence Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.26.Scatter Plot

Purpose:
Check for
Relationship

A scatter plot (Chambers 1983) reveals relationships or association
between two variables. Such relationships manifest themselves by any
non-random structure in the plot. Various common types of patterns are
demonstrated in the examples.

Sample
Plot:
Linear
Relationship
Between
Variables Y
and X

This sample plot reveals a linear relationship between the two variables
indicating that a linear regression model might be appropriate.

Definition:
Y Versus X

A scatter plot is a plot of the values of Y versus the corresponding
values of X:

Vertical axis: variable Y--usually the response variable●   

Horizontal axis: variable X--usually some variable we suspect
may ber related to the response

●   

1.3.3.26. Scatter Plot
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Questions Scatter plots can provide answers to the following questions:

Are variables X and Y related?1.  

Are variables X and Y linearly related?2.  

Are variables X and Y non-linearly related?3.  

Does the variation in Y change depending on X?4.  

Are there outliers?5.  

Examples No relationship1.  

Strong linear (positive correlation)2.  

Strong linear (negative correlation)3.  

Exact linear (positive correlation)4.  

Quadratic relationship5.  

Exponential relationship6.  

Sinusoidal relationship (damped)7.  

Variation of Y doesn't depend on X (homoscedastic)8.  

Variation of Y does depend on X (heteroscedastic)9.  

Outlier10.  

Combining
Scatter Plots

Scatter plots can also be combined in multiple plots per page to help
understand higher-level structure in data sets with more than two
variables.

The scatterplot matrix generates all pairwise scatter plots on a single
page. The conditioning plot, also called a co-plot or subset plot,
generates scatter plots of Y versus X dependent on the value of a third
variable.

Causality Is
Not Proved
By
Association

The scatter plot uncovers relationships in data. "Relationships" means
that there is some structured association (linear, quadratic, etc.) between
X and Y. Note, however, that even though

causality implies association

association does NOT imply causality.

Scatter plots are a useful diagnostic tool for determining association, but
if such association exists, the plot may or may not suggest an underlying
cause-and-effect mechanism. A scatter plot can never "prove" cause and
effect--it is ultimately only the researcher (relying on the underlying
science/engineering) who can conclude that causality actually exists.

1.3.3.26. Scatter Plot
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Appearance The most popular rendition of a scatter plot is

some plot character (e.g., X) at the data points, and1.  

no line connecting data points.2.  

Other scatter plot format variants include

an optional plot character (e.g, X) at the data points, but1.  

a solid line connecting data points.2.  

In both cases, the resulting plot is referred to as a scatter plot, although
the former (discrete and disconnected) is the author's personal
preference since nothing makes it onto the screen except the data--there
are no interpolative artifacts to bias the interpretation.

Related
Techniques

Run Sequence Plot
Box Plot
Block Plot

Case Study The scatter plot is demonstrated in the load cell calibration data case
study.

Software Scatter plots are a fundamental technique that should be available in any
general purpose statistical software program, including Dataplot. Scatter
plots are also available in most graphics and spreadsheet programs as
well.

1.3.3.26. Scatter Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.1.Scatter Plot: No Relationship

Scatter Plot
with No
Relationship

Discussion Note in the plot above how for a given value of X (say X = 0.5), the
corresponding values of Y range all over the place from Y = -2 to Y = +2.
The same is true for other values of X. This lack of predictablility in
determining Y from a given value of X, and the associated amorphous,
non-structured appearance of the scatter plot leads to the summary
conclusion: no relationship.

1.3.3.26.1. Scatter Plot: No Relationship
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.2.Scatter Plot: Strong Linear
(positive correlation)
Relationship

Scatter Plot
Showing
Strong
Positive
Linear
Correlation

Discussion Note in the plot above how a straight line comfortably fits through the
data; hence a linear relationship exists. The scatter about the line is quite
small, so there is a strong linear relationship. The slope of the line is
positive (small values of X correspond to small values of Y; large values
of X correspond to large values of Y), so there is a positive co-relation
(that is, a positive correlation) between X and Y.

1.3.3.26.2. Scatter Plot: Strong Linear (positive correlation) Relationship
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.3.Scatter Plot: Strong Linear
(negative correlation)
Relationship

Scatter Plot
Showing a
Strong
Negative
Correlation

Discussion Note in the plot above how a straight line comfortably fits through the
data; hence there is a linear relationship. The scatter about the line is
quite small, so there is a strong linear relationship. The slope of the line
is negative (small values of X correspond to large values of Y; large
values of X correspond to small values of Y), so there is a negative
co-relation (that is, a negative correlation) between X and Y.

1.3.3.26.3. Scatter Plot: Strong Linear (negative correlation) Relationship
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.4.Scatter Plot: Exact Linear
(positive correlation)
Relationship

Scatter Plot
Showing an
Exact
Linear
Relationship

Discussion Note in the plot above how a straight line comfortably fits through the
data; hence there is a linear relationship. The scatter about the line is
zero--there is perfect predictability between X and Y), so there is an
exact linear relationship. The slope of the line is positive (small values
of X correspond to small values of Y; large values of X correspond to
large values of Y), so there is a positive co-relation (that is, a positive
correlation) between X and Y.

1.3.3.26.4. Scatter Plot: Exact Linear (positive correlation) Relationship
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1.3.3.26.4. Scatter Plot: Exact Linear (positive correlation) Relationship
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.5.Scatter Plot: Quadratic
Relationship

Scatter Plot
Showing
Quadratic
Relationship

Discussion Note in the plot above how no imaginable simple straight line could
ever adequately describe the relationship between X and Y--a curved (or
curvilinear, or non-linear) function is needed. The simplest such
curvilinear function is a quadratic model

for some A, B, and C. Many other curvilinear functions are possible, but
the data analysis principle of parsimony suggests that we try fitting a
quadratic function first.

1.3.3.26.5. Scatter Plot: Quadratic Relationship
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1.3.3.26.5. Scatter Plot: Quadratic Relationship
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.6.Scatter Plot: Exponential
Relationship

Scatter Plot
Showing
Exponential
Relationship

Discussion Note that a simple straight line is grossly inadequate in describing the
relationship between X and Y. A quadratic model would prove lacking,
especially for large values of X. In this example, the large values of X
correspond to nearly constant values of Y, and so a non-linear function
beyond the quadratic is needed. Among the many other non-linear
functions available, one of the simpler ones is the exponential model

for some A, B, and C. In this case, an exponential function would, in
fact, fit well, and so one is led to the summary conclusion of an
exponential relationship.

1.3.3.26.6. Scatter Plot: Exponential Relationship
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1.3.3.26.6. Scatter Plot: Exponential Relationship
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.7.Scatter Plot: Sinusoidal
Relationship (damped)

Scatter Plot
Showing a
Sinusoidal
Relationship

Discussion The complex relationship between X and Y appears to be basically
oscillatory, and so one is naturally drawn to the trigonometric sinusoidal
model:

Closer inspection of the scatter plot reveals that the amount of swing
(the amplitude  in the model) does not appear to be constant but rather
is decreasing (damping) as X gets large. We thus would be led to the
conclusion: damped sinusoidal relationship, with the simplest
corresponding model being

1.3.3.26.7. Scatter Plot: Sinusoidal Relationship (damped)
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1.3.3.26.7. Scatter Plot: Sinusoidal Relationship (damped)
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.8.Scatter Plot: Variation of Y Does
Not Depend on X
(homoscedastic)

Scatter Plot
Showing
Homoscedastic
Variability

Discussion This scatter plot reveals a linear relationship between X and Y: for a
given value of X, the predicted value of Y will fall on a line. The plot
further reveals that the variation in Y about the predicted value is
about the same (+- 10 units), regardless of the value of X.
Statistically, this is referred to as homoscedasticity. Such
homoscedasticity is very important as it is an underlying assumption
for regression, and its violation leads to parameter estimates with
inflated variances. If the data are homoscedastic, then the usual
regression estimates can be used. If the data are not homoscedastic,
then the estimates can be improved using weighting procedures as
shown in the next example.

1.3.3.26.8. Scatter Plot: Variation of Y Does Not Depend on X (homoscedastic)

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33q8.htm (1 of 2) [5/1/2006 9:57:05 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatter9.htm
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.9.Scatter Plot: Variation of Y Does
Depend on X (heteroscedastic)

Scatter Plot
Showing
Heteroscedastic
Variability

Discussion This scatter plot reveals an approximate linear relationship between
X and Y, but more importantly, it reveals a statistical condition
referred to as heteroscedasticity (that is, nonconstant variation in Y
over the values of X). For a heteroscedastic data set, the variation in
Y differs depending on the value of X. In this example, small values
of X yield small scatter in Y while large values of X result in large
scatter in Y.

Heteroscedasticity complicates the analysis somewhat, but its effects
can be overcome by:

proper weighting of the data with noisier data being weighted
less, or by

1.  

1.3.3.26.9. Scatter Plot: Variation of Y Does Depend on X (heteroscedastic)
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performing a Y variable transformation to achieve
homoscedasticity. The Box-Cox normality plot can help
determine a suitable transformation.

2.  

Impact of
Ignoring
Unequal
Variability in
the Data

Fortunately, unweighted regression analyses on heteroscedastic data
produce estimates of the coefficients that are unbiased. However, the
coefficients will not be as precise as they would be with proper
weighting.

Note further that if heteroscedasticity does exist, it is frequently
useful to plot and model the local variation  as a

function of X, as in . This modeling has
two advantages:

it provides additional insight and understanding as to how the
response Y relates to X; and

1.  

it provides a convenient means of forming weights for a
weighted regression by simply using

2.  

The topic of non-constant variation is discussed in some detail in the
process modeling chapter.

1.3.3.26.9. Scatter Plot: Variation of Y Does Depend on X (heteroscedastic)
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.10.Scatter Plot: Outlier

Scatter Plot
Showing
Outliers

Discussion The scatter plot here reveals

a basic linear relationship between X and Y for most of the data,
and

1.  

a single outlier (at X = 375).2.  

An outlier is defined as a data point that emanates from a different
model than do the rest of the data. The data here appear to come from a
linear model with a given slope and variation except for the outlier
which appears to have been generated from some other model.

Outlier detection is important for effective modeling. Outliers should be
excluded from such model fitting. If all the data here are included in a
linear regression, then the fitted model will be poor virtually
everywhere. If the outlier is omitted from the fitting process, then the
resulting fit will be excellent almost everywhere (for all points except

1.3.3.26.10. Scatter Plot: Outlier
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the outlying point).

1.3.3.26.10. Scatter Plot: Outlier
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.11.Scatterplot Matrix

Purpose:
Check
Pairwise
Relationships
Between
Variables

Given a set of variables X1, X2, ... , Xk, the scatterplot matrix contains
all the pairwise scatter plots of the variables on a single page in a
matrix format. That is, if there are k variables, the scatterplot matrix
will have k rows and k columns and the ith row and jth column of this
matrix is a plot of Xi versus Xj.

Although the basic concept of the scatterplot matrix is simple, there are
numerous alternatives in the details of the plots.

The diagonal plot is simply a 45-degree line since we are plotting
Xi versus Xi. Although this has some usefulness in terms of
showing the univariate distribution of the variable, other
alternatives are common. Some users prefer to use the diagonal
to print the variable label. Another alternative is to plot the
univariate histogram on the diagonal. Alternatively, we could
simply leave the diagonal blank.

1.  

Since Xi versus Xj is equivalent to Xj versus Xi with the axes
reversed, some prefer to omit the plots below the diagonal.

2.  

It can be helpful to overlay some type of fitted curve on the
scatter plot. Although a linear or quadratic fit can be used, the
most common alternative is to overlay a lowess curve.

3.  

Due to the potentially large number of plots, it can be somewhat
tricky to provide the axes labels in a way that is both informative
and visually pleasing. One alternative that seems to work well is
to provide axis labels on alternating rows and columns. That is,
row one will have tic marks and axis labels on the left vertical
axis for the first plot only while row two will have the tic marks
and axis labels for the right vertical axis for the last plot in the
row only. This alternating pattern continues for the remaining
rows. A similar pattern is used for the columns and the horizontal
axes labels. Another alternative is to put the minimum and
maximum scale value in the diagonal plot with the variable

4.  

1.3.3.26.11. Scatterplot Matrix
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name.

Some analysts prefer to connect the scatter plots. Others prefer to
leave a little gap between each plot.

5.  

Although this plot type is most commonly used for scatter plots,
the basic concept is both simple and powerful and extends easily
to other plot formats that involve pairwise plots such as the
quantile-quantile plot and the bihistogram.

6.  

Sample Plot

This sample plot was generated from pollution data collected by NIST
chemist Lloyd Currie.

There are a number of ways to view this plot. If we are primarily
interested in a particular variable, we can scan the row and column for
that variable. If we are interested in finding the strongest relationship,
we can scan all the plots and then determine which variables are
related.

Definition Given k variables, scatter plot matrices are formed by creating k rows
and k columns. Each row and column defines a single scatter plot

The individual plot for row i and column j is defined as

Vertical axis: Variable Xi●   

Horizontal axis: Variable Xj●   

1.3.3.26.11. Scatterplot Matrix
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Questions The scatterplot matrix can provide answers to the following questions:

Are there pairwise relationships between the variables?1.  

If there are relationships, what is the nature of these
relationships?

2.  

Are there outliers in the data?3.  

Is there clustering by groups in the data?4.  

Linking and
Brushing

The scatterplot matrix serves as the foundation for the concepts of
linking and brushing.

By linking, we mean showing how a point, or set of points, behaves in
each of the plots. This is accomplished by highlighting these points in
some fashion. For example, the highlighted points could be drawn as a
filled circle while the remaining points could be drawn as unfilled
circles. A typical application of this would be to show how an outlier
shows up in each of the individual pairwise plots. Brushing extends this
concept a bit further. In brushing, the points to be highlighted are
interactively selected by a mouse and the scatterplot matrix is
dynamically updated (ideally in real time). That is, we can select a
rectangular region of points in one plot and see how those points are
reflected in the other plots. Brushing is discussed in detail by Becker,
Cleveland, and Wilks in the paper "Dynamic Graphics for Data
Analysis" (Cleveland and McGill, 1988).

Related
Techniques

Star plot
Scatter plot
Conditioning plot
Locally weighted least squares

Software Scatterplot matrices are becoming increasingly common in general
purpose statistical software programs, including Dataplot. If a software
program does not generate scatterplot matrices, but it does provide
multiple plots per page and scatter plots, it should be possible to write a
macro to generate a scatterplot matrix. Brushing is available in a few of
the general purpose statistical software programs that emphasize
graphical approaches.

1.3.3.26.11. Scatterplot Matrix
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.12.Conditioning Plot

Purpose:
Check
pairwise
relationship
between two
variables
conditional
on a third
variable

A conditioning plot, also known as a coplot or subset plot, is a plot of
two variables conditional on the value of a third variable (called the
conditioning variable). The conditioning variable may be either a
variable that takes on only a few discrete values or a continuous variable
that is divided into a limited number of subsets.

One limitation of the scatterplot matrix is that it cannot show interaction
effects with another variable. This is the strength of the conditioning
plot. It is also useful for displaying scatter plots for groups in the data.
Although these groups can also be plotted on a single plot with different
plot symbols, it can often be visually easier to distinguish the groups
using the conditioning plot.

Although the basic concept of the conditioning plot matrix is simple,
there are numerous alternatives in the details of the plots.

It can be helpful to overlay some type of fitted curve on the
scatter plot. Although a linear or quadratic fit can be used, the
most common alternative is to overlay a lowess curve.

1.  

Due to the potentially large number of plots, it can be somewhat
tricky to provide the axis labels in a way that is both informative
and visually pleasing. One alternative that seems to work well is
to provide axis labels on alternating rows and columns. That is,
row one will have tic marks and axis labels on the left vertical
axis for the first plot only while row two will have the tic marks
and axis labels for the right vertical axis for the last plot in the
row only. This alternating pattern continues for the remaining
rows. A similar pattern is used for the columns and the horizontal
axis labels. Note that this approach only works if the axes limits
are fixed to common values for all of the plots.

2.  

Some analysts prefer to connect the scatter plots. Others prefer to
leave a little gap between each plot. Alternatively, each plot can
have its own labeling with the plots not connected.

3.  

1.3.3.26.12. Conditioning Plot
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Although this plot type is most commonly used for scatter plots,
the basic concept is both simple and powerful and extends easily
to other plot formats.

4.  

Sample Plot

In this case, temperature has six distinct values. We plot torque versus
time for each of these temperatures. This example is discussed in more
detail in the process modeling chapter.

Definition Given the variables X, Y, and Z, the conditioning plot is formed by
dividing the values of Z into k groups. There are several ways that these
groups may be formed. There may be a natural grouping of the data, the
data may be divided into several equal sized groups, the grouping may
be determined by clusters in the data, and so on. The page will be
divided into n rows and c columns where . Each row and
column defines a single scatter plot.

The individual plot for row i and column j is defined as

Vertical axis: Variable Y●   

Horizontal axis: Variable X●   

where only the points in the group corresponding to the ith row and jth
column are used.

1.3.3.26.12. Conditioning Plot
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Questions The conditioning plot can provide answers to the following questions:

Is there a relationship between two variables?1.  

If there is a relationship, does the nature of the relationship
depend on the value of a third variable?

2.  

Are groups in the data similar?3.  

Are there outliers in the data?4.  

Related
Techniques

Scatter plot
Scatterplot matrix
Locally weighted least squares

Software Scatter plot matrices are becoming increasingly common in general
purpose statistical software programs, including Dataplot. If a software
program does not generate conditioning plots, but it does provide
multiple plots per page and scatter plots, it should be possible to write a
macro to generate a conditioning plot.

1.3.3.26.12. Conditioning Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.27.Spectral Plot

Purpose:
Examine
Cyclic
Structure

A spectral plot ( Jenkins and Watts 1968 or Bloomfield 1976) is a
graphical technique for examining cyclic structure in the frequency
domain. It is a smoothed Fourier transform of the autocovariance
function.

The frequency is measured in cycles per unit time where unit time is
defined to be the distance between 2 points. A frequency of 0
corresponds to an infinite cycle while a frequency of 0.5 corresponds to
a cycle of 2 data points. Equi-spaced time series are inherently limited to
detecting frequencies between 0 and 0.5.

Trends should typically be removed from the time series before
applying the spectral plot. Trends can be detected from a run sequence
plot. Trends are typically removed by differencing the series or by
fitting a straight line (or some other polynomial curve) and applying the
spectral analysis to the residuals.

Spectral plots are often used to find a starting value for the frequency,
, in the sinusoidal model

See the beam deflection case study for an example of this.

1.3.3.27. Spectral Plot
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Sample Plot

This spectral plot shows one dominant frequency of approximately 0.3
cycles per observation.

Definition:
Variance
Versus
Frequency

The spectral plot is formed by:

Vertical axis: Smoothed variance (power)●   

Horizontal axis: Frequency (cycles per observation)●   

The computations for generating the smoothed variances can be
involved and are not discussed further here. The details can be found in
the Jenkins and Bloomfield references and in most texts that discuss the
frequency analysis of time series.

Questions The spectral plot can be used to answer the following questions:

How many cyclic components are there?1.  

Is there a dominant cyclic frequency?2.  

If there is a dominant cyclic frequency, what is it?3.  

Importance
Check
Cyclic
Behavior of
Time Series

The spectral plot is the primary technique for assessing the cyclic nature
of univariate time series in the frequency domain. It is almost always the
second plot (after a run sequence plot) generated in a frequency domain
analysis of a time series.

1.3.3.27. Spectral Plot
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Examples Random (= White Noise)1.  

Strong autocorrelation and autoregressive model2.  

Sinusoidal model3.  

Related
Techniques

Autocorrelation Plot
Complex Demodulation Amplitude Plot
Complex Demodulation Phase Plot

Case Study The spectral plot is demonstrated in the beam deflection data case study.

Software Spectral plots are a fundamental technique in the frequency analysis of
time series. They are available in many general purpose statistical
software programs, including Dataplot.

1.3.3.27. Spectral Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.27. Spectral Plot

1.3.3.27.1.Spectral Plot: Random Data

Spectral
Plot of 200
Normal
Random
Numbers

Conclusions We can make the following conclusions from the above plot.

There are no dominant peaks.1.  

There is no identifiable pattern in the spectrum.2.  

The data are random.3.  

Discussion For random data, the spectral plot should show no dominant peaks or
distinct pattern in the spectrum. For the sample plot above, there are no
clearly dominant peaks and the peaks seem to fluctuate at random. This
type of appearance of the spectral plot indicates that there are no
significant cyclic patterns in the data.

1.3.3.27.1. Spectral Plot: Random Data
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1.3.3.27.1. Spectral Plot: Random Data
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.27. Spectral Plot

1.3.3.27.2.Spectral Plot: Strong
Autocorrelation and
Autoregressive Model

Spectral Plot
for Random
Walk Data

Conclusions We can make the following conclusions from the above plot.

Strong dominant peak near zero.1.  

Peak decays rapidly towards zero.2.  

An autoregressive model is an appropriate model.3.  

1.3.3.27.2. Spectral Plot: Strong Autocorrelation and Autoregressive Model
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Discussion This spectral plot starts with a dominant peak near zero and rapidly
decays to zero. This is the spectral plot signature of a process with
strong positive autocorrelation. Such processes are highly non-random
in that there is high association between an observation and a
succeeding observation. In short, if you know Yi you can make a
strong guess as to what Yi+1 will be.

Recommended
Next Step

The next step would be to determine the parameters for the
autoregressive model:

Such estimation can be done by linear regression or by fitting a
Box-Jenkins autoregressive (AR) model.

The residual standard deviation for this autoregressive model will be
much smaller than the residual standard deviation for the default
model

Then the system should be reexamined to find an explanation for the
strong autocorrelation. Is it due to the

phenomenon under study; or1.  

drifting in the environment; or2.  

contamination from the data acquisition system (DAS)?3.  

Oftentimes the source of the problem is item (3) above where
contamination and carry-over from the data acquisition system result
because the DAS does not have time to electronically recover before
collecting the next data point. If this is the case, then consider slowing
down the sampling rate to re-achieve randomness.

1.3.3.27.2. Spectral Plot: Strong Autocorrelation and Autoregressive Model
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.27. Spectral Plot

1.3.3.27.3.Spectral Plot: Sinusoidal Model

Spectral Plot
for Sinusoidal
Model

Conclusions We can make the following conclusions from the above plot.

There is a single dominant peak at approximately 0.3.1.  

There is an underlying single-cycle sinusoidal model.2.  

1.3.3.27.3. Spectral Plot: Sinusoidal Model
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Discussion This spectral plot shows a single dominant frequency. This indicates
that a single-cycle sinusoidal model might be appropriate.

If one were to naively assume that the data represented by the graph
could be fit by the model

and then estimate the constant by the sample mean, the analysis would
be incorrect because

the sample mean is biased;●   

the confidence interval for the mean, which is valid only for
random data, is meaningless and too small.

●   

On the other hand, the choice of the proper model

where  is the amplitude,  is the frequency (between 0 and .5 cycles
per observation), and  is the phase can be fit by non-linear least
squares. The beam deflection data case study demonstrates fitting this
type of model.

Recommended
Next Steps

The recommended next steps are to:

Estimate the frequency from the spectral plot. This will be
helpful as a starting value for the subsequent non-linear fitting.
A complex demodulation phase plot can be used to fine tune the
estimate of the frequency before performing the non-linear fit.

1.  

Do a complex demodulation amplitude plot to obtain an initial
estimate of the amplitude and to determine if a constant
amplitude is justified.

2.  

Carry out a non-linear fit of the model3.  

1.3.3.27.3. Spectral Plot: Sinusoidal Model
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.28.Standard Deviation Plot

Purpose:
Detect
Changes in
Scale
Between
Groups

Standard deviation plots are used to see if the standard deviation varies
between different groups of the data. The grouping is determined by the
analyst. In most cases, the data provide a specific grouping variable. For
example, the groups may be the levels of a factor variable. In the sample
plot below, the months of the year provide the grouping.

Standard deviation plots can be used with ungrouped data to determine
if the standard deviation is changing over time. In this case, the data are
broken into an arbitrary number of equal-sized groups. For example, a
data series with 400 points can be divided into 10 groups of 40 points
each. A standard deviation plot can then be generated with these groups
to see if the standard deviation is increasing or decreasing over time.

Although the standard deviation is the most commonly used measure of
scale, the same concept applies to other measures of scale. For example,
instead of plotting the standard deviation of each group, the median
absolute deviation or the average absolute deviation might be plotted
instead. This might be done if there were significant outliers in the data
and a more robust measure of scale than the standard deviation was
desired.

Standard deviation plots are typically used in conjunction with mean
plots. The mean plot would be used to check for shifts in location while
the standard deviation plot would be used to check for shifts in scale.

1.3.3.28. Standard Deviation Plot
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Sample Plot

This sample standard deviation plot shows

there is a shift in variation;1.  

greatest variation is during the summer months.2.  

Definition:
Group
Standard
Deviations
Versus
Group ID

Standard deviation plots are formed by:

Vertical axis: Group standard deviations●   

Horizontal axis: Group identifier●   

A reference line is plotted at the overall standard deviation.

Questions The standard deviation plot can be used to answer the following
questions.

Are there any shifts in variation?1.  

What is the magnitude of the shifts in variation?2.  

Is there a distinct pattern in the shifts in variation?3.  

Importance:
Checking
Assumptions

A common assumption in 1-factor analyses is that of equal variances.
That is, the variance is the same for different levels of the factor
variable. The standard deviation plot provides a graphical check for that
assumption. A common assumption for univariate data is that the
variance is constant. By grouping the data into equi-sized intervals, the
standard deviation plot can provide a graphical test of this assumption.

1.3.3.28. Standard Deviation Plot
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Related
Techniques

Mean Plot
Dex Standard Deviation Plot

Software Most general purpose statistical software programs do not support a
standard deviation plot. However, if the statistical program can generate
the standard deviation for a group, it should be feasible to write a macro
to generate this plot. Dataplot supports a standard deviation plot.

1.3.3.28. Standard Deviation Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.29.Star Plot

Purpose:
Display
Multivariate
Data

The star plot (Chambers 1983) is a method of displaying multivariate
data. Each star represents a single observation. Typically, star plots are
generated in a multi-plot format with many stars on each page and each
star representing one observation.

Star plots are used to examine the relative values for a single data point
(e.g., point 3 is large for variables 2 and 4, small for variables 1, 3, 5,
and 6) and to locate similar points or dissimilar points.

Sample Plot The plot below contains the star plots of 16 cars. The data file actually
contains 74 cars, but we restrict the plot to what can reasonably be
shown on one page. The variable list for the sample star plot is

1 Price
2 Mileage (MPG)
3 1978 Repair Record (1 = Worst, 5 = Best)
4 1977 Repair Record (1 = Worst, 5 = Best)
5 Headroom
6 Rear Seat Room
7 Trunk Space
8 Weight
9 Length

1.3.3.29. Star Plot
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We can look at these plots individually or we can use them to identify
clusters of cars with similar features. For example, we can look at the
star plot of the Cadillac Seville and see that it is one of the most
expensive cars, gets below average (but not among the worst) gas
mileage, has an average repair record, and has average-to-above-average
roominess and size. We can then compare the Cadillac models (the last
three plots) with the AMC models (the first three plots). This
comparison shows distinct patterns. The AMC models tend to be
inexpensive, have below average gas mileage, and are small in both
height and weight and in roominess. The Cadillac models are expensive,
have poor gas mileage, and are large in both size and roominess.

Definition The star plot consists of a sequence of equi-angular spokes, called radii,
with each spoke representing one of the variables. The data length of a
spoke is proportional to the magnitude of the variable for the data point
relative to the maximum magnitude of the variable across all data
points. A line is drawn connecting the data values for each spoke. This
gives the plot a star-like appearance and the origin of the name of this
plot.

Questions The star plot can be used to answer the following questions:

What variables are dominant for a given observation?1.  

Which observations are most similar, i.e., are there clusters of
observations?

2.  

Are there outliers?3.  

1.3.3.29. Star Plot
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Weakness in
Technique

Star plots are helpful for small-to-moderate-sized multivariate data sets.
Their primary weakness is that their effectiveness is limited to data sets
with less than a few hundred points. After that, they tend to be
overwhelming.

Graphical techniques suited for large data sets are discussed by Scott.

Related
Techniques

Alternative ways to plot multivariate data are discussed in Chambers, du
Toit, and Everitt.

Software Star plots are available in some general purpose statistical software
progams, including Dataplot.

1.3.3.29. Star Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.30.Weibull Plot

Purpose:
Graphical
Check To See
If Data Come
From a
Population
That Would
Be Fit by a
Weibull
Distribution

The Weibull plot (Nelson 1982) is a graphical technique for
determining if a data set comes from a population that would logically
be fit by a 2-parameter Weibull distribution (the location is assumed to
be zero).

The Weibull plot has special scales that are designed so that if the data
do in fact follow a Weibull distribution, the points will be linear (or
nearly linear). The least squares fit of this line yields estimates for the
shape and scale parameters of the Weibull distribution. Weibull
distribution (the location is assumed to be zero).

Sample Plot

This Weibull plot shows that:

the assumption of a Weibull distribution is reasonable;1.  

the shape parameter estimate is computed to be 33.32;2.  

the scale parameter estimate is computed to be 5.28; and3.  

1.3.3.30. Weibull Plot
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there are no outliers.4.  

Definition:
Weibull
Cumulative
Probability
Versus
LN(Ordered
Response)

The Weibull plot is formed by:

Vertical axis: Weibull cumulative probability expressed as a
percentage

●   

Horizontal axis: LN of ordered response●   

The vertical scale is ln-ln(1-p) where p=(i-0.3)/(n+0.4) and i is the rank
of the observation. This scale is chosen in order to linearize the
resulting plot for Weibull data.

Questions The Weibull plot can be used to answer the following questions:

Do the data follow a 2-parameter Weibull distribution?1.  

What is the best estimate of the shape parameter for the
2-parameter Weibull distribution?

2.  

What is the best estimate of the scale (= variation) parameter for
the 2-parameter Weibull distribution?

3.  

Importance:
Check
Distributional
Assumptions

Many statistical analyses, particularly in the field of reliability, are
based on the assumption that the data follow a Weibull distribution. If
the analysis assumes the data follow a Weibull distribution, it is
important to verify this assumption and, if verified, find good estimates
of the Weibull parameters.

Related
Techniques

Weibull Probability Plot
Weibull PPCC Plot
Weibull Hazard Plot

The Weibull probability plot (in conjunction with the Weibull PPCC
plot), the Weibull hazard plot, and the Weibull plot are all similar
techniques that can be used for assessing the adequacy of the Weibull
distribution as a model for the data, and additionally providing
estimation for the shape, scale, or location parameters.

The Weibull hazard plot and Weibull plot are designed to handle
censored data (which the Weibull probability plot does not).

Case Study The Weibull plot is demonstrated in the airplane glass failure data case
study.

Software Weibull plots are generally available in statistical software programs
that are designed to analyze reliability data. Dataplot supports the
Weibull plot.

1.3.3.30. Weibull Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.31.Youden Plot

Purpose:
Interlab
Comparisons

Youden plots are a graphical technique for analyzing interlab data when
each lab has made two runs on the same product or one run on two
different products.

The Youden plot is a simple but effective method for comparing both
the within-laboratory variability and the between-laboratory variability.

Sample Plot

This plot shows:

Not all labs are equivalent.1.  

Lab 4 is biased low.2.  

Lab 3 has within-lab variability problems.3.  

Lab 5 has an outlying run.4.  

1.3.3.31. Youden Plot
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Definition:
Response 1
Versus
Response 2
Coded by
Lab

Youden plots are formed by:

Vertical axis: Response variable 1 (i.e., run 1 or product 1
response value)

1.  

Horizontal axis: Response variable 2 (i.e., run 2 or product 2
response value)

2.  

In addition, the plot symbol is the lab id (typically an integer from 1 to k
where k is the number of labs). Sometimes a 45-degree reference line is
drawn. Ideally, a lab generating two runs of the same product should
produce reasonably similar results. Departures from this reference line
indicate inconsistency from the lab. If two different products are being
tested, then a 45-degree line may not be appropriate. However, if the
labs are consistent, the points should lie near some fitted straight line.

Questions The Youden plot can be used to answer the following questions:

Are all labs equivalent?1.  

What labs have between-lab problems (reproducibility)?2.  

What labs have within-lab problems (repeatability)?3.  

What labs are outliers?4.  

Importance In interlaboratory studies or in comparing two runs from the same lab, it
is useful to know if consistent results are generated. Youden plots
should be a routine plot for analyzing this type of data.

DEX Youden
Plot

The dex Youden plot is a specialized Youden plot used in the design of
experiments. In particular, it is useful for full and fractional designs.

Related
Techniques

Scatter Plot

Software The Youden plot is essentially a scatter plot, so it should be feasible to
write a macro for a Youden plot in any general purpose statistical
program that supports scatter plots. Dataplot supports a Youden plot.

1.3.3.31. Youden Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic
1.3.3.31. Youden Plot

1.3.3.31.1.DEX Youden Plot

DEX Youden
Plot:
Introduction

The dex (Design of Experiments) Youden plot is a specialized Youden
plot used in the analysis of full and fractional experiment designs. In
particular, it is used in support of a Yates analysis. These designs may
have a low level, coded as "-1" or "-", and a high level, coded as "+1"
or "+", for each factor. In addition, there can optionally be one or more
center points. Center points are at the midpoint between the low and
high levels for each factor and are coded as "0".

The Yates analysis and the the dex Youden plot only use the "-1" and
"+1" points. The Yates analysis is used to estimate factor effects. The
dex Youden plot can be used to help determine the approriate model to
use from the Yates analysis.

Construction
of DEX
Youden Plot

The following are the primary steps in the construction of the dex
Youden plot.

For a given factor or interaction term, compute the mean of the
response variable for the low level of the factor and for the high
level of the factor. Any center points are omitted from the
computation.

1.  

Plot the point where the y-coordinate is the mean for the high
level of the factor and the x-coordinate is the mean for the low
level of the factor. The character used for the plot point should
identify the factor or interaction term (e.g., "1" for factor 1, "13"
for the interaction between factors 1 and 3).

2.  

Repeat steps 1 and 2 for each factor and interaction term of the
data.

3.  

The high and low values of the interaction terms are obtained by
multiplying the corresponding values of the main level factors. For
example, the interaction term X13 is obtained by multiplying the values
for X1 with the corresponding values of X3. Since the values for X1 and
X3 are either "-1" or "+1", the resulting values for X13 are also either

1.3.3.31.1. DEX Youden Plot
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"-1" or "+1".

In summary, the dex Youden plot is a plot of the mean of the response
variable for the high level of a factor or interaction term against the
mean of the response variable for the low level of that factor or
interaction term.

For unimportant factors and interaction terms, these mean values
should be nearly the same. For important factors and interaction terms,
these mean values should be quite different. So the interpretation of the
plot is that unimportant factors should be clustered together near the
grand mean. Points that stand apart from this cluster identify important
factors that should be included in the model.

Sample DEX
Youden Plot

The following is a dex Youden plot for the data used in the Eddy
current case study. The analysis in that case study demonstrated that
X1 and X2 were the most important factors.

Interpretation
of the Sample
DEX Youden
Plot

From the above dex Youden plot, we see that factors 1 and 2 stand out
from the others. That is, the mean response values for the low and high
levels of factor 1 and factor 2 are quite different. For factor 3 and the 2
and 3-term interactions, the mean response values for the low and high
levels are similar.

We would conclude from this plot that factors 1 and 2 are important
and should be included in our final model while the remaining factors
and interactions should be omitted from the final model.

1.3.3.31.1. DEX Youden Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33311.htm (2 of 3) [5/1/2006 9:57:10 AM]



Case Study The Eddy current case study demonstrates the use of the dex Youden
plot in the context of the analysis of a full factorial design.

Software DEX Youden plots are not typically available as built-in plots in
statistical software programs. However, it should be relatively
straightforward to write a macro to generate this plot in most general
purpose statistical software programs.

1.3.3.31.1. DEX Youden Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.32.4-Plot

Purpose:
Check
Underlying
Statistical
Assumptions

The 4-plot is a collection of 4 specific EDA graphical techniques
whose purpose is to test the assumptions that underlie most
measurement processes. A 4-plot consists of a

run sequence plot;1.  

lag plot;2.  

histogram;3.  

normal probability plot.4.  

If the 4 underlying assumptions of a typical measurement process
hold, then the above 4 plots will have a characteristic appearance (see
the normal random numbers case study below); if any of the
underlying assumptions fail to hold, then it will be revealed by an
anomalous appearance in one or more of the plots. Several commonly
encountered situations are demonstrated in the case studies below.

Although the 4-plot has an obvious use for univariate and time series
data, its usefulness extends far beyond that. Many statistical models of
the form

have the same underlying assumptions for the error term. That is, no
matter how complicated the functional fit, the assumptions on the
underlying error term are still the same. The 4-plot can and should be
routinely applied to the residuals when fitting models regardless of
whether the model is simple or complicated.

1.3.3.32. 4-Plot
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Sample Plot:
Process Has
Fixed
Location,
Fixed
Variation,
Non-Random
(Oscillatory),
Non-Normal
U-Shaped
Distribution,
and Has 3
Outliers.

This 4-plot reveals the following:

the fixed location assumption is justified as shown by the run
sequence plot in the upper left corner.

1.  

the fixed variation assumption is justified as shown by the run
sequence plot in the upper left corner.

2.  

the randomness assumption is violated as shown by the
non-random (oscillatory) lag plot in the upper right corner.

3.  

the assumption of a common, normal distribution is violated as
shown by the histogram in the lower left corner and the normal
probability plot in the lower right corner. The distribution is
non-normal and is a U-shaped distribution.

4.  

there are several outliers apparent in the lag plot in the upper
right corner.

5.  

1.3.3.32. 4-Plot
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Definition:
1. Run
Sequence
Plot;
2. Lag Plot;
3. Histogram;
4. Normal
Probability
Plot

The 4-plot consists of the following:

Run sequence plot to test fixed location and variation.

Vertically: Yi❍   

Horizontally: i❍   

1.  

Lag Plot to test randomness.

Vertically: Yi❍   

Horizontally: Yi-1❍   

2.  

Histogram to test (normal) distribution.

Vertically: Counts❍   

Horizontally: Y❍   

3.  

Normal probability plot to test normal distribution.

Vertically: Ordered Yi❍   

Horizontally: Theoretical values from a normal N(0,1)
distribution for ordered Yi

❍   

4.  

Questions 4-plots can provide answers to many questions:

Is the process in-control, stable, and predictable?1.  

Is the process drifting with respect to location?2.  

Is the process drifting with respect to variation?3.  

Are the data random?4.  

Is an observation related to an adjacent observation?5.  

If the data are a time series, is is white noise?6.  

If the data are a time series and not white noise, is it sinusoidal,
autoregressive, etc.?

7.  

If the data are non-random, what is a better model?8.  

Does the process follow a normal distribution?9.  

If non-normal, what distribution does the process follow?10.  

Is the model

valid and sufficient?

11.  

If the default model is insufficient, what is a better model?12.  

Is the formula  valid?13.  

Is the sample mean a good estimator of the process location?14.  

If not, what would be a better estimator?15.  

Are there any outliers?16.  

1.3.3.32. 4-Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3332.htm (3 of 5) [5/1/2006 9:57:10 AM]



Importance:
Testing
Underlying
Assumptions
Helps Ensure
the Validity of
the Final
Scientific and
Engineering
Conclusions

There are 4 assumptions that typically underlie all measurement
processes; namely, that the data from the process at hand "behave
like":

random drawings;1.  

from a fixed distribution;2.  

with that distribution having a fixed location; and3.  

with that distribution having fixed variation.4.  

Predictability is an all-important goal in science and engineering. If
the above 4 assumptions hold, then we have achieved probabilistic
predictability--the ability to make probability statements not only
about the process in the past, but also about the process in the future.
In short, such processes are said to be "statistically in control". If the 4
assumptions do not hold, then we have a process that is drifting (with
respect to location, variation, or distribution), is unpredictable, and is
out of control. A simple characterization of such processes by a
location estimate, a variation estimate, or a distribution "estimate"
inevitably leads to optimistic and grossly invalid engineering
conclusions.

Inasmuch as the validity of the final scientific and engineering
conclusions is inextricably linked to the validity of these same 4
underlying assumptions, it naturally follows that there is a real
necessity for all 4 assumptions to be routinely tested. The 4-plot (run
sequence plot, lag plot, histogram, and normal probability plot) is seen
as a simple, efficient, and powerful way of carrying out this routine
checking.

Interpretation:
Flat,
Equi-Banded,
Random,
Bell-Shaped,
and Linear

Of the 4 underlying assumptions:

If the fixed location assumption holds, then the run sequence
plot will be flat and non-drifting.

1.  

If the fixed variation assumption holds, then the vertical spread
in the run sequence plot will be approximately the same over
the entire horizontal axis.

2.  

If the randomness assumption holds, then the lag plot will be
structureless and random.

3.  

If the fixed distribution assumption holds (in particular, if the
fixed normal distribution assumption holds), then the histogram
will be bell-shaped and the normal probability plot will be
approximatelylinear.

4.  

If all 4 of the assumptions hold, then the process is "statistically in
control". In practice, many processes fall short of achieving this ideal.

1.3.3.32. 4-Plot
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Related
Techniques

Run Sequence Plot
Lag Plot
Histogram
Normal Probability Plot

Autocorrelation Plot
Spectral Plot
PPCC Plot

Case Studies The 4-plot is used in most of the case studies in this chapter:

Normal random numbers (the ideal)1.  

Uniform random numbers2.  

Random walk3.  

Josephson junction cryothermometry4.  

Beam deflections5.  

Filter transmittance6.  

Standard resistor7.  

Heat flow meter 18.  

Software It should be feasible to write a macro for the 4-plot in any general
purpose statistical software program that supports the capability for
multiple plots per page and supports the underlying plot techniques.
Dataplot supports the 4-plot.

1.3.3.32. 4-Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.33.6-Plot

Purpose:
Graphical
Model
Validation

The 6-plot is a collection of 6 specific graphical techniques whose
purpose is to assess the validity of a Y versus X fit. The fit can be a
linear fit, a non-linear fit, a LOWESS (locally weighted least squares)
fit, a spline fit, or any other fit utilizing a single independent variable.

The 6 plots are:

Scatter plot of the response and predicted values versus the
independent variable;

1.  

Scatter plot of the residuals versus the independent variable;2.  

Scatter plot of the residuals versus the predicted values;3.  

Lag plot of the residuals;4.  

Histogram of the residuals;5.  

Normal probability plot of the residuals.6.  

Sample Plot

1.3.3.33. 6-Plot
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This 6-plot, which followed a linear fit, shows that the linear model is
not adequate. It suggests that a quadratic model would be a better
model.

Definition:
6
Component
Plots

The 6-plot consists of the following:

Response and predicted values

Vertical axis: Response variable, predicted values❍   

Horizontal axis: Independent variable❍   

1.  

Residuals versus independent variable

Vertical axis: Residuals❍   

Horizontal axis: Independent variable❍   

2.  

Residuals versus predicted values

Vertical axis: Residuals❍   

Horizontal axis: Predicted values❍   

3.  

Lag plot of residuals

Vertical axis: RES(I)❍   

Horizontal axis: RES(I-1)❍   

4.  

Histogram of residuals

Vertical axis: Counts❍   

Horizontal axis: Residual values❍   

5.  

Normal probability plot of residuals

Vertical axis: Ordered residuals❍   

Horizontal axis: Theoretical values from a normal N(0,1)❍   

6.  

1.3.3.33. 6-Plot
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distribution for ordered residuals

Questions The 6-plot can be used to answer the following questions:

Are the residuals approximately normally distributed with a fixed
location and scale?

1.  

Are there outliers?2.  

Is the fit adequate?3.  

Do the residuals suggest a better fit?4.  

Importance:
Validating
Model

A model involving a response variable and a single independent variable
has the form:

where Y is the response variable, X is the independent variable, f is the
linear or non-linear fit function, and E is the random component. For a
good model, the error component should behave like:

random drawings (i.e., independent);1.  

from a fixed distribution;2.  

with fixed location; and3.  

with fixed variation.4.  

In addition, for fitting models it is usually further assumed that the fixed
distribution is normal and the fixed location is zero. For a good model
the fixed variation should be as small as possible. A necessary
component of fitting models is to verify these assumptions for the error
component and to assess whether the variation for the error component
is sufficiently small. The histogram, lag plot, and normal probability
plot are used to verify the fixed distribution, location, and variation
assumptions on the error component. The plot of the response variable
and the predicted values versus the independent variable is used to
assess whether the variation is sufficiently small. The plots of the
residuals versus the independent variable and the predicted values is
used to assess the independence assumption.

Assessing the validity and quality of the fit in terms of the above
assumptions is an absolutely vital part of the model-fitting process. No
fit should be considered complete without an adequate model validation
step.

1.3.3.33. 6-Plot
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Related
Techniques

Linear Least Squares
Non-Linear Least Squares
Scatter Plot
Run Sequence Plot
Lag Plot
Normal Probability Plot
Histogram

Case Study The 6-plot is used in the Alaska pipeline data case study.

Software It should be feasible to write a macro for the 6-plot in any general
purpose statistical software program that supports the capability for
multiple plots per page and supports the underlying plot techniques.
Dataplot supports the 6-plot.

1.3.3.33. 6-Plot
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1. Exploratory Data Analysis
1.3. EDA Techniques

1.3.4.Graphical
Techniques: By
Problem
Category

Univariate
y = c + e

Run Sequence
Plot: 1.3.3.25

Lag Plot:
1.3.3.15

Histogram:
1.3.3.14

 

Normal
Probability Plot:

1.3.3.21

4-Plot: 1.3.3.32 PPCC Plot:
1.3.3.23

 

Weibull Plot:
1.3.3.30

Probability Plot:
1.3.3.22

Box-Cox
Linearity Plot:

1.3.3.5

1.3.4. Graphical Techniques: By Problem Category
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Box-Cox
Normality Plot:

1.3.3.6

Bootstrap Plot:
1.3.3.4

Time Series
y = f(t) + e

Run Sequence
Plot: 1.3.3.25

Spectral Plot:
1.3.3.27

Autocorrelation
Plot: 1.3.3.1

 

Complex
Demodulation

Amplitude Plot:
1.3.3.8

Complex
Demodulation

Phase Plot:
1.3.3.9

1 Factor
y = f(x) + e

Scatter Plot:
1.3.3.26

Box Plot: 1.3.3.7 Bihistogram:
1.3.3.2

1.3.4. Graphical Techniques: By Problem Category

http://www.itl.nist.gov/div898/handbook/eda/section3/eda34.htm (2 of 4) [5/1/2006 9:57:11 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3/boxcox.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcox.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcox.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcox.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bootplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bootplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bootplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scattepl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scattepl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scattepl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm


 

Quantile-Quantile
Plot: 1.3.3.24

Mean Plot:
1.3.3.20

Standard
Deviation Plot:

1.3.3.28

Multi-Factor/Comparative
y = f(xp,  x1,x2,...,xk) + e

Block Plot:
1.3.3.3

Multi-Factor/Screening
y = f(x1,x2,x3,...,xk) + e

DEX Scatter
Plot: 1.3.3.11

DEX Mean Plot:
1.3.3.12

DEX Standard
Deviation Plot:

1.3.3.13

Contour Plot:
1.3.3.10

1.3.4. Graphical Techniques: By Problem Category
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Regression
y = f(x1,x2,x3,...,xk) + e

Scatter Plot:
1.3.3.26

6-Plot: 1.3.3.33 Linear
Correlation Plot:

1.3.3.16

 
Linear Intercept

Plot: 1.3.3.17
Linear Slope
Plot: 1.3.3.18

Linear Residual
Standard
Deviation

Plot:1.3.3.19

Interlab
(y1,y2) = f(x) + e

Youden Plot:
1.3.3.31

Multivariate
(y1,y2,...,yp)

Star Plot:
1.3.3.29

1.3.4. Graphical Techniques: By Problem Category
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1. Exploratory Data Analysis
1.3. EDA Techniques

1.3.5.Quantitative Techniques

Confirmatory
Statistics

The techniques discussed in this section are classical statistical methods
as opposed to EDA techniques. EDA and classical techniques are not
mutually exclusive and can be used in a complamentary fashion. For
example, the analysis can start with some simple graphical techniques
such as the 4-plot followed by the classical confirmatory methods
discussed herein to provide more rigorous statments about the
conclusions. If the classical methods yield different conclusions than
the graphical analysis, then some effort should be invested to explain
why. Often this is an indication that some of the assumptions of the
classical techniques are violated.

Many of the quantitative techniques fall into two broad categories:

Interval estimation1.  

Hypothesis tests2.  

Interval
Estimates

It is common in statistics to estimate a parameter from a sample of data.
The value of the parameter using all of the possible data, not just the
sample data, is called the population parameter or true value of the
parameter. An estimate of the true parameter value is made using the
sample data. This is called a point estimate or a sample estimate.

For example, the most commonly used measure of location is the mean.
The population, or true, mean is the sum of all the members of the
given population divided by the number of members in the population.
As it is typically impractical to measure every member of the
population, a random sample is drawn from the population. The sample
mean is calculated by summing the values in the sample and dividing
by the number of values in the sample. This sample mean is then used
as the point estimate of the population mean.

Interval estimates expand on point estimates by incorporating the
uncertainty of the point estimate. In the example for the mean above,
different samples from the same population will generate different
values for the sample mean. An interval estimate quantifies this
uncertainty in the sample estimate by computing lower and upper

1.3.5. Quantitative Techniques
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values of an interval which will, with a given level of confidence (i.e.,
probability), contain the population parameter.

Hypothesis
Tests

Hypothesis tests also address the uncertainty of the sample estimate.
However, instead of providing an interval, a hypothesis test attempts to
refute a specific claim about a population parameter based on the
sample data. For example, the hypothesis might be one of the
following:

the population mean is equal to 10●   

the population standard deviation is equal to 5●   

the means from two populations are equal●   

the standard deviations from 5 populations are equal●   

To reject a hypothesis is to conclude that it is false. However, to accept
a hypothesis does not mean that it is true, only that we do not have
evidence to believe otherwise. Thus hypothesis tests are usually stated
in terms of both a condition that is doubted (null hypothesis) and a
condition that is believed (alternative hypothesis).

A common format for a hypothesis test is:

H0: A statement of the null hypothesis, e.g., two
population means are equal.

Ha: A statement of the alternative hypothesis, e.g., two
population means are not equal.

Test Statistic: The test statistic is based on the specific
hypothesis test.

Significance Level: The significance level, , defines the sensitivity of
the test. A value of  = 0.05 means that we
inadvertently reject the null hypothesis 5% of the
time when it is in fact true. This is also called the
type I error. The choice of  is somewhat
arbitrary, although in practice values of 0.1, 0.05,
and 0.01 are commonly used.

The probability of rejecting the null hypothesis
when it is in fact false is called the power of the
test and is denoted by 1 - . Its complement, the
probability of accepting the null hypothesis when
the alternative hypothesis is, in fact, true (type II
error), is called  and can only be computed for a
specific alternative hypothesis.

1.3.5. Quantitative Techniques
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Critical Region: The critical region encompasses those values of
the test statistic that lead to a rejection of the null
hypothesis. Based on the distribution of the test
statistic and the significance level, a cut-off value
for the test statistic is computed. Values either
above or below or both (depending on the
direction of the test) this cut-off define the critical
region.

Practical
Versus
Statistical
Significance

It is important to distinguish between statistical significance and
practical significance. Statistical significance simply means that we
reject the null hypothesis. The ability of the test to detect differences
that lead to rejection of the null hypothesis depends on the sample size.
For example, for a particularly large sample, the test may reject the null
hypothesis that two process means are equivalent. However, in practice
the difference between the two means may be relatively small to the
point of having no real engineering significance. Similarly, if the
sample size is small, a difference that is large in engineering terms may
not lead to rejection of the null hypothesis. The analyst should not just
blindly apply the tests, but should combine engineering judgement with
statistical analysis.

Bootstrap
Uncertainty
Estimates

In some cases, it is possible to mathematically derive appropriate
uncertainty intervals. This is particularly true for intervals based on the
assumption of a normal distribution. However, there are many cases in
which it is not possible to mathematically derive the uncertainty. In
these cases, the bootstrap provides a method for empirically
determining an appropriate interval.

Table of
Contents

Some of the more common classical quantitative techniques are listed
below. This list of quantitative techniques is by no means meant to be
exhaustive. Additional discussions of classical statistical techniques are
contained in the product comparisons chapter.

Location

Measures of Location1.  

Confidence Limits for the Mean and One Sample t-Test2.  

Two Sample t-Test for Equal Means3.  

One Factor Analysis of Variance4.  

Multi-Factor Analysis of Variance5.  

●   

Scale (or variability or spread)

Measures of Scale1.  

Bartlett's Test2.  

●   
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Chi-Square Test3.  

F-Test4.  

Levene Test5.  

Skewness and Kurtosis

Measures of Skewness and Kurtosis1.  

●   

Randomness

Autocorrelation1.  

Runs Test2.  

●   

Distributional Measures

Anderson-Darling Test1.  

Chi-Square Goodness-of-Fit Test2.  

Kolmogorov-Smirnov Test3.  

●   

Outliers

Grubbs Test1.  

●   

2-Level Factorial Designs

Yates Analysis1.  

●   
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.1.Measures of Location

Location A fundamental task in many statistical analyses is to estimate a location
parameter for the distribution; i.e., to find a typical or central value that
best describes the data.

Definition of
Location

The first step is to define what we mean by a typical value. For
univariate data, there are three common definitions:

mean - the mean is the sum of the data points divided by the
number of data points. That is,

The mean is that value that is most commonly referred to as the
average. We will use the term average as a synonym for the mean
and the term typical value to refer generically to measures of
location.

1.  

median - the median is the value of the point which has half the
data smaller than that point and half the data larger than that
point. That is, if X1, X2, ... ,XN is a random sample sorted from
smallest value to largest value, then the median is defined as:

2.  

mode - the mode is the value of the random sample that occurs
with the greatest frequency. It is not necessarily unique. The
mode is typically used in a qualitative fashion. For example, there
may be a single dominant hump in the data perhaps two or more
smaller humps in the data. This is usually evident from a
histogram of the data.

When taking samples from continuous populations, we need to be
somewhat careful in how we define the mode. That is, any

3.  

1.3.5.1. Measures of Location
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specific value may not occur more than once if the data are
continuous. What may be a more meaningful, if less exact
measure, is the midpoint of the class interval of the histogram
with the highest peak.

Why
Different
Measures

A natural question is why we have more than one measure of the typical
value. The following example helps to explain why these alternative
definitions are useful and necessary.

This plot shows histograms for 10,000 random numbers generated from
a normal, an exponential, a Cauchy, and a lognormal distribution.

Normal
Distribution

The first histogram is a sample from a normal distribution. The mean is
0.005, the median is -0.010, and the mode is -0.144 (the mode is
computed as the midpoint of the histogram interval with the highest
peak).

The normal distribution is a symmetric distribution with well-behaved
tails and a single peak at the center of the distribution. By symmetric,
we mean that the distribution can be folded about an axis so that the 2
sides coincide. That is, it behaves the same to the left and right of some
center point. For a normal distribution, the mean, median, and mode are
actually equivalent. The histogram above generates similar estimates for
the mean, median, and mode. Therefore, if a histogram or normal
probability plot indicates that your data are approximated well by a
normal distribution, then it is reasonable to use the mean as the location
estimator.

1.3.5.1. Measures of Location
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Exponential
Distribution

The second histogram is a sample from an exponential distribution. The
mean is 1.001, the median is 0.684, and the mode is 0.254 (the mode is
computed as the midpoint of the histogram interval with the highest
peak).

The exponential distribution is a skewed, i. e., not symmetric,
distribution. For skewed distributions, the mean and median are not the
same. The mean will be pulled in the direction of the skewness. That is,
if the right tail is heavier than the left tail, the mean will be greater than
the median. Likewise, if the left tail is heavier than the right tail, the
mean will be less than the median.

For skewed distributions, it is not at all obvious whether the mean, the
median, or the mode is the more meaningful measure of the typical
value. In this case, all three measures are useful.

Cauchy
Distribution

The third histogram is a sample from a Cauchy distribution. The mean is
3.70, the median is -0.016, and the mode is -0.362 (the mode is
computed as the midpoint of the histogram interval with the highest
peak).

For better visual comparison with the other data sets, we restricted the
histogram of the Cauchy distribution to values between -10 and 10. The
full Cauchy data set in fact has a minimum of approximately -29,000
and a maximum of approximately 89,000.

The Cauchy distribution is a symmetric distribution with heavy tails and
a single peak at the center of the distribution. The Cauchy distribution
has the interesting property that collecting more data does not provide a
more accurate estimate of the mean. That is, the sampling distribution of
the mean is equivalent to the sampling distribution of the original data.
This means that for the Cauchy distribution the mean is useless as a
measure of the typical value. For this histogram, the mean of 3.7 is well
above the vast majority of the data. This is caused by a few very
extreme values in the tail. However, the median does provide a useful
measure for the typical value.

Although the Cauchy distribution is an extreme case, it does illustrate
the importance of heavy tails in measuring the mean. Extreme values in
the tails distort the mean. However, these extreme values do not distort
the median since the median is based on ranks. In general, for data with
extreme values in the tails, the median provides a better estimate of
location than does the mean.

1.3.5.1. Measures of Location
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Lognormal
Distribution

The fourth histogram is a sample from a lognormal distribution. The
mean is 1.677, the median is 0.989, and the mode is 0.680 (the mode is
computed as the midpoint of the histogram interval with the highest
peak).

The lognormal is also a skewed distribution. Therefore the mean and
median do not provide similar estimates for the location. As with the
exponential distribution, there is no obvious answer to the question of
which is the more meaningful measure of location.

Robustness There are various alternatives to the mean and median for measuring
location. These alternatives were developed to address non-normal data
since the mean is an optimal estimator if in fact your data are normal.

Tukey and Mosteller defined two types of robustness where robustness
is a lack of susceptibility to the effects of nonnormality.

Robustness of validity means that the confidence intervals for the
population location have a 95% chance of covering the population
location regardless of what the underlying distribution is.

1.  

Robustness of efficiency refers to high effectiveness in the face of
non-normal tails. That is, confidence intervals for the population
location tend to be almost as narrow as the best that could be done
if we knew the true shape of the distributuion.

2.  

The mean is an example of an estimator that is the best we can do if the
underlying distribution is normal. However, it lacks robustness of
validity. That is, confidence intervals based on the mean tend not to be
precise if the underlying distribution is in fact not normal.

The median is an example of a an estimator that tends to have
robustness of validity but not robustness of efficiency.

The alternative measures of location try to balance these two concepts of
robustness. That is, the confidence intervals for the case when the data
are normal should be almost as narrow as the confidence intervals based
on the mean. However, they should maintain their validity even if the
underlying data are not normal. In particular, these alternatives address
the problem of heavy-tailed distributions.

1.3.5.1. Measures of Location
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Alternative
Measures of
Location

A few of the more common alternative location measures are:

Mid-Mean - computes a mean using the data between the 25th
and 75th percentiles.

1.  

Trimmed Mean - similar to the mid-mean except different
percentile values are used. A common choice is to trim 5% of the
points in both the lower and upper tails, i.e., calculate the mean
for data between the 5th and 95th percentiles.

2.  

Winsorized Mean - similar to the trimmed mean. However,
instead of trimming the points, they are set to the lowest (or
highest) value. For example, all data below the 5th percentile are
set equal to the value of the 5th percentile and all data greater
than the 95th percentile are set equal to the 95th percentile.

3.  

Mid-range = (smallest + largest)/2.4.  

The first three alternative location estimators defined above have the
advantage of the median in the sense that they are not unduly affected
by extremes in the tails. However, they generate estimates that are closer
to the mean for data that are normal (or nearly so).

The mid-range, since it is based on the two most extreme points, is not
robust. Its use is typically restricted to situations in which the behavior
at the extreme points is relevant.

Case Study The uniform random numbers case study compares the performance of
several different location estimators for a particular non-normal
distribution.

Software Most general purpose statistical software programs, including Dataplot,
can compute at least some of the measures of location discussed above.

1.3.5.1. Measures of Location
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.2.Confidence Limits for the Mean

Purpose:
Interval
Estimate for
Mean

Confidence limits for the mean (Snedecor and Cochran, 1989) are an interval estimate
for the mean. Interval estimates are often desirable because the estimate of the mean
varies from sample to sample. Instead of a single estimate for the mean, a confidence
interval generates a lower and upper limit for the mean. The interval estimate gives an
indication of how much uncertainty there is in our estimate of the true mean. The
narrower the interval, the more precise is our estimate.

Confidence limits are expressed in terms of a confidence coefficient. Although the
choice of confidence coefficient is somewhat arbitrary, in practice 90%, 95%, and
99% intervals are often used, with 95% being the most commonly used.

As a technical note, a 95% confidence interval does not mean that there is a 95%
probability that the interval contains the true mean. The interval computed from a
given sample either contains the true mean or it does not. Instead, the level of
confidence is associated with the method of calculating the interval. The confidence
coefficient is simply the proportion of samples of a given size that may be expected to
contain the true mean. That is, for a 95% confidence interval, if many samples are
collected and the confidence interval computed, in the long run about 95% of these
intervals would contain the true mean.

Definition:
Confidence
Interval

Confidence limits are defined as:

where  is the sample mean, s is the sample standard deviation, N is the sample size,
 is the desired significance level, and  is the upper critical value of the t

distribution with N - 1 degrees of freedom. Note that the confidence coefficient is 1 -
.

From the formula, it is clear that the width of the interval is controlled by two factors:

As N increases, the interval gets narrower from the  term.

That is, one way to obtain more precise estimates for the mean is to increase the
sample size.

1.  

The larger the sample standard deviation, the larger the confidence interval.2.  

1.3.5.2. Confidence Limits for the Mean

http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm (1 of 4) [5/1/2006 9:57:13 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


This simply means that noisy data, i.e., data with a large standard deviation, are
going to generate wider intervals than data with a smaller standard deviation.

Definition:
Hypothesis
Test

To test whether the population mean has a specific value, , against the two-sided
alternative that it does not have a value , the confidence interval is converted to
hypothesis-test form. The test is a one-sample t-test, and it is defined as:

H0:

Ha:

Test Statistic:

where , N, and  are defined as above.
Significance Level: . The most commonly used value for  is 0.05.
Critical Region: Reject the null hypothesis that the mean is a specified value, ,

if

or

Sample
Output for
Confidence
Interval

Dataplot generated the following output for a confidence interval from the
ZARR13.DAT data set:

  
                    CONFIDENCE LIMITS FOR MEAN
                            (2-SIDED)
  
           NUMBER OF OBSERVATIONS     =      195
           MEAN                       =    9.261460
           STANDARD DEVIATION         =   0.2278881E-01
           STANDARD DEVIATION OF MEAN =   0.1631940E-02
  
    CONFIDENCE   T     T X SD(MEAN)     LOWER       UPPER
    VALUE (%)  VALUE                    LIMIT       LIMIT
 ---------------------------------------------------------
      50.000   0.676  0.110279E-02   9.26036       9.26256
      75.000   1.154  0.188294E-02   9.25958       9.26334
      90.000   1.653  0.269718E-02   9.25876       9.26416
      95.000   1.972  0.321862E-02   9.25824       9.26468
      99.000   2.601  0.424534E-02   9.25721       9.26571
      99.900   3.341  0.545297E-02   9.25601       9.26691
      99.990   3.973  0.648365E-02   9.25498       9.26794
      99.999   4.536  0.740309E-02   9.25406       9.26886
  

1.3.5.2. Confidence Limits for the Mean
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Interpretation
of the Sample
Output

The first few lines print the sample statistics used in calculating the confidence
interval. The table shows the confidence interval for several different significance
levels. The first column lists the confidence level (which is 1 -  expressed as a
percent), the second column lists the t-value (i.e., ), the third column lists

the t-value times the standard error (the standard error is ), the fourth column

lists the lower confidence limit, and the fifth column lists the upper confidence limit.
For example, for a 95% confidence interval, we go to the row identified by 95.000 in
the first column and extract an interval of (9.25824, 9.26468) from the last two
columns.

Output from other statistical software may look somewhat different from the above
output.

Sample
Output for t
Test

Dataplot generated the following output for a one-sample t-test from the
ZARR13.DAT data set:

                       T TEST
                     (1-SAMPLE)
                 MU0 =    5.000000
 NULL HYPOTHESIS UNDER TEST--MEAN MU = 5.000000
  
 SAMPLE:
    NUMBER OF OBSERVATIONS      =      195
    MEAN                        =    9.261460
    STANDARD DEVIATION          =   0.2278881E-01
    STANDARD DEVIATION OF MEAN  =   0.1631940E-02
  
 TEST:
    MEAN-MU0                    =    4.261460
    T TEST STATISTIC VALUE      =    2611.284
    DEGREES OF FREEDOM          =    194.0000
    T TEST STATISTIC CDF VALUE  =    1.000000
  
                  ALTERNATIVE-         ALTERNATIVE-
  ALTERNATIVE-    HYPOTHESIS           HYPOTHESIS
  HYPOTHESIS      ACCEPTANCE INTERVAL  CONCLUSION
 MU <> 5.000000    (0,0.025) (0.975,1)   ACCEPT
 MU  < 5.000000    (0,0.05)              REJECT
 MU  > 5.000000    (0.95,1)              ACCEPT
  

1.3.5.2. Confidence Limits for the Mean
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Interpretation
of Sample
Output

We are testing the hypothesis that the population mean is 5. The output is divided into
three sections.

The first section prints the sample statistics used in the computation of the t-test.1.  

The second section prints the t-test statistic value, the degrees of freedom, and
the cumulative distribution function (cdf) value of the t-test statistic. The t-test
statistic cdf value is an alternative way of expressing the critical value. This cdf
value is compared to the acceptance intervals printed in section three. For an
upper one-tailed test, the alternative hypothesis acceptance interval is (1 - ,1),
the alternative hypothesis acceptance interval for a lower one-tailed test is (0,

), and the alternative hypothesis acceptance interval for a two-tailed test is (1 -
/2,1) or (0, /2). Note that accepting the alternative hypothesis is equivalent to

rejecting the null hypothesis.

2.  

The third section prints the conclusions for a 95% test since this is the most
common case. Results are given in terms of the alternative hypothesis for the
two-tailed test and for the one-tailed test in both directions. The alternative
hypothesis acceptance interval column is stated in terms of the cdf value printed
in section two. The last column specifies whether the alternative hypothesis is
accepted or rejected. For a different significance level, the appropriate
conclusion can be drawn from the t-test statistic cdf value printed in section
two. For example, for a significance level of 0.10, the corresponding alternative
hypothesis acceptance intervals are (0,0.05) and (0.95,1), (0, 0.10), and (0.90,1).

3.  

Output from other statistical software may look somewhat different from the above
output.

Questions Confidence limits for the mean can be used to answer the following questions:

What is a reasonable estimate for the mean?1.  

How much variability is there in the estimate of the mean?2.  

Does a given target value fall within the confidence limits?3.  

Related
Techniques

Two-Sample T-Test

Confidence intervals for other location estimators such as the median or mid-mean
tend to be mathematically difficult or intractable. For these cases, confidence intervals
can be obtained using the bootstrap.

Case Study Heat flow meter data.

Software Confidence limits for the mean and one-sample t-tests are available in just about all
general purpose statistical software programs, including Dataplot.

1.3.5.2. Confidence Limits for the Mean
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.3.Two-Sample t-Test for Equal Means

Purpose:
Test if two
population
means are
equal

The two-sample t-test (Snedecor and Cochran, 1989) is used to determine if two
population means are equal. A common application of this is to test if a new
process or treatment is superior to a current process or treatment.

There are several variations on this test.

The data may either be paired or not paired. By paired, we mean that there
is a one-to-one correspondence between the values in the two samples. That
is, if X1, X2, ..., Xn and Y1, Y2, ... , Yn are the two samples, then Xi
corresponds to Yi. For paired samples, the difference Xi - Yi is usually
calculated. For unpaired samples, the sample sizes for the two samples may
or may not be equal. The formulas for paired data are somewhat simpler
than the formulas for unpaired data.

1.  

The variances of the two samples may be assumed to be equal or unequal.
Equal variances yields somewhat simpler formulas, although with
computers this is no longer a significant issue.

2.  

In some applications, you may want to adopt a new process or treatment
only if it exceeds the current treatment by some threshold. In this case, we
can state the null hypothesis in the form that the difference between the two
populations means is equal to some constant ( ) where the
constant is the desired threshold.

3.  

Definition The two sample t test for unpaired data is defined as:

H0:

Ha:

1.3.5.3. Two-Sample t-Test for Equal Means
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Test
Statistic:

where N1 and N2 are the sample sizes,  and  are the sample

means, and  and  are the sample variances.

If equal variances are assumed, then the formula reduces to:

where

Significance
Level:

.

Critical
Region:

Reject the null hypothesis that the two means are equal if

or

where  is the critical value of the t distribution with 
degrees of freedom where

If equal variances are assumed, then

Sample
Output

Dataplot generated the following output for the t test from the AUTO83B.DAT
data set:

                       T TEST
                     (2-SAMPLE)
 NULL HYPOTHESIS UNDER TEST--POPULATION MEANS MU1 = MU2
  
 SAMPLE 1:
    NUMBER OF OBSERVATIONS      =      249
    MEAN                        =    20.14458
    STANDARD DEVIATION          =    6.414700
    STANDARD DEVIATION OF MEAN  =   0.4065151
  

1.3.5.3. Two-Sample t-Test for Equal Means
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 SAMPLE 2:
    NUMBER OF OBSERVATIONS      =       79
    MEAN                        =    30.48101
    STANDARD DEVIATION          =    6.107710
    STANDARD DEVIATION OF MEAN  =   0.6871710
  
 IF     ASSUME SIGMA1 = SIGMA2:
    POOLED STANDARD DEVIATION   =    6.342600
    DIFFERENCE (DEL) IN MEANS   =   -10.33643
    STANDARD DEVIATION OF DEL   =   0.8190135
    T TEST STATISTIC VALUE      =   -12.62059
    DEGREES OF FREEDOM          =    326.0000
    T TEST STATISTIC CDF VALUE  =    0.000000
  
 IF NOT ASSUME SIGMA1 = SIGMA2:
    STANDARD DEVIATION SAMPLE 1 =    6.414700
    STANDARD DEVIATION SAMPLE 2 =    6.107710
    BARTLETT CDF VALUE          =    0.402799
    DIFFERENCE (DEL) IN MEANS   =   -10.33643
    STANDARD DEVIATION OF DEL   =   0.7984100
    T TEST STATISTIC VALUE      =   -12.94627
    EQUIVALENT DEG. OF FREEDOM  =    136.8750
    T TEST STATISTIC CDF VALUE  =    0.000000
  
                   ALTERNATIVE-         ALTERNATIVE-
 ALTERNATIVE-      HYPOTHESIS           HYPOTHESIS
 HYPOTHESIS        ACCEPTANCE INTERVAL  CONCLUSION
 MU1 <> MU2         (0,0.025) (0.975,1)   ACCEPT
 MU1 < MU2          (0,0.05)              ACCEPT
 MU1 > MU2          (0.95,1)              REJECT

Interpretation
of Sample
Output

We are testing the hypothesis that the population mean is equal for the two
samples. The output is divided into five sections.

The first section prints the sample statistics for sample one used in the
computation of the t-test.

1.  

The second section prints the sample statistics for sample two used in the
computation of the t-test.

2.  

The third section prints the pooled standard deviation, the difference in the
means, the t-test statistic value, the degrees of freedom, and the cumulative
distribution function (cdf) value of the t-test statistic under the assumption
that the standard deviations are equal. The t-test statistic cdf value is an
alternative way of expressing the critical value. This cdf value is compared
to the acceptance intervals printed in section five. For an upper one-tailed
test, the acceptance interval is (0,1 - ), the acceptance interval for a
two-tailed test is ( /2, 1 - /2), and the acceptance interval for a lower

3.  

1.3.5.3. Two-Sample t-Test for Equal Means
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one-tailed test is ( ,1).

The fourth section prints the pooled standard deviation, the difference in
the means, the t-test statistic value, the degrees of freedom, and the
cumulative distribution function (cdf) value of the t-test statistic under the
assumption that the standard deviations are not equal. The t-test statistic cdf
value is an alternative way of expressing the critical value. cdf value is
compared to the acceptance intervals printed in section five. For an upper
one-tailed test, the alternative hypothesis acceptance interval is (1 - ,1),
the alternative hypothesis acceptance interval for a lower one-tailed test is
(0, ), and the alternative hypothesis acceptance interval for a two-tailed
test is (1 - /2,1) or (0, /2). Note that accepting the alternative hypothesis
is equivalent to rejecting the null hypothesis.

4.  

The fifth section prints the conclusions for a 95% test under the assumption
that the standard deviations are not equal since a 95% test is the most
common case. Results are given in terms of the alternative hypothesis for
the two-tailed test and for the one-tailed test in both directions. The
alternative hypothesis acceptance interval column is stated in terms of the
cdf value printed in section four. The last column specifies whether the
alternative hypothesis is accepted or rejected. For a different significance
level, the appropriate conclusion can be drawn from the t-test statistic cdf
value printed in section four. For example, for a significance level of 0.10,
the corresponding alternative hypothesis acceptance intervals are (0,0.05)
and (0.95,1), (0, 0.10), and (0.90,1).

5.  

Output from other statistical software may look somewhat different from the
above output.

Questions Two-sample t-tests can be used to answer the following questions:

Is process 1 equivalent to process 2?1.  

Is the new process better than the current process?2.  

Is the new process better than the current process by at least some
pre-determined threshold amount?

3.  

Related
Techniques

Confidence Limits for the Mean
Analysis of Variance

Case Study Ceramic strength data.

Software Two-sample t-tests are available in just about all general purpose statistical
software programs, including Dataplot.

1.3.5.3. Two-Sample t-Test for Equal Means
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques
1.3.5.3. Two-Sample t-Test for Equal Means

1.3.5.3.1.Data Used for Two-Sample t-Test

Data Used
for
Two-Sample
t-Test
Example

The following is the data used for the two-sample t-test example. The
first column is miles per gallon for U.S. cars and the second column is
miles per gallon for Japanese cars. For the t-test example, rows with the
second column equal to -999 were deleted.

   18           24
   15           27
   18           27
   16           25
   17           31
   15           35
   14           24
   14           19
   14           28
   15           23
   15           27
   14           20
   15           22
   14           18
   22           20
   18           31
   21           32
   21           31
   10           32
   10           24
   11           26
    9           29
   28           24
   25           24
   19           33
   16           33
   17           32
   19           28

1.3.5.3.1. Data Used for Two-Sample t-Test
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   18           19
   14           32
   14           34
   14           26
   14           30
   12           22
   13           22
   13           33
   18           39
   22           36
   19           28
   18           27
   23           21
   26           24
   25           30
   20           34
   21           32
   13           38
   14           37
   15           30
   14           31
   17           37
   11           32
   13           47
   12           41
   13           45
   15           34
   13           33
   13           24
   14           32
   22           39
   28           35
   13           32
   14           37
   13           38
   14           34
   15           34
   12           32
   13           33
   13           32
   14           25
   13           24
   12           37
   13           31
   18           36
   16           36

1.3.5.3.1. Data Used for Two-Sample t-Test
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   18           34
   18           38
   23           32
   11           38
   12           32
   13         -999
   12         -999
   18         -999
   21         -999
   19         -999
   21         -999
   15         -999
   16         -999
   15         -999
   11         -999
   20         -999
   21         -999
   19         -999
   15         -999
   26         -999
   25         -999
   16         -999
   16         -999
   18         -999
   16         -999
   13         -999
   14         -999
   14         -999
   14         -999
   28         -999
   19         -999
   18         -999
   15         -999
   15         -999
   16         -999
   15         -999
   16         -999
   14         -999
   17         -999
   16         -999
   15         -999
   18         -999
   21         -999
   20         -999
   13         -999
   23         -999

1.3.5.3.1. Data Used for Two-Sample t-Test
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   20         -999
   23         -999
   18         -999
   19         -999
   25         -999
   26         -999
   18         -999
   16         -999
   16         -999
   15         -999
   22         -999
   22         -999
   24         -999
   23         -999
   29         -999
   25         -999
   20         -999
   18         -999
   19         -999
   18         -999
   27         -999
   13         -999
   17         -999
   13         -999
   13         -999
   13         -999
   30         -999
   26         -999
   18         -999
   17         -999
   16         -999
   15         -999
   18         -999
   21         -999
   19         -999
   19         -999
   16         -999
   16         -999
   16         -999
   16         -999
   25         -999
   26         -999
   31         -999
   34         -999
   36         -999
   20         -999

1.3.5.3.1. Data Used for Two-Sample t-Test
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   19         -999
   20         -999
   19         -999
   21         -999
   20         -999
   25         -999
   21         -999
   19         -999
   21         -999
   21         -999
   19         -999
   18         -999
   19         -999
   18         -999
   18         -999
   18         -999
   30         -999
   31         -999
   23         -999
   24         -999
   22         -999
   20         -999
   22         -999
   20         -999
   21         -999
   17         -999
   18         -999
   17         -999
   18         -999
   17         -999
   16         -999
   19         -999
   19         -999
   36         -999
   27         -999
   23         -999
   24         -999
   34         -999
   35         -999
   28         -999
   29         -999
   27         -999
   34         -999
   32         -999
   28         -999
   26         -999

1.3.5.3.1. Data Used for Two-Sample t-Test
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   24         -999
   19         -999
   28         -999
   24         -999
   27         -999
   27         -999
   26         -999
   24         -999
   30         -999
   39         -999
   35         -999
   34         -999
   30         -999
   22         -999
   27         -999
   20         -999
   18         -999
   28         -999
   27         -999
   34         -999
   31         -999
   29         -999
   27         -999
   24         -999
   23         -999
   38         -999
   36         -999
   25         -999
   38         -999
   26         -999
   22         -999
   36         -999
   27         -999
   27         -999
   32         -999
   28         -999
   31         -999

1.3.5.3.1. Data Used for Two-Sample t-Test
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.4.One-Factor ANOVA

Purpose:
Test for
Equal
Means
Across
Groups

One factor analysis of variance (Snedecor and Cochran, 1989) is a
special case of analysis of variance (ANOVA), for one factor of interest,
and a generalization of the two-sample t-test. The two-sample t-test is
used to decide whether two groups (levels) of a factor have the same
mean. One-way analysis of variance generalizes this to levels where k,
the number of levels, is greater than or equal to 2.

For example, data collected on, say, five instruments have one factor
(instruments) at five levels. The ANOVA tests whether instruments
have a significant effect on the results.

Definition The Product and Process Comparisons chapter (chapter 7) contains a
more extensive discussion of 1-factor ANOVA, including the details for
the mathematical computations of one-way analysis of variance.

The model for the analysis of variance can be stated in two
mathematically equivalent ways. In the following discussion, each level
of each factor is called a cell. For the one-way case, a cell and a level
are equivalent since there is only one factor. In the following, the
subscript i refers to the level and the subscript j refers to the observation
within a level. For example, Y23 refers to the third observation in the
second level.

The first model is

This model decomposes the response into a mean for each cell and an
error term. The analysis of variance provides estimates for each cell
mean. These estimated cell means are the predicted values of the model
and the differences between the response variable and the estimated cell
means are the residuals. That is

The second model is

This model decomposes the response into an overall (grand) mean, the
effect of the ith factor level, and an error term. The analysis of variance
provides estimates of the grand mean and the effect of the ith factor
level. The predicted values and the residuals of the model are

1.3.5.4. One-Factor ANOVA
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The distinction between these models is that the second model divides
the cell mean into an overall mean and the effect of the ith factor level.
This second model makes the factor effect more explicit, so we will
emphasize this approach.

Model
Validation

Note that the ANOVA model assumes that the error term, Eij, should
follow the assumptions for a univariate measurement process. That is,
after performing an analysis of variance, the model should be validated
by analyzing the residuals.

Sample
Output

Dataplot generated the following output for the one-way analysis of variance from the
GEAR.DAT data set.

  
       NUMBER OF OBSERVATIONS           =      100
       NUMBER OF FACTORS                =        1
       NUMBER OF LEVELS FOR FACTOR  1  =       10
       BALANCED CASE
       RESIDUAL    STANDARD DEVIATION   =   
0.59385783970E-02
       RESIDUAL    DEGREES OF FREEDOM   =       90
       REPLICATION CASE
       REPLICATION STANDARD DEVIATION   =   
0.59385774657E-02
       REPLICATION DEGREES OF FREEDOM   =       90
       NUMBER OF DISTINCT CELLS         =       10
  
                          *****************
                          *  ANOVA TABLE  *
                          *****************
  
 SOURCE              DF SUM OF SQUARES    MEAN SQUARE   F
STATISTIC    F CDF SIG
 -------------------------------------------------------------------------------
 TOTAL (CORRECTED)   99       0.003903       0.000039
 -------------------------------------------------------------------------------
 FACTOR  1            9       0.000729       0.000081       
2.2969  97.734%   *
 -------------------------------------------------------------------------------
 RESIDUAL            90       0.003174       0.000035
  
       RESIDUAL    STANDARD DEVIATION =        0.00593857840
       RESIDUAL    DEGREES OF FREEDOM =            90
       REPLICATION STANDARD DEVIATION =        0.00593857747
       REPLICATION DEGREES OF FREEDOM =            90

                          ****************
                          *  ESTIMATION  *
                          ****************
  
       GRAND MEAN                       =   
0.99764001369E+00
       GRAND STANDARD DEVIATION         =   
0.62789078802E-02
  

1.3.5.4. One-Factor ANOVA
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              LEVEL-ID      NI      MEAN      EFFECT    
SD(EFFECT)
 --------------------------------------------------------------------
 FACTOR 1--    1.00000     10.    0.99800    0.00036   
0.00178
         --    2.00000     10.    0.99910    0.00146   
0.00178
         --    3.00000     10.    0.99540   -0.00224   
0.00178
         --    4.00000     10.    0.99820    0.00056   
0.00178
         --    5.00000     10.    0.99190   -0.00574   
0.00178
         --    6.00000     10.    0.99880    0.00116   
0.00178
         --    7.00000     10.    1.00150    0.00386   
0.00178
         --    8.00000     10.    1.00040    0.00276   
0.00178
         --    9.00000     10.    0.99830    0.00066   
0.00178
         --   10.00000     10.    0.99480   -0.00284   
0.00178
  
  
         MODEL               RESIDUAL STANDARD DEVIATION
 -------------------------------------------------------
 CONSTANT             ONLY--        0.0062789079
 CONSTANT & FACTOR  1 ONLY--        0.0059385784
  
  

Interpretation
of Sample
Output

The output is divided into three sections.

The first section prints the number of observations (100), the
number of factors (10), and the number of levels for each factor
(10 levels for factor 1). It also prints some overall summary
statistics. In particular, the residual standard deviation is 0.0059.
The smaller the residual standard deviation, the more we have
accounted for the variance in the data.

1.  

The second section prints an ANOVA table. The ANOVA table
decomposes the variance into the following component sum of
squares:

Total sum of squares. The degrees of freedom for this
entry is the number of observations minus one.

❍   

Sum of squares for the factor. The degrees of freedom for
this entry is the number of levels minus one. The mean
square is the sum of squares divided by the number of
degrees of freedom.

❍   

Residual sum of squares. The degrees of freedom is the
total degrees of freedom minus the factor degrees of
freedom. The mean square is the sum of squares divided
by the number of degrees of freedom.

❍   

That is, it summarizes how much of the variance in the data

2.  

1.3.5.4. One-Factor ANOVA
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(total sum of squares) is accounted for by the factor effect (factor
sum of squares) and how much is random error (residual sum of
squares). Ideally, we would like most of the variance to be
explained by the factor effect. The ANOVA table provides a
formal F test for the factor effect. The F-statistic is the mean
square for the factor divided by the mean square for the error.
This statistic follows an F distribution with (k-1) and (N-k)
degrees of freedom. If the F CDF column for the factor effect is
greater than 95%, then the factor is significant at the 5% level.

The third section prints an estimation section. It prints an overall
mean and overall standard deviation. Then for each level of each
factor, it prints the number of observations, the mean for the
observations of each cell (  in the above terminology), the
factor effect (  in the above terminology), and the standard
deviation of the factor effect. Finally, it prints the residual
standard deviation for the various possible models. For the
one-way ANOVA, the two models are the constant model, i.e.,

and the model with a factor effect

For these data, including the factor effect reduces the residual
standard deviation from 0.00623 to 0.0059. That is, although the
factor is statistically significant, it has minimal improvement
over a simple constant model. This is because the factor is just
barely significant.

3.  

Output from other statistical software may look somewhat different
from the above output.

In addition to the quantitative ANOVA output, it is recommended that
any analysis of variance be complemented with model validation. At a
minimum, this should include

A run sequence plot of the residuals.1.  

A normal probability plot of the residuals.2.  

A scatter plot of the predicted values against the residuals.3.  

Question The analysis of variance can be used to answer the following question

Are means the same across groups in the data?●   

Importance The analysis of uncertainty depends on whether the factor significantly
affects the outcome.

Related
Techniques

Two-sample t-test
Multi-factor analysis of variance
Regression
Box plot

Software Most general purpose statistical software programs, including Dataplot,
can generate an analysis of variance.

1.3.5.4. One-Factor ANOVA
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.5.Multi-factor Analysis of Variance

Purpose:
Detect
significant
factors

The analysis of variance (ANOVA) (Neter, Wasserman, and Kunter,
1990) is used to detect significant factors in a multi-factor model. In the
multi-factor model, there is a response (dependent) variable and one or
more factor (independent) variables. This is a common model in
designed experiments where the experimenter sets the values for each of
the factor variables and then measures the response variable.

Each factor can take on a certain number of values. These are referred to
as the levels of a factor. The number of levels can vary betweeen
factors. For designed experiments, the number of levels for a given
factor tends to be small. Each factor and level combination is a cell.
Balanced designs are those in which the cells have an equal number of
observations and unbalanced designs are those in which the number of
observations varies among cells. It is customary to use balanced designs
in designed experiments.

Definition The Product and Process Comparisons chapter (chapter 7) contains a
more extensive discussion of 2-factor ANOVA, including the details for
the mathematical computations.

The model for the analysis of variance can be stated in two
mathematically equivalent ways. We explain the model for a two-way
ANOVA (the concepts are the same for additional factors). In the
following discussion, each combination of factors and levels is called a
cell. In the following, the subscript i refers to the level of factor 1, j
refers to the level of factor 2, and the subscript k refers to the kth
observation within the (i,j)th cell. For example, Y235 refers to the fifth
observation in the second level of factor 1 and the third level of factor 2.

The first model is

This model decomposes the response into a mean for each cell and an
error term. The analysis of variance provides estimates for each cell
mean. These cell means are the predicted values of the model and the
differences between the response variable and the estimated cell means
are the residuals. That is

The second model is

This model decomposes the response into an overall (grand) mean,

1.3.5.5. Multi-factor Analysis of Variance
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factor effects (  and  represent the effects of the ith level of the first

factor and the jth level of the second factor, respectively), and an error
term. The analysis of variance provides estimates of the grand mean and
the factor effects. The predicted values and the residuals of the model
are

The distinction between these models is that the second model divides
the cell mean into an overall mean and factor effects. This second model
makes the factor effect more explicit, so we will emphasize this
approach.

Model
Validation

Note that the ANOVA model assumes that the error term, Eijk, should
follow the assumptions for a univariate measurement process. That is,
after performing an analysis of variance, the model should be validated
by analyzing the residuals.

Sample
Output

Dataplot generated the following ANOVA output for the JAHANMI2.DAT data set:

  
                 **********************************
                 **********************************
                 **  4-WAY ANALYSIS OF VARIANCE  **
                 **********************************
                 **********************************
  
       NUMBER OF OBSERVATIONS           =      480
       NUMBER OF FACTORS                =        4
       NUMBER OF LEVELS FOR FACTOR  1  =        2
       NUMBER OF LEVELS FOR FACTOR  2  =        2
       NUMBER OF LEVELS FOR FACTOR  3  =        2
       NUMBER OF LEVELS FOR FACTOR  4  =        2
       BALANCED CASE
       RESIDUAL    STANDARD DEVIATION   =   
0.63057727814E+02
       RESIDUAL    DEGREES OF FREEDOM   =      475
       REPLICATION CASE
       REPLICATION STANDARD DEVIATION   =   
0.61890106201E+02
       REPLICATION DEGREES OF FREEDOM   =      464
       NUMBER OF DISTINCT CELLS         =       16
  
                          *****************
                          *  ANOVA TABLE  *
                          *****************
  
 SOURCE              DF SUM OF SQUARES    MEAN SQUARE   F
STATISTIC    F CDF SIG
 -------------------------------------------------------------------------------
 TOTAL (CORRECTED)  479 2668446.000000    5570.868652
 -------------------------------------------------------------------------------
 FACTOR  1            1   26672.726562   26672.726562       
6.7080  99.011%  **

1.3.5.5. Multi-factor Analysis of Variance
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 FACTOR  2            1   11524.053711   11524.053711       
2.8982  91.067%
 FACTOR  3            1   14380.633789   14380.633789       
3.6166  94.219%
 FACTOR  4            1  727143.125000  727143.125000     
182.8703 100.000%  **
 -------------------------------------------------------------------------------
 RESIDUAL           475 1888731.500000    3976.276855
  
       RESIDUAL    STANDARD DEVIATION =       63.05772781
       RESIDUAL    DEGREES OF FREEDOM =           475
       REPLICATION STANDARD DEVIATION =       61.89010620
       REPLICATION DEGREES OF FREEDOM =           464
       LACK OF FIT F RATIO =      2.6447 = THE   99.7269%
POINT OF THE
       F DISTRIBUTION WITH     11 AND    464 DEGREES OF
FREEDOM
  
                          ****************
                          *  ESTIMATION  *
                          ****************
  
       GRAND MEAN                       =   
0.65007739258E+03
       GRAND STANDARD DEVIATION         =   
0.74638252258E+02
  
  
              LEVEL-ID      NI      MEAN      EFFECT    
SD(EFFECT)
 --------------------------------------------------------------------
 FACTOR 1--   -1.00000    240.  657.53168    7.45428   
2.87818
         --    1.00000    240.  642.62286   -7.45453   
2.87818
 FACTOR 2--   -1.00000    240.  645.17755   -4.89984   
2.87818
         --    1.00000    240.  654.97723    4.89984   
2.87818
 FACTOR 3--   -1.00000    240.  655.55084    5.47345   
2.87818
         --    1.00000    240.  644.60376   -5.47363   
2.87818
 FACTOR 4--    1.00000    240.  688.99890   38.92151   
2.87818
         --    2.00000    240.  611.15594  -38.92145   
2.87818
  
  
         MODEL               RESIDUAL STANDARD DEVIATION
 -------------------------------------------------------
 CONSTANT             ONLY--       74.6382522583
 CONSTANT & FACTOR  1 ONLY--       74.3419036865
 CONSTANT & FACTOR  2 ONLY--       74.5548019409
 CONSTANT & FACTOR  3 ONLY--       74.5147094727
 CONSTANT & FACTOR  4 ONLY--       63.7284545898
 CONSTANT & ALL 4 FACTORS --       63.0577278137
    

1.3.5.5. Multi-factor Analysis of Variance
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Interpretation
of Sample
Output

The output is divided into three sections.

The first section prints the number of observations (480), the
number of factors (4), and the number of levels for each factor (2
levels for each factor). It also prints some overall summary
statistics. In particular, the residual standard deviation is 63.058.
The smaller the residual standard deviation, the more we have
accounted for the variance in the data.

1.  

The second section prints an ANOVA table. The ANOVA table
decomposes the variance into the following component sum of
squares:

Total sum of squares. The degrees of freedom for this
entry is the number of observations minus one.

❍   

Sum of squares for each of the factors. The degrees of
freedom for these entries are the number of levels for the
factor minus one. The mean square is the sum of squares
divided by the number of degrees of freedom.

❍   

Residual sum of squares. The degrees of freedom is the
total degrees of freedom minus the sum of the factor
degrees of freedom. The mean square is the sum of
squares divided by the number of degrees of freedom.

❍   

That is, it summarizes how much of the variance in the data
(total sum of squares) is accounted for by the factor effects
(factor sum of squares) and how much is random error (residual
sum of squares). Ideally, we would like most of the variance to
be explained by the factor effects. The ANOVA table provides a
formal F test for the factor effects. The F-statistic is the mean
square for the factor divided by the mean square for the error.
This statistic follows an F distribution with (k-1) and (N-k)
degrees of freedom where k is the number of levels for the given
factor. If the F CDF column for the factor effect is greater than
95%, then the factor is significant at the 5% level. Here, we see
that the size of the effect of factor 4 dominates the size of the
other effects. The F test shows that factors one and four are
significant at the 1% level while factors two and three are not
significant at the 5% level.

2.  

The third section is an estimation section. It prints an overall
mean and overall standard deviation. Then for each level of each
factor, it prints the number of observations, the mean for the
observations of each cell (  in the above terminology), the

factor effects (  and  in the above terminology), and the

standard deviation of the factor effect. Finally, it prints the
residual standard deviation for the various possible models. For
the four-way ANOVA here, it prints the constant model

a model with each factor individually, and the model with all
four factors included.

For these data, we see that including factor 4 has a significant
impact on the residual standard deviation (63.73 when only the
factor 4 effect is included compared to 63.058 when all four
factors are included).

3.  

Output from other statistical software may look somewhat different

1.3.5.5. Multi-factor Analysis of Variance
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from the above output.

In addition to the quantitative ANOVA output, it is recommended that
any analysis of variance be complemented with model validation. At a
minimum, this should include

A run sequence plot of the residuals.1.  

A normal probability plot of the residuals.2.  

A scatter plot of the predicted values against the residuals.3.  

Questions The analysis of variance can be used to answer the following
questions:

Do any of the factors have a significant effect?1.  

Which is the most important factor?2.  

Can we account for most of the variability in the data?3.  

Related
Techniques

One-factor analysis of variance
Two-sample t-test
Box plot
Block plot
Dex mean plot

Case Study The quantitative ANOVA approach can be contrasted with the more
graphical EDA approach in the ceramic strength case study.

Software Most general purpose statistical software programs, including Dataplot,
can perform multi-factor analysis of variance.

1.3.5.5. Multi-factor Analysis of Variance
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.6.Measures of Scale

Scale,
Variability, or
Spread

A fundamental task in many statistical analyses is to characterize the
spread, or variability, of a data set. Measures of scale are simply
attempts to estimate this variability.

When assessing the variability of a data set, there are two key
components:

How spread out are the data values near the center?1.  

How spread out are the tails?2.  

Different numerical summaries will give different weight to these two
elements. The choice of scale estimator is often driven by which of
these components you want to emphasize.

The histogram is an effective graphical technique for showing both of
these components of the spread.

Definitions of
Variability

For univariate data, there are several common numerical measures of
the spread:

variance - the variance is defined as

where  is the mean of the data.

The variance is roughly the arithmetic average of the squared
distance from the mean. Squaring the distance from the mean
has the effect of giving greater weight to values that are further
from the mean. For example, a point 2 units from the mean
adds 4 to the above sum while a point 10 units from the mean
adds 100 to the sum. Although the variance is intended to be an
overall measure of spread, it can be greatly affected by the tail
behavior.

1.  

standard deviation - the standard deviation is the square root of
the variance. That is,

2.  

1.3.5.6. Measures of Scale
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The standard deviation restores the units of the spread to the
original data units (the variance squares the units).

range - the range is the largest value minus the smallest value in
a data set. Note that this measure is based only on the lowest
and highest extreme values in the sample. The spread near the
center of the data is not captured at all.

3.  

average absolute deviation - the average absolute deviation
(AAD) is defined as

where  is the mean of the data and |Y| is the absolute value of
Y. This measure does not square the distance from the mean, so
it is less affected by extreme observations than are the variance
and standard deviation.

4.  

median absolute deviation - the median absolute deviation
(MAD) is defined as

where  is the median of the data and |Y| is the absolute value
of Y. This is a variation of the average absolute deviation that is
even less affected by extremes in the tail because the data in the
tails have less influence on the calculation of the median than
they do on the mean.

5.  

interquartile range - this is the value of the 75th percentile
minus the value of the 25th percentile. This measure of scale
attempts to measure the variability of points near the center.

6.  

In summary, the variance, standard deviation, average absolute
deviation, and median absolute deviation measure both aspects of the
variability; that is, the variability near the center and the variability in
the tails. They differ in that the average absolute deviation and median
absolute deviation do not give undue weight to the tail behavior. On
the other hand, the range only uses the two most extreme points and
the interquartile range only uses the middle portion of the data.

1.3.5.6. Measures of Scale
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Why Different
Measures?

The following example helps to clarify why these alternative
defintions of spread are useful and necessary.

This plot shows histograms for 10,000 random numbers generated
from a normal, a double exponential, a Cauchy, and a Tukey-Lambda
distribution.

Normal
Distribution

The first histogram is a sample from a normal distribution. The
standard deviation is 0.997, the median absolute deviation is 0.681,
and the range is 7.87.

The normal distribution is a symmetric distribution with well-behaved
tails and a single peak at the center of the distribution. By symmetric,
we mean that the distribution can be folded about an axis so that the
two sides coincide. That is, it behaves the same to the left and right of
some center point. In this case, the median absolute deviation is a bit
less than the standard deviation due to the downweighting of the tails.
The range of a little less than 8 indicates the extreme values fall
within about 4 standard deviations of the mean. If a histogram or
normal probability plot indicates that your data are approximated well
by a normal distribution, then it is reasonable to use the standard
deviation as the spread estimator.

1.3.5.6. Measures of Scale
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Double
Exponential
Distribution

The second histogram is a sample from a double exponential
distribution. The standard deviation is 1.417, the median absolute
deviation is 0.706, and the range is 17.556.

Comparing the double exponential and the normal histograms shows
that the double exponential has a stronger peak at the center, decays
more rapidly near the center, and has much longer tails. Due to the
longer tails, the standard deviation tends to be inflated compared to
the normal. On the other hand, the median absolute deviation is only
slightly larger than it is for the normal data. The longer tails are
clearly reflected in the value of the range, which shows that the
extremes fall about 12 standard deviations from the mean compared to
about 4 for the normal data.

Cauchy
Distribution

The third histogram is a sample from a Cauchy distribution. The
standard deviation is 998.389, the median absolute deviation is 1.16,
and the range is 118,953.6.

The Cauchy distribution is a symmetric distribution with heavy tails
and a single peak at the center of the distribution. The Cauchy
distribution has the interesting property that collecting more data does
not provide a more accurate estimate for the mean or standard
deviation. That is, the sampling distribution of the means and standard
deviation are equivalent to the sampling distribution of the original
data. That means that for the Cauchy distribution the standard
deviation is useless as a measure of the spread. From the histogram, it
is clear that just about all the data are between about -5 and 5.
However, a few very extreme values cause both the standard deviation
and range to be extremely large. However, the median absolute
deviation is only slightly larger than it is for the normal distribution.
In this case, the median absolute deviation is clearly the better
measure of spread.

Although the Cauchy distribution is an extreme case, it does illustrate
the importance of heavy tails in measuring the spread. Extreme values
in the tails can distort the standard deviation. However, these extreme
values do not distort the median absolute deviation since the median
absolute deviation is based on ranks. In general, for data with extreme
values in the tails, the median absolute deviation or interquartile range
can provide a more stable estimate of spread than the standard
deviation.

1.3.5.6. Measures of Scale
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Tukey-Lambda
Distribution

The fourth histogram is a sample from a Tukey lambda distribution
with shape parameter  = 1.2. The standard deviation is 0.49, the
median absolute deviation is 0.427, and the range is 1.666.

The Tukey lambda distribution has a range limited to .

That is, it has truncated tails. In this case the standard deviation and
median absolute deviation have closer values than for the other three
examples which have significant tails.

Robustness Tukey and Mosteller defined two types of robustness where
robustness is a lack of susceptibility to the effects of nonnormality.

Robustness of validity means that the confidence intervals for a
measure of the population spread (e.g., the standard deviation)
have a 95% chance of covering the true value (i.e., the
population value) of that measure of spread regardless of the
underlying distribution.

1.  

Robustness of efficiency refers to high effectiveness in the face
of non-normal tails. That is, confidence intervals for the
measure of spread tend to be almost as narrow as the best that
could be done if we knew the true shape of the distribution.

2.  

The standard deviation is an example of an estimator that is the best
we can do if the underlying distribution is normal. However, it lacks
robustness of validity. That is, confidence intervals based on the
standard deviation tend to lack precision if the underlying distribution
is in fact not normal.

The median absolute deviation and the interquartile range are
estimates of scale that have robustness of validity. However, they are
not particularly strong for robustness of efficiency.

If histograms and probability plots indicate that your data are in fact
reasonably approximated by a normal distribution, then it makes sense
to use the standard deviation as the estimate of scale. However, if your
data are not normal, and in particular if there are long tails, then using
an alternative measure such as the median absolute deviation, average
absolute deviation, or interquartile range makes sense. The range is
used in some applications, such as quality control, for its simplicity. In
addition, comparing the range to the standard deviation gives an
indication of the spread of the data in the tails.

Since the range is determined by the two most extreme points in the
data set, we should be cautious about its use for large values of N.

Tukey and Mosteller give a scale estimator that has both robustness of

1.3.5.6. Measures of Scale
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validity and robustness of efficiency. However, it is more complicated
and we do not give the formula here.

Software Most general purpose statistical software programs, including
Dataplot, can generate at least some of the measures of scale
discusssed above.

1.3.5.6. Measures of Scale
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.7.Bartlett's Test

Purpose:
Test for
Homogeneity
of Variances

Bartlett's test ( Snedecor and Cochran, 1983) is used to test if k samples have equal
variances. Equal variances across samples is called homogeneity of variances. Some
statistical tests, for example the analysis of variance, assume that variances are equal
across groups or samples. The Bartlett test can be used to verify that assumption.

Bartlett's test is sensitive to departures from normality. That is, if your samples come
from non-normal distributions, then Bartlett's test may simply be testing for
non-normality. The Levene test is an alternative to the Bartlett test that is less sensitive to
departures from normality.

Definition The Bartlett test is defined as:

H0:

Ha:      for at least one pair (i,j).

Test
Statistic:

The Bartlett test statistic is designed to test for equality of variances across
groups against the alternative that variances are unequal for at least two
groups.

In the above, si
2 is the variance of the ith group, N is the total sample size,

Ni is the sample size of the ith group, k is the number of groups, and sp
2 is

the pooled variance. The pooled variance is a weighted average of the
group variances and is defined as:

Significance
Level:

      

1.3.5.7. Bartlett's Test
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Critical
Region:

The variances are judged to be unequal if,

where  is the upper critical value of the chi-square distribution
with k - 1 degrees of freedom and a significance level of .

In the above formulas for the critical regions, the Handbook follows the

convention that  is the upper critical value from the chi-square

distribution and  is the lower critical value from the chi-square
distribution. Note that this is the opposite of some texts and software
programs. In particular, Dataplot uses the opposite convention.

An alternate definition (Dixon and Massey, 1969) is based on an approximation to the F
distribution. This definition is given in the Product and Process Comparisons chapter
(chapter 7).

Sample
Output

Dataplot generated the following output for Bartlett's test using the GEAR.DAT
data set:

               BARTLETT TEST
           (STANDARD DEFINITION)
 NULL HYPOTHESIS UNDER TEST--ALL SIGMA(I) ARE EQUAL
  
 TEST:
    DEGREES OF FREEDOM          =    9.000000
  
    TEST STATISTIC VALUE        =    20.78580
    CUTOFF: 95% PERCENT POINT   =    16.91898
    CUTOFF: 99% PERCENT POINT   =    21.66600
  
    CHI-SQUARE CDF VALUE        =    0.986364
  
   NULL          NULL HYPOTHESIS        NULL HYPOTHESIS
   HYPOTHESIS    ACCEPTANCE INTERVAL    CONCLUSION
 ALL SIGMA EQUAL    (0.000,0.950)         REJECT
    

1.3.5.7. Bartlett's Test
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Interpretation
of Sample
Output

We are testing the hypothesis that the group variances are all equal.
The output is divided into two sections.

The first section prints the value of the Bartlett test statistic, the
degrees of freedom (k-1), the upper critical value of the
chi-square distribution corresponding to significance levels of
0.05 (the 95% percent point) and 0.01 (the 99% percent point).
We reject the null hypothesis at that significance level if the
value of the Bartlett test statistic is greater than the
corresponding critical value.

1.  

The second section prints the conclusion for a 95% test.2.  

Output from other statistical software may look somewhat different
from the above output.

Question Bartlett's test can be used to answer the following question:

Is the assumption of equal variances valid?●   

Importance Bartlett's test is useful whenever the assumption of equal variances is
made. In particular, this assumption is made for the frequently used
one-way analysis of variance. In this case, Bartlett's or Levene's test
should be applied to verify the assumption.

Related
Techniques

Standard Deviation Plot
Box Plot
Levene Test
Chi-Square Test
Analysis of Variance

Case Study Heat flow meter data

Software The Bartlett test is available in many general purpose statistical
software programs, including Dataplot.

1.3.5.7. Bartlett's Test
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.8.Chi-Square Test for the Standard
Deviation

Purpose:
Test if
standard
deviation is
equal to a
specified
value

A chi-square test ( Snedecor and Cochran, 1983) can be used to test if the
standard deviation of a population is equal to a specified value. This test can be
either a two-sided test or a one-sided test. The two-sided version tests against the
alternative that the true standard deviation is either less than or greater than the
specified value. The one-sided version only tests in one direction. The choice of a
two-sided or one-sided test is determined by the problem. For example, if we are
testing a new process, we may only be concerned if its variability is greater than
the variability of the current process.

Definition The chi-square hypothesis test is defined as:

H0:

Ha:        for a lower one-tailed test

       for an upper one-tailed test

       for a two-tailed test
Test Statistic: T = 

where N is the sample size and  is the sample standard
deviation. The key element of this formula is the ratio 

which compares the ratio of the sample standard deviation to
the target standard deviation. The more this ratio deviates
from 1, the more likely we are to reject the null hypothesis.

Significance Level: .

1.3.5.8. Chi-Square Test for the Standard Deviation
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Critical Region: Reject the null hypothesis that the standard deviation is a
specified value, , if

        for an upper one-tailed alternative

     for a lower one-tailed alternative

   for a two-tailed test

or

where  is the critical value of the chi-square

distribution with N - 1 degrees of freedom.

In the above formulas for the critical regions, the Handbook

follows the convention that  is the upper critical value

from the chi-square distribution and  is the lower
critical value from the chi-square distribution. Note that this
is the opposite of some texts and software programs. In
particular, Dataplot uses the opposite convention.

The formula for the hypothesis test can easily be converted to form an interval
estimate for the standard deviation:

Sample
Output

Dataplot generated the following output for a chi-square test from the
GEAR.DAT data set:

                   CHI-SQUARED TEST
                 SIGMA0 =   0.1000000
 NULL HYPOTHESIS UNDER TEST--STANDARD DEVIATION SIGMA =
.1000000
  
 SAMPLE:
    NUMBER OF OBSERVATIONS      =      100
    MEAN                        =   0.9976400
    STANDARD DEVIATION S        =   0.6278908E-02
  
 TEST:
    S/SIGMA0                    =   0.6278908E-01
    CHI-SQUARED STATISTIC       =   0.3903044

1.3.5.8. Chi-Square Test for the Standard Deviation

http://www.itl.nist.gov/div898/handbook/eda/section3/eda358.htm (2 of 4) [5/1/2006 9:57:18 AM]



    DEGREES OF FREEDOM          =    99.00000
    CHI-SQUARED CDF VALUE       =    0.000000
  
                     ALTERNATIVE-          ALTERNATIVE-
    ALTERNATIVE-     HYPOTHESIS            HYPOTHESIS
    HYPOTHESIS       ACCEPTANCE INTERVAL   CONCLUSION
 SIGMA <> .1000000    (0,0.025), (0.975,1)  ACCEPT
 SIGMA <  .1000000    (0,0.05)              ACCEPT
 SIGMA >  .1000000    (0.95,1)              REJECT

Interpretation
of Sample
Output

We are testing the hypothesis that the population standard deviation is 0.1. The
output is divided into three sections.

The first section prints the sample statistics used in the computation of the
chi-square test.

1.  

The second section prints the chi-square test statistic value, the degrees of
freedom, and the cumulative distribution function (cdf) value of the
chi-square test statistic. The chi-square test statistic cdf value is an
alternative way of expressing the critical value. This cdf value is compared
to the acceptance intervals printed in section three. For an upper one-tailed
test, the alternative hypothesis acceptance interval is (1 - ,1), the
alternative hypothesis acceptance interval for a lower one-tailed test is (0,

), and the alternative hypothesis acceptance interval for a two-tailed test
is (1 - /2,1) or (0, /2). Note that accepting the alternative hypothesis is
equivalent to rejecting the null hypothesis.

2.  

The third section prints the conclusions for a 95% test since this is the most
common case. Results are given in terms of the alternative hypothesis for
the two-tailed test and for the one-tailed test in both directions. The
alternative hypothesis acceptance interval column is stated in terms of the
cdf value printed in section two. The last column specifies whether the
alternative hypothesis is accepted or rejected. For a different significance
level, the appropriate conclusion can be drawn from the chi-square test
statistic cdf value printed in section two. For example, for a significance
level of 0.10, the corresponding alternative hypothesis acceptance intervals
are (0,0.05) and (0.95,1), (0, 0.10), and (0.90,1).

3.  

Output from other statistical software may look somewhat different from the
above output.

Questions The chi-square test can be used to answer the following questions:

Is the standard deviation equal to some pre-determined threshold value?1.  

Is the standard deviation greater than some pre-determined threshold value?2.  

Is the standard deviation less than some pre-determined threshold value?3.  

1.3.5.8. Chi-Square Test for the Standard Deviation
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Related
Techniques

F Test
Bartlett Test
Levene Test

Software The chi-square test for the standard deviation is available in many general purpose
statistical software programs, including Dataplot.

1.3.5.8. Chi-Square Test for the Standard Deviation
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques
1.3.5.8. Chi-Square Test for the Standard Deviation

1.3.5.8.1.Data Used for Chi-Square Test for
the Standard Deviation

Data Used
for
Chi-Square
Test for the
Standard
Deviation
Example

The following are the data used for the chi-square test for the standard
deviation example. The first column is gear diameter and the second
column is batch number. Only the first column is used for this example.

  1.006          1.000
  0.996          1.000
  0.998          1.000
  1.000          1.000
  0.992          1.000
  0.993          1.000
  1.002          1.000
  0.999          1.000
  0.994          1.000
  1.000          1.000
  0.998          2.000
  1.006          2.000
  1.000          2.000
  1.002          2.000
  0.997          2.000
  0.998          2.000
  0.996          2.000
  1.000          2.000
  1.006          2.000
  0.988          2.000
  0.991          3.000
  0.987          3.000
  0.997          3.000
  0.999          3.000
  0.995          3.000
  0.994          3.000
  1.000          3.000

1.3.5.8.1. Data Used for Chi-Square Test for the Standard Deviation
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  0.999          3.000
  0.996          3.000
  0.996          3.000
  1.005          4.000
  1.002          4.000
  0.994          4.000
  1.000          4.000
  0.995          4.000
  0.994          4.000
  0.998          4.000
  0.996          4.000
  1.002          4.000
  0.996          4.000
  0.998          5.000
  0.998          5.000
  0.982          5.000
  0.990          5.000
  1.002          5.000
  0.984          5.000
  0.996          5.000
  0.993          5.000
  0.980          5.000
  0.996          5.000
  1.009          6.000
  1.013          6.000
  1.009          6.000
  0.997          6.000
  0.988          6.000
  1.002          6.000
  0.995          6.000
  0.998          6.000
  0.981          6.000
  0.996          6.000
  0.990          7.000
  1.004          7.000
  0.996          7.000
  1.001          7.000
  0.998          7.000
  1.000          7.000
  1.018          7.000
  1.010          7.000
  0.996          7.000
  1.002          7.000
  0.998          8.000
  1.000          8.000
  1.006          8.000
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  1.000          8.000
  1.002          8.000
  0.996          8.000
  0.998          8.000
  0.996          8.000
  1.002          8.000
  1.006          8.000
  1.002          9.000
  0.998          9.000
  0.996          9.000
  0.995          9.000
  0.996          9.000
  1.004          9.000
  1.004          9.000
  0.998          9.000
  0.999          9.000
  0.991          9.000
  0.991         10.000
  0.995         10.000
  0.984         10.000
  0.994         10.000
  0.997         10.000
  0.997         10.000
  0.991         10.000
  0.998         10.000
  1.004         10.000
  0.997         10.000

1.3.5.8.1. Data Used for Chi-Square Test for the Standard Deviation
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.9.F-Test for Equality of Two Standard
Deviations

Purpose:
Test if
standard
deviations
from two
populations
are equal

An F-test ( Snedecor and Cochran, 1983) is used to test if the standard deviations of two
populations are equal. This test can be a two-tailed test or a one-tailed test. The
two-tailed version tests against the alternative that the standard deviations are not equal.
The one-tailed version only tests in one direction, that is the standard deviation from the
first population is either greater than or less than (but not both) the second population
standard deviation . The choice is determined by the problem. For example, if we are
testing a new process, we may only be interested in knowing if the new process is less
variable than the old process.

Definition The F hypothesis test is defined as:

H0:

Ha:      for a lower one tailed test

     for an upper one tailed test

     for a two tailed test
Test
Statistic:

F = 

where  and  are the sample variances. The more this ratio deviates

from 1, the stronger the evidence for unequal population variances.
Significance
Level:

    

1.3.5.9. F-Test for Equality of Two Standard Deviations
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Critical
Region:

The hypothesis that the two standard deviations are equal is rejected if

     for an upper one-tailed test

     for a lower one-tailed test

   for a two-tailed test

or

where  is the critical value of the F distribution with  and

 degrees of freedom and a significance level of .

In the above formulas for the critical regions, the Handbook follows the
convention that  is the upper critical value from the F distribution and

 is the lower critical value from the F distribution. Note that this is

the opposite of the designation used by some texts and software programs.
In particular, Dataplot uses the opposite convention.

Sample
Output

Dataplot generated the following output for an F-test from the JAHANMI2.DAT data
set:

                       F TEST
 NULL HYPOTHESIS UNDER TEST--SIGMA1 = SIGMA2
 ALTERNATIVE HYPOTHESIS UNDER TEST--SIGMA1 NOT EQUAL SIGMA2
  
 SAMPLE 1:
    NUMBER OF OBSERVATIONS      =      240
    MEAN                        =    688.9987
    STANDARD DEVIATION          =    65.54909
  
 SAMPLE 2:
    NUMBER OF OBSERVATIONS      =      240
    MEAN                        =    611.1559
    STANDARD DEVIATION          =    61.85425
  
 TEST:
    STANDARD DEV. (NUMERATOR)   =    65.54909
    STANDARD DEV. (DENOMINATOR) =    61.85425
    F TEST STATISTIC VALUE      =    1.123037
    DEG. OF FREEDOM (NUMER.)    =    239.0000
    DEG. OF FREEDOM (DENOM.)    =    239.0000
    F TEST STATISTIC CDF VALUE  =    0.814808
  
   NULL          NULL HYPOTHESIS        NULL HYPOTHESIS
   HYPOTHESIS    ACCEPTANCE INTERVAL    CONCLUSION
 SIGMA1 = SIGMA2    (0.000,0.950)         ACCEPT

1.3.5.9. F-Test for Equality of Two Standard Deviations
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Interpretation
of Sample
Output

We are testing the hypothesis that the standard deviations for sample one and sample
two are equal. The output is divided into four sections.

The first section prints the sample statistics for sample one used in the
computation of the F-test.

1.  

The second section prints the sample statistics for sample two used in the
computation of the F-test.

2.  

The third section prints the numerator and denominator standard deviations, the
F-test statistic value, the degrees of freedom, and the cumulative distribution
function (cdf) value of the F-test statistic. The F-test statistic cdf value is an
alternative way of expressing the critical value. This cdf value is compared to the
acceptance interval printed in section four. The acceptance interval for a
two-tailed test is (0,1 - ).

3.  

The fourth section prints the conclusions for a 95% test since this is the most
common case. Results are printed for an upper one-tailed test. The acceptance
interval column is stated in terms of the cdf value printed in section three. The
last column specifies whether the null hypothesis is accepted or rejected. For a
different significance level, the appropriate conclusion can be drawn from the
F-test statistic cdf value printed in section four. For example, for a significance
level of 0.10, the corresponding acceptance interval become (0.000,0.9000).

4.  

Output from other statistical software may look somewhat different from the above
output.

Questions The F-test can be used to answer the following questions:

Do two samples come from populations with equal standard deviations?1.  

Does a new process, treatment, or test reduce the variability of the current
process?

2.  

Related
Techniques

Quantile-Quantile Plot
Bihistogram
Chi-Square Test
Bartlett's Test
Levene Test

Case Study Ceramic strength data.

Software The F-test for equality of two standard deviations is available in many general purpose
statistical software programs, including Dataplot.

1.3.5.9. F-Test for Equality of Two Standard Deviations
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.10.Levene Test for Equality of
Variances

Purpose:
Test for
Homogeneity
of Variances

Levene's test ( Levene 1960) is used to test if k samples have equal
variances. Equal variances across samples is called homogeneity of
variance. Some statistical tests, for example the analysis of variance,
assume that variances are equal across groups or samples. The Levene test
can be used to verify that assumption.

Levene's test is an alternative to the Bartlett test. The Levene test is less
sensitive than the Bartlett test to departures from normality. If you have
strong evidence that your data do in fact come from a normal, or nearly
normal, distribution, then Bartlett's test has better performance.

Definition The Levene test is defined as:

H0:

Ha:     for at least one pair (i,j).

Test
Statistic:

Given a variable Y with sample of size N divided into k
subgroups, where Ni is the sample size of the ith subgroup,
the Levene test statistic is defined as:

where Zij can have one of the following three definitions:

where  is the mean of the ith subgroup.

1.  

where  is the median of the ith subgroup.

2.  

1.3.5.10. Levene Test for Equality of Variances
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where  is the 10% trimmed mean of the ith
subgroup.

3.  

 are the group means of the Zij and  is the overall

mean of the Zij.

The three choices for defining Zij determine the robustness
and power of Levene's test. By robustness, we mean the
ability of the test to not falsely detect unequal variances
when the underlying data are not normally distributed and
the variables are in fact equal. By power, we mean the
ability of the test to detect unequal variances when the
variances are in fact unequal.

Levene's original paper only proposed using the mean.
Brown and Forsythe (1974)) extended Levene's test to use
either the median or the trimmed mean in addition to the
mean. They performed Monte Carlo studies that indicated
that using the trimmed mean performed best when the
underlying data followed a Cauchy distribution (i.e.,
heavy-tailed) and the median performed best when the
underlying data followed a  (i.e., skewed) distribution.
Using the mean provided the best power for symmetric,
moderate-tailed, distributions.

Although the optimal choice depends on the underlying
distribution, the definition based on the median is
recommended as the choice that provides good robustness
against many types of non-normal data while retaining
good power. If you have knowledge of the underlying
distribution of the data, this may indicate using one of the
other choices.

Significance
Level:

1.3.5.10. Levene Test for Equality of Variances
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Critical
Region:

The Levene test rejects the hypothesis that the variances are
equal if

where  is the upper critical value of the F

distribution with k - 1 and N - k degrees of freedom at a
significance level of .

In the above formulas for the critical regions, the Handbook
follows the convention that  is the upper critical value
from the F distribution and  is the lower critical
value. Note that this is the opposite of some texts and
software programs. In particular, Dataplot uses the opposite
convention.

Sample
Output

Dataplot generated the following output for Levene's test using the
GEAR.DAT data set (by default, Dataplot performs the form of the test
based on the median):

  
              LEVENE F-TEST FOR SHIFT IN VARIATION
                (CASE: TEST BASED ON MEDIANS)
 
1. STATISTICS
      NUMBER OF OBSERVATIONS    =      100
      NUMBER OF GROUPS          =       10
      LEVENE F TEST STATISTIC   =    1.705910
 
 
2. FOR LEVENE TEST STATISTIC
      0          % POINT    =          0.
      50         % POINT    =   0.9339308
      75         % POINT    =    1.296365
      90         % POINT    =    1.702053
      95         % POINT    =    1.985595
      99         % POINT    =    2.610880
      99.9       % POINT    =    3.478882
 
 
         90.09152       % Point:     1.705910
 
3. CONCLUSION (AT THE 5% LEVEL):
      THERE IS NO SHIFT IN VARIATION.
      THUS: HOMOGENEOUS WITH RESPECT TO VARIATION.
    

1.3.5.10. Levene Test for Equality of Variances
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Interpretation
of Sample
Output

We are testing the hypothesis that the group variances are equal. The
output is divided into three sections.

The first section prints the number of observations (N), the number
of groups (k), and the value of the Levene test statistic.

1.  

The second section prints the upper critical value of the F
distribution corresponding to various significance levels. The value
in the first column, the confidence level of the test, is equivalent to
100(1- ). We reject the null hypothesis at that significance level if
the value of the Levene F test statistic printed in section one is
greater than the critical value printed in the last column.

2.  

The third section prints the conclusion for a 95% test. For a
different significance level, the appropriate conclusion can be drawn
from the table printed in section two. For example, for  = 0.10, we
look at the row for 90% confidence and compare the critical value
1.702 to the Levene test statistic 1.7059. Since the test statistic is
greater than the critical value, we reject the null hypothesis at the 
= 0.10 level.

3.  

Output from other statistical software may look somewhat different from
the above output.

Question Levene's test can be used to answer the following question:

Is the assumption of equal variances valid?●   

Related
Techniques

Standard Deviation Plot
Box Plot
Bartlett Test
Chi-Square Test
Analysis of Variance

Software The Levene test is available in some general purpose statistical software
programs, including Dataplot.
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.11.Measures of Skewness and
Kurtosis

Skewness
and Kurtosis

A fundamental task in many statistical analyses is to characterize the
location and variability of a data set. A further characterization of the
data includes skewness and kurtosis.

Skewness is a measure of symmetry, or more precisely, the lack of
symmetry. A distribution, or data set, is symmetric if it looks the same
to the left and right of the center point.

Kurtosis is a measure of whether the data are peaked or flat relative to a
normal distribution. That is, data sets with high kurtosis tend to have a
distinct peak near the mean, decline rather rapidly, and have heavy tails.
Data sets with low kurtosis tend to have a flat top near the mean rather
than a sharp peak. A uniform distribution would be the extreme case.

The histogram is an effective graphical technique for showing both the
skewness and kurtosis of data set.

Definition of
Skewness

For univariate data Y1, Y2, ..., YN, the formula for skewness is:

where  is the mean,  is the standard deviation, and N is the number of
data points. The skewness for a normal distribution is zero, and any
symmetric data should have a skewness near zero. Negative values for
the skewness indicate data that are skewed left and positive values for
the skewness indicate data that are skewed right. By skewed left, we
mean that the left tail is long relative to the right tail. Similarly, skewed
right means that the right tail is long relative to the left tail. Some
measurements have a lower bound and are skewed right. For example,
in reliability studies, failure times cannot be negative.

1.3.5.11. Measures of Skewness and Kurtosis
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Definition of
Kurtosis

For univariate data Y1, Y2, ..., YN, the formula for kurtosis is:

where  is the mean,  is the standard deviation, and N is the number of
data points.

The kurtosis for a standard normal distribution is three. For this reason,
excess kurtosis is defined as

so that the standard normal distribution has a kurtosis of zero. Positive
kurtosis indicates a "peaked" distribution and negative kurtosis indicates
a "flat" distribution.

Examples The following example shows histograms for 10,000 random numbers
generated from a normal, a double exponential, a Cauchy, and a Weibull
distribution.

Normal
Distribution

The first histogram is a sample from a normal distribution. The normal
distribution is a symmetric distribution with well-behaved tails. This is
indicated by the skewness of 0.03. The kurtosis of 2.96 is near the
expected value of 3. The histogram verifies the symmetry.

1.3.5.11. Measures of Skewness and Kurtosis
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Double
Exponential
Distribution

The second histogram is a sample from a double exponential
distribution. The double exponential is a symmetric distribution.
Compared to the normal, it has a stronger peak, more rapid decay, and
heavier tails. That is, we would expect a skewness near zero and a
kurtosis higher than 3. The skewness is 0.06 and the kurtosis is 5.9.

Cauchy
Distribution

The third histogram is a sample from a Cauchy distribution.

For better visual comparison with the other data sets, we restricted the
histogram of the Cauchy distribution to values between -10 and 10. The
full data set for the Cauchy data in fact has a minimum of approximately
-29,000 and a maximum of approximately 89,000.

The Cauchy distribution is a symmetric distribution with heavy tails and
a single peak at the center of the distribution. Since it is symmetric, we
would expect a skewness near zero. Due to the heavier tails, we might
expect the kurtosis to be larger than for a normal distribution. In fact the
skewness is 69.99 and the kurtosis is 6,693. These extremely high
values can be explained by the heavy tails. Just as the mean and
standard deviation can be distorted by extreme values in the tails, so too
can the skewness and kurtosis measures.

Weibull
Distribution

The fourth histogram is a sample from a Weibull distribution with shape
parameter 1.5. The Weibull distribution is a skewed distribution with the
amount of skewness depending on the value of the shape parameter. The
degree of decay as we move away from the center also depends on the
value of the shape parameter. For this data set, the skewness is 1.08 and
the kurtosis is 4.46, which indicates moderate skewness and kurtosis.

Dealing
with
Skewness
and Kurtosis

Many classical statistical tests and intervals depend on normality
assumptions. Significant skewness and kurtosis clearly indicate that data
are not normal. If a data set exhibits significant skewness or kurtosis (as
indicated by a histogram or the numerical measures), what can we do
about it?

One approach is to apply some type of transformation to try to make the
data normal, or more nearly normal. The Box-Cox transformation is a
useful technique for trying to normalize a data set. In particular, taking
the log or square root of a data set is often useful for data that exhibit
moderate right skewness.

Another approach is to use techniques based on distributions other than
the normal. For example, in reliability studies, the exponential, Weibull,
and lognormal distributions are typically used as a basis for modeling
rather than using the normal distribution. The probability plot

1.3.5.11. Measures of Skewness and Kurtosis
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correlation coefficient plot and the probability plot are useful tools for
determining a good distributional model for the data.

Software The skewness and kurtosis coefficients are available in most general
purpose statistical software programs, including Dataplot.
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.12.Autocorrelation

Purpose:
Detect
Non-Randomness,
Time Series
Modeling

The autocorrelation ( Box and Jenkins, 1976) function can be used for
the following two purposes:

To detect non-randomness in data.1.  

To identify an appropriate time series model if the data are not
random.

2.  

Definition Given measurements, Y1, Y2, ..., YN at time X1, X2, ..., XN, the lag k
autocorrelation function is defined as

Although the time variable, X, is not used in the formula for
autocorrelation, the assumption is that the observations are equi-spaced.

Autocorrelation is a correlation coefficient. However, instead of
correlation between two different variables, the correlation is between
two values of the same variable at times Xi and Xi+k.

When the autocorrelation is used to detect non-randomness, it is
usually only the first (lag 1) autocorrelation that is of interest. When the
autocorrelation is used to identify an appropriate time series model, the
autocorrelations are usually plotted for many lags.

1.3.5.12. Autocorrelation
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Sample Output Dataplot generated the following autocorrelation output using the
LEW.DAT data set:

 
  
 THE LAG-ONE AUTOCORRELATION COEFFICIENT OF THE

 200 OBSERVATIONS =  -0.3073048E+00
  
 THE COMPUTED VALUE OF THE CONSTANT A  = -0.30730480E+00
  
  
  
 lag     autocorrelation
  0.      1.00
  1.     -0.31
  2.     -0.74
  3.      0.77
  4.      0.21
  5.     -0.90
  6.      0.38
  7.      0.63
  8.     -0.77
  9.     -0.12
 10.      0.82
 11.     -0.40
 12.     -0.55
 13.      0.73
 14.      0.07
 15.     -0.76
 16.      0.40
 17.      0.48
 18.     -0.70
 19.     -0.03
 20.      0.70
 21.     -0.41
 22.     -0.43
 23.      0.67
 24.      0.00
 25.     -0.66
 26.      0.42
 27.      0.39
 28.     -0.65
 29.      0.03
 30.      0.63
 31.     -0.42
 32.     -0.36
 33.      0.64
 34.     -0.05
 35.     -0.60
 36.      0.43
 37.      0.32
 38.     -0.64
 39.      0.08
 40.      0.58

1.3.5.12. Autocorrelation
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 41.     -0.45
 42.     -0.28
 43.      0.62
 44.     -0.10
 45.     -0.55
 46.      0.45
 47.      0.25
 48.     -0.61
 49.      0.14

 

Questions The autocorrelation function can be used to answer the following
questions

Was this sample data set generated from a random process?1.  

Would a non-linear or time series model be a more appropriate
model for these data than a simple constant plus error model?

2.  

Importance Randomness is one of the key assumptions in determining if a
univariate statistical process is in control. If the assumptions of
constant location and scale, randomness, and fixed distribution are
reasonable, then the univariate process can be modeled as:

where Ei is an error term.

If the randomness assumption is not valid, then a different model needs
to be used. This will typically be either a time series model or a
non-linear model (with time as the independent variable).

Related
Techniques

Autocorrelation Plot
Run Sequence Plot
Lag Plot
Runs Test

Case Study The heat flow meter data demonstrate the use of autocorrelation in
determining if the data are from a random process.

The beam deflection data demonstrate the use of autocorrelation in
developing a non-linear sinusoidal model.

Software The autocorrelation capability is available in most general purpose
statistical software programs, including Dataplot.
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.13.Runs Test for Detecting
Non-randomness

Purpose:
Detect
Non-Randomness

The runs test ( Bradley, 1968) can be used to decide if a data set is from a
random process.

A run is defined as a series of increasing values or a series of decreasing
values. The number of increasing, or decreasing, values is the length of the
run. In a random data set, the probability that the (I+1)th value is larger or
smaller than the Ith value follows a binomial distribution, which forms the
basis of the runs test.

Typical Analysis
and Test
Statistics

The first step in the runs test is to compute the sequential differences (Yi -
Yi-1). Positive values indicate an increasing value and negative values
indicate a decreasing value. A runs test should include information such as
the output shown below from Dataplot for the LEW.DAT data set. The
output shows a table of:

runs of length exactly I for I = 1, 2, ..., 101.  

number of runs of length I2.  

expected number of runs of length I3.  

standard deviation of the number of runs of length I4.  

a z-score where the z-score is defined to be

where  is the sample mean and s is the sample standard deviation.

5.  

The z-score column is compared to a standard normal table. That is, at the
5% significance level, a z-score with an absolute value greater than 1.96
indicates non-randomness.

There are several alternative formulations of the runs test in the literature. For
example, a series of coin tosses would record a series of heads and tails. A
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run of length r is r consecutive heads or r consecutive tails. To use the
Dataplot RUNS command, you could code a sequence of the N = 10 coin
tosses HHHHTTHTHH as

1 2 3 4 3 2 3 2 3 4

that is, a heads is coded as an increasing value and a tails is coded as a
decreasing value.

Another alternative is to code values above the median as positive and values
below the median as negative. There are other formulations as well. All of
them can be converted to the Dataplot formulation. Just remember that it
ultimately reduces to 2 choices. To use the Dataplot runs test, simply code
one choice as an increasing value and the other as a decreasing value as in the
heads/tails example above. If you are using other statistical software, you
need to check the conventions used by that program.

Sample Output Dataplot generated the following runs test output using the LEW.DAT data
set:

 
  
                    RUNS UP
  
         STATISTIC = NUMBER OF RUNS UP
             OF LENGTH EXACTLY I
  
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1        18.0     41.7083      6.4900       -3.65
 2        40.0     18.2167      3.3444        6.51
 3         2.0      5.2125      2.0355       -1.58
 4         0.0      1.1302      1.0286       -1.10
 5         0.0      0.1986      0.4424       -0.45
 6         0.0      0.0294      0.1714       -0.17
 7         0.0      0.0038      0.0615       -0.06
 8         0.0      0.0004      0.0207       -0.02
 9         0.0      0.0000      0.0066       -0.01
10         0.0      0.0000      0.0020        0.00
  
  
         STATISTIC = NUMBER OF RUNS UP
             OF LENGTH I OR MORE
  
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1        60.0     66.5000      4.1972       -1.55
 2        42.0     24.7917      2.8083        6.13
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 3         2.0      6.5750      2.1639       -2.11
 4         0.0      1.3625      1.1186       -1.22
 5         0.0      0.2323      0.4777       -0.49
 6         0.0      0.0337      0.1833       -0.18
 7         0.0      0.0043      0.0652       -0.07
 8         0.0      0.0005      0.0218       -0.02
 9         0.0      0.0000      0.0069       -0.01
10         0.0      0.0000      0.0021        0.00
  
  
                   RUNS DOWN
  
         STATISTIC = NUMBER OF RUNS DOWN
             OF LENGTH EXACTLY I
  
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1        25.0     41.7083      6.4900       -2.57
 2        35.0     18.2167      3.3444        5.02
 3         0.0      5.2125      2.0355       -2.56
 4         0.0      1.1302      1.0286       -1.10
 5         0.0      0.1986      0.4424       -0.45
 6         0.0      0.0294      0.1714       -0.17
 7         0.0      0.0038      0.0615       -0.06
 8         0.0      0.0004      0.0207       -0.02
 9         0.0      0.0000      0.0066       -0.01
10         0.0      0.0000      0.0020        0.00
  
  
         STATISTIC = NUMBER OF RUNS DOWN
             OF LENGTH I OR MORE
  
  
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1        60.0     66.5000      4.1972       -1.55
 2        35.0     24.7917      2.8083        3.63
 3         0.0      6.5750      2.1639       -3.04
 4         0.0      1.3625      1.1186       -1.22
 5         0.0      0.2323      0.4777       -0.49
 6         0.0      0.0337      0.1833       -0.18
 7         0.0      0.0043      0.0652       -0.07
 8         0.0      0.0005      0.0218       -0.02
 9         0.0      0.0000      0.0069       -0.01
10         0.0      0.0000      0.0021        0.00
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         RUNS TOTAL = RUNS UP + RUNS DOWN
  
       STATISTIC = NUMBER OF RUNS TOTAL
            OF LENGTH EXACTLY I
  
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1        43.0     83.4167      9.1783       -4.40
 2        75.0     36.4333      4.7298        8.15
 3         2.0     10.4250      2.8786       -2.93
 4         0.0      2.2603      1.4547       -1.55
 5         0.0      0.3973      0.6257       -0.63
 6         0.0      0.0589      0.2424       -0.24
 7         0.0      0.0076      0.0869       -0.09
 8         0.0      0.0009      0.0293       -0.03
 9         0.0      0.0001      0.0093       -0.01
10         0.0      0.0000      0.0028        0.00
  
  
       STATISTIC = NUMBER OF RUNS TOTAL
             OF LENGTH I OR MORE
  
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       120.0    133.0000      5.9358       -2.19
 2        77.0     49.5833      3.9716        6.90
 3         2.0     13.1500      3.0602       -3.64
 4         0.0      2.7250      1.5820       -1.72
 5         0.0      0.4647      0.6756       -0.69
 6         0.0      0.0674      0.2592       -0.26
 7         0.0      0.0085      0.0923       -0.09
 8         0.0      0.0010      0.0309       -0.03
 9         0.0      0.0001      0.0098       -0.01
10         0.0      0.0000      0.0030        0.00
  
  
        LENGTH OF THE LONGEST RUN UP         =     3
        LENGTH OF THE LONGEST RUN DOWN       =     2
        LENGTH OF THE LONGEST RUN UP OR DOWN =     3
  
        NUMBER OF POSITIVE DIFFERENCES =   104
        NUMBER OF NEGATIVE DIFFERENCES =    95
        NUMBER OF ZERO     DIFFERENCES =     0
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Interpretation of
Sample Output

Scanning the last column labeled "Z", we note that most of the z-scores for
run lengths 1, 2, and 3 have an absolute value greater than 1.96. This is strong
evidence that these data are in fact not random.

Output from other statistical software may look somewhat different from the
above output.

Question The runs test can be used to answer the following question:

Were these sample data generated from a random process?●   

Importance Randomness is one of the key assumptions in determining if a univariate
statistical process is in control. If the assumptions of constant location and
scale, randomness, and fixed distribution are reasonable, then the univariate
process can be modeled as:

where Ei is an error term.

If the randomness assumption is not valid, then a different model needs to be
used. This will typically be either a times series model or a non-linear model
(with time as the independent variable).

Related
Techniques

Autocorrelation
Run Sequence Plot
Lag Plot

Case Study Heat flow meter data

Software Most general purpose statistical software programs, including Dataplot,
support a runs test.
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.14.Anderson-Darling Test

Purpose:
Test for
Distributional
Adequacy

The Anderson-Darling test (Stephens, 1974) is used to test if a sample of data
came from a population with a specific distribution. It is a modification of the
Kolmogorov-Smirnov (K-S) test and gives more weight to the tails than does
the K-S test. The K-S test is distribution free in the sense that the critical values
do not depend on the specific distribution being tested. The Anderson-Darling
test makes use of the specific distribution in calculating critical values. This
has the advantage of allowing a more sensitive test and the disadvantage that
critical values must be calculated for each distribution. Currently, tables of
critical values are available for the normal, lognormal, exponential, Weibull,
extreme value type I, and logistic distributions. We do not provide the tables of
critical values in this Handbook (see Stephens 1974, 1976, 1977, and 1979)
since this test is usually applied with a statistical software program that will
print the relevant critical values.

The Anderson-Darling test is an alternative to the chi-square and
Kolmogorov-Smirnov goodness-of-fit tests.

Definition The Anderson-Darling test is defined as:

H0: The data follow a specified distribution.

Ha: The data do not follow the specified distribution

Test
Statistic:

The Anderson-Darling test statistic is defined as

where

F is the cumulative distribution function of the specified
distribution. Note that the Yi are the ordered data.

1.3.5.14. Anderson-Darling Test
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Significance
Level:
Critical
Region:

The critical values for the Anderson-Darling test are dependent
on the specific distribution that is being tested. Tabulated values
and formulas have been published (Stephens, 1974, 1976, 1977,
1979) for a few specific distributions (normal, lognormal,
exponential, Weibull, logistic, extreme value type 1). The test is
a one-sided test and the hypothesis that the distribution is of a
specific form is rejected if the test statistic, A, is greater than the
critical value.

Note that for a given distribution, the Anderson-Darling statistic
may be multiplied by a constant (which usually depends on the
sample size, n). These constants are given in the various papers
by Stephens. In the sample output below, this is the "adjusted
Anderson-Darling" statistic. This is what should be compared
against the critical values. Also, be aware that different constants
(and therefore critical values) have been published. You just
need to be aware of what constant was used for a given set of
critical values (the needed constant is typically given with the
critical values).

Sample
Output

Dataplot generated the following output for the Anderson-Darling test. 1,000
random numbers were generated for a normal, double exponential, Cauchy,
and lognormal distribution. In all four cases, the Anderson-Darling test was
applied to test for a normal distribution. When the data were generated using a
normal distribution, the test statistic was small and the hypothesis was
accepted. When the data were generated using the double exponential, Cauchy,
and lognormal distributions, the statistics were significant, and the hypothesis
of an underlying normal distribution was rejected at significance levels of 0.10,
0.05, and 0.01.

The normal random numbers were stored in the variable Y1, the double
exponential random numbers were stored in the variable Y2, the Cauchy
random numbers were stored in the variable Y3, and the lognormal random
numbers were stored in the variable Y4.

       ***************************************
       **  anderson darling normal test y1  **
       ***************************************
  
  
               ANDERSON-DARLING 1-SAMPLE TEST
               THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS                =     1000
       MEAN                                  =   0.4359940E-02

1.3.5.14. Anderson-Darling Test
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       STANDARD DEVIATION                    =    1.001816
  
       ANDERSON-DARLING TEST STATISTIC VALUE =   0.2565918
       ADJUSTED TEST STATISTIC VALUE         =   0.2576117
  
 2. CRITICAL VALUES:
       90         % POINT    =   0.6560000
       95         % POINT    =   0.7870000
       97.5       % POINT    =   0.9180000
       99         % POINT    =    1.092000
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THE DATA DO COME FROM A NORMAL DISTRIBUTION.
  
  
       ***************************************
       **  anderson darling normal test y2  **
       ***************************************
  
  
               ANDERSON-DARLING 1-SAMPLE TEST
               THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS                =     1000
       MEAN                                  =   0.2034888E-01
       STANDARD DEVIATION                    =    1.321627
  
       ANDERSON-DARLING TEST STATISTIC VALUE =    5.826050
       ADJUSTED TEST STATISTIC VALUE         =    5.849208
  
 2. CRITICAL VALUES:
       90         % POINT    =   0.6560000
       95         % POINT    =   0.7870000
       97.5       % POINT    =   0.9180000
       99         % POINT    =    1.092000
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.
  
  
       ***************************************
       **  anderson darling normal test y3  **
       ***************************************
  
  
               ANDERSON-DARLING 1-SAMPLE TEST
               THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS                =     1000
       MEAN                                  =    1.503854
       STANDARD DEVIATION                    =    35.13059
  
       ANDERSON-DARLING TEST STATISTIC VALUE =    287.6429
       ADJUSTED TEST STATISTIC VALUE         =    288.7863
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 2. CRITICAL VALUES:
       90         % POINT    =   0.6560000
       95         % POINT    =   0.7870000
       97.5       % POINT    =   0.9180000
       99         % POINT    =    1.092000
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.
  
  
       ***************************************
       **  anderson darling normal test y4  **
       ***************************************
  
  
               ANDERSON-DARLING 1-SAMPLE TEST
               THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS                =     1000
       MEAN                                  =    1.518372
       STANDARD DEVIATION                    =    1.719969
  
       ANDERSON-DARLING TEST STATISTIC VALUE =    83.06335
       ADJUSTED TEST STATISTIC VALUE         =    83.39352
  
 2. CRITICAL VALUES:
       90         % POINT    =   0.6560000
       95         % POINT    =   0.7870000
       97.5       % POINT    =   0.9180000
       99         % POINT    =    1.092000
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.
    

Interpretation
of the Sample
Output

The output is divided into three sections.

The first section prints the number of observations and estimates for the
location and scale parameters.

1.  

The second section prints the upper critical value for the
Anderson-Darling test statistic distribution corresponding to various
significance levels. The value in the first column, the confidence level of
the test, is equivalent to 100(1- ). We reject the null hypothesis at that
significance level if the value of the Anderson-Darling test statistic
printed in section one is greater than the critical value printed in the last
column.

2.  

The third section prints the conclusion for a 95% test. For a different
significance level, the appropriate conclusion can be drawn from the
table printed in section two. For example, for  = 0.10, we look at the
row for 90% confidence and compare the critical value 1.062 to the

3.  
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Anderson-Darling test statistic (for the normal data) 0.256. Since the test
statistic is less than the critical value, we do not reject the null
hypothesis at the  = 0.10 level.

As we would hope, the Anderson-Darling test accepts the hypothesis of
normality for the normal random numbers and rejects it for the 3 non-normal
cases.

The output from other statistical software programs may differ somewhat from
the output above.

Questions The Anderson-Darling test can be used to answer the following questions:

Are the data from a normal distribution?●   

Are the data from a log-normal distribution?●   

Are the data from a Weibull distribution?●   

Are the data from an exponential distribution?●   

Are the data from a logistic distribution?●   

Importance Many statistical tests and procedures are based on specific distributional
assumptions. The assumption of normality is particularly common in classical
statistical tests. Much reliability modeling is based on the assumption that the
data follow a Weibull distribution.

There are many non-parametric and robust techniques that do not make strong
distributional assumptions. However, techniques based on specific
distributional assumptions are in general more powerful than non-parametric
and robust techniques. Therefore, if the distributional assumptions can be
validated, they are generally preferred.

Related
Techniques

Chi-Square goodness-of-fit Test
Kolmogorov-Smirnov Test
Shapiro-Wilk Normality Test
Probability Plot
Probability Plot Correlation Coefficient Plot

Case Study Airplane glass failure time data.

Software The Anderson-Darling goodness-of-fit test is available in some general purpose
statistical software programs, including Dataplot.
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.15.Chi-Square Goodness-of-Fit Test

Purpose:
Test for
distributional
adequacy

The chi-square test (Snedecor and Cochran, 1989) is used to test if a sample of data came
from a population with a specific distribution.

An attractive feature of the chi-square goodness-of-fit test is that it can be applied to any
univariate distribution for which you can calculate the cumulative distribution function.
The chi-square goodness-of-fit test is applied to binned data (i.e., data put into classes).
This is actually not a restriction since for non-binned data you can simply calculate a
histogram or frequency table before generating the chi-square test. However, the value of
the chi-square test statistic are dependent on how the data is binned. Another
disadvantage of the chi-square test is that it requires a sufficient sample size in order for
the chi-square approximation to be valid.

The chi-square test is an alternative to the Anderson-Darling and Kolmogorov-Smirnov
goodness-of-fit tests. The chi-square goodness-of-fit test can be applied to discrete
distributions such as the binomial and the Poisson. The Kolmogorov-Smirnov and
Anderson-Darling tests are restricted to continuous distributions.

Additional discussion of the chi-square goodness-of-fit test is contained in the product
and process comparisons chapter (chapter 7).

Definition The chi-square test is defined for the hypothesis:

H0: The data follow a specified distribution.
Ha: The data do not follow the specified distribution.

1.3.5.15. Chi-Square Goodness-of-Fit Test
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Test Statistic: For the chi-square goodness-of-fit computation, the data are divided
into k bins and the test statistic is defined as

where  is the observed frequency for bin i and  is the expected
frequency for bin i. The expected frequency is calculated by

where F is the cumulative Distribution function for the distribution
being tested, Yu is the upper limit for class i, Yl is the lower limit for
class i, and N is the sample size.

This test is sensitive to the choice of bins. There is no optimal choice
for the bin width (since the optimal bin width depends on the
distribution). Most reasonable choices should produce similar, but
not identical, results. Dataplot uses 0.3*s, where s is the sample
standard deviation, for the class width. The lower and upper bins are
at the sample mean plus and minus 6.0*s, respectively. For the
chi-square approximation to be valid, the expected frequency should
be at least 5. This test is not valid for small samples, and if some of
the counts are less than five, you may need to combine some bins in
the tails.

Significance Level: .
Critical Region: The test statistic follows, approximately, a chi-square distribution

with (k - c) degrees of freedom where k is the number of non-empty
cells and c = the number of estimated parameters (including location
and scale parameters and shape parameters) for the distribution + 1.
For example, for a 3-parameter Weibull distribution, c = 4.

Therefore, the hypothesis that the data are from a population with
the specified distribution is rejected if

where  is the chi-square percent point function with k - c

degrees of freedom and a significance level of .

In the above formulas for the critical regions, the Handbook follows
the convention that  is the upper critical value from the

chi-square distribution and  is the lower critical value from the
chi-square distribution. Note that this is the opposite of what is used
in some texts and software programs. In particular, Dataplot uses the
opposite convention.
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Sample
Output

Dataplot generated the following output for the chi-square test where 1,000 random
numbers were generated for the normal, double exponential, t with 3 degrees of freedom,
and lognormal distributions. In all cases, the chi-square test was applied to test for a
normal distribution. The test statistics show the characteristics of the test; when the data
are from a normal distribution, the test statistic is small and the hypothesis is accepted;
when the data are from the double exponential, t, and lognormal distributions, the
statistics are significant and the hypothesis of an underlying normal distribution is
rejected at significance levels of 0.10, 0.05, and 0.01.

The normal random numbers were stored in the variable Y1, the double exponential
random numbers were stored in the variable Y2, the t random numbers were stored in the
variable Y3, and the lognormal random numbers were stored in the variable Y4.

       *************************************************
       **  normal chi-square goodness of fit test y1  **
       *************************************************
  
  
                   CHI-SQUARED GOODNESS-OF-FIT TEST
  
 NULL HYPOTHESIS H0:      DISTRIBUTION FITS THE DATA
 ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA
 DISTRIBUTION:            NORMAL
  
 SAMPLE:
    NUMBER OF OBSERVATIONS      =     1000
    NUMBER OF NON-EMPTY CELLS   =       24
    NUMBER OF PARAMETERS USED   =        0
  
 TEST:
 CHI-SQUARED TEST STATISTIC     =    17.52155
    DEGREES OF FREEDOM          =       23
    CHI-SQUARED CDF VALUE       =    0.217101
  
    ALPHA LEVEL         CUTOFF              CONCLUSION
            10%       32.00690               ACCEPT H0
             5%       35.17246               ACCEPT H0
             1%       41.63840               ACCEPT H0
  
       CELL NUMBER, BIN MIDPOINT, OBSERVED FREQUENCY,
       AND EXPECTED FREQUENCY
       WRITTEN TO FILE DPST1F.DAT
  
       *************************************************
       **  normal chi-square goodness of fit test y2  **
       *************************************************
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                   CHI-SQUARED GOODNESS-OF-FIT TEST
  
 NULL HYPOTHESIS H0:      DISTRIBUTION FITS THE DATA
 ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA
 DISTRIBUTION:            NORMAL
  
 SAMPLE:
    NUMBER OF OBSERVATIONS      =     1000
    NUMBER OF NON-EMPTY CELLS   =       26
    NUMBER OF PARAMETERS USED   =        0
  
 TEST:
 CHI-SQUARED TEST STATISTIC     =    2030.784
    DEGREES OF FREEDOM          =       25
    CHI-SQUARED CDF VALUE       =    1.000000
  
    ALPHA LEVEL         CUTOFF              CONCLUSION
            10%       34.38158               REJECT H0
             5%       37.65248               REJECT H0
             1%       44.31411               REJECT H0
  
       CELL NUMBER, BIN MIDPOINT, OBSERVED FREQUENCY,
       AND EXPECTED FREQUENCY
       WRITTEN TO FILE DPST1F.DAT
  
       *************************************************
       **  normal chi-square goodness of fit test y3  **
       *************************************************
  
  
                   CHI-SQUARED GOODNESS-OF-FIT TEST
  
 NULL HYPOTHESIS H0:      DISTRIBUTION FITS THE DATA
 ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA
 DISTRIBUTION:            NORMAL
  
 SAMPLE:
    NUMBER OF OBSERVATIONS      =     1000
    NUMBER OF NON-EMPTY CELLS   =       25
    NUMBER OF PARAMETERS USED   =        0
  
 TEST:
 CHI-SQUARED TEST STATISTIC     =    103165.4
    DEGREES OF FREEDOM          =       24
    CHI-SQUARED CDF VALUE       =    1.000000
  
    ALPHA LEVEL         CUTOFF              CONCLUSION
            10%       33.19624               REJECT H0
             5%       36.41503               REJECT H0
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             1%       42.97982               REJECT H0
  
       CELL NUMBER, BIN MIDPOINT, OBSERVED FREQUENCY,
       AND EXPECTED FREQUENCY
       WRITTEN TO FILE DPST1F.DAT
  
       *************************************************
       **  normal chi-square goodness of fit test y4  **
       *************************************************
  
  
                   CHI-SQUARED GOODNESS-OF-FIT TEST
  
 NULL HYPOTHESIS H0:      DISTRIBUTION FITS THE DATA
 ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA
 DISTRIBUTION:            NORMAL
  
 SAMPLE:
    NUMBER OF OBSERVATIONS      =     1000
    NUMBER OF NON-EMPTY CELLS   =       10
    NUMBER OF PARAMETERS USED   =        0
  
 TEST:
 CHI-SQUARED TEST STATISTIC     =    1162098.
    DEGREES OF FREEDOM          =        9
    CHI-SQUARED CDF VALUE       =    1.000000
  
    ALPHA LEVEL         CUTOFF              CONCLUSION
            10%       14.68366               REJECT H0
             5%       16.91898               REJECT H0
             1%       21.66600               REJECT H0
  
       CELL NUMBER, BIN MIDPOINT, OBSERVED FREQUENCY,
       AND EXPECTED FREQUENCY
       WRITTEN TO FILE DPST1F.DAT
    

As we would hope, the chi-square test does not reject the normality hypothesis for the
normal distribution data set and rejects it for the three non-normal cases.

Questions The chi-square test can be used to answer the following types of questions:

Are the data from a normal distribution?●   

Are the data from a log-normal distribution?●   

Are the data from a Weibull distribution?●   

Are the data from an exponential distribution?●   

Are the data from a logistic distribution?●   

Are the data from a binomial distribution?●   

1.3.5.15. Chi-Square Goodness-of-Fit Test

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm (5 of 6) [5/1/2006 9:57:46 AM]



Importance Many statistical tests and procedures are based on specific distributional assumptions.
The assumption of normality is particularly common in classical statistical tests. Much
reliability modeling is based on the assumption that the distribution of the data follows a
Weibull distribution.

There are many non-parametric and robust techniques that are not based on strong
distributional assumptions. By non-parametric, we mean a technique, such as the sign
test, that is not based on a specific distributional assumption. By robust, we mean a
statistical technique that performs well under a wide range of distributional assumptions.
However, techniques based on specific distributional assumptions are in general more
powerful than these non-parametric and robust techniques. By power, we mean the ability
to detect a difference when that difference actually exists. Therefore, if the distributional
assumption can be confirmed, the parametric techniques are generally preferred.

If you are using a technique that makes a normality (or some other type of distributional)
assumption, it is important to confirm that this assumption is in fact justified. If it is, the
more powerful parametric techniques can be used. If the distributional assumption is not
justified, a non-parametric or robust technique may be required.

Related
Techniques

Anderson-Darling Goodness-of-Fit Test
Kolmogorov-Smirnov Test
Shapiro-Wilk Normality Test
Probability Plots
Probability Plot Correlation Coefficient Plot

Case Study Airplane glass failure times data.

Software Some general purpose statistical software programs, including Dataplot, provide a
chi-square goodness-of-fit test for at least some of the common distributions.
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.16.Kolmogorov-Smirnov Goodness-of-Fit
Test

Purpose:
Test for
Distributional
Adequacy

The Kolmogorov-Smirnov test (Chakravart, Laha, and Roy, 1967) is used to
decide if a sample comes from a population with a specific distribution.

The Kolmogorov-Smirnov (K-S) test is based on the empirical distribution
function (ECDF). Given N ordered data points Y1, Y2, ..., YN, the ECDF is
defined as

where n(i) is the number of points less than Yi and the Yi are ordered from
smallest to largest value. This is a step function that increases by 1/N at the value
of each ordered data point.

The graph below is a plot of the empirical distribution function with a normal
cumulative distribution function for 100 normal random numbers. The K-S test is
based on the maximum distance between these two curves.
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Characteristics
and
Limitations of
the K-S Test

An attractive feature of this test is that the distribution of the K-S test statistic
itself does not depend on the underlying cumulative distribution function being
tested. Another advantage is that it is an exact test (the chi-square goodness-of-fit
test depends on an adequate sample size for the approximations to be valid).
Despite these advantages, the K-S test has several important limitations:

It only applies to continuous distributions.1.  

It tends to be more sensitive near the center of the distribution than at the
tails.

2.  

Perhaps the most serious limitation is that the distribution must be fully
specified. That is, if location, scale, and shape parameters are estimated
from the data, the critical region of the K-S test is no longer valid. It
typically must be determined by simulation.

3.  

Due to limitations 2 and 3 above, many analysts prefer to use the
Anderson-Darling goodness-of-fit test. However, the Anderson-Darling test is
only available for a few specific distributions.
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Definition The Kolmogorov-Smirnov test is defined by:

H0: The data follow a specified distribution
Ha: The data do not follow the specified distribution
Test Statistic: The Kolmogorov-Smirnov test statistic is defined as

where F is the theoretical cumulative distribution of the
distribution being tested which must be a continuous distribution
(i.e., no discrete distributions such as the binomial or Poisson),
and it must be fully specified (i.e., the location, scale, and shape
parameters cannot be estimated from the data).

Significance
Level:

.

Critical
Values:

The hypothesis regarding the distributional form is rejected if the
test statistic, D, is greater than the critical value obtained from a
table. There are several variations of these tables in the literature
that use somewhat different scalings for the K-S test statistic and
critical regions. These alternative formulations should be
equivalent, but it is necessary to ensure that the test statistic is
calculated in a way that is consistent with how the critical values
were tabulated.

We do not provide the K-S tables in the Handbook since software
programs that perform a K-S test will provide the relevant critical
values.

Technical Note Previous editions of e-Handbook gave the following formula for the computation
of the Kolmogorov-Smirnov goodness of fit statistic:

This formula is in fact not correct. Note that this formula can be rewritten as:

This form makes it clear that an upper bound on the difference between these two
formulas is i/N. For actual data, the difference is likely to be less than the upper
bound.

For example, for N = 20, the upper bound on the difference between these two
formulas is 0.05 (for comparison, the 5% critical value is 0.294). For N = 100, the
upper bound is 0.001. In practice, if you have moderate to large sample sizes (say
N &ge; 50), these formulas are essentially equivalent.
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Sample Output Dataplot generated the following output for the Kolmogorov-Smirnov test where
1,000 random numbers were generated for a normal, double exponential, t with 3
degrees of freedom, and lognormal distributions. In all cases, the
Kolmogorov-Smirnov test was applied to test for a normal distribution. The
Kolmogorov-Smirnov test accepts the normality hypothesis for the case of normal
data and rejects it for the double exponential, t, and lognormal data with the
exception of the double exponential data being significant at the 0.01 significance
level.

The normal random numbers were stored in the variable Y1, the double
exponential random numbers were stored in the variable Y2, the t random
numbers were stored in the variable Y3, and the lognormal random numbers were
stored in the variable Y4.

       *********************************************************
       **  normal Kolmogorov-Smirnov goodness of fit test y1  **
       *********************************************************
  
  
                   KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST
  
 NULL HYPOTHESIS H0:      DISTRIBUTION FITS THE DATA
 ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA
 DISTRIBUTION:            NORMAL
    NUMBER OF OBSERVATIONS      =     1000
  
 TEST:
 KOLMOGOROV-SMIRNOV TEST STATISTIC     =   0.2414924E-01
  
    ALPHA LEVEL         CUTOFF              CONCLUSION
            10%        0.03858               ACCEPT H0
             5%        0.04301               ACCEPT H0
             1%        0.05155               ACCEPT H0
  
       *********************************************************
       **  normal Kolmogorov-Smirnov goodness of fit test y2  **
       *********************************************************
  
  
                   KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST
  
 NULL HYPOTHESIS H0:      DISTRIBUTION FITS THE DATA
 ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA
 DISTRIBUTION:            NORMAL
    NUMBER OF OBSERVATIONS      =     1000
  
 TEST:
 KOLMOGOROV-SMIRNOV TEST STATISTIC     =   0.5140864E-01
  
    ALPHA LEVEL         CUTOFF              CONCLUSION
            10%        0.03858               REJECT H0
             5%        0.04301               REJECT H0
             1%        0.05155               ACCEPT H0

1.3.5.16. Kolmogorov-Smirnov Goodness-of-Fit Test

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm (4 of 6) [5/1/2006 9:57:47 AM]



  
       *********************************************************
       **  normal Kolmogorov-Smirnov goodness of fit test y3  **
       *********************************************************
  
  
                   KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST
  
 NULL HYPOTHESIS H0:      DISTRIBUTION FITS THE DATA
 ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA
 DISTRIBUTION:            NORMAL
    NUMBER OF OBSERVATIONS      =     1000
  
 TEST:
 KOLMOGOROV-SMIRNOV TEST STATISTIC     =   0.6119353E-01
  
    ALPHA LEVEL         CUTOFF              CONCLUSION
            10%        0.03858               REJECT H0
             5%        0.04301               REJECT H0
             1%        0.05155               REJECT H0
  
       *********************************************************
       **  normal Kolmogorov-Smirnov goodness of fit test y4  **
       *********************************************************
  
  
                   KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST
  
 NULL HYPOTHESIS H0:      DISTRIBUTION FITS THE DATA
 ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA
 DISTRIBUTION:            NORMAL
    NUMBER OF OBSERVATIONS      =     1000
  
 TEST:
 KOLMOGOROV-SMIRNOV TEST STATISTIC     =   0.5354889
  
    ALPHA LEVEL         CUTOFF              CONCLUSION
            10%        0.03858               REJECT H0
             5%        0.04301               REJECT H0
             1%        0.05155               REJECT H0
    

Questions The Kolmogorov-Smirnov test can be used to answer the following types of
questions:

Are the data from a normal distribution?●   

Are the data from a log-normal distribution?●   

Are the data from a Weibull distribution?●   

Are the data from an exponential distribution?●   

Are the data from a logistic distribution?●   
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Importance Many statistical tests and procedures are based on specific distributional
assumptions. The assumption of normality is particularly common in classical
statistical tests. Much reliability modeling is based on the assumption that the
data follow a Weibull distribution.

There are many non-parametric and robust techniques that are not based on strong
distributional assumptions. By non-parametric, we mean a technique, such as the
sign test, that is not based on a specific distributional assumption. By robust, we
mean a statistical technique that performs well under a wide range of
distributional assumptions. However, techniques based on specific distributional
assumptions are in general more powerful than these non-parametric and robust
techniques. By power, we mean the ability to detect a difference when that
difference actually exists. Therefore, if the distributional assumptions can be
confirmed, the parametric techniques are generally preferred.

If you are using a technique that makes a normality (or some other type of
distributional) assumption, it is important to confirm that this assumption is in
fact justified. If it is, the more powerful parametric techniques can be used. If the
distributional assumption is not justified, using a non-parametric or robust
technique may be required.

Related
Techniques

Anderson-Darling goodness-of-fit Test
Chi-Square goodness-of-fit Test
Shapiro-Wilk Normality Test
Probability Plots
Probability Plot Correlation Coefficient Plot

Case Study Airplane glass failure times data

Software Some general purpose statistical software programs, including Dataplot, support
the Kolmogorov-Smirnov goodness-of-fit test, at least for some of the more
common distributions.
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.17.Grubbs' Test for Outliers

Purpose:
Detection of
Outliers

Grubbs' test (Grubbs 1969 and Stefansky 1972) is used to detect
outliers in a univariate data set. It is based on the assumption of
normality. That is, you should first verify that your data can be
reasonably approximated by a normal distribution before applying the
Grubbs' test.

Grubbs' test detects one outlier at a time. This outlier is expunged from
the dataset and the test is iterated until no outliers are detected.
However, multiple iterations change the probabilities of detection, and
the test should not be used for sample sizes of six or less since it
frequently tags most of the points as outliers.

Grubbs' test is also known as the maximum normed residual test.

Definition Grubbs' test is defined for the hypothesis:

H0: There are no outliers in the data set
Ha: There is at least one outlier in the data set
Test
Statistic:

The Grubbs' test statistic is defined as:

with  and  denoting the sample mean and standard
deviation, respectively. The Grubbs test statistic is the
largest absolute deviation from the sample mean in units
of the sample standard deviation.

This is the two-sided version of the test. The Grubbs test
can also be defined as one of the following one-sided
tests:

test whether the minimum value is an outlier1.  
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with Ymin denoting the minimum value.

test whether the maximum value is an outlier

with Ymax denoting the maximum value.

2.  

Significance
Level:

.

Critical
Region:

For the two-sided test, the hypothesis of no outliers is
rejected if

with  denoting the critical value of the

t-distribution with (N-2)/2 degrees of freedom and a
significance level of /(2N).

For the one-sided tests, we use a significance level of
/N.

In the above formulas for the critical regions, the
Handbook follows the convention that  is the upper
critical value from the t-distribution and  is the
lower critical value from the t-distribution. Note that this
is the opposite of what is used in some texts and software
programs. In particular, Dataplot uses the opposite
convention.

Sample
Output

Dataplot generated the following output for the ZARR13.DAT data set
showing that Grubbs' test finds no outliers in the dataset:
 
       *********************
       **  grubbs test y  **
       *********************
  
               GRUBBS TEST FOR OUTLIERS
               (ASSUMPTION: NORMALITY)
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS      =      195
       MINIMUM                     =    9.196848
       MEAN                        =    9.261460
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       MAXIMUM                     =    9.327973
       STANDARD DEVIATION          =   0.2278881E-01
  
       GRUBBS TEST STATISTIC       =    2.918673
  
 2. PERCENT POINTS OF THE REFERENCE DISTRIBUTION
    FOR GRUBBS TEST STATISTIC
       0          % POINT    =    0.000000
       50         % POINT    =    2.984294
       75         % POINT    =    3.181226
       90         % POINT    =    3.424672
       95         % POINT    =    3.597898
       97.5       % POINT    =    3.763061
       99         % POINT    =    3.970215
       100        % POINT    =    13.89263
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THERE ARE NO OUTLIERS.
  
 

Interpretation
of Sample
Output

The output is divided into three sections.

The first section prints the sample statistics used in the
computation of the Grubbs' test and the value of the Grubbs' test
statistic.

1.  

The second section prints the upper critical value for the Grubbs'
test statistic distribution corresponding to various significance
levels. The value in the first column, the confidence level of the
test, is equivalent to 100(1- ). We reject the null hypothesis at
that significance level if the value of the Grubbs' test statistic
printed in section one is greater than the critical value printed in
the last column.

2.  

The third section prints the conclusion for a 95% test. For a
different significance level, the appropriate conclusion can be
drawn from the table printed in section two. For example, for 
= 0.10, we look at the row for 90% confidence and compare the
critical value 3.24 to the Grubbs' test statistic 2.92. Since the test
statistic is less than the critical value, we accept the null
hypothesis at the  = 0.10 level.

3.  

Output from other statistical software may look somewhat different
from the above output.

Questions Grubbs' test can be used to answer the following questions:

Does the data set contain any outliers?1.  

How many outliers does it contain?2.  
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Importance Many statistical techniques are sensitive to the presence of outliers. For
example, simple calculations of the mean and standard deviation may
be distorted by a single grossly inaccurate data point.

Checking for outliers should be a routine part of any data analysis.
Potential outliers should be examined to see if they are possibly
erroneous. If the data point is in error, it should be corrected if possible
and deleted if it is not possible. If there is no reason to believe that the
outlying point is in error, it should not be deleted without careful
consideration. However, the use of more robust techniques may be
warranted. Robust techniques will often downweight the effect of
outlying points without deleting them.

Related
Techniques

Several graphical techniques can, and should, be used to detect
outliers. A simple run sequence plot, a box plot, or a histogram should
show any obviously outlying points.

Run Sequence Plot
Histogram
Box Plot
Normal Probability Plot
Lag Plot

Case Study Heat flow meter data.

Software Some general purpose statistical software programs, including
Dataplot, support the Grubbs' test.
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.18.Yates Analysis

Purpose:
Estimate
Factor
Effects in
a 2-Level
Factorial
Design

Full factorial and fractional factorial designs are common in designed experiments for
engineering and scientific applications.

In these designs, each factor is assigned two levels. These are typically called the low
and high levels. For computational purposes, the factors are scaled so that the low
level is assigned a value of -1 and the high level is assigned a value of +1. These are
also commonly referred to as "-" and "+".

A full factorial design contains all possible combinations of low/high levels for all the
factors. A fractional factorial design contains a carefully chosen subset of these
combinations. The criterion for choosing the subsets is discussed in detail in the
process improvement chapter.

The Yates analysis exploits the special structure of these designs to generate least
squares estimates for factor effects for all factors and all relevant interactions.

The mathematical details of the Yates analysis are given in chapter 10 of Box, Hunter,
and Hunter (1978).

The Yates analysis is typically complemented by a number of graphical techniques
such as the dex mean plot and the dex contour plot ("dex" represents "design of
experiments"). This is demonstrated in the Eddy current case study.
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Yates
Order

Before performing a Yates analysis, the data should be arranged in "Yates order". That
is, given k factors, the kth column consists of 2k-1 minus signs (i.e., the low level of the
factor) followed by 2k-1 plus signs (i.e., the high level of the factor). For example, for
a full factorial design with three factors, the design matrix is

- - -
+ - -
- + -
+ + -
- - +
+ - +
- + +
+ + +
    

Determining the Yates order for fractional factorial designs requires knowledge of the
confounding structure of the fractional factorial design.

Yates
Output

A Yates analysis generates the following output.

A factor identifier (from Yates order). The specific identifier will vary
depending on the program used to generate the Yates analysis. Dataplot, for
example, uses the following for a 3-factor model.

1 = factor 1
2 = factor 2
3 = factor 3
12 = interaction of factor 1 and factor 2
13 = interaction of factor 1 and factor 3
23 = interaction of factor 2 and factor 3
123 =interaction of factors 1, 2, and 3

1.  

Least squares estimated factor effects ordered from largest in magnitude (most
significant) to smallest in magnitude (least significant).

That is, we obtain a ranked list of important factors.

2.  

A t-value for the individual factor effect estimates. The t-value is computed as

where e is the estimated factor effect and  is the standard deviation of the
estimated factor effect.

3.  

The residual standard deviation that results from the model with the single term
only. That is, the residual standard deviation from the model

response = constant + 0.5 (Xi)

4.  

1.3.5.18. Yates Analysis
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where Xi is the estimate of the ith factor or interaction effect.

The cumulative residual standard deviation that results from the model using the
current term plus all terms preceding that term. That is,

response = constant + 0.5 (all effect estimates down to and including the
effect of interest)

This consists of a monotonically decreasing set of residual standard deviations
(indicating a better fit as the number of terms in the model increases). The first
cumulative residual standard deviation is for the model

response = constant

where the constant is the overall mean of the response variable. The last
cumulative residual standard deviation is for the model

response = constant + 0.5*(all factor and interaction estimates)

This last model will have a residual standard deviation of zero.

5.  

Sample
Output

Dataplot generated the following Yates analysis output for the Eddy current data set:

  
(NOTE--DATA MUST BE IN STANDARD ORDER)
NUMBER OF OBSERVATIONS           =        8
NUMBER OF FACTORS                =        3
NO REPLICATION CASE
  
PSEUDO-REPLICATION STAND. DEV.   =    0.20152531564E+00
PSEUDO-DEGREES OF FREEDOM        =        1
(THE PSEUDO-REP. STAND. DEV. ASSUMES ALL
3, 4, 5, ...-TERM INTERACTIONS ARE NOT REAL,
BUT MANIFESTATIONS OF RANDOM ERROR)
  
STANDARD DEVIATION OF A COEF.    =    0.14249992371E+00
(BASED ON PSEUDO-REP. ST. DEV.)
  
GRAND MEAN                       =    0.26587500572E+01
GRAND STANDARD DEVIATION         =    0.17410624027E+01
  
99% CONFIDENCE LIMITS (+-)       =    0.90710897446E+01
95% CONFIDENCE LIMITS (+-)       =    0.18106349707E+01
99.5% POINT OF T DISTRIBUTION    =    0.63656803131E+02
97.5% POINT OF T DISTRIBUTION    =    0.12706216812E+02
  
IDENTIFIER    EFFECT        T VALUE      RESSD:     RESSD:
                                         MEAN +     MEAN +
                                         TERM    CUM TERMS
----------------------------------------------------------

1.3.5.18. Yates Analysis
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   MEAN       2.65875                   1.74106    1.74106
      1       3.10250         21.8*     0.57272    0.57272
      2      -0.86750         -6.1      1.81264    0.30429
     23       0.29750          2.1      1.87270    0.26737
     13       0.24750          1.7      1.87513    0.23341
      3       0.21250          1.5      1.87656    0.19121
    123       0.14250          1.0      1.87876    0.18031
     12       0.12750          0.9      1.87912    0.00000
    

Interpretation
of Sample
Output

In summary, the Yates analysis provides us with the following ranked
list of important factors along with the estimated effect estimate.

X1:1.  effect estimate = 3.1025 ohms
X2:2.  effect estimate = -0.8675 ohms
X2*X3:3.  effect estimate = 0.2975 ohms
X1*X3:4.  effect estimate = 0.2475 ohms
X3:5.  effect estimate = 0.2125 ohms
X1*X2*X3:6.  effect estimate = 0.1425 ohms
X1*X2:7.  effect estimate = 0.1275 ohms

Model
Selection and
Validation

From the above Yates output, we can define the potential models from
the Yates analysis. An important component of a Yates analysis is
selecting the best model from the available potential models.

Once a tentative model has been selected, the error term should follow
the assumptions for a univariate measurement process. That is, the
model should be validated by analyzing the residuals.

Graphical
Presentation

Some analysts may prefer a more graphical presentation of the Yates
results. In particular, the following plots may be useful:

Ordered data plot1.  

Ordered absolute effects plot2.  

Cumulative residual standard deviation plot3.  

Questions The Yates analysis can be used to answer the following questions:

What is the ranked list of factors?1.  

What is the goodness-of-fit (as measured by the residual
standard deviation) for the various models?

2.  

1.3.5.18. Yates Analysis
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Related
Techniques

Multi-factor analysis of variance
Dex mean plot
Block plot
Dex contour plot

Case Study The Yates analysis is demonstrated in the Eddy current case study.

Software Many general purpose statistical software programs, including
Dataplot, can perform a Yates analysis.

1.3.5.18. Yates Analysis

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35i.htm (5 of 5) [5/1/2006 9:57:48 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexcont.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/eda44.htm#YATES ANALYSIS
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques
1.3.5.18. Yates Analysis

1.3.5.18.1.Defining Models and Prediction
Equations

Parameter
Estimates
Don't
Change as
Additional
Terms
Added

In most cases of least squares fitting, the model coefficients for previously added terms
change depending on what was successively added. For example, the X1 coefficient
might change depending on whether or not an X2 term was included in the model. This
is not the case when the design is orthogonal, as is a 23 full factorial design. For
orthogonal designs, the estimates for the previously included terms do not change as
additional terms are added. This means the ranked list of effect estimates
simultaneously serves as the least squares coefficient estimates for progressively more
complicated models.

Yates
Table

For convenience, we list the sample Yates output for the Eddy current data set here.

  
(NOTE--DATA MUST BE IN STANDARD ORDER)
NUMBER OF OBSERVATIONS           =        8
NUMBER OF FACTORS                =        3
NO REPLICATION CASE
  
PSEUDO-REPLICATION STAND. DEV.   =    0.20152531564E+00
PSEUDO-DEGREES OF FREEDOM        =        1
(THE PSEUDO-REP. STAND. DEV. ASSUMES ALL
3, 4, 5, ...-TERM INTERACTIONS ARE NOT REAL,
BUT MANIFESTATIONS OF RANDOM ERROR)
  
STANDARD DEVIATION OF A COEF.    =    0.14249992371E+00
(BASED ON PSEUDO-REP. ST. DEV.)
  
GRAND MEAN                       =    0.26587500572E+01
GRAND STANDARD DEVIATION         =    0.17410624027E+01
  
99% CONFIDENCE LIMITS (+-)       =    0.90710897446E+01
95% CONFIDENCE LIMITS (+-)       =    0.18106349707E+01
99.5% POINT OF T DISTRIBUTION    =    0.63656803131E+02

1.3.5.18.1. Defining Models and Prediction Equations
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97.5% POINT OF T DISTRIBUTION    =    0.12706216812E+02
  
IDENTIFIER    EFFECT        T VALUE      RESSD:     RESSD:
                                         MEAN +     MEAN +
                                         TERM    CUM TERMS
----------------------------------------------------------
   MEAN       2.65875                   1.74106    1.74106
      1       3.10250         21.8*     0.57272    0.57272
      2      -0.86750         -6.1      1.81264    0.30429
     23       0.29750          2.1      1.87270    0.26737
     13       0.24750          1.7      1.87513    0.23341
      3       0.21250          1.5      1.87656    0.19121
    123       0.14250          1.0      1.87876    0.18031
     12       0.12750          0.9      1.87912    0.00000
    

The last column of the Yates table gives the residual standard deviation for 8 possible
models, each with one more term than the previous model.

Potential
Models

For this example, we can summarize the possible prediction equations using the second
and last columns of the Yates table:

has a residual standard deviation of 1.74106 ohms. Note that this is the default
model. That is, if no factors are important, the model is simply the overall mean.

●   

has a residual standard deviation of 0.57272 ohms. (Here, X1 is either a +1 or -1,
and similarly for the other factors and interactions (products).)

●   

has a residual standard deviation of 0.30429 ohms.

●   

has a residual standard deviation of 0.26737 ohms.

●   

has a residual standard deviation of 0.23341 ohms

●   

has a residual standard deviation of 0.19121 ohms.

●   

1.3.5.18.1. Defining Models and Prediction Equations

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35i1.htm (2 of 3) [5/1/2006 9:57:49 AM]



has a residual standard deviation of 0.18031 ohms.

●   

has a residual standard deviation of 0.0 ohms. Note that the model with all
possible terms included will have a zero residual standard deviation. This will
always occur with an unreplicated two-level factorial design.

●   

Model
Selection

The above step lists all the potential models. From this list, we want to select the most
appropriate model. This requires balancing the following two goals.

We want the model to include all important factors.1.  

We want the model to be parsimonious. That is, the model should be as simple as
possible.

2.  

Note that the residual standard deviation alone is insufficient for determining the most
appropriate model as it will always be decreased by adding additional factors. The next
section describes a number of approaches for determining which factors (and
interactions) to include in the model.

1.3.5.18.1. Defining Models and Prediction Equations
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques
1.3.5.18. Yates Analysis

1.3.5.18.2. Important Factors

Identify
Important
Factors

The Yates analysis generates a large number of potential models. From this list, we want to select
the most appropriate model. This requires balancing the following two goals.

We want the model to include all important factors.1.  

We want the model to be parsimonious. That is, the model should be as simple as possible.2.  

In short, we want our model to include all the important factors and interactions and to omit the
unimportant factors and interactions.

Seven criteria are utilized to define important factors. These seven criteria are not all equally
important, nor will they yield identical subsets, in which case a consensus subset or a weighted
consensus subset must be extracted. In practice, some of these criteria may not apply in all
situations.

These criteria will be examined in the context of the Eddy current data set. The Yates Analysis
page gave the sample Yates output for these data and the Defining Models and Predictions page
listed the potential models from the Yates analysis.

In practice, not all of these criteria will be used with every analysis (and some analysts may have
additional criteria). These critierion are given as useful guidelines. Mosts analysts will focus on
those criteria that they find most useful.

Criteria for
Including
Terms in the
Model

The seven criteria that we can use in determining whether to keep a factor in the model can be
summarized as follows.

Effects: Engineering Significance1.  

Effects: Order of Magnitude2.  

Effects: Statistical Significance3.  

Effects: Probability Plots4.  

Averages: Youden Plot5.  

Residual Standard Deviation: Engineering Significance6.  

Residual Standard Deviation: Statistical Significance7.  

The first four criteria focus on effect estimates with three numeric criteria and one graphical
criteria. The fifth criteria focuses on averages. The last two criteria focus on the residual standard
deviation of the model. We discuss each of these seven criteria in detail in the following sections.

The last section summarizes the conclusions based on all of the criteria.

1.3.5.18.2. Important Factors

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35i2.htm (1 of 7) [5/1/2006 9:57:49 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/pri618.htm#conclusions


Effects:
Engineering
Significance

The minimum engineering significant difference is defined as

where  is the absolute value of the parameter estimate (i.e., the effect) and  is the minimum
engineering significant difference.

That is, declare a factor as "important" if the effect is greater than some a priori declared
engineering difference. This implies that the engineering staff have in fact stated what a minimum
effect will be. Oftentimes this is not the case. In the absence of an a priori difference, a good
rough rule for the minimum engineering significant  is to keep only those factors whose effect
is greater than, say, 10% of the current production average. In this case, let's say that the average
detector has a sensitivity of 2.5 ohms. This would suggest that we would declare all factors whose
effect is greater than 10% of 2.5 ohms = 0.25 ohm to be significant (from an engineering point of
view).

Based on this minimum engineering significant difference criterion, we conclude that we should
keep two terms: X1 and X2.

Effects:
Order of
Magnitude

The order of magnitude criterion is defined as

That is, exclude any factor that is less than 10% of the maximum effect size. We may or may not
keep the other factors. This criterion is neither engineering nor statistical, but it does offer some
additional numerical insight. For the current example, the largest effect is from X1 (3.10250
ohms), and so 10% of that is 0.31 ohms, which suggests keeping all factors whose effects exceed
0.31 ohms.

Based on the order-of-magnitude criterion, we thus conclude that we should keep two terms: X1
and X2. A third term, X2*X3 (.29750), is just slightly under the cutoff level, so we may consider
keeping it based on the other criterion.

Effects:
Statistical
Significance

Statistical significance is defined as

That is, declare a factor as important if its effect is more than 2 standard deviations away from 0
(0, by definition, meaning "no effect").

The "2" comes from normal theory (more specifically, a value of 1.96 yields a 95% confidence
interval). More precise values would come from t-distribution theory.

The difficulty with this is that in order to invoke this criterion we need the standard deviation, ,
of an observation. This is problematic because

the engineer may not know ;1.  

the experiment might not have replication, and so a model-free estimate of  is not
obtainable;

2.  

obtaining an estimate of  by assuming the sometimes- employed assumption of ignoring
3-term interactions and higher may be incorrect from an engineering point of view.

3.  

For the Eddy current example:

the engineer did not know ;1.  

the design (a 23 full factorial) did not have replication;2.  

1.3.5.18.2. Important Factors
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ignoring 3-term interactions and higher interactions leads to an estimate of  based on
omitting only a single term: the X1*X2*X3 interaction.

3.  

For the current example, if one assumes that the 3-term interaction is nil and hence represents a
single drawing from a population centered at zero, then an estimate of the standard deviation of
an effect is simply the estimate of the 3-factor interaction (0.1425). In the Dataplot output for our
example, this is the effect estimate for the X1*X2*X3 interaction term (the EFFECT column for
the row labeled "123"). Two standard deviations is thus 0.2850. For this example, the rule is thus
to keep all  > 0.2850.

This results in keeping three terms: X1 (3.10250), X2 (-.86750), and X1*X2 (.29750).

Effects:
Probability
Plots

Probability plots can be used in the following manner.

Normal Probability Plot: Keep a factor as "important" if it is well off the line through zero
on a normal probability plot of the effect estimates.

1.  

Half-Normal Probability Plot: Keep a factor as "important" if it is well off the line near
zero on a half-normal probability plot of the absolute value of effect estimates.

2.  

Both of these methods are based on the fact that the least squares estimates of effects for these
2-level orthogonal designs are simply the difference of averages and so the central limit theorem,
loosely applied, suggests that (if no factor were important) the effect estimates should have
approximately a normal distribution with mean zero and the absolute value of the estimates
should have a half-normal distribution.

Since the half-normal probability plot is only concerned with effect magnitudes as opposed to
signed effects (which are subject to the vagaries of how the initial factor codings +1 and -1 were
assigned), the half-normal probability plot is preferred by some over the normal probability plot.

Normal
Probablity
Plot of
Effects and
Half-Normal
Probability
Plot of
Effects

The following half-normal plot shows the normal probability plot of the effect estimates and the
half-normal probability plot of the absolute value of the estimates for the Eddy current data.

1.3.5.18.2. Important Factors
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For the example at hand, both probability plots clearly show two factors displaced off the line,
and from the third plot (with factor tags included), we see that those two factors are factor 1 and
factor 2. All of the remaining five effects are behaving like random drawings from a normal
distribution centered at zero, and so are deemed to be statistically non-significant. In conclusion,
this rule keeps two factors: X1 (3.10250) and X2 (-.86750).

Effects:
Youden Plot

A Youden plot can be used in the following way. Keep a factor as "important" if it is displaced
away from the central-tendancy "bunch" in a Youden plot of high and low averages. By
definition, a factor is important when its average response for the low (-1) setting is significantly
different from its average response for the high (+1) setting. Conversely, if the low and high
averages are about the same, then what difference does it make which setting to use and so why
would such a factor be considered important? This fact in combination with the intrinsic benefits
of the Youden plot for comparing pairs of items leads to the technique of generating a Youden
plot of the low and high averages.

1.3.5.18.2. Important Factors
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Youden Plot
of Effect
Estimatess

The following is the Youden plot of the effect estimatess for the Eddy current data.

For the example at hand, the Youden plot clearly shows a cluster of points near the grand average
(2.65875) with two displaced points above (factor 1) and below (factor 2). Based on the Youden
plot, we conclude to keep two factors: X1 (3.10250) and X2 (-.86750).

Residual
Standard
Deviation:
Engineering
Significance

This criterion is defined as

Residual Standard Deviation > Cutoff

That is, declare a factor as "important" if the cumulative model that includes the factor (and all
larger factors) has a residual standard deviation smaller than an a priori engineering-specified
minimum residual standard deviation.

This criterion is different from the others in that it is model focused. In practice, this criterion
states that starting with the largest effect, we cumulatively keep adding terms to the model and
monitor how the residual standard deviation for each progressively more complicated model
becomes smaller. At some point, the cumulative model will become complicated enough and
comprehensive enough that the resulting residual standard deviation will drop below the
pre-specified engineering cutoff for the residual standard deviation. At that point, we stop adding
terms and declare all of the model-included terms to be "important" and everything not in the
model to be "unimportant".

This approach implies that the engineer has considered what a minimum residual standard
deviation should be. In effect, this relates to what the engineer can tolerate for the magnitude of
the typical residual (= difference between the raw data and the predicted value from the model).

1.3.5.18.2. Important Factors
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In other words, how good does the engineer want the prediction equation to be. Unfortunately,
this engineering specification has not always been formulated and so this criterion can become
moot.

In the absence of a prior specified cutoff, a good rough rule for the minimum engineering residual
standard deviation is to keep adding terms until the residual standard deviation just dips below,
say, 5% of the current production average. For the Eddy current data, let's say that the average
detector has a sensitivity of 2.5 ohms. Then this would suggest that we would keep adding terms
to the model until the residual standard deviation falls below 5% of 2.5 ohms = 0.125 ohms.

Based on the minimum residual standard deviation criteria, and by scanning the far right column
of the Yates table, we would conclude to keep the following terms:

X11.  (with a cumulative residual standard deviation = 0.57272)
X22.  (with a cumulative residual standard deviation = 0.30429)
X2*X33.  (with a cumulative residual standard deviation = 0.26737)
X1*X34.  (with a cumulative residual standard deviation = 0.23341)
X35.  (with a cumulative residual standard deviation = 0.19121)
X1*X2*X36.  (with a cumulative residual standard deviation = 0.18031)
X1*X27.  (with a cumulative residual standard deviation = 0.00000)

Note that we must include all terms in order to drive the residual standard deviation below 0.125.
Again, the 5% rule is a rough-and-ready rule that has no basis in engineering or statistics, but is
simply a "numerics". Ideally, the engineer has a better cutoff for the residual standard deviation
that is based on how well he/she wants the equation to peform in practice. If such a number were
available, then for this criterion and data set we would select something less than the entire
collection of terms.

Residual
Standard
Deviation:
Statistical
Significance

This criterion is defined as

Residual Standard Deviation > 

where  is the standard deviation of an observation under replicated conditions.

That is, declare a term as "important" until the cumulative model that includes the term has a
residual standard deviation smaller than . In essence, we are allowing that we cannot demand a
model fit any better than what we would obtain if we had replicated data; that is, we cannot
demand that the residual standard deviation from any fitted model be any smaller than the
(theoretical or actual) replication standard deviation. We can drive the fitted standard deviation
down (by adding terms) until it achieves a value close to , but to attempt to drive it down further
means that we are, in effect, trying to fit noise.

In practice, this criterion may be difficult to apply because

the engineer may not know ;1.  

the experiment might not have replication, and so a model-free estimate of  is not
obtainable.

2.  

For the current case study:

the engineer did not know ;1.  

the design (a 23 full factorial) did not have replication. The most common way of having
replication in such designs is to have replicated center points at the center of the cube
((X1,X2,X3) = (0,0,0)).

2.  

Thus for this current case, this criteria could not be used to yield a subset of "important" factors.

1.3.5.18.2. Important Factors

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35i2.htm (6 of 7) [5/1/2006 9:57:49 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3/pri615.htm#yatestable


Conclusions In summary, the seven criteria for specifying "important" factors yielded the following for the
Eddy current data:

Effects, Engineering Significance:1.  X1, X2
Effects, Numerically Significant:2.  X1, X2
Effects, Statistically Significant:3.  X1, X2, X2*X3
Effects, Probability Plots:4.  X1, X2
Averages, Youden Plot:5.  X1, X2
Residual SD, Engineering Significance:6.  all 7 terms
Residual SD, Statistical Significance:7.  not applicable

Such conflicting results are common. Arguably, the three most important criteria (listed in order
of most important) are:

Effects, Probability Plots:4.  X1, X2
Effects, Engineering Significance:1.  X1, X2
Residual SD, Engineering Significance:3.  all 7 terms

Scanning all of the above, we thus declare the following consensus for the Eddy current data:

Important Factors: X1 and X21.  

Parsimonious Prediction Equation:

(with a residual standard deviation of .30429 ohms)

2.  

Note that this is the initial model selection. We still need to perform model validation with a
residual analysis.
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1. Exploratory Data Analysis
1.3. EDA Techniques

1.3.6.Probability Distributions

Probability
Distributions

Probability distributions are a fundamental concept in statistics. They
are used both on a theoretical level and a practical level.

Some practical uses of probability distributions are:

To calculate confidence intervals for parameters and to calculate
critical regions for hypothesis tests.

●   

For univariate data, it is often useful to determine a reasonable
distributional model for the data.

●   

Statistical intervals and hypothesis tests are often based on
specific distributional assumptions. Before computing an
interval or test based on a distributional assumption, we need to
verify that the assumption is justified for the given data set. In
this case, the distribution does not need to be the best-fitting
distribution for the data, but an adequate enough model so that
the statistical technique yields valid conclusions.

●   

Simulation studies with random numbers generated from using a
specific probability distribution are often needed.

●   
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1. Exploratory Data Analysis
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1.3.6. Probability Distributions

1.3.6.1.What is a Probability Distribution

Discrete
Distributions

The mathematical definition of a discrete probability function, p(x), is a
function that satisfies the following properties.

The probability that x can take a specific value is p(x). That is1.  

p(x) is non-negative for all real x.2.  

The sum of p(x) over all possible values of x is 1, that is

where j represents all possible values that x can have and pj is the
probability at xj.

One consequence of properties 2 and 3 is that 0 <= p(x) <= 1.

3.  

What does this actually mean? A discrete probability function is a
function that can take a discrete number of values (not necessarily
finite). This is most often the non-negative integers or some subset of
the non-negative integers. There is no mathematical restriction that
discrete probability functions only be defined at integers, but in practice
this is usually what makes sense. For example, if you toss a coin 6
times, you can get 2 heads or 3 heads but not 2 1/2 heads. Each of the
discrete values has a certain probability of occurrence that is between
zero and one. That is, a discrete function that allows negative values or
values greater than one is not a probability function. The condition that
the probabilities sum to one means that at least one of the values has to
occur.

1.3.6.1. What is a Probability Distribution
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Continuous
Distributions

The mathematical definition of a continuous probability function, f(x),
is a function that satisfies the following properties.

The probability that x is between two points a and b is1.  

It is non-negative for all real x.2.  

The integral of the probability function is one, that is3.  

What does this actually mean? Since continuous probability functions
are defined for an infinite number of points over a continuous interval,
the probability at a single point is always zero. Probabilities are
measured over intervals, not single points. That is, the area under the
curve between two distinct points defines the probability for that
interval. This means that the height of the probability function can in
fact be greater than one. The property that the integral must equal one is
equivalent to the property for discrete distributions that the sum of all
the probabilities must equal one.

Probability
Mass
Functions
Versus
Probability
Density
Functions

Discrete probability functions are referred to as probability mass
functions and continuous probability functions are referred to as
probability density functions. The term probability functions covers
both discrete and continuous distributions. When we are referring to
probability functions in generic terms, we may use the term probability
density functions to mean both discrete and continuous probability
functions.

1.3.6.1. What is a Probability Distribution
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1.3.6. Probability Distributions

1.3.6.2.Related Distributions

Probability distributions are typically defined in terms of the probability
density function. However, there are a number of probability functions
used in applications.

Probability
Density
Function

For a continuous function, the probability density function (pdf) is the
probability that the variate has the value x. Since for continuous
distributions the probability at a single point is zero, this is often
expressed in terms of an integral between two points.

For a discrete distribution, the pdf is the probability that the variate takes
the value x.

The following is the plot of the normal probability density function.

1.3.6.2. Related Distributions
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Cumulative
Distribution
Function

The cumulative distribution function (cdf) is the probability that the
variable takes a value less than or equal to x. That is

For a continuous distribution, this can be expressed mathematically as

For a discrete distribution, the cdf can be expressed as

The following is the plot of the normal cumulative distribution function.

1.3.6.2. Related Distributions
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The horizontal axis is the allowable domain for the given probability
function. Since the vertical axis is a probability, it must fall between
zero and one. It increases from zero to one as we go from left to right on
the horizontal axis.

Percent
Point
Function

The percent point function (ppf) is the inverse of the cumulative
distribution function. For this reason, the percent point function is also
commonly referred to as the inverse distribution function. That is, for a
distribution function we calculate the probability that the variable is less
than or equal to x for a given x. For the percent point function, we start
with the probability and compute the corresponding x for the cumulative
distribution. Mathematically, this can be expressed as

or alternatively

The following is the plot of the normal percent point function.

1.3.6.2. Related Distributions
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Since the horizontal axis is a probability, it goes from zero to one. The
vertical axis goes from the smallest to the largest value of the
cumulative distribution function.

Hazard
Function

The hazard function is the ratio of the probability density function to the
survival function, S(x).

The following is the plot of the normal distribution hazard function.

1.3.6.2. Related Distributions
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Hazard plots are most commonly used in reliability applications. Note
that Johnson, Kotz, and Balakrishnan refer to this as the conditional
failure density function rather than the hazard function.

Cumulative
Hazard
Function

The cumulative hazard function is the integral of the hazard function. It
can be interpreted as the probability of failure at time x given survival
until time x.

This can alternatively be expressed as

The following is the plot of the normal cumulative hazard function.

1.3.6.2. Related Distributions
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Cumulative hazard plots are most commonly used in reliability
applications. Note that Johnson, Kotz, and Balakrishnan refer to this as
the hazard function rather than the cumulative hazard function.

Survival
Function

Survival functions are most often used in reliability and related fields.
The survival function is the probability that the variate takes a value
greater than x.

The following is the plot of the normal distribution survival function.

1.3.6.2. Related Distributions
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For a survival function, the y value on the graph starts at 1 and
monotonically decreases to zero. The survival function should be
compared to the cumulative distribution function.

Inverse
Survival
Function

Just as the percent point function is the inverse of the cumulative
distribution function, the survival function also has an inverse function.
The inverse survival function can be defined in terms of the percent
point function.

The following is the plot of the normal distribution inverse survival
function.

1.3.6.2. Related Distributions

http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm (7 of 8) [5/1/2006 9:57:51 AM]



As with the percent point function, the horizontal axis is a probability.
Therefore the horizontal axis goes from 0 to 1 regardless of the
particular distribution. The appearance is similar to the percent point
function. However, instead of going from the smallest to the largest
value on the vertical axis, it goes from the largest to the smallest value.

1.3.6.2. Related Distributions
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.3.Families of Distributions

Shape
Parameters

Many probability distributions are not a single distribution, but are in
fact a family of distributions. This is due to the distribution having one
or more shape parameters.

Shape parameters allow a distribution to take on a variety of shapes,
depending on the value of the shape parameter. These distributions are
particularly useful in modeling applications since they are flexible
enough to model a variety of data sets.

Example:
Weibull
Distribution

The Weibull distribution is an example of a distribution that has a shape
parameter. The following graph plots the Weibull pdf with the following
values for the shape parameter: 0.5, 1.0, 2.0, and 5.0.

The shapes above include an exponential distribution, a right-skewed
distribution, and a relatively symmetric distribution.

1.3.6.3. Families of Distributions
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The Weibull distribution has a relatively simple distributional form.
However, the shape parameter allows the Weibull to assume a wide
variety of shapes. This combination of simplicity and flexibility in the
shape of the Weibull distribution has made it an effective distributional
model in reliability applications. This ability to model a wide variety of
distributional shapes using a relatively simple distributional form is
possible with many other distributional families as well.

PPCC Plots The PPCC plot is an effective graphical tool for selecting the member of
a distributional family with a single shape parameter that best fits a
given set of data.

1.3.6.3. Families of Distributions
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.4.Location and Scale Parameters

Normal
PDF

A probability distribution is characterized by location and scale
parameters. Location and scale parameters are typically used in
modeling applications.

For example, the following graph is the probability density function for
the standard normal distribution, which has the location parameter equal
to zero and scale parameter equal to one.

1.3.6.4. Location and Scale Parameters
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Location
Parameter

The next plot shows the probability density function for a normal
distribution with a location parameter of 10 and a scale parameter of 1.

The effect of the location parameter is to translate the graph, relative to
the standard normal distribution, 10 units to the right on the horizontal
axis. A location parameter of -10 would have shifted the graph 10 units
to the left on the horizontal axis.

That is, a location parameter simply shifts the graph left or right on the
horizontal axis.

Scale
Parameter

The next plot has a scale parameter of 3 (and a location parameter of
zero). The effect of the scale parameter is to stretch out the graph. The
maximum y value is approximately 0.13 as opposed 0.4 in the previous
graphs. The y value, i.e., the vertical axis value, approaches zero at
about (+/-) 9 as opposed to (+/-) 3 with the first graph.

1.3.6.4. Location and Scale Parameters
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In contrast, the next graph has a scale parameter of 1/3 (=0.333). The
effect of this scale parameter is to squeeze the pdf. That is, the
maximum y value is approximately 1.2 as opposed to 0.4 and the y
value is near zero at (+/-) 1 as opposed to (+/-) 3.

The effect of a scale parameter greater than one is to stretch the pdf. The
greater the magnitude, the greater the stretching. The effect of a scale
parameter less than one is to compress the pdf. The compressing
approaches a spike as the scale parameter goes to zero. A scale

1.3.6.4. Location and Scale Parameters
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parameter of 1 leaves the pdf unchanged (if the scale parameter is 1 to
begin with) and non-positive scale parameters are not allowed.

Location
and Scale
Together

The following graph shows the effect of both a location and a scale
parameter. The plot has been shifted right 10 units and stretched by a
factor of 3.

Standard
Form

The standard form of any distribution is the form that has location
parameter zero and scale parameter one.

It is common in statistical software packages to only compute the
standard form of the distribution. There are formulas for converting
from the standard form to the form with other location and scale
parameters. These formulas are independent of the particular probability
distribution.

1.3.6.4. Location and Scale Parameters
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Formulas
for Location
and Scale
Based on
the Standard
Form

The following are the formulas for computing various probability
functions based on the standard form of the distribution. The parameter
a refers to the location parameter and the parameter b refers to the scale
parameter. Shape parameters are not included.

Cumulative Distribution Function F(x;a,b) = F((x-a)/b;0,1)
Probability Density Function f(x;a,b) = (1/b)f((x-a)/b;0,1)
Percent Point Function G( ;a,b) = a + bG( ;0,1)
Hazard Function h(x;a,b) = (1/b)h((x-a)/b;0,1)
Cumulative Hazard Function H(x;a,b) = H((x-a)/b;0,1)
Survival Function S(x;a,b) = S((x-a)/b;0,1)
Inverse Survival Function Z( ;a,b) = a + bZ( ;0,1)
Random Numbers Y(a,b) = a + bY(0,1)

Relationship
to Mean and
Standard
Deviation

For the normal distribution, the location and scale parameters
correspond to the mean and standard deviation, respectively. However,
this is not necessarily true for other distributions. In fact, it is not true
for most distributions.

1.3.6.4. Location and Scale Parameters
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.5.Estimating the Parameters of a
Distribution

Model a
univariate
data set with
a
probability
distribution

One common application of probability distributions is modeling
univariate data with a specific probability distribution. This involves the
following two steps:

Determination of the "best-fitting" distribution.1.  

Estimation of the parameters (shape, location, and scale
parameters) for that distribution.

2.  

Various
Methods

There are various methods, both numerical and graphical, for estimating
the parameters of a probability distribution.

Method of moments1.  

Maximum likelihood2.  

Least squares3.  

PPCC and probability plots4.  

1.3.6.5. Estimating the Parameters of a Distribution
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1.3.6. Probability Distributions
1.3.6.5. Estimating the Parameters of a Distribution

1.3.6.5.1.Method of Moments

Method of
Moments

The method of moments equates sample moments to parameter
estimates. When moment methods are available, they have the
advantage of simplicity. The disadvantage is that they are often not
available and they do not have the desirable optimality properties of
maximum likelihood and least squares estimators.

The primary use of moment estimates is as starting values for the more
precise maximum likelihood and least squares estimates.

Software Most general purpose statistical software does not include explicit
method of moments parameter estimation commands. However, when
utilized, the method of moment formulas tend to be straightforward and
can be easily implemented in most statistical software programs.

1.3.6.5.1. Method of Moments
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1.3.6.5.2.Maximum Likelihood

Maximum
Likelihood

Maximum likelihood estimation begins with the mathematical
expression known as a likelihood function of the sample data. Loosely
speaking, the likelihood of a set of data is the probability of obtaining
that particular set of data given the chosen probability model. This
expression contains the unknown parameters. Those values of the
parameter that maximize the sample likelihood are known as the
maximum likelihood estimates.

The reliability chapter contains some examples of the likelihood
functions for a few of the commonly used distributions in reliability
analysis.

Advantages The advantages of this method are:

Maximum likelihood provides a consistent approach to
parameter estimation problems. This means that maximum
likelihood estimates can be developed for a large variety of
estimation situations. For example, they can be applied in
reliability analysis to censored data under various censoring
models.

●   

Maximum likelihood methods have desirable mathematical and
optimality properties. Specifically,

They become minimum variance unbiased estimators as
the sample size increases. By unbiased, we mean that if
we take (a very large number of) random samples with
replacement from a population, the average value of the
parameter estimates will be theoretically exactly equal to
the population value. By minimum variance, we mean
that the estimator has the smallest variance, and thus the
narrowest confidence interval, of all estimators of that
type.

1.  

They have approximate normal distributions and
approximate sample variances that can be used to

2.  

●   

1.3.6.5.2. Maximum Likelihood
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generate confidence bounds and hypothesis tests for the
parameters.

Several popular statistical software packages provide excellent
algorithms for maximum likelihood estimates for many of the
commonly used distributions. This helps mitigate the
computational complexity of maximum likelihood estimation.

●   

Disadvantages The disadvantages of this method are:

The likelihood equations need to be specifically worked out for
a given distribution and estimation problem. The mathematics is
often non-trivial, particularly if confidence intervals for the
parameters are desired.

●   

The numerical estimation is usually non-trivial. Except for a
few cases where the maximum likelihood formulas are in fact
simple, it is generally best to rely on high quality statistical
software to obtain maximum likelihood estimates. Fortunately,
high quality maximum likelihood software is becoming
increasingly common.

●   

Maximum likelihood estimates can be heavily biased for small
samples. The optimality properties may not apply for small
samples.

●   

Maximum likelihood can be sensitive to the choice of starting
values.

●   

Software Most general purpose statistical software programs support maximum
likelihood estimation (MLE) in some form. MLE estimation can be
supported in two ways.

A software program may provide a generic function
minimization (or equivalently, maximization) capability. This is
also referred to as function optimization. Maximum likelihood
estimation is essentially a function optimization problem.

This type of capability is particularly common in mathematical
software programs.

1.  

A software program may provide MLE computations for a
specific problem. For example, it may generate ML estimates
for the parameters of a Weibull distribution.

Statistical software programs will often provide ML estimates
for many specific problems even when they do not support
general function optimization.

2.  

The advantage of function minimization software is that it can be
applied to many different MLE problems. The drawback is that you
have to specify the maximum likelihood equations to the software. As

1.3.6.5.2. Maximum Likelihood
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the functions can be non-trivial, there is potential for error in entering
the equations.

The advantage of the specific MLE procedures is that greater
efficiency and better numerical stability can often be obtained by
taking advantage of the properties of the specific estimation problem.
The specific methods often return explicit confidence intervals. In
addition, you do not have to know or specify the likelihood equations
to the software. The disadvantage is that each MLE problem must be
specifically coded.

Dataplot supports MLE for a limited number of distributions.

1.3.6.5.2. Maximum Likelihood
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1.3.6.5.3.Least Squares

Least Squares Non-linear least squares provides an alternative to maximum
likelihood.

Advantages The advantages of this method are:

Non-linear least squares software may be available in many
statistical software packages that do not support maximum
likelihood estimates.

●   

It can be applied more generally than maximum likelihood.
That is, if your software provides non-linear fitting and it has
the ability to specify the probability function you are interested
in, then you can generate least squares estimates for that
distribution. This will allow you to obtain reasonable estimates
for distributions even if the software does not provide
maximum likelihood estimates.

●   

Disadvantages The disadvantages of this method are:

It is not readily applicable to censored data.●   

It is generally considered to have less desirable optimality
properties than maximum likelihood.

●   

It can be quite sensitive to the choice of starting values.●   

Software Non-linear least squares fitting is available in many general purpose
statistical software programs. The macro developed for Dataplot can
be adapted to many software programs that provide least squares
estimation.

1.3.6.5.3. Least Squares
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1.3.6.5.4.PPCC and Probability Plots

PPCC and
Probability
Plots

The PPCC plot can be used to estimate the shape parameter of a
distribution with a single shape parameter. After finding the best value
of the shape parameter, the probability plot can be used to estimate the
location and scale parameters of a probability distribution.

Advantages The advantages of this method are:

It is based on two well-understood concepts.

The linearity (i.e., straightness) of the probability plot is a
good measure of the adequacy of the distributional fit.

1.  

The correlation coefficient between the points on the
probability plot is a good measure of the linearity of the
probability plot.

2.  

●   

It is an easy technique to implement for a wide variety of
distributions with a single shape parameter. The basic
requirement is to be able to compute the percent point function,
which is needed in the computation of both the probability plot
and the PPCC plot.

●   

The PPCC plot provides insight into the sensitivity of the shape
parameter. That is, if the PPCC plot is relatively flat in the
neighborhood of the optimal value of the shape parameter, this
is a strong indication that the fitted model will not be sensitive
to small deviations, or even large deviations in some cases, in
the value of the shape parameter.

●   

The maximum correlation value provides a method for
comparing across distributions as well as identifying the best
value of the shape parameter for a given distribution. For
example, we could use the PPCC and probability fits for the
Weibull, lognormal, and possibly several other distributions.
Comparing the maximum correlation coefficient achieved for
each distribution can help in selecting which is the best
distribution to use.

●   

1.3.6.5.4. PPCC and Probability Plots
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Disadvantages The disadvantages of this method are:

It is limited to distributions with a single shape parameter.●   

PPCC plots are not widely available in statistical software
packages other than Dataplot (Dataplot provides PPCC plots for
40+ distributions). Probability plots are generally available.
However, many statistical software packages only provide them
for a limited number of distributions.

●   

Significance levels for the correlation coefficient (i.e., if the
maximum correlation value is above a given value, then the
distribution provides an adequate fit for the data with a given
confidence level) have only been worked out for a limited
number of distributions.

●   

Case Study The airplane glass failure time case study demonstrates the use of the
PPCC and probability plots in finding the best distributional model
and the parameter estimation of the distributional model.

Other
Graphical
Methods

For reliability applications, the hazard plot and the Weibull plot are
alternative graphical methods that are commonly used to estimate
parameters.

1.3.6.5.4. PPCC and Probability Plots
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.6.Gallery of Distributions

Gallery of
Common
Distributions

Detailed information on a few of the most common distributions is
available below. There are a large number of distributions used in
statistical applications. It is beyond the scope of this Handbook to
discuss more than a few of these. Two excellent sources for additional
detailed information on a large array of distributions are Johnson,
Kotz, and Balakrishnan and Evans, Hastings, and Peacock. Equations
for the probability functions are given for the standard form of the
distribution. Formulas exist for defining the functions with location
and scale parameters in terms of the standard form of the distribution.

The sections on parameter estimation are restricted to the method of
moments and maximum likelihood. This is because the least squares
and PPCC and probability plot estimation procedures are generic. The
maximum likelihood equations are not listed if they involve solving
simultaneous equations. This is because these methods require
sophisticated computer software to solve. Except where the maximum
likelihood estimates are trivial, you should depend on a statistical
software program to compute them. References are given for those
who are interested.

Be aware that different sources may give formulas that are different
from those shown here. In some cases, these are simply
mathematically equivalent formulations. In other cases, a different
parameterization may be used.

Continuous
Distributions

Normal Distribution Uniform Distribution Cauchy Distribution

1.3.6.6. Gallery of Distributions
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t Distribution F Distribution Chi-Square
Distribution

Exponential
Distribution

Weibull Distribution Lognormal
Distribution

Fatigue Life
Distribution

Gamma Distribution Double Exponential
Distribution

Power Normal
Distribution

Power Lognormal
Distribution

Tukey-Lambda
Distribution

Extreme Value
Type I Distribution

Beta Distribution

1.3.6.6. Gallery of Distributions
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Discrete
Distributions

Binomial
Distribution

Poisson Distribution

1.3.6.6. Gallery of Distributions
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.1.Normal Distribution

Probability
Density
Function

The general formula for the probability density function of the normal
distribution is

where  is the location parameter and  is the scale parameter. The case
where  = 0 and  = 1 is called the standard normal distribution. The
equation for the standard normal distribution is

Since the general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulas in this section
are given for the standard form of the function.

The following is the plot of the standard normal probability density
function.

1.3.6.6.1. Normal Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the normal
distribution does not exist in a simple closed formula. It is computed
numerically.

The following is the plot of the normal cumulative distribution function.

1.3.6.6.1. Normal Distribution
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Percent
Point
Function

The formula for the percent point function of the normal distribution
does not exist in a simple closed formula. It is computed numerically.

The following is the plot of the normal percent point function.

Hazard
Function

The formula for the hazard function of the normal distribution is

where  is the cumulative distribution function of the standard normal

distribution and  is the probability density function of the standard
normal distribution.

The following is the plot of the normal hazard function.

1.3.6.6.1. Normal Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm (3 of 7) [5/1/2006 9:57:55 AM]



Cumulative
Hazard
Function

The normal cumulative hazard function can be computed from the
normal cumulative distribution function.

The following is the plot of the normal cumulative hazard function.

1.3.6.6.1. Normal Distribution
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Survival
Function

The normal survival function can be computed from the normal
cumulative distribution function.

The following is the plot of the normal survival function.

Inverse
Survival
Function

The normal inverse survival function can be computed from the normal
percent point function.

The following is the plot of the normal inverse survival function.

1.3.6.6.1. Normal Distribution
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Common
Statistics

Mean The location parameter .
Median The location parameter .
Mode The location parameter .
Range Infinity in both directions.
Standard Deviation The scale parameter .
Coefficient of
Variation
Skewness 0
Kurtosis 3

Parameter
Estimation

The location and scale parameters of the normal distribution can be
estimated with the sample mean and sample standard deviation,
respectively.

Comments For both theoretical and practical reasons, the normal distribution is
probably the most important distribution in statistics. For example,

Many classical statistical tests are based on the assumption that
the data follow a normal distribution. This assumption should be
tested before applying these tests.

●   

In modeling applications, such as linear and non-linear regression,
the error term is often assumed to follow a normal distribution
with fixed location and scale.

●   

The normal distribution is used to find significance levels in many
hypothesis tests and confidence intervals.

●   

1.3.6.6.1. Normal Distribution
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Theroretical
Justification
- Central
Limit
Theorem

The normal distribution is widely used. Part of the appeal is that it is
well behaved and mathematically tractable. However, the central limit
theorem provides a theoretical basis for why it has wide applicability.

The central limit theorem basically states that as the sample size (N)
becomes large, the following occur:

The sampling distribution of the mean becomes approximately
normal regardless of the distribution of the original variable.

1.  

The sampling distribution of the mean is centered at the
population mean, , of the original variable. In addition, the
standard deviation of the sampling distribution of the mean

approaches .

2.  

Software Most general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the normal
distribution.

1.3.6.6.1. Normal Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
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1.3.6.6.2.Uniform Distribution

Probability
Density
Function

The general formula for the probability density function of the uniform
distribution is

where A is the location parameter and (B - A) is the scale parameter. The case
where A = 0 and B = 1 is called the standard uniform distribution. The
equation for the standard uniform distribution is

Since the general form of probability functions can be expressed in terms of
the standard distribution, all subsequent formulas in this section are given for
the standard form of the function.

The following is the plot of the uniform probability density function.

1.3.6.6.2. Uniform Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the uniform
distribution is

The following is the plot of the uniform cumulative distribution function.

1.3.6.6.2. Uniform Distribution
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Percent
Point
Function

The formula for the percent point function of the uniform distribution is

The following is the plot of the uniform percent point function.

Hazard
Function

The formula for the hazard function of the uniform distribution is

The following is the plot of the uniform hazard function.

1.3.6.6.2. Uniform Distribution
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Cumulative
Hazard
Function

The formula for the cumulative hazard function of the uniform distribution is

The following is the plot of the uniform cumulative hazard function.

1.3.6.6.2. Uniform Distribution
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Survival
Function

The uniform survival function can be computed from the uniform cumulative
distribution function.

The following is the plot of the uniform survival function.

Inverse
Survival
Function

The uniform inverse survival function can be computed from the uniform
percent point function.

The following is the plot of the uniform inverse survival function.

1.3.6.6.2. Uniform Distribution
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Common
Statistics

Mean (A + B)/2
Median (A + B)/2
Range B - A
Standard Deviation

Coefficient of
Variation

Skewness 0
Kurtosis 9/5

Parameter
Estimation

The method of moments estimators for A and B are

The maximum likelihood estimators for A and B are

1.3.6.6.2. Uniform Distribution
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Comments The uniform distribution defines equal probability over a given range for a
continuous distribution. For this reason, it is important as a reference
distribution.

One of the most important applications of the uniform distribution is in the
generation of random numbers. That is, almost all random number generators
generate random numbers on the (0,1) interval. For other distributions, some
transformation is applied to the uniform random numbers.

Software Most general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the uniform distribution.

1.3.6.6.2. Uniform Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.3.Cauchy Distribution

Probability
Density
Function

The general formula for the probability density function of the Cauchy
distribution is

where t is the location parameter and s is the scale parameter. The case
where t = 0 and s = 1 is called the standard Cauchy distribution. The
equation for the standard Cauchy distribution reduces to

Since the general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulas in this section
are given for the standard form of the function.

The following is the plot of the standard Cauchy probability density
function.

1.3.6.6.3. Cauchy Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function for the Cauchy
distribution is

The following is the plot of the Cauchy cumulative distribution function.

1.3.6.6.3. Cauchy Distribution
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Percent
Point
Function

The formula for the percent point function of the Cauchy distribution is

The following is the plot of the Cauchy percent point function.

Hazard
Function

The Cauchy hazard function can be computed from the Cauchy
probability density and cumulative distribution functions.

The following is the plot of the Cauchy hazard function.

1.3.6.6.3. Cauchy Distribution
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Cumulative
Hazard
Function

The Cauchy cumulative hazard function can be computed from the
Cauchy cumulative distribution function.

The following is the plot of the Cauchy cumulative hazard function.

1.3.6.6.3. Cauchy Distribution
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Survival
Function

The Cauchy survival function can be computed from the Cauchy
cumulative distribution function.

The following is the plot of the Cauchy survival function.

Inverse
Survival
Function

The Cauchy inverse survival function can be computed from the Cauchy
percent point function.

The following is the plot of the Cauchy inverse survival function.

1.3.6.6.3. Cauchy Distribution
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Common
Statistics

Mean The mean is undefined.
Median The location parameter t.
Mode The location parameter t.
Range Infinity in both directions.
Standard Deviation The standard deviation is undefined.
Coefficient of
Variation

The coefficient of variation is undefined.

Skewness The skewness is undefined.
Kurtosis The kurtosis is undefined.

Parameter
Estimation

The likelihood functions for the Cauchy maximum likelihood estimates
are given in chapter 16 of Johnson, Kotz, and Balakrishnan. These
equations typically must be solved numerically on a computer.

1.3.6.6.3. Cauchy Distribution
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Comments The Cauchy distribution is important as an example of a pathological
case. Cauchy distributions look similar to a normal distribution.
However, they have much heavier tails. When studying hypothesis tests
that assume normality, seeing how the tests perform on data from a
Cauchy distribution is a good indicator of how sensitive the tests are to
heavy-tail departures from normality. Likewise, it is a good check for
robust techniques that are designed to work well under a wide variety of
distributional assumptions.

The mean and standard deviation of the Cauchy distribution are
undefined. The practical meaning of this is that collecting 1,000 data
points gives no more accurate an estimate of the mean and standard
deviation than does a single point.

Software Many general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the Cauchy
distribution.

1.3.6.6.3. Cauchy Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
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1.3.6.6.4. t Distribution

Probability
Density
Function

The formula for the probability density function of the t distribution is

where  is the beta function and  is a positive integer shape parameter.
The formula for the beta function is

In a testing context, the t distribution is treated as a "standardized
distribution" (i.e., no location or scale parameters). However, in a
distributional modeling context (as with other probability distributions),
the t distribution itself can be transformed with a location parameter, ,
and a scale parameter, .

The following is the plot of the t probability density function for 4
different values of the shape parameter.

1.3.6.6.4. t Distribution
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These plots all have a similar shape. The difference is in the heaviness
of the tails. In fact, the t distribution with  equal to 1 is a Cauchy
distribution. The t distribution approaches a normal distribution as 
becomes large. The approximation is quite good for values of  > 30.

Cumulative
Distribution
Function

The formula for the cumulative distribution function of the t distribution
is complicated and is not included here. It is given in the Evans,
Hastings, and Peacock book.

The following are the plots of the t cumulative distribution function with
the same values of  as the pdf plots above.

1.3.6.6.4. t Distribution
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Percent
Point
Function

The formula for the percent point function of the t distribution does not
exist in a simple closed form. It is computed numerically.

The following are the plots of the t percent point function with the same
values of  as the pdf plots above.

1.3.6.6.4. t Distribution
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Other
Probability
Functions

Since the t distribution is typically used to develop hypothesis tests and
confidence intervals and rarely for modeling applications, we omit the
formulas and plots for the hazard, cumulative hazard, survival, and
inverse survival probability functions.

Common
Statistics

Mean 0 (It is undefined for  equal to 1.)
Median 0
Mode 0
Range Infinity in both directions.
Standard Deviation

It is undefined for  equal to 1 or 2.
Coefficient of
Variation

Undefined

Skewness 0. It is undefined for  less than or equal to 3.
However, the t distribution is symmetric in all
cases.

Kurtosis

It is undefined for  less than or equal to 4.

Parameter
Estimation

Since the t distribution is typically used to develop hypothesis tests and
confidence intervals and rarely for modeling applications, we omit any
discussion of parameter estimation.

Comments The t distribution is used in many cases for the critical regions for
hypothesis tests and in determining confidence intervals. The most
common example is testing if data are consistent with the assumed
process mean.

Software Most general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the t distribution.

1.3.6.6.4. t Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.5.F Distribution

Probability
Density
Function

The F distribution is the ratio of two chi-square distributions with
degrees of freedom  and , respectively, where each chi-square has
first been divided by its degrees of freedom. The formula for the
probability density function of the F distribution is

where  and  are the shape parameters and  is the gamma function.
The formula for the gamma function is

In a testing context, the F distribution is treated as a "standardized
distribution" (i.e., no location or scale parameters). However, in a
distributional modeling context (as with other probability distributions),
the F distribution itself can be transformed with a location parameter, ,
and a scale parameter, .

The following is the plot of the F probability density function for 4
different values of the shape parameters.

1.3.6.6.5. F Distribution
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Cumulative
Distribution
Function

The formula for the Cumulative distribution function of the F
distribution is

where k = / (  + *x) and Ik is the incomplete beta function. The
formula for the incomplete beta function is

where B is the beta function

The following is the plot of the F cumulative distribution function with
the same values of  and  as the pdf plots above.

1.3.6.6.5. F Distribution
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Percent
Point
Function

The formula for the percent point function of the F distribution does not
exist in a simple closed form. It is computed numerically.

The following is the plot of the F percent point function with the same
values of  and  as the pdf plots above.

1.3.6.6.5. F Distribution
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Other
Probability
Functions

Since the F distribution is typically used to develop hypothesis tests and
confidence intervals and rarely for modeling applications, we omit the
formulas and plots for the hazard, cumulative hazard, survival, and
inverse survival probability functions.

Common
Statistics

The formulas below are for the case where the location parameter is
zero and the scale parameter is one.

Mean

Mode

Range 0 to positive infinity
Standard Deviation

Coefficient of
Variation

Skewness

Parameter
Estimation

Since the F distribution is typically used to develop hypothesis tests and
confidence intervals and rarely for modeling applications, we omit any
discussion of parameter estimation.

Comments The F distribution is used in many cases for the critical regions for
hypothesis tests and in determining confidence intervals. Two common
examples are the analysis of variance and the F test to determine if the
variances of two populations are equal.

Software Most general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the F distribution.

1.3.6.6.5. F Distribution
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1.3.6.6.6.Chi-Square Distribution

Probability
Density
Function

The chi-square distribution results when  independent variables with
standard normal distributions are squared and summed. The formula for
the probability density function of the chi-square distribution is

where  is the shape parameter and  is the gamma function. The
formula for the gamma function is

In a testing context, the chi-square distribution is treated as a
"standardized distribution" (i.e., no location or scale parameters).
However, in a distributional modeling context (as with other probability
distributions), the chi-square distribution itself can be transformed with
a location parameter, , and a scale parameter, .

The following is the plot of the chi-square probability density function
for 4 different values of the shape parameter.

1.3.6.6.6. Chi-Square Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the chi-square
distribution is

where  is the gamma function defined above and  is the incomplete
gamma function. The formula for the incomplete gamma function is

The following is the plot of the chi-square cumulative distribution
function with the same values of  as the pdf plots above.

1.3.6.6.6. Chi-Square Distribution
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Percent
Point
Function

The formula for the percent point function of the chi-square distribution
does not exist in a simple closed form. It is computed numerically.

The following is the plot of the chi-square percent point function with
the same values of  as the pdf plots above.

1.3.6.6.6. Chi-Square Distribution
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Other
Probability
Functions

Since the chi-square distribution is typically used to develop hypothesis
tests and confidence intervals and rarely for modeling applications, we
omit the formulas and plots for the hazard, cumulative hazard, survival,
and inverse survival probability functions.

Common
Statistics

Mean
Median approximately  - 2/3 for large 
Mode
Range 0 to positive infinity
Standard Deviation

Coefficient of
Variation

Skewness

Kurtosis

Parameter
Estimation

Since the chi-square distribution is typically used to develop hypothesis
tests and confidence intervals and rarely for modeling applications, we
omit any discussion of parameter estimation.

Comments The chi-square distribution is used in many cases for the critical regions
for hypothesis tests and in determining confidence intervals. Two
common examples are the chi-square test for independence in an RxC
contingency table and the chi-square test to determine if the standard
deviation of a population is equal to a pre-specified value.

Software Most general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the chi-square
distribution.

1.3.6.6.6. Chi-Square Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.7.Exponential Distribution

Probability
Density
Function

The general formula for the probability density function of the
exponential distribution is

where  is the location parameter and  is the scale parameter (the

scale parameter is often referred to as  which equals ). The case
where  = 0 and  = 1 is called the standard exponential distribution.
The equation for the standard exponential distribution is

The general form of probability functions can be expressed in terms of
the standard distribution. Subsequent formulas in this section are given
for the 1-parameter (i.e., with scale parameter) form of the function.

The following is the plot of the exponential probability density function.

1.3.6.6.7. Exponential Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the exponential
distribution is

The following is the plot of the exponential cumulative distribution
function.

1.3.6.6.7. Exponential Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm (2 of 7) [5/1/2006 9:58:00 AM]



Percent
Point
Function

The formula for the percent point function of the exponential
distribution is

The following is the plot of the exponential percent point function.

Hazard
Function

The formula for the hazard function of the exponential distribution is

The following is the plot of the exponential hazard function.

1.3.6.6.7. Exponential Distribution
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Cumulative
Hazard
Function

The formula for the cumulative hazard function of the exponential
distribution is

The following is the plot of the exponential cumulative hazard function.

1.3.6.6.7. Exponential Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm (4 of 7) [5/1/2006 9:58:00 AM]



Survival
Function

The formula for the survival function of the exponential distribution is

The following is the plot of the exponential survival function.

Inverse
Survival
Function

The formula for the inverse survival function of the exponential
distribution is

The following is the plot of the exponential inverse survival function.

1.3.6.6.7. Exponential Distribution
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Common
Statistics

Mean

Median

Mode Zero
Range Zero to plus infinity
Standard Deviation

Coefficient of
Variation

1

Skewness 2
Kurtosis 9

Parameter
Estimation

For the full sample case, the maximum likelihood estimator of the scale
parameter is the sample mean. Maximum likelihood estimation for the
exponential distribution is discussed in the chapter on reliability
(Chapter 8). It is also discussed in chapter 19 of Johnson, Kotz, and
Balakrishnan.

Comments The exponential distribution is primarily used in reliability applications.
The exponential distribution is used to model data with a constant
failure rate (indicated by the hazard plot which is simply equal to a
constant).

Software Most general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the exponential
distribution.

1.3.6.6.7. Exponential Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.8.Weibull Distribution

Probability
Density
Function

The formula for the probability density function of the general Weibull distribution
is

where  is the shape parameter,  is the location parameter and  is the scale
parameter. The case where  = 0 and  = 1 is called the standard Weibull
distribution. The case where  = 0 is called the 2-parameter Weibull distribution.
The equation for the standard Weibull distribution reduces to

Since the general form of probability functions can be expressed in terms of the
standard distribution, all subsequent formulas in this section are given for the
standard form of the function.

The following is the plot of the Weibull probability density function.

1.3.6.6.8. Weibull Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the Weibull distribution is

The following is the plot of the Weibull cumulative distribution function with the
same values of  as the pdf plots above.

1.3.6.6.8. Weibull Distribution
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Percent
Point
Function

The formula for the percent point function of the Weibull distribution is

The following is the plot of the Weibull percent point function with the same
values of  as the pdf plots above.

Hazard
Function

The formula for the hazard function of the Weibull distribution is

The following is the plot of the Weibull hazard function with the same values of 
as the pdf plots above.

1.3.6.6.8. Weibull Distribution
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Cumulative
Hazard
Function

The formula for the cumulative hazard function of the Weibull distribution is

The following is the plot of the Weibull cumulative hazard function with the same
values of  as the pdf plots above.

1.3.6.6.8. Weibull Distribution
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Survival
Function

The formula for the survival function of the Weibull distribution is

The following is the plot of the Weibull survival function with the same values of
 as the pdf plots above.

Inverse
Survival
Function

The formula for the inverse survival function of the Weibull distribution is

The following is the plot of the Weibull inverse survival function with the same
values of  as the pdf plots above.

1.3.6.6.8. Weibull Distribution
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Common
Statistics

The formulas below are with the location parameter equal to zero and the scale
parameter equal to one.

Mean

where  is the gamma function

Median

Mode

Range Zero to positive infinity.
Standard Deviation

Coefficient of Variation

1.3.6.6.8. Weibull Distribution
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Parameter
Estimation

Maximum likelihood estimation for the Weibull distribution is discussed in the
Reliability chapter (Chapter 8). It is also discussed in Chapter 21 of Johnson, Kotz,
and Balakrishnan.

Comments The Weibull distribution is used extensively in reliability applications to model
failure times.

Software Most general purpose statistical software programs, including Dataplot, support at
least some of the probability functions for the Weibull distribution.

1.3.6.6.8. Weibull Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.9. Lognormal Distribution

Probability
Density
Function

A variable X is lognormally distributed if Y = LN(X) is normally
distributed with "LN" denoting the natural logarithm. The general
formula for the probability density function of the lognormal
distribution is

where  is the shape parameter,  is the location parameter and m is the
scale parameter. The case where  = 0 and m = 1 is called the standard
lognormal distribution. The case where  equals zero is called the
2-parameter lognormal distribution.

The equation for the standard lognormal distribution is

Since the general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulas in this section
are given for the standard form of the function.

The following is the plot of the lognormal probability density function
for four values of .

1.3.6.6.9. Lognormal Distribution
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There are several common parameterizations of the lognormal
distribution. The form given here is from Evans, Hastings, and Peacock.

Cumulative
Distribution
Function

The formula for the cumulative distribution function of the lognormal
distribution is

where  is the cumulative distribution function of the normal
distribution.

The following is the plot of the lognormal cumulative distribution
function with the same values of  as the pdf plots above.

1.3.6.6.9. Lognormal Distribution
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Percent
Point
Function

The formula for the percent point function of the lognormal distribution
is

where  is the percent point function of the normal distribution.

The following is the plot of the lognormal percent point function with
the same values of  as the pdf plots above.

1.3.6.6.9. Lognormal Distribution
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Hazard
Function

The formula for the hazard function of the lognormal distribution is

where  is the probability density function of the normal distribution
and  is the cumulative distribution function of the normal distribution.

The following is the plot of the lognormal hazard function with the same
values of  as the pdf plots above.

Cumulative
Hazard
Function

The formula for the cumulative hazard function of the lognormal
distribution is

where  is the cumulative distribution function of the normal
distribution.

The following is the plot of the lognormal cumulative hazard function
with the same values of  as the pdf plots above.

1.3.6.6.9. Lognormal Distribution
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Survival
Function

The formula for the survival function of the lognormal distribution is

where  is the cumulative distribution function of the normal
distribution.

The following is the plot of the lognormal survival function with the
same values of  as the pdf plots above.

1.3.6.6.9. Lognormal Distribution
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Inverse
Survival
Function

The formula for the inverse survival function of the lognormal
distribution is

where  is the percent point function of the normal distribution.

The following is the plot of the lognormal inverse survival function with
the same values of  as the pdf plots above.

1.3.6.6.9. Lognormal Distribution
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Common
Statistics

The formulas below are with the location parameter equal to zero and
the scale parameter equal to one.

Mean

Median Scale parameter m (= 1 if scale parameter not
specified).

Mode

Range Zero to positive infinity
Standard Deviation

Skewness

Kurtosis

Coefficient of
Variation

Parameter
Estimation

The maximum likelihood estimates for the scale parameter, m, and the
shape parameter, , are

and

where

If the location parameter is known, it can be subtracted from the original
data points before computing the maximum likelihood estimates of the
shape and scale parameters.

Comments The lognormal distribution is used extensively in reliability applications
to model failure times. The lognormal and Weibull distributions are
probably the most commonly used distributions in reliability
applications.

Software Most general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the lognormal
distribution.

1.3.6.6.9. Lognormal Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.10.Fatigue Life Distribution

Probability
Density
Function

The fatigue life distribution is also commonly known as the Birnbaum-Saunders
distribution. There are several alternative formulations of the fatigue life
distribution in the literature.

The general formula for the probability density function of the fatigue life
distribution is

where  is the shape parameter,  is the location parameter,  is the scale

parameter,  is the probability density function of the standard normal
distribution, and  is the cumulative distribution function of the standard normal
distribution. The case where  = 0 and  = 1 is called the standard fatigue life
distribution. The equation for the standard fatigue life distribution reduces to

Since the general form of probability functions can be expressed in terms of the
standard distribution, all subsequent formulas in this section are given for the
standard form of the function.

The following is the plot of the fatigue life probability density function.

1.3.6.6.10. Fatigue Life Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the fatigue life
distribution is

where  is the cumulative distribution function of the standard normal
distribution. The following is the plot of the fatigue life cumulative distribution
function with the same values of  as the pdf plots above.

1.3.6.6.10. Fatigue Life Distribution
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Percent
Point
Function

The formula for the percent point function of the fatigue life distribution is

where  is the percent point function of the standard normal distribution. The
following is the plot of the fatigue life percent point function with the same
values of  as the pdf plots above.

1.3.6.6.10. Fatigue Life Distribution
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Hazard
Function

The fatigue life hazard function can be computed from the fatigue life probability
density and cumulative distribution functions.

The following is the plot of the fatigue life hazard function with the same values
of  as the pdf plots above.

Cumulative
Hazard
Function

The fatigue life cumulative hazard function can be computed from the fatigue life
cumulative distribution function.

The following is the plot of the fatigue cumulative hazard function with the same
values of  as the pdf plots above.

1.3.6.6.10. Fatigue Life Distribution
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Survival
Function

The fatigue life survival function can be computed from the fatigue life
cumulative distribution function.

The following is the plot of the fatigue survival function with the same values of
 as the pdf plots above.

1.3.6.6.10. Fatigue Life Distribution
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Inverse
Survival
Function

The fatigue life inverse survival function can be computed from the fatigue life
percent point function.

The following is the plot of the gamma inverse survival function with the same
values of  as the pdf plots above.

Common
Statistics

The formulas below are with the location parameter equal to zero and the scale
parameter equal to one.

Mean

Range Zero to positive infinity.
Standard Deviation

Coefficient of Variation

Parameter
Estimation

Maximum likelihood estimation for the fatigue life distribution is discussed in the
Reliability chapter.

Comments The fatigue life distribution is used extensively in reliability applications to model
failure times.

1.3.6.6.10. Fatigue Life Distribution
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Software Some general purpose statistical software programs, including Dataplot, support
at least some of the probability functions for the fatigue life distribution. Support
for this distribution is likely to be available for statistical programs that
emphasize reliability applications.

1.3.6.6.10. Fatigue Life Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.11.Gamma Distribution

Probability
Density
Function

The general formula for the probability density function of the gamma
distribution is

where  is the shape parameter,  is the location parameter,  is the
scale parameter, and  is the gamma function which has the formula

The case where  = 0 and  = 1 is called the standard gamma
distribution. The equation for the standard gamma distribution reduces
to

Since the general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulas in this section
are given for the standard form of the function.

The following is the plot of the gamma probability density function.

1.3.6.6.11. Gamma Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the gamma
distribution is

where  is the gamma function defined above and  is the
incomplete gamma function. The incomplete gamma function has the
formula

The following is the plot of the gamma cumulative distribution function
with the same values of  as the pdf plots above.

1.3.6.6.11. Gamma Distribution
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Percent
Point
Function

The formula for the percent point function of the gamma distribution
does not exist in a simple closed form. It is computed numerically.

The following is the plot of the gamma percent point function with the
same values of  as the pdf plots above.

1.3.6.6.11. Gamma Distribution
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Hazard
Function

The formula for the hazard function of the gamma distribution is

The following is the plot of the gamma hazard function with the same
values of  as the pdf plots above.

Cumulative
Hazard
Function

The formula for the cumulative hazard function of the gamma
distribution is

where  is the gamma function defined above and  is the
incomplete gamma function defined above.

The following is the plot of the gamma cumulative hazard function with
the same values of  as the pdf plots above.

1.3.6.6.11. Gamma Distribution
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Survival
Function

The formula for the survival function of the gamma distribution is

where  is the gamma function defined above and  is the
incomplete gamma function defined above.

The following is the plot of the gamma survival function with the same
values of  as the pdf plots above.

1.3.6.6.11. Gamma Distribution
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Inverse
Survival
Function

The gamma inverse survival function does not exist in simple closed
form. It is computed numberically.

The following is the plot of the gamma inverse survival function with
the same values of  as the pdf plots above.

1.3.6.6.11. Gamma Distribution
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Common
Statistics

The formulas below are with the location parameter equal to zero and
the scale parameter equal to one.

Mean
Mode
Range Zero to positive infinity.
Standard Deviation

Skewness

Kurtosis

Coefficient of
Variation

Parameter
Estimation

The method of moments estimators of the gamma distribution are

where  and s are the sample mean and standard deviation, respectively.

The equations for the maximum likelihood estimation of the shape and
scale parameters are given in Chapter 18 of Evans, Hastings, and
Peacock and Chapter 17 of Johnson, Kotz, and Balakrishnan. These
equations need to be solved numerically; this is typically accomplished
by using statistical software packages.

Software Some general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the gamma
distribution.

1.3.6.6.11. Gamma Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.12.Double Exponential Distribution

Probability
Density
Function

The general formula for the probability density function of the double
exponential distribution is

where  is the location parameter and  is the scale parameter. The

case where  = 0 and  = 1 is called the standard double exponential
distribution. The equation for the standard double exponential
distribution is

Since the general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulas in this section
are given for the standard form of the function.

The following is the plot of the double exponential probability density
function.

1.3.6.6.12. Double Exponential Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the double
exponential distribution is

The following is the plot of the double exponential cumulative
distribution function.

1.3.6.6.12. Double Exponential Distribution
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Percent
Point
Function

The formula for the percent point function of the double exponential
distribution is

The following is the plot of the double exponential percent point
function.

Hazard
Function

The formula for the hazard function of the double exponential
distribution is

The following is the plot of the double exponential hazard function.

1.3.6.6.12. Double Exponential Distribution
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Cumulative
Hazard
Function

The formula for the cumulative hazard function of the double
exponential distribution is

The following is the plot of the double exponential cumulative hazard
function.

1.3.6.6.12. Double Exponential Distribution
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Survival
Function

The double exponential survival function can be computed from the
cumulative distribution function of the double exponential distribution.

The following is the plot of the double exponential survival function.

Inverse
Survival
Function

The formula for the inverse survival function of the double exponential
distribution is

The following is the plot of the double exponential inverse survival
function.

1.3.6.6.12. Double Exponential Distribution
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Common
Statistics

Mean
Median
Mode
Range Negative infinity to positive infinity
Standard Deviation

Skewness 0
Kurtosis 6
Coefficient of
Variation

Parameter
Estimation

The maximum likelihood estimators of the location and scale parameters
of the double exponential distribution are

where  is the sample median.

Software Some general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the double
exponential distribution.

1.3.6.6.12. Double Exponential Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.13.Power Normal Distribution

Probability
Density
Function

The formula for the probability density function of the standard form of
the power normal distribution is

where p is the shape parameter (also referred to as the power parameter),
 is the cumulative distribution function of the standard normal

distribution, and  is the probability density function of the standard
normal distribution.

As with other probability distributions, the power normal distribution
can be transformed with a location parameter, , and a scale parameter,

. We omit the equation for the general form of the power normal
distribution. Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent formulas
in this section are given for the standard form of the function.

The following is the plot of the power normal probability density
function with four values of p.

1.3.6.6.13. Power Normal Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the power
normal distribution is

where  is the cumulative distribution function of the standard normal
distribution.

The following is the plot of the power normal cumulative distribution
function with the same values of p as the pdf plots above.

1.3.6.6.13. Power Normal Distribution
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Percent
Point
Function

The formula for the percent point function of the power normal
distribution is

where  is the percent point function of the standard normal
distribution.

The following is the plot of the power normal percent point function
with the same values of p as the pdf plots above.

1.3.6.6.13. Power Normal Distribution
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Hazard
Function

The formula for the hazard function of the power normal distribution is

The following is the plot of the power normal hazard function with the
same values of p as the pdf plots above.

1.3.6.6.13. Power Normal Distribution
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Cumulative
Hazard
Function

The formula for the cumulative hazard function of the power normal
distribution is

The following is the plot of the power normal cumulative hazard
function with the same values of p as the pdf plots above.

Survival
Function

The formula for the survival function of the power normal distribution is

The following is the plot of the power normal survival function with the
same values of p as the pdf plots above.

1.3.6.6.13. Power Normal Distribution
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Inverse
Survival
Function

The formula for the inverse survival function of the power normal
distribution is

The following is the plot of the power normal inverse survival function
with the same values of p as the pdf plots above.

1.3.6.6.13. Power Normal Distribution
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Common
Statistics

The statistics for the power normal distribution are complicated and
require tables. Nelson discusses the mean, median, mode, and standard
deviation of the power normal distribution and provides references to
the appropriate tables.

Software Most general purpose statistical software programs do not support the
probability functions for the power normal distribution. Dataplot does
support them.

1.3.6.6.13. Power Normal Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.14.Power Lognormal Distribution

Probability
Density
Function

The formula for the probability density function of the standard form of the power
lognormal distribution is

where p (also referred to as the power parameter) and  are the shape parameters,

 is the cumulative distribution function of the standard normal distribution, and 
is the probability density function of the standard normal distribution.

As with other probability distributions, the power lognormal distribution can be
transformed with a location parameter, , and a scale parameter, B. We omit the
equation for the general form of the power lognormal distribution. Since the
general form of probability functions can be expressed in terms of the standard
distribution, all subsequent formulas in this section are given for the standard form
of the function.

The following is the plot of the power lognormal probability density function with
four values of p and  set to 1.

1.3.6.6.14. Power Lognormal Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the power lognormal
distribution is

where  is the cumulative distribution function of the standard normal distribution.

The following is the plot of the power lognormal cumulative distribution function
with the same values of p as the pdf plots above.

1.3.6.6.14. Power Lognormal Distribution
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Percent
Point
Function

The formula for the percent point function of the power lognormal distribution is

where  is the percent point function of the standard normal distribution.

The following is the plot of the power lognormal percent point function with the
same values of p as the pdf plots above.

1.3.6.6.14. Power Lognormal Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366e.htm (3 of 6) [5/1/2006 9:58:19 AM]



Hazard
Function

The formula for the hazard function of the power lognormal distribution is

where  is the cumulative distribution function of the standard normal distribution,

and  is the probability density function of the standard normal distribution.

Note that this is simply a multiple (p) of the lognormal hazard function.

The following is the plot of the power lognormal hazard function with the same
values of p as the pdf plots above.

Cumulative
Hazard
Function

The formula for the cumulative hazard function of the power lognormal
distribution is

The following is the plot of the power lognormal cumulative hazard function with
the same values of p as the pdf plots above.

1.3.6.6.14. Power Lognormal Distribution
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Survival
Function

The formula for the survival function of the power lognormal distribution is

The following is the plot of the power lognormal survival function with the same
values of p as the pdf plots above.

1.3.6.6.14. Power Lognormal Distribution
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Inverse
Survival
Function

The formula for the inverse survival function of the power lognormal distribution is

The following is the plot of the power lognormal inverse survival function with the
same values of p as the pdf plots above.

Common
Statistics

The statistics for the power lognormal distribution are complicated and require
tables. Nelson discusses the mean, median, mode, and standard deviation of the
power lognormal distribution and provides references to the appropriate tables.

Parameter
Estimation

Nelson discusses maximum likelihood estimation for the power lognormal
distribution. These estimates need to be performed with computer software.
Software for maximum likelihood estimation of the parameters of the power
lognormal distribution is not as readily available as for other reliability
distributions such as the exponential, Weibull, and lognormal.

Software Most general purpose statistical software programs do not support the probability
functions for the power lognormal distribution. Dataplot does support them.

1.3.6.6.14. Power Lognormal Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.15.Tukey-Lambda Distribution

Probability
Density
Function

The Tukey-Lambda density function does not have a simple, closed
form. It is computed numerically.

The Tukey-Lambda distribution has the shape parameter . As with
other probability distributions, the Tukey-Lambda distribution can be
transformed with a location parameter, , and a scale parameter, .
Since the general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulas in this section
are given for the standard form of the function.

The following is the plot of the Tukey-Lambda probability density
function for four values of .

1.3.6.6.15. Tukey-Lambda Distribution
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Cumulative
Distribution
Function

The Tukey-Lambda distribution does not have a simple, closed form. It
is computed numerically.

The following is the plot of the Tukey-Lambda cumulative distribution
function with the same values of  as the pdf plots above.

Percent
Point
Function

The formula for the percent point function of the standard form of the
Tukey-Lambda distribution is

The following is the plot of the Tukey-Lambda percent point function
with the same values of  as the pdf plots above.

1.3.6.6.15. Tukey-Lambda Distribution
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Other
Probability
Functions

The Tukey-Lambda distribution is typically used to identify an
appropriate distribution (see the comments below) and not used in
statistical models directly. For this reason, we omit the formulas, and
plots for the hazard, cumulative hazard, survival, and inverse survival
functions. We also omit the common statistics and parameter estimation
sections.

Comments The Tukey-Lambda distribution is actually a family of distributions that
can approximate a number of common distributions. For example,

 = -1 approximately Cauchy

 = 0 exactly logistic

 = 0.14 approximately normal

 = 0.5 U-shaped

 = 1 exactly uniform (from -1 to +1)

The most common use of this distribution is to generate a
Tukey-Lambda PPCC plot of a data set. Based on the ppcc plot, an
appropriate model for the data is suggested. For example, if the
maximum correlation occurs for a value of  at or near 0.14, then the
data can be modeled with a normal distribution. Values of  less than
this imply a heavy-tailed distribution (with -1 approximating a Cauchy).
That is, as the optimal value of  goes from 0.14 to -1, increasingly
heavy tails are implied. Similarly, as the optimal value of  becomes
greater than 0.14, shorter tails are implied.

1.3.6.6.15. Tukey-Lambda Distribution
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As the Tukey-Lambda distribution is a symmetric distribution, the use
of the Tukey-Lambda PPCC plot to determine a reasonable distribution
to model the data only applies to symmetric distributuins. A histogram
of the data should provide evidence as to whether the data can be
reasonably modeled with a symmetric distribution.

Software Most general purpose statistical software programs do not support the
probability functions for the Tukey-Lambda distribution. Dataplot does
support them.

1.3.6.6.15. Tukey-Lambda Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.16.Extreme Value Type I
Distribution

Probability
Density
Function

The extreme value type I distribution has two forms. One is based on the
smallest extreme and the other is based on the largest extreme. We call
these the minimum and maximum cases, respectively. Formulas and
plots for both cases are given. The extreme value type I distribution is
also referred to as the Gumbel distribution.

The general formula for the probability density function of the Gumbel
(minimum) distribution is

where  is the location parameter and  is the scale parameter. The

case where  = 0 and  = 1 is called the standard Gumbel
distribution. The equation for the standard Gumbel distribution
(minimum) reduces to

The following is the plot of the Gumbel probability density function for
the minimum case.

1.3.6.6.16. Extreme Value Type I Distribution
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The general formula for the probability density function of the Gumbel
(maximum) distribution is

where  is the location parameter and  is the scale parameter. The

case where  = 0 and  = 1 is called the standard Gumbel
distribution. The equation for the standard Gumbel distribution
(maximum) reduces to

The following is the plot of the Gumbel probability density function for
the maximum case.

1.3.6.6.16. Extreme Value Type I Distribution
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Since the general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulas in this section
are given for the standard form of the function.

Cumulative
Distribution
Function

The formula for the cumulative distribution function of the Gumbel
distribution (minimum) is

The following is the plot of the Gumbel cumulative distribution function
for the minimum case.

1.3.6.6.16. Extreme Value Type I Distribution
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The formula for the cumulative distribution function of the Gumbel
distribution (maximum) is

The following is the plot of the Gumbel cumulative distribution function
for the maximum case.

1.3.6.6.16. Extreme Value Type I Distribution
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Percent
Point
Function

The formula for the percent point function of the Gumbel distribution
(minimum) is

The following is the plot of the Gumbel percent point function for the
minimum case.

The formula for the percent point function of the Gumbel distribution
(maximum) is

The following is the plot of the Gumbel percent point function for the
maximum case.

1.3.6.6.16. Extreme Value Type I Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm (5 of 12) [5/1/2006 9:58:22 AM]



Hazard
Function

The formula for the hazard function of the Gumbel distribution
(minimum) is

The following is the plot of the Gumbel hazard function for the
minimum case.

The formula for the hazard function of the Gumbel distribution

1.3.6.6.16. Extreme Value Type I Distribution
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(maximum) is

The following is the plot of the Gumbel hazard function for the
maximum case.

Cumulative
Hazard
Function

The formula for the cumulative hazard function of the Gumbel
distribution (minimum) is

The following is the plot of the Gumbel cumulative hazard function for
the minimum case.

1.3.6.6.16. Extreme Value Type I Distribution
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The formula for the cumulative hazard function of the Gumbel
distribution (maximum) is

The following is the plot of the Gumbel cumulative hazard function for
the maximum case.

1.3.6.6.16. Extreme Value Type I Distribution
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Survival
Function

The formula for the survival function of the Gumbel distribution
(minimum) is

The following is the plot of the Gumbel survival function for the
minimum case.

The formula for the survival function of the Gumbel distribution
(maximum) is

The following is the plot of the Gumbel survival function for the
maximum case.

1.3.6.6.16. Extreme Value Type I Distribution
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Inverse
Survival
Function

The formula for the inverse survival function of the Gumbel distribution
(minimum) is

The following is the plot of the Gumbel inverse survival function for the
minimum case.

1.3.6.6.16. Extreme Value Type I Distribution
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The formula for the inverse survival function of the Gumbel distribution
(maximum) is

The following is the plot of the Gumbel inverse survival function for the
maximum case.

Common
Statistics

The formulas below are for the maximum order statistic case.

Mean

The constant 0.5772 is Euler's number.
Median

Mode
Range Negative infinity to positive infinity.
Standard Deviation

Skewness 1.13955
Kurtosis 5.4
Coefficient of
Variation

1.3.6.6.16. Extreme Value Type I Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm (11 of 12) [5/1/2006 9:58:22 AM]



Parameter
Estimation

The method of moments estimators of the Gumbel (maximum)
distribution are

where  and s are the sample mean and standard deviation,
respectively.

The equations for the maximum likelihood estimation of the shape and
scale parameters are discussed in Chapter 15 of Evans, Hastings, and
Peacock and Chapter 22 of Johnson, Kotz, and Balakrishnan. These
equations need to be solved numerically and this is typically
accomplished by using statistical software packages.

Software Some general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the extreme value
type I distribution.

1.3.6.6.16. Extreme Value Type I Distribution
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1.3.6.6.17.Beta Distribution

Probability
Density
Function

The general formula for the probability density function of the beta distribution is

where p and q are the shape parameters, a and b are the lower and upper bounds,
respectively, of the distribution, and B(p,q) is the beta function. The beta function has
the formula

The case where a = 0 and b = 1 is called the standard beta distribution. The equation
for the standard beta distribution is

Typically we define the general form of a distribution in terms of location and scale
parameters. The beta is different in that we define the general distribution in terms of
the lower and upper bounds. However, the location and scale parameters can be
defined in terms of the lower and upper limits as follows:

location = a
scale = b - a

Since the general form of probability functions can be expressed in terms of the
standard distribution, all subsequent formulas in this section are given for the standard
form of the function.

The following is the plot of the beta probability density function for four different
values of the shape parameters.

1.3.6.6.17. Beta Distribution
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the beta distribution is also
called the incomplete beta function ratio (commonly denoted by Ix) and is defined as

where B is the beta function defined above.

The following is the plot of the beta cumulative distribution function with the same
values of the shape parameters as the pdf plots above.

1.3.6.6.17. Beta Distribution
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Percent
Point
Function

The formula for the percent point function of the beta distribution does not exist in a
simple closed form. It is computed numerically.

The following is the plot of the beta percent point function with the same values of the
shape parameters as the pdf plots above.

Other
Probability
Functions

Since the beta distribution is not typically used for reliability applications, we omit the
formulas and plots for the hazard, cumulative hazard, survival, and inverse survival
probability functions.

Common
Statistics

The formulas below are for the case where the lower limit is zero and the upper limit is
one.

Mean

Mode

Range 0 to 1
Standard Deviation

Coefficient of Variation

Skewness

1.3.6.6.17. Beta Distribution
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Parameter
Estimation

First consider the case where a and b are assumed to be known. For this case, the
method of moments estimates are

where  is the sample mean and s2 is the sample variance. If a and b are not 0 and 1,

respectively, then replace  with  and s2 with  in the above

equations.

For the case when a and b are known, the maximum likelihood estimates can be
obtained by solving the following set of equations

The maximum likelihood equations for the case when a and b are not known are given
in pages 221-235 of Volume II of Johnson, Kotz, and Balakrishan.

Software Most general purpose statistical software programs, including Dataplot, support at
least some of the probability functions for the beta distribution.

1.3.6.6.17. Beta Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.18.Binomial Distribution

Probability
Mass
Function

The binomial distribution is used when there are exactly two mutually
exclusive outcomes of a trial. These outcomes are appropriately labeled
"success" and "failure". The binomial distribution is used to obtain the
probability of observing x successes in N trials, with the probability of success
on a single trial denoted by p. The binomial distribution assumes that p is fixed
for all trials.

The formula for the binomial probability mass function is

where

The following is the plot of the binomial probability density function for four
values of p and n = 100.

1.3.6.6.18. Binomial Distribution
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Cumulative
Distribution
Function

The formula for the binomial cumulative probability function is

The following is the plot of the binomial cumulative distribution function with
the same values of p as the pdf plots above.

1.3.6.6.18. Binomial Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm (2 of 4) [5/1/2006 9:58:24 AM]



Percent
Point
Function

The binomial percent point function does not exist in simple closed form. It is
computed numerically. Note that because this is a discrete distribution that is
only defined for integer values of x, the percent point function is not smooth in
the way the percent point function typically is for a continuous distribution.

The following is the plot of the binomial percent point function with the same
values of p as the pdf plots above.

Common
Statistics

Mean
Mode

Range 0 to N
Standard Deviation

Coefficient of
Variation

Skewness

Kurtosis

Comments The binomial distribution is probably the most commonly used discrete
distribution.

1.3.6.6.18. Binomial Distribution
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Parameter
Estimation

The maximum likelihood estimator of p (n is fixed) is

Software Most general purpose statistical software programs, including Dataplot, support
at least some of the probability functions for the binomial distribution.

1.3.6.6.18. Binomial Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.19.Poisson Distribution

Probability
Mass
Function

The Poisson distribution is used to model the number of events
occurring within a given time interval.

The formula for the Poisson probability mass function is

 is the shape parameter which indicates the average number of events
in the given time interval.

The following is the plot of the Poisson probability density function for
four values of .

1.3.6.6.19. Poisson Distribution
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Cumulative
Distribution
Function

The formula for the Poisson cumulative probability function is

The following is the plot of the Poisson cumulative distribution function
with the same values of  as the pdf plots above.

Percent
Point
Function

The Poisson percent point function does not exist in simple closed form.
It is computed numerically. Note that because this is a discrete
distribution that is only defined for integer values of x, the percent point
function is not smooth in the way the percent point function typically is
for a continuous distribution.

The following is the plot of the Poisson percent point function with the
same values of  as the pdf plots above.

1.3.6.6.19. Poisson Distribution
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Common
Statistics

Mean
Mode For non-integer , it is the largest integer less

than . For integer , x =  and x =  - 1 are
both the mode.

Range 0 to positive infinity
Standard Deviation

Coefficient of
Variation

Skewness

Kurtosis

Parameter
Estimation

The maximum likelihood estimator of  is

where  is the sample mean.

Software Most general purpose statistical software programs, including Dataplot,
support at least some of the probability functions for the Poisson
distribution.

1.3.6.6.19. Poisson Distribution
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.7.Tables for Probability Distributions

Tables Several commonly used tables for probability distributions can be
referenced below.

The values from these tables can also be obtained from most general
purpose statistical software programs. Most introductory statistics
textbooks (e.g., Snedecor and Cochran) contain more extensive tables
than are included here. These tables are included for convenience.

Cumulative distribution function for the standard normal
distribution

1.  

Upper critical values of Student's t-distribution with  degrees of
freedom

2.  

Upper critical values of the F-distribution with  and  degrees
of freedom

3.  

Upper critical values of the chi-square distribution with  degrees
of freedom

4.  

Critical values of t* distribution for testing the output of a linear
calibration line at 3 points

5.  

Upper critical values of the normal PPCC distribution6.  

1.3.6.7. Tables for Probability Distributions
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.7. Tables for Probability Distributions

1.3.6.7.1.Cumulative Distribution Function
of the Standard Normal
Distribution

How to Use
This Table

The table below contains the area under the standard normal curve from
0 to z. This can be used to compute the cumulative distribution function
values for the standard normal distribution.

The table utilizes the symmetry of the normal distribution, so what in
fact is given is

where a is the value of interest. This is demonstrated in the graph below
for a = 0.5. The shaded area of the curve represents the probability that x
is between 0 and a.

1.3.6.7.1. Cumulative Distribution Function of the Standard Normal Distribution
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This can be clarified by a few simple examples.

What is the probability that x is less than or equal to 1.53? Look
for 1.5 in the X column, go right to the 0.03 column to find the
value 0.43699. Now add 0.5 (for the probability less than zero) to
obtain the final result of 0.93699.

1.  

What is the probability that x is less than or equal to -1.53? For
negative values, use the relationship

From the first example, this gives 1 - 0.93699 = 0.06301.

2.  

What is the probability that x is between -1 and 0.5? Look up the
values for 0.5 (0.5 + 0.19146 = 0.69146) and -1 (1 - (0.5 +
0.34134) = 0.15866). Then subtract the results (0.69146 -
0.15866) to obtain the result 0.5328.

3.  

To use this table with a non-standard normal distribution (either the
location parameter is not 0 or the scale parameter is not 1), standardize
your value by subtracting the mean and dividing the result by the
standard deviation. Then look up the value for this standardized value.

A few particularly important numbers derived from the table below,
specifically numbers that are commonly used in significance tests, are
summarized in the following table:

p 0.001 0.005 0.010 0.025 0.050 0.100
Zp -3.090 -2.576 -2.326 -1.960 -1.645 -1.282

p 0.999 0.995 0.990 0.975 0.950 0.900
Zp +3.090 +2.576 +2.326 +1.960 +1.645 +1.282

These are critical values for the normal distribution.

                           Area under the Normal Curve from
0 to X

X       0.00    0.01    0.02    0.03    0.04    0.05    0.06   
0.07    0.08    0.09

0.0     0.00000 0.00399 0.00798 0.01197 0.01595 0.01994
0.02392 0.02790 0.03188 0.03586
0.1     0.03983 0.04380 0.04776 0.05172 0.05567 0.05962
0.06356 0.06749 0.07142 0.07535

1.3.6.7.1. Cumulative Distribution Function of the Standard Normal Distribution
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0.2     0.07926 0.08317 0.08706 0.09095 0.09483 0.09871
0.10257 0.10642 0.11026 0.11409
0.3     0.11791 0.12172 0.12552 0.12930 0.13307 0.13683
0.14058 0.14431 0.14803 0.15173
0.4     0.15542 0.15910 0.16276 0.16640 0.17003 0.17364
0.17724 0.18082 0.18439 0.18793
0.5     0.19146 0.19497 0.19847 0.20194 0.20540 0.20884
0.21226 0.21566 0.21904 0.22240
0.6     0.22575 0.22907 0.23237 0.23565 0.23891 0.24215
0.24537 0.24857 0.25175 0.25490
0.7     0.25804 0.26115 0.26424 0.26730 0.27035 0.27337
0.27637 0.27935 0.28230 0.28524
0.8     0.28814 0.29103 0.29389 0.29673 0.29955 0.30234
0.30511 0.30785 0.31057 0.31327
0.9     0.31594 0.31859 0.32121 0.32381 0.32639 0.32894
0.33147 0.33398 0.33646 0.33891
1.0     0.34134 0.34375 0.34614 0.34849 0.35083 0.35314
0.35543 0.35769 0.35993 0.36214
1.1     0.36433 0.36650 0.36864 0.37076 0.37286 0.37493
0.37698 0.37900 0.38100 0.38298
1.2     0.38493 0.38686 0.38877 0.39065 0.39251 0.39435
0.39617 0.39796 0.39973 0.40147
1.3     0.40320 0.40490 0.40658 0.40824 0.40988 0.41149
0.41308 0.41466 0.41621 0.41774
1.4     0.41924 0.42073 0.42220 0.42364 0.42507 0.42647
0.42785 0.42922 0.43056 0.43189
1.5     0.43319 0.43448 0.43574 0.43699 0.43822 0.43943
0.44062 0.44179 0.44295 0.44408
1.6     0.44520 0.44630 0.44738 0.44845 0.44950 0.45053
0.45154 0.45254 0.45352 0.45449
1.7     0.45543 0.45637 0.45728 0.45818 0.45907 0.45994
0.46080 0.46164 0.46246 0.46327
1.8     0.46407 0.46485 0.46562 0.46638 0.46712 0.46784
0.46856 0.46926 0.46995 0.47062
1.9     0.47128 0.47193 0.47257 0.47320 0.47381 0.47441
0.47500 0.47558 0.47615 0.47670
2.0     0.47725 0.47778 0.47831 0.47882 0.47932 0.47982
0.48030 0.48077 0.48124 0.48169
2.1     0.48214 0.48257 0.48300 0.48341 0.48382 0.48422
0.48461 0.48500 0.48537 0.48574
2.2     0.48610 0.48645 0.48679 0.48713 0.48745 0.48778
0.48809 0.48840 0.48870 0.48899
2.3     0.48928 0.48956 0.48983 0.49010 0.49036 0.49061
0.49086 0.49111 0.49134 0.49158
2.4     0.49180 0.49202 0.49224 0.49245 0.49266 0.49286
0.49305 0.49324 0.49343 0.49361
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2.5     0.49379 0.49396 0.49413 0.49430 0.49446 0.49461
0.49477 0.49492 0.49506 0.49520
2.6     0.49534 0.49547 0.49560 0.49573 0.49585 0.49598
0.49609 0.49621 0.49632 0.49643
2.7     0.49653 0.49664 0.49674 0.49683 0.49693 0.49702
0.49711 0.49720 0.49728 0.49736
2.8     0.49744 0.49752 0.49760 0.49767 0.49774 0.49781
0.49788 0.49795 0.49801 0.49807
2.9     0.49813 0.49819 0.49825 0.49831 0.49836 0.49841
0.49846 0.49851 0.49856 0.49861
3.0     0.49865 0.49869 0.49874 0.49878 0.49882 0.49886
0.49889 0.49893 0.49896 0.49900
3.1     0.49903 0.49906 0.49910 0.49913 0.49916 0.49918
0.49921 0.49924 0.49926 0.49929
3.2     0.49931 0.49934 0.49936 0.49938 0.49940 0.49942
0.49944 0.49946 0.49948 0.49950
3.3     0.49952 0.49953 0.49955 0.49957 0.49958 0.49960
0.49961 0.49962 0.49964 0.49965
3.4     0.49966 0.49968 0.49969 0.49970 0.49971 0.49972
0.49973 0.49974 0.49975 0.49976
3.5     0.49977 0.49978 0.49978 0.49979 0.49980 0.49981
0.49981 0.49982 0.49983 0.49983
3.6     0.49984 0.49985 0.49985 0.49986 0.49986 0.49987
0.49987 0.49988 0.49988 0.49989
3.7     0.49989 0.49990 0.49990 0.49990 0.49991 0.49991
0.49992 0.49992 0.49992 0.49992
3.8     0.49993 0.49993 0.49993 0.49994 0.49994 0.49994
0.49994 0.49995 0.49995 0.49995
3.9     0.49995 0.49995 0.49996 0.49996 0.49996 0.49996
0.49996 0.49996 0.49997 0.49997
4.0     0.49997 0.49997 0.49997 0.49997 0.49997 0.49997
0.49998 0.49998 0.49998 0.49998
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.7. Tables for Probability Distributions

1.3.6.7.2.Upper Critical Values of the
Student's-t Distribution

How to
Use This
Table

This table contains the upper critical values of the Student's t-distribution.
The upper critical values are computed using the percent point function.
Due to the symmetry of the t-distribution, this table can be used for both
1-sided (lower and upper) and 2-sided tests using the appropriate value of

.

The significance level, , is demonstrated with the graph below which
plots a t distribution with 10 degrees of freedom. The most commonly
used significance level is  = 0.05. For a two-sided test, we compute the
percent point function at /2 (0.025). If the absolute value of the test
statistic is greater than the upper critical value (0.025), then we reject the
null hypothesis. Due to the symmetry of the t-distribution, we only
tabulate the upper critical values in the table below.

1.3.6.7.2. Upper Critical Values of the Student's-t Distribution
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Given a specified value for :

For a two-sided test, find the column corresponding to /2 and
reject the null hypothesis if the absolute value of the test statistic is
greater than the value of  in the table below.

1.  

For an upper one-sided test, find the column corresponding to 
and reject the null hypothesis if the test statistic is greater than the
tabled value.

2.  

For an lower one-sided test, find the column corresponding to 
and reject the null hypothesis if the test statistic is less than the
negative of the tabled value.

3.  

Upper critical values of Student's t distribution with  degrees of
freedom

           Probability of exceeding the
critical value

           0.10    0.05   0.025    0.01  
0.005   0.001

  1.       3.078   6.314  12.706  31.821 
63.657 318.313
  2.       1.886   2.920   4.303   6.965  
9.925  22.327
  3.       1.638   2.353   3.182   4.541  
5.841  10.215
  4.       1.533   2.132   2.776   3.747  
4.604   7.173
  5.       1.476   2.015   2.571   3.365  
4.032   5.893
  6.       1.440   1.943   2.447   3.143  
3.707   5.208
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  7.       1.415   1.895   2.365   2.998  
3.499   4.782
  8.       1.397   1.860   2.306   2.896  
3.355   4.499
  9.       1.383   1.833   2.262   2.821  
3.250   4.296
 10.       1.372   1.812   2.228   2.764  
3.169   4.143
 11.       1.363   1.796   2.201   2.718  
3.106   4.024
 12.       1.356   1.782   2.179   2.681  
3.055   3.929
 13.       1.350   1.771   2.160   2.650  
3.012   3.852
 14.       1.345   1.761   2.145   2.624  
2.977   3.787
 15.       1.341   1.753   2.131   2.602  
2.947   3.733
 16.       1.337   1.746   2.120   2.583  
2.921   3.686
 17.       1.333   1.740   2.110   2.567  
2.898   3.646
 18.       1.330   1.734   2.101   2.552  
2.878   3.610
 19.       1.328   1.729   2.093   2.539  
2.861   3.579
 20.       1.325   1.725   2.086   2.528  
2.845   3.552
 21.       1.323   1.721   2.080   2.518  
2.831   3.527
 22.       1.321   1.717   2.074   2.508  
2.819   3.505
 23.       1.319   1.714   2.069   2.500  
2.807   3.485
 24.       1.318   1.711   2.064   2.492  
2.797   3.467
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 25.       1.316   1.708   2.060   2.485  
2.787   3.450
 26.       1.315   1.706   2.056   2.479  
2.779   3.435
 27.       1.314   1.703   2.052   2.473  
2.771   3.421
 28.       1.313   1.701   2.048   2.467  
2.763   3.408
 29.       1.311   1.699   2.045   2.462  
2.756   3.396
 30.       1.310   1.697   2.042   2.457  
2.750   3.385
 31.       1.309   1.696   2.040   2.453  
2.744   3.375
 32.       1.309   1.694   2.037   2.449  
2.738   3.365
 33.       1.308   1.692   2.035   2.445  
2.733   3.356
 34.       1.307   1.691   2.032   2.441  
2.728   3.348
 35.       1.306   1.690   2.030   2.438  
2.724   3.340
 36.       1.306   1.688   2.028   2.434  
2.719   3.333
 37.       1.305   1.687   2.026   2.431  
2.715   3.326
 38.       1.304   1.686   2.024   2.429  
2.712   3.319
 39.       1.304   1.685   2.023   2.426  
2.708   3.313
 40.       1.303   1.684   2.021   2.423  
2.704   3.307
 41.       1.303   1.683   2.020   2.421  
2.701   3.301
 42.       1.302   1.682   2.018   2.418  
2.698   3.296
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 43.       1.302   1.681   2.017   2.416  
2.695   3.291
 44.       1.301   1.680   2.015   2.414  
2.692   3.286
 45.       1.301   1.679   2.014   2.412  
2.690   3.281
 46.       1.300   1.679   2.013   2.410  
2.687   3.277
 47.       1.300   1.678   2.012   2.408  
2.685   3.273
 48.       1.299   1.677   2.011   2.407  
2.682   3.269
 49.       1.299   1.677   2.010   2.405  
2.680   3.265
 50.       1.299   1.676   2.009   2.403  
2.678   3.261
 51.       1.298   1.675   2.008   2.402  
2.676   3.258
 52.       1.298   1.675   2.007   2.400  
2.674   3.255
 53.       1.298   1.674   2.006   2.399  
2.672   3.251
 54.       1.297   1.674   2.005   2.397  
2.670   3.248
 55.       1.297   1.673   2.004   2.396  
2.668   3.245
 56.       1.297   1.673   2.003   2.395  
2.667   3.242
 57.       1.297   1.672   2.002   2.394  
2.665   3.239
 58.       1.296   1.672   2.002   2.392  
2.663   3.237
 59.       1.296   1.671   2.001   2.391  
2.662   3.234
 60.       1.296   1.671   2.000   2.390  
2.660   3.232
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 61.       1.296   1.670   2.000   2.389  
2.659   3.229
 62.       1.295   1.670   1.999   2.388  
2.657   3.227
 63.       1.295   1.669   1.998   2.387  
2.656   3.225
 64.       1.295   1.669   1.998   2.386  
2.655   3.223
 65.       1.295   1.669   1.997   2.385  
2.654   3.220
 66.       1.295   1.668   1.997   2.384  
2.652   3.218
 67.       1.294   1.668   1.996   2.383  
2.651   3.216
 68.       1.294   1.668   1.995   2.382  
2.650   3.214
 69.       1.294   1.667   1.995   2.382  
2.649   3.213
 70.       1.294   1.667   1.994   2.381  
2.648   3.211
 71.       1.294   1.667   1.994   2.380  
2.647   3.209
 72.       1.293   1.666   1.993   2.379  
2.646   3.207
 73.       1.293   1.666   1.993   2.379  
2.645   3.206
 74.       1.293   1.666   1.993   2.378  
2.644   3.204
 75.       1.293   1.665   1.992   2.377  
2.643   3.202
 76.       1.293   1.665   1.992   2.376  
2.642   3.201
 77.       1.293   1.665   1.991   2.376  
2.641   3.199
 78.       1.292   1.665   1.991   2.375  
2.640   3.198
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 79.       1.292   1.664   1.990   2.374  
2.640   3.197
 80.       1.292   1.664   1.990   2.374  
2.639   3.195
 81.       1.292   1.664   1.990   2.373  
2.638   3.194
 82.       1.292   1.664   1.989   2.373  
2.637   3.193
 83.       1.292   1.663   1.989   2.372  
2.636   3.191
 84.       1.292   1.663   1.989   2.372  
2.636   3.190
 85.       1.292   1.663   1.988   2.371  
2.635   3.189
 86.       1.291   1.663   1.988   2.370  
2.634   3.188
 87.       1.291   1.663   1.988   2.370  
2.634   3.187
 88.       1.291   1.662   1.987   2.369  
2.633   3.185
 89.       1.291   1.662   1.987   2.369  
2.632   3.184
 90.       1.291   1.662   1.987   2.368  
2.632   3.183
 91.       1.291   1.662   1.986   2.368  
2.631   3.182
 92.       1.291   1.662   1.986   2.368  
2.630   3.181
 93.       1.291   1.661   1.986   2.367  
2.630   3.180
 94.       1.291   1.661   1.986   2.367  
2.629   3.179
 95.       1.291   1.661   1.985   2.366  
2.629   3.178
 96.       1.290   1.661   1.985   2.366  
2.628   3.177
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 97.       1.290   1.661   1.985   2.365  
2.627   3.176
 98.       1.290   1.661   1.984   2.365  
2.627   3.175
 99.       1.290   1.660   1.984   2.365  
2.626   3.175
100.       1.290   1.660   1.984   2.364  
2.626   3.174
         1.282   1.645   1.960   2.326  
2.576   3.090
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.7. Tables for Probability Distributions

1.3.6.7.3.Upper Critical Values of the F
Distribution

How to Use
This Table

This table contains the upper critical values of the F distribution. This
table is used for one-sided F tests at the  = 0.05, 0.10, and 0.01 levels.

More specifically, a test statistic is computed with  and  degrees of
freedom, and the result is compared to this table. For a one-sided test,
the null hypothesis is rejected when the test statistic is greater than the
tabled value. This is demonstrated with the graph of an F distribution
with  = 10 and  = 10. The shaded area of the graph indicates the
rejection region at the  significance level. Since this is a one-sided test,
we have  probability in the upper tail of exceeding the critical value
and zero in the lower tail. Because the F distribution is asymmetric, a
two-sided test requires a set of of tables (not included here) that contain
the rejection regions for both the lower and upper tails.
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Contents The following tables for  from 1 to 100 are included:

One sided, 5% significance level,  = 1 - 101.  

One sided, 5% significance level,  = 11 - 202.  

One sided, 10% significance level,  = 1 - 103.  

One sided, 10% significance level,  = 11 - 204.  

One sided, 1% significance level,  = 1 - 105.  

One sided, 1% significance level,  = 11 - 206.  

Upper critical values of the F distribution

for  numerator degrees of freedom and  denominator
degrees of freedom

5% significance level

     \    1       2       3       4       5      
6       7       8       9      10

   

  1      161.448 199.500 215.707 224.583
230.162 233.986 236.768 238.882 240.543
241.882
  2       18.513  19.000  19.164  19.247 
19.296  19.330  19.353  19.371  19.385  19.396
  3       10.128   9.552   9.277   9.117  
9.013   8.941   8.887   8.845   8.812   8.786
  4        7.709   6.944   6.591   6.388  
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6.256   6.163   6.094   6.041   5.999   5.964
  5        6.608   5.786   5.409   5.192  
5.050   4.950   4.876   4.818   4.772   4.735
  6        5.987   5.143   4.757   4.534  
4.387   4.284   4.207   4.147   4.099   4.060
  7        5.591   4.737   4.347   4.120  
3.972   3.866   3.787   3.726   3.677   3.637
  8        5.318   4.459   4.066   3.838  
3.687   3.581   3.500   3.438   3.388   3.347
  9        5.117   4.256   3.863   3.633  
3.482   3.374   3.293   3.230   3.179   3.137
 10        4.965   4.103   3.708   3.478  
3.326   3.217   3.135   3.072   3.020   2.978
 11        4.844   3.982   3.587   3.357  
3.204   3.095   3.012   2.948   2.896   2.854
 12        4.747   3.885   3.490   3.259  
3.106   2.996   2.913   2.849   2.796   2.753
 13        4.667   3.806   3.411   3.179  
3.025   2.915   2.832   2.767   2.714   2.671
 14        4.600   3.739   3.344   3.112  
2.958   2.848   2.764   2.699   2.646   2.602
 15        4.543   3.682   3.287   3.056  
2.901   2.790   2.707   2.641   2.588   2.544
 16        4.494   3.634   3.239   3.007  
2.852   2.741   2.657   2.591   2.538   2.494
 17        4.451   3.592   3.197   2.965  
2.810   2.699   2.614   2.548   2.494   2.450
 18        4.414   3.555   3.160   2.928  
2.773   2.661   2.577   2.510   2.456   2.412
 19        4.381   3.522   3.127   2.895  
2.740   2.628   2.544   2.477   2.423   2.378
 20        4.351   3.493   3.098   2.866  
2.711   2.599   2.514   2.447   2.393   2.348
 21        4.325   3.467   3.072   2.840  
2.685   2.573   2.488   2.420   2.366   2.321
 22        4.301   3.443   3.049   2.817  
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2.661   2.549   2.464   2.397   2.342   2.297
 23        4.279   3.422   3.028   2.796  
2.640   2.528   2.442   2.375   2.320   2.275
 24        4.260   3.403   3.009   2.776  
2.621   2.508   2.423   2.355   2.300   2.255
 25        4.242   3.385   2.991   2.759  
2.603   2.490   2.405   2.337   2.282   2.236
 26        4.225   3.369   2.975   2.743  
2.587   2.474   2.388   2.321   2.265   2.220
 27        4.210   3.354   2.960   2.728  
2.572   2.459   2.373   2.305   2.250   2.204
 28        4.196   3.340   2.947   2.714  
2.558   2.445   2.359   2.291   2.236   2.190
 29        4.183   3.328   2.934   2.701  
2.545   2.432   2.346   2.278   2.223   2.177
 30        4.171   3.316   2.922   2.690  
2.534   2.421   2.334   2.266   2.211   2.165
 31        4.160   3.305   2.911   2.679  
2.523   2.409   2.323   2.255   2.199   2.153
 32        4.149   3.295   2.901   2.668  
2.512   2.399   2.313   2.244   2.189   2.142
 33        4.139   3.285   2.892   2.659  
2.503   2.389   2.303   2.235   2.179   2.133
 34        4.130   3.276   2.883   2.650  
2.494   2.380   2.294   2.225   2.170   2.123
 35        4.121   3.267   2.874   2.641  
2.485   2.372   2.285   2.217   2.161   2.114
 36        4.113   3.259   2.866   2.634  
2.477   2.364   2.277   2.209   2.153   2.106
 37        4.105   3.252   2.859   2.626  
2.470   2.356   2.270   2.201   2.145   2.098
 38        4.098   3.245   2.852   2.619  
2.463   2.349   2.262   2.194   2.138   2.091
 39        4.091   3.238   2.845   2.612  
2.456   2.342   2.255   2.187   2.131   2.084
 40        4.085   3.232   2.839   2.606  
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2.449   2.336   2.249   2.180   2.124   2.077
 41        4.079   3.226   2.833   2.600  
2.443   2.330   2.243   2.174   2.118   2.071
 42        4.073   3.220   2.827   2.594  
2.438   2.324   2.237   2.168   2.112   2.065
 43        4.067   3.214   2.822   2.589  
2.432   2.318   2.232   2.163   2.106   2.059
 44        4.062   3.209   2.816   2.584  
2.427   2.313   2.226   2.157   2.101   2.054
 45        4.057   3.204   2.812   2.579  
2.422   2.308   2.221   2.152   2.096   2.049
 46        4.052   3.200   2.807   2.574  
2.417   2.304   2.216   2.147   2.091   2.044
 47        4.047   3.195   2.802   2.570  
2.413   2.299   2.212   2.143   2.086   2.039
 48        4.043   3.191   2.798   2.565  
2.409   2.295   2.207   2.138   2.082   2.035
 49        4.038   3.187   2.794   2.561  
2.404   2.290   2.203   2.134   2.077   2.030
 50        4.034   3.183   2.790   2.557  
2.400   2.286   2.199   2.130   2.073   2.026
 51        4.030   3.179   2.786   2.553  
2.397   2.283   2.195   2.126   2.069   2.022
 52        4.027   3.175   2.783   2.550  
2.393   2.279   2.192   2.122   2.066   2.018
 53        4.023   3.172   2.779   2.546  
2.389   2.275   2.188   2.119   2.062   2.015
 54        4.020   3.168   2.776   2.543  
2.386   2.272   2.185   2.115   2.059   2.011
 55        4.016   3.165   2.773   2.540  
2.383   2.269   2.181   2.112   2.055   2.008
 56        4.013   3.162   2.769   2.537  
2.380   2.266   2.178   2.109   2.052   2.005
 57        4.010   3.159   2.766   2.534  
2.377   2.263   2.175   2.106   2.049   2.001
 58        4.007   3.156   2.764   2.531  
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2.374   2.260   2.172   2.103   2.046   1.998
 59        4.004   3.153   2.761   2.528  
2.371   2.257   2.169   2.100   2.043   1.995
 60        4.001   3.150   2.758   2.525  
2.368   2.254   2.167   2.097   2.040   1.993
 61        3.998   3.148   2.755   2.523  
2.366   2.251   2.164   2.094   2.037   1.990
 62        3.996   3.145   2.753   2.520  
2.363   2.249   2.161   2.092   2.035   1.987
 63        3.993   3.143   2.751   2.518  
2.361   2.246   2.159   2.089   2.032   1.985
 64        3.991   3.140   2.748   2.515  
2.358   2.244   2.156   2.087   2.030   1.982
 65        3.989   3.138   2.746   2.513  
2.356   2.242   2.154   2.084   2.027   1.980
 66        3.986   3.136   2.744   2.511  
2.354   2.239   2.152   2.082   2.025   1.977
 67        3.984   3.134   2.742   2.509  
2.352   2.237   2.150   2.080   2.023   1.975
 68        3.982   3.132   2.740   2.507  
2.350   2.235   2.148   2.078   2.021   1.973
 69        3.980   3.130   2.737   2.505  
2.348   2.233   2.145   2.076   2.019   1.971
 70        3.978   3.128   2.736   2.503  
2.346   2.231   2.143   2.074   2.017   1.969
 71        3.976   3.126   2.734   2.501  
2.344   2.229   2.142   2.072   2.015   1.967
 72        3.974   3.124   2.732   2.499  
2.342   2.227   2.140   2.070   2.013   1.965
 73        3.972   3.122   2.730   2.497  
2.340   2.226   2.138   2.068   2.011   1.963
 74        3.970   3.120   2.728   2.495  
2.338   2.224   2.136   2.066   2.009   1.961
 75        3.968   3.119   2.727   2.494  
2.337   2.222   2.134   2.064   2.007   1.959
 76        3.967   3.117   2.725   2.492  
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2.335   2.220   2.133   2.063   2.006   1.958
 77        3.965   3.115   2.723   2.490  
2.333   2.219   2.131   2.061   2.004   1.956
 78        3.963   3.114   2.722   2.489  
2.332   2.217   2.129   2.059   2.002   1.954
 79        3.962   3.112   2.720   2.487  
2.330   2.216   2.128   2.058   2.001   1.953
 80        3.960   3.111   2.719   2.486  
2.329   2.214   2.126   2.056   1.999   1.951
 81        3.959   3.109   2.717   2.484  
2.327   2.213   2.125   2.055   1.998   1.950
 82        3.957   3.108   2.716   2.483  
2.326   2.211   2.123   2.053   1.996   1.948
 83        3.956   3.107   2.715   2.482  
2.324   2.210   2.122   2.052   1.995   1.947
 84        3.955   3.105   2.713   2.480  
2.323   2.209   2.121   2.051   1.993   1.945
 85        3.953   3.104   2.712   2.479  
2.322   2.207   2.119   2.049   1.992   1.944
 86        3.952   3.103   2.711   2.478  
2.321   2.206   2.118   2.048   1.991   1.943
 87        3.951   3.101   2.709   2.476  
2.319   2.205   2.117   2.047   1.989   1.941
 88        3.949   3.100   2.708   2.475  
2.318   2.203   2.115   2.045   1.988   1.940
 89        3.948   3.099   2.707   2.474  
2.317   2.202   2.114   2.044   1.987   1.939
 90        3.947   3.098   2.706   2.473  
2.316   2.201   2.113   2.043   1.986   1.938
 91        3.946   3.097   2.705   2.472  
2.315   2.200   2.112   2.042   1.984   1.936
 92        3.945   3.095   2.704   2.471  
2.313   2.199   2.111   2.041   1.983   1.935
 93        3.943   3.094   2.703   2.470  
2.312   2.198   2.110   2.040   1.982   1.934
 94        3.942   3.093   2.701   2.469  
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2.311   2.197   2.109   2.038   1.981   1.933
 95        3.941   3.092   2.700   2.467  
2.310   2.196   2.108   2.037   1.980   1.932
 96        3.940   3.091   2.699   2.466  
2.309   2.195   2.106   2.036   1.979   1.931
 97        3.939   3.090   2.698   2.465  
2.308   2.194   2.105   2.035   1.978   1.930
 98        3.938   3.089   2.697   2.465  
2.307   2.193   2.104   2.034   1.977   1.929
 99        3.937   3.088   2.696   2.464  
2.306   2.192   2.103   2.033   1.976   1.928
100        3.936   3.087   2.696   2.463  
2.305   2.191   2.103   2.032   1.975   1.927

     \    11      12      13      14      15     
16      17      18      19      20

   

  1      242.983 243.906 244.690 245.364
245.950 246.464 246.918 247.323 247.686
248.013
  2       19.405  19.413  19.419  19.424 
19.429  19.433  19.437  19.440  19.443  19.446
  3        8.763   8.745   8.729   8.715  
8.703   8.692   8.683   8.675   8.667   8.660
  4        5.936   5.912   5.891   5.873  
5.858   5.844   5.832   5.821   5.811   5.803
  5        4.704   4.678   4.655   4.636  
4.619   4.604   4.590   4.579   4.568   4.558
  6        4.027   4.000   3.976   3.956  
3.938   3.922   3.908   3.896   3.884   3.874
  7        3.603   3.575   3.550   3.529  
3.511   3.494   3.480   3.467   3.455   3.445
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  8        3.313   3.284   3.259   3.237  
3.218   3.202   3.187   3.173   3.161   3.150
  9        3.102   3.073   3.048   3.025  
3.006   2.989   2.974   2.960   2.948   2.936
 10        2.943   2.913   2.887   2.865  
2.845   2.828   2.812   2.798   2.785   2.774
 11        2.818   2.788   2.761   2.739  
2.719   2.701   2.685   2.671   2.658   2.646
 12        2.717   2.687   2.660   2.637  
2.617   2.599   2.583   2.568   2.555   2.544
 13        2.635   2.604   2.577   2.554  
2.533   2.515   2.499   2.484   2.471   2.459
 14        2.565   2.534   2.507   2.484  
2.463   2.445   2.428   2.413   2.400   2.388
 15        2.507   2.475   2.448   2.424  
2.403   2.385   2.368   2.353   2.340   2.328
 16        2.456   2.425   2.397   2.373  
2.352   2.333   2.317   2.302   2.288   2.276
 17        2.413   2.381   2.353   2.329  
2.308   2.289   2.272   2.257   2.243   2.230
 18        2.374   2.342   2.314   2.290  
2.269   2.250   2.233   2.217   2.203   2.191
 19        2.340   2.308   2.280   2.256  
2.234   2.215   2.198   2.182   2.168   2.155
 20        2.310   2.278   2.250   2.225  
2.203   2.184   2.167   2.151   2.137   2.124
 21        2.283   2.250   2.222   2.197  
2.176   2.156   2.139   2.123   2.109   2.096
 22        2.259   2.226   2.198   2.173  
2.151   2.131   2.114   2.098   2.084   2.071
 23        2.236   2.204   2.175   2.150  
2.128   2.109   2.091   2.075   2.061   2.048
 24        2.216   2.183   2.155   2.130  
2.108   2.088   2.070   2.054   2.040   2.027
 25        2.198   2.165   2.136   2.111  
2.089   2.069   2.051   2.035   2.021   2.007
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 26        2.181   2.148   2.119   2.094  
2.072   2.052   2.034   2.018   2.003   1.990
 27        2.166   2.132   2.103   2.078  
2.056   2.036   2.018   2.002   1.987   1.974
 28        2.151   2.118   2.089   2.064  
2.041   2.021   2.003   1.987   1.972   1.959
 29        2.138   2.104   2.075   2.050  
2.027   2.007   1.989   1.973   1.958   1.945
 30        2.126   2.092   2.063   2.037  
2.015   1.995   1.976   1.960   1.945   1.932
 31        2.114   2.080   2.051   2.026  
2.003   1.983   1.965   1.948   1.933   1.920
 32        2.103   2.070   2.040   2.015  
1.992   1.972   1.953   1.937   1.922   1.908
 33        2.093   2.060   2.030   2.004  
1.982   1.961   1.943   1.926   1.911   1.898
 34        2.084   2.050   2.021   1.995  
1.972   1.952   1.933   1.917   1.902   1.888
 35        2.075   2.041   2.012   1.986  
1.963   1.942   1.924   1.907   1.892   1.878
 36        2.067   2.033   2.003   1.977  
1.954   1.934   1.915   1.899   1.883   1.870
 37        2.059   2.025   1.995   1.969  
1.946   1.926   1.907   1.890   1.875   1.861
 38        2.051   2.017   1.988   1.962  
1.939   1.918   1.899   1.883   1.867   1.853
 39        2.044   2.010   1.981   1.954  
1.931   1.911   1.892   1.875   1.860   1.846
 40        2.038   2.003   1.974   1.948  
1.924   1.904   1.885   1.868   1.853   1.839
 41        2.031   1.997   1.967   1.941  
1.918   1.897   1.879   1.862   1.846   1.832
 42        2.025   1.991   1.961   1.935  
1.912   1.891   1.872   1.855   1.840   1.826
 43        2.020   1.985   1.955   1.929  
1.906   1.885   1.866   1.849   1.834   1.820

1.3.6.7.3. Upper Critical Values of the F Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm (10 of 38) [5/1/2006 9:58:27 AM]



 44        2.014   1.980   1.950   1.924  
1.900   1.879   1.861   1.844   1.828   1.814
 45        2.009   1.974   1.945   1.918  
1.895   1.874   1.855   1.838   1.823   1.808
 46        2.004   1.969   1.940   1.913  
1.890   1.869   1.850   1.833   1.817   1.803
 47        1.999   1.965   1.935   1.908  
1.885   1.864   1.845   1.828   1.812   1.798
 48        1.995   1.960   1.930   1.904  
1.880   1.859   1.840   1.823   1.807   1.793
 49        1.990   1.956   1.926   1.899  
1.876   1.855   1.836   1.819   1.803   1.789
 50        1.986   1.952   1.921   1.895  
1.871   1.850   1.831   1.814   1.798   1.784
 51        1.982   1.947   1.917   1.891  
1.867   1.846   1.827   1.810   1.794   1.780
 52        1.978   1.944   1.913   1.887  
1.863   1.842   1.823   1.806   1.790   1.776
 53        1.975   1.940   1.910   1.883  
1.859   1.838   1.819   1.802   1.786   1.772
 54        1.971   1.936   1.906   1.879  
1.856   1.835   1.816   1.798   1.782   1.768
 55        1.968   1.933   1.903   1.876  
1.852   1.831   1.812   1.795   1.779   1.764
 56        1.964   1.930   1.899   1.873  
1.849   1.828   1.809   1.791   1.775   1.761
 57        1.961   1.926   1.896   1.869  
1.846   1.824   1.805   1.788   1.772   1.757
 58        1.958   1.923   1.893   1.866  
1.842   1.821   1.802   1.785   1.769   1.754
 59        1.955   1.920   1.890   1.863  
1.839   1.818   1.799   1.781   1.766   1.751
 60        1.952   1.917   1.887   1.860  
1.836   1.815   1.796   1.778   1.763   1.748
 61        1.949   1.915   1.884   1.857  
1.834   1.812   1.793   1.776   1.760   1.745
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 62        1.947   1.912   1.882   1.855  
1.831   1.809   1.790   1.773   1.757   1.742
 63        1.944   1.909   1.879   1.852  
1.828   1.807   1.787   1.770   1.754   1.739
 64        1.942   1.907   1.876   1.849  
1.826   1.804   1.785   1.767   1.751   1.737
 65        1.939   1.904   1.874   1.847  
1.823   1.802   1.782   1.765   1.749   1.734
 66        1.937   1.902   1.871   1.845  
1.821   1.799   1.780   1.762   1.746   1.732
 67        1.935   1.900   1.869   1.842  
1.818   1.797   1.777   1.760   1.744   1.729
 68        1.932   1.897   1.867   1.840  
1.816   1.795   1.775   1.758   1.742   1.727
 69        1.930   1.895   1.865   1.838  
1.814   1.792   1.773   1.755   1.739   1.725
 70        1.928   1.893   1.863   1.836  
1.812   1.790   1.771   1.753   1.737   1.722
 71        1.926   1.891   1.861   1.834  
1.810   1.788   1.769   1.751   1.735   1.720
 72        1.924   1.889   1.859   1.832  
1.808   1.786   1.767   1.749   1.733   1.718
 73        1.922   1.887   1.857   1.830  
1.806   1.784   1.765   1.747   1.731   1.716
 74        1.921   1.885   1.855   1.828  
1.804   1.782   1.763   1.745   1.729   1.714
 75        1.919   1.884   1.853   1.826  
1.802   1.780   1.761   1.743   1.727   1.712
 76        1.917   1.882   1.851   1.824  
1.800   1.778   1.759   1.741   1.725   1.710
 77        1.915   1.880   1.849   1.822  
1.798   1.777   1.757   1.739   1.723   1.708
 78        1.914   1.878   1.848   1.821  
1.797   1.775   1.755   1.738   1.721   1.707
 79        1.912   1.877   1.846   1.819  
1.795   1.773   1.754   1.736   1.720   1.705
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 80        1.910   1.875   1.845   1.817  
1.793   1.772   1.752   1.734   1.718   1.703
 81        1.909   1.874   1.843   1.816  
1.792   1.770   1.750   1.733   1.716   1.702
 82        1.907   1.872   1.841   1.814  
1.790   1.768   1.749   1.731   1.715   1.700
 83        1.906   1.871   1.840   1.813  
1.789   1.767   1.747   1.729   1.713   1.698
 84        1.905   1.869   1.838   1.811  
1.787   1.765   1.746   1.728   1.712   1.697
 85        1.903   1.868   1.837   1.810  
1.786   1.764   1.744   1.726   1.710   1.695
 86        1.902   1.867   1.836   1.808  
1.784   1.762   1.743   1.725   1.709   1.694
 87        1.900   1.865   1.834   1.807  
1.783   1.761   1.741   1.724   1.707   1.692
 88        1.899   1.864   1.833   1.806  
1.782   1.760   1.740   1.722   1.706   1.691
 89        1.898   1.863   1.832   1.804  
1.780   1.758   1.739   1.721   1.705   1.690
 90        1.897   1.861   1.830   1.803  
1.779   1.757   1.737   1.720   1.703   1.688
 91        1.895   1.860   1.829   1.802  
1.778   1.756   1.736   1.718   1.702   1.687
 92        1.894   1.859   1.828   1.801  
1.776   1.755   1.735   1.717   1.701   1.686
 93        1.893   1.858   1.827   1.800  
1.775   1.753   1.734   1.716   1.699   1.684
 94        1.892   1.857   1.826   1.798  
1.774   1.752   1.733   1.715   1.698   1.683
 95        1.891   1.856   1.825   1.797  
1.773   1.751   1.731   1.713   1.697   1.682
 96        1.890   1.854   1.823   1.796  
1.772   1.750   1.730   1.712   1.696   1.681
 97        1.889   1.853   1.822   1.795  
1.771   1.749   1.729   1.711   1.695   1.680
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 98        1.888   1.852   1.821   1.794  
1.770   1.748   1.728   1.710   1.694   1.679
 99        1.887   1.851   1.820   1.793  
1.769   1.747   1.727   1.709   1.693   1.678
100        1.886   1.850   1.819   1.792  
1.768   1.746   1.726   1.708   1.691   1.676

Upper critical values of the F distribution

for  numerator degrees of freedom and  denominator
degrees of freedom

10% significance level

     \    1       2       3       4       5      
6       7       8       9      10

   

  1       39.863  49.500  53.593  55.833 
57.240  58.204  58.906  59.439  59.858  60.195
  2        8.526   9.000   9.162   9.243  
9.293   9.326   9.349   9.367   9.381   9.392
  3        5.538   5.462   5.391   5.343  
5.309   5.285   5.266   5.252   5.240   5.230
  4        4.545   4.325   4.191   4.107  
4.051   4.010   3.979   3.955   3.936   3.920
  5        4.060   3.780   3.619   3.520  
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3.453   3.405   3.368   3.339   3.316   3.297
  6        3.776   3.463   3.289   3.181  
3.108   3.055   3.014   2.983   2.958   2.937
  7        3.589   3.257   3.074   2.961  
2.883   2.827   2.785   2.752   2.725   2.703
  8        3.458   3.113   2.924   2.806  
2.726   2.668   2.624   2.589   2.561   2.538
  9        3.360   3.006   2.813   2.693  
2.611   2.551   2.505   2.469   2.440   2.416
 10        3.285   2.924   2.728   2.605  
2.522   2.461   2.414   2.377   2.347   2.323
 11        3.225   2.860   2.660   2.536  
2.451   2.389   2.342   2.304   2.274   2.248
 12        3.177   2.807   2.606   2.480  
2.394   2.331   2.283   2.245   2.214   2.188
 13        3.136   2.763   2.560   2.434  
2.347   2.283   2.234   2.195   2.164   2.138
 14        3.102   2.726   2.522   2.395  
2.307   2.243   2.193   2.154   2.122   2.095
 15        3.073   2.695   2.490   2.361  
2.273   2.208   2.158   2.119   2.086   2.059
 16        3.048   2.668   2.462   2.333  
2.244   2.178   2.128   2.088   2.055   2.028
 17        3.026   2.645   2.437   2.308  
2.218   2.152   2.102   2.061   2.028   2.001
 18        3.007   2.624   2.416   2.286  
2.196   2.130   2.079   2.038   2.005   1.977
 19        2.990   2.606   2.397   2.266  
2.176   2.109   2.058   2.017   1.984   1.956
 20        2.975   2.589   2.380   2.249  
2.158   2.091   2.040   1.999   1.965   1.937
 21        2.961   2.575   2.365   2.233  
2.142   2.075   2.023   1.982   1.948   1.920
 22        2.949   2.561   2.351   2.219  
2.128   2.060   2.008   1.967   1.933   1.904
 23        2.937   2.549   2.339   2.207  
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2.115   2.047   1.995   1.953   1.919   1.890
 24        2.927   2.538   2.327   2.195  
2.103   2.035   1.983   1.941   1.906   1.877
 25        2.918   2.528   2.317   2.184  
2.092   2.024   1.971   1.929   1.895   1.866
 26        2.909   2.519   2.307   2.174  
2.082   2.014   1.961   1.919   1.884   1.855
 27        2.901   2.511   2.299   2.165  
2.073   2.005   1.952   1.909   1.874   1.845
 28        2.894   2.503   2.291   2.157  
2.064   1.996   1.943   1.900   1.865   1.836
 29        2.887   2.495   2.283   2.149  
2.057   1.988   1.935   1.892   1.857   1.827
 30        2.881   2.489   2.276   2.142  
2.049   1.980   1.927   1.884   1.849   1.819
 31        2.875   2.482   2.270   2.136  
2.042   1.973   1.920   1.877   1.842   1.812
 32        2.869   2.477   2.263   2.129  
2.036   1.967   1.913   1.870   1.835   1.805
 33        2.864   2.471   2.258   2.123  
2.030   1.961   1.907   1.864   1.828   1.799
 34        2.859   2.466   2.252   2.118  
2.024   1.955   1.901   1.858   1.822   1.793
 35        2.855   2.461   2.247   2.113  
2.019   1.950   1.896   1.852   1.817   1.787
 36        2.850   2.456   2.243   2.108  
2.014   1.945   1.891   1.847   1.811   1.781
 37        2.846   2.452   2.238   2.103  
2.009   1.940   1.886   1.842   1.806   1.776
 38        2.842   2.448   2.234   2.099  
2.005   1.935   1.881   1.838   1.802   1.772
 39        2.839   2.444   2.230   2.095  
2.001   1.931   1.877   1.833   1.797   1.767
 40        2.835   2.440   2.226   2.091  
1.997   1.927   1.873   1.829   1.793   1.763
 41        2.832   2.437   2.222   2.087  
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1.993   1.923   1.869   1.825   1.789   1.759
 42        2.829   2.434   2.219   2.084  
1.989   1.919   1.865   1.821   1.785   1.755
 43        2.826   2.430   2.216   2.080  
1.986   1.916   1.861   1.817   1.781   1.751
 44        2.823   2.427   2.213   2.077  
1.983   1.913   1.858   1.814   1.778   1.747
 45        2.820   2.425   2.210   2.074  
1.980   1.909   1.855   1.811   1.774   1.744
 46        2.818   2.422   2.207   2.071  
1.977   1.906   1.852   1.808   1.771   1.741
 47        2.815   2.419   2.204   2.068  
1.974   1.903   1.849   1.805   1.768   1.738
 48        2.813   2.417   2.202   2.066  
1.971   1.901   1.846   1.802   1.765   1.735
 49        2.811   2.414   2.199   2.063  
1.968   1.898   1.843   1.799   1.763   1.732
 50        2.809   2.412   2.197   2.061  
1.966   1.895   1.840   1.796   1.760   1.729
 51        2.807   2.410   2.194   2.058  
1.964   1.893   1.838   1.794   1.757   1.727
 52        2.805   2.408   2.192   2.056  
1.961   1.891   1.836   1.791   1.755   1.724
 53        2.803   2.406   2.190   2.054  
1.959   1.888   1.833   1.789   1.752   1.722
 54        2.801   2.404   2.188   2.052  
1.957   1.886   1.831   1.787   1.750   1.719
 55        2.799   2.402   2.186   2.050  
1.955   1.884   1.829   1.785   1.748   1.717
 56        2.797   2.400   2.184   2.048  
1.953   1.882   1.827   1.782   1.746   1.715
 57        2.796   2.398   2.182   2.046  
1.951   1.880   1.825   1.780   1.744   1.713
 58        2.794   2.396   2.181   2.044  
1.949   1.878   1.823   1.779   1.742   1.711
 59        2.793   2.395   2.179   2.043  
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1.947   1.876   1.821   1.777   1.740   1.709
 60        2.791   2.393   2.177   2.041  
1.946   1.875   1.819   1.775   1.738   1.707
 61        2.790   2.392   2.176   2.039  
1.944   1.873   1.818   1.773   1.736   1.705
 62        2.788   2.390   2.174   2.038  
1.942   1.871   1.816   1.771   1.735   1.703
 63        2.787   2.389   2.173   2.036  
1.941   1.870   1.814   1.770   1.733   1.702
 64        2.786   2.387   2.171   2.035  
1.939   1.868   1.813   1.768   1.731   1.700
 65        2.784   2.386   2.170   2.033  
1.938   1.867   1.811   1.767   1.730   1.699
 66        2.783   2.385   2.169   2.032  
1.937   1.865   1.810   1.765   1.728   1.697
 67        2.782   2.384   2.167   2.031  
1.935   1.864   1.808   1.764   1.727   1.696
 68        2.781   2.382   2.166   2.029  
1.934   1.863   1.807   1.762   1.725   1.694
 69        2.780   2.381   2.165   2.028  
1.933   1.861   1.806   1.761   1.724   1.693
 70        2.779   2.380   2.164   2.027  
1.931   1.860   1.804   1.760   1.723   1.691
 71        2.778   2.379   2.163   2.026  
1.930   1.859   1.803   1.758   1.721   1.690
 72        2.777   2.378   2.161   2.025  
1.929   1.858   1.802   1.757   1.720   1.689
 73        2.776   2.377   2.160   2.024  
1.928   1.856   1.801   1.756   1.719   1.687
 74        2.775   2.376   2.159   2.022  
1.927   1.855   1.800   1.755   1.718   1.686
 75        2.774   2.375   2.158   2.021  
1.926   1.854   1.798   1.754   1.716   1.685
 76        2.773   2.374   2.157   2.020  
1.925   1.853   1.797   1.752   1.715   1.684
 77        2.772   2.373   2.156   2.019  
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1.924   1.852   1.796   1.751   1.714   1.683
 78        2.771   2.372   2.155   2.018  
1.923   1.851   1.795   1.750   1.713   1.682
 79        2.770   2.371   2.154   2.017  
1.922   1.850   1.794   1.749   1.712   1.681
 80        2.769   2.370   2.154   2.016  
1.921   1.849   1.793   1.748   1.711   1.680
 81        2.769   2.369   2.153   2.016  
1.920   1.848   1.792   1.747   1.710   1.679
 82        2.768   2.368   2.152   2.015  
1.919   1.847   1.791   1.746   1.709   1.678
 83        2.767   2.368   2.151   2.014  
1.918   1.846   1.790   1.745   1.708   1.677
 84        2.766   2.367   2.150   2.013  
1.917   1.845   1.790   1.744   1.707   1.676
 85        2.765   2.366   2.149   2.012  
1.916   1.845   1.789   1.744   1.706   1.675
 86        2.765   2.365   2.149   2.011  
1.915   1.844   1.788   1.743   1.705   1.674
 87        2.764   2.365   2.148   2.011  
1.915   1.843   1.787   1.742   1.705   1.673
 88        2.763   2.364   2.147   2.010  
1.914   1.842   1.786   1.741   1.704   1.672
 89        2.763   2.363   2.146   2.009  
1.913   1.841   1.785   1.740   1.703   1.671
 90        2.762   2.363   2.146   2.008  
1.912   1.841   1.785   1.739   1.702   1.670
 91        2.761   2.362   2.145   2.008  
1.912   1.840   1.784   1.739   1.701   1.670
 92        2.761   2.361   2.144   2.007  
1.911   1.839   1.783   1.738   1.701   1.669
 93        2.760   2.361   2.144   2.006  
1.910   1.838   1.782   1.737   1.700   1.668
 94        2.760   2.360   2.143   2.006  
1.910   1.838   1.782   1.736   1.699   1.667
 95        2.759   2.359   2.142   2.005  
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1.909   1.837   1.781   1.736   1.698   1.667
 96        2.759   2.359   2.142   2.004  
1.908   1.836   1.780   1.735   1.698   1.666
 97        2.758   2.358   2.141   2.004  
1.908   1.836   1.780   1.734   1.697   1.665
 98        2.757   2.358   2.141   2.003  
1.907   1.835   1.779   1.734   1.696   1.665
 99        2.757   2.357   2.140   2.003  
1.906   1.835   1.778   1.733   1.696   1.664
100        2.756   2.356   2.139   2.002  
1.906   1.834   1.778   1.732   1.695   1.663

     \   11      12      13      14      15     
16      17      18      19      20

   

  1       60.473  60.705  60.903  61.073 
61.220  61.350  61.464  61.566  61.658  61.740
  2        9.401   9.408   9.415   9.420  
9.425   9.429   9.433   9.436   9.439   9.441
  3        5.222   5.216   5.210   5.205  
5.200   5.196   5.193   5.190   5.187   5.184
  4        3.907   3.896   3.886   3.878  
3.870   3.864   3.858   3.853   3.849   3.844
  5        3.282   3.268   3.257   3.247  
3.238   3.230   3.223   3.217   3.212   3.207
  6        2.920   2.905   2.892   2.881  
2.871   2.863   2.855   2.848   2.842   2.836
  7        2.684   2.668   2.654   2.643  
2.632   2.623   2.615   2.607   2.601   2.595
  8        2.519   2.502   2.488   2.475  
2.464   2.455   2.446   2.438   2.431   2.425
  9        2.396   2.379   2.364   2.351  
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2.340   2.329   2.320   2.312   2.305   2.298
 10        2.302   2.284   2.269   2.255  
2.244   2.233   2.224   2.215   2.208   2.201
 11        2.227   2.209   2.193   2.179  
2.167   2.156   2.147   2.138   2.130   2.123
 12        2.166   2.147   2.131   2.117  
2.105   2.094   2.084   2.075   2.067   2.060
 13        2.116   2.097   2.080   2.066  
2.053   2.042   2.032   2.023   2.014   2.007
 14        2.073   2.054   2.037   2.022  
2.010   1.998   1.988   1.978   1.970   1.962
 15        2.037   2.017   2.000   1.985  
1.972   1.961   1.950   1.941   1.932   1.924
 16        2.005   1.985   1.968   1.953  
1.940   1.928   1.917   1.908   1.899   1.891
 17        1.978   1.958   1.940   1.925  
1.912   1.900   1.889   1.879   1.870   1.862
 18        1.954   1.933   1.916   1.900  
1.887   1.875   1.864   1.854   1.845   1.837
 19        1.932   1.912   1.894   1.878  
1.865   1.852   1.841   1.831   1.822   1.814
 20        1.913   1.892   1.875   1.859  
1.845   1.833   1.821   1.811   1.802   1.794
 21        1.896   1.875   1.857   1.841  
1.827   1.815   1.803   1.793   1.784   1.776
 22        1.880   1.859   1.841   1.825  
1.811   1.798   1.787   1.777   1.768   1.759
 23        1.866   1.845   1.827   1.811  
1.796   1.784   1.772   1.762   1.753   1.744
 24        1.853   1.832   1.814   1.797  
1.783   1.770   1.759   1.748   1.739   1.730
 25        1.841   1.820   1.802   1.785  
1.771   1.758   1.746   1.736   1.726   1.718
 26        1.830   1.809   1.790   1.774  
1.760   1.747   1.735   1.724   1.715   1.706
 27        1.820   1.799   1.780   1.764  
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1.749   1.736   1.724   1.714   1.704   1.695
 28        1.811   1.790   1.771   1.754  
1.740   1.726   1.715   1.704   1.694   1.685
 29        1.802   1.781   1.762   1.745  
1.731   1.717   1.705   1.695   1.685   1.676
 30        1.794   1.773   1.754   1.737  
1.722   1.709   1.697   1.686   1.676   1.667
 31        1.787   1.765   1.746   1.729  
1.714   1.701   1.689   1.678   1.668   1.659
 32        1.780   1.758   1.739   1.722  
1.707   1.694   1.682   1.671   1.661   1.652
 33        1.773   1.751   1.732   1.715  
1.700   1.687   1.675   1.664   1.654   1.645
 34        1.767   1.745   1.726   1.709  
1.694   1.680   1.668   1.657   1.647   1.638
 35        1.761   1.739   1.720   1.703  
1.688   1.674   1.662   1.651   1.641   1.632
 36        1.756   1.734   1.715   1.697  
1.682   1.669   1.656   1.645   1.635   1.626
 37        1.751   1.729   1.709   1.692  
1.677   1.663   1.651   1.640   1.630   1.620
 38        1.746   1.724   1.704   1.687  
1.672   1.658   1.646   1.635   1.624   1.615
 39        1.741   1.719   1.700   1.682  
1.667   1.653   1.641   1.630   1.619   1.610
 40        1.737   1.715   1.695   1.678  
1.662   1.649   1.636   1.625   1.615   1.605
 41        1.733   1.710   1.691   1.673  
1.658   1.644   1.632   1.620   1.610   1.601
 42        1.729   1.706   1.687   1.669  
1.654   1.640   1.628   1.616   1.606   1.596
 43        1.725   1.703   1.683   1.665  
1.650   1.636   1.624   1.612   1.602   1.592
 44        1.721   1.699   1.679   1.662  
1.646   1.632   1.620   1.608   1.598   1.588
 45        1.718   1.695   1.676   1.658  
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1.643   1.629   1.616   1.605   1.594   1.585
 46        1.715   1.692   1.672   1.655  
1.639   1.625   1.613   1.601   1.591   1.581
 47        1.712   1.689   1.669   1.652  
1.636   1.622   1.609   1.598   1.587   1.578
 48        1.709   1.686   1.666   1.648  
1.633   1.619   1.606   1.594   1.584   1.574
 49        1.706   1.683   1.663   1.645  
1.630   1.616   1.603   1.591   1.581   1.571
 50        1.703   1.680   1.660   1.643  
1.627   1.613   1.600   1.588   1.578   1.568
 51        1.700   1.677   1.658   1.640  
1.624   1.610   1.597   1.586   1.575   1.565
 52        1.698   1.675   1.655   1.637  
1.621   1.607   1.594   1.583   1.572   1.562
 53        1.695   1.672   1.652   1.635  
1.619   1.605   1.592   1.580   1.570   1.560
 54        1.693   1.670   1.650   1.632  
1.616   1.602   1.589   1.578   1.567   1.557
 55        1.691   1.668   1.648   1.630  
1.614   1.600   1.587   1.575   1.564   1.555
 56        1.688   1.666   1.645   1.628  
1.612   1.597   1.585   1.573   1.562   1.552
 57        1.686   1.663   1.643   1.625  
1.610   1.595   1.582   1.571   1.560   1.550
 58        1.684   1.661   1.641   1.623  
1.607   1.593   1.580   1.568   1.558   1.548
 59        1.682   1.659   1.639   1.621  
1.605   1.591   1.578   1.566   1.555   1.546
 60        1.680   1.657   1.637   1.619  
1.603   1.589   1.576   1.564   1.553   1.543
 61        1.679   1.656   1.635   1.617  
1.601   1.587   1.574   1.562   1.551   1.541
 62        1.677   1.654   1.634   1.616  
1.600   1.585   1.572   1.560   1.549   1.540
 63        1.675   1.652   1.632   1.614  
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1.598   1.583   1.570   1.558   1.548   1.538
 64        1.673   1.650   1.630   1.612  
1.596   1.582   1.569   1.557   1.546   1.536
 65        1.672   1.649   1.628   1.610  
1.594   1.580   1.567   1.555   1.544   1.534
 66        1.670   1.647   1.627   1.609  
1.593   1.578   1.565   1.553   1.542   1.532
 67        1.669   1.646   1.625   1.607  
1.591   1.577   1.564   1.552   1.541   1.531
 68        1.667   1.644   1.624   1.606  
1.590   1.575   1.562   1.550   1.539   1.529
 69        1.666   1.643   1.622   1.604  
1.588   1.574   1.560   1.548   1.538   1.527
 70        1.665   1.641   1.621   1.603  
1.587   1.572   1.559   1.547   1.536   1.526
 71        1.663   1.640   1.619   1.601  
1.585   1.571   1.557   1.545   1.535   1.524
 72        1.662   1.639   1.618   1.600  
1.584   1.569   1.556   1.544   1.533   1.523
 73        1.661   1.637   1.617   1.599  
1.583   1.568   1.555   1.543   1.532   1.522
 74        1.659   1.636   1.616   1.597  
1.581   1.567   1.553   1.541   1.530   1.520
 75        1.658   1.635   1.614   1.596  
1.580   1.565   1.552   1.540   1.529   1.519
 76        1.657   1.634   1.613   1.595  
1.579   1.564   1.551   1.539   1.528   1.518
 77        1.656   1.632   1.612   1.594  
1.578   1.563   1.550   1.538   1.527   1.516
 78        1.655   1.631   1.611   1.593  
1.576   1.562   1.548   1.536   1.525   1.515
 79        1.654   1.630   1.610   1.592  
1.575   1.561   1.547   1.535   1.524   1.514
 80        1.653   1.629   1.609   1.590  
1.574   1.559   1.546   1.534   1.523   1.513
 81        1.652   1.628   1.608   1.589  
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1.573   1.558   1.545   1.533   1.522   1.512
 82        1.651   1.627   1.607   1.588  
1.572   1.557   1.544   1.532   1.521   1.511
 83        1.650   1.626   1.606   1.587  
1.571   1.556   1.543   1.531   1.520   1.509
 84        1.649   1.625   1.605   1.586  
1.570   1.555   1.542   1.530   1.519   1.508
 85        1.648   1.624   1.604   1.585  
1.569   1.554   1.541   1.529   1.518   1.507
 86        1.647   1.623   1.603   1.584  
1.568   1.553   1.540   1.528   1.517   1.506
 87        1.646   1.622   1.602   1.583  
1.567   1.552   1.539   1.527   1.516   1.505
 88        1.645   1.622   1.601   1.583  
1.566   1.551   1.538   1.526   1.515   1.504
 89        1.644   1.621   1.600   1.582  
1.565   1.550   1.537   1.525   1.514   1.503
 90        1.643   1.620   1.599   1.581  
1.564   1.550   1.536   1.524   1.513   1.503
 91        1.643   1.619   1.598   1.580  
1.564   1.549   1.535   1.523   1.512   1.502
 92        1.642   1.618   1.598   1.579  
1.563   1.548   1.534   1.522   1.511   1.501
 93        1.641   1.617   1.597   1.578  
1.562   1.547   1.534   1.521   1.510   1.500
 94        1.640   1.617   1.596   1.578  
1.561   1.546   1.533   1.521   1.509   1.499
 95        1.640   1.616   1.595   1.577  
1.560   1.545   1.532   1.520   1.509   1.498
 96        1.639   1.615   1.594   1.576  
1.560   1.545   1.531   1.519   1.508   1.497
 97        1.638   1.614   1.594   1.575  
1.559   1.544   1.530   1.518   1.507   1.497
 98        1.637   1.614   1.593   1.575  
1.558   1.543   1.530   1.517   1.506   1.496
 99        1.637   1.613   1.592   1.574  
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1.557   1.542   1.529   1.517   1.505   1.495
100        1.636   1.612   1.592   1.573  
1.557   1.542   1.528   1.516   1.505   1.494

Upper critical values of the F distribution

for  numerator degrees of freedom and  denominator
degrees of freedom

1% significance level

     \    1       2       3       4       5      
6       7       8       9      10

   

  1      4052.19 4999.52 5403.34 5624.62
5763.65 5858.97 5928.33 5981.10 6022.50
6055.85
  2       98.502  99.000  99.166  99.249 
99.300  99.333  99.356  99.374  99.388  99.399
  3       34.116  30.816  29.457  28.710 
28.237  27.911  27.672  27.489  27.345  27.229
  4       21.198  18.000  16.694  15.977 
15.522  15.207  14.976  14.799  14.659  14.546
  5       16.258  13.274  12.060  11.392 
10.967  10.672  10.456  10.289  10.158  10.051
  6       13.745  10.925   9.780   9.148  
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8.746   8.466   8.260   8.102   7.976   7.874
  7       12.246   9.547   8.451   7.847  
7.460   7.191   6.993   6.840   6.719   6.620
  8       11.259   8.649   7.591   7.006  
6.632   6.371   6.178   6.029   5.911   5.814
  9       10.561   8.022   6.992   6.422  
6.057   5.802   5.613   5.467   5.351   5.257
 10       10.044   7.559   6.552   5.994  
5.636   5.386   5.200   5.057   4.942   4.849
 11        9.646   7.206   6.217   5.668  
5.316   5.069   4.886   4.744   4.632   4.539
 12        9.330   6.927   5.953   5.412  
5.064   4.821   4.640   4.499   4.388   4.296
 13        9.074   6.701   5.739   5.205  
4.862   4.620   4.441   4.302   4.191   4.100
 14        8.862   6.515   5.564   5.035  
4.695   4.456   4.278   4.140   4.030   3.939
 15        8.683   6.359   5.417   4.893  
4.556   4.318   4.142   4.004   3.895   3.805
 16        8.531   6.226   5.292   4.773  
4.437   4.202   4.026   3.890   3.780   3.691
 17        8.400   6.112   5.185   4.669  
4.336   4.102   3.927   3.791   3.682   3.593
 18        8.285   6.013   5.092   4.579  
4.248   4.015   3.841   3.705   3.597   3.508
 19        8.185   5.926   5.010   4.500  
4.171   3.939   3.765   3.631   3.523   3.434
 20        8.096   5.849   4.938   4.431  
4.103   3.871   3.699   3.564   3.457   3.368
 21        8.017   5.780   4.874   4.369  
4.042   3.812   3.640   3.506   3.398   3.310
 22        7.945   5.719   4.817   4.313  
3.988   3.758   3.587   3.453   3.346   3.258
 23        7.881   5.664   4.765   4.264  
3.939   3.710   3.539   3.406   3.299   3.211
 24        7.823   5.614   4.718   4.218  
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3.895   3.667   3.496   3.363   3.256   3.168
 25        7.770   5.568   4.675   4.177  
3.855   3.627   3.457   3.324   3.217   3.129
 26        7.721   5.526   4.637   4.140  
3.818   3.591   3.421   3.288   3.182   3.094
 27        7.677   5.488   4.601   4.106  
3.785   3.558   3.388   3.256   3.149   3.062
 28        7.636   5.453   4.568   4.074  
3.754   3.528   3.358   3.226   3.120   3.032
 29        7.598   5.420   4.538   4.045  
3.725   3.499   3.330   3.198   3.092   3.005
 30        7.562   5.390   4.510   4.018  
3.699   3.473   3.305   3.173   3.067   2.979
 31        7.530   5.362   4.484   3.993  
3.675   3.449   3.281   3.149   3.043   2.955
 32        7.499   5.336   4.459   3.969  
3.652   3.427   3.258   3.127   3.021   2.934
 33        7.471   5.312   4.437   3.948  
3.630   3.406   3.238   3.106   3.000   2.913
 34        7.444   5.289   4.416   3.927  
3.611   3.386   3.218   3.087   2.981   2.894
 35        7.419   5.268   4.396   3.908  
3.592   3.368   3.200   3.069   2.963   2.876
 36        7.396   5.248   4.377   3.890  
3.574   3.351   3.183   3.052   2.946   2.859
 37        7.373   5.229   4.360   3.873  
3.558   3.334   3.167   3.036   2.930   2.843
 38        7.353   5.211   4.343   3.858  
3.542   3.319   3.152   3.021   2.915   2.828
 39        7.333   5.194   4.327   3.843  
3.528   3.305   3.137   3.006   2.901   2.814
 40        7.314   5.179   4.313   3.828  
3.514   3.291   3.124   2.993   2.888   2.801
 41        7.296   5.163   4.299   3.815  
3.501   3.278   3.111   2.980   2.875   2.788
 42        7.280   5.149   4.285   3.802  
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3.488   3.266   3.099   2.968   2.863   2.776
 43        7.264   5.136   4.273   3.790  
3.476   3.254   3.087   2.957   2.851   2.764
 44        7.248   5.123   4.261   3.778  
3.465   3.243   3.076   2.946   2.840   2.754
 45        7.234   5.110   4.249   3.767  
3.454   3.232   3.066   2.935   2.830   2.743
 46        7.220   5.099   4.238   3.757  
3.444   3.222   3.056   2.925   2.820   2.733
 47        7.207   5.087   4.228   3.747  
3.434   3.213   3.046   2.916   2.811   2.724
 48        7.194   5.077   4.218   3.737  
3.425   3.204   3.037   2.907   2.802   2.715
 49        7.182   5.066   4.208   3.728  
3.416   3.195   3.028   2.898   2.793   2.706
 50        7.171   5.057   4.199   3.720  
3.408   3.186   3.020   2.890   2.785   2.698
 51        7.159   5.047   4.191   3.711  
3.400   3.178   3.012   2.882   2.777   2.690
 52        7.149   5.038   4.182   3.703  
3.392   3.171   3.005   2.874   2.769   2.683
 53        7.139   5.030   4.174   3.695  
3.384   3.163   2.997   2.867   2.762   2.675
 54        7.129   5.021   4.167   3.688  
3.377   3.156   2.990   2.860   2.755   2.668
 55        7.119   5.013   4.159   3.681  
3.370   3.149   2.983   2.853   2.748   2.662
 56        7.110   5.006   4.152   3.674  
3.363   3.143   2.977   2.847   2.742   2.655
 57        7.102   4.998   4.145   3.667  
3.357   3.136   2.971   2.841   2.736   2.649
 58        7.093   4.991   4.138   3.661  
3.351   3.130   2.965   2.835   2.730   2.643
 59        7.085   4.984   4.132   3.655  
3.345   3.124   2.959   2.829   2.724   2.637
 60        7.077   4.977   4.126   3.649  
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3.339   3.119   2.953   2.823   2.718   2.632
 61        7.070   4.971   4.120   3.643  
3.333   3.113   2.948   2.818   2.713   2.626
 62        7.062   4.965   4.114   3.638  
3.328   3.108   2.942   2.813   2.708   2.621
 63        7.055   4.959   4.109   3.632  
3.323   3.103   2.937   2.808   2.703   2.616
 64        7.048   4.953   4.103   3.627  
3.318   3.098   2.932   2.803   2.698   2.611
 65        7.042   4.947   4.098   3.622  
3.313   3.093   2.928   2.798   2.693   2.607
 66        7.035   4.942   4.093   3.618  
3.308   3.088   2.923   2.793   2.689   2.602
 67        7.029   4.937   4.088   3.613  
3.304   3.084   2.919   2.789   2.684   2.598
 68        7.023   4.932   4.083   3.608  
3.299   3.080   2.914   2.785   2.680   2.593
 69        7.017   4.927   4.079   3.604  
3.295   3.075   2.910   2.781   2.676   2.589
 70        7.011   4.922   4.074   3.600  
3.291   3.071   2.906   2.777   2.672   2.585
 71        7.006   4.917   4.070   3.596  
3.287   3.067   2.902   2.773   2.668   2.581
 72        7.001   4.913   4.066   3.591  
3.283   3.063   2.898   2.769   2.664   2.578
 73        6.995   4.908   4.062   3.588  
3.279   3.060   2.895   2.765   2.660   2.574
 74        6.990   4.904   4.058   3.584  
3.275   3.056   2.891   2.762   2.657   2.570
 75        6.985   4.900   4.054   3.580  
3.272   3.052   2.887   2.758   2.653   2.567
 76        6.981   4.896   4.050   3.577  
3.268   3.049   2.884   2.755   2.650   2.563
 77        6.976   4.892   4.047   3.573  
3.265   3.046   2.881   2.751   2.647   2.560
 78        6.971   4.888   4.043   3.570  
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3.261   3.042   2.877   2.748   2.644   2.557
 79        6.967   4.884   4.040   3.566  
3.258   3.039   2.874   2.745   2.640   2.554
 80        6.963   4.881   4.036   3.563  
3.255   3.036   2.871   2.742   2.637   2.551
 81        6.958   4.877   4.033   3.560  
3.252   3.033   2.868   2.739   2.634   2.548
 82        6.954   4.874   4.030   3.557  
3.249   3.030   2.865   2.736   2.632   2.545
 83        6.950   4.870   4.027   3.554  
3.246   3.027   2.863   2.733   2.629   2.542
 84        6.947   4.867   4.024   3.551  
3.243   3.025   2.860   2.731   2.626   2.539
 85        6.943   4.864   4.021   3.548  
3.240   3.022   2.857   2.728   2.623   2.537
 86        6.939   4.861   4.018   3.545  
3.238   3.019   2.854   2.725   2.621   2.534
 87        6.935   4.858   4.015   3.543  
3.235   3.017   2.852   2.723   2.618   2.532
 88        6.932   4.855   4.012   3.540  
3.233   3.014   2.849   2.720   2.616   2.529
 89        6.928   4.852   4.010   3.538  
3.230   3.012   2.847   2.718   2.613   2.527
 90        6.925   4.849   4.007   3.535  
3.228   3.009   2.845   2.715   2.611   2.524
 91        6.922   4.846   4.004   3.533  
3.225   3.007   2.842   2.713   2.609   2.522
 92        6.919   4.844   4.002   3.530  
3.223   3.004   2.840   2.711   2.606   2.520
 93        6.915   4.841   3.999   3.528  
3.221   3.002   2.838   2.709   2.604   2.518
 94        6.912   4.838   3.997   3.525  
3.218   3.000   2.835   2.706   2.602   2.515
 95        6.909   4.836   3.995   3.523  
3.216   2.998   2.833   2.704   2.600   2.513
 96        6.906   4.833   3.992   3.521  
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3.214   2.996   2.831   2.702   2.598   2.511
 97        6.904   4.831   3.990   3.519  
3.212   2.994   2.829   2.700   2.596   2.509
 98        6.901   4.829   3.988   3.517  
3.210   2.992   2.827   2.698   2.594   2.507
 99        6.898   4.826   3.986   3.515  
3.208   2.990   2.825   2.696   2.592   2.505
100        6.895   4.824   3.984   3.513  
3.206   2.988   2.823   2.694   2.590   2.503

     \    11      12      13      14      15     
16      17      18      19      20

   

  1.     6083.35 6106.35 6125.86 6142.70
6157.28 6170.12 6181.42 6191.52 6200.58
6208.74
  2.      99.408  99.416  99.422  99.428 
99.432  99.437  99.440  99.444  99.447  99.449
  3.      27.133  27.052  26.983  26.924 
26.872  26.827  26.787  26.751  26.719  26.690
  4.      14.452  14.374  14.307  14.249 
14.198  14.154  14.115  14.080  14.048  14.020
  5.       9.963   9.888   9.825   9.770  
9.722   9.680   9.643   9.610   9.580   9.553
  6.       7.790   7.718   7.657   7.605  
7.559   7.519   7.483   7.451   7.422   7.396
  7.       6.538   6.469   6.410   6.359  
6.314   6.275   6.240   6.209   6.181   6.155
  8.       5.734   5.667   5.609   5.559  
5.515   5.477   5.442   5.412   5.384   5.359
  9.       5.178   5.111   5.055   5.005  
4.962   4.924   4.890   4.860   4.833   4.808
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 10.       4.772   4.706   4.650   4.601  
4.558   4.520   4.487   4.457   4.430   4.405
 11.       4.462   4.397   4.342   4.293  
4.251   4.213   4.180   4.150   4.123   4.099
 12.       4.220   4.155   4.100   4.052  
4.010   3.972   3.939   3.909   3.883   3.858
 13.       4.025   3.960   3.905   3.857  
3.815   3.778   3.745   3.716   3.689   3.665
 14.       3.864   3.800   3.745   3.698  
3.656   3.619   3.586   3.556   3.529   3.505
 15.       3.730   3.666   3.612   3.564  
3.522   3.485   3.452   3.423   3.396   3.372
 16.       3.616   3.553   3.498   3.451  
3.409   3.372   3.339   3.310   3.283   3.259
 17.       3.519   3.455   3.401   3.353  
3.312   3.275   3.242   3.212   3.186   3.162
 18.       3.434   3.371   3.316   3.269  
3.227   3.190   3.158   3.128   3.101   3.077
 19.       3.360   3.297   3.242   3.195  
3.153   3.116   3.084   3.054   3.027   3.003
 20.       3.294   3.231   3.177   3.130  
3.088   3.051   3.018   2.989   2.962   2.938
 21.       3.236   3.173   3.119   3.072  
3.030   2.993   2.960   2.931   2.904   2.880
 22.       3.184   3.121   3.067   3.019  
2.978   2.941   2.908   2.879   2.852   2.827
 23.       3.137   3.074   3.020   2.973  
2.931   2.894   2.861   2.832   2.805   2.781
 24.       3.094   3.032   2.977   2.930  
2.889   2.852   2.819   2.789   2.762   2.738
 25.       3.056   2.993   2.939   2.892  
2.850   2.813   2.780   2.751   2.724   2.699
 26.       3.021   2.958   2.904   2.857  
2.815   2.778   2.745   2.715   2.688   2.664
 27.       2.988   2.926   2.871   2.824  
2.783   2.746   2.713   2.683   2.656   2.632
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 28.       2.959   2.896   2.842   2.795  
2.753   2.716   2.683   2.653   2.626   2.602
 29.       2.931   2.868   2.814   2.767  
2.726   2.689   2.656   2.626   2.599   2.574
 30.       2.906   2.843   2.789   2.742  
2.700   2.663   2.630   2.600   2.573   2.549
 31.       2.882   2.820   2.765   2.718  
2.677   2.640   2.606   2.577   2.550   2.525
 32.       2.860   2.798   2.744   2.696  
2.655   2.618   2.584   2.555   2.527   2.503
 33.       2.840   2.777   2.723   2.676  
2.634   2.597   2.564   2.534   2.507   2.482
 34.       2.821   2.758   2.704   2.657  
2.615   2.578   2.545   2.515   2.488   2.463
 35.       2.803   2.740   2.686   2.639  
2.597   2.560   2.527   2.497   2.470   2.445
 36.       2.786   2.723   2.669   2.622  
2.580   2.543   2.510   2.480   2.453   2.428
 37.       2.770   2.707   2.653   2.606  
2.564   2.527   2.494   2.464   2.437   2.412
 38.       2.755   2.692   2.638   2.591  
2.549   2.512   2.479   2.449   2.421   2.397
 39.       2.741   2.678   2.624   2.577  
2.535   2.498   2.465   2.434   2.407   2.382
 40.       2.727   2.665   2.611   2.563  
2.522   2.484   2.451   2.421   2.394   2.369
 41.       2.715   2.652   2.598   2.551  
2.509   2.472   2.438   2.408   2.381   2.356
 42.       2.703   2.640   2.586   2.539  
2.497   2.460   2.426   2.396   2.369   2.344
 43.       2.691   2.629   2.575   2.527  
2.485   2.448   2.415   2.385   2.357   2.332
 44.       2.680   2.618   2.564   2.516  
2.475   2.437   2.404   2.374   2.346   2.321
 45.       2.670   2.608   2.553   2.506  
2.464   2.427   2.393   2.363   2.336   2.311

1.3.6.7.3. Upper Critical Values of the F Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm (34 of 38) [5/1/2006 9:58:27 AM]



 46.       2.660   2.598   2.544   2.496  
2.454   2.417   2.384   2.353   2.326   2.301
 47.       2.651   2.588   2.534   2.487  
2.445   2.408   2.374   2.344   2.316   2.291
 48.       2.642   2.579   2.525   2.478  
2.436   2.399   2.365   2.335   2.307   2.282
 49.       2.633   2.571   2.517   2.469  
2.427   2.390   2.356   2.326   2.299   2.274
 50.       2.625   2.562   2.508   2.461  
2.419   2.382   2.348   2.318   2.290   2.265
 51.       2.617   2.555   2.500   2.453  
2.411   2.374   2.340   2.310   2.282   2.257
 52.       2.610   2.547   2.493   2.445  
2.403   2.366   2.333   2.302   2.275   2.250
 53.       2.602   2.540   2.486   2.438  
2.396   2.359   2.325   2.295   2.267   2.242
 54.       2.595   2.533   2.479   2.431  
2.389   2.352   2.318   2.288   2.260   2.235
 55.       2.589   2.526   2.472   2.424  
2.382   2.345   2.311   2.281   2.253   2.228
 56.       2.582   2.520   2.465   2.418  
2.376   2.339   2.305   2.275   2.247   2.222
 57.       2.576   2.513   2.459   2.412  
2.370   2.332   2.299   2.268   2.241   2.215
 58.       2.570   2.507   2.453   2.406  
2.364   2.326   2.293   2.262   2.235   2.209
 59.       2.564   2.502   2.447   2.400  
2.358   2.320   2.287   2.256   2.229   2.203
 60.       2.559   2.496   2.442   2.394  
2.352   2.315   2.281   2.251   2.223   2.198
 61.       2.553   2.491   2.436   2.389  
2.347   2.309   2.276   2.245   2.218   2.192
 62.       2.548   2.486   2.431   2.384  
2.342   2.304   2.270   2.240   2.212   2.187
 63.       2.543   2.481   2.426   2.379  
2.337   2.299   2.265   2.235   2.207   2.182
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 64.       2.538   2.476   2.421   2.374  
2.332   2.294   2.260   2.230   2.202   2.177
 65.       2.534   2.471   2.417   2.369  
2.327   2.289   2.256   2.225   2.198   2.172
 66.       2.529   2.466   2.412   2.365  
2.322   2.285   2.251   2.221   2.193   2.168
 67.       2.525   2.462   2.408   2.360  
2.318   2.280   2.247   2.216   2.188   2.163
 68.       2.520   2.458   2.403   2.356  
2.314   2.276   2.242   2.212   2.184   2.159
 69.       2.516   2.454   2.399   2.352  
2.310   2.272   2.238   2.208   2.180   2.155
 70.       2.512   2.450   2.395   2.348  
2.306   2.268   2.234   2.204   2.176   2.150
 71.       2.508   2.446   2.391   2.344  
2.302   2.264   2.230   2.200   2.172   2.146
 72.       2.504   2.442   2.388   2.340  
2.298   2.260   2.226   2.196   2.168   2.143
 73.       2.501   2.438   2.384   2.336  
2.294   2.256   2.223   2.192   2.164   2.139
 74.       2.497   2.435   2.380   2.333  
2.290   2.253   2.219   2.188   2.161   2.135
 75.       2.494   2.431   2.377   2.329  
2.287   2.249   2.215   2.185   2.157   2.132
 76.       2.490   2.428   2.373   2.326  
2.284   2.246   2.212   2.181   2.154   2.128
 77.       2.487   2.424   2.370   2.322  
2.280   2.243   2.209   2.178   2.150   2.125
 78.       2.484   2.421   2.367   2.319  
2.277   2.239   2.206   2.175   2.147   2.122
 79.       2.481   2.418   2.364   2.316  
2.274   2.236   2.202   2.172   2.144   2.118
 80.       2.478   2.415   2.361   2.313  
2.271   2.233   2.199   2.169   2.141   2.115
 81.       2.475   2.412   2.358   2.310  
2.268   2.230   2.196   2.166   2.138   2.112
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 82.       2.472   2.409   2.355   2.307  
2.265   2.227   2.193   2.163   2.135   2.109
 83.       2.469   2.406   2.352   2.304  
2.262   2.224   2.191   2.160   2.132   2.106
 84.       2.466   2.404   2.349   2.302  
2.259   2.222   2.188   2.157   2.129   2.104
 85.       2.464   2.401   2.347   2.299  
2.257   2.219   2.185   2.154   2.126   2.101
 86.       2.461   2.398   2.344   2.296  
2.254   2.216   2.182   2.152   2.124   2.098
 87.       2.459   2.396   2.342   2.294  
2.252   2.214   2.180   2.149   2.121   2.096
 88.       2.456   2.393   2.339   2.291  
2.249   2.211   2.177   2.147   2.119   2.093
 89.       2.454   2.391   2.337   2.289  
2.247   2.209   2.175   2.144   2.116   2.091
 90.       2.451   2.389   2.334   2.286  
2.244   2.206   2.172   2.142   2.114   2.088
 91.       2.449   2.386   2.332   2.284  
2.242   2.204   2.170   2.139   2.111   2.086
 92.       2.447   2.384   2.330   2.282  
2.240   2.202   2.168   2.137   2.109   2.083
 93.       2.444   2.382   2.327   2.280  
2.237   2.200   2.166   2.135   2.107   2.081
 94.       2.442   2.380   2.325   2.277  
2.235   2.197   2.163   2.133   2.105   2.079
 95.       2.440   2.378   2.323   2.275  
2.233   2.195   2.161   2.130   2.102   2.077
 96.       2.438   2.375   2.321   2.273  
2.231   2.193   2.159   2.128   2.100   2.075
 97.       2.436   2.373   2.319   2.271  
2.229   2.191   2.157   2.126   2.098   2.073
 98.       2.434   2.371   2.317   2.269  
2.227   2.189   2.155   2.124   2.096   2.071
 99.       2.432   2.369   2.315   2.267  
2.225   2.187   2.153   2.122   2.094   2.069
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100.       2.430   2.368   2.313   2.265  
2.223   2.185   2.151   2.120   2.092   2.067
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.7. Tables for Probability Distributions

1.3.6.7.4.Critical Values of the Chi-Square
Distribution

How to Use
This Table

This table contains the critical values of the chi-square distribution.
Because of the lack of symmetry of the chi-square distribution, separate
tables are provided for the upper and lower tails of the distribution.

A test statistic with  degrees of freedom is computed from the data. For
upper one-sided tests, the test statistic is compared with a value from the
table of upper critical values. For two-sided tests, the test statistic is
compared with values from both the table for the upper critical value
and the table for the lower critical value.

The significance level, , is demonstrated with the graph below which
shows a chi-square distribution with 3 degrees of freedom for a
two-sided test at significance level  = 0.05. If the test statistic is
greater than the upper critical value or less than the lower critical value,
we reject the null hypothesis. Specific instructions are given below.
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Given a specified value for :

For a two-sided test, find the column corresponding to /2 in the
table for upper critical values and reject the null hypothesis if the
test statistic is greater than the tabled value. Similarly, find the
column corresponding to 1 - /2 in the table for lower critical
values and reject the null hypothesis if the test statistic is less than
the tabled value.

1.  

For an upper one-sided test, find the column corresponding to 
in the upper critical values table and reject the null hypothesis if
the test statistic is greater than the tabled value.

2.  

For a lower one-sided test, find the column corresponding to 1 -
 in the lower critical values table and reject the null hypothesis

if the computed test statistic is less than the tabled value.

3.  
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Upper critical values of chi-square distribution with  degrees of
freedom

             Probability of exceeding the
critical value
             0.10      0.05     0.025     
0.01     0.001

  1          2.706     3.841     5.024    
6.635    10.828
  2          4.605     5.991     7.378    
9.210    13.816
  3          6.251     7.815     9.348   
11.345    16.266
  4          7.779     9.488    11.143   
13.277    18.467
  5          9.236    11.070    12.833   
15.086    20.515
  6         10.645    12.592    14.449   
16.812    22.458
  7         12.017    14.067    16.013   
18.475    24.322
  8         13.362    15.507    17.535   
20.090    26.125
  9         14.684    16.919    19.023   
21.666    27.877
 10         15.987    18.307    20.483   
23.209    29.588
 11         17.275    19.675    21.920   
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24.725    31.264
 12         18.549    21.026    23.337   
26.217    32.910
 13         19.812    22.362    24.736   
27.688    34.528
 14         21.064    23.685    26.119   
29.141    36.123
 15         22.307    24.996    27.488   
30.578    37.697
 16         23.542    26.296    28.845   
32.000    39.252
 17         24.769    27.587    30.191   
33.409    40.790
 18         25.989    28.869    31.526   
34.805    42.312
 19         27.204    30.144    32.852   
36.191    43.820
 20         28.412    31.410    34.170   
37.566    45.315
 21         29.615    32.671    35.479   
38.932    46.797
 22         30.813    33.924    36.781   
40.289    48.268
 23         32.007    35.172    38.076   
41.638    49.728
 24         33.196    36.415    39.364   
42.980    51.179
 25         34.382    37.652    40.646   
44.314    52.620
 26         35.563    38.885    41.923   
45.642    54.052
 27         36.741    40.113    43.195   
46.963    55.476
 28         37.916    41.337    44.461   
48.278    56.892
 29         39.087    42.557    45.722   
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49.588    58.301
 30         40.256    43.773    46.979   
50.892    59.703
 31         41.422    44.985    48.232   
52.191    61.098
 32         42.585    46.194    49.480   
53.486    62.487
 33         43.745    47.400    50.725   
54.776    63.870
 34         44.903    48.602    51.966   
56.061    65.247
 35         46.059    49.802    53.203   
57.342    66.619
 36         47.212    50.998    54.437   
58.619    67.985
 37         48.363    52.192    55.668   
59.893    69.347
 38         49.513    53.384    56.896   
61.162    70.703
 39         50.660    54.572    58.120   
62.428    72.055
 40         51.805    55.758    59.342   
63.691    73.402
 41         52.949    56.942    60.561   
64.950    74.745
 42         54.090    58.124    61.777   
66.206    76.084
 43         55.230    59.304    62.990   
67.459    77.419
 44         56.369    60.481    64.201   
68.710    78.750
 45         57.505    61.656    65.410   
69.957    80.077
 46         58.641    62.830    66.617   
71.201    81.400
 47         59.774    64.001    67.821   
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72.443    82.720
 48         60.907    65.171    69.023   
73.683    84.037
 49         62.038    66.339    70.222   
74.919    85.351
 50         63.167    67.505    71.420   
76.154    86.661
 51         64.295    68.669    72.616   
77.386    87.968
 52         65.422    69.832    73.810   
78.616    89.272
 53         66.548    70.993    75.002   
79.843    90.573
 54         67.673    72.153    76.192   
81.069    91.872
 55         68.796    73.311    77.380   
82.292    93.168
 56         69.919    74.468    78.567   
83.513    94.461
 57         71.040    75.624    79.752   
84.733    95.751
 58         72.160    76.778    80.936   
85.950    97.039
 59         73.279    77.931    82.117   
87.166    98.324
 60         74.397    79.082    83.298   
88.379    99.607
 61         75.514    80.232    84.476   
89.591   100.888
 62         76.630    81.381    85.654   
90.802   102.166
 63         77.745    82.529    86.830   
92.010   103.442
 64         78.860    83.675    88.004   
93.217   104.716
 65         79.973    84.821    89.177   
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94.422   105.988
 66         81.085    85.965    90.349   
95.626   107.258
 67         82.197    87.108    91.519   
96.828   108.526
 68         83.308    88.250    92.689   
98.028   109.791
 69         84.418    89.391    93.856   
99.228   111.055
 70         85.527    90.531    95.023  
100.425   112.317
 71         86.635    91.670    96.189  
101.621   113.577
 72         87.743    92.808    97.353  
102.816   114.835
 73         88.850    93.945    98.516  
104.010   116.092
 74         89.956    95.081    99.678  
105.202   117.346
 75         91.061    96.217   100.839  
106.393   118.599
 76         92.166    97.351   101.999  
107.583   119.850
 77         93.270    98.484   103.158  
108.771   121.100
 78         94.374    99.617   104.316  
109.958   122.348
 79         95.476   100.749   105.473  
111.144   123.594
 80         96.578   101.879   106.629  
112.329   124.839
 81         97.680   103.010   107.783  
113.512   126.083
 82         98.780   104.139   108.937  
114.695   127.324
 83         99.880   105.267   110.090  
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115.876   128.565
 84        100.980   106.395   111.242  
117.057   129.804
 85        102.079   107.522   112.393  
118.236   131.041
 86        103.177   108.648   113.544  
119.414   132.277
 87        104.275   109.773   114.693  
120.591   133.512
 88        105.372   110.898   115.841  
121.767   134.746
 89        106.469   112.022   116.989  
122.942   135.978
 90        107.565   113.145   118.136  
124.116   137.208
 91        108.661   114.268   119.282  
125.289   138.438
 92        109.756   115.390   120.427  
126.462   139.666
 93        110.850   116.511   121.571  
127.633   140.893
 94        111.944   117.632   122.715  
128.803   142.119
 95        113.038   118.752   123.858  
129.973   143.344
 96        114.131   119.871   125.000  
131.141   144.567
 97        115.223   120.990   126.141  
132.309   145.789
 98        116.315   122.108   127.282  
133.476   147.010
 99        117.407   123.225   128.422  
134.642   148.230
100        118.498   124.342   129.561  
135.807   149.449
100        118.498   124.342   129.561  
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135.807   149.449

Lower critical values of chi-square distribution with  degrees of
freedom

             Probability of exceeding the
critical value
             0.90     0.95     0.975     
0.99     0.999

  1.          .016      .004      .001     
.000      .000
  2.          .211      .103      .051     
.020      .002
  3.          .584      .352      .216     
.115      .024
  4.         1.064      .711      .484     
.297      .091
  5.         1.610     1.145      .831     
.554      .210
  6.         2.204     1.635     1.237     
.872      .381
  7.         2.833     2.167     1.690    
1.239      .598
  8.         3.490     2.733     2.180    
1.646      .857
  9.         4.168     3.325     2.700    
2.088     1.152
 10.         4.865     3.940     3.247    
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2.558     1.479
 11.         5.578     4.575     3.816    
3.053     1.834
 12.         6.304     5.226     4.404    
3.571     2.214
 13.         7.042     5.892     5.009    
4.107     2.617
 14.         7.790     6.571     5.629    
4.660     3.041
 15.         8.547     7.261     6.262    
5.229     3.483
 16.         9.312     7.962     6.908    
5.812     3.942
 17.        10.085     8.672     7.564    
6.408     4.416
 18.        10.865     9.390     8.231    
7.015     4.905
 19.        11.651    10.117     8.907    
7.633     5.407
 20.        12.443    10.851     9.591    
8.260     5.921
 21.        13.240    11.591    10.283    
8.897     6.447
 22.        14.041    12.338    10.982    
9.542     6.983
 23.        14.848    13.091    11.689   
10.196     7.529
 24.        15.659    13.848    12.401   
10.856     8.085
 25.        16.473    14.611    13.120   
11.524     8.649
 26.        17.292    15.379    13.844   
12.198     9.222
 27.        18.114    16.151    14.573   
12.879     9.803
 28.        18.939    16.928    15.308   
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13.565    10.391
 29.        19.768    17.708    16.047   
14.256    10.986
 30.        20.599    18.493    16.791   
14.953    11.588
 31.        21.434    19.281    17.539   
15.655    12.196
 32.        22.271    20.072    18.291   
16.362    12.811
 33.        23.110    20.867    19.047   
17.074    13.431
 34.        23.952    21.664    19.806   
17.789    14.057
 35.        24.797    22.465    20.569   
18.509    14.688
 36.        25.643    23.269    21.336   
19.233    15.324
 37.        26.492    24.075    22.106   
19.960    15.965
 38.        27.343    24.884    22.878   
20.691    16.611
 39.        28.196    25.695    23.654   
21.426    17.262
 40.        29.051    26.509    24.433   
22.164    17.916
 41.        29.907    27.326    25.215   
22.906    18.575
 42.        30.765    28.144    25.999   
23.650    19.239
 43.        31.625    28.965    26.785   
24.398    19.906
 44.        32.487    29.787    27.575   
25.148    20.576
 45.        33.350    30.612    28.366   
25.901    21.251
 46.        34.215    31.439    29.160   
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26.657    21.929
 47.        35.081    32.268    29.956   
27.416    22.610
 48.        35.949    33.098    30.755   
28.177    23.295
 49.        36.818    33.930    31.555   
28.941    23.983
 50.        37.689    34.764    32.357   
29.707    24.674
 51.        38.560    35.600    33.162   
30.475    25.368
 52.        39.433    36.437    33.968   
31.246    26.065
 53.        40.308    37.276    34.776   
32.018    26.765
 54.        41.183    38.116    35.586   
32.793    27.468
 55.        42.060    38.958    36.398   
33.570    28.173
 56.        42.937    39.801    37.212   
34.350    28.881
 57.        43.816    40.646    38.027   
35.131    29.592
 58.        44.696    41.492    38.844   
35.913    30.305
 59.        45.577    42.339    39.662   
36.698    31.020
 60.        46.459    43.188    40.482   
37.485    31.738
 61.        47.342    44.038    41.303   
38.273    32.459
 62.        48.226    44.889    42.126   
39.063    33.181
 63.        49.111    45.741    42.950   
39.855    33.906
 64.        49.996    46.595    43.776   
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40.649    34.633
 65.        50.883    47.450    44.603   
41.444    35.362
 66.        51.770    48.305    45.431   
42.240    36.093
 67.        52.659    49.162    46.261   
43.038    36.826
 68.        53.548    50.020    47.092   
43.838    37.561
 69.        54.438    50.879    47.924   
44.639    38.298
 70.        55.329    51.739    48.758   
45.442    39.036
 71.        56.221    52.600    49.592   
46.246    39.777
 72.        57.113    53.462    50.428   
47.051    40.519
 73.        58.006    54.325    51.265   
47.858    41.264
 74.        58.900    55.189    52.103   
48.666    42.010
 75.        59.795    56.054    52.942   
49.475    42.757
 76.        60.690    56.920    53.782   
50.286    43.507
 77.        61.586    57.786    54.623   
51.097    44.258
 78.        62.483    58.654    55.466   
51.910    45.010
 79.        63.380    59.522    56.309   
52.725    45.764
 80.        64.278    60.391    57.153   
53.540    46.520
 81.        65.176    61.261    57.998   
54.357    47.277
 82.        66.076    62.132    58.845   
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55.174    48.036
 83.        66.976    63.004    59.692   
55.993    48.796
 84.        67.876    63.876    60.540   
56.813    49.557
 85.        68.777    64.749    61.389   
57.634    50.320
 86.        69.679    65.623    62.239   
58.456    51.085
 87.        70.581    66.498    63.089   
59.279    51.850
 88.        71.484    67.373    63.941   
60.103    52.617
 89.        72.387    68.249    64.793   
60.928    53.386
 90.        73.291    69.126    65.647   
61.754    54.155
 91.        74.196    70.003    66.501   
62.581    54.926
 92.        75.100    70.882    67.356   
63.409    55.698
 93.        76.006    71.760    68.211   
64.238    56.472
 94.        76.912    72.640    69.068   
65.068    57.246
 95.        77.818    73.520    69.925   
65.898    58.022
 96.        78.725    74.401    70.783   
66.730    58.799
 97.        79.633    75.282    71.642   
67.562    59.577
 98.        80.541    76.164    72.501   
68.396    60.356
 99.        81.449    77.046    73.361   
69.230    61.137
100.        82.358    77.929    74.222   
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70.065    61.918
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.7. Tables for Probability Distributions

1.3.6.7.5.Critical Values of the t*
Distribution

How to Use
This Table

This table contains upper critical values of the t* distribution that are
appropriate for determining whether or not a calibration line is in a state
of statistical control from measurements on a check standard at three
points in the calibration interval. A test statistic with  degrees of
freedom is compared with the critical value. If the absolute value of the
test statistic exceeds the tabled value, the calibration of the instrument is
judged to be out of control.

Upper critical values of t* distribution at significance level 0.05
for testing the output of a linear calibration line at 3 points

                             

      1     37.544            61      2.455
      2      7.582            62      2.454
      3      4.826            63      2.453
      4      3.941            64      2.452
      5      3.518            65      2.451
      6      3.274            66      2.450
      7      3.115            67      2.449
      8      3.004            68      2.448
      9      2.923            69      2.447
     10      2.860            70      2.446
     11      2.811            71      2.445
     12      2.770            72      2.445
     13      2.737            73      2.444
     14      2.709            74      2.443
     15      2.685            75      2.442
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     16      2.665            76      2.441
     17      2.647            77      2.441
     18      2.631            78      2.440
     19      2.617            79      2.439
     20      2.605            80      2.439
     21      2.594            81      2.438
     22      2.584            82      2.437
     23      2.574            83      2.437
     24      2.566            84      2.436
     25      2.558            85      2.436
     26      2.551            86      2.435
     27      2.545            87      2.435
     28      2.539            88      2.434
     29      2.534            89      2.434
     30      2.528            90      2.433
     31      2.524            91      2.432
     32      2.519            92      2.432
     33      2.515            93      2.431
     34      2.511            94      2.431
     35      2.507            95      2.431
     36      2.504            96      2.430
     37      2.501            97      2.430
     38      2.498            98      2.429
     39      2.495            99      2.429
     40      2.492           100      2.428
     41      2.489           101      2.428
     42      2.487           102      2.428
     43      2.484           103      2.427
     44      2.482           104      2.427
     45      2.480           105      2.426
     46      2.478           106      2.426
     47      2.476           107      2.426
     48      2.474           108      2.425
     49      2.472           109      2.425
     50      2.470           110      2.425
     51      2.469           111      2.424
     52      2.467           112      2.424
     53      2.466           113      2.424
     54      2.464           114      2.423
     55      2.463           115      2.423
     56      2.461           116      2.423
     57      2.460           117      2.422
     58      2.459           118      2.422
     59      2.457           119      2.422
     60      2.456           120      2.422
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.7. Tables for Probability Distributions

1.3.6.7.6.Critical Values of the Normal
PPCC Distribution

How to Use
This Table

This table contains the critical values of the normal probability plot
correlation coefficient (PPCC) distribution that are appropriate for
determining whether or not a data set came from a population with
approximately a normal distribution. It is used in conjuction with a
normal probability plot. The test statistic is the correlation coefficient of
the points that make up a normal probability plot. This test statistic is
compared with the critical value below. If the test statistic is less than
the tabulated value, the null hypothesis that the data came from a
population with a normal distribution is rejected.

For example, suppose a set of 50 data points had a correlation
coefficient of 0.985 from the normal probability plot. At the 5%
significance level, the critical value is 0.9761. Since 0.985 is greater
than 0.9761, we cannot reject the null hypothesis that the data came
from a population with a normal distribution.

Since perferct normality implies perfect correlation (i.e., a correlation
value of 1), we are only interested in rejecting normality for correlation
values that are too low. That is, this is a lower one-tailed test.

The values in this table were determined from simulation studies by
Filliben and Devaney.

1.3.6.7.6. Critical Values of the Normal PPCC Distribution
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Critical values of the normal PPCC for testing if data come from
a normal distribution

   N          0.01          0.05

   3        0.8687        0.8790
   4        0.8234        0.8666
   5        0.8240        0.8786
   6        0.8351        0.8880
   7        0.8474        0.8970
   8        0.8590        0.9043
   9        0.8689        0.9115
  10        0.8765        0.9173
  11        0.8838        0.9223
  12        0.8918        0.9267
  13        0.8974        0.9310
  14        0.9029        0.9343
  15        0.9080        0.9376
  16        0.9121        0.9405
  17        0.9160        0.9433
  18        0.9196        0.9452
  19        0.9230        0.9479
  20        0.9256        0.9498
  21        0.9285        0.9515
  22        0.9308        0.9535
  23        0.9334        0.9548
  24        0.9356        0.9564
  25        0.9370        0.9575
  26        0.9393        0.9590
  27        0.9413        0.9600
  28        0.9428        0.9615
  29        0.9441        0.9622
  30        0.9462        0.9634
  31        0.9476        0.9644
  32        0.9490        0.9652
  33        0.9505        0.9661
  34        0.9521        0.9671
  35        0.9530        0.9678
  36        0.9540        0.9686
  37        0.9551        0.9693
  38        0.9555        0.9700
  39        0.9568        0.9704
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  40        0.9576        0.9712
  41        0.9589        0.9719
  42        0.9593        0.9723
  43        0.9609        0.9730
  44        0.9611        0.9734
  45        0.9620        0.9739
  46        0.9629        0.9744
  47        0.9637        0.9748
  48        0.9640        0.9753
  49        0.9643        0.9758
  50        0.9654        0.9761
  55        0.9683        0.9781
  60        0.9706        0.9797
  65        0.9723        0.9809
  70        0.9742        0.9822
  75        0.9758        0.9831
  80        0.9771        0.9841
  85        0.9784        0.9850
  90        0.9797        0.9857
  95        0.9804        0.9864
 100        0.9814        0.9869
 110        0.9830        0.9881
 120        0.9841        0.9889
 130        0.9854        0.9897
 140        0.9865        0.9904
 150        0.9871        0.9909
 160        0.9879        0.9915
 170        0.9887        0.9919
 180        0.9891        0.9923
 190        0.9897        0.9927
 200        0.9903        0.9930
 210        0.9907        0.9933
 220        0.9910        0.9936
 230        0.9914        0.9939
 240        0.9917        0.9941
 250        0.9921        0.9943
 260        0.9924        0.9945
 270        0.9926        0.9947
 280        0.9929        0.9949
 290        0.9931        0.9951
 300        0.9933        0.9952
 310        0.9936        0.9954
 320        0.9937        0.9955
 330        0.9939        0.9956
 340        0.9941        0.9957
 350        0.9942        0.9958
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 360        0.9944        0.9959
 370        0.9945        0.9960
 380        0.9947        0.9961
 390        0.9948        0.9962
 400        0.9949        0.9963
 410        0.9950        0.9964
 420        0.9951        0.9965
 430        0.9953        0.9966
 440        0.9954        0.9966
 450        0.9954        0.9967
 460        0.9955        0.9968
 470        0.9956        0.9968
 480        0.9957        0.9969
 490        0.9958        0.9969
 500        0.9959        0.9970
 525        0.9961        0.9972
 550        0.9963        0.9973
 575        0.9964        0.9974
 600        0.9965        0.9975
 625        0.9967        0.9976
 650        0.9968        0.9977
 675        0.9969        0.9977
 700        0.9970        0.9978
 725        0.9971        0.9979
 750        0.9972        0.9980
 775        0.9973        0.9980
 800        0.9974        0.9981
 825        0.9975        0.9981
 850        0.9975        0.9982
 875        0.9976        0.9982
 900        0.9977        0.9983
 925        0.9977        0.9983
 950        0.9978        0.9984
 975        0.9978        0.9984
1000        0.9979        0.9984
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1. Exploratory Data Analysis

1.4.EDA Case Studies

Summary This section presents a series of case studies that demonstrate the
application of EDA methods to specific problems. In some cases, we
have focused on just one EDA technique that uncovers virtually all there
is to know about the data. For other case studies, we need several EDA
techniques, the selection of which is dictated by the outcome of the
previous step in the analaysis sequence. Note in these case studies how
the flow of the analysis is motivated by the focus on underlying
assumptions and general EDA principles.

Table of
Contents for
Section 4

Introduction1.  

By Problem Category2.  

1.4. EDA Case Studies
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1. Exploratory Data Analysis
1.4. EDA Case Studies

1.4.1.Case Studies Introduction

Purpose The purpose of the first eight case studies is to show how EDA
graphics and quantitative measures and tests are applied to data from
scientific processes and to critique those data with regard to the
following assumptions that typically underlie a measurement process;
namely, that the data behave like:

random drawings●   

from a fixed distribution●   

with a fixed location●   

with a fixed standard deviation●   

Case studies 9 and 10 show the use of EDA techniques in
distributional modeling and the analysis of a designed experiment,
respectively.

Yi = C + Ei If the above assumptions are satisfied, the process is said to be
statistically "in control" with the core characteristic of having
"predictability". That is, probability statements can be made about the
process, not only in the past, but also in the future.

An appropriate model for an "in control" process is

Yi = C + Ei

where C is a constant (the "deterministic" or "structural" component),
and where Ei is the error term (or "random" component).

The constant C is the average value of the process--it is the primary
summary number which shows up on any report. Although C is
(assumed) fixed, it is unknown, and so a primary analysis objective of
the engineer is to arrive at an estimate of C.

This goal partitions into 4 sub-goals:

Is the most common estimator of C, , the best estimator for
C? What does "best" mean?

1.  

If  is best, what is the uncertainty  for . In particular, is2.  

1.4.1. Case Studies Introduction
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the usual formula for the uncertainty of :

valid? Here, s is the standard deviation of the data and N is the
sample size.

If  is not the best estimator for C, what is a better estimator
for C (for example, median, midrange, midmean)?

3.  

If there is a better estimator, , what is its uncertainty? That is,
what is ?

4.  

EDA and the routine checking of underlying assumptions provides
insight into all of the above.

Location and variation checks provide information as to
whether C is really constant.

1.  

Distributional checks indicate whether  is the best estimator.
Techniques for distributional checking include histograms,
normal probability plots, and probability plot correlation
coefficient plots.

2.  

Randomness checks ascertain whether the usual

is valid.

3.  

Distributional tests assist in determining a better estimator, if
needed.

4.  

Simulator tools (namely bootstrapping) provide values for the
uncertainty of alternative estimators.

5.  

Assumptions
not satisfied

If one or more of the above assumptions is not satisfied, then we use
EDA techniques, or some mix of EDA and classical techniques, to
find a more appropriate model for the data. That is,

Yi = D + Ei

where D is the deterministic part and E is an error component.

If the data are not random, then we may investigate fitting some
simple time series models to the data. If the constant location and
scale assumptions are violated, we may need to investigate the
measurement process to see if there is an explanation.

The assumptions on the error term are still quite relevant in the sense
that for an appropriate model the error component should follow the
assumptions. The criterion for validating the model, or comparing
competing models, is framed in terms of these assumptions.

1.4.1. Case Studies Introduction

http://www.itl.nist.gov/div898/handbook/eda/section4/eda41.htm (2 of 4) [5/1/2006 9:58:29 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bootplot.htm


Multivariable
data

Although the case studies in this chapter utilize univariate data, the
assumptions above are relevant for multivariable data as well.

If the data are not univariate, then we are trying to find a model

Yi = F(X1, ..., Xk) + Ei

where F is some function based on one or more variables. The error
component, which is a univariate data set, of a good model should
satisfy the assumptions given above. The criterion for validating and
comparing models is based on how well the error component follows
these assumptions.

The load cell calibration case study in the process modeling chapter
shows an example of this in the regression context.

First three
case studies
utilize data
with known
characteristics

The first three case studies utilize data that are randomly generated
from the following distributions:

normal distribution with mean 0 and standard deviation 1●   

uniform distribution with mean 0 and standard deviation
 (uniform over the interval (0,1))

●   

random walk●   

The other univariate case studies utilize data from scientific processes.
The goal is to determine if

Yi = C + Ei

is a reasonable model. This is done by testing the underlying
assumptions. If the assumptions are satisfied, then an estimate of C
and an estimate of the uncertainty of C are computed. If the
assumptions are not satisfied, we attempt to find a model where the
error component does satisfy the underlying assumptions.

Graphical
methods that
are applied to
the data

To test the underlying assumptions, each data set is analyzed using
four graphical methods that are particularly suited for this purpose:

run sequence plot which is useful for detecting shifts of location
or scale

1.  

lag plot which is useful for detecting non-randomness in the
data

2.  

histogram which is useful for trying to determine the underlying
distribution

3.  

normal probability plot for deciding whether the data follow the
normal distribution

4.  

There are a number of other techniques for addressing the underlying
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assumptions. However, the four plots listed above provide an
excellent opportunity for addressing all of the assumptions on a single
page of graphics.

Additional graphical techniques are used in certain case studies to
develop models that do have error components that satisfy the
underlying assumptions.

Quantitative
methods that
are applied to
the data

The normal and uniform random number data sets are also analyzed
with the following quantitative techniques, which are explained in
more detail in an earlier section:

Summary statistics which include:

mean❍   

standard deviation❍   

autocorrelation coefficient to test for randomness❍   

normal and uniform probability plot correlation
coefficients (ppcc) to test for a normal or uniform
distribution, respectively

❍   

Wilk-Shapiro test for a normal distribution❍   

1.  

Linear fit of the data as a function of time to assess drift (test
for fixed location)

2.  

Bartlett test for fixed variance3.  

Autocorrelation plot and coefficient to test for randomness4.  

Runs test to test for lack of randomness5.  

Anderson-Darling test for a normal distribution6.  

Grubbs test for outliers7.  

Summary report8.  

Although the graphical methods applied to the normal and uniform
random numbers are sufficient to assess the validity of the underlying
assumptions, the quantitative techniques are used to show the different
flavor of the graphical and quantitative approaches.

The remaining case studies intermix one or more of these quantitative
techniques into the analysis where appropriate.
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1. Exploratory Data Analysis
1.4. EDA Case Studies

1.4.2.Case Studies

Univariate
Yi = C + Ei

Normal Random
Numbers

Uniform Random
Numbers

Random Walk

 

Josephson Junction
Cryothermometry

Beam Deflections Filter Transmittance

 

Standard Resistor Heat Flow Meter 1

Reliability

Airplane Glass
Failure Time
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Multi-Factor

Ceramic Strength
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.1.Normal Random Numbers

Normal
Random
Numbers

This example illustrates the univariate analysis of a set of normal
random numbers.

Background and Data1.  

Graphical Output and Interpretation2.  

Quantitative Output and Interpretation3.  

Work This Example Yourself4.  

1.4.2.1. Normal Random Numbers
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.1. Normal Random Numbers

1.4.2.1.1.Background and Data

Generation The normal random numbers used in this case study are from a Rand
Corporation publication.

The motivation for studying a set of normal random numbers is to
illustrate the ideal case where all four underlying assumptions hold.

Software Most general purpose statistical software programs, including Dataplot,
can generate normal random numbers.

Resulting
Data

The following is the set of normal random numbers used for this case
study.

 -1.2760 -1.2180 -0.4530 -0.3500  0.7230
  0.6760 -1.0990 -0.3140 -0.3940 -0.6330
 -0.3180 -0.7990 -1.6640  1.3910  0.3820
  0.7330  0.6530  0.2190 -0.6810  1.1290
 -1.3770 -1.2570  0.4950 -0.1390 -0.8540
  0.4280 -1.3220 -0.3150 -0.7320 -1.3480
  2.3340 -0.3370 -1.9550 -0.6360 -1.3180
 -0.4330  0.5450  0.4280 -0.2970  0.2760
 -1.1360  0.6420  3.4360 -1.6670  0.8470
 -1.1730 -0.3550  0.0350  0.3590  0.9300
  0.4140 -0.0110  0.6660 -1.1320 -0.4100
 -1.0770  0.7340  1.4840 -0.3400  0.7890
 -0.4940  0.3640 -1.2370 -0.0440 -0.1110
 -0.2100  0.9310  0.6160 -0.3770 -0.4330
  1.0480  0.0370  0.7590  0.6090 -2.0430
 -0.2900  0.4040 -0.5430  0.4860  0.8690
  0.3470  2.8160 -0.4640 -0.6320 -1.6140
  0.3720 -0.0740 -0.9160  1.3140 -0.0380
  0.6370  0.5630 -0.1070  0.1310 -1.8080
 -1.1260  0.3790  0.6100 -0.3640 -2.6260

1.4.2.1.1. Background and Data

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4211.htm (1 of 3) [5/1/2006 9:58:30 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/eda44.htm#NORMRANDNUMB


  2.1760  0.3930 -0.9240  1.9110 -1.0400
 -1.1680  0.4850  0.0760 -0.7690  1.6070
 -1.1850 -0.9440 -1.6040  0.1850 -0.2580
 -0.3000 -0.5910 -0.5450  0.0180 -0.4850
  0.9720  1.7100  2.6820  2.8130 -1.5310
 -0.4900  2.0710  1.4440 -1.0920  0.4780
  1.2100  0.2940 -0.2480  0.7190  1.1030
  1.0900  0.2120 -1.1850 -0.3380 -1.1340
  2.6470  0.7770  0.4500  2.2470  1.1510
 -1.6760  0.3840  1.1330  1.3930  0.8140
  0.3980  0.3180 -0.9280  2.4160 -0.9360
  1.0360  0.0240 -0.5600  0.2030 -0.8710
  0.8460 -0.6990 -0.3680  0.3440 -0.9260
 -0.7970 -1.4040 -1.4720 -0.1180  1.4560
  0.6540 -0.9550  2.9070  1.6880  0.7520
 -0.4340  0.7460  0.1490 -0.1700 -0.4790
  0.5220  0.2310 -0.6190 -0.2650  0.4190
  0.5580 -0.5490  0.1920 -0.3340  1.3730
 -1.2880 -0.5390 -0.8240  0.2440 -1.0700
  0.0100  0.4820 -0.4690 -0.0900  1.1710
  1.3720  1.7690 -1.0570  1.6460  0.4810
 -0.6000 -0.5920  0.6100 -0.0960 -1.3750
  0.8540 -0.5350  1.6070  0.4280 -0.6150
  0.3310 -0.3360 -1.1520  0.5330 -0.8330
 -0.1480 -1.1440  0.9130  0.6840  1.0430
  0.5540 -0.0510 -0.9440 -0.4400 -0.2120
 -1.1480 -1.0560  0.6350 -0.3280 -1.2210
  0.1180 -2.0450 -1.9770 -1.1330  0.3380
  0.3480  0.9700 -0.0170  1.2170 -0.9740
 -1.2910 -0.3990 -1.2090 -0.2480  0.4800
  0.2840  0.4580  1.3070 -1.6250 -0.6290
 -0.5040 -0.0560 -0.1310  0.0480  1.8790
 -1.0160  0.3600 -0.1190  2.3310  1.6720
 -1.0530  0.8400 -0.2460  0.2370 -1.3120
  1.6030 -0.9520 -0.5660  1.6000  0.4650
  1.9510  0.1100  0.2510  0.1160 -0.9570
 -0.1900  1.4790 -0.9860  1.2490  1.9340
  0.0700 -1.3580 -1.2460 -0.9590 -1.2970
 -0.7220  0.9250  0.7830 -0.4020  0.6190
  1.8260  1.2720 -0.9450  0.4940  0.0500
 -1.6960  1.8790  0.0630  0.1320  0.6820
  0.5440 -0.4170 -0.6660 -0.1040 -0.2530
 -2.5430 -1.3330  1.9870  0.6680  0.3600
  1.9270  1.1830  1.2110  1.7650  0.3500
 -0.3590  0.1930 -1.0230 -0.2220 -0.6160
 -0.0600 -1.3190  0.7850 -0.4300 -0.2980
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  0.2480 -0.0880 -1.3790  0.2950 -0.1150
 -0.6210 -0.6180  0.2090  0.9790  0.9060
 -0.0990 -1.3760  1.0470 -0.8720 -2.2000
 -1.3840  1.4250 -0.8120  0.7480 -1.0930
 -0.4630 -1.2810 -2.5140  0.6750  1.1450
  1.0830 -0.6670 -0.2230 -1.5920 -1.2780
  0.5030  1.4340  0.2900  0.3970 -0.8370
 -0.9730 -0.1200 -1.5940 -0.9960 -1.2440
 -0.8570 -0.3710 -0.2160  0.1480 -2.1060
 -1.4530  0.6860 -0.0750 -0.2430 -0.1700
 -0.1220  1.1070 -1.0390 -0.6360 -0.8600
 -0.8950 -1.4580 -0.5390 -0.1590 -0.4200
  1.6320  0.5860 -0.4680 -0.3860 -0.3540
  0.2030 -1.2340  2.3810 -0.3880 -0.0630
  2.0720 -1.4450 -0.6800  0.2240 -0.1200
  1.7530 -0.5710  1.2230 -0.1260  0.0340
 -0.4350 -0.3750 -0.9850 -0.5850 -0.2030
 -0.5560  0.0240  0.1260  1.2500 -0.6150
  0.8760 -1.2270 -2.6470 -0.7450  1.7970
 -1.2310  0.5470 -0.6340 -0.8360 -0.7190
  0.8330  1.2890 -0.0220 -0.4310  0.5820
  0.7660 -0.5740 -1.1530  0.5200 -1.0180
 -0.8910  0.3320 -0.4530 -1.1270  2.0850
 -0.7220 -1.5080  0.4890 -0.4960 -0.0250
  0.6440 -0.2330 -0.1530  1.0980  0.7570
 -0.0390 -0.4600  0.3930  2.0120  1.3560
  0.1050 -0.1710 -0.1100 -1.1450  0.8780
 -0.9090 -0.3280  1.0210 -1.6130  1.5600
 -1.1920  1.7700 -0.0030  0.3690  0.0520
  0.6470  1.0290  1.5260  0.2370 -1.3280
 -0.0420  0.5530  0.7700  0.3240 -0.4890
 -0.3670  0.3780  0.6010 -1.9960 -0.7380
  0.4980  1.0720  1.5670  0.3020  1.1570
 -0.7200  1.4030  0.6980 -0.3700 -0.5510
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.1. Normal Random Numbers

1.4.2.1.2.Graphical Output and
Interpretation

Goal The goal of this analysis is threefold:

Determine if the univariate model:

is appropriate and valid.

1.  

Determine if the typical underlying assumptions for an "in
control" measurement process are valid. These assumptions are:

random drawings;1.  

from a fixed distribution;2.  

with the distribution having a fixed location; and3.  

the distribution having a fixed scale.4.  

2.  

Determine if the confidence interval

is appropriate and valid where s is the standard deviation of the
original data.

3.  

1.4.2.1.2. Graphical Output and Interpretation
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4-Plot of
Data

Interpretation The assumptions are addressed by the graphics shown above:

The run sequence plot (upper left) indicates that the data do not
have any significant shifts in location or scale over time. The run
sequence plot does not show any obvious outliers.

1.  

The lag plot (upper right) does not indicate any non-random
pattern in the data.

2.  

The histogram (lower left) shows that the data are reasonably
symmetric, there do not appear to be significant outliers in the
tails, and that it is reasonable to assume that the data are from
approximately a normal distribution.

3.  

The normal probability plot (lower right) verifies that an
assumption of normality is in fact reasonable.

4.  

From the above plots, we conclude that the underlying assumptions are
valid and the data follow approximately a normal distribution.
Therefore, the confidence interval form given previously is appropriate
for quantifying the uncertainty of the population mean. The numerical
values for this model are given in the Quantitative Output and
Interpretation section.

Individual
Plots

Although it is usually not necessary, the plots can be generated
individually to give more detail.

1.4.2.1.2. Graphical Output and Interpretation
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Run
Sequence
Plot

Lag Plot
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Histogram
(with
overlaid
Normal PDF)

Normal
Probability
Plot
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.1. Normal Random Numbers

1.4.2.1.3.Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data.
The following table, generated by Dataplot, shows a typical set of statistics.

  
                                 SUMMARY
  
                      NUMBER OF OBSERVATIONS =      500
  
  
 ***********************************************************************
 *        LOCATION MEASURES         *       DISPERSION MEASURES       
*
 ***********************************************************************
 *  MIDRANGE     =   0.3945000E+00  *  RANGE        =   0.6083000E+01 
*
 *  MEAN         =  -0.2935997E-02  *  STAND. DEV.  =   0.1021041E+01 
*
 *  MIDMEAN      =   0.1623600E-01  *  AV. AB. DEV. =   0.8174360E+00 
*
 *  MEDIAN       =  -0.9300000E-01  *  MINIMUM      =  -0.2647000E+01 
*
 *               =                  *  LOWER QUART. =  -0.7204999E+00 
*
 *               =                  *  LOWER HINGE  =  -0.7210000E+00 
*
 *               =                  *  UPPER HINGE  =   0.6455001E+00 
*
 *               =                  *  UPPER QUART. =   0.6447501E+00 
*
 *               =                  *  MAXIMUM      =   0.3436000E+01 
*
 ***********************************************************************
 *       RANDOMNESS MEASURES        *     DISTRIBUTIONAL MEASURES     
*
 ***********************************************************************
 *  AUTOCO COEF  =   0.4505888E-01  *  ST. 3RD MOM. =   0.3072273E+00 
*
 *               =   0.0000000E+00  *  ST. 4TH MOM. =   0.2990314E+01 
*
 *               =   0.0000000E+00  *  ST. WILK-SHA =   0.7515639E+01 
*
 *               =                  *  UNIFORM PPCC =   0.9756625E+00 
*
 *               =                  *  NORMAL  PPCC =   0.9961721E+00 

1.4.2.1.3. Quantitative Output and Interpretation

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4213.htm (1 of 7) [5/1/2006 9:58:32 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/eda44.htm#SUMMARY


*
 *               =                  *  TUK -.5 PPCC =   0.8366451E+00 
*
 *               =                  *  CAUCHY  PPCC =   0.4922674E+00 
*
 ***********************************************************************
  
  

Location One way to quantify a change in location over time is to fit a straight line to the data set,
using the index variable X = 1, 2, ..., N, with N denoting the number of observations. If
there is no significant drift in the location, the slope parameter should be zero. For this
data set, Dataplot generated the following output:

  
LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N       =      500
NUMBER OF VARIABLES =        1
NO REPLICATION CASE
 
 
        PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
 1  A0                  0.699127E-02   (0.9155E-01)        0.7636E-01
 2  A1       X         -0.396298E-04   (0.3167E-03)        -0.1251
 
RESIDUAL    STANDARD DEVIATION =         1.02205
RESIDUAL    DEGREES OF FREEDOM =         498
  

The slope parameter, A1, has a t value of -0.13 which is statistically not significant. This
indicates that the slope can in fact be considered zero.

Variation One simple way to detect a change in variation is with a Bartlett test, after dividing the
data set into several equal-sized intervals. The choice of the number of intervals is
somewhat arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the
following output for the Bartlett test.

               BARTLETT TEST
           (STANDARD DEFINITION)
 NULL HYPOTHESIS UNDER TEST--ALL SIGMA(I) ARE EQUAL
  
 TEST:
    DEGREES OF FREEDOM          =    3.000000
  
    TEST STATISTIC VALUE        =    2.373660
    CUTOFF: 95% PERCENT POINT   =    7.814727
    CUTOFF: 99% PERCENT POINT   =    11.34487
  
    CHI-SQUARE CDF VALUE        =    0.501443
  
   NULL          NULL HYPOTHESIS        NULL HYPOTHESIS
   HYPOTHESIS    ACCEPTANCE INTERVAL    CONCLUSION
 ALL SIGMA EQUAL    (0.000,0.950)         ACCEPT
  

In this case, the Bartlett test indicates that the standard deviations are not significantly
different in the 4 intervals.
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Randomness There are many ways in which data can be non-random. However, most common forms
of non-randomness can be detected with a few simple tests. The lag plot in the 4-plot
above is a simple graphical technique.

Another check is an autocorrelation plot that shows the autocorrelations for various lags.
Confidence bands can be plotted at the 95% and 99% confidence levels. Points outside
this band indicate statistically significant values (lag 0 is always 1). Dataplot generated
the following autocorrelation plot.

The lag 1 autocorrelation, which is generally the one of most interest, is 0.045. The
critical values at the 5% significance level are -0.087 and 0.087. Thus, since 0.045 is in
the interval, the lag 1 autocorrelation is not statistically significant, so there is no
evidence of non-randomness.

A common test for randomness is the runs test.

                    RUNS UP
         STATISTIC = NUMBER OF RUNS UP
             OF LENGTH EXACTLY I
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1        98.0    104.2083     10.2792       -0.60
 2        43.0     45.7167      5.2996       -0.51
 3        13.0     13.1292      3.2297       -0.04
 4         6.0      2.8563      1.6351        1.92
 5         1.0      0.5037      0.7045        0.70
 6         0.0      0.0749      0.2733       -0.27
 7         0.0      0.0097      0.0982       -0.10
 8         0.0      0.0011      0.0331       -0.03
 9         0.0      0.0001      0.0106       -0.01
10         0.0      0.0000      0.0032        0.00
         STATISTIC = NUMBER OF RUNS UP
             OF LENGTH I OR MORE
 I         STAT     EXP(STAT)    SD(STAT)       Z
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 1       161.0    166.5000      6.6546       -0.83
 2        63.0     62.2917      4.4454        0.16
 3        20.0     16.5750      3.4338        1.00
 4         7.0      3.4458      1.7786        2.00
 5         1.0      0.5895      0.7609        0.54
 6         0.0      0.0858      0.2924       -0.29
 7         0.0      0.0109      0.1042       -0.10
 8         0.0      0.0012      0.0349       -0.03
 9         0.0      0.0001      0.0111       -0.01
10         0.0      0.0000      0.0034        0.00
                   RUNS DOWN
         STATISTIC = NUMBER OF RUNS DOWN
             OF LENGTH EXACTLY I
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1        91.0    104.2083     10.2792       -1.28
 2        55.0     45.7167      5.2996        1.75
 3        14.0     13.1292      3.2297        0.27
 4         1.0      2.8563      1.6351       -1.14
 5         0.0      0.5037      0.7045       -0.71
 6         0.0      0.0749      0.2733       -0.27
 7         0.0      0.0097      0.0982       -0.10
 8         0.0      0.0011      0.0331       -0.03
 9         0.0      0.0001      0.0106       -0.01
10         0.0      0.0000      0.0032        0.00
         STATISTIC = NUMBER OF RUNS DOWN
             OF LENGTH I OR MORE
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       161.0    166.5000      6.6546       -0.83
 2        70.0     62.2917      4.4454        1.73
 3        15.0     16.5750      3.4338       -0.46
 4         1.0      3.4458      1.7786       -1.38
 5         0.0      0.5895      0.7609       -0.77
 6         0.0      0.0858      0.2924       -0.29
 7         0.0      0.0109      0.1042       -0.10
 8         0.0      0.0012      0.0349       -0.03
 9         0.0      0.0001      0.0111       -0.01
10         0.0      0.0000      0.0034        0.00
         RUNS TOTAL = RUNS UP + RUNS DOWN
       STATISTIC = NUMBER OF RUNS TOTAL
            OF LENGTH EXACTLY I
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       189.0    208.4167     14.5370       -1.34
 2        98.0     91.4333      7.4947        0.88
 3        27.0     26.2583      4.5674        0.16
 4         7.0      5.7127      2.3123        0.56
 5         1.0      1.0074      0.9963       -0.01
 6         0.0      0.1498      0.3866       -0.39
 7         0.0      0.0193      0.1389       -0.14
 8         0.0      0.0022      0.0468       -0.05
 9         0.0      0.0002      0.0150       -0.01
10         0.0      0.0000      0.0045        0.00
       STATISTIC = NUMBER OF RUNS TOTAL
             OF LENGTH I OR MORE
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       322.0    333.0000      9.4110       -1.17
 2       133.0    124.5833      6.2868        1.34
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 3        35.0     33.1500      4.8561        0.38
 4         8.0      6.8917      2.5154        0.44
 5         1.0      1.1790      1.0761       -0.17
 6         0.0      0.1716      0.4136       -0.41
 7         0.0      0.0217      0.1474       -0.15
 8         0.0      0.0024      0.0494       -0.05
 9         0.0      0.0002      0.0157       -0.02
10         0.0      0.0000      0.0047        0.00
        LENGTH OF THE LONGEST RUN UP         =     5
        LENGTH OF THE LONGEST RUN DOWN       =     4
        LENGTH OF THE LONGEST RUN UP OR DOWN =     5
  
        NUMBER OF POSITIVE DIFFERENCES =   252
        NUMBER OF NEGATIVE DIFFERENCES =   247
        NUMBER OF ZERO     DIFFERENCES =     0
  

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically
significant at the 5% level. The runs test does not indicate any significant
non-randomness.

Distributional
Analysis

Probability plots are a graphical test for assessing if a particular distribution provides an
adequate fit to a data set.

A quantitative enhancement to the probability plot is the correlation coefficient of the
points on the probability plot. For this data set the correlation coefficient is 0.996. Since
this is greater than the critical value of 0.987 (this is a tabulated value), the normality
assumption is not rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests are alternative methods for
assessing distributional adequacy. The Wilk-Shapiro and Anderson-Darling tests can be
used to test for normality. Dataplot generates the following output for the
Anderson-Darling normality test.

               ANDERSON-DARLING 1-SAMPLE TEST
               THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS                =      500
       MEAN                                  =  -0.2935997E-02
       STANDARD DEVIATION                    =    1.021041
  
       ANDERSON-DARLING TEST STATISTIC VALUE =    1.061249
       ADJUSTED TEST STATISTIC VALUE         =    1.069633
  
 2. CRITICAL VALUES:
       90         % POINT    =   0.6560000
       95         % POINT    =   0.7870000
       97.5       % POINT    =   0.9180000
       99         % POINT    =    1.092000
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.

The Anderson-Darling test rejects the normality assumption at the 5% level but accepts it
at the 1% level.
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Outlier
Analysis

A test for outliers is the Grubbs test. Dataplot generated the following output for Grubbs'
test.

               GRUBBS TEST FOR OUTLIERS
               (ASSUMPTION: NORMALITY)
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS      =      500
       MINIMUM                     =   -2.647000
       MEAN                        =  -0.2935997E-02
       MAXIMUM                     =    3.436000
    STANDARD DEVIATION          =    1.021041
  
    GRUBBS TEST STATISTIC       =    3.368068
  
 2. PERCENT POINTS OF THE REFERENCE DISTRIBUTION
    FOR GRUBBS TEST STATISTIC
       0          % POINT    =    0.000000
       50         % POINT    =    3.274338
       75         % POINT    =    3.461431
       90         % POINT    =    3.695134
       95         % POINT    =    3.863087
       97.5       % POINT    =    4.024592
       99         % POINT    =    4.228033
       100        % POINT    =    22.31596

 3. CONCLUSION (AT THE 5% LEVEL):
       THERE ARE NO OUTLIERS.

For this data set, Grubbs' test does not detect any outliers at the 25%, 10%, 5%, and 1%
significance levels.

Model Since the underlying assumptions were validated both graphically and analytically, we
conclude that a reasonable model for the data is:

Yi = -0.00294 + Ei

We can express the uncertainty for C as the 95% confidence interval
(-0.09266,0.086779).

Univariate
Report

It is sometimes useful and convenient to summarize the above results in a report. The
report for the 500 normal random numbers follows.

 Analysis for 500 normal random numbers
  
 1: Sample Size                           = 500
  
 2: Location
    Mean                                  = -0.00294
    Standard Deviation of Mean            = 0.045663
    95% Confidence Interval for Mean      = (-0.09266,0.086779)
    Drift with respect to location?       = NO
  
 3: Variation
    Standard Deviation                    = 1.021042
    95% Confidence Interval for SD        = (0.961437,1.088585)
    Drift with respect to variation?

1.4.2.1.3. Quantitative Output and Interpretation
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    (based on Bartletts test on quarters
    of the data)                          = NO
  
 4: Distribution
    Normal PPCC                           = 0.996173
    Data are Normal?
      (as measured by Normal PPCC)        = YES
  
 5: Randomness
    Autocorrelation                       = 0.045059
    Data are Random?
      (as measured by autocorrelation)    = YES
  
 6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is 
    fixed, here we are testing only for
    fixed normal)
    Data Set is in Statistical Control?   = YES
  
 7: Outliers?
    (as determined by Grubbs' test)       = NO

1.4.2.1.3. Quantitative Output and Interpretation
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.1. Normal Random Numbers

1.4.2.1.4.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Invoke Dataplot and read data.

   1. Read in the data.

                              

 1. You have read 1 column of numbers 
    into Dataplot, variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-plot, there are no shifts
    in location or scale, and the data seem to
    follow a normal distribution.

3. Generate the individual plots.

   1. Generate a run sequence plot.

   2. Generate a lag plot.

   3. Generate a histogram with an
      overlaid normal pdf.

 1. The run sequence plot indicates that
    there are no shifts of location or
    scale.

 2. The lag plot does not indicate any
    significant patterns (which would
    show the data were not random).

 3. The histogram indicates that a 
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   4. Generate a normal probability
      plot.

    normal distribution is a good
    distribution for these data.

 4. The normal probability plot verifies
    that the normal distribution is a
    reasonable distribution for these data.

4. Generate summary statistics, quantitative
   analysis, and print a univariate report.

   1. Generate a table of summary
      statistics.

   2. Generate the mean, a confidence
      interval for the mean, and compute
      a linear fit to detect drift in
      location.

   3. Generate the standard deviation, a
      confidence interval for the standard
      deviation, and detect drift in variation
      by dividing the data into quarters and
      computing Barltett's test for equal
      standard deviations.

   4. Check for randomness by generating an
      autocorrelation plot and a runs test.

   5. Check for normality by computing the
      normal probability plot correlation
      coefficient.

   6. Check for outliers using Grubbs' test.

   7. Print a univariate report (this assumes
      steps 2 thru 6 have already been run).

 1. The summary statistics table displays
    25+ statistics.

 2. The mean is -0.00294 and a 95%
    confidence interval is (-0.093,0.087).
    The linear fit indicates no drift in
    location since the slope parameter is
    statistically not significant.

 3. The standard deviation is 1.02 with
    a 95% confidence interval of (0.96,1.09).
    Bartlett's test indicates no significant
    change in variation.

 4. The lag 1 autocorrelation is 0.04.
    From the autocorrelation plot, this is
    within the 95% confidence interval
    bands.

 5. The normal probability plot correlation
    coefficient is 0.996.  At the 5% level,
    we cannot reject the normality assumption.

 6. Grubbs' test detects no outliers at the
    5% level.

 7. The results are summarized in a
    convenient report.
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http://www.itl.nist.gov/div898/handbook/eda/section4/eda4214.htm (2 of 2) [5/1/2006 9:58:32 AM]

http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/normprpl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/normprpl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/distribu.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/distribu.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/distribu.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/outlier.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randn4p/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.2.Uniform Random Numbers

Uniform
Random
Numbers

This example illustrates the univariate analysis of a set of uniform
random numbers.

Background and Data1.  

Graphical Output and Interpretation2.  

Quantitative Output and Interpretation3.  

Work This Example Yourself4.  

1.4.2.2. Uniform Random Numbers
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.2. Uniform Random Numbers

1.4.2.2.1.Background and Data

Generation The uniform random numbers used in this case study are from a Rand
Corporation publication.

The motivation for studying a set of uniform random numbers is to
illustrate the effects of a known underlying non-normal distribution.

Software Most general purpose statistical software programs, including Dataplot,
can generate uniform random numbers.

Resulting
Data

The following is the set of uniform random numbers used for this case
study.

   .100973   .253376   .520135   .863467   .354876
   .809590   .911739   .292749   .375420   .480564
   .894742   .962480   .524037   .206361   .040200
   .822916   .084226   .895319   .645093   .032320
   .902560   .159533   .476435   .080336   .990190
   .252909   .376707   .153831   .131165   .886767
   .439704   .436276   .128079   .997080   .157361
   .476403   .236653   .989511   .687712   .171768
   .660657   .471734   .072768   .503669   .736170
   .658133   .988511   .199291   .310601   .080545
   .571824   .063530   .342614   .867990   .743923
   .403097   .852697   .760202   .051656   .926866
   .574818   .730538   .524718   .623885   .635733
   .213505   .325470   .489055   .357548   .284682
   .870983   .491256   .737964   .575303   .529647
   .783580   .834282   .609352   .034435   .273884
   .985201   .776714   .905686   .072210   .940558
   .609709   .343350   .500739   .118050   .543139
   .808277   .325072   .568248   .294052   .420152
   .775678   .834529   .963406   .288980   .831374

1.4.2.2.1. Background and Data
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   .670078   .184754   .061068   .711778   .886854
   .020086   .507584   .013676   .667951   .903647
   .649329   .609110   .995946   .734887   .517649
   .699182   .608928   .937856   .136823   .478341
   .654811   .767417   .468509   .505804   .776974
   .730395   .718640   .218165   .801243   .563517
   .727080   .154531   .822374   .211157   .825314
   .385537   .743509   .981777   .402772   .144323
   .600210   .455216   .423796   .286026   .699162
   .680366   .252291   .483693   .687203   .766211
   .399094   .400564   .098932   .050514   .225685
   .144642   .756788   .962977   .882254   .382145
   .914991   .452368   .479276   .864616   .283554
   .947508   .992337   .089200   .803369   .459826
   .940368   .587029   .734135   .531403   .334042
   .050823   .441048   .194985   .157479   .543297
   .926575   .576004   .088122   .222064   .125507
   .374211   .100020   .401286   .074697   .966448
   .943928   .707258   .636064   .932916   .505344
   .844021   .952563   .436517   .708207   .207317
   .611969   .044626   .457477   .745192   .433729
   .653945   .959342   .582605   .154744   .526695
   .270799   .535936   .783848   .823961   .011833
   .211594   .945572   .857367   .897543   .875462
   .244431   .911904   .259292   .927459   .424811
   .621397   .344087   .211686   .848767   .030711
   .205925   .701466   .235237   .831773   .208898
   .376893   .591416   .262522   .966305   .522825
   .044935   .249475   .246338   .244586   .251025
   .619627   .933565   .337124   .005499   .765464
   .051881   .599611   .963896   .546928   .239123
   .287295   .359631   .530726   .898093   .543335
   .135462   .779745   .002490   .103393   .598080
   .839145   .427268   .428360   .949700   .130212
   .489278   .565201   .460588   .523601   .390922
   .867728   .144077   .939108   .364770   .617429
   .321790   .059787   .379252   .410556   .707007
   .867431   .715785   .394118   .692346   .140620
   .117452   .041595   .660000   .187439   .242397
   .118963   .195654   .143001   .758753   .794041
   .921585   .666743   .680684   .962852   .451551
   .493819   .476072   .464366   .794543   .590479
   .003320   .826695   .948643   .199436   .168108
   .513488   .881553   .015403   .545605   .014511
   .980862   .482645   .240284   .044499   .908896
   .390947   .340735   .441318   .331851   .623241
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   .941509   .498943   .548581   .886954   .199437
   .548730   .809510   .040696   .382707   .742015
   .123387   .250162   .529894   .624611   .797524
   .914071   .961282   .966986   .102591   .748522
   .053900   .387595   .186333   .253798   .145065
   .713101   .024674   .054556   .142777   .938919
   .740294   .390277   .557322   .709779   .017119
   .525275   .802180   .814517   .541784   .561180
   .993371   .430533   .512969   .561271   .925536
   .040903   .116644   .988352   .079848   .275938
   .171539   .099733   .344088   .461233   .483247
   .792831   .249647   .100229   .536870   .323075
   .754615   .020099   .690749   .413887   .637919
   .763558   .404401   .105182   .161501   .848769
   .091882   .009732   .825395   .270422   .086304
   .833898   .737464   .278580   .900458   .549751
   .981506   .549493   .881997   .918707   .615068
   .476646   .731895   .020747   .677262   .696229
   .064464   .271246   .701841   .361827   .757687
   .649020   .971877   .499042   .912272   .953750
   .587193   .823431   .540164   .405666   .281310
   .030068   .227398   .207145   .329507   .706178
   .083586   .991078   .542427   .851366   .158873
   .046189   .755331   .223084   .283060   .326481
   .333105   .914051   .007893   .326046   .047594
   .119018   .538408   .623381   .594136   .285121
   .590290   .284666   .879577   .762207   .917575
   .374161   .613622   .695026   .390212   .557817
   .651483   .483470   .894159   .269400   .397583
   .911260   .717646   .489497   .230694   .541374
   .775130   .382086   .864299   .016841   .482774
   .519081   .398072   .893555   .195023   .717469
   .979202   .885521   .029773   .742877   .525165
   .344674   .218185   .931393   .278817   .570568
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.2. Uniform Random Numbers

1.4.2.2.2.Graphical Output and
Interpretation

Goal The goal of this analysis is threefold:

Determine if the univariate model:

is appropriate and valid.

1.  

Determine if the typical underlying assumptions for an "in
control" measurement process are valid. These assumptions are:

random drawings;1.  

from a fixed distribution;2.  

with the distribution having a fixed location; and3.  

the distribution having a fixed scale.4.  

2.  

Determine if the confidence interval

is appropriate and valid where s is the standard deviation of the
original data.

3.  

1.4.2.2.2. Graphical Output and Interpretation
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4-Plot of
Data

Interpretation The assumptions are addressed by the graphics shown above:

The run sequence plot (upper left) indicates that the data do not
have any significant shifts in location or scale over time.

1.  

The lag plot (upper right) does not indicate any non-random
pattern in the data.

2.  

The histogram shows that the frequencies are relatively flat
across the range of the data. This suggests that the uniform
distribution might provide a better distributional fit than the
normal distribution.

3.  

The normal probability plot verifies that an assumption of
normality is not reasonable. In this case, the 4-plot should be
followed up by a uniform probability plot to determine if it
provides a better fit to the data. This is shown below.

4.  

From the above plots, we conclude that the underlying assumptions are
valid. Therefore, the model Yi = C + Ei is valid. However, since the
data are not normally distributed, using the mean as an estimate of C
and the confidence interval cited above for quantifying its uncertainty
are not valid or appropriate.

Individual
Plots

Although it is usually not necessary, the plots can be generated
individually to give more detail.

1.4.2.2.2. Graphical Output and Interpretation
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Run
Sequence
Plot

Lag Plot

1.4.2.2.2. Graphical Output and Interpretation
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Histogram
(with
overlaid
Normal PDF)

This plot shows that a normal distribution is a poor fit. The flatness of
the histogram suggests that a uniform distribution might be a better fit.

Histogram
(with
overlaid
Uniform
PDF)

Since the histogram from the 4-plot suggested that the uniform
distribution might be a good fit, we overlay a uniform distribution on
top of the histogram. This indicates a much better fit than a normal
distribution.

1.4.2.2.2. Graphical Output and Interpretation
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Normal
Probability
Plot

As with the histogram, the normal probability plot shows that the
normal distribution does not fit these data well.

Uniform
Probability
Plot

Since the above plots suggested that a uniform distribution might be
appropriate, we generate a uniform probability plot. This plot shows
that the uniform distribution provides an excellent fit to the data.

1.4.2.2.2. Graphical Output and Interpretation
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Better Model Since the data follow the underlying assumptions, but with a uniform
distribution rather than a normal distribution, we would still like to
characterize C by a typical value plus or minus a confidence interval.
In this case, we would like to find a location estimator with the
smallest variability.

The bootstrap plot is an ideal tool for this purpose. The following plots
show the bootstrap plot, with the corresponding histogram, for the
mean, median, mid-range, and median absolute deviation.

Bootstrap
Plots

Mid-Range is
Best

From the above histograms, it is obvious that for these data, the
mid-range is far superior to the mean or median as an estimate for
location.

Using the mean, the location estimate is 0.507 and a 95% confidence
interval for the mean is (0.482,0.534). Using the mid-range, the
location estimate is 0.499 and the 95% confidence interval for the
mid-range is (0.497,0.503).

Although the values for the location are similar, the difference in the
uncertainty intervals is quite large.

Note that in the case of a uniform distribution it is known theoretically
that the mid-range is the best linear unbiased estimator for location.
However, in many applications, the most appropriate estimator will not
be known or it will be mathematically intractable to determine a valid
condfidence interval. The bootstrap provides a method for determining

1.4.2.2.2. Graphical Output and Interpretation
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(and comparing) confidence intervals in these cases.

1.4.2.2.2. Graphical Output and Interpretation
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.2. Uniform Random Numbers

1.4.2.2.3.Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data.
The following table, generated by Dataplot, shows a typical set of statistics.

                                 SUMMARY
  
                      NUMBER OF OBSERVATIONS =      500
  
  
 ***********************************************************************
 *        LOCATION MEASURES         *       DISPERSION MEASURES       
*
 ***********************************************************************
 *  MIDRANGE     =   0.4997850E+00  *  RANGE        =   0.9945900E+00 
*
 *  MEAN         =   0.5078304E+00  *  STAND. DEV.  =   0.2943252E+00 
*
 *  MIDMEAN      =   0.5045621E+00  *  AV. AB. DEV. =   0.2526468E+00 
*
 *  MEDIAN       =   0.5183650E+00  *  MINIMUM      =   0.2490000E-02 
*
 *               =                  *  LOWER QUART. =   0.2508093E+00 
*
 *               =                  *  LOWER HINGE  =   0.2505935E+00 
*
 *               =                  *  UPPER HINGE  =   0.7594775E+00 
*
 *               =                  *  UPPER QUART. =   0.7591152E+00 
*
 *               =                  *  MAXIMUM      =   0.9970800E+00 
*
 ***********************************************************************
 *       RANDOMNESS MEASURES        *     DISTRIBUTIONAL MEASURES     
*
 ***********************************************************************
 *  AUTOCO COEF  =  -0.3098569E-01  *  ST. 3RD MOM. =  -0.3443941E-01 
*
 *               =   0.0000000E+00  *  ST. 4TH MOM. =   0.1796969E+01 
*
 *               =   0.0000000E+00  *  ST. WILK-SHA =  -0.2004886E+02 
*
 *               =                  *  UNIFORM PPCC =   0.9995682E+00 
*
 *               =                  *  NORMAL  PPCC =   0.9771602E+00 
*

1.4.2.2.3. Quantitative Output and Interpretation
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 *               =                  *  TUK -.5 PPCC =   0.7229201E+00 
*
 *               =                  *  CAUCHY  PPCC =   0.3591767E+00 
*
 ***********************************************************************

Note that under the distributional measures the uniform probability plot correlation
coefficient (PPCC) value is significantly larger than the normal PPCC value. This is
evidence that the uniform distribution fits these data better than does a normal
distribution.

Location One way to quantify a change in location over time is to fit a straight line to the data set
using the index variable X = 1, 2, ..., N, with N denoting the number of observations. If
there is no significant drift in the location, the slope parameter should be zero. For this
data set, Dataplot generated the following output:

  
LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N       =      500
NUMBER OF VARIABLES =        1
NO REPLICATION CASE
 
 
        PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
 1  A0                  0.522923       (0.2638E-01)        19.82
 2  A1       X         -0.602478E-04   (0.9125E-04)        -0.6603
 
RESIDUAL    STANDARD DEVIATION =         0.2944917
RESIDUAL    DEGREES OF FREEDOM =         498
  

The slope parameter, A1, has a t value of -0.66 which is statistically not significant. This
indicates that the slope can in fact be considered zero.

Variation One simple way to detect a change in variation is with a Bartlett test after dividing the
data set into several equal-sized intervals. However, the Bartlett test is not robust for
non-normality. Since we know this data set is not approximated well by the normal
distribution, we use the alternative Levene test. In partiuclar, we use the Levene test
based on the median rather the mean. The choice of the number of intervals is somewhat
arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the following
output for the Levene test.

               LEVENE F-TEST FOR SHIFT IN VARIATION
                      (ASSUMPTION: NORMALITY)
  
 1. STATISTICS
       NUMBER OF OBSERVATIONS    =      500
       NUMBER OF GROUPS          =        4
       LEVENE F TEST STATISTIC   =   0.7983007E-01
  
  
    FOR LEVENE TEST STATISTIC
       0          % POINT    =   0.0000000E+00
       50         % POINT    =   0.7897459
       75         % POINT    =    1.373753
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       90         % POINT    =    2.094885
       95         % POINT    =    2.622929
       99         % POINT    =    3.821479
       99.9       % POINT    =    5.506884
  
  
          2.905608       % Point:    0.7983007E-01
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THERE IS NO SHIFT IN VARIATION.
       THUS: HOMOGENEOUS WITH RESPECT TO VARIATION.
  

In this case, the Levene test indicates that the standard deviations are not significantly
different in the 4 intervals.

Randomness There are many ways in which data can be non-random. However, most common forms
of non-randomness can be detected with a few simple tests. The lag plot in the 4-plot in
the previous section is a simple graphical technique.

Another check is an autocorrelation plot that shows the autocorrelations for various lags.
Confidence bands can be plotted using 95% and 99% confidence levels. Points outside
this band indicate statistically significant values (lag 0 is always 1). Dataplot generated
the following autocorrelation plot.

The lag 1 autocorrelation, which is generally the one of most interest, is 0.03. The critical
values at the 5% significance level are -0.087 and 0.087. This indicates that the lag 1
autocorrelation is not statistically significant, so there is no evidence of non-randomness.

A common test for randomness is the runs test.

                    RUNS UP
         STATISTIC = NUMBER OF RUNS UP
             OF LENGTH EXACTLY I
 I         STAT     EXP(STAT)    SD(STAT)       Z
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 1       103.0    104.2083     10.2792       -0.12
 2        48.0     45.7167      5.2996        0.43
 3        11.0     13.1292      3.2297       -0.66
 4         6.0      2.8563      1.6351        1.92
 5         0.0      0.5037      0.7045       -0.71
 6         0.0      0.0749      0.2733       -0.27
 7         1.0      0.0097      0.0982       10.08
 8         0.0      0.0011      0.0331       -0.03
 9         0.0      0.0001      0.0106       -0.01
10         0.0      0.0000      0.0032        0.00
         STATISTIC = NUMBER OF RUNS UP
             OF LENGTH I OR MORE
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       169.0    166.5000      6.6546        0.38
 2        66.0     62.2917      4.4454        0.83
 3        18.0     16.5750      3.4338        0.41
 4         7.0      3.4458      1.7786        2.00
 5         1.0      0.5895      0.7609        0.54
 6         1.0      0.0858      0.2924        3.13
 7         1.0      0.0109      0.1042        9.49
 8         0.0      0.0012      0.0349       -0.03
 9         0.0      0.0001      0.0111       -0.01
10         0.0      0.0000      0.0034        0.00
                   RUNS DOWN
         STATISTIC = NUMBER OF RUNS DOWN
             OF LENGTH EXACTLY I
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       113.0    104.2083     10.2792        0.86
 2        43.0     45.7167      5.2996       -0.51
 3        11.0     13.1292      3.2297       -0.66
 4         1.0      2.8563      1.6351       -1.14
 5         0.0      0.5037      0.7045       -0.71
 6         0.0      0.0749      0.2733       -0.27
 7         0.0      0.0097      0.0982       -0.10
 8         0.0      0.0011      0.0331       -0.03
 9         0.0      0.0001      0.0106       -0.01
10         0.0      0.0000      0.0032        0.00
         STATISTIC = NUMBER OF RUNS DOWN
             OF LENGTH I OR MORE
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       168.0    166.5000      6.6546        0.23
 2        55.0     62.2917      4.4454       -1.64
 3        12.0     16.5750      3.4338       -1.33
 4         1.0      3.4458      1.7786       -1.38
 5         0.0      0.5895      0.7609       -0.77
 6         0.0      0.0858      0.2924       -0.29
 7         0.0      0.0109      0.1042       -0.10
 8         0.0      0.0012      0.0349       -0.03
 9         0.0      0.0001      0.0111       -0.01
10         0.0      0.0000      0.0034        0.00
         RUNS TOTAL = RUNS UP + RUNS DOWN
       STATISTIC = NUMBER OF RUNS TOTAL
            OF LENGTH EXACTLY I
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       216.0    208.4167     14.5370        0.52
 2        91.0     91.4333      7.4947       -0.06

1.4.2.2.3. Quantitative Output and Interpretation

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4223.htm (4 of 7) [5/1/2006 9:58:34 AM]



 3        22.0     26.2583      4.5674       -0.93
 4         7.0      5.7127      2.3123        0.56
 5         0.0      1.0074      0.9963       -1.01
 6         0.0      0.1498      0.3866       -0.39
 7         1.0      0.0193      0.1389        7.06
 8         0.0      0.0022      0.0468       -0.05
 9         0.0      0.0002      0.0150       -0.01
10         0.0      0.0000      0.0045        0.00
       STATISTIC = NUMBER OF RUNS TOTAL
             OF LENGTH I OR MORE
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       337.0    333.0000      9.4110        0.43
 2       121.0    124.5833      6.2868       -0.57
 3        30.0     33.1500      4.8561       -0.65
 4         8.0      6.8917      2.5154        0.44
 5         1.0      1.1790      1.0761       -0.17
 6         1.0      0.1716      0.4136        2.00
 7         1.0      0.0217      0.1474        6.64
 8         0.0      0.0024      0.0494       -0.05
 9         0.0      0.0002      0.0157       -0.02
10         0.0      0.0000      0.0047        0.00
        LENGTH OF THE LONGEST RUN UP         =     7
        LENGTH OF THE LONGEST RUN DOWN       =     4
        LENGTH OF THE LONGEST RUN UP OR DOWN =     7
  
        NUMBER OF POSITIVE DIFFERENCES =   263
        NUMBER OF NEGATIVE DIFFERENCES =   236
        NUMBER OF ZERO     DIFFERENCES =     0
  

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically
significant at the 5% level. This runs test does not indicate any significant
non-randomness. There is a statistically significant value for runs of length 7. However,
further examination of the table shows that there is in fact a single run of length 7 when
near 0 are expected. This is not sufficient evidence to conclude that the data are
non-random.

Distributional
Analysis

Probability plots are a graphical test of assessing whether a particular distribution
provides an adequate fit to a data set.

A quantitative enhancement to the probability plot is the correlation coefficient of the
points on the probability plot. For this data set the correlation coefficient, from the
summary table above, is 0.977. Since this is less than the critical value of 0.987 (this is a
tabulated value), the normality assumption is rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests are alternative methods for
assessing distributional adequacy. The Wilk-Shapiro and Anderson-Darling tests can be
used to test for normality. Dataplot generates the following output for the
Anderson-Darling normality test.

               ANDERSON-DARLING 1-SAMPLE TEST
               THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS                =      500
       MEAN                                  =   0.5078304
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       STANDARD DEVIATION                    =   0.2943252
  
       ANDERSON-DARLING TEST STATISTIC VALUE =    5.719849
       ADJUSTED TEST STATISTIC VALUE         =    5.765036
  
 2. CRITICAL VALUES:
       90         % POINT    =   0.6560000
       95         % POINT    =   0.7870000
       97.5       % POINT    =   0.9180000
       99         % POINT    =    1.092000
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.

The Anderson-Darling test rejects the normality assumption because the value of the test
statistic, 5.72, is larger than the critical value of 1.092 at the 1% significance level.

Model Based on the graphical and quantitative analysis, we use the model

Yi = C + Ei

where C is estimated by the mid-range and the uncertainty interval for C is based on a
bootstrap analysis. Specifically,

C = 0.499
95% confidence limit for C = (0.497,0.503)

Univariate
Report

It is sometimes useful and convenient to summarize the above results in a report. The
report for the 500 uniform random numbers follows.

  
 Analysis for 500 uniform random numbers
  
 1: Sample Size                           = 500
  
 2: Location
    Mean                                  = 0.50783
    Standard Deviation of Mean            = 0.013163
    95% Confidence Interval for Mean      = (0.48197,0.533692)
    Drift with respect to location?       = NO
  
 3: Variation
    Standard Deviation                    = 0.294326
    95% Confidence Interval for SD        = (0.277144,0.313796)
    Drift with respect to variation?
    (based on Levene's test on quarters
    of the data)                          = NO
  
 4: Distribution
    Normal PPCC                           = 0.999569
    Data are Normal?
      (as measured by Normal PPCC)        = NO
  
    Uniform PPCC                          = 0.9995
    Data are Uniform?
      (as measured by Uniform PPCC)       = YES
  
 5: Randomness
    Autocorrelation                       = -0.03099
    Data are Random?
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      (as measured by autocorrelation)    = YES
  
 6: Statistical Control
    (i.e., no drift in location or scale,
    data is random, distribution is 
    fixed, here we are testing only for
    fixed uniform)
    Data Set is in Statistical Control?   = YES
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.2. Uniform Random Numbers

1.4.2.2.4.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study description.

1. Invoke Dataplot and read data.

   1. Read in the data.

                              

 1. You have read 1 column of numbers 
    into Dataplot, variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-plot, there are no shifts
    in location or scale, and the data do not
    seem to follow a normal distribution.

3. Generate the individual plots.

   1. Generate a run sequence plot.

   2. Generate a lag plot.

   3. Generate a histogram with an
      overlaid normal pdf.

 1. The run sequence plot indicates that
    there are no shifts of location or
    scale.

 2. The lag plot does not indicate any
    significant patterns (which would
    show the data were not random).

 3. The histogram indicates that a 
    normal distribution is not a good
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   4. Generate a histogram with an
      overlaid uniform pdf.

   5. Generate a normal probability
      plot.

   6. Generate a uniform probability
      plot.

    distribution for these data.

 4. The histogram indicates that a 
    uniform distribution is a good
    distribution for these data.

 5. The normal probability plot verifies
    that the normal distribution is not a
    reasonable distribution for these data.

 6. The uniform probability plot verifies
    that the uniform distribution is a
    reasonable distribution for these data.

4. Generate the bootstrap plot.

   1. Generate a bootstrap plot.  1. The bootstrap plot clearly shows
    the superiority of the mid-range 
    over the mean and median as the
    location estimator of choice for
    this problem.

5. Generate summary statistics, quantitative
   analysis, and print a univariate report.

   1. Generate a table of summary
      statistics.

   2. Generate the mean, a confidence
      interval for the mean, and compute
      a linear fit to detect drift in
      location.

   3. Generate the standard deviation, a
      confidence interval for the standard
      deviation, and detect drift in variation
      by dividing the data into quarters and
      computing Barltetts test for equal
      standard deviations.

   4. Check for randomness by generating an
      autocorrelation plot and a runs test.

   5. Check for normality by computing the
      normal probability plot correlation
      coefficient.

 1. The summary statistics table displays
    25+ statistics.

 2. The mean is 0.5078 and a 95%
    confidence interval is (0.482,0.534).
    The linear fit indicates no drift in
    location since the slope parameter is
    statistically not significant.

 3. The standard deviation is 0.29 with
    a 95% confidence interval of (0.277,0.314).
    Levene's test indicates no significant
    drift in variation.

 4. The lag 1 autocorrelation is -0.03.
    From the autocorrelation plot, this is
    within the 95% confidence interval
    bands.

 5. The uniform probability plot correlation
    coefficient is 0.9995.  This indicates that
    the uniform distribution is a good fit.

1.4.2.2.4. Work This Example Yourself

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4224.htm (2 of 3) [5/1/2006 9:58:34 AM]

http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/hist2.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/hist2.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/normprpl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/normprpl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/unifprpl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/unifprpl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/bootstrap.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/distribu.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/distribu.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/distribu.dp


   6. Print a univariate report (this assumes
      steps 2 thru 6 have already been run).

 6. The results are summarized in a
    convenient report.
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.3.Random Walk

Random
Walk

This example illustrates the univariate analysis of a set of numbers
derived from a random walk.

Background and Data1.  

Test Underlying Assumptions2.  

Develop Better Model3.  

Validate New Model4.  

Work This Example Yourself5.  

1.4.2.3. Random Walk
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.3. Random Walk

1.4.2.3.1.Background and Data

Generation A random walk can be generated from a set of uniform random numbers
by the formula:

where U is a set of uniform random numbers.

The motivation for studying a set of random walk data is to illustrate the
effects of a known underlying autocorrelation structure (i.e.,
non-randomness) in the data.

Software Most general purpose statistical software programs, including Dataplot,
can generate data for a random walk.

Resulting
Data

The following is the set of random walk numbers used for this case
study.

  -0.399027
  -0.645651
  -0.625516
  -0.262049
  -0.407173
  -0.097583
   0.314156
   0.106905
  -0.017675
  -0.037111
   0.357631
   0.820111
   0.844148
   0.550509
   0.090709
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   0.413625
  -0.002149
   0.393170
   0.538263
   0.070583
   0.473143
   0.132676
   0.109111
  -0.310553
   0.179637
  -0.067454
  -0.190747
  -0.536916
  -0.905751
  -0.518984
  -0.579280
  -0.643004
  -1.014925
  -0.517845
  -0.860484
  -0.884081
  -1.147428
  -0.657917
  -0.470205
  -0.798437
  -0.637780
  -0.666046
  -1.093278
  -1.089609
  -0.853439
  -0.695306
  -0.206795
  -0.507504
  -0.696903
  -1.116358
  -1.044534
  -1.481004
  -1.638390
  -1.270400
  -1.026477
  -1.123380
  -0.770683
  -0.510481
  -0.958825
  -0.531959
  -0.457141
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  -0.226603
  -0.201885
  -0.078000
   0.057733
  -0.228762
  -0.403292
  -0.414237
  -0.556689
  -0.772007
  -0.401024
  -0.409768
  -0.171804
  -0.096501
  -0.066854
   0.216726
   0.551008
   0.660360
   0.194795
  -0.031321
   0.453880
   0.730594
   1.136280
   0.708490
   1.149048
   1.258757
   1.102107
   1.102846
   0.720896
   0.764035
   1.072312
   0.897384
   0.965632
   0.759684
   0.679836
   0.955514
   1.290043
   1.753449
   1.542429
   1.873803
   2.043881
   1.728635
   1.289703
   1.501481
   1.888335
   1.408421
   1.416005
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   0.929681
   1.097632
   1.501279
   1.650608
   1.759718
   2.255664
   2.490551
   2.508200
   2.707382
   2.816310
   3.254166
   2.890989
   2.869330
   3.024141
   3.291558
   3.260067
   3.265871
   3.542845
   3.773240
   3.991880
   3.710045
   4.011288
   4.074805
   4.301885
   3.956416
   4.278790
   3.989947
   4.315261
   4.200798
   4.444307
   4.926084
   4.828856
   4.473179
   4.573389
   4.528605
   4.452401
   4.238427
   4.437589
   4.617955
   4.370246
   4.353939
   4.541142
   4.807353
   4.706447
   4.607011
   4.205943
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   3.756457
   3.482142
   3.126784
   3.383572
   3.846550
   4.228803
   4.110948
   4.525939
   4.478307
   4.457582
   4.822199
   4.605752
   5.053262
   5.545598
   5.134798
   5.438168
   5.397993
   5.838361
   5.925389
   6.159525
   6.190928
   6.024970
   5.575793
   5.516840
   5.211826
   4.869306
   4.912601
   5.339177
   5.415182
   5.003303
   4.725367
   4.350873
   4.225085
   3.825104
   3.726391
   3.301088
   3.767535
   4.211463
   4.418722
   4.554786
   4.987701
   4.993045
   5.337067
   5.789629
   5.726147
   5.934353

1.4.2.3.1. Background and Data

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4231.htm (5 of 12) [5/1/2006 9:58:35 AM]



   5.641670
   5.753639
   5.298265
   5.255743
   5.500935
   5.434664
   5.588610
   6.047952
   6.130557
   5.785299
   5.811995
   5.582793
   5.618730
   5.902576
   6.226537
   5.738371
   5.449965
   5.895537
   6.252904
   6.650447
   7.025909
   6.770340
   7.182244
   6.941536
   7.368996
   7.293807
   7.415205
   7.259291
   6.970976
   7.319743
   6.850454
   6.556378
   6.757845
   6.493083
   6.824855
   6.533753
   6.410646
   6.502063
   6.264585
   6.730889
   6.753715
   6.298649
   6.048126
   5.794463
   5.539049
   5.290072
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   5.409699
   5.843266
   5.680389
   5.185889
   5.451353
   5.003233
   5.102844
   5.566741
   5.613668
   5.352791
   5.140087
   4.999718
   5.030444
   5.428537
   5.471872
   5.107334
   5.387078
   4.889569
   4.492962
   4.591042
   4.930187
   4.857455
   4.785815
   5.235515
   4.865727
   4.855005
   4.920206
   4.880794
   4.904395
   4.795317
   5.163044
   4.807122
   5.246230
   5.111000
   5.228429
   5.050220
   4.610006
   4.489258
   4.399814
   4.606821
   4.974252
   5.190037
   5.084155
   5.276501
   4.917121
   4.534573
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   4.076168
   4.236168
   3.923607
   3.666004
   3.284967
   2.980621
   2.623622
   2.882375
   3.176416
   3.598001
   3.764744
   3.945428
   4.408280
   4.359831
   4.353650
   4.329722
   4.294088
   4.588631
   4.679111
   4.182430
   4.509125
   4.957768
   4.657204
   4.325313
   4.338800
   4.720353
   4.235756
   4.281361
   3.795872
   4.276734
   4.259379
   3.999663
   3.544163
   3.953058
   3.844006
   3.684740
   3.626058
   3.457909
   3.581150
   4.022659
   4.021602
   4.070183
   4.457137
   4.156574
   4.205304
   4.514814
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   4.055510
   3.938217
   4.180232
   3.803619
   3.553781
   3.583675
   3.708286
   4.005810
   4.419880
   4.881163
   5.348149
   4.950740
   5.199262
   4.753162
   4.640757
   4.327090
   4.080888
   3.725953
   3.939054
   3.463728
   3.018284
   2.661061
   3.099980
   3.340274
   3.230551
   3.287873
   3.497652
   3.014771
   3.040046
   3.342226
   3.656743
   3.698527
   3.759707
   4.253078
   4.183611
   4.196580
   4.257851
   4.683387
   4.224290
   3.840934
   4.329286
   3.909134
   3.685072
   3.356611
   2.956344
   2.800432
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   2.761665
   2.744913
   3.037743
   2.787390
   2.387619
   2.424489
   2.247564
   2.502179
   2.022278
   2.213027
   2.126914
   2.264833
   2.528391
   2.432792
   2.037974
   1.699475
   2.048244
   1.640126
   1.149858
   1.475253
   1.245675
   0.831979
   1.165877
   1.403341
   1.181921
   1.582379
   1.632130
   2.113636
   2.163129
   2.545126
   2.963833
   3.078901
   3.055547
   3.287442
   2.808189
   2.985451
   3.181679
   2.746144
   2.517390
   2.719231
   2.581058
   2.838745
   2.987765
   3.459642
   3.458684
   3.870956
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   4.324706
   4.411899
   4.735330
   4.775494
   4.681160
   4.462470
   3.992538
   3.719936
   3.427081
   3.256588
   3.462766
   3.046353
   3.537430
   3.579857
   3.931223
   3.590096
   3.136285
   3.391616
   3.114700
   2.897760
   2.724241
   2.557346
   2.971397
   2.479290
   2.305336
   1.852930
   1.471948
   1.510356
   1.633737
   1.727873
   1.512994
   1.603284
   1.387950
   1.767527
   2.029734
   2.447309
   2.321470
   2.435092
   2.630118
   2.520330
   2.578147
   2.729630
   2.713100
   3.107260
   2.876659
   2.774242

1.4.2.3.1. Background and Data

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4231.htm (11 of 12) [5/1/2006 9:58:35 AM]



   3.185503
   3.403148
   3.392646
   3.123339
   3.164713
   3.439843
   3.321929
   3.686229
   3.203069
   3.185843
   3.204924
   3.102996
   3.496552
   3.191575
   3.409044
   3.888246
   4.273767
   3.803540
   4.046417
   4.071581
   3.916256
   3.634441
   4.065834
   3.844651
   3.915219
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.3. Random Walk

1.4.2.3.2.Test Underlying Assumptions

Goal The goal of this analysis is threefold:

Determine if the univariate model:

is appropriate and valid.

1.  

Determine if the typical underlying assumptions for an "in control" measurement
process are valid. These assumptions are:

random drawings;1.  

from a fixed distribution;2.  

with the distribution having a fixed location; and3.  

the distribution having a fixed scale.4.  

2.  

Determine if the confidence interval

is appropriate and valid, with s denoting the standard deviation of the original data.

3.  

4-Plot of Data

1.4.2.3.2. Test Underlying Assumptions
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Interpretation The assumptions are addressed by the graphics shown above:

The run sequence plot (upper left) indicates significant shifts in location over time.1.  

The lag plot (upper right) indicates significant non-randomness in the data.2.  

When the assumptions of randomness and constant location and scale are not
satisfied, the distributional assumptions are not meaningful. Therefore we do not
attempt to make any interpretation of the histogram (lower left) or the normal
probability plot (lower right).

3.  

From the above plots, we conclude that the underlying assumptions are seriously
violated. Therefore the Yi = C + Ei model is not valid.

When the randomness assumption is seriously violated, a time series model may be
appropriate. The lag plot often suggests a reasonable model. For example, in this case the
strongly linear appearance of the lag plot suggests a model fitting Yi versus Yi-1 might be
appropriate. When the data are non-random, it is helpful to supplement the lag plot with
an autocorrelation plot and a spectral plot. Although in this case the lag plot is enough to
suggest an appropriate model, we provide the autocorrelation and spectral plots for
comparison.

Autocorrelation
Plot

When the lag plot indicates significant non-randomness, it can be helpful to follow up
with a an autocorrelation plot.

This autocorrelation plot shows significant autocorrelation at lags 1 through 100 in a
linearly decreasing fashion.

1.4.2.3.2. Test Underlying Assumptions
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Spectral Plot Another useful plot for non-random data is the spectral plot.

This spectral plot shows a single dominant low frequency peak.

Quantitative
Output

Although the 4-plot above clearly shows the violation of the assumptions, we supplement
the graphical output with some quantitative measures.

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data.
The following table, generated by Dataplot, shows a typical set of statistics.

                                 SUMMARY
  
                      NUMBER OF OBSERVATIONS =      500
  
  
 ***********************************************************************
 *        LOCATION MEASURES         *       DISPERSION MEASURES       
*
 ***********************************************************************
 *  MIDRANGE     =   0.2888407E+01  *  RANGE        =   0.9053595E+01 
*
 *  MEAN         =   0.3216681E+01  *  STAND. DEV.  =   0.2078675E+01 
*
 *  MIDMEAN      =   0.4791331E+01  *  AV. AB. DEV. =   0.1660585E+01 
*
 *  MEDIAN       =   0.3612030E+01  *  MINIMUM      =  -0.1638390E+01 
*
 *               =                  *  LOWER QUART. =   0.1747245E+01 
*
 *               =                  *  LOWER HINGE  =   0.1741042E+01 
*
 *               =                  *  UPPER HINGE  =   0.4682273E+01 
*
 *               =                  *  UPPER QUART. =   0.4681717E+01 
*
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 *               =                  *  MAXIMUM      =   0.7415205E+01 
*
 ***********************************************************************
 *       RANDOMNESS MEASURES        *     DISTRIBUTIONAL MEASURES     
*
 ***********************************************************************
 *  AUTOCO COEF  =   0.9868608E+00  *  ST. 3RD MOM. =  -0.4448926E+00 
*
 *               =   0.0000000E+00  *  ST. 4TH MOM. =   0.2397789E+01 
*
 *               =   0.0000000E+00  *  ST. WILK-SHA =  -0.1279870E+02 
*
 *               =                  *  UNIFORM PPCC =   0.9765666E+00 
*
 *               =                  *  NORMAL  PPCC =   0.9811183E+00 
*
 *               =                  *  TUK -.5 PPCC =   0.7754489E+00 
*
 *               =                  *  CAUCHY  PPCC =   0.4165502E+00 
*
 ***********************************************************************
  

The value of the autocorrelation statistic, 0.987, is evidence of a very strong
autocorrelation.

Location One way to quantify a change in location over time is to fit a straight line to the data set
using the index variable X = 1, 2, ..., N, with N denoting the number of observations. If
there is no significant drift in the location, the slope parameter should be zero. For this
data set, Dataplot generates the following output:

 LEAST SQUARES MULTILINEAR FIT
       SAMPLE SIZE N       =      500
       NUMBER OF VARIABLES =        1
       NO REPLICATION CASE
  
  
               PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
        1  A0                   1.83351       (0.1721    )       
10.65
        2  A1       X          0.552164E-02   (0.5953E-03)       
9.275
  
       RESIDUAL    STANDARD DEVIATION =         1.921416
       RESIDUAL    DEGREES OF FREEDOM =         498
  
       COEF AND SD(COEF) WRITTEN OUT TO FILE DPST1F.DAT
       SD(PRED),95LOWER,95UPPER,99LOWER,99UPPER
                         WRITTEN OUT TO FILE DPST2F.DAT
       REGRESSION DIAGNOSTICS WRITTEN OUT TO FILE DPST3F.DAT
       PARAMETER VARIANCE-COVARIANCE MATRIX AND
       INVERSE OF X-TRANSPOSE X MATRIX
       WRITTEN OUT TO FILE DPST4F.DAT

The slope parameter, A1, has a t value of 9.3 which is statistically significant. This
indicates that the slope cannot in fact be considered zero and so the conclusion is that we
do not have constant location.
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Variation One simple way to detect a change in variation is with a Bartlett test after dividing the
data set into several equal-sized intervals. However, the Bartlett test is not robust for
non-normality. Since we know this data set is not approximated well by the normal
distribution, we use the alternative Levene test. In partiuclar, we use the Levene test
based on the median rather the mean. The choice of the number of intervals is somewhat
arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the following
output for the Levene test.

               LEVENE F-TEST FOR SHIFT IN VARIATION
                      (ASSUMPTION: NORMALITY)
  
 1. STATISTICS
       NUMBER OF OBSERVATIONS    =      500
       NUMBER OF GROUPS          =        4
       LEVENE F TEST STATISTIC   =    10.45940
  
  
    FOR LEVENE TEST STATISTIC
       0          % POINT    =   0.0000000E+00
       50         % POINT    =   0.7897459
       75         % POINT    =    1.373753
       90         % POINT    =    2.094885
       95         % POINT    =    2.622929
       99         % POINT    =    3.821479
       99.9       % POINT    =    5.506884
  
  
          99.99989       % Point:     10.45940
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THERE IS A SHIFT IN VARIATION.
       THUS: NOT HOMOGENEOUS WITH RESPECT TO VARIATION.
  

In this case, the Levene test indicates that the standard deviations are significantly
different in the 4 intervals since the test statistic of 10.46 is greater than the 95% critical
value of 2.62. Therefore we conclude that the scale is not constant.

Randomness Although the lag 1 autocorrelation coefficient above clearly shows the non-randomness,
we show the output from a runs test as well.

                    RUNS UP
  
         STATISTIC = NUMBER OF RUNS UP
             OF LENGTH EXACTLY I
  
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1        63.0    104.2083     10.2792       -4.01
 2        34.0     45.7167      5.2996       -2.21
 3        17.0     13.1292      3.2297        1.20
 4         4.0      2.8563      1.6351        0.70
 5         1.0      0.5037      0.7045        0.70
 6         5.0      0.0749      0.2733       18.02
 7         1.0      0.0097      0.0982       10.08
 8         1.0      0.0011      0.0331       30.15
 9         0.0      0.0001      0.0106       -0.01
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10         1.0      0.0000      0.0032      311.40
  
  
         STATISTIC = NUMBER OF RUNS UP
             OF LENGTH I OR MORE
  
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       127.0    166.5000      6.6546       -5.94
 2        64.0     62.2917      4.4454        0.38
 3        30.0     16.5750      3.4338        3.91
 4        13.0      3.4458      1.7786        5.37
 5         9.0      0.5895      0.7609       11.05
 6         8.0      0.0858      0.2924       27.06
 7         3.0      0.0109      0.1042       28.67
 8         2.0      0.0012      0.0349       57.21
 9         1.0      0.0001      0.0111       90.14
10         1.0      0.0000      0.0034      298.08
  
  
                   RUNS DOWN
  
         STATISTIC = NUMBER OF RUNS DOWN
             OF LENGTH EXACTLY I
  
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1        69.0    104.2083     10.2792       -3.43
 2        32.0     45.7167      5.2996       -2.59
 3        11.0     13.1292      3.2297       -0.66
 4         6.0      2.8563      1.6351        1.92
 5         5.0      0.5037      0.7045        6.38
 6         2.0      0.0749      0.2733        7.04
 7         2.0      0.0097      0.0982       20.26
 8         0.0      0.0011      0.0331       -0.03
 9         0.0      0.0001      0.0106       -0.01
10         0.0      0.0000      0.0032        0.00
  
  
         STATISTIC = NUMBER OF RUNS DOWN
             OF LENGTH I OR MORE
  
  
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       127.0    166.5000      6.6546       -5.94
 2        58.0     62.2917      4.4454       -0.97
 3        26.0     16.5750      3.4338        2.74
 4        15.0      3.4458      1.7786        6.50
 5         9.0      0.5895      0.7609       11.05
 6         4.0      0.0858      0.2924       13.38
 7         2.0      0.0109      0.1042       19.08
 8         0.0      0.0012      0.0349       -0.03
 9         0.0      0.0001      0.0111       -0.01
10         0.0      0.0000      0.0034        0.00
  
  
         RUNS TOTAL = RUNS UP + RUNS DOWN
  
       STATISTIC = NUMBER OF RUNS TOTAL
            OF LENGTH EXACTLY I
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 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       132.0    208.4167     14.5370       -5.26
 2        66.0     91.4333      7.4947       -3.39
 3        28.0     26.2583      4.5674        0.38
 4        10.0      5.7127      2.3123        1.85
 5         6.0      1.0074      0.9963        5.01
 6         7.0      0.1498      0.3866       17.72
 7         3.0      0.0193      0.1389       21.46
 8         1.0      0.0022      0.0468       21.30
 9         0.0      0.0002      0.0150       -0.01
10         1.0      0.0000      0.0045      220.19
  
  
       STATISTIC = NUMBER OF RUNS TOTAL
             OF LENGTH I OR MORE
  
 I         STAT     EXP(STAT)    SD(STAT)       Z
  
 1       254.0    333.0000      9.4110       -8.39
 2       122.0    124.5833      6.2868       -0.41
 3        56.0     33.1500      4.8561        4.71
 4        28.0      6.8917      2.5154        8.39
 5        18.0      1.1790      1.0761       15.63
 6        12.0      0.1716      0.4136       28.60
 7         5.0      0.0217      0.1474       33.77
 8         2.0      0.0024      0.0494       40.43
 9         1.0      0.0002      0.0157       63.73
10         1.0      0.0000      0.0047      210.77
  
  
        LENGTH OF THE LONGEST RUN UP         =    10
        LENGTH OF THE LONGEST RUN DOWN       =     7
        LENGTH OF THE LONGEST RUN UP OR DOWN =    10
  
        NUMBER OF POSITIVE DIFFERENCES =   258
        NUMBER OF NEGATIVE DIFFERENCES =   241
        NUMBER OF ZERO     DIFFERENCES =     0
  

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically
significant at the 5% level. Numerous values in this column are much larger than +/-1.96,
so we conclude that the data are not random.

Distributional
Assumptions

Since the quantitative tests show that the assumptions of randomness and constant
location and scale are not met, the distributional measures will not be meaningful.
Therefore these quantitative tests are omitted.

1.4.2.3.2. Test Underlying Assumptions

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4232.htm (7 of 7) [5/1/2006 9:58:36 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.3. Random Walk

1.4.2.3.3.Develop A Better Model

Lag Plot
Suggests
Better
Model

Since the underlying assumptions did not hold, we need to develop a better model.

The lag plot showed a distinct linear pattern. Given the definition of the lag plot, Yi
versus Yi-1, a good candidate model is a model of the form

Fit
Output

A linear fit of this model generated the following output.

 LEAST SQUARES MULTILINEAR FIT
       SAMPLE SIZE N       =      499
       NUMBER OF VARIABLES =        1
       NO REPLICATION CASE
  
  
               PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
        1  A0                  0.501650E-01   (0.2417E-01)       
2.075
        2  A1       YIM1       0.987087       (0.6313E-02)       
156.4
  
       RESIDUAL    STANDARD DEVIATION =        0.2931194
       RESIDUAL    DEGREES OF FREEDOM =         497

The slope parameter, A1, has a t value of 156.4 which is statistically significant. Also,
the residual standard deviation is 0.29. This can be compared to the standard deviation
shown in the summary table, which is 2.08. That is, the fit to the autoregressive model
has reduced the variability by a factor of 7.

Time
Series
Model

This model is an example of a time series model. More extensive discussion of time
series is given in the Process Monitoring chapter.

1.4.2.3.3. Develop A Better Model
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.3. Random Walk

1.4.2.3.4.Validate New Model

Plot
Predicted
with Original
Data

The first step in verifying the model is to plot the predicted values from
the fit with the original data.

This plot indicates a reasonably good fit.

Test
Underlying
Assumptions
on the
Residuals

In addition to the plot of the predicted values, the residual standard
deviation from the fit also indicates a significant improvement for the
model. The next step is to validate the underlying assumptions for the
error component, or residuals, from this model.

1.4.2.3.4. Validate New Model
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4-Plot of
Residuals

Interpretation The assumptions are addressed by the graphics shown above:

The run sequence plot (upper left) indicates no significant shifts
in location or scale over time.

1.  

The lag plot (upper right) exhibits a random appearance.2.  

The histogram shows a relatively flat appearance. This indicates
that a uniform probability distribution may be an appropriate
model for the error component (or residuals).

3.  

The normal probability plot clearly shows that the normal
distribution is not an appropriate model for the error component.

4.  

A uniform probability plot can be used to further test the suggestion
that a uniform distribution might be a good model for the error
component.

1.4.2.3.4. Validate New Model
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Uniform
Probability
Plot of
Residuals

Since the uniform probability plot is nearly linear, this verifies that a
uniform distribution is a good model for the error component.

Conclusions Since the residuals from our model satisfy the underlying assumptions,
we conlude that

where the Ei follow a uniform distribution is a good model for this data
set. We could simplify this model to

This has the advantage of simplicity (the current point is simply the
previous point plus a uniformly distributed error term).

Using
Scientific and
Engineering
Knowledge

In this case, the above model makes sense based on our definition of
the random walk. That is, a random walk is the cumulative sum of
uniformly distributed data points. It makes sense that modeling the
current point as the previous point plus a uniformly distributed error
term is about as good as we can do. Although this case is a bit artificial
in that we knew how the data were constructed, it is common and
desirable to use scientific and engineering knowledge of the process
that generated the data in formulating and testing models for the data.
Quite often, several competing models will produce nearly equivalent
mathematical results. In this case, selecting the model that best
approximates the scientific understanding of the process is a reasonable
choice.

1.4.2.3.4. Validate New Model
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Time Series
Model

This model is an example of a time series model. More extensive
discussion of time series is given in the Process Monitoring chapter.

1.4.2.3.4. Validate New Model
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.3. Random Walk

1.4.2.3.5.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case
study yourself. Each step may use results from previous steps,
so please be patient. Wait until the software verifies that the
current step is complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Invoke Dataplot and read data.

   1. Read in the data.

                              

 1. You have read 1 column of numbers 
    into Dataplot, variable Y.

2. Validate assumptions.

   1. 4-plot of Y.

   2. Generate a table of summary
      statistics.

   3. Generate a linear fit to detect
      drift in location.

   4. Detect drift in variation by
      dividing the data into quarters and
      computing Levene's test for equal

 1. Based on the 4-plot, there are shifts
    in location and scale and the data are not
    random.

 2. The summary statistics table displays
    25+ statistics.

 3. The linear fit indicates drift in
    location since the slope parameter
    is statistically significant.

 4. Levene's test indicates significant
    drift in variation.

1.4.2.3.5. Work This Example Yourself

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4235.htm (1 of 2) [5/1/2006 9:58:40 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/randwalk.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/randwalk.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/randwalk.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/randwalk.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/randwalk.htm
http://www.itl.nist.gov/div898/handbook/dataplot.htm
http://www.itl.nist.gov/div898/software/dataplot/ftp/homepage.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/data.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/4plot.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/variatio.dp


      standard deviations.

   5. Check for randomness by generating
      a runs test.

 5. The runs test indicates significant
    non-randomness.

3. Generate the randomness plots.

   1. Generate an autocorrelation plot.

   2. Generate a spectral plot.

 1. The autocorrelation plot shows
    significant autocorrelation at lag 1.

 2. The spectral plot shows a single dominant
    low frequency peak.

4. Fit Yi = A0 + A1*Yi-1 + Ei
   and validate.

   1. Generate the fit.

   2. Plot fitted line with original data.

   3. Generate a 4-plot of the residuals
      from the fit.

   4. Generate a uniform probability plot
      of the residuals.

 1. The residual standard deviation from the
    fit is 0.29 (compared to the standard
    deviation of 2.08 from the original
    data).

 2. The plot of the predicted values with
    the original data indicates a good fit.

 3. The 4-plot indicates that the assumptions
    of constant location and scale are valid.
    The lag plot indicates that the data are
    random.  However, the histogram and normal
    probability plot indicate that the uniform
    disribution might be a better model for
    the residuals than the normal
    distribution.

 4. The uniform probability plot verifies
    that the residuals can be fit by a
    uniform distribution.

1.4.2.3.5. Work This Example Yourself
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.4.Josephson Junction
Cryothermometry

Josephson Junction
Cryothermometry

This example illustrates the univariate analysis of Josephson
junction cyrothermometry.

Background and Data1.  

Graphical Output and Interpretation2.  

Quantitative Output and Interpretation3.  

Work This Example Yourself4.  

1.4.2.4. Josephson Junction Cryothermometry
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.4. Josephson Junction Cryothermometry

1.4.2.4.1.Background and Data

Generation This data set was collected by Bob Soulen of NIST in October, 1971 as
a sequence of observations collected equi-spaced in time from a volt
meter to ascertain the process temperature in a Josephson junction
cryothermometry (low temperature) experiment. The response variable
is voltage counts.

Motivation The motivation for studying this data set is to illustrate the case where
there is discreteness in the measurements, but the underlying
assumptions hold. In this case, the discreteness is due to the data being
integers.

This file can be read by Dataplot with the following commands:

SKIP 25
SET READ FORMAT 5F5.0
SERIAL READ SOULEN.DAT Y
SET READ FORMAT

Resulting
Data

The following are the data used for this case study.

 2899 2898 2898 2900 2898
 2901 2899 2901 2900 2898
 2898 2898 2898 2900 2898
 2897 2899 2897 2899 2899
 2900 2897 2900 2900 2899
 2898 2898 2899 2899 2899
 2899 2899 2898 2899 2899
 2899 2902 2899 2900 2898
 2899 2899 2899 2899 2899
 2899 2900 2899 2900 2898
 2901 2900 2899 2899 2899
 2899 2899 2900 2899 2898
 2898 2898 2900 2896 2897

1.4.2.4.1. Background and Data
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 2899 2899 2900 2898 2900
 2901 2898 2899 2901 2900
 2898 2900 2899 2899 2897
 2899 2898 2899 2899 2898
 2899 2897 2899 2899 2897
 2899 2897 2899 2897 2897
 2899 2897 2898 2898 2899
 2897 2898 2897 2899 2899
 2898 2898 2897 2898 2895
 2897 2898 2898 2896 2898
 2898 2897 2896 2898 2898
 2897 2897 2898 2898 2896
 2898 2898 2896 2899 2898
 2898 2898 2899 2899 2898
 2898 2899 2899 2899 2900
 2900 2901 2899 2898 2898
 2900 2899 2898 2901 2897
 2898 2898 2900 2899 2899
 2898 2898 2899 2898 2901
 2900 2897 2897 2898 2898
 2900 2898 2899 2898 2898
 2898 2896 2895 2898 2898
 2898 2898 2897 2897 2895
 2897 2897 2900 2898 2896
 2897 2898 2898 2899 2898
 2897 2898 2898 2896 2900
 2899 2898 2896 2898 2896
 2896 2896 2897 2897 2896
 2897 2897 2896 2898 2896
 2898 2896 2897 2896 2897
 2897 2898 2897 2896 2895
 2898 2896 2896 2898 2896
 2898 2898 2897 2897 2898
 2897 2899 2896 2897 2899
 2900 2898 2898 2897 2898
 2899 2899 2900 2900 2900
 2900 2899 2899 2899 2898
 2900 2901 2899 2898 2900
 2901 2901 2900 2899 2898
 2901 2899 2901 2900 2901
 2898 2900 2900 2898 2900
 2900 2898 2899 2901 2900
 2899 2899 2900 2900 2899
 2900 2901 2899 2898 2898
 2899 2896 2898 2897 2898
 2898 2897 2897 2897 2898

1.4.2.4.1. Background and Data
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 2897 2899 2900 2899 2897
 2898 2900 2900 2898 2898
 2899 2900 2898 2900 2900
 2898 2900 2898 2898 2898
 2898 2898 2899 2898 2900
 2897 2899 2898 2899 2898
 2897 2900 2901 2899 2898
 2898 2901 2898 2899 2897
 2899 2897 2896 2898 2898
 2899 2900 2896 2897 2897
 2898 2899 2899 2898 2898
 2897 2897 2898 2897 2897
 2898 2898 2898 2896 2895
 2898 2898 2898 2896 2898
 2898 2898 2897 2897 2899
 2896 2900 2897 2897 2898
 2896 2897 2898 2898 2898
 2897 2897 2898 2899 2897
 2898 2899 2897 2900 2896
 2899 2897 2898 2897 2900
 2899 2900 2897 2897 2898
 2897 2899 2899 2898 2897
 2901 2900 2898 2901 2899
 2900 2899 2898 2900 2900
 2899 2898 2897 2900 2898
 2898 2897 2899 2898 2900
 2899 2898 2899 2897 2900
 2898 2902 2897 2898 2899
 2899 2899 2898 2897 2898
 2897 2898 2899 2900 2900
 2899 2898 2899 2900 2899
 2900 2899 2899 2899 2899
 2899 2898 2899 2899 2900
 2902 2899 2900 2900 2901
 2899 2901 2899 2899 2902
 2898 2898 2898 2898 2899
 2899 2900 2900 2900 2898
 2899 2899 2900 2899 2900
 2899 2900 2898 2898 2898
 2900 2898 2899 2900 2899
 2899 2900 2898 2898 2899
 2899 2899 2899 2898 2898
 2897 2898 2899 2897 2897
 2901 2898 2897 2898 2899
 2898 2897 2899 2898 2897
 2898 2898 2897 2898 2899

1.4.2.4.1. Background and Data
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 2899 2899 2899 2900 2899
 2899 2897 2898 2899 2900
 2898 2897 2901 2899 2901
 2898 2899 2901 2900 2900
 2899 2900 2900 2900 2900
 2901 2900 2901 2899 2897
 2900 2900 2901 2899 2898
 2900 2899 2899 2900 2899
 2900 2899 2900 2899 2901
 2900 2900 2899 2899 2898
 2899 2900 2898 2899 2899
 2901 2898 2898 2900 2899
 2899 2898 2897 2898 2897
 2899 2899 2899 2898 2898
 2897 2898 2899 2897 2897
 2899 2898 2898 2899 2899
 2901 2899 2899 2899 2897
 2900 2896 2898 2898 2900
 2897 2899 2897 2896 2898
 2897 2898 2899 2896 2899
 2901 2898 2898 2896 2897
 2899 2897 2898 2899 2898
 2898 2898 2898 2898 2898
 2899 2900 2899 2901 2898
 2899 2899 2898 2900 2898
 2899 2899 2901 2900 2901
 2899 2901 2899 2901 2899
 2900 2902 2899 2898 2899
 2900 2899 2900 2900 2901
 2900 2899 2901 2901 2899
 2898 2901 2897 2898 2901
 2900 2902 2899 2900 2898
 2900 2899 2900 2899 2899
 2899 2898 2900 2898 2899
 2899 2899 2899 2898 2900

1.4.2.4.1. Background and Data
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.4. Josephson Junction Cryothermometry

1.4.2.4.2.Graphical Output and
Interpretation

Goal The goal of this analysis is threefold:

Determine if the univariate model:

is appropriate and valid.

1.  

Determine if the typical underlying assumptions for an "in
control" measurement process are valid. These assumptions are:

random drawings;1.  

from a fixed distribution;2.  

with the distribution having a fixed location; and3.  

the distribution having a fixed scale.4.  

2.  

Determine if the confidence interval

is appropriate and valid where s is the standard deviation of the
original data.

3.  

1.4.2.4.2. Graphical Output and Interpretation
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4-Plot of
Data

Interpretation The assumptions are addressed by the graphics shown above:

The run sequence plot (upper left) indicates that the data do not
have any significant shifts in location or scale over time.

1.  

The lag plot (upper right) does not indicate any non-random
pattern in the data.

2.  

The histogram (lower left) shows that the data are reasonably
symmetric, there does not appear to be significant outliers in the
tails, and that it is reasonable to assume that the data can be fit
with a normal distribution.

3.  

The normal probability plot (lower right) is difficult to interpret
due to the fact that there are only a few distinct values with
many repeats.

4.  

The integer data with only a few distinct values and many repeats
accounts for the discrete appearance of several of the plots (e.g., the lag
plot and the normal probability plot). In this case, the nature of the data
makes the normal probability plot difficult to interpret, especially since
each number is repeated many times. However, the histogram indicates
that a normal distribution should provide an adequate model for the
data.

From the above plots, we conclude that the underlying assumptions are
valid and the data can be reasonably approximated with a normal
distribution. Therefore, the commonly used uncertainty standard is
valid and appropriate. The numerical values for this model are given in
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the Quantitative Output and Interpretation section.

Individual
Plots

Although it is normally not necessary, the plots can be generated
individually to give more detail.

Run
Sequence
Plot

Lag Plot
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Histogram
(with
overlaid
Normal PDF)

Normal
Probability
Plot
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.4. Josephson Junction Cryothermometry

1.4.2.4.3.Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data.
The following table, generated by Dataplot, shows a typical set of statistics.

                                 SUMMARY
  
                      NUMBER OF OBSERVATIONS =      700
  
  
 ***********************************************************************
 *        LOCATION MEASURES         *       DISPERSION MEASURES       
*
 ***********************************************************************
 *  MIDRANGE     =   0.2898500E+04  *  RANGE        =   0.7000000E+01 
*
 *  MEAN         =   0.2898562E+04  *  STAND. DEV.  =   0.1304969E+01 
*
 *  MIDMEAN      =   0.2898363E+04  *  AV. AB. DEV. =   0.1058571E+01 
*
 *  MEDIAN       =   0.2899000E+04  *  MINIMUM      =   0.2895000E+04 
*
 *               =                  *  LOWER QUART. =   0.2898000E+04 
*
 *               =                  *  LOWER HINGE  =   0.2898000E+04 
*
 *               =                  *  UPPER HINGE  =   0.2899000E+04 
*
 *               =                  *  UPPER QUART. =   0.2899000E+04 
*
 *               =                  *  MAXIMUM      =   0.2902000E+04 
*
 ***********************************************************************
 *       RANDOMNESS MEASURES        *     DISTRIBUTIONAL MEASURES     
*
 ***********************************************************************
 *  AUTOCO COEF  =   0.3148023E+00  *  ST. 3RD MOM. =   0.6580265E-02 
*
 *               =   0.0000000E+00  *  ST. 4TH MOM. =   0.2825334E+01 
*
 *               =   0.0000000E+00  *  ST. WILK-SHA =  -0.2272378E+02 
*
 *               =                  *  UNIFORM PPCC =   0.9554127E+00 
*
 *               =                  *  NORMAL  PPCC =   0.9748405E+00 
*
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 *               =                  *  TUK -.5 PPCC =   0.7935873E+00 
*
 *               =                  *  CAUCHY  PPCC =   0.4231319E+00 
*
 ***********************************************************************

Location One way to quantify a change in location over time is to fit a straight line to the data set
using the index variable X = 1, 2, ..., N, with N denoting the number of observations. If
there is no significant drift in the location, the slope parameter should be zero. For this
data set, Dataplot generates the following output:

 LEAST SQUARES MULTILINEAR FIT
       SAMPLE SIZE N       =      700
       NUMBER OF VARIABLES =        1
       NO REPLICATION CASE
  
  
               PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
        1  A0                   2898.19       (0.9745E-01)      
0.2974E+05
        2  A1       X          0.107075E-02   (0.2409E-03)       
4.445
  
       RESIDUAL    STANDARD DEVIATION =         1.287802
       RESIDUAL    DEGREES OF FREEDOM =         698

The slope parameter, A1, has a t value of 2.1 which is statistically significant (the critical
value is 1.98). However, the value of the slope is 0.0011. Given that the slope is nearly
zero, the assumption of constant location is not seriously violated even though it is (just
barely) statistically significant.

Variation One simple way to detect a change in variation is with a Bartlett test after dividing the
data set into several equal-sized intervals. However, the Bartlett test is not robust for
non-normality. Since the nature of the data (a few distinct points repeated many times)
makes the normality assumption questionable, we use the alternative Levene test. In
partiuclar, we use the Levene test based on the median rather the mean. The choice of the
number of intervals is somewhat arbitrary, although values of 4 or 8 are reasonable.
Dataplot generated the following output for the Levene test.

               LEVENE F-TEST FOR SHIFT IN VARIATION
                      (ASSUMPTION: NORMALITY)
  
 1. STATISTICS
       NUMBER OF OBSERVATIONS    =      700
       NUMBER OF GROUPS          =        4
       LEVENE F TEST STATISTIC   =    1.432365
  
  
    FOR LEVENE TEST STATISTIC
       0          % POINT    =    0.000000
       50         % POINT    =   0.7894323
       75         % POINT    =    1.372513
       90         % POINT    =    2.091688
       95         % POINT    =    2.617726
       99         % POINT    =    3.809943
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       99.9       % POINT    =    5.482234
  
  
          76.79006       % Point:     1.432365
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THERE IS NO SHIFT IN VARIATION.
       THUS THE GROUPS ARE HOMOGENEOUS WITH RESPECT TO VARIATION.

Since the Levene test statistic value of 1.43 is less than the 95% critical value of 2.67, we
conclude that the standard deviations are not significantly different in the 4 intervals.

Randomness
There are many ways in which data can be non-random. However, most common forms
of non-randomness can be detected with a few simple tests. The lag plot in the previous
section is a simple graphical technique.

Another check is an autocorrelation plot that shows the autocorrelations for various lags.
Confidence bands can be plotted at the 95% and 99% confidence levels. Points outside
this band indicate statistically significant values (lag 0 is always 1). Dataplot generated
the following autocorrelation plot.

The lag 1 autocorrelation, which is generally the one of most interest, is 0.31. The critical
values at the 5% level of significance are -0.087 and 0.087. This indicates that the lag 1
autocorrelation is statistically significant, so there is some evidence for non-randomness.

A common test for randomness is the runs test.

                       RUNS UP
  
            STATISTIC = NUMBER OF RUNS UP
                OF LENGTH EXACTLY I
  
    I         STAT     EXP(STAT)    SD(STAT)       Z
  
    1       102.0    145.8750     12.1665       -3.61
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    2        48.0     64.0500      6.2731       -2.56
    3        23.0     18.4069      3.8239        1.20
    4        11.0      4.0071      1.9366        3.61
    5         4.0      0.7071      0.8347        3.95
    6         2.0      0.1052      0.3240        5.85
    7         2.0      0.0136      0.1164       17.06
    8         0.0      0.0015      0.0393       -0.04
    9         0.0      0.0002      0.0125       -0.01
   10         0.0      0.0000      0.0038        0.00
  
  
            STATISTIC = NUMBER OF RUNS UP
                OF LENGTH I OR MORE
  
    I         STAT     EXP(STAT)    SD(STAT)       Z
  
    1       192.0    233.1667      7.8779       -5.23
    2        90.0     87.2917      5.2610        0.51
    3        42.0     23.2417      4.0657        4.61
    4        19.0      4.8347      2.1067        6.72
    5         8.0      0.8276      0.9016        7.96
    6         4.0      0.1205      0.3466       11.19
    7         2.0      0.0153      0.1236       16.06
    8         0.0      0.0017      0.0414       -0.04
    9         0.0      0.0002      0.0132       -0.01
   10         0.0      0.0000      0.0040        0.00
  
  
                      RUNS DOWN
  
            STATISTIC = NUMBER OF RUNS DOWN
                OF LENGTH EXACTLY I
  
    I         STAT     EXP(STAT)    SD(STAT)       Z
  
    1       106.0    145.8750     12.1665       -3.28
    2        47.0     64.0500      6.2731       -2.72
    3        24.0     18.4069      3.8239        1.46
    4         8.0      4.0071      1.9366        2.06
    5         4.0      0.7071      0.8347        3.95
    6         3.0      0.1052      0.3240        8.94
    7         0.0      0.0136      0.1164       -0.12
    8         0.0      0.0015      0.0393       -0.04
    9         0.0      0.0002      0.0125       -0.01
   10         0.0      0.0000      0.0038        0.00
  
  
            STATISTIC = NUMBER OF RUNS DOWN
                OF LENGTH I OR MORE
  
  
    I         STAT     EXP(STAT)    SD(STAT)       Z
  
    1       192.0    233.1667      7.8779       -5.23
    2        86.0     87.2917      5.2610       -0.25
    3        39.0     23.2417      4.0657        3.88
    4        15.0      4.8347      2.1067        4.83
    5         7.0      0.8276      0.9016        6.85
    6         3.0      0.1205      0.3466        8.31
    7         0.0      0.0153      0.1236       -0.12
    8         0.0      0.0017      0.0414       -0.04

1.4.2.4.3. Quantitative Output and Interpretation

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4243.htm (4 of 8) [5/1/2006 9:58:49 AM]



    9         0.0      0.0002      0.0132       -0.01
   10         0.0      0.0000      0.0040        0.00
  
  
            RUNS TOTAL = RUNS UP + RUNS DOWN
  
          STATISTIC = NUMBER OF RUNS TOTAL
               OF LENGTH EXACTLY I
  
    I         STAT     EXP(STAT)    SD(STAT)       Z
  
    1       208.0    291.7500     17.2060       -4.87
    2        95.0    128.1000      8.8716       -3.73
    3        47.0     36.8139      5.4079        1.88
    4        19.0      8.0143      2.7387        4.01
    5         8.0      1.4141      1.1805        5.58
    6         5.0      0.2105      0.4582       10.45
    7         2.0      0.0271      0.1647       11.98
    8         0.0      0.0031      0.0556       -0.06
    9         0.0      0.0003      0.0177       -0.02
   10         0.0      0.0000      0.0054       -0.01
  
  
          STATISTIC = NUMBER OF RUNS TOTAL
                OF LENGTH I OR MORE
  
    I         STAT     EXP(STAT)    SD(STAT)       Z
  
    1       384.0    466.3333     11.1410       -7.39
    2       176.0    174.5833      7.4402        0.19
    3        81.0     46.4833      5.7498        6.00
    4        34.0      9.6694      2.9794        8.17
    5        15.0      1.6552      1.2751       10.47
    6         7.0      0.2410      0.4902       13.79
    7         2.0      0.0306      0.1748       11.27
    8         0.0      0.0034      0.0586       -0.06
    9         0.0      0.0003      0.0186       -0.02
   10         0.0      0.0000      0.0056       -0.01
  
  
           LENGTH OF THE LONGEST RUN UP         =     7
           LENGTH OF THE LONGEST RUN DOWN       =     6
           LENGTH OF THE LONGEST RUN UP OR DOWN =     7
  
           NUMBER OF POSITIVE DIFFERENCES =   262
           NUMBER OF NEGATIVE DIFFERENCES =   258
           NUMBER OF ZERO     DIFFERENCES =   179

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically
significant at the 5% level. The runs test indicates some mild non-randomness.

Although the runs test and lag 1 autocorrelation indicate some mild non-randomness, it is
not sufficient to reject the Yi = C + Ei model. At least part of the non-randomness can be
explained by the discrete nature of the data.
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Distributional
Analysis

Probability plots are a graphical test for assessing if a particular distribution provides an
adequate fit to a data set.

A quantitative enhancement to the probability plot is the correlation coefficient of the
points on the probability plot. For this data set the correlation coefficient is 0.975. Since
this is less than the critical value of 0.987 (this is a tabulated value), the normality
assumption is rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests are alternative methods for
assessing distributional adequacy. The Wilk-Shapiro and Anderson-Darling tests can be
used to test for normality. Dataplot generates the following output for the
Anderson-Darling normality test.

               ANDERSON-DARLING 1-SAMPLE TEST
               THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS                =      700
       MEAN                                  =    2898.562
       STANDARD DEVIATION                    =    1.304969
  
       ANDERSON-DARLING TEST STATISTIC VALUE =    16.76349
       ADJUSTED TEST STATISTIC VALUE         =    16.85843
  
 2. CRITICAL VALUES:
       90         % POINT    =   0.6560000
       95         % POINT    =   0.7870000
       97.5       % POINT    =   0.9180000
       99         % POINT    =    1.092000
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.

The Anderson-Darling test rejects the normality assumption because the test statistic,
16.76, is greater than the 99% critical value 1.092.

Although the data are not strictly normal, the violation of the normality assumption is not
severe enough to conclude that the Yi = C + Ei model is unreasonable. At least part of the
non-normality can be explained by the discrete nature of the data.

Outlier
Analysis

A test for outliers is the Grubbs test. Dataplot generated the following output for Grubbs'
test.

               GRUBBS TEST FOR OUTLIERS
               (ASSUMPTION: NORMALITY)
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS      =      700
       MINIMUM                     =    2895.000
       MEAN                        =    2898.562
       MAXIMUM                     =    2902.000
       STANDARD DEVIATION          =    1.304969
  
       GRUBBS TEST STATISTIC       =    2.729201
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 2. PERCENT POINTS OF THE REFERENCE DISTRIBUTION
    FOR GRUBBS TEST STATISTIC
       0          % POINT    =    0.000000
       50         % POINT    =    3.371397
       75         % POINT    =    3.554906
       90         % POINT    =    3.784969
       95         % POINT    =    3.950619
       97.5       % POINT    =    4.109569
       99         % POINT    =    4.311552
       100        % POINT    =    26.41972
 
 3. CONCLUSION (AT THE 5% LEVEL):
       THERE ARE NO OUTLIERS.

For this data set, Grubbs' test does not detect any outliers at the 10%, 5%, and 1%
significance levels.

Model Although the randomness and normality assumptions were mildly violated, we conclude
that a reasonable model for the data is:

In addition, a 95% confidence interval for the mean value is (2898.515,2898.928).

Univariate
Report

It is sometimes useful and convenient to summarize the above results in a report.

 Analysis for Josephson Junction Cryothermometry Data
  
 1: Sample Size                           = 700
  
 2: Location
    Mean                                  = 2898.562
    Standard Deviation of Mean            = 0.049323
    95% Confidence Interval for Mean      = (2898.465,2898.658)
    Drift with respect to location?       = YES
    (Further analysis indicates that
    the drift, while statistically
    significant, is not practically
    significant)
  
 3: Variation
    Standard Deviation                    = 1.30497
    95% Confidence Interval for SD        = (1.240007,1.377169)
    Drift with respect to variation?
    (based on Levene's test on quarters
    of the data)                          = NO
  
 4: Distribution
    Normal PPCC                           = 0.97484
    Data are Normal?
      (as measured by Normal PPCC)        = NO
  
 5: Randomness
    Autocorrelation                       = 0.314802
    Data are Random?
      (as measured by autocorrelation)    = NO
  
 6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is 
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    fixed, here we are testing only for
    fixed normal)
    Data Set is in Statistical Control?   = NO
  
    Note: Although we have violations of
    the assumptions, they are mild enough,
    and at least partially explained by the
    discrete nature of the data, so we may model
    the data as if it were in statistical
    control
  
 7: Outliers?
    (as determined by Grubbs test)        = NO
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.4. Josephson Junction Cryothermometry

1.4.2.4.4.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study description.

1. Invoke Dataplot and read data.

   1. Read in the data.

                              

 1. You have read 1 column of numbers 
    into Dataplot, variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-plot, there are no shifts
    in location or scale.  Due to the nature
    of the data (a few distinct points with
    many repeats), the normality assumption is
    questionable.

3. Generate the individual plots.

   1. Generate a run sequence plot.

   2. Generate a lag plot.

   3. Generate a histogram with an

 1. The run sequence plot indicates that
    there are no shifts of location or
    scale.

 2. The lag plot does not indicate any
    significant patterns (which would
    show the data were not random).
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      overlaid normal pdf.

   4. Generate a normal probability
      plot.

 3. The histogram indicates that a 
    normal distribution is a good
    distribution for these data.

 4. The discrete nature of the data masks
    the normality or non-normality of the
    data somewhat.  The plot indicates that
    a normal distribution provides a rough
    approximation for the data.

4. Generate summary statistics, quantitative
   analysis, and print a univariate report.

   1. Generate a table of summary
      statistics.

   2. Generate the mean, a confidence
      interval for the mean, and compute
      a linear fit to detect drift in
      location.

   3. Generate the standard deviation, a
      confidence interval for the standard
      deviation, and detect drift in variation
      by dividing the data into quarters and
      computing Levene's test for equal
      standard deviations.

   4. Check for randomness by generating an
      autocorrelation plot and a runs test.

   5. Check for normality by computing the
      normal probability plot correlation
      coefficient.

   6. Check for outliers using Grubbs' test.

   7. Print a univariate report (this assumes
      steps 2 thru 6 have already been run).

 1. The summary statistics table displays
    25+ statistics.

 2. The mean is 2898.56 and a 95%
    confidence interval is (2898.46,2898.66).
    The linear fit indicates no meaningful drift
    in location since the value of the slope
    parameter is near zero.

 3. The standard devaition is 1.30 with
    a 95% confidence interval of (1.24,1.38).
    Levene's test indicates no significant
    drift in variation.

 4. The lag 1 autocorrelation is 0.31.
    This indicates some mild non-randomness.

 5. The normal probability plot correlation
    coefficient is 0.975.  At the 5% level,
    we reject the normality assumption.

 6. Grubbs' test detects no outliers at the
    5% level.

 7. The results are summarized in a
    convenient report.
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.5.Beam Deflections

Beam
Deflection

This example illustrates the univariate analysis of beam deflection data.

Background and Data1.  

Test Underlying Assumptions2.  

Develop a Better Model3.  

Validate New Model4.  

Work This Example Yourself5.  

1.4.2.5. Beam Deflections
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.5. Beam Deflections

1.4.2.5.1.Background and Data

Generation This data set was collected by H. S. Lew of NIST in 1969 to measure
steel-concrete beam deflections. The response variable is the deflection
of a beam from the center point.

The motivation for studying this data set is to show how the underlying
assumptions are affected by periodic data.

This file can be read by Dataplot with the following commands:

SKIP 25
READ LEW.DAT Y

Resulting
Data

The following are the data used for this case study.

  -213
  -564
   -35
   -15
   141
   115
  -420
  -360
   203
  -338
  -431
   194
  -220
  -513
   154
  -125
  -559
    92
   -21
  -579
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   -52
    99
  -543
  -175
   162
  -457
  -346
   204
  -300
  -474
   164
  -107
  -572
    -8
    83
  -541
  -224
   180
  -420
  -374
   201
  -236
  -531
    83
    27
  -564
  -112
   131
  -507
  -254
   199
  -311
  -495
   143
   -46
  -579
   -90
   136
  -472
  -338
   202
  -287
  -477
   169
  -124
  -568
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    17
    48
  -568
  -135
   162
  -430
  -422
   172
   -74
  -577
   -13
    92
  -534
  -243
   194
  -355
  -465
   156
   -81
  -578
   -64
   139
  -449
  -384
   193
  -198
  -538
   110
   -44
  -577
    -6
    66
  -552
  -164
   161
  -460
  -344
   205
  -281
  -504
   134
   -28
  -576
  -118
   156
  -437
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  -381
   200
  -220
  -540
    83
    11
  -568
  -160
   172
  -414
  -408
   188
  -125
  -572
   -32
   139
  -492
  -321
   205
  -262
  -504
   142
   -83
  -574
     0
    48
  -571
  -106
   137
  -501
  -266
   190
  -391
  -406
   194
  -186
  -553
    83
   -13
  -577
   -49
   103
  -515
  -280
   201
   300
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  -506
   131
   -45
  -578
   -80
   138
  -462
  -361
   201
  -211
  -554
    32
    74
  -533
  -235
   187
  -372
  -442
   182
  -147
  -566
    25
    68
  -535
  -244
   194
  -351
  -463
   174
  -125
  -570
    15
    72
  -550
  -190
   172
  -424
  -385
   198
  -218
  -536
    96
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.5. Beam Deflections

1.4.2.5.2.Test Underlying Assumptions

Goal The goal of this analysis is threefold:

Determine if the univariate model:

is appropriate and valid.

1.  

Determine if the typical underlying assumptions for an "in control" measurement
process are valid. These assumptions are:

random drawings;1.  

from a fixed distribution;2.  

with the distribution having a fixed location; and3.  

the distribution having a fixed scale.4.  

2.  

Determine if the confidence interval

is appropriate and valid where s is the standard deviation of the original data.

3.  

4-Plot of Data

1.4.2.5.2. Test Underlying Assumptions
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Interpretation The assumptions are addressed by the graphics shown above:

The run sequence plot (upper left) indicates that the data do not have any
significant shifts in location or scale over time.

1.  

The lag plot (upper right) shows that the data are not random. The lag plot further
indicates the presence of a few outliers.

2.  

When the randomness assumption is thus seriously violated, the histogram (lower
left) and normal probability plot (lower right) are ignored since determining the
distribution of the data is only meaningful when the data are random.

3.  

From the above plots we conclude that the underlying randomness assumption is not
valid. Therefore, the model

is not appropriate.

We need to develop a better model. Non-random data can frequently be modeled using
time series mehtodology. Specifically, the circular pattern in the lag plot indicates that a
sinusoidal model might be appropriate. The sinusoidal model will be developed in the
next section.

Individual
Plots

The plots can be generated individually for more detail. In this case, only the run
sequence plot and the lag plot are drawn since the distributional plots are not meaningful.

Run Sequence
Plot

1.4.2.5.2. Test Underlying Assumptions

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4252.htm (2 of 9) [5/1/2006 9:58:51 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm


Lag Plot

We have drawn some lines and boxes on the plot to better isolate the outliers. The
following output helps identify the points that are generating the outliers on the lag plot.

  
       ****************************************************
       **  print y index xplot yplot subset yplot > 250  **
       ****************************************************
  
  
 VARIABLES--Y              INDEX          XPLOT          YPLOT   

         300.00         158.00        -506.00         300.00
  
       ****************************************************
       **  print y index xplot yplot subset xplot > 250  **
       ****************************************************
  
  
 VARIABLES--Y              INDEX          XPLOT          YPLOT   

         201.00         157.00         300.00         201.00
  
       ********************************************************
       **  print y index xplot yplot subset yplot -100 to 0
                                     subset xplot -100 to 0  **
       ********************************************************
  
  
 VARIABLES--Y              INDEX          XPLOT          YPLOT   

         -35.00           3.00         -15.00         -35.00
  
       *********************************************************
       **  print y index xplot yplot subset yplot 100 to 200
                                     subset xplot 100 to 200  **
       *********************************************************
  

1.4.2.5.2. Test Underlying Assumptions
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 VARIABLES--Y              INDEX          XPLOT          YPLOT   

         141.00           5.00         115.00         141.00
  

That is, the third, fifth, and 158th points appear to be outliers.

Autocorrelation
Plot

When the lag plot indicates significant non-randomness, it can be helpful to follow up
with a an autocorrelation plot.

This autocorrelation plot shows a distinct cyclic pattern. As with the lag plot, this
suggests a sinusoidal model.

Spectral Plot Another useful plot for non-random data is the spectral plot.

1.4.2.5.2. Test Underlying Assumptions
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This spectral plot shows a single dominant peak at a frequency of 0.3. This frequency of
0.3 will be used in fitting the sinusoidal model in the next section.

Quantitative
Output

Although the lag plot, autocorrelation plot, and spectral plot clearly show the violation of
the randomness assumption, we supplement the graphical output with some quantitative
measures.

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data.
The following table, generated by Dataplot, shows a typical set of statistics.

 
                                SUMMARY
 
                     NUMBER OF OBSERVATIONS =      200
 
 
***********************************************************************
*        LOCATION MEASURES         *       DISPERSION MEASURES       
*
***********************************************************************
*  MIDRANGE     =  -0.1395000E+03  *  RANGE        =   0.8790000E+03 
*
*  MEAN         =  -0.1774350E+03  *  STAND. DEV.  =   0.2773322E+03 
*
*  MIDMEAN      =  -0.1797600E+03  *  AV. AB. DEV. =   0.2492250E+03 
*
*  MEDIAN       =  -0.1620000E+03  *  MINIMUM      =  -0.5790000E+03 
*
*               =                  *  LOWER QUART. =  -0.4510000E+03 
*
*               =                  *  LOWER HINGE  =  -0.4530000E+03 
*
*               =                  *  UPPER HINGE  =   0.9400000E+02 
*
*               =                  *  UPPER QUART. =   0.9300000E+02 
*
*               =                  *  MAXIMUM      =   0.3000000E+03 
*
***********************************************************************
*       RANDOMNESS MEASURES        *     DISTRIBUTIONAL MEASURES     
*
***********************************************************************
*  AUTOCO COEF  =  -0.3073048E+00  *  ST. 3RD MOM. =  -0.5010057E-01 
*
*               =   0.0000000E+00  *  ST. 4TH MOM. =   0.1503684E+01 
*
*               =   0.0000000E+00  *  ST. WILK-SHA =  -0.1883372E+02 
*
*               =                  *  UNIFORM PPCC =   0.9925535E+00 
*
*               =                  *  NORMAL  PPCC =   0.9540811E+00 
*
*               =                  *  TUK -.5 PPCC =   0.7313794E+00 
*
*               =                  *  CAUCHY  PPCC =   0.4408355E+00 
*
***********************************************************************
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Location One way to quantify a change in location over time is to fit a straight line to the data set
using the index variable X = 1, 2, ..., N, with N denoting the number of observations. If
there is no significant drift in the location, the slope parameter should be zero. For this
data set, Dataplot generates the following output:

 LEAST SQUARES MULTILINEAR FIT
       SAMPLE SIZE N       =      200
       NUMBER OF VARIABLES =        1
       NO REPLICATION CASE
  
  
               PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
        1  A0                  -178.175       ( 39.47    )      
-4.514
        2  A1       X          0.736593E-02   (0.3405    )      
0.2163E-01
  
       RESIDUAL    STANDARD DEVIATION =         278.0313
       RESIDUAL    DEGREES OF FREEDOM =         198

The slope parameter, A1, has a t value of 0.022 which is statistically not significant. This
indicates that the slope can in fact be considered zero.

Variation One simple way to detect a change in variation is with a Bartlett test after dividing the
data set into several equal-sized intervals. However, the Bartlett the non-randomness of
this data does not allows us to assume normality, we use the alternative Levene test. In
partiuclar, we use the Levene test based on the median rather the mean. The choice of the
number of intervals is somewhat arbitrary, although values of 4 or 8 are reasonable.
Dataplot generated the following output for the Levene test.

               LEVENE F-TEST FOR SHIFT IN VARIATION
                      (ASSUMPTION: NORMALITY)
  
 1. STATISTICS
       NUMBER OF OBSERVATIONS    =      200
       NUMBER OF GROUPS          =        4
       LEVENE F TEST STATISTIC   =   0.9378599E-01
  
  
    FOR LEVENE TEST STATISTIC
       0          % POINT    =   0.0000000E+00
       50         % POINT    =   0.7914120
       75         % POINT    =    1.380357
       90         % POINT    =    2.111936
       95         % POINT    =    2.650676
       99         % POINT    =    3.883083
       99.9       % POINT    =    5.638597
  
  
          3.659895       % Point:    0.9378599E-01
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THERE IS NO SHIFT IN VARIATION.
       THUS: HOMOGENEOUS WITH RESPECT TO VARIATION.

In this case, the Levene test indicates that the standard deviations are significantly

1.4.2.5.2. Test Underlying Assumptions
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different in the 4 intervals since the test statistic of 13.2 is greater than the 95% critical
value of 2.6. Therefore we conclude that the scale is not constant.

Randomness A runs test is used to check for randomness

 
                      RUNS UP
 
           STATISTIC = NUMBER OF RUNS UP
               OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1        63.0    104.2083     10.2792       -4.01
   2        34.0     45.7167      5.2996       -2.21
   3        17.0     13.1292      3.2297        1.20
   4         4.0      2.8563      1.6351        0.70
   5         1.0      0.5037      0.7045        0.70
   6         5.0      0.0749      0.2733       18.02
   7         1.0      0.0097      0.0982       10.08
   8         1.0      0.0011      0.0331       30.15
   9         0.0      0.0001      0.0106       -0.01
  10         1.0      0.0000      0.0032      311.40
 
 
           STATISTIC = NUMBER OF RUNS UP
               OF LENGTH I OR MORE
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1       127.0    166.5000      6.6546       -5.94
   2        64.0     62.2917      4.4454        0.38
   3        30.0     16.5750      3.4338        3.91
   4        13.0      3.4458      1.7786        5.37
   5         9.0      0.5895      0.7609       11.05
   6         8.0      0.0858      0.2924       27.06
   7         3.0      0.0109      0.1042       28.67
   8         2.0      0.0012      0.0349       57.21
   9         1.0      0.0001      0.0111       90.14
  10         1.0      0.0000      0.0034      298.08
 
 
                     RUNS DOWN
 
           STATISTIC = NUMBER OF RUNS DOWN
               OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1        69.0    104.2083     10.2792       -3.43
   2        32.0     45.7167      5.2996       -2.59
   3        11.0     13.1292      3.2297       -0.66
   4         6.0      2.8563      1.6351        1.92
   5         5.0      0.5037      0.7045        6.38
   6         2.0      0.0749      0.2733        7.04
   7         2.0      0.0097      0.0982       20.26
   8         0.0      0.0011      0.0331       -0.03
   9         0.0      0.0001      0.0106       -0.01
  10         0.0      0.0000      0.0032        0.00
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           STATISTIC = NUMBER OF RUNS DOWN
               OF LENGTH I OR MORE
 
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1       127.0    166.5000      6.6546       -5.94
   2        58.0     62.2917      4.4454       -0.97
   3        26.0     16.5750      3.4338        2.74
   4        15.0      3.4458      1.7786        6.50
   5         9.0      0.5895      0.7609       11.05
   6         4.0      0.0858      0.2924       13.38
   7         2.0      0.0109      0.1042       19.08
   8         0.0      0.0012      0.0349       -0.03
   9         0.0      0.0001      0.0111       -0.01
  10         0.0      0.0000      0.0034        0.00
 
 
           RUNS TOTAL = RUNS UP + RUNS DOWN
 
         STATISTIC = NUMBER OF RUNS TOTAL
              OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1       132.0    208.4167     14.5370       -5.26
   2        66.0     91.4333      7.4947       -3.39
   3        28.0     26.2583      4.5674        0.38
   4        10.0      5.7127      2.3123        1.85
   5         6.0      1.0074      0.9963        5.01
   6         7.0      0.1498      0.3866       17.72
   7         3.0      0.0193      0.1389       21.46
   8         1.0      0.0022      0.0468       21.30
   9         0.0      0.0002      0.0150       -0.01
  10         1.0      0.0000      0.0045      220.19
 
 
         STATISTIC = NUMBER OF RUNS TOTAL
               OF LENGTH I OR MORE
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1       254.0    333.0000      9.4110       -8.39
   2       122.0    124.5833      6.2868       -0.41
   3        56.0     33.1500      4.8561        4.71
   4        28.0      6.8917      2.5154        8.39
   5        18.0      1.1790      1.0761       15.63
   6        12.0      0.1716      0.4136       28.60
   7         5.0      0.0217      0.1474       33.77
   8         2.0      0.0024      0.0494       40.43
   9         1.0      0.0002      0.0157       63.73
  10         1.0      0.0000      0.0047      210.77
 
 
          LENGTH OF THE LONGEST RUN UP         =    10
          LENGTH OF THE LONGEST RUN DOWN       =     7
          LENGTH OF THE LONGEST RUN UP OR DOWN =    10
 
          NUMBER OF POSITIVE DIFFERENCES =   258
          NUMBER OF NEGATIVE DIFFERENCES =   241
          NUMBER OF ZERO     DIFFERENCES =     0
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Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically
significant at the 5% level. Numerous values in this column are much larger than +/-1.96,
so we conclude that the data are not random.

Distributional
Assumptions

Since the quantitative tests show that the assumptions of constant scale and
non-randomness are not met, the distributional measures will not be meaningful.
Therefore these quantitative tests are omitted.

1.4.2.5.2. Test Underlying Assumptions
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.5. Beam Deflections

1.4.2.5.3.Develop a Better Model

Sinusoidal
Model

The lag plot and autocorrelation plot in the previous section strongly suggested a
sinusoidal model might be appropriate. The basic sinusoidal model is:

where C is constant defining a mean level,  is an amplitude for the sine
function,  is the frequency, Ti is a time variable, and  is the phase. This
sinusoidal model can be fit using non-linear least squares.

To obtain a good fit, sinusoidal models require good starting values for C, the
amplitude, and the frequency.

Good Starting
Value for C

A good starting value for C can be obtained by calculating the mean of the data.
If the data show a trend, i.e., the assumption of constant location is violated, we
can replace C with a linear or quadratic least squares fit. That is, the model
becomes

or

Since our data did not have any meaningful change of location, we can fit the
simpler model with C equal to the mean. From the summary output in the
previous page, the mean is -177.44.

Good Starting
Value for
Frequency

The starting value for the frequency can be obtained from the spectral plot,
which shows the dominant frequency is about 0.3.

1.4.2.5.3. Develop a Better Model

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4253.htm (1 of 4) [5/1/2006 9:58:52 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Complex
Demodulation
Phase Plot

The complex demodulation phase plot can be used to refine this initial estimate
for the frequency.

For the complex demodulation plot, if the lines slope from left to right, the
frequency should be increased. If the lines slope from right to left, it should be
decreased. A relatively flat (i.e., horizontal) slope indicates a good frequency.
We could generate the demodulation phase plot for 0.3 and then use trial and
error to obtain a better estimate for the frequency. To simplify this, we generate
16 of these plots on a single page starting with a frequency of 0.28, increasing in
increments of 0.0025, and stopping at 0.3175.

Interpretation The plots start with lines sloping from left to right but gradually change to a right
to left slope. The relatively flat slope occurs for frequency 0.3025 (third row,
second column). The complex demodulation phase plot restricts the range from

 to . This is why the plot appears to show some breaks.

Good Starting
Values for
Amplitude

The complex demodulation amplitude plot is used to find a good starting value
for the amplitude. In addition, this plot indicates whether or not the amplitude is
constant over the entire range of the data or if it varies. If the plot is essentially
flat, i.e., zero slope, then it is reasonable to assume a constant amplitude in the
non-linear model. However, if the slope varies over the range of the plot, we
may need to adjust the model to be:

That is, we replace  with a function of time. A linear fit is specified in the
model above, but this can be replaced with a more elaborate function if needed.

1.4.2.5.3. Develop a Better Model
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Complex
Demodulation
Amplitude
Plot

The complex demodulation amplitude plot for this data shows that:

The amplitude is fixed at approximately 390.1.  

There is a short start-up effect.2.  

There is a change in amplitude at around x=160 that should be
investigated for an outlier.

3.  

In terms of a non-linear model, the plot indicates that fitting a single constant for
 should be adequate for this data set.

Fit Output Using starting estimates of 0.3025 for the frequency, 390 for the amplitude, and
-177.44 for C, Dataplot generated the following output for the fit.

 LEAST SQUARES NON-LINEAR FIT
       SAMPLE SIZE N =      200
       MODEL--Y =C + AMP*SIN(2*3.14159*FREQ*T + PHASE)
       NO REPLICATION CASE
  
 ITERATION  CONVERGENCE  RESIDUAL  *  PARAMETER
  NUMBER      MEASURE    STANDARD  *  ESTIMATES
                         DEVIATION *
 ----------------------------------*-----------
     1--  0.10000E-01  0.52903E+03 *-0.17743E+03 0.39000E+03
0.30250E+00 0.10000E+01
     2--  0.50000E-02  0.22218E+03 *-0.17876E+03-0.33137E+03
0.30238E+00 0.71471E+00
     3--  0.25000E-02  0.15634E+03 *-0.17886E+03-0.24523E+03
0.30233E+00 0.14022E+01
     4--  0.96108E-01  0.15585E+03 *-0.17879E+03-0.36177E+03

1.4.2.5.3. Develop a Better Model
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0.30260E+00 0.14654E+01
  
         FINAL PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
        1  C                   -178.786       ( 11.02    )      
-16.22
        2  AMP                 -361.766       ( 26.19    )      
-13.81
        3  FREQ                0.302596       (0.1510E-03)       
2005.
        4  PHASE                1.46536       (0.4909E-01)       
29.85
  
       RESIDUAL    STANDARD DEVIATION =         155.8484
       RESIDUAL    DEGREES OF FREEDOM =         196

Model From the fit output, our proposed model is:

We will evaluate the adequacy of this model in the next section.
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.5. Beam Deflections

1.4.2.5.4.Validate New Model

4-Plot of
Residuals

The first step in evaluating the fit is to generate a 4-plot of the
residuals.

1.4.2.5.4. Validate New Model
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Interpretation The assumptions are addressed by the graphics shown above:

The run sequence plot (upper left) indicates that the data do not
have any significant shifts in location. There does seem to be
some shifts in scale. A start-up effect was detected previously by
the complex demodulation amplitude plot. There does appear to
be a few outliers.

1.  

The lag plot (upper right) shows that the data are random. The
outliers also appear in the lag plot.

2.  

The histogram (lower left) and the normal probability plot
(lower right) do not show any serious non-normality in the
residuals. However, the bend in the left portion of the normal
probability plot shows some cause for concern.

3.  

The 4-plot indicates that this fit is reasonably good. However, we will
attempt to improve the fit by removing the outliers.

Fit Output
with Outliers
Removed

Dataplot generated the following fit output after removing 3 outliers.

 LEAST SQUARES NON-LINEAR FIT
       SAMPLE SIZE N =      197
       MODEL--Y =C + AMP*SIN(2*3.14159*FREQ*T + PHASE)
       NO REPLICATION CASE
  
 ITERATION  CONVERGENCE  RESIDUAL  *  PARAMETER
  NUMBER      MEASURE    STANDARD  *  ESTIMATES
                         DEVIATION *
 ----------------------------------*-----------
     1--  0.10000E-01  0.14834E+03 *-0.17879E+03-0.36177E+03
0.30260E+00 0.14654E+01
  
     2--  0.37409E+02  0.14834E+03 *-0.17879E+03-0.36176E+03
0.30260E+00 0.14653E+01
  
         FINAL PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
        1  C                   -178.788       ( 10.57    )      
-16.91
        2  AMP                 -361.759       ( 25.45    )      
-14.22
        3  FREQ                0.302597       (0.1457E-03)       
2077.
        4  PHASE                1.46533       (0.4715E-01)       
31.08
  
       RESIDUAL    STANDARD DEVIATION =         148.3398
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       RESIDUAL    DEGREES OF FREEDOM =         193

New
Fit to
Edited
Data

The original fit, with a residual standard deviation of 155.84, was:

The new fit, with a residual standard deviation of 148.34, is:

There is minimal change in the parameter estimates and about a 5% reduction in
the residual standard deviation. In this case, removing the residuals has a modest
benefit in terms of reducing the variability of the model.

4-Plot
for
New
Fit

This plot shows that the underlying assumptions are satisfied and therefore the
new fit is a good descriptor of the data.

In this case, it is a judgment call whether to use the fit with or without the
outliers removed.
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.5. Beam Deflections

1.4.2.5.5.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case
study yourself. Each step may use results from previous steps,
so please be patient. Wait until the software verifies that the
current step is complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study description.

1. Invoke Dataplot and read data.

   1. Read in the data.

                              

 1. You have read 1 column of numbers 
    into Dataplot, variable Y.

2. Validate assumptions.

   1. 4-plot of Y.

   2. Generate a run sequence plot.

   3. Generate a lag plot.

   4. Generate an autocorrelation plot.

 1. Based on the 4-plot, there are no
    obvious shifts in location and scale,
    but the data are not random.

 2. Based on the run sequence plot, there
    are no obvious shifts in location and
    scale.

 3. Based on the lag plot, the data
    are not random.

 4. The autocorrelation plot shows
    significant autocorrelation at lag 1.

 5. The spectral plot shows a single dominant

1.4.2.5.5. Work This Example Yourself
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   5. Generate a spectral plot.

   6. Generate a table of summary
      statistics.

   7. Generate a linear fit to detect
      drift in location.

   8. Detect drift in variation by
      dividing the data into quarters and
      computing Levene's test statistic for
      equal standard deviations.

   9. Check for randomness by generating
      a runs test.

    low frequency peak.

 6. The summary statistics table displays
    25+ statistics.

 7. The linear fit indicates no drift in
    location since the slope parameter
    is not statistically significant.

 8. Levene's test indicates no
    significant drift in variation.

 9. The runs test indicates significant
    non-randomness.

3. Fit
Yi = C + A*SIN(2*PI*omega*ti+phi).

   1. Generate a complex demodulation
      phase plot.

   2. Generate a complex demodulation
      amplitude plot.

   3. Fit the non-linear model.

 1. Complex demodulation phase plot
    indicates a starting frequency
    of 0.3025.

 2. Complex demodulation amplitude
    plot indicates an amplitude of 
    390 (but there is a short start-up
    effect).

 3. Non-linear fit generates final
    parameter estimates.  The
    residual standard deviation from
    the fit is 155.85 (compared to the
    standard deviation of 277.73 from
    the original data).
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4. Validate fit.

   1. Generate a 4-plot of the residuals
      from the fit.

   2. Generate a nonlinear fit with
      outliers removed.

   3. Generate a 4-plot of the residuals
      from the fit with the outliers
      removed.

 1. The 4-plot indicates that the assumptions
    of constant location and scale are valid.
    The lag plot indicates that the data are
    random.  The histogram and normal
    probability plot indicate that the residuals
    that the normality assumption for the
    residuals are not seriously violated,
    although there is a bend on the probablity
    plot that warrants attention.

 2. The fit after removing 3 outliers shows
    some marginal improvement in the model
    (a 5% reduction in the residual standard
    deviation).

 3. The 4-plot of the model fit after
    3 outliers removed shows marginal
    improvement in satisfying model 
    assumptions.
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.6.Filter Transmittance

Filter
Transmittance

This example illustrates the univariate analysis of filter transmittance
data.

Background and Data1.  

Graphical Output and Interpretation2.  

Quantitative Output and Interpretation3.  

Work This Example Yourself4.  

1.4.2.6. Filter Transmittance
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.6. Filter Transmittance

1.4.2.6.1.Background and Data

Generation This data set was collected by NIST chemist Radu Mavrodineaunu in
the 1970's from an automatic data acquisition system for a filter
transmittance experiment. The response variable is transmittance.

The motivation for studying this data set is to show how the underlying
autocorrelation structure in a relatively small data set helped the
scientist detect problems with his automatic data acquisition system.

This file can be read by Dataplot with the following commands:

SKIP 25
READ MAVRO.DAT Y

Resulting
Data

The following are the data used for this case study.

   2.00180
   2.00170
   2.00180
   2.00190
   2.00180
   2.00170
   2.00150
   2.00140
   2.00150
   2.00150
   2.00170
   2.00180
   2.00180
   2.00190
   2.00190
   2.00210
   2.00200
   2.00160
   2.00140
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   2.00130
   2.00130
   2.00150
   2.00150
   2.00160
   2.00150
   2.00140
   2.00130
   2.00140
   2.00150
   2.00140
   2.00150
   2.00160
   2.00150
   2.00160
   2.00190
   2.00200
   2.00200
   2.00210
   2.00220
   2.00230
   2.00240
   2.00250
   2.00270
   2.00260
   2.00260
   2.00260
   2.00270
   2.00260
   2.00250
   2.00240
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.6. Filter Transmittance

1.4.2.6.2.Graphical Output and
Interpretation

Goal The goal of this analysis is threefold:

Determine if the univariate model:

is appropriate and valid.

1.  

Determine if the typical underlying assumptions for an "in
control" measurement process are valid. These assumptions are:

random drawings;1.  

from a fixed distribution;2.  

with the distribution having a fixed location; and3.  

the distribution having a fixed scale.4.  

2.  

Determine if the confidence interval

is appropriate and valid where s is the standard deviation of the
original data.

3.  

1.4.2.6.2. Graphical Output and Interpretation
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4-Plot of
Data

Interpretation The assumptions are addressed by the graphics shown above:

The run sequence plot (upper left) indicates a significant shift in
location around x=35.

1.  

The linear appearance in the lag plot (upper right) indicates a
non-random pattern in the data.

2.  

Since the lag plot indicates significant non-randomness, we do
not make any interpretation of either the histogram (lower left)
or the normal probability plot (lower right).

3.  

The serious violation of the non-randomness assumption means that
the univariate model

is not valid. Given the linear appearance of the lag plot, the first step
might be to consider a model of the type

However, in this case discussions with the scientist revealed that
non-randomness was entirely unexpected. An examination of the
experimental process revealed that the sampling rate for the automatic
data acquisition system was too fast. That is, the equipment did not
have sufficient time to reset before the next sample started, resulting in
the current measurement being contaminated by the previous
measurement. The solution was to rerun the experiment allowing more
time between samples.

1.4.2.6.2. Graphical Output and Interpretation
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Simple graphical techniques can be quite effective in revealing
unexpected results in the data. When this occurs, it is important to
investigate whether the unexpected result is due to problems in the
experiment and data collection or is indicative of unexpected
underlying structure in the data. This determination cannot be made on
the basis of statistics alone. The role of the graphical and statistical
analysis is to detect problems or unexpected results in the data.
Resolving the issues requires the knowledge of the scientist or
engineer.

Individual
Plots

Although it is generally unnecessary, the plots can be generated
individually to give more detail. Since the lag plot indicates significant
non-randomness, we omit the distributional plots.

Run
Sequence
Plot

Lag Plot

1.4.2.6.2. Graphical Output and Interpretation
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.6. Filter Transmittance

1.4.2.6.3.Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data.
The following table, generated by Dataplot, shows a typical set of statistics.

 
                                SUMMARY
 
                     NUMBER OF OBSERVATIONS =       50
 
 
***********************************************************************
*        LOCATION MEASURES         *       DISPERSION MEASURES       
*
***********************************************************************
*  MIDRANGE     =   0.2002000E+01  *  RANGE        =   0.1399994E-02 
*
*  MEAN         =   0.2001856E+01  *  STAND. DEV.  =   0.4291329E-03 
*
*  MIDMEAN      =   0.2001638E+01  *  AV. AB. DEV. =   0.3480196E-03 
*
*  MEDIAN       =   0.2001800E+01  *  MINIMUM      =   0.2001300E+01 
*
*               =                  *  LOWER QUART. =   0.2001500E+01 
*
*               =                  *  LOWER HINGE  =   0.2001500E+01 
*
*               =                  *  UPPER HINGE  =   0.2002100E+01 
*
*               =                  *  UPPER QUART. =   0.2002175E+01 
*
*               =                  *  MAXIMUM      =   0.2002700E+01 
*
***********************************************************************
*       RANDOMNESS MEASURES        *     DISTRIBUTIONAL MEASURES     
*
***********************************************************************
*  AUTOCO COEF  =   0.9379919E+00  *  ST. 3RD MOM. =   0.6191616E+00 
*
*               =   0.0000000E+00  *  ST. 4TH MOM. =   0.2098746E+01 
*
*               =   0.0000000E+00  *  ST. WILK-SHA =  -0.4995516E+01 
*
*               =                  *  UNIFORM PPCC =   0.9666610E+00 
*
*               =                  *  NORMAL  PPCC =   0.9558001E+00 

1.4.2.6.3. Quantitative Output and Interpretation
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*
*               =                  *  TUK -.5 PPCC =   0.8462552E+00 
*
*               =                  *  CAUCHY  PPCC =   0.6822084E+00 
*
***********************************************************************
 

Location One way to quantify a change in location over time is to fit a straight line to the data set
using the index variable X = 1, 2, ..., N, with N denoting the number of observations. If
there is no significant drift in the location, the slope parameter should be zero. For this
data set, Dataplot generates the following output:

 LEAST SQUARES MULTILINEAR FIT
       SAMPLE SIZE N       =       50
       NUMBER OF VARIABLES =        1
       NO REPLICATION CASE
  
  
               PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
        1  A0                   2.00138       (0.9695E-04)      
0.2064E+05
        2  A1       X          0.184685E-04   (0.3309E-05)       
5.582
  
       RESIDUAL    STANDARD DEVIATION =        0.3376404E-03
       RESIDUAL    DEGREES OF FREEDOM =          48

The slope parameter, A1, has a t value of 5.6, which is statistically significant. The value
of the slope parameter is 0.0000185. Although this number is nearly zero, we need to take
into account that the original scale of the data is from about 2.0012 to 2.0028. In this
case, we conclude that there is a drift in location, although by a relatively minor amount.

Variation One simple way to detect a change in variation is with a Bartlett test after dividing the
data set into several equal sized intervals. However, the Bartlett test is not robust for
non-normality. Since the normality assumption is questionable for these data, we use the
alternative Levene test. In partiuclar, we use the Levene test based on the median rather
the mean. The choice of the number of intervals is somewhat arbitrary, although values of
4 or 8 are reasonable. Dataplot generated the following output for the Levene test.

               LEVENE F-TEST FOR SHIFT IN VARIATION
                      (ASSUMPTION: NORMALITY)
  
 1. STATISTICS
       NUMBER OF OBSERVATIONS    =       50
       NUMBER OF GROUPS          =        4
       LEVENE F TEST STATISTIC   =   0.9714893
  
  
    FOR LEVENE TEST STATISTIC
       0          % POINT    =   0.0000000E+00
       50         % POINT    =   0.8004835
       75         % POINT    =    1.416631
       90         % POINT    =    2.206890
       95         % POINT    =    2.806845
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       99         % POINT    =    4.238307
       99.9       % POINT    =    6.424733
  
  
          58.56597       % Point:    0.9714893
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THERE IS NO SHIFT IN VARIATION.
       THUS: HOMOGENEOUS WITH RESPECT TO VARIATION.

In this case, since the Levene test statistic value of 0.971 is less than the critical value of
2.806 at the 5% level, we conclude that there is no evidence of a change in variation.

Randomness There are many ways in which data can be non-random. However, most common forms
of non-randomness can be detected with a few simple tests. The lag plot in the 4-plot in
the previous seciton is a simple graphical technique.

One check is an autocorrelation plot that shows the autocorrelations for various lags.
Confidence bands can be plotted at the 95% and 99% confidence levels. Points outside
this band indicate statistically significant values (lag 0 is always 1). Dataplot generated
the following autocorrelation plot.

The lag 1 autocorrelation, which is generally the one of most interest, is 0.93. The critical
values at the 5% level are -0.277 and 0.277. This indicates that the lag 1 autocorrelation
is statistically significant, so there is strong evidence of non-randomness.

A common test for randomness is the runs test.

  
                      RUNS UP
 
           STATISTIC = NUMBER OF RUNS UP
               OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
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   1         1.0     10.4583      3.2170       -2.94
   2         3.0      4.4667      1.6539       -0.89
   3         1.0      1.2542      0.9997       -0.25
   4         0.0      0.2671      0.5003       -0.53
   5         0.0      0.0461      0.2132       -0.22
   6         0.0      0.0067      0.0818       -0.08
   7         0.0      0.0008      0.0291       -0.03
   8         1.0      0.0001      0.0097      103.06
   9         0.0      0.0000      0.0031        0.00
  10         1.0      0.0000      0.0009     1087.63
 
 
           STATISTIC = NUMBER OF RUNS UP
               OF LENGTH I OR MORE
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1         7.0     16.5000      2.0696       -4.59
   2         6.0      6.0417      1.3962       -0.03
   3         3.0      1.5750      1.0622        1.34
   4         2.0      0.3208      0.5433        3.09
   5         2.0      0.0538      0.2299        8.47
   6         2.0      0.0077      0.0874       22.79
   7         2.0      0.0010      0.0308       64.85
   8         2.0      0.0001      0.0102      195.70
   9         1.0      0.0000      0.0032      311.64
  10         1.0      0.0000      0.0010     1042.19
 
 
                     RUNS DOWN
 
           STATISTIC = NUMBER OF RUNS DOWN
               OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1         3.0     10.4583      3.2170       -2.32
   2         0.0      4.4667      1.6539       -2.70
   3         3.0      1.2542      0.9997        1.75
   4         1.0      0.2671      0.5003        1.46
   5         1.0      0.0461      0.2132        4.47
   6         0.0      0.0067      0.0818       -0.08
   7         0.0      0.0008      0.0291       -0.03
   8         0.0      0.0001      0.0097       -0.01
   9         0.0      0.0000      0.0031        0.00
  10         0.0      0.0000      0.0009        0.00
 
 
           STATISTIC = NUMBER OF RUNS DOWN
               OF LENGTH I OR MORE
 
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1         8.0     16.5000      2.0696       -4.11
   2         5.0      6.0417      1.3962       -0.75
   3         5.0      1.5750      1.0622        3.22
   4         2.0      0.3208      0.5433        3.09
   5         1.0      0.0538      0.2299        4.12
   6         0.0      0.0077      0.0874       -0.09
   7         0.0      0.0010      0.0308       -0.03
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   8         0.0      0.0001      0.0102       -0.01
   9         0.0      0.0000      0.0032        0.00
  10         0.0      0.0000      0.0010        0.00
 
 
           RUNS TOTAL = RUNS UP + RUNS DOWN
 
         STATISTIC = NUMBER OF RUNS TOTAL
              OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1         4.0     20.9167      4.5496       -3.72
   2         3.0      8.9333      2.3389       -2.54
   3         4.0      2.5083      1.4138        1.06
   4         1.0      0.5341      0.7076        0.66
   5         1.0      0.0922      0.3015        3.01
   6         0.0      0.0134      0.1157       -0.12
   7         0.0      0.0017      0.0411       -0.04
   8         1.0      0.0002      0.0137       72.86
   9         0.0      0.0000      0.0043        0.00
  10         1.0      0.0000      0.0013      769.07
 
 
         STATISTIC = NUMBER OF RUNS TOTAL
               OF LENGTH I OR MORE
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1        15.0     33.0000      2.9269       -6.15
   2        11.0     12.0833      1.9745       -0.55
   3         8.0      3.1500      1.5022        3.23
   4         4.0      0.6417      0.7684        4.37
   5         3.0      0.1075      0.3251        8.90
   6         2.0      0.0153      0.1236       16.05
   7         2.0      0.0019      0.0436       45.83
   8         2.0      0.0002      0.0145      138.37
   9         1.0      0.0000      0.0045      220.36
  10         1.0      0.0000      0.0014      736.94
 
 
          LENGTH OF THE LONGEST RUN UP         =    10
          LENGTH OF THE LONGEST RUN DOWN       =     5
          LENGTH OF THE LONGEST RUN UP OR DOWN =    10
 
          NUMBER OF POSITIVE DIFFERENCES =    23
          NUMBER OF NEGATIVE DIFFERENCES =    18
          NUMBER OF ZERO     DIFFERENCES =     8
  
  

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically
significant at the 5% level. Due to the number of values that are much larger than the
1.96 cut-off, we conclude that the data are not random.

Distributional
Analysis

Since we rejected the randomness assumption, the distributional tests are not meaningful.
Therefore, these quantitative tests are omitted. We also omit Grubbs' outlier test since it
also assumes the data are approximately normally distributed.

1.4.2.6.3. Quantitative Output and Interpretation
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Univariate
Report

It is sometimes useful and convenient to summarize the above results in a report.

  
 Analysis for filter transmittance data
  
 1: Sample Size                           = 50
  
 2: Location
    Mean                                  = 2.001857
    Standard Deviation of Mean            = 0.00006
    95% Confidence Interval for Mean      = (2.001735,2.001979)
    Drift with respect to location?       = NO
  
 3: Variation
    Standard Deviation                    = 0.00043
    95% Confidence Interval for SD        = (0.000359,0.000535)
    Change in variation?
    (based on Levene's test on quarters
    of the data)                          = NO
  
 4: Distribution
    Distributional tests omitted due to
    non-randomness of the data
  
 5: Randomness
    Lag One Autocorrelation               = 0.937998
    Data are Random?
      (as measured by autocorrelation)    = NO
  
 6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is 
    fixed, here we are testing only for
    normal)
    Data Set is in Statistical Control?   = NO
  
 7: Outliers?
    (Grubbs' test omitted)                = NO

1.4.2.6.3. Quantitative Output and Interpretation
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.6. Filter Transmittance

1.4.2.6.4.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please
be patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Invoke Dataplot and read data.

   1. Read in the data.

                              

 1. You have read 1 column of numbers 
    into Dataplot, variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-plot, there is a shift
    in location and the data are not random.

3. Generate the individual plots.

   1. Generate a run sequence plot.

   2. Generate a lag plot.

 1. The run sequence plot indicates that
    there is a shift in location.

 2. The strong linear pattern of the lag
    plot indicates significant
    non-randomness.
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4. Generate summary statistics, quantitative
   analysis, and print a univariate report.

   1. Generate a table of summary
      statistics.

   2. Compute a linear fit based on
      quarters of the data to detect
      drift in location.

   3. Compute Levene's test based on
      quarters of the data to detect
      changes in variation.

   4. Check for randomness by generating an
      autocorrelation plot and a runs test.

   5. Print a univariate report (this assumes
      steps 2 thru 4 have already been run).

 1. The summary statistics table displays
    25+ statistics.

 2. The linear fit indicates a slight drift in
    location since the slope parameter is
    statistically significant, but small.

 3. Levene's test indicates no significant
    drift in variation.

 4. The lag 1 autocorrelation is 0.94.
    This is outside the 95% confidence
    interval bands which indicates significant
    non-randomness.

 5. The results are summarized in a
    convenient report.
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.7.Standard Resistor

Standard
Resistor

This example illustrates the univariate analysis of standard resistor data.

Background and Data1.  

Graphical Output and Interpretation2.  

Quantitative Output and Interpretation3.  

Work This Example Yourself4.  

1.4.2.7. Standard Resistor
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1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.7. Standard Resistor

1.4.2.7.1.Background and Data

Generation This data set was collected by Ron Dziuba of NIST over a 5-year period
from 1980 to 1985. The response variable is resistor values.

The motivation for studying this data set is to illustrate data that violate
the assumptions of constant location and scale.

This file can be read by Dataplot with the following commands:

SKIP 25
COLUMN LIMITS 10 80
READ DZIUBA1.DAT Y
COLUMN LIMITS

Resulting
Data

The following are the data used for this case study.

27.8680
27.8929
27.8773
27.8530
27.8876
27.8725
27.8743
27.8879
27.8728
27.8746
27.8863
27.8716
27.8818
27.8872
27.8885
27.8945
27.8797
27.8627
27.8870

1.4.2.7.1. Background and Data
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27.8895
27.9138
27.8931
27.8852
27.8788
27.8827
27.8939
27.8558
27.8814
27.8479
27.8479
27.8848
27.8809
27.8479
27.8611
27.8630
27.8679
27.8637
27.8985
27.8900
27.8577
27.8848
27.8869
27.8976
27.8610
27.8567
27.8417
27.8280
27.8555
27.8639
27.8702
27.8582
27.8605
27.8900
27.8758
27.8774
27.9008
27.8988
27.8897
27.8990
27.8958
27.8830
27.8967
27.9105
27.9028
27.8977

1.4.2.7.1. Background and Data
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27.8953
27.8970
27.9190
27.9180
27.8997
27.9204
27.9234
27.9072
27.9152
27.9091
27.8882
27.9035
27.9267
27.9138
27.8955
27.9203
27.9239
27.9199
27.9646
27.9411
27.9345
27.8712
27.9145
27.9259
27.9317
27.9239
27.9247
27.9150
27.9444
27.9457
27.9166
27.9066
27.9088
27.9255
27.9312
27.9439
27.9210
27.9102
27.9083
27.9121
27.9113
27.9091
27.9235
27.9291
27.9253
27.9092
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27.9117
27.9194
27.9039
27.9515
27.9143
27.9124
27.9128
27.9260
27.9339
27.9500
27.9530
27.9430
27.9400
27.8850
27.9350
27.9120
27.9260
27.9660
27.9280
27.9450
27.9390
27.9429
27.9207
27.9205
27.9204
27.9198
27.9246
27.9366
27.9234
27.9125
27.9032
27.9285
27.9561
27.9616
27.9530
27.9280
27.9060
27.9380
27.9310
27.9347
27.9339
27.9410
27.9397
27.9472
27.9235
27.9315
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27.9368
27.9403
27.9529
27.9263
27.9347
27.9371
27.9129
27.9549
27.9422
27.9423
27.9750
27.9339
27.9629
27.9587
27.9503
27.9573
27.9518
27.9527
27.9589
27.9300
27.9629
27.9630
27.9660
27.9730
27.9660
27.9630
27.9570
27.9650
27.9520
27.9820
27.9560
27.9670
27.9520
27.9470
27.9720
27.9610
27.9437
27.9660
27.9580
27.9660
27.9700
27.9600
27.9660
27.9770
27.9110
27.9690
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27.9698
27.9616
27.9371
27.9700
27.9265
27.9964
27.9842
27.9667
27.9610
27.9943
27.9616
27.9397
27.9799
28.0086
27.9709
27.9741
27.9675
27.9826
27.9676
27.9703
27.9789
27.9786
27.9722
27.9831
28.0043
27.9548
27.9875
27.9495
27.9549
27.9469
27.9744
27.9744
27.9449
27.9837
27.9585
28.0096
27.9762
27.9641
27.9854
27.9877
27.9839
27.9817
27.9845
27.9877
27.9880
27.9822
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27.9836
28.0030
27.9678
28.0146
27.9945
27.9805
27.9785
27.9791
27.9817
27.9805
27.9782
27.9753
27.9792
27.9704
27.9794
27.9814
27.9794
27.9795
27.9881
27.9772
27.9796
27.9736
27.9772
27.9960
27.9795
27.9779
27.9829
27.9829
27.9815
27.9811
27.9773
27.9778
27.9724
27.9756
27.9699
27.9724
27.9666
27.9666
27.9739
27.9684
27.9861
27.9901
27.9879
27.9865
27.9876
27.9814

1.4.2.7.1. Background and Data

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4271.htm (7 of 23) [5/1/2006 9:58:55 AM]



27.9842
27.9868
27.9834
27.9892
27.9864
27.9843
27.9838
27.9847
27.9860
27.9872
27.9869
27.9602
27.9852
27.9860
27.9836
27.9813
27.9623
27.9843
27.9802
27.9863
27.9813
27.9881
27.9850
27.9850
27.9830
27.9866
27.9888
27.9841
27.9863
27.9903
27.9961
27.9905
27.9945
27.9878
27.9929
27.9914
27.9914
27.9997
28.0006
27.9999
28.0004
28.0020
28.0029
28.0008
28.0040
28.0078
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28.0065
27.9959
28.0073
28.0017
28.0042
28.0036
28.0055
28.0007
28.0066
28.0011
27.9960
28.0083
27.9978
28.0108
28.0088
28.0088
28.0139
28.0092
28.0092
28.0049
28.0111
28.0120
28.0093
28.0116
28.0102
28.0139
28.0113
28.0158
28.0156
28.0137
28.0236
28.0171
28.0224
28.0184
28.0199
28.0190
28.0204
28.0170
28.0183
28.0201
28.0182
28.0183
28.0175
28.0127
28.0211
28.0057
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28.0180
28.0183
28.0149
28.0185
28.0182
28.0192
28.0213
28.0216
28.0169
28.0162
28.0167
28.0167
28.0169
28.0169
28.0161
28.0152
28.0179
28.0215
28.0194
28.0115
28.0174
28.0178
28.0202
28.0240
28.0198
28.0194
28.0171
28.0134
28.0121
28.0121
28.0141
28.0101
28.0114
28.0122
28.0124
28.0171
28.0165
28.0166
28.0159
28.0181
28.0200
28.0116
28.0144
28.0141
28.0116
28.0107
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28.0169
28.0105
28.0136
28.0138
28.0114
28.0122
28.0122
28.0116
28.0025
28.0097
28.0066
28.0072
28.0066
28.0068
28.0067
28.0130
28.0091
28.0088
28.0091
28.0091
28.0115
28.0087
28.0128
28.0139
28.0095
28.0115
28.0101
28.0121
28.0114
28.0121
28.0122
28.0121
28.0168
28.0212
28.0219
28.0221
28.0204
28.0169
28.0141
28.0142
28.0147
28.0159
28.0165
28.0144
28.0182
28.0155
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28.0155
28.0192
28.0204
28.0185
28.0248
28.0185
28.0226
28.0271
28.0290
28.0240
28.0302
28.0243
28.0288
28.0287
28.0301
28.0273
28.0313
28.0293
28.0300
28.0344
28.0308
28.0291
28.0287
28.0358
28.0309
28.0286
28.0308
28.0291
28.0380
28.0411
28.0420
28.0359
28.0368
28.0327
28.0361
28.0334
28.0300
28.0347
28.0359
28.0344
28.0370
28.0355
28.0371
28.0318
28.0390
28.0390
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28.0390
28.0376
28.0376
28.0377
28.0345
28.0333
28.0429
28.0379
28.0401
28.0401
28.0423
28.0393
28.0382
28.0424
28.0386
28.0386
28.0373
28.0397
28.0412
28.0565
28.0419
28.0456
28.0426
28.0423
28.0391
28.0403
28.0388
28.0408
28.0457
28.0455
28.0460
28.0456
28.0464
28.0442
28.0416
28.0451
28.0432
28.0434
28.0448
28.0448
28.0373
28.0429
28.0392
28.0469
28.0443
28.0356
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28.0474
28.0446
28.0348
28.0368
28.0418
28.0445
28.0533
28.0439
28.0474
28.0435
28.0419
28.0538
28.0538
28.0463
28.0491
28.0441
28.0411
28.0507
28.0459
28.0519
28.0554
28.0512
28.0507
28.0582
28.0471
28.0539
28.0530
28.0502
28.0422
28.0431
28.0395
28.0177
28.0425
28.0484
28.0693
28.0490
28.0453
28.0494
28.0522
28.0393
28.0443
28.0465
28.0450
28.0539
28.0566
28.0585
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28.0486
28.0427
28.0548
28.0616
28.0298
28.0726
28.0695
28.0629
28.0503
28.0493
28.0537
28.0613
28.0643
28.0678
28.0564
28.0703
28.0647
28.0579
28.0630
28.0716
28.0586
28.0607
28.0601
28.0611
28.0606
28.0611
28.0066
28.0412
28.0558
28.0590
28.0750
28.0483
28.0599
28.0490
28.0499
28.0565
28.0612
28.0634
28.0627
28.0519
28.0551
28.0696
28.0581
28.0568
28.0572
28.0529
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28.0421
28.0432
28.0211
28.0363
28.0436
28.0619
28.0573
28.0499
28.0340
28.0474
28.0534
28.0589
28.0466
28.0448
28.0576
28.0558
28.0522
28.0480
28.0444
28.0429
28.0624
28.0610
28.0461
28.0564
28.0734
28.0565
28.0503
28.0581
28.0519
28.0625
28.0583
28.0645
28.0642
28.0535
28.0510
28.0542
28.0677
28.0416
28.0676
28.0596
28.0635
28.0558
28.0623
28.0718
28.0585
28.0552
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28.0684
28.0646
28.0590
28.0465
28.0594
28.0303
28.0533
28.0561
28.0585
28.0497
28.0582
28.0507
28.0562
28.0715
28.0468
28.0411
28.0587
28.0456
28.0705
28.0534
28.0558
28.0536
28.0552
28.0461
28.0598
28.0598
28.0650
28.0423
28.0442
28.0449
28.0660
28.0506
28.0655
28.0512
28.0407
28.0475
28.0411
28.0512
28.1036
28.0641
28.0572
28.0700
28.0577
28.0637
28.0534
28.0461
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28.0701
28.0631
28.0575
28.0444
28.0592
28.0684
28.0593
28.0677
28.0512
28.0644
28.0660
28.0542
28.0768
28.0515
28.0579
28.0538
28.0526
28.0833
28.0637
28.0529
28.0535
28.0561
28.0736
28.0635
28.0600
28.0520
28.0695
28.0608
28.0608
28.0590
28.0290
28.0939
28.0618
28.0551
28.0757
28.0698
28.0717
28.0529
28.0644
28.0613
28.0759
28.0745
28.0736
28.0611
28.0732
28.0782
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28.0682
28.0756
28.0857
28.0739
28.0840
28.0862
28.0724
28.0727
28.0752
28.0732
28.0703
28.0849
28.0795
28.0902
28.0874
28.0971
28.0638
28.0877
28.0751
28.0904
28.0971
28.0661
28.0711
28.0754
28.0516
28.0961
28.0689
28.1110
28.1062
28.0726
28.1141
28.0913
28.0982
28.0703
28.0654
28.0760
28.0727
28.0850
28.0877
28.0967
28.1185
28.0945
28.0834
28.0764
28.1129
28.0797
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28.0707
28.1008
28.0971
28.0826
28.0857
28.0984
28.0869
28.0795
28.0875
28.1184
28.0746
28.0816
28.0879
28.0888
28.0924
28.0979
28.0702
28.0847
28.0917
28.0834
28.0823
28.0917
28.0779
28.0852
28.0863
28.0942
28.0801
28.0817
28.0922
28.0914
28.0868
28.0832
28.0881
28.0910
28.0886
28.0961
28.0857
28.0859
28.1086
28.0838
28.0921
28.0945
28.0839
28.0877
28.0803
28.0928
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28.0885
28.0940
28.0856
28.0849
28.0955
28.0955
28.0846
28.0871
28.0872
28.0917
28.0931
28.0865
28.0900
28.0915
28.0963
28.0917
28.0950
28.0898
28.0902
28.0867
28.0843
28.0939
28.0902
28.0911
28.0909
28.0949
28.0867
28.0932
28.0891
28.0932
28.0887
28.0925
28.0928
28.0883
28.0946
28.0977
28.0914
28.0959
28.0926
28.0923
28.0950
28.1006
28.0924
28.0963
28.0893
28.0956
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28.0980
28.0928
28.0951
28.0958
28.0912
28.0990
28.0915
28.0957
28.0976
28.0888
28.0928
28.0910
28.0902
28.0950
28.0995
28.0965
28.0972
28.0963
28.0946
28.0942
28.0998
28.0911
28.1043
28.1002
28.0991
28.0959
28.0996
28.0926
28.1002
28.0961
28.0983
28.0997
28.0959
28.0988
28.1029
28.0989
28.1000
28.0944
28.0979
28.1005
28.1012
28.1013
28.0999
28.0991
28.1059
28.0961
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28.0981
28.1045
28.1047
28.1042
28.1146
28.1113
28.1051
28.1065
28.1065
28.0985
28.1000
28.1066
28.1041
28.0954
28.1090
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.7. Standard Resistor

1.4.2.7.2.Graphical Output and
Interpretation

Goal The goal of this analysis is threefold:

Determine if the univariate model:

is appropriate and valid.

1.  

Determine if the typical underlying assumptions for an "in
control" measurement process are valid. These assumptions are:

random drawings;1.  

from a fixed distribution;2.  

with the distribution having a fixed location; and3.  

the distribution having a fixed scale.4.  

2.  

Determine if the confidence interval

is appropriate and valid where s is the standard deviation of the
original data.

3.  

1.4.2.7.2. Graphical Output and Interpretation
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4-Plot of
Data

Interpretation The assumptions are addressed by the graphics shown above:

The run sequence plot (upper left) indicates significant shifts in
both location and variation. Specifically, the location is
increasing with time. The variability seems greater in the first
and last third of the data than it does in the middle third.

1.  

The lag plot (upper right) shows a significant non-random
pattern in the data. Specifically, the strong linear appearance of
this plot is indicative of a model that relates Yt to Yt-1.

2.  

The distributional plots, the histogram (lower left) and the
normal probability plot (lower right), are not interpreted since
the randomness assumption is so clearly violated.

3.  

The serious violation of the non-randomness assumption means that
the univariate model

is not valid. Given the linear appearance of the lag plot, the first step
might be to consider a model of the type

However, discussions with the scientist revealed the following:

the drift with respect to location was expected.1.  

the non-constant variability was not expected.2.  

The scientist examined the data collection device and determined that
the non-constant variation was a seasonal effect. The high variability

1.4.2.7.2. Graphical Output and Interpretation
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data in the first and last thirds was collected in winter while the more
stable middle third was collected in the summer. The seasonal effect
was determined to be caused by the amount of humidity affecting the
measurement equipment. In this case, the solution was to modify the
test equipment to be less sensitive to enviromental factors.

Simple graphical techniques can be quite effective in revealing
unexpected results in the data. When this occurs, it is important to
investigate whether the unexpected result is due to problems in the
experiment and data collection, or is it in fact indicative of an
unexpected underlying structure in the data. This determination cannot
be made on the basis of statistics alone. The role of the graphical and
statistical analysis is to detect problems or unexpected results in the
data. Resolving the issues requires the knowledge of the scientist or
engineer.

Individual
Plots

Although it is generally unnecessary, the plots can be generated
individually to give more detail. Since the lag plot indicates significant
non-randomness, we omit the distributional plots.

Run
Sequence
Plot

1.4.2.7.2. Graphical Output and Interpretation
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Lag Plot
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.7. Standard Resistor

1.4.2.7.3.Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data.
The following table, generated by Dataplot, shows a typical set of statistics.

 
                                SUMMARY
 
                     NUMBER OF OBSERVATIONS =     1000
 
 
***********************************************************************
*        LOCATION MEASURES         *       DISPERSION MEASURES       
*
***********************************************************************
*  MIDRANGE     =   0.2797325E+02  *  RANGE        =   0.2905006E+00 
*
*  MEAN         =   0.2801634E+02  *  STAND. DEV.  =   0.6349404E-01 
*
*  MIDMEAN      =   0.2802659E+02  *  AV. AB. DEV. =   0.5101655E-01 
*
*  MEDIAN       =   0.2802910E+02  *  MINIMUM      =   0.2782800E+02 
*
*               =                  *  LOWER QUART. =   0.2797905E+02 
*
*               =                  *  LOWER HINGE  =   0.2797900E+02 
*
*               =                  *  UPPER HINGE  =   0.2806295E+02 
*
*               =                  *  UPPER QUART. =   0.2806293E+02 
*
*               =                  *  MAXIMUM      =   0.2811850E+02 
*
***********************************************************************
*       RANDOMNESS MEASURES        *     DISTRIBUTIONAL MEASURES     
*
***********************************************************************
*  AUTOCO COEF  =   0.9721591E+00  *  ST. 3RD MOM. =  -0.6936395E+00 
*
*               =   0.0000000E+00  *  ST. 4TH MOM. =   0.2689681E+01 
*
*               =   0.0000000E+00  *  ST. WILK-SHA =  -0.4216419E+02 
*
*               =                  *  UNIFORM PPCC =   0.9689648E+00 
*
*               =                  *  NORMAL  PPCC =   0.9718416E+00 
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*
*               =                  *  TUK -.5 PPCC =   0.7334843E+00 
*
*               =                  *  CAUCHY  PPCC =   0.3347875E+00 
*
***********************************************************************
 

The autocorrelation coefficient of 0.972 is evidence of significant non-randomness.

Location One way to quantify a change in location over time is to fit a straight line to the data set
using the index variable X = 1, 2, ..., N, with N denoting the number of observations. If
there is no significant drift in the location, the slope parameter estimate should be zero.
For this data set, Dataplot generates the following output:

 LEAST SQUARES MULTILINEAR FIT
       SAMPLE SIZE N       =     1000
       NUMBER OF VARIABLES =        1
       NO REPLICATION CASE
  
  
               PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
        1  A0                   27.9114       (0.1209E-02)      
0.2309E+05
        2  A1       X          0.209670E-03   (0.2092E-05)       
100.2
  
       RESIDUAL    STANDARD DEVIATION =        0.1909796E-01
       RESIDUAL    DEGREES OF FREEDOM =         998
  
       COEF AND SD(COEF) WRITTEN OUT TO FILE DPST1F.DAT
       SD(PRED),95LOWER,95UPPER,99LOWER,99UPPER
                         WRITTEN OUT TO FILE DPST2F.DAT
       REGRESSION DIAGNOSTICS WRITTEN OUT TO FILE DPST3F.DAT
       PARAMETER VARIANCE-COVARIANCE MATRIX AND
       INVERSE OF X-TRANSPOSE X MATRIX
       WRITTEN OUT TO FILE DPST4F.DAT

The slope parameter, A1, has a t value of 100 which is statistically significant. The value
of the slope parameter estimate is 0.00021. Although this number is nearly zero, we need
to take into account that the original scale of the data is from about 27.8 to 28.2. In this
case, we conclude that there is a drift in location.

1.4.2.7.3. Quantitative Output and Interpretation

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4273.htm (2 of 7) [5/1/2006 9:58:57 AM]



Variation One simple way to detect a change in variation is with a Bartlett test after dividing the
data set into several equal-sized intervals. However, the Bartlett test is not robust for
non-normality. Since the normality assumption is questionable for these data, we use the
alternative Levene test. In partiuclar, we use the Levene test based on the median rather
the mean. The choice of the number of intervals is somewhat arbitrary, although values of
4 or 8 are reasonable. Dataplot generated the following output for the Levene test.

               LEVENE F-TEST FOR SHIFT IN VARIATION
                      (ASSUMPTION: NORMALITY)
  
 1. STATISTICS
       NUMBER OF OBSERVATIONS    =     1000
       NUMBER OF GROUPS          =        4
       LEVENE F TEST STATISTIC   =    140.8509
  
  
    FOR LEVENE TEST STATISTIC
       0          % POINT    =   0.0000000E+00
       50         % POINT    =   0.7891988
       75         % POINT    =    1.371589
       90         % POINT    =    2.089303
       95         % POINT    =    2.613852
       99         % POINT    =    3.801369
       99.9       % POINT    =    5.463994
  
  
          100.0000       % Point:     140.8509
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THERE IS A SHIFT IN VARIATION.
       THUS: NOT HOMOGENEOUS WITH RESPECT TO VARIATION.

In this case, since the Levene test statistic value of 140.9 is greater than the 5%
significance level critical value of 2.6, we conclude that there is significant evidence of
nonconstant variation.

Randomness

There are many ways in which data can be non-random. However, most common forms
of non-randomness can be detected with a few simple tests. The lag plot in the 4-plot in
the previous section is a simple graphical technique.

One check is an autocorrelation plot that shows the autocorrelations for various lags.
Confidence bands can be plotted at the 95% and 99% confidence levels. Points outside
this band indicate statistically significant values (lag 0 is always 1). Dataplot generated
the following autocorrelation plot.

1.4.2.7.3. Quantitative Output and Interpretation
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The lag 1 autocorrelation, which is generally the one of greatest interest, is 0.97. The
critical values at the 5% significance level are -0.062 and 0.062. This indicates that the
lag 1 autocorrelation is statistically significant, so there is strong evidence of
non-randomness.

A common test for randomness is the runs test.

  
                      RUNS UP
 
           STATISTIC = NUMBER OF RUNS UP
               OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1       178.0    208.3750     14.5453       -2.09
   2        90.0     91.5500      7.5002       -0.21
   3        29.0     26.3236      4.5727        0.59
   4        16.0      5.7333      2.3164        4.43
   5         2.0      1.0121      0.9987        0.99
   6         0.0      0.1507      0.3877       -0.39
   7         0.0      0.0194      0.1394       -0.14
   8         0.0      0.0022      0.0470       -0.05
   9         0.0      0.0002      0.0150       -0.02
  10         0.0      0.0000      0.0046        0.00
 
 
           STATISTIC = NUMBER OF RUNS UP
               OF LENGTH I OR MORE
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1       315.0    333.1667      9.4195       -1.93
   2       137.0    124.7917      6.2892        1.94
   3        47.0     33.2417      4.8619        2.83
   4        18.0      6.9181      2.5200        4.40
   5         2.0      1.1847      1.0787        0.76

1.4.2.7.3. Quantitative Output and Interpretation
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   6         0.0      0.1726      0.4148       -0.42
   7         0.0      0.0219      0.1479       -0.15
   8         0.0      0.0025      0.0496       -0.05
   9         0.0      0.0002      0.0158       -0.02
  10         0.0      0.0000      0.0048        0.00
 
 
                     RUNS DOWN
 
           STATISTIC = NUMBER OF RUNS DOWN
               OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1       195.0    208.3750     14.5453       -0.92
   2        81.0     91.5500      7.5002       -1.41
   3        32.0     26.3236      4.5727        1.24
   4         4.0      5.7333      2.3164       -0.75
   5         1.0      1.0121      0.9987       -0.01
   6         1.0      0.1507      0.3877        2.19
   7         0.0      0.0194      0.1394       -0.14
   8         0.0      0.0022      0.0470       -0.05
   9         0.0      0.0002      0.0150       -0.02
  10         0.0      0.0000      0.0046        0.00
 
 
           STATISTIC = NUMBER OF RUNS DOWN
               OF LENGTH I OR MORE
 
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1       314.0    333.1667      9.4195       -2.03
   2       119.0    124.7917      6.2892       -0.92
   3        38.0     33.2417      4.8619        0.98
   4         6.0      6.9181      2.5200       -0.36
   5         2.0      1.1847      1.0787        0.76
   6         1.0      0.1726      0.4148        1.99
   7         0.0      0.0219      0.1479       -0.15
   8         0.0      0.0025      0.0496       -0.05
   9         0.0      0.0002      0.0158       -0.02
  10         0.0      0.0000      0.0048        0.00
 
 
           RUNS TOTAL = RUNS UP + RUNS DOWN
 
         STATISTIC = NUMBER OF RUNS TOTAL
              OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1       373.0    416.7500     20.5701       -2.13
   2       171.0    183.1000     10.6068       -1.14
   3        61.0     52.6472      6.4668        1.29
   4        20.0     11.4667      3.2759        2.60
   5         3.0      2.0243      1.4123        0.69
   6         1.0      0.3014      0.5483        1.27
   7         0.0      0.0389      0.1971       -0.20
   8         0.0      0.0044      0.0665       -0.07
   9         0.0      0.0005      0.0212       -0.02
  10         0.0      0.0000      0.0065       -0.01
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http://www.itl.nist.gov/div898/handbook/eda/section4/eda4273.htm (5 of 7) [5/1/2006 9:58:57 AM]



 
 
         STATISTIC = NUMBER OF RUNS TOTAL
               OF LENGTH I OR MORE
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1       629.0    666.3333     13.3212       -2.80
   2       256.0    249.5833      8.8942        0.72
   3        85.0     66.4833      6.8758        2.69
   4        24.0     13.8361      3.5639        2.85
   5         4.0      2.3694      1.5256        1.07
   6         1.0      0.3452      0.5866        1.12
   7         0.0      0.0438      0.2092       -0.21
   8         0.0      0.0049      0.0701       -0.07
   9         0.0      0.0005      0.0223       -0.02
  10         0.0      0.0000      0.0067       -0.01
 
 
          LENGTH OF THE LONGEST RUN UP         =     5
          LENGTH OF THE LONGEST RUN DOWN       =     6
          LENGTH OF THE LONGEST RUN UP OR DOWN =     6
 
          NUMBER OF POSITIVE DIFFERENCES =   505
          NUMBER OF NEGATIVE DIFFERENCES =   469
          NUMBER OF ZERO     DIFFERENCES =    25
  

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically
significant at the 5% level. Due to the number of values that are larger than the 1.96
cut-off, we conclude that the data are not random. However, in this case the evidence
from the runs test is not nearly as strong as it is from the autocorrelation plot.

Distributional
Analysis

Since we rejected the randomness assumption, the distributional tests are not meaningful.
Therefore, these quantitative tests are omitted. Since the Grubbs' test for outliers also
assumes the approximate normality of the data, we omit Grubbs' test as well.

Univariate
Report

It is sometimes useful and convenient to summarize the above results in a report.

  
 Analysis for resistor case study
  
 1: Sample Size                           = 1000
  
 2: Location
    Mean                                  = 28.01635
    Standard Deviation of Mean            = 0.002008
    95% Confidence Interval for Mean      = (28.0124,28.02029)
    Drift with respect to location?       = NO
  
 3: Variation
    Standard Deviation                    = 0.063495
    95% Confidence Interval for SD        = (0.060829,0.066407)
    Change in variation?
    (based on Levene's test on quarters
    of the data)                          = YES
  
 4: Randomness
    Autocorrelation                       = 0.972158

1.4.2.7.3. Quantitative Output and Interpretation
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    Data Are Random?
      (as measured by autocorrelation)    = NO
  
 5: Distribution
    Distributional test omitted due to
    non-randomness of the data
  
 6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is 
    fixed)
    Data Set is in Statistical Control?   = NO
  
 7: Outliers?
    (Grubbs' test omitted due to
    non-randomness of the data
  

1.4.2.7.3. Quantitative Output and Interpretation
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.7. Standard Resistor

1.4.2.7.4.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

NOTE: This case study has 1,000 points. For better performance, it
is highly recommended that you check the "No Update" box on the
Spreadsheet window for this case study. This will suppress
subsequent updating of the Spreadsheet window as the data are
created or modified.

The links in this column will connect you with more detailed information about
each analysis step from the case study description.
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http://www.itl.nist.gov/div898/handbook/eda/section4/eda4274.htm (1 of 3) [5/1/2006 9:58:57 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/resistor.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/resistor.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/resistor.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/resistor.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/resistor.htm
http://www.itl.nist.gov/div898/handbook/dataplot.htm
http://www.itl.nist.gov/div898/software/dataplot/ftp/homepage.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm


1. Invoke Dataplot and read data.

   1. Read in the data.

                              

 1. You have read 1 column of numbers 
    into Dataplot, variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-plot, there are shifts
    in location and variation and the data
    are not random.

3. Generate the individual plots.

   1. Generate a run sequence plot.

   2. Generate a lag plot.

 1. The run sequence plot indicates that
    there are shifts of location and
    variation.

 2. The lag plot shows a strong linear
    pattern, which indicates significant
    non-randomness.

4. Generate summary statistics, quantitative
   analysis, and print a univariate report.

   1. Generate a table of summary
      statistics.

   2. Generate the sample mean, a confidence
      interval for the population mean, and
      compute a linear fit to detect drift in

 1. The summary statistics table displays
    25+ statistics.

 2. The mean is 28.0163 and a 95%
    confidence interval is (28.0124,28.02029).
    The linear fit indicates drift in
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      location.

   3. Generate the sample standard deviation,
      a confidence interval for the population
      standard deviation, and detect drift in
      variation by dividing the data into
      quarters and computing Levene's test for
      equal standard deviations.

   4. Check for randomness by generating an
      autocorrelation plot and a runs test.

   5. Print a univariate report (this assumes
      steps 2 thru 5 have already been run).

    location since the slope parameter
    estimate is statistically significant.

 3. The standard deviation is 0.0635 with
    a 95% confidence interval of (0.060829,0.066407).
    Levene's test indicates significant
    change in variation.

 4. The lag 1 autocorrelation is 0.97.
    From the autocorrelation plot, this is
    outside the 95% confidence interval
    bands, indicating significant non-randomness.

 5. The results are summarized in a
    convenient report.
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.8.Heat Flow Meter 1

Heat Flow
Meter
Calibration
and Stability

This example illustrates the univariate analysis of standard resistor data.

Background and Data1.  

Graphical Output and Interpretation2.  

Quantitative Output and Interpretation3.  

Work This Example Yourself4.  

1.4.2.8. Heat Flow Meter 1
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.8. Heat Flow Meter 1

1.4.2.8.1.Background and Data

Generation This data set was collected by Bob Zarr of NIST in January, 1990 from
a heat flow meter calibration and stability analysis. The response
variable is a calibration factor.

The motivation for studying this data set is to illustrate a well-behaved
process where the underlying assumptions hold and the process is in
statistical control.

This file can be read by Dataplot with the following commands:

SKIP 25
READ ZARR13.DAT Y

Resulting
Data

The following are the data used for this case study.

9.206343
9.299992
9.277895
9.305795
9.275351
9.288729
9.287239
9.260973
9.303111
9.275674
9.272561
9.288454
9.255672
9.252141
9.297670
9.266534
9.256689
9.277542
9.248205
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9.252107
9.276345
9.278694
9.267144
9.246132
9.238479
9.269058
9.248239
9.257439
9.268481
9.288454
9.258452
9.286130
9.251479
9.257405
9.268343
9.291302
9.219460
9.270386
9.218808
9.241185
9.269989
9.226585
9.258556
9.286184
9.320067
9.327973
9.262963
9.248181
9.238644
9.225073
9.220878
9.271318
9.252072
9.281186
9.270624
9.294771
9.301821
9.278849
9.236680
9.233988
9.244687
9.221601
9.207325
9.258776
9.275708
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9.268955
9.257269
9.264979
9.295500
9.292883
9.264188
9.280731
9.267336
9.300566
9.253089
9.261376
9.238409
9.225073
9.235526
9.239510
9.264487
9.244242
9.277542
9.310506
9.261594
9.259791
9.253089
9.245735
9.284058
9.251122
9.275385
9.254619
9.279526
9.275065
9.261952
9.275351
9.252433
9.230263
9.255150
9.268780
9.290389
9.274161
9.255707
9.261663
9.250455
9.261952
9.264041
9.264509
9.242114
9.239674
9.221553
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9.241935
9.215265
9.285930
9.271559
9.266046
9.285299
9.268989
9.267987
9.246166
9.231304
9.240768
9.260506
9.274355
9.292376
9.271170
9.267018
9.308838
9.264153
9.278822
9.255244
9.229221
9.253158
9.256292
9.262602
9.219793
9.258452
9.267987
9.267987
9.248903
9.235153
9.242933
9.253453
9.262671
9.242536
9.260803
9.259825
9.253123
9.240803
9.238712
9.263676
9.243002
9.246826
9.252107
9.261663
9.247311
9.306055
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9.237646
9.248937
9.256689
9.265777
9.299047
9.244814
9.287205
9.300566
9.256621
9.271318
9.275154
9.281834
9.253158
9.269024
9.282077
9.277507
9.284910
9.239840
9.268344
9.247778
9.225039
9.230750
9.270024
9.265095
9.284308
9.280697
9.263032
9.291851
9.252072
9.244031
9.283269
9.196848
9.231372
9.232963
9.234956
9.216746
9.274107
9.273776
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.8. Heat Flow Meter 1

1.4.2.8.2.Graphical Output and
Interpretation

Goal The goal of this analysis is threefold:

Determine if the univariate model:

is appropriate and valid.

1.  

Determine if the typical underlying assumptions for an "in
control" measurement process are valid. These assumptions are:

random drawings;1.  

from a fixed distribution;2.  

with the distribution having a fixed location; and3.  

the distribution having a fixed scale.4.  

2.  

Determine if the confidence interval

is appropriate and valid where s is the standard deviation of the
original data.

3.  

1.4.2.8.2. Graphical Output and Interpretation
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4-Plot of
Data

Interpretation The assumptions are addressed by the graphics shown above:

The run sequence plot (upper left) indicates that the data do not
have any significant shifts in location or scale over time.

1.  

The lag plot (upper right) does not indicate any non-random
pattern in the data.

2.  

The histogram (lower left) shows that the data are reasonably
symmetric, there does not appear to be significant outliers in the
tails, and it seems reasonable to assume that the data are from
approximately a normal distribution.

3.  

The normal probability plot (lower right) verifies that an
assumption of normality is in fact reasonable.

4.  

Individual
Plots

Although it is generally unnecessary, the plots can be generated
individually to give more detail.
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Run
Sequence
Plot

Lag Plot
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Histogram
(with
overlaid
Normal PDF)

Normal
Probability
Plot
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.8. Heat Flow Meter 1

1.4.2.8.3.Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data.
The following table, generated by Dataplot, shows a typical set of statistics.

 
                                SUMMARY
 
                     NUMBER OF OBSERVATIONS =      195
 
 
***********************************************************************
*        LOCATION MEASURES         *       DISPERSION MEASURES       
*
***********************************************************************
*  MIDRANGE     =   0.9262411E+01  *  RANGE        =   0.1311255E+00 
*
*  MEAN         =   0.9261460E+01  *  STAND. DEV.  =   0.2278881E-01 
*
*  MIDMEAN      =   0.9259412E+01  *  AV. AB. DEV. =   0.1788945E-01 
*
*  MEDIAN       =   0.9261952E+01  *  MINIMUM      =   0.9196848E+01 
*
*               =                  *  LOWER QUART. =   0.9246826E+01 
*
*               =                  *  LOWER HINGE  =   0.9246496E+01 
*
*               =                  *  UPPER HINGE  =   0.9275530E+01 
*
*               =                  *  UPPER QUART. =   0.9275708E+01 
*
*               =                  *  MAXIMUM      =   0.9327973E+01 
*
***********************************************************************
*       RANDOMNESS MEASURES        *     DISTRIBUTIONAL MEASURES     
*
***********************************************************************
*  AUTOCO COEF  =   0.2805789E+00  *  ST. 3RD MOM. =  -0.8537455E-02 
*
*               =   0.0000000E+00  *  ST. 4TH MOM. =   0.3049067E+01 
*
*               =   0.0000000E+00  *  ST. WILK-SHA =   0.9458605E+01 
*
*               =                  *  UNIFORM PPCC =   0.9735289E+00 
*
*               =                  *  NORMAL  PPCC =   0.9989640E+00 
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*
*               =                  *  TUK -.5 PPCC =   0.8927904E+00 
*
*               =                  *  CAUCHY  PPCC =   0.6360204E+00 
*
***********************************************************************
 

Location One way to quantify a change in location over time is to fit a straight line to the data set
using the index variable X = 1, 2, ..., N, with N denoting the number of observations. If
there is no significant drift in the location, the slope parameter should be zero. For this
data set, Dataplot generates the following output:

 LEAST SQUARES MULTILINEAR FIT
       SAMPLE SIZE N       =      195
       NUMBER OF VARIABLES =        1
       NO REPLICATION CASE
  
  
               PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
        1  A0                   9.26699       (0.3253E-02)       
2849.
        2  A1       X         -0.564115E-04   (0.2878E-04)      
-1.960
  
       RESIDUAL    STANDARD DEVIATION =        0.2262372E-01
       RESIDUAL    DEGREES OF FREEDOM =         193

The slope parameter, A1, has a t value of -1.96 which is (barely) statistically significant
since it is essentially equal to the 95% level cutoff of -1.96. However, notice that the
value of the slope parameter estimate is -0.00056. This slope, even though statistically
significant, can essentially be considered zero.

Variation One simple way to detect a change in variation is with a Bartlett test after dividing the
data set into several equal-sized intervals. The choice of the number of intervals is
somewhat arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the
following output for the Bartlett test.

               BARTLETT TEST
           (STANDARD DEFINITION)
 NULL HYPOTHESIS UNDER TEST--ALL SIGMA(I) ARE EQUAL
  
 TEST:
    DEGREES OF FREEDOM          =    3.000000
  
    TEST STATISTIC VALUE        =    3.147338
    CUTOFF: 95% PERCENT POINT   =    7.814727
    CUTOFF: 99% PERCENT POINT   =    11.34487
  
    CHI-SQUARE CDF VALUE        =    0.630538
  
   NULL          NULL HYPOTHESIS        NULL HYPOTHESIS
   HYPOTHESIS    ACCEPTANCE INTERVAL    CONCLUSION
 ALL SIGMA EQUAL    (0.000,0.950)         ACCEPT
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In this case, since the Bartlett test statistic of 3.14 is less than the critical value at the 5%
significance level of 7.81, we conclude that the standard deviations are not significantly
different in the 4 intervals. That is, the assumption of constant scale is valid.

Randomness There are many ways in which data can be non-random. However, most common forms
of non-randomness can be detected with a few simple tests. The lag plot in the previous
section is a simple graphical technique.

Another check is an autocorrelation plot that shows the autocorrelations for various lags.
Confidence bands can be plotted at the 95% and 99% confidence levels. Points outside
this band indicate statistically significant values (lag 0 is always 1). Dataplot generated
the following autocorrelation plot.

The lag 1 autocorrelation, which is generally the one of greatest interest, is 0.281. The
critical values at the 5% significance level are -0.087 and 0.087. This indicates that the
lag 1 autocorrelation is statistically significant, so there is evidence of non-randomness.

A common test for randomness is the runs test.

 
                      RUNS UP
 
           STATISTIC = NUMBER OF RUNS UP
               OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1        35.0     40.6667      6.4079       -0.88
   2         8.0     17.7583      3.3021       -2.96
   3        12.0      5.0806      2.0096        3.44
   4         3.0      1.1014      1.0154        1.87
   5         0.0      0.1936      0.4367       -0.44
   6         0.0      0.0287      0.1692       -0.17
   7         0.0      0.0037      0.0607       -0.06
   8         0.0      0.0004      0.0204       -0.02
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   9         0.0      0.0000      0.0065       -0.01
  10         0.0      0.0000      0.0020        0.00
 
 
           STATISTIC = NUMBER OF RUNS UP
               OF LENGTH I OR MORE
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1        58.0     64.8333      4.1439       -1.65
   2        23.0     24.1667      2.7729       -0.42
   3        15.0      6.4083      2.1363        4.02
   4         3.0      1.3278      1.1043        1.51
   5         0.0      0.2264      0.4716       -0.48
   6         0.0      0.0328      0.1809       -0.18
   7         0.0      0.0041      0.0644       -0.06
   8         0.0      0.0005      0.0215       -0.02
   9         0.0      0.0000      0.0068       -0.01
  10         0.0      0.0000      0.0021        0.00
 
 
                     RUNS DOWN
 
           STATISTIC = NUMBER OF RUNS DOWN
               OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1        33.0     40.6667      6.4079       -1.20
   2        18.0     17.7583      3.3021        0.07
   3         3.0      5.0806      2.0096       -1.04
   4         3.0      1.1014      1.0154        1.87
   5         1.0      0.1936      0.4367        1.85
   6         0.0      0.0287      0.1692       -0.17
   7         0.0      0.0037      0.0607       -0.06
   8         0.0      0.0004      0.0204       -0.02
   9         0.0      0.0000      0.0065       -0.01
  10         0.0      0.0000      0.0020        0.00
 
 
           STATISTIC = NUMBER OF RUNS DOWN
               OF LENGTH I OR MORE
 
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1        58.0     64.8333      4.1439       -1.65
   2        25.0     24.1667      2.7729        0.30
   3         7.0      6.4083      2.1363        0.28
   4         4.0      1.3278      1.1043        2.42
   5         1.0      0.2264      0.4716        1.64
   6         0.0      0.0328      0.1809       -0.18
   7         0.0      0.0041      0.0644       -0.06
   8         0.0      0.0005      0.0215       -0.02
   9         0.0      0.0000      0.0068       -0.01
  10         0.0      0.0000      0.0021        0.00
 
 
           RUNS TOTAL = RUNS UP + RUNS DOWN
 
         STATISTIC = NUMBER OF RUNS TOTAL
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              OF LENGTH EXACTLY I
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1        68.0     81.3333      9.0621       -1.47
   2        26.0     35.5167      4.6698       -2.04
   3        15.0     10.1611      2.8420        1.70
   4         6.0      2.2028      1.4360        2.64
   5         1.0      0.3871      0.6176        0.99
   6         0.0      0.0574      0.2392       -0.24
   7         0.0      0.0074      0.0858       -0.09
   8         0.0      0.0008      0.0289       -0.03
   9         0.0      0.0001      0.0092       -0.01
  10         0.0      0.0000      0.0028        0.00
 
 
         STATISTIC = NUMBER OF RUNS TOTAL
               OF LENGTH I OR MORE
 
   I         STAT     EXP(STAT)    SD(STAT)       Z
 
   1       116.0    129.6667      5.8604       -2.33
   2        48.0     48.3333      3.9215       -0.09
   3        22.0     12.8167      3.0213        3.04
   4         7.0      2.6556      1.5617        2.78
   5         1.0      0.4528      0.6669        0.82
   6         0.0      0.0657      0.2559       -0.26
   7         0.0      0.0083      0.0911       -0.09
   8         0.0      0.0009      0.0305       -0.03
   9         0.0      0.0001      0.0097       -0.01
  10         0.0      0.0000      0.0029        0.00
 
 
          LENGTH OF THE LONGEST RUN UP         =     4
          LENGTH OF THE LONGEST RUN DOWN       =     5
          LENGTH OF THE LONGEST RUN UP OR DOWN =     5
 
          NUMBER OF POSITIVE DIFFERENCES =    98
          NUMBER OF NEGATIVE DIFFERENCES =    95
          NUMBER OF ZERO     DIFFERENCES =     1
  

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically
significant at the 5% level. The runs test does indicate some non-randomness.

Although the autocorrelation plot and the runs test indicate some mild non-randomness,
the violation of the randomness assumption is not serious enough to warrant developing a
more sophisticated model. It is common in practice that some of the assumptions are
mildly violated and it is a judgement call as to whether or not the violations are serious
enough to warrant developing a more sophisticated model for the data.
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Distributional
Analysis

Probability plots are a graphical test for assessing if a particular distribution provides an
adequate fit to a data set.

A quantitative enhancement to the probability plot is the correlation coefficient of the
points on the probability plot. For this data set the correlation coefficient is 0.996. Since
this is greater than the critical value of 0.987 (this is a tabulated value), the normality
assumption is not rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests are alternative methods for
assessing distributional adequacy. The Wilk-Shapiro and Anderson-Darling tests can be
used to test for normality. Dataplot generates the following output for the
Anderson-Darling normality test.

  
               ANDERSON-DARLING 1-SAMPLE TEST
               THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS                =      195
       MEAN                                  =    9.261460
       STANDARD DEVIATION                    =   0.2278881E-01
  
       ANDERSON-DARLING TEST STATISTIC VALUE =   0.1264954
       ADJUSTED TEST STATISTIC VALUE         =   0.1290070
  
 2. CRITICAL VALUES:
       90         % POINT    =   0.6560000
       95         % POINT    =   0.7870000
       97.5       % POINT    =   0.9180000
       99         % POINT    =    1.092000
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THE DATA DO COME FROM A NORMAL DISTRIBUTION.
  

The Anderson-Darling test also does not reject the normality assumption because the test
statistic, 0.129, is less than the critical value at the 5% significance level of 0.918.

Outlier
Analysis

A test for outliers is the Grubbs' test. Dataplot generated the following output for Grubbs'
test.

  
               GRUBBS TEST FOR OUTLIERS
               (ASSUMPTION: NORMALITY)
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS      =      195
       MINIMUM                     =    9.196848
       MEAN                        =    9.261460
       MAXIMUM                     =    9.327973
    STANDARD DEVIATION          =   0.2278881E-01
  
    GRUBBS TEST STATISTIC       =    2.918673
  
 2. PERCENT POINTS OF THE REFERENCE DISTRIBUTION
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    FOR GRUBBS TEST STATISTIC
       0          % POINT    =    0.000000
       50         % POINT    =    2.984294
       75         % POINT    =    3.181226
       90         % POINT    =    3.424672
       95         % POINT    =    3.597898
       97.5       % POINT    =    3.763061
       99         % POINT    =    3.970215
       100        % POINT    =    13.89263
 
 3. CONCLUSION (AT THE 5% LEVEL):
       THERE ARE NO OUTLIERS.
  

For this data set, Grubbs' test does not detect any outliers at the 25%, 10%, 5%, and 1%
significance levels.

Model Since the underlying assumptions were validated both graphically and analytically, with a
mild violation of the randomness assumption, we conclude that a reasonable model for
the data is:

We can express the uncertainty for C, here estimated by 9.26146, as the 95% confidence
interval (9.258242,9.26479).

Univariate
Report

It is sometimes useful and convenient to summarize the above results in a report. The
report for the heat flow meter data follows.

  
 Analysis for heat flow meter data
  
 1: Sample Size                           = 195
  
 2: Location
    Mean                                  = 9.26146
    Standard Deviation of Mean            = 0.001632
    95% Confidence Interval for Mean      = (9.258242,9.264679)
    Drift with respect to location?       = NO
  
 3: Variation
    Standard Deviation                    = 0.022789
    95% Confidence Interval for SD        = (0.02073,0.025307)
    Drift with respect to variation?
    (based on Bartlett's test on quarters
    of the data)                          = NO
  
 4: Randomness
    Autocorrelation                       = 0.280579
    Data are Random?
      (as measured by autocorrelation)    = NO
  
 5: Distribution
    Normal PPCC                           = 0.998965
    Data are Normal?
      (as measured by Normal PPCC)        = YES
  
 6: Statistical Control
    (i.e., no drift in location or scale,
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    data are random, distribution is 
    fixed, here we are testing only for
    fixed normal)
    Data Set is in Statistical Control?   = YES
  
 7: Outliers?
    (as determined by Grubbs' test)        = NO
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.8. Heat Flow Meter 1

1.4.2.8.4.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more detailed information
about each analysis step from the case study description.

1. Invoke Dataplot and read data.

   1. Read in the data.

                              

 1. You have read 1 column of numbers 
    into Dataplot, variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-plot, there are no shifts
    in location or scale, and the data seem to
    follow a normal distribution.

3. Generate the individual plots.

   1. Generate a run sequence plot.

   2. Generate a lag plot.

   3. Generate a histogram with an
      overlaid normal pdf.

 1. The run sequence plot indicates that
    there are no shifts of location or
    scale.

 2. The lag plot does not indicate any
    significant patterns (which would
    show the data were not random).

 3. The histogram indicates that a 
    normal distribution is a good
    distribution for these data.
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   4. Generate a normal probability
      plot.

 4. The normal probability plot verifies
    that the normal distribution is a
    reasonable distribution for these data.

4. Generate summary statistics, quantitative
   analysis, and print a univariate report.

   1. Generate a table of summary
      statistics.

   2. Generate the mean, a confidence
      interval for the mean, and compute
      a linear fit to detect drift in
      location.

   3. Generate the standard deviation, a
      confidence interval for the standard
      deviation, and detect drift in variation
      by dividing the data into quarters and
      computing Bartlett's test for equal
      standard deviations.

   4. Check for randomness by generating an
      autocorrelation plot and a runs test.

   5. Check for normality by computing the
      normal probability plot correlation
      coefficient.

   6. Check for outliers using Grubbs' test.

   7. Print a univariate report (this assumes
      steps 2 thru 6 have already been run).

 1. The summary statistics table displays
    25+ statistics.

 2. The mean is 9.261 and a 95%
    confidence interval is (9.258,9.265).
    The linear fit indicates no drift in
    location since the slope parameter
    estimate is essentially zero.

 3. The standard deviation is 0.023 with
    a 95% confidence interval of (0.0207,0.0253).
    Bartlett's test indicates no significant
    change in variation.

 4. The lag 1 autocorrelation is 0.28.
    From the autocorrelation plot, this is
    statistically significant at the 95%
    level.

 5. The normal probability plot correlation
    coefficient is 0.999.  At the 5% level,
    we cannot reject the normality assumption.

 6. Grubbs' test detects no outliers at the
    5% level.

 7. The results are summarized in a
    convenient report.
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.9.Airplane Polished Window Strength

Airplane
Polished
Window
Strength

This example illustrates the univariate analysis of airplane polished
window strength data.

Background and Data1.  

Graphical Output and Interpretation2.  

Weibull Analysis3.  

Lognormal Analysis4.  

Gamma Analysis5.  

Power Normal Analysis6.  

Fatigue Life Analysis7.  

Work This Example Yourself8.  

1.4.2.9. Airplane Polished Window Strength
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Polished Window Strength

1.4.2.9.1.Background and Data

Generation This data set was provided by Ed Fuller of the NIST Ceramics Division
in December, 1993. It contains polished window strength data that was
used with two other sets of data (constant stress-rate data and strength of
indented glass data). A paper by Fuller, et. al. describes the use of all
three data sets to predict lifetime and confidence intervals for a glass
airplane window. A paper by Pepi describes the all-glass airplane
window design.

For this case study, we restrict ourselves to the problem of finding a
good distributional model of the polished window strength data.

Purpose of
Analysis

The goal of this case study is to find a good distributional model for the
polished window strength data. Once a good distributional model has
been determined, various percent points for the polished widow strength
will be computed.

Since the data were used in a study to predict failure times, this case
study is a form of reliability analysis. The assessing product reliability
chapter contains a more complete discussion of reliabilty methods. This
case study is meant to complement that chapter by showing the use of
graphical techniques in one aspect of reliability modeling.

Data in reliability analysis do not typically follow a normal distribution;
non-parametric methods (techniques that do not rely on a specific
distribution) are frequently recommended for developing confidence
intervals for failure data. One problem with this approach is that sample
sizes are often small due to the expense involved in collecting the data,
and non-parametric methods do not work well for small sample sizes.
For this reason, a parametric method based on a specific distributional
model of the data is preferred if the data can be shown to follow a
specific distribution. Parametric models typically have greater efficiency
at the cost of more specific assumptions about the data, but, it is
important to verify that the distributional assumption is indeed valid. If
the distributional assumption is not justified, then the conclusions drawn

1.4.2.9.1. Background and Data
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from the model may not be valid.

This file can be read by Dataplot with the following commands:

SKIP 25
READ FULLER2.DAT Y

Resulting
Data

The following are the data used for this case study. The data are in ksi
(= 1,000 psi).

18.830
20.800
21.657
23.030
23.230
24.050
24.321
25.500
25.520
25.800
26.690
26.770
26.780
27.050
27.670
29.900
31.110
33.200
33.730
33.760
33.890
34.760
35.750
35.910
36.980
37.080
37.090
39.580
44.045
45.290
45.381

1.4.2.9.1. Background and Data
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Polished Window Strength

1.4.2.9.2.Graphical Output and Interpretation

Goal The goal of this analysis is to determine a good distributional model for these
data. A secondary goal is to provide estimates for various percent points of the
data. Percent points provide an answer to questions of the type "What is the
polished window strength for the weakest 5% of the data?".

Initial Plots of the
Data The first step is to generate a histogram to get an overall feel for the data.

The histogram shows the following:

The polished window strength ranges between slightly greater than 15 to
slightly less than 50.

●   

There are modes at approximately 28 and 38 with a gap in-between.●   

The data are somewhat symmetric, but with a gap in the middle.●   

We next generate a normal probability plot.

1.4.2.9.2. Graphical Output and Interpretation
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The normal probability plot has a correlation coefficient of 0.980. We can use
this number as a reference baseline when comparing the performance of other
distributional fits.

Other Potential
Distributions

There is a large number of distributions that would be distributional model
candidates for the data. However, we will restrict ourselves to consideration of
the following distributional models because these have proven to be useful in
reliability studies.

Normal distribution1.  

Exponential distribution2.  

Weibull distribution3.  

Lognormal distribution4.  

Gamma distribution5.  

Power normal distribution6.  

Fatigue life distribution7.  

1.4.2.9.2. Graphical Output and Interpretation
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Approach There are two basic questions that need to be addressed.

Does a given distributional model provide an adequate fit to the data?1.  

Of the candidate distributional models, is there one distribution that fits
the data better than the other candidate distributional models?

2.  

The use of probability plots and probability plot correlation coefficient (PPCC)
plots provide answers to both of these questions.

If the distribution does not have a shape parameter, we simply generate a
probability plot.

If we fit a straight line to the points on the probability plot, the intercept
and slope of that line provide estimates of the location and scale
parameters, respectively.

1.  

Our critierion for the "best fit" distribution is the one with the most linear
probability plot. The correlation coefficient of the fitted line of the points
on the probability plot, referred to as the PPCC value, provides a measure
of the linearity of the probability plot, and thus a measure of how well the
distribution fits the data. The PPCC values for multiple distributions can
be compared to address the second question above.

2.  

If the distribution does have a shape parameter, then we are actually addressing
a family of distributions rather than a single distribution. We first need to find
the optimal value of the shape parameter. The PPCC plot can be used to
determine the optimal parameter. We will use the PPCC plots in two stages. The
first stage will be over a broad range of parameter values while the second stage
will be in the neighborhood of the largest values. Although we could go further
than two stages, for practical purposes two stages is sufficient. After
determining an optimal value for the shape parameter, we use the probability
plot as above to obtain estimates of the location and scale parameters and to
determine the PPCC value. This PPCC value can be compared to the PPCC
values obtained from other distributional models.

Analyses for
Specific
Distributions

We analyzed the data using the approach described above for the following
distributional models:

Normal distribution - from the 4-plot above, the PPCC value was 0.980.1.  

Exponential distribution - the exponential distribution is a special case of
the Weibull with shape parameter equal to 1. If the Weibull analysis
yields a shape parameter close to 1, then we would consider using the
simpler exponential model.

2.  

Weibull distribution3.  

Lognormal distribution4.  

Gamma distribution5.  

Power normal distribution6.  

Power lognormal distribution7.  

1.4.2.9.2. Graphical Output and Interpretation
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Summary of
Results

The results are summarized below.

Normal Distribution

Max PPCC = 0.980
Estimate of location = 30.81
Estimate of scale = 7.38

Weibull Distribution

Max PPCC = 0.988
Estimate of shape = 2.13
Estimate of location = 15.9
Estimate of scale = 16.92

Lognormal Distribution

Max PPCC = 0.986
Estimate of shape = 0.18
Estimate of location = -9.96
Estimate of scale = 40.17

Gamma Distribution

Max PPCC = 0.987
Estimate of shape = 11.8
Estimate of location = 5.19
Estimate of scale = 2.17

Power Normal Distribution

Max PPCC = 0.988
Estimate of shape = 0.05
Estimate of location = 19.0
Estimate of scale = 2.4

Fatigue Life Distribution

Max PPCC = 0.987
Estimate of shape = 0.18
Estimate of location = -11.0
Estimate of scale = 41.3

These results indicate that several of these distributions provide an adequate
distributional model for the data. We choose the 3-parameter Weibull
distribution as the most appropriate model because it provides the best balance
between simplicity and best fit.

1.4.2.9.2. Graphical Output and Interpretation
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Percent Point
Estimates

The final step in this analysis is to compute percent point estimates for the 1%,
2.5%, 5%, 95%, 97.5%, and 99% percent points. A percent point estimate is an
estimate of the strength at which a given percentage of units will be weaker. For
example, the 5% point is the strength at which we estimate that 5% of the units
will be weaker.

To calculate these values, we use the Weibull percent point function with the
appropriate estimates of the shape, location, and scale parameters. The Weibull
percent point function can be computed in many general purpose statistical
software programs, including Dataplot.

Dataplot generated the following estimates for the percent points:

 Estimated percent points using Weibull Distribution
  
 PERCENT POINT        POLISHED WINDOW STRENGTH
 0.01                 17.86
 0.02                 18.92
 0.05                 20.10
 0.95                 44.21
 0.97                 47.11
 0.99                 50.53

Quantitative
Measures of
Goodness of Fit

Although it is generally unnecessary, we can include quantitative measures of
distributional goodness-of-fit. Three of the commonly used measures are:

Chi-square goodness-of-fit.1.  

Kolmogorov-Smirnov goodness-of-fit.2.  

Anderson-Darling goodness-of-fit.3.  

In this case, the sample size of 31 precludes the use of the chi-square test since
the chi-square approximation is not valid for small sample sizes. Specifically,
the smallest expected frequency should be at least 5. Although we could
combine classes, we will instead use one of the other tests. The
Kolmogorov-Smirnov test requires a fully specified distribution. Since we need
to use the data to estimate the shape, location, and scale parameters, we do not
use this test here. The Anderson-Darling test is a refinement of the
Kolmogorov-Smirnov test. We run this test for the normal, lognormal, and
Weibull distributions.

1.4.2.9.2. Graphical Output and Interpretation
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Normal
Anderson-Darling
Output

               ANDERSON-DARLING 1-SAMPLE TEST
               THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS                =       31
       MEAN                                  =    30.81142
       STANDARD DEVIATION                    =    7.253381
  
       ANDERSON-DARLING TEST STATISTIC VALUE =   0.5321903
       ADJUSTED TEST STATISTIC VALUE         =   0.5870153
  
 2. CRITICAL VALUES:
       90         % POINT    =   0.6160000
       95         % POINT    =   0.7350000
       97.5       % POINT    =   0.8610000
       99         % POINT    =    1.021000
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THE DATA DO COME FROM A NORMAL DISTRIBUTION.

Lognormal
Anderson-Darling
Output

               ANDERSON-DARLING 1-SAMPLE TEST
               THAT THE DATA CAME FROM A LOGNORMAL DISTRIBUTION
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS                =       31
       MEAN OF LOG OF DATA                   =    3.401242
       STANDARD DEVIATION OF LOG OF DATA     =   0.2349026
  
       ANDERSON-DARLING TEST STATISTIC VALUE =   0.3888340
       ADJUSTED TEST STATISTIC VALUE         =   0.4288908
  
 2. CRITICAL VALUES:
       90         % POINT    =   0.6160000
       95         % POINT    =   0.7350000
       97.5       % POINT    =   0.8610000
       99         % POINT    =    1.021000
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THE DATA DO COME FROM A LOGNORMAL DISTRIBUTION.

1.4.2.9.2. Graphical Output and Interpretation
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Weibull
Anderson-Darling
Output

               ANDERSON-DARLING 1-SAMPLE TEST
               THAT THE DATA CAME FROM A WEIBULL DISTRIBUTION
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS                =       31
       MEAN                                  =    14.91142
       STANDARD DEVIATION                    =    7.253381
       SHAPE PARAMETER                       =    2.237495
       SCALE PARAMETER                       =    16.87868
  
       ANDERSON-DARLING TEST STATISTIC VALUE =   0.3623638
       ADJUSTED TEST STATISTIC VALUE         =   0.3753803
  
 2. CRITICAL VALUES:
       90         % POINT    =   0.6370000
       95         % POINT    =   0.7570000
       97.5       % POINT    =   0.8770000
       99         % POINT    =    1.038000
  
 3. CONCLUSION (AT THE 5% LEVEL):
       THE DATA DO COME FROM A WEIBULL DISTRIBUTION.

Note that for the Weibull distribution, the Anderson-Darling test is actually
testing the 2-parameter Weibull distribution (based on maximum likelihood
estimates), not the 3-parameter Weibull distribution. To give a more accurate
comparison, we subtract the location parameter (15.9) as estimated by the PPCC
plot/probability plot technique before applying the Anderson-Darling test.

Conclusions The Anderson-Darling test passes all three of these distributions. Note that the
value of the Anderson-Darling test statistic is the smallest for the Weibull
distribution with the value for the lognormal distribution just slightly larger. The
test statistic for the normal distribution is noticeably higher than for the Weibull
or lognormal.

This provides additional confirmation that either the Weibull or lognormal
distribution fits this data better than the normal distribution with the Weibull
providing a slightly better fit than the lognormal.

1.4.2.9.2. Graphical Output and Interpretation
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Polished Window Strength

1.4.2.9.3.Weibull Analysis

Plots for
Weibull
Distribution

The following plots were generated for a Weibull distribution.

Conclusions We can make the following conclusions from these plots.

The optimal value, in the sense of having the most linear
probability plot, of the shape parameter gamma is 2.13.

1.  

At the optimal value of the shape parameter, the PPCC value is
0.988.

2.  

At the optimal value of the shape parameter, the estimate of the
location parameter is 15.90 and the estimate of the scale
parameter is 16.92.

3.  

Fine tuning the estimate of gamma (from 2 to 2.13) has minimal
impact on the PPCC value.

4.  

1.4.2.9.3. Weibull Analysis
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Alternative
Plots

The Weibull plot and the Weibull hazard plot are alternative graphical
analysis procedures to the PPCC plots and probability plots.

These two procedures, especially the Weibull plot, are very commonly
employed. That not withstanding, the disadvantage of these two
procedures is that they both assume that the location parameter (i.e., the
lower bound) is zero and that we are fitting a 2-parameter Weibull
instead of a 3-parameter Weibull. The advantage is that there is an
extensive literature on these methods and they have been designed to
work with either censored or uncensored data.

Weibull Plot

This Weibull plot shows the following

The Weibull plot is approximately linear indicating that the
2-parameter Weibull provides an adequate fit to the data.

1.  

The estimate of the shape parameter is 5.28 and the estimate of
the scale parameter is 33.32.

2.  

1.4.2.9.3. Weibull Analysis
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Weibull
Hazard Plot

The construction and interpretation of the Weibull hazard plot is
discussed in the Assessing Product Reliability chapter.

1.4.2.9.3. Weibull Analysis
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Polished Window Strength

1.4.2.9.4.Lognormal Analysis

Plots for
Lognormal
Distribution

The following plots were generated for a lognormal distribution.

Conclusions We can make the following conclusions from these plots.

The optimal value, in the sense of having the most linear
probability plot, of the shape parameter  is 0.18.

1.  

At the optimal value of the shape parameter, the PPCC value is
0.986.

2.  

At the optimal value of the shape parameter, the estimate of the
location parameter is -9.96 and the estimate of the scale parameter
is 40.17.

3.  

Fine tuning the estimate of the shape parameter (from 0.2 to 0.18)
has minimal impact on the PPCC value.

4.  

1.4.2.9.4. Lognormal Analysis
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Polished Window Strength

1.4.2.9.5.Gamma Analysis

Plots for
Gamma
Distribution

The following plots were generated for a gamma distribution.

Conclusions We can make the following conclusions from these plots.

The optimal value, in the sense of having the most linear
probability plot, of the shape parameter  is 11.8.

1.  

At the optimal value of the shape parameter, the PPCC value is
0.987.

2.  

At the optimal value of the shape parameter, the estimate of the
location parameter is 5.19 and the estimate of the scale parameter
is 2.17.

3.  

Fine tuning the estimate of  (from 12 to 11.8) has some impact
on the PPCC value (from 0.978 to 0.987).

4.  

1.4.2.9.5. Gamma Analysis
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Polished Window Strength

1.4.2.9.6.Power Normal Analysis

Plots for
Power
Normal
Distribution

The following plots were generated for a power normal distribution.

Conclusions We can make the following conclusions from these plots.

A reasonable value, in the sense of having the most linear
probability plot, of the shape parameter p is 0.05.

1.  

At the this value of the shape parameter, the PPCC value is 0.988.2.  

At the optimal value of the shape parameter, the estimate of the
location parameter is 19.0 and the estimate of the scale parameter
is 2.4.

3.  

Fine tuning the estimate of p (from 1 to 0.05) results in a slight
improvement of the the computed PPCC value (from 0.980 to
0.988).

4.  

1.4.2.9.6. Power Normal Analysis
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1.4.2.9.6. Power Normal Analysis
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Polished Window Strength

1.4.2.9.7.Fatigue Life Analysis

Plots for
Fatigue Life
Distribution

The following plots were generated for a Fatigue Life distribution.

Conclusions We can make the following conclusions from these plots.

A reasonable value, in the sense of having the most linear
probability plot, of the shape parameter  is 0.178.

1.  

At this value of the shape parameter, the PPCC value is 0.987.2.  

At this value of the shape parameter, the estimate of the location
parameter is 11.03 and the estimate of the scale parameter is
41.28.

3.  

Fine tuning the estimate of  (from 0.5 to 0.18) improves the
PPCC value (from 0.973 to 0.987).

4.  

1.4.2.9.7. Fatigue Life Analysis
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Polished Window Strength

1.4.2.9.8.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more detailed information
about each analysis step from the case study description.

1. Invoke Dataplot and read data.

   1. Read in the data.

                              

 1. You have read 1 column of numbers 
    into Dataplot, variable Y.
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2. 4-plot of the data.

   1. 4-plot of Y.  1. The polished window strengths are in the
    range 15 to 50.  The histogram and normal
    probability plot indicate a normal distribution
    fits the data reasonably well, but we can
    probably do better.

3. Generate the Weibull analysis.

   1. Generate 2 iterations of the
      Weibull PPCC plot, a Weibull
      probability plot, and estimate
      some percent points.

   2. Generate a Weibull plot.

   3. Generate a Weibull hazard plot.

 1. The Weibull analysis results in a
    maximum PPCC value of 0.988.

 2. The Weibull plot permits the
    estimation of a 2-parameter Weibull
    model.

 3. The Weibull hazard plot is
    approximately linear, indicating
    that the Weibull provides a good
    distributional model for these data.

4. Generate the lognormal analysis.

   1. Generate 2 iterations of the
      lognormal PPCC plot and a
      lognormal probability plot.

 1. The lognormal analysis results in
    a maximum PPCC value of 0.986.

1.4.2.9.8. Work This Example Yourself

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4298.htm (2 of 4) [5/1/2006 9:59:09 AM]

http://www.itl.nist.gov/div898/handbook/eda/section4/fuller/dpmacros/4plot.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/fuller/dpmacros/weibppcc.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/fuller/dpmacros/weibppcc.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/fuller/dpmacros/weibppcc.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/fuller/dpmacros/weibppcc.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/fuller/dpmacros/weibplot.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/fuller/dpmacros/weibhaza.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/fuller/dpmacros/lognppcc.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/fuller/dpmacros/lognppcc.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/fuller/dpmacros/lognppcc.dp


5. Generate the gamma analysis.

   1. Generate 2 iterations of the
      gamma PPCC plot and a
      gamma probability plot.

 1. The gamma analysis results in
    a maximum PPCC value of 0.987.

6. Generate the power normal analysis.

   1. Generate 2 iterations of the
      power normal PPCC plot and a
      power normal probability plot.

 1. The power normal analysis results
    in a maximum PPCC value of 0.988.

7. Generate the fatigue life analysis.

   1. Generate 2 iterations of the
      fatigue life PPCC plot and
      a fatigue life probability
      plot.

 1. The fatigue life analysis
    results in a maximum PPCC value
    of 0.987.

8. Generate quantitative goodness of fit tests

   1. Generate Anderson-Darling test
      for normality.

   2. Generate Anderson-Darling test
      for lognormal distribution.

   3. Generate Anderson-Darling test

 1. The Anderson-Darling normality
    test indicates the normal
    distribution provides an adequate
    fit to the data.

 2. The Anderson-Darling lognormal
    test indicates the lognormal
    distribution provides an adequate
    fit to the data.

 3. The Anderson-Darling Weibull
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      for Weibull distribution.     test indicates the lognormal
    distribution provides an adequate
    fit to the data.
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.10.Ceramic Strength

Ceramic
Strength

This case study analyzes the effect of machining factors on the strength
of ceramics.

Background and Data1.  

Analysis of the Response Variable2.  

Analysis of Batch Effect3.  

Analysis of Lab Effect4.  

Analysis of Primary Factors5.  

Work This Example Yourself6.  

1.4.2.10. Ceramic Strength
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.10. Ceramic Strength

1.4.2.10.1.Background and Data

Generation The data for this case study were collected by Said Jahanmir of the NIST
Ceramics Division in 1996 in connection with a NIST/industry ceramics
consortium for strength optimization of ceramic strength

The motivation for studying this data set is to illustrate the analysis of multiple
factors from a designed experiment

This case study will utilize only a subset of a full study that was conducted by
Lisa Gill and James Filliben of the NIST Statistical Engineering Division

The response variable is a measure of the strength of the ceramic material
(bonded Si nitrate). The complete data set contains the following variables:

Factor 1 = Observation ID, i.e., run number (1 to 960)1.  

Factor 2 = Lab (1 to 8)2.  

Factor 3 = Bar ID within lab (1 to 30)3.  

Factor 4 = Test number (1 to 4)4.  

Response Variable = Strength of Ceramic5.  

Factor 5 = Table speed (2 levels: 0.025 and 0.125)6.  

Factor 6 = Down feed rate (2 levels: 0.050 and 0.125)7.  

Factor 7 = Wheel grit size (2 levels: 150 and 80)8.  

Factor 8 = Direction (2 levels: longitudinal and transverse)9.  

Factor 9 = Treatment (1 to 16)10.  

Factor 10 = Set of 15 within lab (2 levels: 1 and 2)11.  

Factor 11 = Replication (2 levels: 1 and 2)12.  

Factor 12 = Bar Batch (1 and 2)13.  

The four primary factors of interest are:

Table speed (X1)1.  

Down feed rate (X2)2.  

Wheel grit size (X3)3.  

1.4.2.10.1. Background and Data
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Direction (X4)4.  

For this case study, we are using only half the data. Specifically, we are using
the data with the direction longitudinal. Therefore, we have only three primary
factors

In addtion, we are interested in the nuisance factors

Lab1.  

Batch2.  

The complete file can be read into Dataplot with the following commands:

DIMENSION 20 VARIABLES
SKIP 50
READ JAHANMI2.DAT RUN RUN LAB BAR SET Y X1 TO X8 BATCH

Purpose of
Analysis

The goals of this case study are:

Determine which of the four primary factors has the strongest effect on
the strength of the ceramic material

1.  

Estimate the magnitude of the effects2.  

Determine the optimal settings for the primary factors3.  

Determine if the nuisance factors (lab and batch) have an effect on the
ceramic strength

4.  

This case study is an example of a designed experiment. The Process
Improvement chapter contains a detailed discussion of the construction and
analysis of designed experiments. This case study is meant to complement the
material in that chapter by showing how an EDA approach (emphasizing the use
of graphical techniques) can be used in the analysis of designed experiments

Resulting
Data

The following are the data used for this case study

 Run  Lab  Batch   Y      X1   X2   X3
   1    1    1   608.781  -1   -1   -1
   2    1    2   569.670  -1   -1   -1
   3    1    1   689.556  -1   -1   -1
   4    1    2   747.541  -1   -1   -1
   5    1    1   618.134  -1   -1   -1
   6    1    2   612.182  -1   -1   -1
   7    1    1   680.203  -1   -1   -1
   8    1    2   607.766  -1   -1   -1
   9    1    1   726.232  -1   -1   -1
  10    1    2   605.380  -1   -1   -1
  11    1    1   518.655  -1   -1   -1
  12    1    2   589.226  -1   -1   -1
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  13    1    1   740.447  -1   -1   -1
  14    1    2   588.375  -1   -1   -1
  15    1    1   666.830  -1   -1   -1
  16    1    2   531.384  -1   -1   -1
  17    1    1   710.272  -1   -1   -1
  18    1    2   633.417  -1   -1   -1
  19    1    1   751.669  -1   -1   -1
  20    1    2   619.060  -1   -1   -1
  21    1    1   697.979  -1   -1   -1
  22    1    2   632.447  -1   -1   -1
  23    1    1   708.583  -1   -1   -1
  24    1    2   624.256  -1   -1   -1
  25    1    1   624.972  -1   -1   -1
  26    1    2   575.143  -1   -1   -1
  27    1    1   695.070  -1   -1   -1
  28    1    2   549.278  -1   -1   -1
  29    1    1   769.391  -1   -1   -1
  30    1    2   624.972  -1   -1   -1
  61    1    1   720.186  -1    1    1
  62    1    2   587.695  -1    1    1
  63    1    1   723.657  -1    1    1
  64    1    2   569.207  -1    1    1
  65    1    1   703.700  -1    1    1
  66    1    2   613.257  -1    1    1
  67    1    1   697.626  -1    1    1
  68    1    2   565.737  -1    1    1
  69    1    1   714.980  -1    1    1
  70    1    2   662.131  -1    1    1
  71    1    1   657.712  -1    1    1
  72    1    2   543.177  -1    1    1
  73    1    1   609.989  -1    1    1
  74    1    2   512.394  -1    1    1
  75    1    1   650.771  -1    1    1
  76    1    2   611.190  -1    1    1
  77    1    1   707.977  -1    1    1
  78    1    2   659.982  -1    1    1
  79    1    1   712.199  -1    1    1
  80    1    2   569.245  -1    1    1
  81    1    1   709.631  -1    1    1
  82    1    2   725.792  -1    1    1
  83    1    1   703.160  -1    1    1
  84    1    2   608.960  -1    1    1
  85    1    1   744.822  -1    1    1
  86    1    2   586.060  -1    1    1
  87    1    1   719.217  -1    1    1
  88    1    2   617.441  -1    1    1
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  89    1    1   619.137  -1    1    1
  90    1    2   592.845  -1    1    1
 151    2    1   753.333   1    1    1
 152    2    2   631.754   1    1    1
 153    2    1   677.933   1    1    1
 154    2    2   588.113   1    1    1
 155    2    1   735.919   1    1    1
 156    2    2   555.724   1    1    1
 157    2    1   695.274   1    1    1
 158    2    2   702.411   1    1    1
 159    2    1   504.167   1    1    1
 160    2    2   631.754   1    1    1
 161    2    1   693.333   1    1    1
 162    2    2   698.254   1    1    1
 163    2    1   625.000   1    1    1
 164    2    2   616.791   1    1    1
 165    2    1   596.667   1    1    1
 166    2    2   551.953   1    1    1
 167    2    1   640.898   1    1    1
 168    2    2   636.738   1    1    1
 169    2    1   720.506   1    1    1
 170    2    2   571.551   1    1    1
 171    2    1   700.748   1    1    1
 172    2    2   521.667   1    1    1
 173    2    1   691.604   1    1    1
 174    2    2   587.451   1    1    1
 175    2    1   636.738   1    1    1
 176    2    2   700.422   1    1    1
 177    2    1   731.667   1    1    1
 178    2    2   595.819   1    1    1
 179    2    1   635.079   1    1    1
 180    2    2   534.236   1    1    1
 181    2    1   716.926   1   -1   -1
 182    2    2   606.188   1   -1   -1
 183    2    1   759.581   1   -1   -1
 184    2    2   575.303   1   -1   -1
 185    2    1   673.903   1   -1   -1
 186    2    2   590.628   1   -1   -1
 187    2    1   736.648   1   -1   -1
 188    2    2   729.314   1   -1   -1
 189    2    1   675.957   1   -1   -1
 190    2    2   619.313   1   -1   -1
 191    2    1   729.230   1   -1   -1
 192    2    2   624.234   1   -1   -1
 193    2    1   697.239   1   -1   -1
 194    2    2   651.304   1   -1   -1
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 195    2    1   728.499   1   -1   -1
 196    2    2   724.175   1   -1   -1
 197    2    1   797.662   1   -1   -1
 198    2    2   583.034   1   -1   -1
 199    2    1   668.530   1   -1   -1
 200    2    2   620.227   1   -1   -1
 201    2    1   815.754   1   -1   -1
 202    2    2   584.861   1   -1   -1
 203    2    1   777.392   1   -1   -1
 204    2    2   565.391   1   -1   -1
 205    2    1   712.140   1   -1   -1
 206    2    2   622.506   1   -1   -1
 207    2    1   663.622   1   -1   -1
 208    2    2   628.336   1   -1   -1
 209    2    1   684.181   1   -1   -1
 210    2    2   587.145   1   -1   -1
 271    3    1   629.012   1   -1    1
 272    3    2   584.319   1   -1    1
 273    3    1   640.193   1   -1    1
 274    3    2   538.239   1   -1    1
 275    3    1   644.156   1   -1    1
 276    3    2   538.097   1   -1    1
 277    3    1   642.469   1   -1    1
 278    3    2   595.686   1   -1    1
 279    3    1   639.090   1   -1    1
 280    3    2   648.935   1   -1    1
 281    3    1   439.418   1   -1    1
 282    3    2   583.827   1   -1    1
 283    3    1   614.664   1   -1    1
 284    3    2   534.905   1   -1    1
 285    3    1   537.161   1   -1    1
 286    3    2   569.858   1   -1    1
 287    3    1   656.773   1   -1    1
 288    3    2   617.246   1   -1    1
 289    3    1   659.534   1   -1    1
 290    3    2   610.337   1   -1    1
 291    3    1   695.278   1   -1    1
 292    3    2   584.192   1   -1    1
 293    3    1   734.040   1   -1    1
 294    3    2   598.853   1   -1    1
 295    3    1   687.665   1   -1    1
 296    3    2   554.774   1   -1    1
 297    3    1   710.858   1   -1    1
 298    3    2   605.694   1   -1    1
 299    3    1   701.716   1   -1    1
 300    3    2   627.516   1   -1    1
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 301    3    1   382.133   1    1   -1
 302    3    2   574.522   1    1   -1
 303    3    1   719.744   1    1   -1
 304    3    2   582.682   1    1   -1
 305    3    1   756.820   1    1   -1
 306    3    2   563.872   1    1   -1
 307    3    1   690.978   1    1   -1
 308    3    2   715.962   1    1   -1
 309    3    1   670.864   1    1   -1
 310    3    2   616.430   1    1   -1
 311    3    1   670.308   1    1   -1
 312    3    2   778.011   1    1   -1
 313    3    1   660.062   1    1   -1
 314    3    2   604.255   1    1   -1
 315    3    1   790.382   1    1   -1
 316    3    2   571.906   1    1   -1
 317    3    1   714.750   1    1   -1
 318    3    2   625.925   1    1   -1
 319    3    1   716.959   1    1   -1
 320    3    2   682.426   1    1   -1
 321    3    1   603.363   1    1   -1
 322    3    2   707.604   1    1   -1
 323    3    1   713.796   1    1   -1
 324    3    2   617.400   1    1   -1
 325    3    1   444.963   1    1   -1
 326    3    2   689.576   1    1   -1
 327    3    1   723.276   1    1   -1
 328    3    2   676.678   1    1   -1
 329    3    1   745.527   1    1   -1
 330    3    2   563.290   1    1   -1
 361    4    1   778.333  -1   -1    1
 362    4    2   581.879  -1   -1    1
 363    4    1   723.349  -1   -1    1
 364    4    2   447.701  -1   -1    1
 365    4    1   708.229  -1   -1    1
 366    4    2   557.772  -1   -1    1
 367    4    1   681.667  -1   -1    1
 368    4    2   593.537  -1   -1    1
 369    4    1   566.085  -1   -1    1
 370    4    2   632.585  -1   -1    1
 371    4    1   687.448  -1   -1    1
 372    4    2   671.350  -1   -1    1
 373    4    1   597.500  -1   -1    1
 374    4    2   569.530  -1   -1    1
 375    4    1   637.410  -1   -1    1
 376    4    2   581.667  -1   -1    1
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 377    4    1   755.864  -1   -1    1
 378    4    2   643.449  -1   -1    1
 379    4    1   692.945  -1   -1    1
 380    4    2   581.593  -1   -1    1
 381    4    1   766.532  -1   -1    1
 382    4    2   494.122  -1   -1    1
 383    4    1   725.663  -1   -1    1
 384    4    2   620.948  -1   -1    1
 385    4    1   698.818  -1   -1    1
 386    4    2   615.903  -1   -1    1
 387    4    1   760.000  -1   -1    1
 388    4    2   606.667  -1   -1    1
 389    4    1   775.272  -1   -1    1
 390    4    2   579.167  -1   -1    1
 421    4    1   708.885  -1    1   -1
 422    4    2   662.510  -1    1   -1
 423    4    1   727.201  -1    1   -1
 424    4    2   436.237  -1    1   -1
 425    4    1   642.560  -1    1   -1
 426    4    2   644.223  -1    1   -1
 427    4    1   690.773  -1    1   -1
 428    4    2   586.035  -1    1   -1
 429    4    1   688.333  -1    1   -1
 430    4    2   620.833  -1    1   -1
 431    4    1   743.973  -1    1   -1
 432    4    2   652.535  -1    1   -1
 433    4    1   682.461  -1    1   -1
 434    4    2   593.516  -1    1   -1
 435    4    1   761.430  -1    1   -1
 436    4    2   587.451  -1    1   -1
 437    4    1   691.542  -1    1   -1
 438    4    2   570.964  -1    1   -1
 439    4    1   643.392  -1    1   -1
 440    4    2   645.192  -1    1   -1
 441    4    1   697.075  -1    1   -1
 442    4    2   540.079  -1    1   -1
 443    4    1   708.229  -1    1   -1
 444    4    2   707.117  -1    1   -1
 445    4    1   746.467  -1    1   -1
 446    4    2   621.779  -1    1   -1
 447    4    1   744.819  -1    1   -1
 448    4    2   585.777  -1    1   -1
 449    4    1   655.029  -1    1   -1
 450    4    2   703.980  -1    1   -1
 541    5    1   715.224  -1   -1   -1
 542    5    2   698.237  -1   -1   -1
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 543    5    1   614.417  -1   -1   -1
 544    5    2   757.120  -1   -1   -1
 545    5    1   761.363  -1   -1   -1
 546    5    2   621.751  -1   -1   -1
 547    5    1   716.106  -1   -1   -1
 548    5    2   472.125  -1   -1   -1
 549    5    1   659.502  -1   -1   -1
 550    5    2   612.700  -1   -1   -1
 551    5    1   730.781  -1   -1   -1
 552    5    2   583.170  -1   -1   -1
 553    5    1   546.928  -1   -1   -1
 554    5    2   599.771  -1   -1   -1
 555    5    1   734.203  -1   -1   -1
 556    5    2   549.227  -1   -1   -1
 557    5    1   682.051  -1   -1   -1
 558    5    2   605.453  -1   -1   -1
 559    5    1   701.341  -1   -1   -1
 560    5    2   569.599  -1   -1   -1
 561    5    1   759.729  -1   -1   -1
 562    5    2   637.233  -1   -1   -1
 563    5    1   689.942  -1   -1   -1
 564    5    2   621.774  -1   -1   -1
 565    5    1   769.424  -1   -1   -1
 566    5    2   558.041  -1   -1   -1
 567    5    1   715.286  -1   -1   -1
 568    5    2   583.170  -1   -1   -1
 569    5    1   776.197  -1   -1   -1
 570    5    2   345.294  -1   -1   -1
 571    5    1   547.099   1   -1    1
 572    5    2   570.999   1   -1    1
 573    5    1   619.942   1   -1    1
 574    5    2   603.232   1   -1    1
 575    5    1   696.046   1   -1    1
 576    5    2   595.335   1   -1    1
 577    5    1   573.109   1   -1    1
 578    5    2   581.047   1   -1    1
 579    5    1   638.794   1   -1    1
 580    5    2   455.878   1   -1    1
 581    5    1   708.193   1   -1    1
 582    5    2   627.880   1   -1    1
 583    5    1   502.825   1   -1    1
 584    5    2   464.085   1   -1    1
 585    5    1   632.633   1   -1    1
 586    5    2   596.129   1   -1    1
 587    5    1   683.382   1   -1    1
 588    5    2   640.371   1   -1    1
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 589    5    1   684.812   1   -1    1
 590    5    2   621.471   1   -1    1
 591    5    1   738.161   1   -1    1
 592    5    2   612.727   1   -1    1
 593    5    1   671.492   1   -1    1
 594    5    2   606.460   1   -1    1
 595    5    1   709.771   1   -1    1
 596    5    2   571.760   1   -1    1
 597    5    1   685.199   1   -1    1
 598    5    2   599.304   1   -1    1
 599    5    1   624.973   1   -1    1
 600    5    2   579.459   1   -1    1
 601    6    1   757.363   1    1    1
 602    6    2   761.511   1    1    1
 603    6    1   633.417   1    1    1
 604    6    2   566.969   1    1    1
 605    6    1   658.754   1    1    1
 606    6    2   654.397   1    1    1
 607    6    1   664.666   1    1    1
 608    6    2   611.719   1    1    1
 609    6    1   663.009   1    1    1
 610    6    2   577.409   1    1    1
 611    6    1   773.226   1    1    1
 612    6    2   576.731   1    1    1
 613    6    1   708.261   1    1    1
 614    6    2   617.441   1    1    1
 615    6    1   739.086   1    1    1
 616    6    2   577.409   1    1    1
 617    6    1   667.786   1    1    1
 618    6    2   548.957   1    1    1
 619    6    1   674.481   1    1    1
 620    6    2   623.315   1    1    1
 621    6    1   695.688   1    1    1
 622    6    2   621.761   1    1    1
 623    6    1   588.288   1    1    1
 624    6    2   553.978   1    1    1
 625    6    1   545.610   1    1    1
 626    6    2   657.157   1    1    1
 627    6    1   752.305   1    1    1
 628    6    2   610.882   1    1    1
 629    6    1   684.523   1    1    1
 630    6    2   552.304   1    1    1
 631    6    1   717.159  -1    1   -1
 632    6    2   545.303  -1    1   -1
 633    6    1   721.343  -1    1   -1
 634    6    2   651.934  -1    1   -1
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 635    6    1   750.623  -1    1   -1
 636    6    2   635.240  -1    1   -1
 637    6    1   776.488  -1    1   -1
 638    6    2   641.083  -1    1   -1
 639    6    1   750.623  -1    1   -1
 640    6    2   645.321  -1    1   -1
 641    6    1   600.840  -1    1   -1
 642    6    2   566.127  -1    1   -1
 643    6    1   686.196  -1    1   -1
 644    6    2   647.844  -1    1   -1
 645    6    1   687.870  -1    1   -1
 646    6    2   554.815  -1    1   -1
 647    6    1   725.527  -1    1   -1
 648    6    2   620.087  -1    1   -1
 649    6    1   658.796  -1    1   -1
 650    6    2   711.301  -1    1   -1
 651    6    1   690.380  -1    1   -1
 652    6    2   644.355  -1    1   -1
 653    6    1   737.144  -1    1   -1
 654    6    2   713.812  -1    1   -1
 655    6    1   663.851  -1    1   -1
 656    6    2   696.707  -1    1   -1
 657    6    1   766.630  -1    1   -1
 658    6    2   589.453  -1    1   -1
 659    6    1   625.922  -1    1   -1
 660    6    2   634.468  -1    1   -1
 721    7    1   694.430   1    1   -1
 722    7    2   599.751   1    1   -1
 723    7    1   730.217   1    1   -1
 724    7    2   624.542   1    1   -1
 725    7    1   700.770   1    1   -1
 726    7    2   723.505   1    1   -1
 727    7    1   722.242   1    1   -1
 728    7    2   674.717   1    1   -1
 729    7    1   763.828   1    1   -1
 730    7    2   608.539   1    1   -1
 731    7    1   695.668   1    1   -1
 732    7    2   612.135   1    1   -1
 733    7    1   688.887   1    1   -1
 734    7    2   591.935   1    1   -1
 735    7    1   531.021   1    1   -1
 736    7    2   676.656   1    1   -1
 737    7    1   698.915   1    1   -1
 738    7    2   647.323   1    1   -1
 739    7    1   735.905   1    1   -1
 740    7    2   811.970   1    1   -1
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 741    7    1   732.039   1    1   -1
 742    7    2   603.883   1    1   -1
 743    7    1   751.832   1    1   -1
 744    7    2   608.643   1    1   -1
 745    7    1   618.663   1    1   -1
 746    7    2   630.778   1    1   -1
 747    7    1   744.845   1    1   -1
 748    7    2   623.063   1    1   -1
 749    7    1   690.826   1    1   -1
 750    7    2   472.463   1    1   -1
 811    7    1   666.893  -1    1    1
 812    7    2   645.932  -1    1    1
 813    7    1   759.860  -1    1    1
 814    7    2   577.176  -1    1    1
 815    7    1   683.752  -1    1    1
 816    7    2   567.530  -1    1    1
 817    7    1   729.591  -1    1    1
 818    7    2   821.654  -1    1    1
 819    7    1   730.706  -1    1    1
 820    7    2   684.490  -1    1    1
 821    7    1   763.124  -1    1    1
 822    7    2   600.427  -1    1    1
 823    7    1   724.193  -1    1    1
 824    7    2   686.023  -1    1    1
 825    7    1   630.352  -1    1    1
 826    7    2   628.109  -1    1    1
 827    7    1   750.338  -1    1    1
 828    7    2   605.214  -1    1    1
 829    7    1   752.417  -1    1    1
 830    7    2   640.260  -1    1    1
 831    7    1   707.899  -1    1    1
 832    7    2   700.767  -1    1    1
 833    7    1   715.582  -1    1    1
 834    7    2   665.924  -1    1    1
 835    7    1   728.746  -1    1    1
 836    7    2   555.926  -1    1    1
 837    7    1   591.193  -1    1    1
 838    7    2   543.299  -1    1    1
 839    7    1   592.252  -1    1    1
 840    7    2   511.030  -1    1    1
 901    8    1   740.833  -1   -1    1
 902    8    2   583.994  -1   -1    1
 903    8    1   786.367  -1   -1    1
 904    8    2   611.048  -1   -1    1
 905    8    1   712.386  -1   -1    1
 906    8    2   623.338  -1   -1    1
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 907    8    1   738.333  -1   -1    1
 908    8    2   679.585  -1   -1    1
 909    8    1   741.480  -1   -1    1
 910    8    2   665.004  -1   -1    1
 911    8    1   729.167  -1   -1    1
 912    8    2   655.860  -1   -1    1
 913    8    1   795.833  -1   -1    1
 914    8    2   715.711  -1   -1    1
 915    8    1   723.502  -1   -1    1
 916    8    2   611.999  -1   -1    1
 917    8    1   718.333  -1   -1    1
 918    8    2   577.722  -1   -1    1
 919    8    1   768.080  -1   -1    1
 920    8    2   615.129  -1   -1    1
 921    8    1   747.500  -1   -1    1
 922    8    2   540.316  -1   -1    1
 923    8    1   775.000  -1   -1    1
 924    8    2   711.667  -1   -1    1
 925    8    1   760.599  -1   -1    1
 926    8    2   639.167  -1   -1    1
 927    8    1   758.333  -1   -1    1
 928    8    2   549.491  -1   -1    1
 929    8    1   682.500  -1   -1    1
 930    8    2   684.167  -1   -1    1
 931    8    1   658.116   1   -1   -1
 932    8    2   672.153   1   -1   -1
 933    8    1   738.213   1   -1   -1
 934    8    2   594.534   1   -1   -1
 935    8    1   681.236   1   -1   -1
 936    8    2   627.650   1   -1   -1
 937    8    1   704.904   1   -1   -1
 938    8    2   551.870   1   -1   -1
 939    8    1   693.623   1   -1   -1
 940    8    2   594.534   1   -1   -1
 941    8    1   624.993   1   -1   -1
 942    8    2   602.660   1   -1   -1
 943    8    1   700.228   1   -1   -1
 944    8    2   585.450   1   -1   -1
 945    8    1   611.874   1   -1   -1
 946    8    2   555.724   1   -1   -1
 947    8    1   579.167   1   -1   -1
 948    8    2   574.934   1   -1   -1
 949    8    1   720.872   1   -1   -1
 950    8    2   584.625   1   -1   -1
 951    8    1   690.320   1   -1   -1
 952    8    2   555.724   1   -1   -1
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 953    8    1   677.933   1   -1   -1
 954    8    2   611.874   1   -1   -1
 955    8    1   674.600   1   -1   -1
 956    8    2   698.254   1   -1   -1
 957    8    1   611.999   1   -1   -1
 958    8    2   748.130   1   -1   -1
 959    8    1   530.680   1   -1   -1
 960    8    2   689.942   1   -1   -1
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1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.10. Ceramic Strength

1.4.2.10.2.Analysis of the Response Variable

Numerical
Summary

As a first step in the analysis, a table of summary statistics is computed for the response
variable. The following table, generated by Dataplot, shows a typical set of statistics.

 
                                SUMMARY
 
                     NUMBER OF OBSERVATIONS =      480
 
 
***********************************************************************
*        LOCATION MEASURES         *       DISPERSION MEASURES       
*
***********************************************************************
*  MIDRANGE     =   0.5834740E+03  *  RANGE        =   0.4763600E+03 
*
*  MEAN         =   0.6500773E+03  *  STAND. DEV.  =   0.7463826E+02 
*
*  MIDMEAN      =   0.6426155E+03  *  AV. AB. DEV. =   0.6184948E+02 
*
*  MEDIAN       =   0.6466275E+03  *  MINIMUM      =   0.3452940E+03 
*
*               =                  *  LOWER QUART. =   0.5960515E+03 
*
*               =                  *  LOWER HINGE  =   0.5959740E+03 
*
*               =                  *  UPPER HINGE  =   0.7084220E+03 
*
*               =                  *  UPPER QUART. =   0.7083415E+03 
*
*               =                  *  MAXIMUM      =   0.8216540E+03 
*
***********************************************************************
*       RANDOMNESS MEASURES        *     DISTRIBUTIONAL MEASURES     
*
***********************************************************************
*  AUTOCO COEF  =  -0.2290508E+00  *  ST. 3RD MOM. =  -0.3682922E+00 
*
*               =   0.0000000E+00  *  ST. 4TH MOM. =   0.3220554E+01 
*
*               =   0.0000000E+00  *  ST. WILK-SHA =   0.3877698E+01 
*
*               =                  *  UNIFORM PPCC =   0.9756916E+00 
*

1.4.2.10.2. Analysis of the Response Variable

http://www.itl.nist.gov/div898/handbook/eda/section4/eda42a2.htm (1 of 3) [5/1/2006 9:59:10 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/eda44.htm#SUMMARY


*               =                  *  NORMAL  PPCC =   0.9906310E+00 
*
*               =                  *  TUK -.5 PPCC =   0.8357126E+00 
*
*               =                  *  CAUCHY  PPCC =   0.5063868E+00 
*
***********************************************************************

From the above output, the mean strength is 650.08 and the standard deviation of the
strength is 74.64.

4-Plot The next step is generate a 4-plot of the response variable.

This 4-plot shows:

The run sequence plot (upper left corner) shows that the location and scale are
relatively constant. It also shows a few outliers on the low side. Most of the points
are in the range 500 to 750. However, there are about half a dozen points in the 300
to 450 range that may require special attention.

A run sequence plot is useful for designed experiments in that it can reveal time
effects. Time is normally a nuisance factor. That is, the time order on which runs
are made should not have a significant effect on the response. If a time effect does
appear to exist, this means that there is a potential bias in the experiment that needs
to be investigated and resolved.

1.  

The lag plot (the upper right corner) does not show any significant structure. This
is another tool for detecting any potential time effect.

2.  

The histogram (the lower left corner) shows the response appears to be reasonably
symmetric, but with a bimodal distribution.

3.  

The normal probability plot (the lower right corner) shows some curvature
indicating that distributions other than the normal may provide a better fit.

4.  
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1.4. EDA Case Studies
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1.4.2.10.3.Analysis of the Batch Effect

Batch is a
Nuisance Factor

The two nuisance factors in this experiment are the batch number and the lab. There are
2 batches and 8 labs. Ideally, these factors will have minimal effect on the response
variable.

We will investigate the batch factor first.

Bihistogram

This bihistogram shows the following.

There does appear to be a batch effect.1.  

The batch 1 responses are centered at 700 while the batch 2 responses are
centered at 625. That is, the batch effect is approximately 75 units.

2.  

The variability is comparable for the 2 batches.3.  

Batch 1 has some skewness in the lower tail. Batch 2 has some skewness in the
center of the distribution, but not as much in the tails compared to batch 1.

4.  

Both batches have a few low-lying points.5.  

Although we could stop with the bihistogram, we will show a few other commonly used
two-sample graphical techniques for comparison.

1.4.2.10.3. Analysis of the Batch Effect

http://www.itl.nist.gov/div898/handbook/eda/section4/eda42a3.htm (1 of 5) [5/1/2006 9:59:11 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm


Quantile-Quantile
Plot

This q-q plot shows the following.

Except for a few points in the right tail, the batch 1 values have higher quantiles
than the batch 2 values. This implies that batch 1 has a greater location value than
batch 2.

1.  

The q-q plot is not linear. This implies that the difference between the batches is
not explained simply by a shift in location. That is, the variation and/or skewness
varies as well. From the bihistogram, it appears that the skewness in batch 2 is the
most likely explanation for the non-linearity in the q-q plot.

2.  

Box Plot

This box plot shows the following.

The median for batch 1 is approximately 700 while the median for batch 2 is
approximately 600.

1.  
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The spread is reasonably similar for both batches, maybe slightly larger for batch
1.

2.  

Both batches have a number of outliers on the low side. Batch 2 also has a few
outliers on the high side. Box plots are a particularly effective method for
identifying the presence of outliers.

3.  

Block Plots A block plot is generated for each of the eight labs, with "1" and "2" denoting the batch
numbers. In the first plot, we do not include any of the primary factors. The next 3
block plots include one of the primary factors. Note that each of the 3 primary factors
(table speed = X1, down feed rate = X2, wheel grit size = X3) has 2 levels. With 8 labs
and 2 levels for the primary factor, we would expect 16 separate blocks on these plots.
The fact that some of these blocks are missing indicates that some of the combinations
of lab and primary factor are empty.

These block plots show the following.

The mean for batch 1 is greater than the mean for batch 2 in all of the cases
above. This is strong evidence that the batch effect is real and consistent across
labs and primary factors.

1.  

Quantitative
Techniques

We can confirm some of the conclusions drawn from the above graphics by using
quantitative techniques. The two sample t-test can be used to test whether or not the
means from the two batches are equal and the F-test can be used to test whether or not
the standard deviations from the two batches are equal.
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Two Sample
T-Test

The following is the Dataplot output from the two sample t-test.

                       T-TEST
                     (2-SAMPLE)
 NULL HYPOTHESIS UNDER TEST--POPULATION MEANS MU1 = MU2
  
 SAMPLE 1:
    NUMBER OF OBSERVATIONS      =      240
    MEAN                        =    688.9987
    STANDARD DEVIATION          =    65.54909
    STANDARD DEVIATION OF MEAN  =    4.231175
  
 SAMPLE 2:
    NUMBER OF OBSERVATIONS      =      240
    MEAN                        =    611.1559
    STANDARD DEVIATION          =    61.85425
    STANDARD DEVIATION OF MEAN  =    3.992675
  
 IF     ASSUME SIGMA1 = SIGMA2:
    POOLED STANDARD DEVIATION   =    63.72845
    DIFFERENCE (DELTA) IN MEANS =    77.84271
    STANDARD DEVIATION OF DELTA =    5.817585
    T-TEST STATISTIC VALUE      =    13.38059
    DEGREES OF FREEDOM          =    478.0000
    T-TEST STATISTIC CDF VALUE  =    1.000000
  
 IF NOT ASSUME SIGMA1 = SIGMA2:
    STANDARD DEVIATION SAMPLE 1 =    65.54909
    STANDARD DEVIATION SAMPLE 2 =    61.85425
    BARTLETT CDF VALUE          =    0.629618
    DIFFERENCE (DELTA) IN MEANS =    77.84271
    STANDARD DEVIATION OF DELTA =    5.817585
    T-TEST STATISTIC VALUE      =    13.38059
    EQUIVALENT DEG. OF FREEDOM  =    476.3999
    T-TEST STATISTIC CDF VALUE  =    1.000000
  
                   ALTERNATIVE-         ALTERNATIVE-
 ALTERNATIVE-      HYPOTHESIS           HYPOTHESIS
 HYPOTHESIS        ACCEPTANCE INTERVAL  CONCLUSION
 MU1 <> MU2         (0,0.025) (0.975,1)   ACCEPT
 MU1 < MU2          (0,0.05)              REJECT
 MU1 > MU2          (0.95,1)              ACCEPT

The t-test indicates that the mean for batch 1 is larger than the mean for batch 2 (at the
5% confidence level).
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F-Test The following is the Dataplot output from the F-test.

                       F-TEST
 NULL HYPOTHESIS UNDER TEST--SIGMA1 = SIGMA2
 ALTERNATIVE HYPOTHESIS UNDER TEST--SIGMA1 NOT EQUAL SIGMA2
  
 SAMPLE 1:
    NUMBER OF OBSERVATIONS      =      240
    MEAN                        =    688.9987
    STANDARD DEVIATION          =    65.54909
  
 SAMPLE 2:
    NUMBER OF OBSERVATIONS      =      240
    MEAN                        =    611.1559
    STANDARD DEVIATION          =    61.85425
  
 TEST:
    STANDARD DEV. (NUMERATOR)   =    65.54909
    STANDARD DEV. (DENOMINATOR) =    61.85425
    F-TEST STATISTIC VALUE      =    1.123037
    DEG. OF FREEDOM (NUMER.)    =    239.0000
    DEG. OF FREEDOM (DENOM.)    =    239.0000
    F-TEST STATISTIC CDF VALUE  =    0.814808
  
   NULL          NULL HYPOTHESIS        NULL HYPOTHESIS
   HYPOTHESIS    ACCEPTANCE INTERVAL    CONCLUSION
 SIGMA1 = SIGMA2    (0.000,0.950)         ACCEPT

The F-test indicates that the standard deviations for the two batches are not significantly
different at the 5% confidence level.

Conclusions We can draw the following conclusions from the above analysis.

There is in fact a significant batch effect. This batch effect is consistent across
labs and primary factors.

1.  

The magnitude of the difference is on the order of 75 to 100 (with batch 2 being
smaller than batch 1). The standard deviations do not appear to be significantly
different.

2.  

There is some skewness in the batches.3.  

This batch effect was completely unexpected by the scientific investigators in this
study.

Note that although the quantitative techniques support the conclusions of unequal
means and equal standard deviations, they do not show the more subtle features of the
data such as the presence of outliers and the skewness of the batch 2 data.
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1.4.2.10.4.Analysis of the Lab Effect

Box Plot The next matter is to determine if there is a lab effect. The first step is to
generate a box plot for the ceramic strength based on the lab.

This box plot shows the following.

There is minor variation in the medians for the 8 labs.1.  

The scales are relatively constant for the labs.2.  

Two of the labs (3 and 5) have outliers on the low side.3.  
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Box Plot for
Batch 1

Given that the previous section showed a distinct batch effect, the next
step is to generate the box plots for the two batches separately.

This box plot shows the following.

Each of the labs has a median in the 650 to 700 range.1.  

The variability is relatively constant across the labs.2.  

Each of the labs has at least one outlier on the low side.3.  

Box Plot for
Batch 2
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This box plot shows the following.

The medians are in the range 550 to 600.1.  

There is a bit more variability, across the labs, for batch2
compared to batch 1.

2.  

Six of the eight labs show outliers on the high side. Three of the
labs show outliers on the low side.

3.  

Conclusions We can draw the following conclusions about a possible lab effect from
the above box plots.

The batch effect (of approximately 75 to 100 units) on location
dominates any lab effects.

1.  

It is reasonable to treat the labs as homogeneous.2.  
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1.4.2.10.5.Analysis of Primary Factors

Main effects The first step in analyzing the primary factors is to determine which
factors are the most significant. The dex scatter plot, dex mean plot, and
the dex standard deviation plots will be the primary tools, with "dex"
being short for "design of experiments".

Since the previous pages showed a significant batch effect but a minimal
lab effect, we will generate separate plots for batch 1 and batch 2.
However, the labs will be treated as equivalent.

Dex Scatter
Plot for
Batch 1

This dex scatter plot shows the following for batch 1.

Most of the points are between 500 and 800.1.  

There are about a dozen or so points between 300 and 500.2.  

Except for the outliers on the low side (i.e., the points between
300 and 500), the distribution of the points is comparable for the

3.  
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3 primary factors in terms of location and spread.

Dex Mean
Plot for
Batch 1

This dex mean plot shows the following for batch 1.

The table speed factor (X1) is the most significant factor with an
effect, the difference between the two points, of approximately 35
units.

1.  

The wheel grit factor (X3) is the next most significant factor with
an effect of approximately 10 units.

2.  

The feed rate factor (X2) has minimal effect.3.  

Dex SD Plot
for Batch 1
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This dex standard deviation plot shows the following for batch 1.

The table speed factor (X1) has a significant difference in
variability between the levels of the factor. The difference is
approximately 20 units.

1.  

The wheel grit factor (X3) and the feed rate factor (X2) have
minimal differences in variability.

2.  

Dex Scatter
Plot for
Batch 2

This dex scatter plot shows the following for batch 2.
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Most of the points are between 450 and 750.1.  

There are a few outliers on both the low side and the high side.2.  

Except for the outliers (i.e., the points less than 450 or greater
than 750), the distribution of the points is comparable for the 3
primary factors in terms of location and spread.

3.  

Dex Mean
Plot for
Batch 2

This dex mean plot shows the following for batch 2.

The feed rate (X2) and wheel grit (X3) factors have an
approximately equal effect of about 15 or 20 units.

1.  

The table speed factor (X1) has a minimal effect.2.  

Dex SD Plot
for Batch 2
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This dex standard deviation plot shows the following for batch 2.

The difference in the standard deviations is roughly comparable
for the three factors (slightly less for the feed rate factor).

1.  

Interaction
Effects

The above plots graphically show the main effects. An additonal
concern is whether or not there any significant interaction effects.

Main effects and 2-term interaction effects are discussed in the chapter
on Process Improvement.

In the following dex interaction plots, the labels on the plot give the
variables and the estimated effect. For example, factor 1 is TABLE
SPEED and it has an estimated effect of 30.77 (it is actually -30.77 if
the direction is taken into account).

DEX
Interaction
Plot for
Batch 1
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The ranked list of factors for batch 1 is:

Table speed (X1) with an estimated effect of -30.77.1.  

The interaction of table speed (X1) and wheel grit (X3) with an
estimated effect of -20.25.

2.  

The interaction of table speed (X1) and feed rate (X2) with an
estimated effect of 9.7.

3.  

Wheel grit (X3) with an estimated effect of -7.18.4.  

Down feed (X2) and the down feed interaction with wheel grit
(X3) are essentially zero.

5.  

DEX
Interaction
Plot for
Batch 2
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The ranked list of factors for batch 2 is:

Down feed (X2) with an estimated effect of 18.22.1.  

The interaction of table speed (X1) and wheel grit (X3) with an
estimated effect of -16.71.

2.  

Wheel grit (X3) with an estimated effect of -14.713.  

Remaining main effect and 2-factor interaction effects are
essentially zero.

4.  

Conclusions From the above plots, we can draw the following overall conclusions.

The batch effect (of approximately 75 units) is the dominant
primary factor.

1.  

The most important factors differ from batch to batch. See the
above text for the ranked list of factors with the estimated effects.

2.  
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1.4.2.10.6.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to use Dataplot to repeat the analysis outlined in
the case study description on the previous page. It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case
study yourself. Each step may use results from previous
steps, so please be patient. Wait until the software verifies
that the current step is complete before clicking on the next
step.

The links in this column will connect you with more
detailed information about each analysis step from the case
study description.

1. Invoke Dataplot and read data.

   1. Read in the data.  1. You have read 1 column of numbers 
    into Dataplot, variable Y.

2. Plot of the response variable

   1. Numerical summary of Y.

   2. 4-plot of Y.

 1. The summary shows the mean strength
    is 650.08 and the standard deviation
    of the strength is 74.64.

 2. The 4-plot shows no drift in
    the location and scale and a
    bimodal distribution.
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3. Determine if there is a batch effect.

   1. Generate a bihistogram based on
      the 2 batches.

   2. Generate a q-q plot.

   3. Generate a box plot.

   4. Generate block plots.

   5. Perform a 2-sample t-test for
      equal means.

   6. Perform an F-test for equal
      standard deviations.

 1. The bihistogram shows a distinct
    batch effect of approximately
    75 units.

 2. The q-q plot shows that batch 1
    and batch 2 do not come from a
    common distribution.

 3. The box plot shows that there is
    a batch effect of approximately
    75 to 100 units and there are
    some outliers.

 4. The block plot shows that the batch
    effect is consistent across labs
    and levels of the primary factor.

 5. The t-test confirms the batch
    effect with respect to the means.

 6. The F-test does not indicate any
    significant batch effect with
    respect to the standard deviations.

4. Determine if there is a lab effect.

   1. Generate a box plot for the labs
      with the 2 batches combined.

   2. Generate a box plot for the labs
      for batch 1 only.

   3. Generate a box plot for the labs
      for batch 2 only.

 1. The box plot does not show a
    significant lab effect.

 2. The box plot does not show a
    significant lab effect for batch 1.

 3. The box plot does not show a
    significant lab effect for batch 2.

1.4.2.10.6. Work This Example Yourself

http://www.itl.nist.gov/div898/handbook/eda/section4/eda42a6.htm (2 of 3) [5/1/2006 9:59:15 AM]

http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/bihistog.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/bihistog.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/qqplot.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/boxplot.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/blockpl1.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/ttest.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/ttest.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/ftest.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/ftest.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/boxplotl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/boxplotl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/boxpltl1.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/boxpltl1.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/boxpltl2.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/jahanmi2/dpmacros/boxpltl2.dp


5. Analysis of primary factors.

   1. Generate a dex scatter plot for
      batch 1.

   2. Generate a dex mean plot for
      batch 1.

   3. Generate a dex sd plot for
      batch 1.

   4. Generate a dex scatter plot for
      batch 2.

   5. Generate a dex mean plot for
      batch 2.

   6. Generate a dex sd plot for
      batch 2.

   7. Generate a dex interaction
      effects matrix plot for
      batch 1.

   8. Generate a dex interaction
      effects matrix plot for
      batch 2.

 1. The dex scatter plot shows the
    range of the points and the
    presence of outliers.

 2. The dex mean plot shows that
    table speed is the most
    significant factor for batch 1.

 3. The dex sd plot shows that
    table speed has the most
    variability for batch 1.

 4. The dex scatter plot shows
    the range of the points and
    the presence of outliers.

 5. The dex mean plot shows that
    feed rate and wheel grit are
    the most significant factors
    for batch 2.

 6. The dex sd plot shows that
    the variability is comparable
    for all 3 factors for batch 2.

 7. The dex interaction effects
    matrix plot provides a ranked
    list of factors with the 
    estimated effects.

 8. The dex interaction effects
    matrix plot provides a ranked
    list of factors with the 
    estimated effects.
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2. Measurement Process Characterization

2.1.Characterization

The primary goal of this section is to lay the groundwork for
understanding the measurement process in terms of the errors that affect
the process.

What are the issues for characterization?

Purpose1.  

Reference base2.  

Bias and Accuracy3.  

Variability4.  

What is a check standard?

Assumptions1.  

Data collection2.  

Analysis3.  

2.1. Characterization
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2. Measurement Process Characterization
2.1. Characterization

2.1.1.What are the issues for
characterization?

'Goodness' of
measurements

A measurement process can be thought of as a well-run production
process in which measurements are the output. The 'goodness' of
measurements is the issue, and goodness is characterized in terms of
the errors that affect the measurements.

Bias, variability
and uncertainty

The goodness of measurements is quantified in terms of

Bias●   

Short-term variability or instrument precision●   

Day-to-day or long-term variability●   

Uncertainty●   

Requires
ongoing
statistical
control
program

The continuation of goodness is guaranteed by a statistical control
program that controls both

Short-term variability or instrument precision●   

Long-term variability which controls bias and day-to-day
variability of the process

●   

Scope is limited
to ongoing
processes

The techniques in this chapter are intended primarily for ongoing
processes. One-time tests and special tests or destructive tests are
difficult to characterize. Examples of ongoing processes are:

Calibration where similar test items are measured on a regular
basis

●   

Certification where materials are characterized on a regular
basis

●   

Production where the metrology (tool) errors may be
significant

●   

Special studies where data can be collected over the life of the
study

●   

2.1.1. What are the issues for characterization?
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Application to
production
processes

The material in this chapter is pertinent to the study of production
processes for which the size of the metrology (tool) error may be an
important consideration. More specific guidance on assessing
metrology errors can be found in the section on gauge studies.

2.1.1. What are the issues for characterization?
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2. Measurement Process Characterization
2.1. Characterization
2.1.1. What are the issues for characterization?

2.1.1.1.Purpose

Purpose is
to
understand
and quantify
the effect of
error on
reported
values

The purpose of characterization is to develop an understanding of the
sources of error in the measurement process and how they affect specific
measurement results. This section provides the background for:

identifying sources of error in the measurement process●   

understanding and quantifying errors in the measurement process●   

codifying the effects of these errors on a specific reported value in
a statement of uncertainty

●   

Important
concepts

Characterization relies upon the understanding of certain underlying
concepts of measurement systems; namely,

reference base (authority) for the measurement●   

bias●   

variability●   

check standard●   

Reported
value is a
generic term
that
identifies the
result that is
transmitted
to the
customer

The reported value is the measurement result for a particular test item. It
can be:

a single measurement●   

an average of several measurements●   

a least-squares prediction from a model●   

a combination of several measurement results that are related by a
physical model

●   

2.1.1.1. Purpose

http://www.itl.nist.gov/div898/handbook/mpc/section1/mpc111.htm [5/1/2006 10:11:05 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


2. Measurement Process Characterization
2.1. Characterization
2.1.1. What are the issues for characterization?

2.1.1.2.Reference base

Ultimate
authority

The most critical element of any measurement process is the
relationship between a single measurement and the reference base for
the unit of measurement. The reference base is the ultimate source of
authority for the measurement unit.

For
fundamental
units

Reference bases for fundamental units of measurement (length, mass,
temperature, voltage, and time) and some derived units (such as
pressure, force, flow rate, etc.) are maintained by national and regional
standards laboratories. Consensus values from interlaboratory tests or
instrumentation/standards as maintained in specific environments may
serve as reference bases for other units of measurement.

For
comparison
purposes

A reference base, for comparison purposes, may be based on an
agreement among participating laboratories or organizations and derived
from

measurements made with a standard test method●   

measurements derived from an interlaboratory test●   

2.1.1.2. Reference base
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2. Measurement Process Characterization
2.1. Characterization
2.1.1. What are the issues for characterization?

2.1.1.3.Bias and Accuracy

Definition of
Accuracy and
Bias

Accuracy is a qualitative term referring to whether there is agreement
between a measurement made on an object and its true (target or
reference) value. Bias is a quantitative term describing the difference
between the average of measurements made on the same object and its
true value. In particular, for a measurement laboratory, bias is the
difference (generally unknown) between a laboratory's average value
(over time) for a test item and the average that would be achieved by
the reference laboratory if it undertook the same measurements on the
same test item.

Depiction of
bias and
unbiased
measurements  Unbiased measurements relative to the target

 Biased measurements relative to the target

Identification
of bias

Bias in a measurement process can be identified by:

Calibration of standards and/or instruments by a reference
laboratory, where a value is assigned to the client's standard
based on comparisons with the reference laboratory's standards.

1.  

Check standards , where violations of the control limits on a
control chart for the check standard suggest that re-calibration of
standards or instruments is needed.

2.  

Measurement assurance programs, where artifacts from a
reference laboratory or other qualified agency are sent to a client
and measured in the client's environment as a 'blind' sample.

3.  

Interlaboratory comparisons, where reference standards or4.  

2.1.1.3. Bias and Accuracy
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materials are circulated among several laboratories.

Reduction of
bias

Bias can be eliminated or reduced by calibration of standards and/or
instruments. Because of costs and time constraints, the majority of
calibrations are performed by secondary or tertiary laboratories and are
related to the reference base via a chain of intercomparisons that start
at the reference laboratory.

Bias can also be reduced by corrections to in-house measurements
based on comparisons with artifacts or instruments circulated for that
purpose (reference materials).

Caution Errors that contribute to bias can be present even where all equipment
and standards are properly calibrated and under control. Temperature
probably has the most potential for introducing this type of bias into
the measurements. For example, a constant heat source will introduce
serious errors in dimensional measurements of metal objects.
Temperature affects chemical and electrical measurements as well.

Generally speaking, errors of this type can be identified only by those
who are thoroughly familiar with the measurement technology. The
reader is advised to consult the technical literature and experts in the
field for guidance.

2.1.1.3. Bias and Accuracy
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2. Measurement Process Characterization
2.1. Characterization
2.1.1. What are the issues for characterization?

2.1.1.4.Variability

Sources of
time-dependent
variability

Variability is the tendency of the measurement process to produce slightly different
measurements on the same test item, where conditions of measurement are either stable
or vary over time, temperature, operators, etc. In this chapter we consider two sources of
time-dependent variability:

Short-term variability ascribed to the precision of the instrument●   

Long-term variability related to changes in environment and handling techniques●   

Depiction of
two
measurement
processes with
the same
short-term
variability over
six days where
process 1 has
large
between-day
variability and
process 2 has
negligible
between-day
variability

              Process 1                Process 2
Large between-day variability  Small between-day variability

 

Distributions of short-term measurements over 6 days where
distances from the centerlines illustrate between-day variability

2.1.1.4. Variability

http://www.itl.nist.gov/div898/handbook/mpc/section1/mpc114.htm (1 of 3) [5/1/2006 10:11:19 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Short-term
variability

Short-term errors affect the precision of the instrument. Even very precise instruments
exhibit small changes caused by random errors. It is useful to think in terms of
measurements performed with a single instrument over minutes or hours; this is to be
understood, normally, as the time that it takes to complete a measurement sequence.

Terminology Four terms are in common usage to describe short-term phenomena. They are
interchangeable.

precision1.  

repeatability2.  

within-time variability3.  

short-term variability4.  

Precision is
quantified by a
standard
deviation

The measure of precision is a standard deviation. Good precision implies a small standard
deviation. This standard deviation is called the short-term standard deviation of the
process or the repeatability standard deviation.

Caution --
long-term
variability may
be dominant

With very precise instrumentation, it is not unusual to find that the variability exhibited
by the measurement process from day-to-day often exceeds the precision of the
instrument because of small changes in environmental conditions and handling
techniques which cannot be controlled or corrected in the measurement process. The
measurement process is not completely characterized until this source of variability is
quantified.

Terminology Three terms are in common usage to describe long-term phenomena. They are
interchangeable.

day-to-day variability1.  

long-term variability2.  

reproducibility3.  

Caution --
regarding term
'reproducibility'

The term 'reproducibility' is given very specific definitions in some national and
international standards. However, the definitions are not always in agreement. Therefore,
it is used here only in a generic sense to indicate variability across days.

Definitions in
this Handbook

We adopt precise definitions and provide data collection and analysis techniques in the
sections on check standards and measurement control for estimating:

Level-1 standard deviation for short-term variability●   

Level-2 standard deviation for day-to-day variability●   

In the section on gauge studies, the concept of variability is extended to include very
long-term measurement variability:

Level-1 standard deviation for short-term variability●   

Level-2 standard deviation for day-to-day variability●   

Level-3 standard deviation for very long-term variability●   

We refer to the standard deviations associated with these three kinds of uncertainty as

2.1.1.4. Variability
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"Level 1, 2, and 3 standard deviations", respectively.

Long-term
variability is
quantified by a
standard
deviation

The measure of long-term variability is the standard deviation of measurements taken
over several days, weeks or months.

The simplest method for doing this assessment is by analysis of a check standard
database. The measurements on the check standards are structured to cover a long time
interval and to capture all sources of variation in the measurement process.

2.1.1.4. Variability
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2. Measurement Process Characterization
2.1. Characterization

2.1.2.What is a check standard?

A check
standard is
useful for
gathering
data on the
process

Check standard methodology is a tool for collecting data on the
measurement process to expose errors that afflict the process over
time. Time-dependent sources of error are evaluated and quantified
from the database of check standard measurements. It is a device for
controlling the bias and long-term variability of the process once a
baseline for these quantities has been established from historical data
on the check standard.

Think in
terms of data

A check
standard can
be an artifact
or defined
quantity

The check standard should be thought of in terms of a database of
measurements. It can be defined as an artifact or as a characteristic of
the measurement process whose value can be replicated from
measurements taken over the life of the process. Examples are:

measurements on a stable artifact●   

differences between values of two reference standards as
estimated from a calibration experiment

●   

values of a process characteristic, such as a bias term, which is
estimated from measurements on reference standards and/or test
items.

●   

An artifact check standard must be close in material content and
geometry to the test items that are measured in the workload. If
possible, it should be one of the test items from the workload.
Obviously, it should be a stable artifact and should be available to the
measurement process at all times.

Solves the
difficulty of
sampling the
process

Measurement processes are similar to production processes in that they
are continual and are expected to produce identical results (within
acceptable limits) over time, instruments, operators, and environmental
conditions. However, it is difficult to sample the output of the
measurement process because, normally, test items change with each
measurement sequence.

2.1.2. What is a check standard?
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Surrogate for
unseen
measurements

Measurements on the check standard, spaced over time at regular
intervals, act as surrogates for measurements that could be made on
test items if sufficient time and resources were available.

2.1.2. What is a check standard?
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2. Measurement Process Characterization
2.1. Characterization
2.1.2. What is a check standard?

2.1.2.1.Assumptions

Case study:

Resistivity check
standard

Before applying the quality control procedures recommended in
this chapter to check standard data, basic assumptions should be
examined. The basic assumptions underlying the quality control
procedures are:

The data come from a single statistical distribution.1.  

The distribution is a normal distribution.2.  

The errors are uncorrelated over time.3.  

An easy method for checking the assumption of a single normal
distribution is to construct a histogram of the check standard data.
The histogram should follow a bell-shaped pattern with a single
hump. Types of anomalies that indicate a problem with the
measurement system are:

a double hump indicating that errors are being drawn from
two or more distributions;

1.  

long tails indicating outliers in the process;2.  

flat pattern or one with humps at either end indicating that
the measurement process in not in control or not properly
specified.

3.  

Another graphical method for testing the normality assumption is a
probability plot. The points are expected to fall approximately on a
straight line if the data come from a normal distribution. Outliers,
or data from other distributions, will produce an S-shaped curve.

2.1.2.1. Assumptions
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A graphical method for testing for correlation among
measurements is a time-lag plot. Correlation will frequently not be
a problem if measurements are properly structured over time.
Correlation problems generally occur when measurements are
taken so close together in time that the instrument cannot properly
recover from one measurement to the next. Correlations over time
are usually present but are often negligible.

2.1.2.1. Assumptions
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2. Measurement Process Characterization
2.1. Characterization
2.1.2. What is a check standard?

2.1.2.2.Data collection

Schedule for
making
measurements

A schedule for making check standard measurements over time (once a day, twice a
week, or whatever is appropriate for sampling all conditions of measurement) should
be set up and adhered to. The check standard measurements should be structured in
the same way as values reported on the test items. For example, if the reported values
are averages of two repetitions made within 5 minutes of each other, the check
standard values should be averages of the two measurements made in the same
manner.

Exception One exception to this rule is that there should be at least J = 2 repetitions per day.
Without this redundancy, there is no way to check on the short-term precision of the
measurement system.

Depiction of
schedule for
making check
standard
measurements
with four
repetitions
per day over
K days on the
surface of a
silicon wafer
with the
repetitions
randomized
at various
positions on
the wafer

K days - 4 repetitions

2-level design for measurement process

2.1.2.2. Data collection
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Case study:
Resistivity
check
standard for
measurements
on silicon
wafers

The values for the check standard should be recorded along with pertinent
environmental readings and identifications for all other significant factors. The best
way to record this information is in one file with one line or row (on a spreadsheet)
of information in fixed fields for each check standard measurement. A list of typical
entries follows.

Identification for check standard1.  

Date2.  

Identification for the measurement design (if applicable)3.  

Identification for the instrument4.  

Check standard value5.  

Short-term standard deviation from J repetitions6.  

Degrees of freedom7.  

Operator identification8.  

Environmental readings (if pertinent)9.  

2.1.2.2. Data collection
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2. Measurement Process Characterization
2.1. Characterization
2.1.2. What is a check standard?

2.1.2.3.Analysis

Short-term
or level-1
standard
deviations
from J
repetitions

An analysis of the check standard data is the basis for quantifying
random errors in the measurement process -- particularly
time-dependent errors.

Given that we have a database of check standard measurements as
described in data collection where

represents the jth repetition on the kth day, the mean for the kth day is

and the short-term (level-1) standard deviation with v = J - 1 degrees of
freedom is

.

2.1.2.3. Analysis
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Drawback
of
short-term
standard
deviations

An individual short-term standard deviation will not be a reliable
estimate of precision if the degrees of freedom is less than ten, but the
individual estimates can be pooled over the K days to obtain a more
reliable estimate. The pooled level-1 standard deviation estimate with v
= K(J - 1) degrees of freedom is

.

This standard deviation can be interpreted as quantifying the basic
precision of the instrumentation used in the measurement process.

Process
(level-2)
standard
deviation

The level-2 standard deviation of the check standard is appropriate for
representing the process variability. It is computed with v = K - 1
degrees of freedom as:

where

is the grand mean of the KJ check standard measurements.

Use in
quality
control

The check standard data and standard deviations that are described in
this section are used for controlling two aspects of a measurement
process:

Control of short-term variability1.  

Control of bias and long-term variability2.  

Case study:
Resistivity
check
standard

For an example, see the case study for resistivity where several check
standards were measured J = 6 times per day over several days.

2.1.2.3. Analysis
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2.1.2.3. Analysis
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2. Measurement Process Characterization

2.2.Statistical control of a measurement
process

The purpose of this section is to outline the steps that can be taken to
exercise statistical control over the measurement process and
demonstrate the validity of the uncertainty statement. Measurement
processes can change both with respect to bias and variability. A change
in instrument precision may be readily noted as measurements are being
recorded, but changes in bias or long-term variability are difficult to
catch when the process is looking at a multitude of artifacts over time.

What are the issues for control of a measurement process?

Purpose1.  

Assumptions2.  

Role of the check standard3.  

How are bias and long-term variability controlled?

Shewhart control chart1.  

Exponentially weighted moving average control chart2.  

Data collection and analysis3.  

Control procedure4.  

Remedial actions & strategies5.  

How is short-term variability controlled?

Control chart for standard deviations1.  

Data collection and analysis2.  

Control procedure3.  

Remedial actions and strategies4.  

2.2. Statistical control of a measurement process
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2. Measurement Process Characterization
2.2. Statistical control of a measurement process

2.2.1.What are the issues in controlling the
measurement process?

Purpose is to
guarantee the
'goodness' of
measurement
results

The purpose of statistical control is to guarantee the 'goodness' of
measurement results within predictable limits and to validate the
statement of uncertainty of the measurement result.

Statistical control methods can be used to test the measurement
process for change with respect to bias and variability from its
historical levels. However, if the measurement process is improperly
specified or calibrated, then the control procedures can only guarantee
comparability among measurements.

Assumption of
normality is
not stringent

The assumptions that relate to measurement processes apply to
statistical control; namely that the errors of measurement are
uncorrelated over time and come from a population with a single
distribution. The tests for control depend on the assumption that the
underlying distribution is normal (Gaussian), but the test procedures
are robust to slight departures from normality. Practically speaking, all
that is required is that the distribution of measurements be bell-shaped
and symmetric.

Check
standard is
mechanism
for controlling
the process

Measurements on a check standard provide the mechanism for
controlling the measurement process.

Measurements on the check standard should produce identical results
except for the effect of random errors, and tests for control are
basically tests of whether or not the random errors from the process
continue to be drawn from the same statistical distribution as the
historical data on the check standard.

Changes that can be monitored and tested with the check standard
database are:

Changes in bias and long-term variability1.  

Changes in instrument precision or short-term variability2.  

2.2.1. What are the issues in controlling the measurement process?
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2.2.1. What are the issues in controlling the measurement process?
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2. Measurement Process Characterization
2.2. Statistical control of a measurement process

2.2.2.How are bias and variability controlled?

Bias and
variability
are controlled
by monitoring
measurements
on a check
standard over
time

Bias and long-term variability are controlled by monitoring measurements
on a check standard over time. A change in the measurement on the check
standard that persists at a constant level over several measurement sequences
indicates possible:

Change or damage to the reference standards1.  

Change or damage to the check standard artifact2.  

Procedural change that vitiates the assumptions of the measurement
process

3.  

A change in the variability of the measurements on the check standard can
be due to one of many causes such as:

Loss of environmental controls1.  

Change in handling techniques2.  

Severe degradation in instrumentation.3.  

The control procedure monitors the progress of measurements on the check
standard over time and signals when a significant change occurs. There are
two control chart procedures that are suitable for this purpose.

Shewhart
Chart is easy
to implement

The Shewhart control chart has the advantage of being intuitive and easy to
implement. It is characterized by a center line and symmetric upper and
lower control limits. The chart is good for detecting large changes but not
for quickly detecting small changes (of the order of one-half to one standard
deviation) in the process.

2.2.2. How are bias and variability controlled?
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Depiction of
Shewhart
control chart

In the simplistic illustration of a Shewhart control chart shown below, the
measurements are within the control limits with the exception of one
measurement which exceeds the upper control limit.

EWMA Chart
is better for
detecting
small changes

The EWMA control chart (exponentially weighted moving average) is more
difficult to implement but should be considered if the goal is quick detection
of small changes. The decision process for the EWMA chart is based on an
exponentially decreasing (over time) function of prior measurements on the
check standard while the decision process for the Shewhart chart is based on
the current measurement only.

Example of
EWMA Chart

In the EWMA control chart below, the red dots represent the measurements.
Control is exercised via the exponentially weighted moving average (shown
as the curved line) which, in this case, is approaching its upper control limit.

2.2.2. How are bias and variability controlled?
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Artifacts for
process
control must
be stable and
available

Case study:
Resistivity

The check standard artifacts for controlling the bias or long-term variability
of the process must be of the same type and geometry as items that are
measured in the workload. The artifacts must be stable and available to the
measurement process on a continuing basis. Usually, one artifact is
sufficient. It can be:

An individual item drawn at random from the workload1.  

A specific item reserved by the laboratory for the purpose.2.  

Topic covered
in this
section>

The topics covered in this section include:

Shewhart control chart methodology1.  

EWMA control chart methodology2.  

Data collection & analysis3.  

Monitoring4.  

Remedies and strategies for dealing with out-of-control signals.5.  

2.2.2. How are bias and variability controlled?
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2. Measurement Process Characterization
2.2. Statistical control of a measurement process
2.2.2. How are bias and variability controlled?

2.2.2.1.Shewhart control chart

Example of
Shewhart
control chart
for mass
calibrations

The Shewhart control chart has a baseline and upper and lower limits,
shown as dashed lines, that are symmetric about the baseline.
Measurements are plotted on the chart versus a time line.
Measurements that are outside the limits are considered to be out of
control.

Baseline is the
average from
historical data

The baseline for the control chart is the accepted value, an average of
the historical check standard values. A minimum of 100 check
standard values is required to establish an accepted value.

Caution -
control limits
are computed
from the
process
standard
deviation --
not from
rational
subsets

The upper (UCL) and lower (LCL) control limits are:

UCL = Accepted value + k*process standard
deviation

LCL = Accepted value - k*process standard deviation

where the process standard deviation is the standard deviation
computed from the check standard database.

Individual
measurements
cannot be
assessed using
the standard
deviation from
short-term
repetitions

This procedure is an individual observations control chart. The
previously described control charts depended on rational subsets,
which use the standard deviations computed from the rational subsets
to calculate the control limits. For a measurement process, the
subgroups would consist of short-term repetitions which can
characterize the precision of the instrument but not the long-term
variability of the process. In measurement science, the interest is in
assessing individual measurements (or averages of short-term
repetitions). Thus, the standard deviation over time is the appropriate
measure of variability.

2.2.2.1. Shewhart control chart

http://www.itl.nist.gov/div898/handbook/mpc/section2/mpc221.htm (1 of 2) [5/1/2006 10:11:23 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Choice of k
depends on
number of
measurements
we are willing
to reject

To achieve tight control of the measurement process, set

k = 2

in which case approximately 5% of the measurements from a process
that is in control will produce out-of-control signals. This assumes
that there is a sufficiently large number of degrees of freedom (>100)
for estimating the process standard deviation.

To flag only those measurements that are egregiously out of control,
set

k = 3

in which case approximately 1% of the measurements from an
in-control process will produce out-of-control signals.

2.2.2.1. Shewhart control chart
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2. Measurement Process Characterization
2.2. Statistical control of a measurement process
2.2.2. How are bias and variability controlled?
2.2.2.1. Shewhart control chart

2.2.2.1.1.EWMA control chart

Small
changes only
become
obvious over
time

Because it takes time for the patterns in the data to emerge, a permanent
shift in the process may not immediately cause individual violations of
the control limits on a Shewhart control chart. The Shewhart control
chart is not powerful for detecting small changes, say of the order of 1 -
1/2 standard deviations. The EWMA (exponentially weighted moving
average) control chart is better suited to this purpose.

Example of
EWMA
control chart
for mass
calibrations

The exponentially weighted moving average (EWMA) is a statistic for
monitoring the process that averages the data in a way that gives less
and less weight to data as they are further removed in time from the
current measurement. The data

Y1, Y2, ... , Yt

are the check standard measurements ordered in time. The EWMA
statistic at time t is computed recursively from individual data points,
with the first EWMA statistic, EWMA1, being the arithmetic average of
historical data.

Control
mechanism
for EWMA

The EWMA control chart can be made sensitive to small changes or a

gradual drift in the process by the choice of the weighting factor, . A
weighting factor of 0.2 - 0.3 is usually suggested for this purpose
(Hunter), and 0.15 is also a popular choice.

2.2.2.1.1. EWMA control chart
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Limits for the
control chart

The target or center line for the control chart is the average of historical
data. The upper (UCL) and lower (LCL) limits are

where s times the radical expression is a good approximation to the
standard deviation of the EWMA statistic and the factor k is chosen in
the same way as for the Shewhart control chart -- generally to be 2 or 3.

Procedure
for
implementing
the EWMA
control chart

The implementation of the EWMA control chart is the same as for any
other type of control procedure. The procedure is built on the
assumption that the "good" historical data are representative of the
in-control process, with future data from the same process tested for
agreement with the historical data. To start the procedure, a target
(average) and process standard deviation are computed from historical
check standard data. Then the procedure enters the monitoring stage
with the EWMA statistics computed and tested against the control
limits. The EWMA statistics are weighted averages, and thus their
standard deviations are smaller than the standard deviations of the raw
data and the corresponding control limits are narrower than the control
limits for the Shewhart individual observations chart.

2.2.2.1.1. EWMA control chart

http://www.itl.nist.gov/div898/handbook/mpc/section2/mpc2211.htm (2 of 2) [5/1/2006 10:11:23 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


2. Measurement Process Characterization
2.2. Statistical control of a measurement process
2.2.2. How are bias and variability controlled?

2.2.2.2.Data collection

Measurements
should cover
a sufficiently
long time
period to
cover all
environmental
conditions

A schedule should be set up for making measurements on the artifact (check
standard) chosen for control purposes. The measurements are structured to sample all
environmental conditions in the laboratory and all other sources of influence on the
measurement result, such as operators and instruments.

For high-precision processes where the uncertainty of the result must be guaranteed,
a measurement on the check standard should be included with every measurement
sequence, if possible, and at least once a day.

For each occasion, J measurements are made on the check standard. If there is no
interest in controlling the short-term variability or precision of the instrument, then
one measurement is sufficient. However, a dual purpose is served by making two or
three measurements that track both the bias and the short-term variability of the
process with the same database.

Depiction of
check
standard
measurements
with J = 4
repetitions
per day on the
surface of a
silicon wafer
over K days
where the
repetitions
are
randomized
over position
on the wafer

K days - 4 repetitions

2-level design for measurements on a check standard

Notation For J measurements on each of K days, the measurements are denoted by

2.2.2.2. Data collection
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The check
standard
value is
defined as an
average of
short-term
repetitions

The check standard value for the kth day is

Accepted
value of check
standard

The accepted value, or baseline for the control chart, is

Process
standard
deviation

The process standard deviation is

Caution Check standard measurements should be structured in the same way as values
reported on the test items. For example, if the reported values are averages of two
measurements made within 5 minutes of each other, the check standard values
should be averages of the two measurements made in the same manner.

Database

Case study:
Resistivity

Averages and short-term standard deviations computed from J repetitions should be
recorded in a file along with identifications for all significant factors. The best way
to record this information is to use one file with one line (row in a spreadsheet) of
information in fixed fields for each group. A list of typical entries follows:

Month1.  

Day2.  

Year3.  

Check standard identification4.  

Identification for the measurement design (if applicable)5.  

Instrument identification6.  

Check standard value7.  

Repeatability (short-term) standard deviation from J repetitions8.  

Degrees of freedom9.  

Operator identification10.  

Environmental readings (if pertinent)11.  

2.2.2.2. Data collection

http://www.itl.nist.gov/div898/handbook/mpc/section2/mpc222.htm (2 of 3) [5/1/2006 10:11:24 AM]



2.2.2.2. Data collection
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2. Measurement Process Characterization
2.2. Statistical control of a measurement process
2.2.2. How are bias and variability controlled?

2.2.2.3.Monitoring bias and long-term variability

Monitoring
stage

Once the baseline and control limits for the control chart have been determined from historical data,
and any bad observations removed and the control limits recomputed, the measurement process enters
the monitoring stage. A Shewhart control chart and EWMA control chart for monitoring a mass
calibration process are shown below. For the purpose of comparing the two techniques, the two
control charts are based on the same data where the baseline and control limits are computed from the
data taken prior to 1985. The monitoring stage begins at the start of 1985. Similarly, the control limits
for both charts are 3-standard deviation limits. The check standard data and analysis are explained
more fully in another section.

Shewhart
control chart
of
measurements
of kilogram
check
standard
showing
outliers and a
shift in the
process that
occurred after
1985

2.2.2.3. Monitoring bias and long-term variability
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EWMA chart
for
measurements
on kilogram
check
standard
showing
multiple
violations of
the control
limits for the
EWMA
statistics

In the EWMA control chart below, the control data after 1985 are shown in green, and the EWMA
statistics are shown as black dots superimposed on the raw data. The EWMA statistics, and not the
raw data, are of interest in looking for out-of-control signals. Because the EWMA statistic is a
weighted average, it has a smaller standard deviation than a single control measurement, and,
therefore, the EWMA control limits are narrower than the limits for the Shewhart control chart shown
above.

Measurements
that exceed
the control
limits require
action

The control strategy is based on the predictability of future measurements from historical data. Each
new check standard measurement is plotted on the control chart in real time. These values are
expected to fall within the control limits if the process has not changed. Measurements that exceed the
control limits are probably out-of-control and require remedial action. Possible causes of
out-of-control signals need to be understood when developing strategies for dealing with outliers.

Signs of
significant
trends or
shifts

The control chart should be viewed in its entirety on a regular basis] to identify drift or shift in the
process. In the Shewhart control chart shown above, only a few points exceed the control limits. The
small, but significant, shift in the process that occurred after 1985 can only be identified by examining
the plot of control measurements over time. A re-analysis of the kilogram check standard data shows
that the control limits for the Shewhart control chart should be updated based on the the data after
1985. In the EWMA control chart, multiple violations of the control limits occur after 1986. In the
calibration environment, the incidence of several violations should alert the control engineer that a
shift in the process has occurred, possibly because of damage or change in the value of a reference
standard, and the process requires review.

2.2.2.3. Monitoring bias and long-term variability
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2.2.2.3. Monitoring bias and long-term variability
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2. Measurement Process Characterization
2.2. Statistical control of a measurement process
2.2.2. How are bias and variability controlled?

2.2.2.4.Remedial actions

Consider
possible
causes for
out-of-control
signals and
take
corrective
long-term
actions

There are many possible causes of out-of-control signals.

A. Causes that do not warrant corrective action for the process (but
which do require that the current measurement be discarded) are:

Chance failure where the process is actually in-control1.  

Glitch in setting up or operating the measurement process2.  

Error in recording of data3.  

B. Changes in bias can be due to:

Damage to artifacts1.  

Degradation in artifacts (wear or build-up of dirt and mineral
deposits)

2.  

C. Changes in long-term variability can be due to:

Degradation in the instrumentation1.  

Changes in environmental conditions2.  

Effect of a new or inexperienced operator3.  

4-step
strategy for
short-term

An immediate strategy for dealing with out-of-control signals
associated with high precision measurement processes should be
pursued as follows:

Repeat
measurements

Repeat the measurement sequence to establish whether or not
the out-of-control signal was simply a chance occurrence, glitch,
or whether it flagged a permanent change or trend in the process.

1.  

Discard
measurements
on test items

With high precision processes, for which a check standard is
measured along with the test items, new values should be
assigned to the test items based on new measurement data.

2.  

2.2.2.4. Remedial actions
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Check for
drift

Examine the patterns of recent data. If the process is gradually
drifting out of control because of degradation in instrumentation
or artifacts, then:

Instruments may need to be repaired❍   

Reference artifacts may need to be recalibrated.❍   

3.  

Reevaluate Reestablish the process value and control limits from more
recent data if the measurement process cannot be brought back
into control.

4.  

2.2.2.4. Remedial actions
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2. Measurement Process Characterization
2.2. Statistical control of a measurement process

2.2.3.How is short-term variability
controlled?

Emphasis on
instruments

Short-term variability or instrument precision is controlled by
monitoring standard deviations from repeated measurements on the
instrument(s) of interest. The database can come from measurements on
a single artifact or a representative set of artifacts.

Artifacts -
Case study:
Resistivity

The artifacts must be of the same type and geometry as items that are
measured in the workload, such as:

Items from the workload1.  

A single check standard chosen for this purpose2.  

A collection of artifacts set aside for this specific purpose3.  

Concepts
covered in
this section

The concepts that are covered in this section include:

Control chart methodology for standard deviations1.  

Data collection and analysis2.  

Monitoring3.  

Remedies and strategies for dealing with out-of-control signals4.  

2.2.3. How is short-term variability controlled?
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2. Measurement Process Characterization
2.2. Statistical control of a measurement process
2.2.3. How is short-term variability controlled?

2.2.3.1.Control chart for standard
deviations

Degradation
of instrument
or anomalous
behavior on
one occasion

Changes in the precision of the instrument, particularly anomalies and
degradation, must be addressed. Changes in precision can be detected
by a statistical control procedure based on the F-distribution where the
short-term standard deviations are plotted on the control chart.

The base line for this type of control chart is the pooled standard
deviation, s1, as defined in Data collection and analysis.

Example of
control chart
for a mass
balance

Only the upper control limit, UCL, is of interest for detecting
degradation in the instrument. As long as the short-term standard
deviations fall within the upper control limit established from historical
data, there is reason for confidence that the precision of the instrument
has not degraded (i.e., common cause variations).

The control
limit is based
on the
F-distribution

The control limit is

where the quantity under the radical is the upper  critical value from
the F-table with degrees of freedom (J - 1) and K(J - 1). The numerator
degrees of freedom, v1 = (J -1), refers to the standard deviation
computed from the current measurements, and the denominator
degrees of freedom, v2 = K(J -1), refers to the pooled standard
deviation of the historical data. The probability  is chosen to be
small, say 0.05.

The justification for this control limit, as opposed to the more
conventional standard deviation control limit, is that we are essentially
performing the following hypothesis test:

H0: 1 = 2
Ha: 2 > 1

2.2.3.1. Control chart for standard deviations
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where 1 is the population value for the s1 defined above and 2 is the
population value for the standard deviation of the current values being
tested. Generally, s1 is based on sufficient historical data that it is
reasonable to make the assumption that 1 is a "known" value.

The upper control limit above is then derived based on the standard
F-test for equal standard deviations. Justification and details of this
derivation are given in Cameron and Hailes (1974).

Run software
macro for
computing
the F factor

Dataplot can compute the value of the F-statistic. For the case where
alpha = 0.05; J = 6; K = 6, the commands

let alpha = 0.05
let alphau = 1 - alpha
let j = 6
let k = 6
let v1 = j-1
let v2 = k*(v1)
let F = fppf(alphau, v1, v2)

return the following value:

THE COMPUTED VALUE OF THE CONSTANT F =
0.2533555E+01

2.2.3.1. Control chart for standard deviations
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2. Measurement Process Characterization
2.2. Statistical control of a measurement process
2.2.3. How is short-term variability controlled?

2.2.3.2.Data collection

Case study:
Resistivity

A schedule should be set up for making measurements with a single
instrument (once a day, twice a week, or whatever is appropriate for
sampling all conditions of measurement).

Short-term
standard
deviations

The measurements are denoted

where there are J measurements on each of K occasions. The average for
the kth occasion is:

The short-term (repeatability) standard deviation for the kth occasion is:

with (J-1) degrees of freedom.

2.2.3.2. Data collection
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Pooled
standard
deviation

The repeatability standard deviations are pooled over the K occasions to
obtain an estimate with K(J - 1) degrees of freedom of the level-1
standard deviation

Note: The same notation is used for the repeatability standard deviation
whether it is based on one set of measurements or pooled over several
sets.

Database The individual short-term standard deviations along with identifications
for all significant factors are recorded in a file. The best way to record
this information is by using one file with one line (row in a spreadsheet)
of information in fixed fields for each group. A list of typical entries
follows.

Identification of test item or check standard1.  

Date2.  

Short-term standard deviation3.  

Degrees of freedom4.  

Instrument5.  

Operator6.  

2.2.3.2. Data collection
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2. Measurement Process Characterization
2.2. Statistical control of a measurement process
2.2.3. How is short-term variability controlled?

2.2.3.3.Monitoring short-term precision

Monitoring future precision Once the base line and control limit for the control chart have been determined from
historical data, the measurement process enters the monitoring stage. In the control chart
shown below, the control limit is based on the data taken prior to 1985.

Each new standard deviation is
monitored on the control chart

Each new short-term standard deviation based on J measurements is plotted on the control
chart; points that exceed the control limits probably indicate lack of statistical control. Drift
over time indicates degradation of the instrument. Points out of control require remedial
action, and possible causes of out of control signals need to be understood when developing
strategies for dealing with outliers.

Control chart for precision for a
mass balance from historical
standard deviations for the balance
with 3 degrees of freedom each. The
control chart identifies two outliers
and slight degradation over time in
the precision of the balance

TIME IN YEARS

Monitoring where the number of
measurements are different from J

2.2.3.3. Monitoring short-term precision
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There is no requirement that future
standard deviations be based on J,
the number of measurements in the
historical database. However, a
change in the number of
measurements leads to a change in
the test for control, and it may not be
convenient to draw a control chart
where the control limits are
changing with each new
measurement sequence.

For a new standard deviation based
on J' measurements, the precision of
the instrument is in control if

.

Notice that the numerator degrees of
freedom, v1 = J'- 1, changes but the
denominator degrees of freedom, v2
= K(J - 1), remains the same.

2.2.3.3. Monitoring short-term precision
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2. Measurement Process Characterization
2.2. Statistical control of a measurement process
2.2.3. How is short-term variability controlled?

2.2.3.4.Remedial actions

Examine
possible
causes

A. Causes that do not warrant corrective action (but which do require
that the current measurement be discarded) are:

Chance failure where the precision is actually in control1.  

Glitch in setting up or operating the measurement process2.  

Error in recording of data3.  

B. Changes in instrument performance can be due to:

Degradation in electronics or mechanical components1.  

Changes in environmental conditions2.  

Effect of a new or inexperienced operator3.  

Repeat
measurements

Repeat the measurement sequence to establish whether or not the
out-of-control signal was simply a chance occurrence, glitch, or
whether it flagged a permanent change or trend in the process.

Assign new
value to test
item

With high precision processes, for which the uncertainty must be
guaranteed, new values should be assigned to the test items based on
new measurement data.

Check for
degradation

Examine the patterns of recent standard deviations. If the process is
gradually drifting out of control because of degradation in
instrumentation or artifacts, instruments may need to be repaired or
replaced.

2.2.3.4. Remedial actions
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2. Measurement Process Characterization

2.3.Calibration

The purpose of this section is to outline the procedures for calibrating
artifacts and instruments while guaranteeing the 'goodness' of the
calibration results. Calibration is a measurement process that assigns
values to the property of an artifact or to the response of an instrument
relative to reference standards or to a designated measurement process.
The purpose of calibration is to eliminate or reduce bias in the user's
measurement system relative to the reference base. The calibration
procedure compares an "unknown" or test item(s) or instrument with
reference standards according to a specific algorithm.

What are the issues for calibration?

Artifact or instrument calibration1.  

Reference base2.  

Reference standard(s)3.  

What is artifact (single-point) calibration?

Purpose1.  

Assumptions2.  

Bias3.  

Calibration model4.  

What are calibration designs?

Purpose1.  

Assumptions2.  

Properties of designs3.  

Restraint4.  

Check standard in a design5.  

Special types of bias (left-right effect & linear drift)6.  

Solutions to calibration designs7.  

Uncertainty of calibrated values8.  

2.3. Calibration
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Catalog of calibration designs

Mass weights1.  

Gage blocks2.  

Electrical standards - saturated standard cells, zeners, resistors3.  

Roundness standards4.  

Angle blocks5.  

Indexing tables6.  

Humidity cylinders7.  

Control of artifact calibration

Control of the precision of the calibrating instrument1.  

Control of bias and long-term variability2.  

What is instrument calibration over a regime?

Models for instrument calibration1.  

Data collection2.  

Assumptions3.  

What can go wrong with the calibration procedure?4.  

Data analysis and model validation5.  

Calibration of future measurements6.  

Uncertainties of calibrated values

From propagation of error for a quadratic calibration1.  

From check standard measurements for a linear calibration2.  

Comparison of check standard technique and propagation
of error

3.  

7.  

Control of instrument calibration

Control chart for linear calibration1.  

Critical values of t* statistic2.  

2.3. Calibration
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2. Measurement Process Characterization
2.3. Calibration

2.3.1. Issues in calibration

Calibration
reduces bias

Calibration is a measurement process that assigns values to the property
of an artifact or to the response of an instrument relative to reference
standards or to a designated measurement process. The purpose of
calibration is to eliminate or reduce bias in the user's measurement
system relative to the reference base.

Artifact &
instrument
calibration

The calibration procedure compares an "unknown" or test item(s) or
instrument with reference standards according to a specific algorithm.
Two general types of calibration are considered in this Handbook:

artifact calibration at a single point●   

instrument calibration over a regime●   

Types of
calibration
not
discussed

The procedures in this Handbook are appropriate for calibrations at
secondary or lower levels of the traceability chain where reference
standards for the unit already exist. Calibration from first principles of
physics and reciprocity calibration are not discussed.

2.3.1. Issues in calibration
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2. Measurement Process Characterization
2.3. Calibration
2.3.1. Issues in calibration

2.3.1.1.Reference base

Ultimate
authority

The most critical element of any measurement process is the
relationship between a single measurement and the reference base for
the unit of measurement. The reference base is the ultimate source of
authority for the measurement unit.

Base and
derived units
of
measurement

The base units of measurement in the Le Systeme International d'Unites
(SI) are (Taylor):

kilogram - mass●   

meter - length●   

second - time●   

ampere - electric current●   

kelvin - thermodynamic temperature●   

mole - amount of substance●   

candela - luminous intensity●   

These units are maintained by the Bureau International des Poids et
Mesures in Paris. Local reference bases for these units and SI derived
units such as:

pascal - pressure●   

newton - force●   

hertz - frequency●   

ohm - resistance●   

degrees Celsius - Celsius temperature, etc.●   

are maintained by national and regional standards laboratories.

Other
sources

Consensus values from interlaboratory tests or
instrumentation/standards as maintained in specific environments may
serve as reference bases for other units of measurement.

2.3.1.1. Reference base
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2.3.1.1. Reference base
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2. Measurement Process Characterization
2.3. Calibration
2.3.1. Issues in calibration

2.3.1.2.Reference standards

Primary
reference
standards

A reference standard for a unit of measurement is an artifact that
embodies the quantity of interest in a way that ties its value to the
reference base.

At the highest level, a primary reference standard is assigned a value by
direct comparison with the reference base. Mass is the only unit of
measurement that is defined by an artifact. The kilogram is defined as
the mass of a platinum-iridium kilogram that is maintained by the
Bureau International des Poids et Mesures in Sevres, France.

Primary reference standards for other units come from realizations of
the units embodied in artifact standards. For example, the reference base
for length is the meter which is defined as the length of the path by light
in vacuum during a time interval of 1/299,792,458 of a second.

Secondary
reference
standards

Secondary reference standards are calibrated by comparing with primary
standards using a high precision comparator and making appropriate
corrections for non-ideal conditions of measurement.

Secondary reference standards for mass are stainless steel kilograms,
which are calibrated by comparing with a primary standard on a high
precision balance and correcting for the buoyancy of air. In turn these
weights become the reference standards for assigning values to test
weights.

Secondary reference standards for length are gage blocks, which are
calibrated by comparing with primary gage block standards on a
mechanical comparator and correcting for temperature. In turn, these
gage blocks become the reference standards for assigning values to test
sets of gage blocks.

2.3.1.2. Reference standards
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2. Measurement Process Characterization
2.3. Calibration

2.3.2.What is artifact (single-point)
calibration?

Purpose Artifact calibration is a measurement process that assigns values to the
property of an artifact relative to a reference standard(s). The purpose of
calibration is to eliminate or reduce bias in the user's measurement
system relative to the reference base.

The calibration procedure compares an "unknown" or test item(s) with a
reference standard(s) of the same nominal value (hence, the term
single-point calibration) according to a specific algorithm called a
calibration design.

Assumptions The calibration procedure is based on the assumption that individual
readings on test items and reference standards are subject to:

Bias that is a function of the measuring system or instrument●   

Random error that may be uncontrollable●   

What is
bias?

The operational definition of bias is that it is the difference between
values that would be assigned to an artifact by the client laboratory and
the laboratory maintaining the reference standards. Values, in this sense,
are understood to be the long-term averages that would be achieved in
both laboratories.

2.3.2. What is artifact (single-point) calibration?
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Calibration
model for
eliminating
bias
requires a
reference
standard
that is very
close in
value to the
test item

One approach to eliminating bias is to select a reference standard that is
almost identical to the test item; measure the two artifacts with a
comparator type of instrument; and take the difference of the two
measurements to cancel the bias. The only requirement on the
instrument is that it be linear over the small range needed for the two
artifacts.

The test item has value X*, as yet to be assigned, and the reference

standard has an assigned value R*. Given a measurement, X, on the

test item and a measurement, R, on the reference standard,

,

the difference between the test item and the reference is estimated by

,

and the value of the test item is reported as

.

Need for
redundancy
leads to
calibration
designs

A deficiency in relying on a single difference to estimate D is that there
is no way of assessing the effect of random errors. The obvious solution
is to:

Repeat the calibration measurements J times●   

Average the results●   

Compute a standard deviation from the J results●   

Schedules of redundant intercomparisons involving measurements on
several reference standards and test items in a connected sequence are
called calibration designs and are discussed in later sections.

2.3.2. What is artifact (single-point) calibration?
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2. Measurement Process Characterization
2.3. Calibration

2.3.3.What are calibration designs?

Calibration
designs are
redundant
schemes for
intercomparing
reference
standards and
test items

Calibration designs are redundant schemes for intercomparing
reference standards and test items in such a way that the values can
be assigned to the test items based on known values of reference
standards. Artifacts that traditionally have been calibrated using
calibration designs are:

mass weights●   

resistors●   

voltage standards●   

length standards●   

angle blocks●   

indexing tables●   

liquid-in-glass thermometers, etc.●   

Outline of
section

The topics covered in this section are:

Designs for elimination of left-right bias and linear drift●   

Solutions to calibration designs●   

Uncertainties of calibrated values●   

A catalog of calibration designs is provided in the next section.

2.3.3. What are calibration designs?
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Assumptions
for calibration
designs include
demands on
the quality of
the artifacts

The assumptions that are necessary for working with calibration
designs are that:

Random errors associated with the measurements are
independent.

●   

All measurements come from a distribution with the same
standard deviation.

●   

Reference standards and test items respond to the measuring
environment in the same manner.

●   

Handling procedures are consistent from item to item.●   

Reference standards and test items are stable during the time of
measurement.

●   

Bias is canceled by taking the difference between
measurements on the test item and the reference standard.

●   

Important
concept -
Restraint

The restraint is the known value of the reference standard or, for
designs with two or more reference standards, the restraint is the
summation of the values of the reference standards.

Requirements
& properties of
designs

Basic requirements are:

The differences must be nominally zero.●   

The design must be solvable for individual items given the
restraint.

●   

It is possible to construct designs which do not have these properties.
This will happen, for example, if reference standards are only
compared among themselves and test items are only compared among
themselves without any intercomparisons.

Practical
considerations
determine a
'good' design

We do not apply 'optimality' criteria in constructing calibration
designs because the construction of a 'good' design depends on many
factors, such as convenience in manipulating the test items, time,
expense, and the maximum load of the instrument.

The number of measurements should be small.●   

The degrees of freedom should be greater than three.●   

The standard deviations of the estimates for the test items
should be small enough for their intended purpose.

●   

2.3.3. What are calibration designs?
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Check
standard in a
design

Designs listed in this Handbook have provision for a check standard
in each series of measurements. The check standard is usually an
artifact, of the same nominal size, type, and quality as the items to be
calibrated. Check standards are used for:

Controlling the calibration process●   

Quantifying the uncertainty of calibrated results●   

Estimates that
can be
computed from
a design

Calibration designs are solved by a restrained least-squares technique
(Zelen) which gives the following estimates:

Values for individual reference standards●   

Values for individual test items●   

Value for the check standard●   

Repeatability standard deviation and degrees of freedom●   

Standard deviations associated with values for reference
standards and test items

●   

2.3.3. What are calibration designs?
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. What are calibration designs?

2.3.3.1.Elimination of special types of bias

Assumptions
which may
be violated

Two of the usual assumptions relating to calibration measurements are
not always valid and result in biases. These assumptions are:

Bias is canceled by taking the difference between the
measurement on the test item and the measurement on the
reference standard

●   

Reference standards and test items remain stable throughout the
measurement sequence

●   

Ideal
situation

In the ideal situation, bias is eliminated by taking the difference
between a measurement X on the test item and a measurement R on the
reference standard. However, there are situations where the ideal is not
satisfied:

Left-right (or constant instrument) bias●   

Bias caused by instrument drift●   

2.3.3.1. Elimination of special types of bias
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. What are calibration designs?
2.3.3.1. Elimination of special types of bias

2.3.3.1.1.Left-right (constant instrument)
bias

Left-right
bias which is
not
eliminated by
differencing

A situation can exist in which a bias, P, which is constant and
independent of the direction of measurement, is introduced by the
measurement instrument itself. This type of bias, which has been
observed in measurements of standard voltage cells (Eicke &
Cameron) and is not eliminated by reversing the direction of the
current, is shown in the following equations.

Elimination
of left-right
bias requires
two
measurements
in reverse
direction

The difference between the test and the reference can be estimated
without bias only by taking the difference between the two
measurements shown above where P cancels in the differencing so
that

.

The value of
the test item
depends on
the known
value of the
reference
standard, R*

The test item, X, can then be estimated without bias by

and P can be estimated by

.

2.3.3.1.1. Left-right (constant instrument) bias
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Calibration
designs that
are left-right
balanced

This type of scheme is called left-right balanced and the principle is
extended to create a catalog of left-right balanced designs for
intercomparing reference standards among themselves. These designs
are appropriate ONLY for comparing reference standards in the same
environment, or enclosure, and are not appropriate for comparing, say,
across standard voltage cells in two boxes.

Left-right balanced design for a group of 3 artifacts1.  

Left-right balanced design for a group of 4 artifacts2.  

Left-right balanced design for a group of 5 artifacts3.  

Left-right balanced design for a group of 6 artifacts4.  

2.3.3.1.1. Left-right (constant instrument) bias
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. What are calibration designs?
2.3.3.1. Elimination of special types of bias

2.3.3.1.2.Bias caused by instrument drift

Bias caused by
linear drift over
the time of
measurement

The requirement that reference standards and test items be stable
during the time of measurement cannot always be met because of
changes in temperature caused by body heat, handling, etc.

Representation
of linear drift

Linear drift for an even number of measurements is represented by

..., -5d, -3d, -1d, +1d, +3d, +5d, ...

and for an odd number of measurements by

..., -3d, -2d, -1d, 0d, +1d, +2d, +3d, ... .

Assumptions for
drift elimination

The effect can be mitigated by a drift-elimination scheme
(Cameron/Hailes) which assumes:

Linear drift over time●   

Equally spaced measurements in time●   

Example of
drift-elimination
scheme

An example is given by substitution weighing where scale
deflections on a balance are observed for X, a test weight, and R, a
reference weight.

2.3.3.1.2. Bias caused by instrument drift
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Estimates of
drift-free
difference and
size of drift

The drift-free difference between the test and the reference is
estimated by

and the size of the drift is estimated by

Calibration
designs for
eliminating
linear drift

This principle is extended to create a catalog of drift-elimination
designs for multiple reference standards and test items. These
designs are listed under calibration designs for gauge blocks because
they have traditionally been used to counteract the effect of
temperature build-up in the comparator during calibration.

2.3.3.1.2. Bias caused by instrument drift
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. What are calibration designs?

2.3.3.2.Solutions to calibration designs

Solutions for
designs listed
in the catalog

Solutions for all designs that are cataloged in this Handbook are included with the
designs. Solutions for other designs can be computed from the instructions on the
following page given some familiarity with matrices.

Measurements
for the 1,1,1
design

The use of the tables shown in the catalog are illustrated for three artifacts; namely,
a reference standard with known value R* and a check standard and a test item with
unknown values. All artifacts are of the same nominal size. The design is referred
to as a 1,1,1 design for

n = 3 difference measurements●   

m = 3 artifacts●   

Convention
for showing
the
measurement
sequence and
identifying the
reference and
check
standards

The convention for showing the measurement sequence is shown below. Nominal
values are underlined in the first line showing that this design is appropriate for
comparing three items of the same nominal size such as three one-kilogram
weights. The reference standard is the first artifact, the check standard is the second,
and the test item is the third.

                 1     1     1

          Y(1) = +     -

          Y(2) = +           -

          Y(3) =       +     -

  Restraint      +

  Check standard       +

2.3.3.2. Solutions to calibration designs
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Limitation of
this design

This design has degrees of freedom

v = n - m + 1 = 1

Convention
for showing
least-squares
estimates for
individual
items

The table shown below lists the coefficients for finding the estimates for the
individual items. The estimates are computed by taking the cross-product of the
appropriate column for the item of interest with the column of measurement data
and dividing by the divisor shown at the top of the table.

                        SOLUTION MATRIX
                          DIVISOR = 3

     OBSERVATIONS      1      1      1

        Y(1)           0     -2     -1
        Y(2)           0     -1     -2
        Y(3)           0      1     -1
        R*             3      3      3

Solutions for
individual
items from the
table above

For example, the solution for the reference standard is shown under the first
column; for the check standard under the second column; and for the test item
under the third column. Notice that the estimate for the reference standard is
guaranteed to be R*, regardless of the measurement results, because of the restraint
that is imposed on the design. The estimates are as follows:

2.3.3.2. Solutions to calibration designs
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Convention
for showing
standard
deviations for
individual
items and
combinations
of items

The standard deviations are computed from two tables of factors as shown below.
The standard deviations for combinations of items include appropriate covariance
terms.

     FACTORS FOR REPEATABILITY STANDARD DEVIATIONS

     WT  FACTOR
           K1      1   1   1
      1  0.0000    +
      1  0.8165        +
      1  0.8165            +
      2  1.4142        +   +
      1  0.8165        +

     FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS

     WT  FACTOR

           K2      1   1   1
      1  0.0000    +
      1  1.4142        +
      1  1.4142            +
      2  2.4495        +   +
      1  1.4142        +
 

Unifying
equation

The standard deviation for each item is computed using the unifying equation:

Standard
deviations for
1,1,1 design
from the
tables of
factors

For the 1,1,1 design, the standard deviations are:

2.3.3.2. Solutions to calibration designs
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Process
standard
deviations
must be
known from
historical
data

In order to apply these equations, we need an estimate of the standard deviation,
sdays, that describes day-to-day changes in the measurement process. This standard
deviation is in turn derived from the level-2 standard deviation, s2, for the check
standard. This standard deviation is estimated from historical data on the check
standard; it can be negligible, in which case the calculations are simplified.

The repeatability standard deviation s1, is estimated from historical data, usually
from data of several designs.

Steps in
computing
standard
deviations

The steps in computing the standard deviation for a test item are:

Compute the repeatability standard deviation from the design or historical
data.

●   

Compute the standard deviation of the check standard from historical data.●   

Locate the factors, K1 and K2 for the check standard; for the 1,1,1 design
the factors are 0.8165 and 1.4142, respectively, where the check standard
entries are last in the tables.

●   

Apply the unifying equation to the check standard to estimate the standard
deviation for days. Notice that the standard deviation of the check standard is
the same as the level-2 standard deviation, s2, that is referred to on some
pages. The equation for the between-days standard deviation from the
unifying equation is

.

Thus, for the example above

.

●   

This is the number that is entered into the NIST mass calibration software as
the between-time standard deviation. If you are using this software, this is the
only computation that you need to make because the standard deviations for
the test items are computed automatically by the software.

●   

If the computation under the radical sign gives a negative number, set
sdays=0. (This is possible and indicates that there is no contribution to
uncertainty from day-to-day effects.)

●   

For completeness, the computations of the standard deviations for the test
item and for the sum of the test and the check standard using the appropriate
factors are shown below.

●   

2.3.3.2. Solutions to calibration designs
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. Calibration designs
2.3.3.2. General solutions to calibration designs

2.3.3.2.1.General matrix solutions to calibration
designs

Requirements Solutions for all designs that are cataloged in this Handbook are included with the designs.
Solutions for other designs can be computed from the instructions below given some
familiarity with matrices. The matrix manipulations that are required for the calculations are:

transposition (indicated by ')●   

multiplication●   

inversion●   

Notation n = number of difference measurements●   

m = number of artifacts●   

(n - m + 1) = degrees of freedom●   

X= (nxm) design matrix●   

r'= (mx1) vector identifying the restraint●   

 = (mx1) vector identifying ith item of interest consisting of a 1 in the ith position and

zeros elsewhere

●   

R*= value of the reference standard●   

Y= (mx1) vector of observed difference measurements●   

Convention
for showing
the
measurement
sequence

The convention for showing the measurement sequence is illustrated with the three
measurements that make up a 1,1,1 design for 1 reference standard, 1 check standard, and 1
test item. Nominal values are underlined in the first line .

                 1     1     1
          Y(1) = +     -

          Y(2) = +           -

          Y(3) =       +     -

2.3.3.2.1. General matrix solutions to calibration designs
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Matrix
algebra for
solving a
design

The (mxn) design matrix X is constructed by replacing the pluses (+), minues (-) and blanks
with the entries 1, -1, and 0 respectively.

The (mxm) matrix of normal equations, X'X, is formed and augmented by the restraint vector

to form an (m+1)x(m+1) matrix, A:

Inverse of
design matrix

The A matrix is inverted and shown in the form:

where Q is an mxm matrix that, when multiplied by s2, yields the usual variance-covariance
matrix.

Estimates of
values of
individual
artifacts

The least-squares estimates for the values of the individual artifacts are contained in the (mx1)
matrix, B, where

where Q is the upper left element of the A-1 matrix shown above. The structure of the

individual estimates is contained in the QX' matrix; i.e. the estimate for the ith item can be

computed from XQ and Y by

Cross multiplying the ith column of XQ with Y●   

And adding R*(nominal test)/(nominal restraint)●   

Clarify with
an example

We will clarify the above discussion with an example from the mass calibration process at
NIST. In this example, two NIST kilograms are compared with a customer's unknown
kilogram.

The design matrix, X, is

The first two columns represent the two NIST kilograms while the third column represents the
customers kilogram (i.e., the kilogram being calibrated).

The measurements obtained, i.e., the Y matrix, are

2.3.3.2.1. General matrix solutions to calibration designs
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The measurements are the differences between two measurements, as specified by the design
matrix, measured in grams. That is, Y(1) is the difference in measurement between NIST
kilogram one and NIST kilogram two, Y(2) is the difference in measurement between NIST
kilogram one and the customer kilogram, and Y(3) is the difference in measurement between
NIST kilogram two and the customer kilogram.

The value of the reference standard, R*, is 0.82329.

Then

If there are three weights with known values for weights one and two, then

r = [ 1    1    0 ]
Thus

and so

From A-1, we have

We then compute QX'

We then compute B = QX'Y + h'R*

This yields the following least-squares coefficient estimates:

2.3.3.2.1. General matrix solutions to calibration designs
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Standard
deviations of
estimates

The standard deviation for the ith item is:

where

The process standard deviation, which is a measure of the overall precision of the (NIST) mass
calibrarion process,

is the residual standard deviation from the design, and sdays is the standard deviation for days,

which can only be estimated from check standard measurements.

Example We continue the example started above. Since n = 3 and m = 3, the formula reduces to:

Substituting the values shown above for X, Y, and Q results in

and

Y'(I - XQX')Y = 0.0000083333
Finally, taking the square root gives

s1 = 0.002887

The next step is to compute the standard deviation of item 3 (the customers kilogram), that is
sitem3. We start by substitituting the values for X and Q and computing D

Next, we substitute  = [0 0 1] and  = 0.021112 (this value is taken from a check

standard and not computed from the values given in this example).

2.3.3.2.1. General matrix solutions to calibration designs
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We obtain the following computations

and

and

2.3.3.2.1. General matrix solutions to calibration designs
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. What are calibration designs?

2.3.3.3.Uncertainties of calibrated values

Uncertainty
analysis
follows the
ISO principles

This section discusses the calculation of uncertainties of calibrated
values from calibration designs. The discussion follows the guidelines
in the section on classifying and combining components of
uncertainty. Two types of evaluations are covered.

type A evaluations of time-dependent sources of random error1.  

type B evaluations of other sources of error2.  

The latter includes, but is not limited to, uncertainties from sources
that are not replicated in the calibration design such as uncertainties of
values assigned to reference standards.

Uncertainties
for test items

Uncertainties associated with calibrated values for test items from
designs require calculations that are specific to the individual designs.
The steps involved are outlined below.

Outline for
the section on
uncertainty
analysis

Historical perspective●   

Assumptions●   

Example of more realistic model●   

Computation of repeatability standard deviations●   

Computation of level-2 standard deviations●   

Combination of repeatability and level-2 standard deviations●   

Example of computations for 1,1,1,1 design●   

Type B uncertainty associated with the restraint●   

Expanded uncertainty of calibrated values●   

2.3.3.3. Uncertainties of calibrated values
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. What are calibration designs?
2.3.3.3. Uncertainties of calibrated values

2.3.3.3.1.Type A evaluations for calibration
designs

Change over
time

Type A evaluations for calibration processes must take into account
changes in the measurement process that occur over time.

Historically,
uncertainties
considered
only
instrument
imprecision

Historically, computations of uncertainties for calibrated values have
treated the precision of the comparator instrument as the primary
source of random uncertainty in the result. However, as the precision
of instrumentation has improved, effects of other sources of variability
have begun to show themselves in measurement processes. This is not
universally true, but for many processes, instrument imprecision
(short-term variability) cannot explain all the variation in the process.

Effects of
environmental
changes

Effects of humidity, temperature, and other environmental conditions
which cannot be closely controlled or corrected must be considered.
These tend to exhibit themselves over time, say, as between-day
effects. The discussion of between-day (level-2) effects relating to
gauge studies carries over to the calibration setting, but the
computations are not as straightforward.

Assumptions
which are
specific to
this section

The computations in this section depend on specific assumptions:

Short-term effects associated with instrument response

come from a single distribution●   

vary randomly from measurement to measurement within
a design.

●   

1.  

Day-to-day effects

come from a single distribution●   

vary from artifact to artifact but remain constant for a
single calibration

●   

vary from calibration to calibration●   

2.  

2.3.3.3.1. Type A evaluations for calibration designs
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These
assumptions
have proved
useful but
may need to
be expanded
in the future

These assumptions have proved useful for characterizing high
precision measurement processes, but more complicated models may
eventually be needed which take the relative magnitudes of the test
items into account. For example, in mass calibration, a 100 g weight
can be compared with a summation of 50g, 30g and 20 g weights in a
single measurement. A sophisticated model might consider the size of
the effect as relative to the nominal masses or volumes.

Example of
the two
models for a
design for
calibrating
test item
using 1
reference
standard

To contrast the simple model with the more complicated model, a
measurement of the difference between X, the test item, with unknown
and yet to be determined value, X*, and a reference standard, R, with
known value, R*, and the reverse measurement are shown below.

Model (1) takes into account only instrument imprecision so that:

(1)

with the error terms random errors that come from the imprecision of
the measuring instrument.

Model (2) allows for both instrument imprecision and level-2 effects
such that:

(2)

where the delta terms explain small changes in the values of the
artifacts that occur over time. For both models, the value of the test
item is estimated as

2.3.3.3.1. Type A evaluations for calibration designs
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Standard
deviations
from both
models

For model (l), the standard deviation of the test item is

For model (2), the standard deviation of the test item is

.

Note on
relative
contributions
of both
components
to uncertainty

In both cases,  is the repeatability standard deviation that describes

the precision of the instrument and  is the level-2 standard

deviation that describes day-to-day changes. One thing to notice in the

standard deviation for the test item is the contribution of  relative to

the total uncertainty. If  is large relative to , or dominates, the

uncertainty will not be appreciably reduced by adding measurements
to the calibration design.

2.3.3.3.1. Type A evaluations for calibration designs
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. What are calibration designs?
2.3.3.3. Uncertainties of calibrated values

2.3.3.3.2.Repeatability and level-2 standard
deviations

Repeatability
standard
deviation
comes from
the data of a
single design

The repeatability standard deviation of the instrument can be computed
in two ways.

It can be computed as the residual standard deviation from the
design and should be available as output from any software
package that reduces data from calibration designs. The matrix
equations for this computation are shown in the section on
solutions to calibration designs. The standard deviation has
degrees of freedom

v = n - m + 1

for n difference measurements and m items. Typically the
degrees of freedom are very small. For two differences
measurements on a reference standard and test item, the degrees
of freedom is v=1.

1.  

A more
reliable
estimate
comes from
pooling over
historical
data

A more reliable estimate of the standard deviation can be
computed by pooling variances from K calibrations (and then
taking its square root) using the same instrument (assuming the
instrument is in statistical control). The formula for the pooled
estimate is

2.  

2.3.3.3.2. Repeatability and level-2 standard deviations
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Level-2
standard
deviation is
estimated
from check
standard
measurements

The level-2 standard deviation cannot be estimated from the data of the
calibration design. It cannot generally be estimated from repeated
designs involving the test items. The best mechanism for capturing the
day-to-day effects is a check standard, which is treated as a test item
and included in each calibration design. Values of the check standard,
estimated over time from the calibration design, are used to estimate
the standard deviation.

Assumptions The check standard value must be stable over time, and the
measurements must be in statistical control for this procedure to be
valid. For this purpose, it is necessary to keep a historical record of
values for a given check standard, and these values should be kept by
instrument and by design.

Computation
of level-2
standard
deviation

Given K historical check standard values,

the standard deviation of the check standard values is computed as

where

with degrees of freedom v = K - 1.

2.3.3.3.2. Repeatability and level-2 standard deviations
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. What are calibration designs?
2.3.3.3. Uncertainties of calibrated values

2.3.3.3.3.Combination of repeatability and
level-2 standard deviations

Standard
deviation of
test item
depends on
several
factors

The final question is how to combine the repeatability standard
deviation and the standard deviation of the check standard to estimate
the standard deviation of the test item. This computation depends on:

structure of the design●   

position of the check standard in the design●   

position of the reference standards in the design●   

position of the test item in the design●   

Derivations
require
matrix
algebra

Tables for estimating standard deviations for all test items are reported
along with the solutions for all designs in the catalog. The use of the
tables for estimating the standard deviations for test items is illustrated
for the 1,1,1,1 design. Matrix equations can be used for deriving
estimates for designs that are not in the catalog.

The check standard for each design is either an additional test item in
the design, other than the test items that are submitted for calibration,
or it is a construction, such as the difference between two reference
standards as estimated by the design.

2.3.3.3.3. Combination of repeatability and level-2 standard deviations
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. What are calibration designs?
2.3.3.3. Uncertainties of calibrated values

2.3.3.3.4.Calculation of standard deviations for
1,1,1,1 design

Design with
2 reference
standards
and 2 test
items

An example is shown below for a 1,1,1,1 design for two reference standards, R1 and R2,
and two test items, X1 and X2, and six difference measurements. The restraint, R*, is the
sum of values of the two reference standards, and the check standard, which is
independent of the restraint, is the difference between the values of the reference
standards. The design and its solution are reproduced below.

Check
standard is
the
difference
between the
2 reference
standards

     OBSERVATIONS   1   1   1   1

         Y(1)       +   -
         Y(2)       +       -
         Y(3)       +           -
         Y(4)           +   -
         Y(5)           +       -
         Y(6)               +   -

     RESTRAINT      +   +

     
     CHECK STANDARD +   -
     
     
     DEGREES OF FREEDOM  =  3

                         SOLUTION MATRIX

2.3.3.3.4. Calculation of standard deviations for 1,1,1,1 design
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                          DIVISOR  =  8

     OBSERVATIONS      1      1      1      1

        Y(1)           2     -2      0      0
        Y(2)           1     -1     -3     -1
        Y(3)           1     -1     -1     -3
        Y(4)          -1      1     -3     -1
        Y(5)          -1      1     -1     -3
        Y(6)           0      0      2     -2
        R*             4      4      4      4

Explanation
of solution
matrix

The solution matrix gives values for the test items of

Factors for
computing
contributions
of
repeatability
and level-2
standard
deviations to
uncertainty

     FACTORS FOR REPEATABILITY STANDARD
DEVIATIONS
     WT  FACTOR
            K1     1   1   1   1
      1  0.3536    +
      1  0.3536        +
      1  0.6124            +
      1  0.6124                +
      0  0.7071    +   -

         
     FACTORS FOR LEVEL-2 STANDARD DEVIATIONS
     WT  FACTOR
            K2     1   1   1   1
      1  0.7071    +
      1  0.7071        +
      1  1.2247            +

2.3.3.3.4. Calculation of standard deviations for 1,1,1,1 design
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      1  1.2247                +
      0  1.4141    +   -

The first table shows factors for computing the contribution of the repeatability
standard deviation to the total uncertainty. The second table shows factors for
computing the contribution of the between-day standard deviation to the uncertainty.
Notice that the check standard is the last entry in each table.

Unifying
equation

The unifying equation is:

Standard
deviations
are
computed
using the
factors from
the tables
with the
unifying
equation

The steps in computing the standard deviation for a test item are:

Compute the repeatability standard deviation from historical data.●   

Compute the standard deviation of the check standard from historical data.●   

Locate the factors, K1 and K2, for the check standard.●   

Compute the between-day variance (using the unifying equation for the check
standard). For this example,

.

●   

If this variance estimate is negative, set  = 0. (This is possible and

indicates that there is no contribution to uncertainty from day-to-day effects.)

●   

Locate the factors, K1 and K2, for the test items, and compute the standard
deviations using the unifying equation. For this example,

and

●   

2.3.3.3.4. Calculation of standard deviations for 1,1,1,1 design
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. What are calibration designs?
2.3.3.3. Uncertainties of calibrated values

2.3.3.3.5.Type B uncertainty

Type B
uncertainty
associated
with the
restraint

The reference standard is assumed to have known value, R*, for the
purpose of solving the calibration design. For the purpose of computing
a standard uncertainty, it has a type B uncertainty that contributes to the
uncertainty of the test item.

The value of R* comes from a higher-level calibration laboratory or
process, and its value is usually reported along with its uncertainty, U. If
the laboratory also reports the k factor for computing U, then the
standard deviation of the restraint is

If k is not reported, then a conservative way of proceeding is to assume k
= 2.

Situation
where the
test is
different in
size from the
reference

Usually, a reference standard and test item are of the same nominal size
and the calibration relies on measuring the small difference between the
two; for example, the intercomparison of a reference kilogram compared
with a test kilogram. The calibration may also consist of an
intercomparison of the reference with a summation of artifacts where
the summation is of the same nominal size as the reference; for example,
a reference kilogram compared with 500 g + 300 g + 200 g test weights.

Type B
uncertainty
for the test
artifact

The type B uncertainty that accrues to the test artifact from the
uncertainty of the reference standard is proportional to their nominal
sizes; i.e.,

2.3.3.3.5. Type B uncertainty
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2.3.3.3.5. Type B uncertainty
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2. Measurement Process Characterization
2.3. Calibration
2.3.3. What are calibration designs?
2.3.3.3. Uncertainties of calibrated values

2.3.3.3.6.Expanded uncertainties

Standard
uncertainty

The standard uncertainty for the test item is

Expanded
uncertainty

The expanded uncertainty is computed as

where k is either the critical value from the t table for degrees of freedom v or k is set
equal to 2.

Problem of the
degrees of freedom

The calculation of degrees of freedom, v, can be a problem. Sometimes it can be
computed using the Welch-Satterthwaite approximation and the structure of the
uncertainty of the test item. Degrees of freedom for the standard deviation of the
restraint is assumed to be infinite. The coefficients in the Welch-Satterthwaite formula
must all be positive for the approximation to be reliable.

Standard deviation
for test item from
the 1,1,1,1 design

For the 1,1,1,1 design, the standard deviation of the test items can be rewritten by
substituting in the equation

so that the degrees of freedom depends only on the degrees of freedom in the standard
deviation of the check standard. This device may not work satisfactorily for all designs.

Standard
uncertainty from the
1,1,1,1 design

To complete the calculation shown in the equation at the top of the page, the nominal
value of the test item (which is equal to 1) is divided by the nominal value of the
restraint (which is also equal to 1), and the result is squared. Thus, the standard
uncertainty is

2.3.3.3.6. Expanded uncertainties
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Degrees of freedom
using the
Welch-Satterthwaite
approximation

Therefore, the degrees of freedom is approximated as

where n - 1 is the degrees of freedom associated with the check standard uncertainty.
Notice that the standard deviation of the restraint drops out of the calculation because
of an infinite degrees of freedom.

2.3.3.3.6. Expanded uncertainties
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2. Measurement Process Characterization
2.3. Calibration

2.3.4. Catalog of calibration designs

Important
concept -
Restraint

The designs are constructed for measuring differences among reference standards and
test items, singly or in combinations. Values for individual standards and test items can
be computed from the design only if the value (called the restraint = R*) of one or more
reference standards is known. The methodology for constructing and solving calibration
designs is described briefly in matrix solutions and in more detail in a NIST publication.
(Cameron et al.).

Designs
listed in this
catalog

Designs are listed by traditional subject area although many of the designs are
appropriate generally for intercomparisons of artifact standards.

Designs for mass weights●   

Drift-eliminating designs for gage blocks●   

Left-right balanced designs for electrical standards●   

Designs for roundness standards●   

Designs for angle blocks●   

Drift-eliminating design for thermometers in a bath●   

Drift-eliminating designs for humidity cylinders●   

Properties of
designs in
this catalog

Basic requirements are:

The differences must be nominally zero.1.  

The design must be solvable for individual items given the restraint.2.  

Other desirable properties are:

The number of measurements should be small.1.  

The degrees of freedom should be greater than zero.2.  

The standard deviations of the estimates for the test items should be small enough
for their intended purpose.

3.  

2.3.4. Catalog of calibration designs
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Information:

Design

Solution

Factors for
computing
standard
deviations

Given

n = number of difference measurements●   

m = number of artifacts (reference standards + test items) to be calibrated●   

the following information is shown for each design:

Design matrix -- (n x m)●   

Vector that identifies standards in the restraint -- (1 x m)●   

Degrees of freedom = (n - m + 1)●   

Solution matrix for given restraint -- (n x m)●   

Table of factors for computing standard deviations●   

Convention
for showing
the
measurement
sequence

Nominal sizes of standards and test items are shown at the top of the design. Pluses (+)
indicate items that are measured together; and minuses (-) indicate items are not
measured together. The difference measurements are constructed from the design of
pluses and minuses. For example, a 1,1,1 design for one reference standard and two test
items of the same nominal size with three measurements is shown below:

                 1     1     1
          Y(1) = +     -
          Y(2) = +           -
          Y(3) = +     - 

Solution
matrix

Example and
interpretation

The cross-product of the column of difference measurements and R* with a column
from the solution matrix, divided by the named divisor, gives the value for an individual
item. For example,

                 Solution matrix
                   Divisor = 3 
                  
                 1       1      1                 
          Y(1)   0      -2     -1
          Y(2)   0      -1     -2
          Y(3)   0      +1     -1
          R*    +3      +3     +3

implies that estimates for the restraint and the two test items are:

2.3.4. Catalog of calibration designs
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Interpretation
of table of
factors

The factors in this table provide information on precision. The repeatability standard
deviation, , is multiplied by the appropriate factor to obtain the standard deviation for
an individual item or combination of items. For example,

              

        Sum    Factor     1      1      1             
        1      0.0000     +           
        1      0.8166           +       
        1      0.8166                   +   
        2      1.4142            +      +

implies that the standard deviations for the estimates are:

2.3.4. Catalog of calibration designs
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs

2.3.4.1.Mass weights

Tie to
kilogram
reference
standards

Near-accurate mass measurements require a sequence of designs that
relate the masses of individual weights to a reference kilogram(s)
standard ( Jaeger & Davis). Weights generally come in sets, and an
entire set may require several series to calibrate all the weights in the
set.

Example of
weight set

A 5,3,2,1 weight set would have the following weights:

1000 g

500g, 300g, 200g, 100g

50g, 30g 20g, 10g

5g, 3g, 2g, 1g

0.5g, 0.3g, 0.2g, 0.1g

Depiction of
a design
with three
series for
calibrating
a 5,3,2,1
weight set
with weights
between 1
kg and 10 g

2.3.4.1. Mass weights
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First series
using
1,1,1,1
design

The calibrations start with a comparison of the one kilogram test weight
with the reference kilograms (see the graphic above). The 1,1,1,1 design
requires two kilogram reference standards with known values, R1* and
R2*. The fourth kilogram in this design is actually a summation of the
500, 300, 200 g weights which becomes the restraint in the next series.

The restraint for the first series is the known average mass of the
reference kilograms,

The design assigns values to all weights including the individual
reference standards. For this design, the check standard is not an artifact
standard but is defined as the difference between the values assigned to
the reference kilograms by the design; namely,

2.3.4.1. Mass weights
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2nd series
using
5,3,2,1,1,1
design

The second series is a 5,3,2,1,1,1 design where the restraint over the
500g, 300g and 200g weights comes from the value assigned to the
summation in the first series; i.e.,

The weights assigned values by this series are:

500g, 300g, 200 g and 100g test weights●   

100 g check standard (2nd 100g weight in the design)●   

Summation of the 50g, 30g, 20g weights.●   

Other
starting
points

The calibration sequence can also start with a 1,1,1 design. This design
has the disadvantage that it does not have provision for a check
standard.

Better
choice of
design

A better choice is a 1,1,1,1,1 design which allows for two reference
kilograms and a kilogram check standard which occupies the 4th
position among the weights. This is preferable to the 1,1,1,1 design but
has the disadvantage of requiring the laboratory to maintain three
kilogram standards.

Important
detail

The solutions are only applicable for the restraints as shown.

Designs for
decreasing
weight sets

1,1,1 design1.  

1,1,1,1 design2.  

1,1,1,1,1 design3.  

1,1,1,1,1,1 design4.  

2,1,1,1 design5.  

2,2,1,1,1 design6.  

2,2,2,1,1 design7.  

5,2,2,1,1,1 design8.  

5,2,2,1,1,1,1 design9.  

5,3,2,1,1,1 design10.  

5,3,2,1,1,1,1 design11.  

5,3,2,2,1,1,1 design12.  

5,4,4,3,2,2,1,1 design13.  

5,5,2,2,1,1,1,1 design14.  

2.3.4.1. Mass weights
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5,5,3,2,1,1,1 design15.  

1,1,1,1,1,1,1,1 design16.  

3,2,1,1,1 design17.  

Design for
pound
weights

1,2,2,1,1 design1.  

Designs for
increasing
weight sets

1,1,1 design1.  

1,1,1,1 design2.  

5,3,2,1,1 design3.  

5,3,2,1,1,1 design4.  

5,2,2,1,1,1 design5.  

3,2,1,1,1 design6.  

2.3.4.1. Mass weights
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.1.Design for 1,1,1

Design 1,1,1

 OBSERVATIONS   1   1   1

     Y(1)       +   -
     Y(2)       +       -
     Y(3)           +   -

 RESTRAINT      +

 CHECK STANDARD     +

 DEGREES OF FREEDOM  =  1

                    SOLUTION MATRIX
                      DIVISOR  =  3

 OBSERVATIONS      1      1      1

    Y(1)           0     -2     -1
    Y(2)           0     -1     -2
    Y(3)           0      1     -1
    R*             3      3      3

    R* = value of reference weight

2.3.4.1.1. Design for 1,1,1
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 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               1   1   1
  1  0.0000    +
  1  0.8165        +
  1  0.8165            +
  2  1.4142        +   +
  1  0.8165        +

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
               1   1   1
  1  0.0000    +
  1  1.4142        +
  1  1.4142            +
  2  2.4495        +   +
  1  1.4142        +

Explanation of notation and interpretation of tables

2.3.4.1.1. Design for 1,1,1
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.2.Design for 1,1,1,1

Design 1,1,1,1

 OBSERVATIONS   1   1   1   1

     Y(1)       +   -
     Y(2)       +       -
     Y(3)       +           -
     Y(4)           +   -
     Y(5)           +       -
     Y(6)               +   -

 RESTRAINT      +   +

 CHECK STANDARD +   -

 DEGREES OF FREEDOM  =  3

                      SOLUTION MATRIX
                       DIVISOR  =  8

 OBSERVATIONS      1      1      1      1

    Y(1)           2     -2      0      0
    Y(2)           1     -1     -3     -1
    Y(3)           1     -1     -1     -3
    Y(4)          -1      1     -3     -1
    Y(5)          -1      1     -1     -3

2.3.4.1.2. Design for 1,1,1,1
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    Y(6)           0      0      2     -2
    R*             4      4      4      4

    R* = sum of two reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
        K1     1   1   1   1
  1  0.3536    +
  1  0.3536        +
  1  0.6124            +
  1  0.6124                +
  0  0.7071    +   -

                           
 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
        K2     1   1   1   1
  1  0.7071    +
  1  0.7071        +
  1  1.2247            +
  1  1.2247                +
  0  1.4141    +   -

Explanation of notation and interpretation of tables

2.3.4.1.2. Design for 1,1,1,1
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.3.Design for 1,1,1,1,1

CASE 1: CHECK STANDARD = DIFFERENCE BETWEEN
FIRST TWO WEIGHTS

 OBSERVATIONS   1   1   1   1   1

     Y(1)       +   -
     Y(2)       +       -
     Y(3)       +           -
     Y(4)       +               -
     Y(5)           +   -
     Y(6)           +       -
     Y(7)           +           -
     Y(8)               +   -
     Y(9)               +       -
     Y(10)                  +   -

 RESTRAINT      +   +

 CHECK STANDARD +   -

 DEGREES OF FREEDOM  =   6

                         SOLUTION MATRIX

CASE 2: CHECK STANDARD = FOURTH WEIGHT

 OBSERVATIONS   1   1   1   1   1

     Y(1)       +   -
     Y(2)       +       -
     Y(3)       +           -
     Y(4)       +               -
     Y(5)           +   -
     Y(6)           +       -
     Y(7)           +           -
     Y(8)               +   -
     Y(9)               +       -
     Y(10)                  +   -

 RESTRAINT      +   +

 CHECK STANDARD             +

 DEGREES OF FREEDOM  =   6

                         SOLUTION MATRIX
                          DIVISOR =  10

2.3.4.1.3. Design for 1,1,1,1,1
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                          DIVISOR =  10

 OBSERVATIONS      1      1      1      1      1

    Y(1)           2     -2      0      0      0
    Y(2)           1     -1     -3     -1     -1
    Y(3)           1     -1     -1     -3     -1
    Y(4)           1     -1     -1     -1     -3
    Y(5)          -1      1     -3     -1     -1
    Y(6)          -1      1     -1     -3     -1
    Y(7)          -1      1     -1     -1     -3
    Y(8)           0      0      2     -2      0
    Y(9)           0      0      2      0     -2
    Y(10)          0      0      0      2     -2
    R*             5      5      5      5      5

    R* = sum of two reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
        K1     1   1   1   1   1
  1  0.3162    +
  1  0.3162        +
  1  0.5477            +
  1  0.5477                +
  1  0.5477                    +
  2  0.8944                +   +
  3  1.2247            +   +   +
  0  0.6325    +   -

                           
 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
        K2     1   1   1   1   1
  1  0.7071    +
  1  0.7071        +
  1  1.2247            +
  1  1.2247                +

 OBSERVATIONS      1      1      1      1      1

    Y(1)           2     -2      0      0      0
    Y(2)           1     -1     -3     -1     -1
    Y(3)           1     -1     -1     -3     -1
    Y(4)           1     -1     -1     -1     -3
    Y(5)          -1      1     -3     -1     -1
    Y(6)          -1      1     -1     -3     -1
    Y(7)          -1      1     -1     -1     -3
    Y(8)           0      0      2     -2      0
    Y(9)           0      0      2      0     -2
    Y(10)          0      0      0      2     -2
    R*             5      5      5      5      5

    R* = sum of two reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
        K1     1   1   1   1   1
  1  0.3162    +
  1  0.3162        +
  1  0.5477            +
  1  0.5477                +
  1  0.5477                    +
  2  0.8944                +   +
  3  1.2247            +   +   +
  1  0.5477                +

                           
 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
        K2     1   1   1   1   1
  1  0.7071    +
  1  0.7071        +
  1  1.2247            +
  1  1.2247                +
  1  1.2247                    +

2.3.4.1.3. Design for 1,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3413.htm (2 of 3) [5/1/2006 10:11:46 AM]



  1  1.2247                    +
  2  2.0000                +   +
  3  2.7386            +   +   +
  0  1.4142     +   -
             

  2  2.0000                +   +
  3  2.7386            +   +   +
  1  1.2247                +

Explanation of notation and interpretation of tables

2.3.4.1.3. Design for 1,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3413.htm (3 of 3) [5/1/2006 10:11:46 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.4.Design for 1,1,1,1,1,1

Design 1,1,1,1,1,1

 OBSERVATIONS   1   1   1   1   1   1

     X(1)       +   -
     X(2)       +       -
     X(3)       +           -
     X(4)       +               -
     X(5)       +                   -
     X(6)           +   -
     X(7)           +       -
     X(8)           +           -
     X(9)           +               -
     X(10)              +   -
     X(11)              +       -
     X(12)              +           -
     X(13)                  +   -
     X(14)                  +       -
     X(15)                      +   -   

 RESTRAINT      +   +

 CHECK STANDARD                 +

 DEGREES OF FREEDOM  =   10

                             SOLUTION MATRIX

2.3.4.1.4. Design for 1,1,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3414.htm (1 of 3) [5/1/2006 10:11:46 AM]
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                              DIVISOR  =   8

 OBSERVATIONS      1      1      1      1      1      1

    Y(1)           1     -1      0      0      0      0
    Y(2)           1      0     -1      0      0      0
    Y(3)           1      0      0     -1      0      0
    Y(4)           1      0      0      0     -1      0
    Y(5)           2      1      1      1      1      0
    Y(6)           0      1     -1      0      0      0
    Y(7)           0      1      0     -1      0      0
    Y(8)           0      1      0      0     -1      0
    Y(9)           1      2      1      1      1      0
    Y(10)          0      0      1     -1      0      0
    Y(11)          0      0      1      0     -1      0
    Y(12)          1      1      2      1      1      0
    Y(13)          0      0      0      1     -1      0
    Y(14)          1      1      1      2      1      0
    Y(15)          1      1      1      1      2      0
    R*             6      6      6      6      6      6

    R* = sum of two reference standards   

 FACTORS FOR COMPUTING REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               1   1   1   1   1   1
  1  0.2887    +
  1  0.2887        +
  1  0.5000            +
  1  0.5000                +
  1  0.5000                    +
  1  0.5000                        +
  2  0.8165            +   +
  3  1.1180            +   +   +
  4  1.4142            +   +   +   +
  1  0.5000                    +

 FACTORS FOR COMPUTING BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
               1   1   1   1   1   1
  1  0.7071    +
  1  0.7071        +
  1  1.2247            +

2.3.4.1.4. Design for 1,1,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3414.htm (2 of 3) [5/1/2006 10:11:46 AM]



  1  1.2247                +
  1  1.2247                    +
  1  1.2247                        +
  2  2.0000            +   +
  3  2.7386            +   +   +
  4  3.4641            +   +   +   +
  1  1.2247                    +

Explanation of notation and interpretation of tables

2.3.4.1.4. Design for 1,1,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3414.htm (3 of 3) [5/1/2006 10:11:46 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.5.Design for 2,1,1,1

Design 2,1,1,1

 OBSERVATIONS   2   1   1   1

     Y(1)       +   -       -
     Y(2)       +       -   -
     Y(3)       +   -   -
     Y(4)           +       -
     Y(5)           +   -
     Y(6)               +   -

 RESTRAINT      +

 CHECK STANDARD         +

 
DEGREES OF FREEDOM  =      3

                      SOLUTION MATRIX
                       DIVISOR  =  4

 OBSERVATIONS      2      1      1      1

    Y(1)           0     -1      0     -1
    Y(2)           0      0     -1     -1
    Y(3)           0     -1     -1      0

2.3.4.1.5. Design for 2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3415.htm (1 of 2) [5/1/2006 10:11:46 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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    Y(4)           0      1      0     -1
    Y(5)           0      1     -1      0
    Y(6)           0      0      1     -1
    R*             4      2      2      2

    R* = value of the reference standard

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               2   1   1   1
  2  0.0000    +
  1  0.5000        +
  1  0.5000            +
  1  0.5000                +
  2  0.7071        +   +
  3  0.8660        +   +   +
  1  0.5000            +

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
               2   1   1   1
  2  0.0000    +
  1  1.1180        +
  1  1.1180            +
  1  1.1180                +
  2  1.7321        +   +
  3  2.2913        +   +   +
  1  1.1180            +

Explanation of notation and interpretation of tables

2.3.4.1.5. Design for 2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3415.htm (2 of 2) [5/1/2006 10:11:46 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.6.Design for 2,2,1,1,1

Design 2,2,1,1,1

 OBSERVATIONS   2   2   1   1   1

     Y(1)       +   -   -   +
     Y(2)       +   -       -   +
     Y(3)       +   -   +       -
     Y(4)       +   -
     Y(5)       +       -   -
     Y(6)       +       -       -
     Y(7)       +           -   -
     Y(8)           +   -   -
     Y(9)           +   -       -
     Y(10)          +       -   -

 RESTRAINT      +   +   +

 CHECK STANDARD             +

 DEGREES OF FREEDOM  =  6

                         SOLUTION MATRIX
                          DIVISOR = 275

 OBSERVATIONS      2      2      1      1      1

2.3.4.1.6. Design for 2,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3416.htm (1 of 3) [5/1/2006 10:11:47 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


    Y(1)          47     -3    -44     66     11
    Y(2)          25    -25      0    -55     55
    Y(3)           3    -47     44    -11    -66
    Y(4)          25    -25      0      0      0
    Y(5)          29      4    -33    -33     22
    Y(6)          29      4    -33     22    -33
    Y(7)           7    -18     11    -44    -44
    Y(8)           4     29    -33    -33     22
    Y(9)           4     29    -33     22    -33
    Y(10)        -18      7     11    -44    -44
    R*           110    110     55     55     55

    R* = sum of three reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               2   2   1   1   1
  2  0.2710    +
  2  0.2710        +
  1  0.3347            +
  1  0.4382                +
  1  0.4382                    +
  2  0.6066                +   +
  3  0.5367            +   +   +
  1  0.4382                +

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
               2   2   1   1   1
  2  0.8246    +
  2  0.8246        +
  1  0.8485            +
  1  1.0583                +
  1  1.0583                    +
  2  1.5748                +   +
  3  1.6971            +   +   +
  1  1.0583                +

Explanation of notation and interpretation of tables

2.3.4.1.6. Design for 2,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3416.htm (2 of 3) [5/1/2006 10:11:47 AM]



2.3.4.1.6. Design for 2,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3416.htm (3 of 3) [5/1/2006 10:11:47 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.7.Design for 2,2,2,1,1

Design 2,2,2,1,1

 OBSERVATIONS   2   2   2   1   1

     Y(1)       +   -
     Y(2)       +       -
     Y(3)           +   -
     Y(4)       +           -   -
     Y(5)           +       -   -
     Y(6)               +   -   -
     Y(7)                   +   -

 RESTRAINT      +   +

 CHECK STANDARD             +

 DEGREES OF FREEDOM  =      3

                        SOLUTION MATRIX
                         DIVISOR =  16

 OBSERVATIONS      2      2      2      1      1

    Y(1)           4     -4      0      0      0
    Y(2)           2     -2     -6     -1     -1

2.3.4.1.7. Design for 2,2,2,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3417.htm (1 of 2) [5/1/2006 10:11:47 AM]
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    Y(3)          -2      2     -6     -1     -1
    Y(4)           2     -2     -2     -3     -3
    Y(5)          -2      2     -2     -3     -3
    Y(6)           0      0      4     -2     -2
    Y(7)           0      0      0      8     -8
    R*             8      8      8      4      4

    R* = sum of the two reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               2   2   2   1   1
  2  0.3536    +
  2  0.3536        +
  2  0.6124            +
  1  0.5863                +
  1  0.5863                    +
  2  0.6124                +   +
  4  1.0000            +   +   +
  1  0.5863                +

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
               2   2   2   1   1
  2  0.7071    +
  2  0.7071        +
  2  1.2247            +
  1  1.0607               +
  1  1.0607                    +
  2  1.5811                +   +
  4  2.2361            +   +   +
  1  1.0607                +

Explanation of notation and interpretation of tables

2.3.4.1.7. Design for 2,2,2,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3417.htm (2 of 2) [5/1/2006 10:11:47 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.8.Design for 5,2,2,1,1,1

Design 5,2,2,1,1,1

 OBSERVATIONS   5   2   2   1   1   1

     Y(1)       +   -   -   -   -   +
     Y(2)       +   -   -   -   +   -
     Y(3)       +   -   -   +   -   -
     Y(4)       +   -       -   -   -
     Y(5)       +       -   -   -   -
     Y(6)           +   -   +   -
     Y(7)           +   -   -       +
     Y(8)           +   -       +   -

 RESTRAINT      +   +   +   +

 CHECK STANDARD                 +

 DEGREES OF FREEDOM  =  3

                             SOLUTION MATRIX
                              DIVISOR =  70

 OBSERVATIONS      5      2      2      1      1      1

    Y(1)          15     -8     -8      1      1     21

2.3.4.1.8. Design for 5,2,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3418.htm (1 of 2) [5/1/2006 10:11:47 AM]
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    Y(2)          15     -8     -8      1     21      1
    Y(3)           5    -12    -12     19     -1     -1
    Y(4)           0      2     12    -14    -14    -14
    Y(5)           0     12      2    -14    -14    -14
    Y(6)          -5      8    -12      9    -11     -1
    Y(7)           5     12     -8     -9      1     11
    Y(8)           0     10    -10      0     10    -10
    R*            35     14     14      7      7      7

    R* = sum of the four reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               5   2   2   1   1   1
  5  0.3273    +
  2  0.3854        +
  2  0.3854            +
  1  0.4326                +
  1  0.4645                    +
  1  0.4645                        +
  1  0.4645                    +

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
               5   2   2   1   1   1
  5  1.0000    +
  2  0.8718        +
  2  0.8718            +
  1  0.9165                +
  1  1.0198                    +
  1  1.0198                        +
  1  1.0198                    +

Explanation of notation and interpretation of tables

2.3.4.1.8. Design for 5,2,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3418.htm (2 of 2) [5/1/2006 10:11:47 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.9.Design for 5,2,2,1,1,1,1

Design 5,2,2,1,1,1,1

 OBSERVATIONS   5   2   2   1   1   1   1

     Y(1)       +   -   -   -
     Y(2)       +   -   -       -
     Y(3)       +   -   -           -
     Y(4)       +   -   -               -
     Y(5)           +       +   -   -   -
     Y(6)               +   +   -   -   -
     Y(7)           +   +   -   -   -   -
     Y(8)                       +   -
     Y(9)                       +       -
     Y(10)                          +   -

 RESTRAINT      +   +   +   +

 CHECK STANDARD                     +

 DEGREES OF FREEDOM  =  4

                                SOLUTION MATRIX
                                 DIVISOR =  60

 OBSERVATIONS      5      2      2      1      1      1     
1

2.3.4.1.9. Design for 5,2,2,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3419.htm (1 of 3) [5/1/2006 10:11:47 AM]
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    Y(1)          12      0      0    -12      0      0     
0
    Y(2)           6     -4     -4      2    -12      3     
3
    Y(3)           6     -4     -4      2      3    -12     
3
    Y(4)           6     -4     -4      2      3      3   
-12
    Y(5)          -6     28    -32     10     -6     -6    
-6
    Y(6)          -6    -32     28     10     -6     -6    
-6
    Y(7)           6      8      8    -22     -6     -6    
-6
    Y(8)           0      0      0      0     15    -15     
0
    Y(9)           0      0      0      0     15      0   
-15
    Y(10)          0      0      0      0      0     15   
-15
    R*            30     12     12      6      6      6     
6

    R* = sum of the four reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               5   2   2   1   1   1   1
  5  0.3162    +
  2  0.7303        +
  2  0.7303            +
  1  0.4830                +
  1  0.4472                    +
  1  0.4472                        +
  1  0.4472                            +
  2  0.5477                    +   +
  3  0.5477                    +   +   +
  1  0.4472                        +

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS

2.3.4.1.9. Design for 5,2,2,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3419.htm (2 of 3) [5/1/2006 10:11:47 AM]



 WT  FACTOR
               5   2   2   1   1   1   1
  5  1.0000    +
  2  0.8718        +
  2  0.8718            +
  1  0.9165                +
  1  1.0198                    +
  1  1.0198                        +
  1  1.0198                            +
  2  1.4697                    +   +
  3  1.8330                    +   +   +
  1  1.0198                        +

Explanation of notation and interpretation of tables

2.3.4.1.9. Design for 5,2,2,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3419.htm (3 of 3) [5/1/2006 10:11:47 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.10.Design for 5,3,2,1,1,1

 OBSERVATIONS   5   3   2   1   1   1

     Y(1)       +   -   -   +   -
     Y(2)       +   -   -       +   -
     Y(3)       +   -   -   -       +
     Y(4)       +   -   -
     Y(5)       +       -   -   -   -
     Y(6)           +   -   +   -   -
     Y(7)           +   -   -   +   -
     Y(8)           +   -   -   -   +
     Y(9)               +   -   -
     Y(10)              +   -       -
     Y(11)              +       -   -

 RESTRAINT      +   +   +

 CHECK STANDARD                 +

 DEGREES OF FREEDOM  =   6

                             SOLUTION MATRIX
                              DIVISOR = 920

 OBSERVATIONS      5      3      2      1      1      1

2.3.4.1.10. Design for 5,3,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341a.htm (1 of 3) [5/1/2006 10:11:47 AM]
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    Y(1)         100    -68    -32    119   -111      4
    Y(2)         100    -68    -32      4    119   -111
    Y(3)         100    -68    -32   -111      4    119
    Y(4)         100    -68    -32      4      4      4
    Y(5)          60     -4    -56   -108   -108   -108
    Y(6)         -20    124   -104    128   -102   -102
    Y(7)         -20    124   -104   -102    128   -102
    Y(8)         -20    124   -104   -102   -102    128
    Y(9)         -20    -60     80   -125   -125    -10
    Y(10)        -20    -60     80   -125    -10   -125
    Y(11)        -20    -60     80    -10   -125   -125
    R*           460    276    184     92     92     92

    R* = sum of the three reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               5   3   2   1   1   1
  5  0.2331    +
  3  0.2985        +
  2  0.2638            +
  1  0.3551                +
  1  0.3551                    +
  1  0.3551                        +
  2  0.5043                +   +
  3  0.6203                +   +   +
  1  0.3551                    +

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
               5   3   2   1   1   1
  5  0.8660    +
  3  0.8185        +
  2  0.8485            +
  1  1.0149                +
  1  1.0149                    +
  1  1.0149                        +
  2  1.4560                +   +
  3  1.8083                +   +   +
  1  1.0149                    +

Explanation of notation and interpretation of tables

2.3.4.1.10. Design for 5,3,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341a.htm (2 of 3) [5/1/2006 10:11:47 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.11.Design for 5,3,2,1,1,1,1

Design 5,3,2,1,1,1,1

 OBSERVATIONS   5   3   2   1   1   1   1

     Y(1)       +   -   -
     Y(2)       +   -       -   -
     Y(3)       +   -               -   -
     Y(4)       +       -   -   -   -
     Y(5)       +       -   -   -       -
     Y(6)       +       -   -       -   -
     Y(7)       +       -       -   -   -
     Y(8)           +   -   -
     Y(9)           +   -       -
     Y(10)          +   -           -
     Y(11)          +   -               -

 RESTRAINT      +   +   +

 CHECK STANDARD                     +

 DEGREES OF FREEDOM  =  5

                             SOLUTION MATRIX
                              DIVISOR =  40

 OBSERVATIONS      5      3      2      1      1      1     

2.3.4.1.11. Design for 5,3,2,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341b.htm (1 of 3) [5/1/2006 10:11:48 AM]
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1

    Y(1)          20     -4    -16     12     12     12    
12
    Y(2)           0     -4      4     -8     -8      2     
2
    Y(3)           0     -4      4      2      2     -8    
-8
    Y(4)           0      0      0     -5     -5    -10    
10
    Y(5)           0      0      0     -5     -5     10   
-10
    Y(6)           0      0      0    -10     10     -5    
-5
    Y(7)           0      0      0     10    -10     -5    
-5
    Y(8)           0      4     -4    -12      8      3     
3
    Y(9)           0      4     -4      8    -12      3     
3
    Y(10)          0      4     -4      3      3    -12     
8
    Y(11)          0      4     -4      3      3      8   
-12
    R*            20     12      8      4      4      4     
4

    R* = sum of the three reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               5   3   2   1   1   1   1
  5  0.5000    +
  3  0.2646        +
  2  0.4690            +
  1  0.6557                +
  1  0.6557                    +
  1  0.6557                        +
  1  0.6557                            +
  2  0.8485                +   +
  3  1.1705                +   +   +
  4  1.3711                +   +   +   +

2.3.4.1.11. Design for 5,3,2,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341b.htm (2 of 3) [5/1/2006 10:11:48 AM]



  1  0.6557                        +

 FACTORS FOR LEVEL-2 STANDARD DEVIATIONS
 WT  FACTOR
               5   3   2   1   1   1   1
  5  0.8660    +
  3  0.8185        +
  2  0.8485            +
  1  1.0149                +
  1  1.0149                    +
  1  1.0149                        +
  1  1.0149                            +
  2  1.4560                +   +
  3  1.8083                +   +   +
  4  2.1166                +   +   +   +
  1  1.0149                        +

Explanation of notation and interpretation of tables

2.3.4.1.11. Design for 5,3,2,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341b.htm (3 of 3) [5/1/2006 10:11:48 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.12.Design for 5,3,2,2,1,1,1

 OBSERVATIONS   5   3   2   2   1   1   1

     Y(1)       +   -   -
     Y(2)       +   -       -
     Y(3)       +       -   -   -
     Y(4)       +       -   -       -
     Y(5)       +       -   -           -
     Y(6)           +       -   -
     Y(7)           +       -       -
     Y(8)           +       -           -
     Y(9)           +           -   -   -
     Y(10)                      +   -
     Y(11)                          +   -
     Y(12)                      -       +

 RESTRAINT      +   +   +

 CHECK STANDARDS                    +

 DEGREES OF FREEDOM  =   6

                             SOLUTION MATRIX
                              DIVISOR =  10

 OBSERVATIONS      5      3      2      2      1      1     

2.3.4.1.12. Design for 5,3,2,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341c.htm (1 of 3) [5/1/2006 10:11:58 AM]
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1

    Y(1)           2      0     -2      2      0      0     
0
    Y(2)           0     -6      6     -4     -2     -2    
-2
    Y(3)           1      1     -2      0     -1      1     
1
    Y(4)           1      1     -2      0      1     -1     
1
    Y(5)           1      1     -2      0      1      1    
-1
    Y(6)          -1      1      0     -2     -1      1     
1
    Y(7)          -1      1      0     -2      1     -1     
1
    Y(8)          -1      1      0     -2      1      1    
-1
    Y(9)           0     -2      2      2     -4     -4    
-4
    Y(10)          0      0      0      0      2     -2     
0
    Y(11)          0      0      0      0      0      2    
-2
    Y(12)          0      0      0      0     -2      0     
2
    R*             5      3      2      2      1      1     
1

    R* = sum of the three reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               5   3   2   2   1   1   1
  5  0.3162    +
  3  0.6782        +
  2  0.7483            +
  2  0.6000                +
  1  0.5831                    +
  1  0.5831                        +
  1  0.5831                            +
  3  0.8124                +   + 
  4  1.1136                +   +   +
  1  0.5831                        +

2.3.4.1.12. Design for 5,3,2,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341c.htm (2 of 3) [5/1/2006 10:11:58 AM]



 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
               5   3   2   2   1   1   1
  5  0.8660    +
  3  0.8185        +
  2  0.8485            +
  2  1.0583                +
  1  1.0149                    +
  1  1.0149                        +
  1  1.0149                            +
  3  1.5067                +   + 
  4  1.8655                +   +   +
  1  1.0149                        +

Explanation of notation and interpretation of tables

2.3.4.1.12. Design for 5,3,2,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341c.htm (3 of 3) [5/1/2006 10:11:58 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.13.Design for 5,4,4,3,2,2,1,1

 OBSERVATIONS   5   4   4   3   2   2   1   1

     Y(1)       +   +       -   -   -   -   -
     Y(2)       +       +   -   -   -   -   -
     Y(3)       +   -                   -
     Y(4)       +       -                   -
     Y(5)       +       -               -
     Y(6)       +   -           -
     Y(7)       +           -       -   -
     Y(8)       +           -   -   -
     Y(9)       +   -       -
     Y(10)      +       -       -
     Y(11)      +       -   -
     Y(12)      +   -   -

 RESTRAINT                              +   +

 CHECK STANDARD                         +   -

 DEGREES OF FREEDOM  =      5

                             SOLUTION MATRIX
                              DIVISOR = 916

 OBSERVATIONS      5      4      4      3      2      2     
1      1

2.3.4.1.13. Design for 5,4,4,3,2,2,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341d.htm (1 of 3) [5/1/2006 10:11:58 AM]
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    Y(1)         232    325    123      8    -37    135    
-1      1
    Y(2)         384    151    401    108     73    105   
101   -101
    Y(3)         432     84    308    236    168    204  
-144    144
    Y(4)         608    220    196    400    440   -120   
408   -408
    Y(5)         280    258     30    136     58    234  
-246    246
    Y(6)          24   -148     68     64   -296    164    
-8      8
    Y(7)        -104   -122   -142     28    214   -558  
-118    118
    Y(8)        -512   -354   -382   -144   -250   -598    
18    -18
    Y(9)          76    -87    139   -408     55    443    
51    -51
    Y(10)       -128     26   -210    -36   -406    194  
-110    110
    Y(11)        -76     87   -139   -508    -55    473   
-51     51
    Y(12)       -300   -440   -392    116     36   -676   
100   -100
    R*          1224    696    720    516    476    120   
508    408

    R* = sum of the two reference standards (for going-up
calibrations)

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               5   4   4   3   2   2   1   1
  5  1.2095    +
  4  0.8610        +
  4  0.9246            +
  3  0.9204                +
  2  0.8456                    +
  2  1.4444                        +
  1  0.5975                            +
  1  0.5975                                +
  4  1.5818                    +   +
  7  1.7620                +   +   +

2.3.4.1.13. Design for 5,4,4,3,2,2,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341d.htm (2 of 3) [5/1/2006 10:11:58 AM]



 11  2.5981            +   +   +   +
 15  3.3153        +   +   +   +   +
 20  4.4809    +   +   +   +   +   +
  0  1.1950                            +   -

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
               5   4   4   3   2   2   1   1
  5  2.1380    +
  4  1.4679        +
  4  1.4952            +
  3  1.2785                +
  2  1.2410                    +
  2  1.0170                        +
  1  0.7113                            +
  1  0.7113                                +
  4  1.6872                    +   +
  7  2.4387                +   +   +
 11  3.4641            +   +   +   +
 15  4.4981        +   +   +   +   +
 20  6.2893    +   +   +   +   +   +
  0  1.4226                            +   -

Explanation of notation and interpretation of tables

2.3.4.1.13. Design for 5,4,4,3,2,2,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341d.htm (3 of 3) [5/1/2006 10:11:58 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.14.Design for 5,5,2,2,1,1,1,1

Design 5,5,2,2,1,1,1,1

 OBSERVATIONS   5   5   2   2   1   1   1   1

     Y(1)       +       -   -   -
     Y(2)           +   -   -       -
     Y(3)       +       -   -           -
     Y(4)           +   -   -               -
     Y(5)               +   +   -   -   -   -
     Y(6)               +       -       -
     Y(7)               +           -       -
     Y(8)                   +   -           -
     Y(9)                   +       -   -
     Y(10)                      +       -
     Y(11)                          +       -

 RESTRAINT      +   +

 CHECK STANDARD                         +

 DEGREES OF FREEDOM  =      4

                             SOLUTION MATRIX
                              DIVISOR = 120

 OBSERVATIONS      5      5      2      2      1      1     
1      1

2.3.4.1.14. Design for 5,5,2,2,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341e.htm (1 of 3) [5/1/2006 10:11:58 AM]
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    Y(1)          30    -30    -12    -12    -22    -10    
10     -2
    Y(2)         -30     30    -12    -12    -10    -22    
-2     10
    Y(3)          30    -30    -12    -12     10     -2   
-22    -10
    Y(4)         -30     30    -12    -12     -2     10   
-10    -22
    Y(5)           0      0      6      6    -12    -12   
-12    -12
    Y(6)         -30     30     33    -27    -36     24   
-36     24
    Y(7)          30    -30     33    -27     24    -36    
24    -36
    Y(8)           0      0    -27     33    -18      6     
6    -18
    Y(9)           0      0    -27     33      6    -18   
-18      6
    Y(10)          0      0      0      0     32      8   
-32     -8
    Y(11)          0      0      0      0      8     32    
-8    -32
    R*            60     60     24     24     12     12    
12     12

    R* = sum of the two reference standards

 FACTORS FOR COMPUTING REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               5   5   2   2   1   1   1   1
  5  0.6124    +
  5  0.6124        +
  2  0.5431            +
  2  0.5431                +
  1  0.5370                    +
  1  0.5370                        +
  1  0.5370                            +
  1  0.5370                                +
  2  0.6733                    +   +
  4  0.8879                 +   +   +
  6  0.8446            +   +   +   +
 11  1.0432        +   +   +   +   +
 16  0.8446    +   +   +   +   +   +

2.3.4.1.14. Design for 5,5,2,2,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341e.htm (2 of 3) [5/1/2006 10:11:58 AM]



  1  0.5370                            +

 FACTORS FOR COMPUTING LEVEL-2 STANDARD DEVIATIONS
 WT  FACTOR
               5   5   2   2   1   1   1   1
  5  0.7071    +
  5  0.7071        +
  2  1.0392            +
  2  1.0392                +
  1  1.0100                    +
  1  1.0100                        +
  1  1.0100                            +
  1  1.0100                                +
  2  1.4422                     +   +
  4  1.8221                 +   +   +
  6  2.1726            +   +   +   +
 11  2.2847        +   +   +   +   +
 16  2.1726    +   +   +   +   +   +
  1  1.0100                            +

Explanation of notation and interpretation of tables

2.3.4.1.14. Design for 5,5,2,2,1,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341e.htm (3 of 3) [5/1/2006 10:11:58 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.15.Design for 5,5,3,2,1,1,1

 OBSERVATIONS   5   5   3   2   1   1   1

     Y(1)       +       -   -
     Y(2)           +   -   -
     Y(3)       +           -   -   -   -
     Y(4)           +       -   -   -   -
     Y(5)       +       -       -   -
     Y(6)       +       -       -       -
     Y(7)       +       -           -   -
     Y(8)           +   -       -   -
     Y(9)           +   -       -       -
     Y(10)          +   -           -   -

 RESTRAINT      +   +

 CHECK STANDARD                     +

 DEGREES OF FREEDOM  =      4

                             SOLUTION MATRIX
                              DIVISOR =  10

 OBSERVATIONS      5      5      3      2      1      1     
1

    Y(1)           1     -1     -2     -3      1      1     

2.3.4.1.15. Design for 5,5,3,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341f.htm (1 of 3) [5/1/2006 10:11:58 AM]
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1
    Y(2)          -1      1     -2     -3      1      1     
1
    Y(3)           1     -1      2     -2     -1     -1    
-1
    Y(4)          -1      1      2     -2     -1     -1    
-1
    Y(5)           1     -1     -1      1     -2     -2     
3
    Y(6)           1     -1     -1      1     -2      3    
-2
    Y(7)           1     -1     -1      1      3     -2    
-2
    Y(8)          -1      1     -1      1     -2     -2     
3
    Y(9)          -1      1     -1      1     -2      3    
-2
    Y(10)         -1      1     -1      1      3     -2    
-2
    R*             5      5      3      2      1      1     
1

    R* = sum of the two reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 WT  FACTOR
               5   5   3   2   1   1   1
  5  0.3162    +
  5  0.3162        +
  3  0.4690            +
  2  0.5657                +
  1  0.6164                    +
  1  0.6164                        +
  1  0.6164                            +
  3  0.7874                +   +
  6  0.8246            +   +   +
 11  0.8832        +   +   +   +
 16  0.8246    +   +   +   +   +
  1  0.6164                        +

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS
 WT  FACTOR
               5   5   3   2   1   1   1

2.3.4.1.15. Design for 5,5,3,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341f.htm (2 of 3) [5/1/2006 10:11:58 AM]



  5  0.7071    +
  5  0.7071        +
  3  1.0863            +
  2  1.0392                +
  1  1.0100                    +
  1  1.0100                        +
  1  1.0100                            +
  3  1.4765                +   +
  6  1.9287            +   +   +
 11  2.0543        +   +   +   +
 16  1.9287    +   +   +   +   +
  1  1.0100                        +                                       

Explanation of notation and interpretation of tables

2.3.4.1.15. Design for 5,5,3,2,1,1,1

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341f.htm (3 of 3) [5/1/2006 10:11:58 AM]
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.16.Design for 1,1,1,1,1,1,1,1 weights

 OBSERVATIONS   1   1   1   1   1   1   1   1

     Y(1)       +       -
     Y(2)       +           -
     Y(3)       +               -
     Y(4)       +                   -
     Y(5)       +                       -
     Y(6)       +                           -
     Y(7)           +   -
     Y(8)           +       -
     Y(9)           +           -
     Y(10)          +               -
     Y(11)          +                   -
     Y(12)          +                       -

 RESTRAINT      +   +

 CHECK STANDARD                         +

 
DEGREES OF FREEDOM  =  5

                             SOLUTION MATRIX
                               DIVISOR = 12

 OBSERVATIONS      1      1      1      1      1      1     
1      1

2.3.4.1.16. Design for 1,1,1,1,1,1,1,1 weights

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc341g.htm (1 of 3) [5/1/2006 10:11:59 AM]
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    Y(1)           1     -1     -6      0      0      0     
0      0
    Y(2)           1     -1      0     -6      0      0     
0      0
    Y(3)           1     -1      0      0     -6      0     
0      0
    Y(4)           1     -1      0      0      0     -6     
0      0
    Y(5)           1     -1      0      0      0      0    
-6      0
    Y(6)           1     -1      0      0      0      0     
0     -6
    Y(7)          -1      1     -6      0      0      0     
0      0
    Y(8)          -1      1      0     -6      0      0     
0      0
    Y(9)          -1      1      0      0     -6      0     
0      0
    Y(10)         -1      1      0      0      0     -6     
0      0
    Y(11)         -1      1      0      0      0      0    
-6      0
    Y(12)         -1      1      0      0      0      0     
0     -6
    R*             6      6      6      6      6      6     
6      6

    R* = sum of the two reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS

  WT   K1      1   1   1   1   1   1   1   1
  1  0.2887    +
  1  0.2887        +
  1  0.7071            +
  1  0.7071                +
  1  0.7071                    +
  1  0.7071                        +
  1  0.7071                            +
  1  0.7071                                +
  2  1.0000            +   +
  3  1.2247            +   +   +
  4  1.4142            +   +   +   +
  5  1.5811            +   +   +   +   +
  6  1.7321            +   +   +   +   +   +

2.3.4.1.16. Design for 1,1,1,1,1,1,1,1 weights
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  1  0.7071                            +

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS

  WT   K2      1   1   1   1   1   1   1   1
  1  0.7071    +
  1  0.7071        +
  1  1.2247            +
  1  1.2247                +
  1  1.2247                    +
  1  1.2247                        +
  1  1.2247                            +
  1  1.2247                                +
  2  2.0000            +   +
  3  2.7386            +   +   +
  4  3.4641            +   +   +   +
  5  4.1833            +   +   +   +   +
  6  4.8990            +   +   +   +   +   +
  1  1.2247                            +
                                                              

Explanation of notation and interpretation of tables

2.3.4.1.16. Design for 1,1,1,1,1,1,1,1 weights
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.17.Design for 3,2,1,1,1 weights

 OBSERVATIONS   3   2   1   1   1

     Y(1)       +   -   -
     Y(2)       +   -       -
     Y(3)       +   -           -
     Y(4)       +       -   -   -
     Y(5)           +   -   -
     Y(6)           +   -       -
     Y(7)           +       -   -
     Y(8)               +   -
     Y(9)               +       -
     Y(10)                  +   -

 RESTRAINT      +   +

 CHECK STANDARD             +

 DEGREES OF FREEDOM = 6

                             SOLUTION MATRIX
                              DIVISOR = 25

 OBSERVATIONS      3      2      1      1      1

2.3.4.1.17. Design for 3,2,1,1,1 weights
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    Y(1)           3     -3     -4      1      1
    Y(2)           3     -3      1     -4      1
    Y(3)           3     -3      1      1     -4
    Y(4)           1     -1     -3     -3     -3
    Y(5)          -2      2     -4     -4      1
    Y(6)          -2      2     -4      1     -4
    Y(7)          -2      2      1     -4     -4
    Y(8)           0      0      5     -5      0
    Y(9)           0      0      5      0     -5
    Y(10)          0      0      0      5     -5
    R*            15     10      5      5      5

    R* = sum of the two reference standards

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS

  WT    K1     3   2   1   1   1
  3  0.2530    +
  2  0.2530        +
  1  0.4195            +
  1  0.4195                +
  1  0.4195                    +
  2  0.5514            +   +
  3  0.6197            +   +   +
  1  0.4195                +

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS

  WT    K2     3   2   1   1   1
  3  0.7211    +
  2  0.7211        +
  1  1.0392            +
  1  1.0392                +
  1  1.0392                    +
  2  1.5232            +   +
  3  1.9287            +   +   +
  1  1.0392                +
                                                                                                     

Explanation of notation and interpretation of tables

2.3.4.1.17. Design for 3,2,1,1,1 weights
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.1. Mass weights

2.3.4.1.18.Design for 10-and 20-pound
weights

 OBSERVATIONS   1   2   2   1   1

     Y(1)       +           -
     Y(2)       +               -
     Y(3)       +   -           +
     Y(4)       +       -   +
     Y(5)       +   -       +
     Y(6)       +       -       +
     Y(7)           +   -
                              

 RESTRAINT      +

 CHECK STANDARD             +

 DEGREES OF FREEDOM = 3

                         SOLUTION MATRIX
                           DIVISOR  =   24

 OBSERVATIONS      1      2      2      1      1

    Y(1)           0    -12    -12    -16     -8
    Y(2)           0    -12    -12     -8    -16

2.3.4.1.18. Design for 10-and 20-pound weights
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    Y(3)           0     -9     -3     -4      4
    Y(4)           0     -3     -9      4     -4
    Y(5)           0     -9     -3      4     -4
    Y(6)           0     -3     -9     -4      4
    Y(7)           0      6     -6      0      0
    R*            24     48     48     24     24  

    R* = Value of the reference standard

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS

 WT    K1      1   2   2   1   1
  2  0.9354        +
  2  0.9354            +
  1  0.8165                +
  1  0.8165                    +
  4  1.7321        +   +
  5  2.3805        +   +   +
  6  3.0000        +   +   +   +
  1  0.8165                +  

 FACTORS FOR BETWEEN-DAY STANDARD DEVIATIONS

 WT    K2      1   2   2   1   1
  2  2.2361        +
  2  2.2361            +
  1  1.4142                +
  1  1.4142                    +
  4  4.2426        +   +
  5  5.2915        +   +   +
  6  6.3246        +   +   +   +
  1  1.4142                +  

Explanation of notation and interpretation of tables

2.3.4.1.18. Design for 10-and 20-pound weights
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs

2.3.4.2.Drift-elimination designs for gauge
blocks

Tie to the defined
unit of length

The unit of length in many industries is maintained and
disseminated by gauge blocks. The highest accuracy calibrations of
gauge blocks are done by laser intererometry which allows the
transfer of the unit of length to a gauge piece. Primary standards
laboratories maintain master sets of English gauge blocks and
metric gauge blocks which are calibrated in this manner. Gauge
blocks ranging in sizes from 0.1 to 20 inches are required to
support industrial processes in the United States.

Mechanical
comparison of
gauge blocks

However, the majority of gauge blocks are calibrated by
comparison with master gauges using a mechanical comparator
specifically designed for measuring the small difference between
two blocks of the same nominal length. The measurements are
temperature corrected from readings taken directly on the surfaces
of the blocks. Measurements on 2 to 20 inch blocks require special
handling techniques to minimize thermal effects. A typical
calibration involves a set of 81 gauge blocks which are compared
one-by-one with master gauges of the same nominal size.

Calibration
designs for gauge
blocks

Calibration designs allow comparison of several gauge blocks of
the same nominal size to one master gauge in a manner that
promotes economy of operation and minimizes wear on the master
gauge. The calibration design is repeated for each size until
measurements on all the blocks in the test sets are completed.

Problem of
thermal drift

Measurements on gauge blocks are subject to drift from heat
build-up in the comparator. This drift must be accounted for in the
calibration experiment or the lengths assigned to the blocks will be
contaminated by the drift term.

2.3.4.2. Drift-elimination designs for gauge blocks
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Elimination of
linear drift

The designs in this catalog are constructed so that the solutions are
immune to linear drift if the measurements are equally spaced over
time. The size of the drift is the average of the n difference
measurements. Keeping track of drift from design to design is
useful because a marked change from its usual range of values may
indicate a problem with the measurement system.

Assumption for
Doiron designs

Mechanical measurements on gauge blocks take place successively
with one block being inserted into the comparator followed by a
second block and so on. This scenario leads to the assumption that
the individual measurements are subject to drift (Doiron). Doiron
lists designs meeting this criterion which also allow for:

two master blocks, R1 and R2●   

one check standard = difference between R1 and R2●   

one - nine test blocks●   

Properties of
drift-elimination
designs that use 1
master block

The designs are constructed to:

Be immune to linear drift●   

Minimize the standard deviations for test blocks (as much as
possible)

●   

Spread the measurements on each block throughout the
design

●   

Be completed in 5-10 minutes to keep the drift at the 5 nm
level

●   

Caution Because of the large number of gauge blocks that are being
intercompared and the need to eliminate drift, the Doiron designs
are not completely balanced with respect to the test blocks.
Therefore, the standard deviations are not equal for all blocks. If all
the blocks are being calibrated for use in one facility, it is easiest to
quote the largest of the standard deviations for all blocks rather
than try to maintain a separate record on each block.

2.3.4.2. Drift-elimination designs for gauge blocks
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Definition of
master block and
check standard

At the National Institute of Standards and Technology (NIST), the
first two blocks in the design are NIST masters which are
designated R1 and R2, respectively. The R1 block is a steel block,
and the R2 block is a chrome-carbide block. If the test blocks are
steel, the reference is R1; if the test blocks are chrome-carbide, the
reference is R2. The check standard is always the difference
between R1 and R2 as estimated from the design and is
independent of R1 and R2. The designs are listed in this section of
the catalog as:

Doiron design for 3 gauge blocks - 6 measurements1.  

Doiron design for 3 gauge blocks - 9 measurements2.  

Doiron design for 4 gauge blocks - 8 measurements3.  

Doiron design for 4 gauge blocks - 12 measurements4.  

Doiron design for 5 gauge blocks - 10 measurements5.  

Doiron design for 6 gauge blocks - 12 measurements6.  

Doiron design for 7 gauge blocks - 14 measurements7.  

Doiron design for 8 gauge blocks - 16 measurements8.  

Doiron design for 9 gauge blocks - 18 measurements9.  

Doiron design for 10 gauge blocks - 20 measurements10.  

Doiron design for 11 gauge blocks - 22 measurements11.  

Properties of
designs that use 2
master blocks

Historical designs for gauge blocks (Cameron and Hailes) work on
the assumption that the difference measurements are contaminated
by linear drift. This assumption is more restrictive and covers the
case of drift in successive measurements but produces fewer
designs. The Cameron/Hailes designs meeting this criterion allow
for:

two reference (master) blocks, R1 and R2●   

check standard = difference between the two master blocks●   

and assign equal uncertainties to values of all test blocks.

The designs are listed in this section of the catalog as:

Cameron-Hailes design for 2 masters + 2 test blocks1.  

Cameron-Hailes design for 2 masters + 3 test blocks2.  

Cameron-Hailes design for 2 masters + 4 test blocks3.  

Cameron-Hailes design for 2 masters + 5 test blocks4.  

2.3.4.2. Drift-elimination designs for gauge blocks
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Important
concept - check
standard

The check standards for the designs in this section are not artifact
standards but constructions from the design. The value of one
master block or the average of two master blocks is the restraint for
the design, and values for the masters, R1 and R2, are estimated
from a set of measurements taken according to the design. The
check standard value is the difference between the estimates, R1
and R2. Measurement control is exercised by comparing the current
value of the check standard with its historical average.

2.3.4.2. Drift-elimination designs for gauge blocks
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.2. Drift-elimination designs for gage blocks

2.3.4.2.1.Doiron 3-6 Design

 Doiron 3-6 design

 OBSERVATIONS   1   1   1

     Y(1)       +   -       
     Y(2)       -       +   
     Y(3)           +   -   
     Y(4)       -   +       
     Y(5)           -   +   
     Y(6)       +       -   

 RESTRAINT      +

 CHECK STANDARD     +           

 DEGREES OF FREEDOM  =      4

                   SOLUTION MATRIX
                    DIVISOR  =  6

 OBSERVATIONS     1      1      1

    Y(1)          0      -2     -1
    Y(2)          0       1      2
    Y(3)          0       1     -1

2.3.4.2.1. Doiron 3-6 Design
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    Y(4)          0       2      1
    Y(5)          0      -1      1
    Y(6)          0      -1     -2
    R*            6       6      6

    R* = Value of the reference standard

FACTORS FOR REPEATABILITY STANDARD DEVIATIONS 
 NOM FACTOR 
               1   1   1
  1  0.0000    +           
  1  0.5774        +       
  1  0.5774            +   
  1  0.5774        +   
    

Explanation of notation and interpretation of tables

2.3.4.2.1. Doiron 3-6 Design
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.2. Drift-elimination designs for gage blocks

2.3.4.2.2.Doiron 3-9 Design

 Doiron 3-9 Design                                                              

 OBSERVATIONS   1   1   1

     Y(1)       +   -       
     Y(2)           -   +   
     Y(3)       +       -   
     Y(4)       -   +       
     Y(5)       -       +   
     Y(6)           +   -   
     Y(7)       -   +       
     Y(8)           -   +   
     Y(9)       +       -   

 RESTRAINT      +

 CHECK STANDARD     +           

 DEGREES OF FREEDOM  =      7

               SOLUTION MATRIX  
                DIVISOR  =  9

 OBSERVATIONS     1       1      1

2.3.4.2.2. Doiron 3-9 Design
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    Y(1)          0      -2     -1
    Y(2)          0      -1      1
    Y(3)          0      -1     -2
    Y(4)          0       2      1
    Y(5)          0       1      2
    Y(6)          0       1     -1
    Y(7)          0       2      1
    Y(8)          0      -1      1
    Y(9)          0      -1     -2
    R(1)          9       9      9

 FACTORS FOR COMPUTING REPEATABILITY STANDARD DEVIATIONS 
 NOM FACTOR 
               1   1   1
  1  0.0000    +           
  1  0.4714        +       
  1  0.4714            +
  1  0.4714        +     
    

Explanation of notation and interpretation of tables

2.3.4.2.2. Doiron 3-9 Design
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.2. Drift-elimination designs for gage blocks

2.3.4.2.3.Doiron 4-8 Design

 Doiron 4-8 Design                                                              

 OBSERVATIONS   1   1   1   1

     Y(1)       +   -           
     Y(2)               +   -   
     Y(3)       -           +   
     Y(4)           +   -       
     Y(5)       -   +           
     Y(6)               -   +   
     Y(7)       +           -   
     Y(8)           -   +       

 RESTRAINT      +

 CHECK STANDARD     +               

 DEGREES OF FREEDOM  =   5

                SOLUTION MATRIX  
                 DIVISOR  =  8

 OBSERVATIONS     1       1      1      1

    Y(1)          0      -3     -2     -1
    Y(2)          0       1      2     -1
    Y(3)          0       1      2      3
    Y(4)          0       1     -2     -1
    Y(5)          0       3      2      1

2.3.4.2.3. Doiron 4-8 Design
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    Y(6)          0      -1     -2      1
    Y(7)          0      -1     -2     -3
    Y(8)          0      -1      2      1
    R*            8       8      8      8

    R* = Value of the reference standard

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS 
 NOM FACTOR 
               1   1   1   1
  1  0.0000    +               
  1  0.6124        +           
  1  0.7071            +       
  1  0.6124                + 
  1  0.6124        +    
    

Explanation of notation and interpretation of tables

2.3.4.2.3. Doiron 4-8 Design
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.2. Drift-elimination designs for gage blocks

2.3.4.2.4.Doiron 4-12 Design

 Doiron 4-12 Design                                                             

 OBSERVATIONS   1   1   1   1

     Y(1)       +   -           
     Y(2)       +           +   
     Y(3)               +   -   
     Y(4)       -   +           
     Y(5)           +   -       
     Y(6)           -       +   
     Y(7)       +       -       
     Y(8)           +       -   
     Y(9)       +           -   
     Y(10)          -   +       
     Y(11)      -       +       
     Y(12)              -   +   

 RESTRAINT      +

 CHECK STANDARD     +               

 DEGREES OF FREEDOM  =      9

                      SOLUTION MATRIX  
                       DIVISOR  =  8

 OBSERVATIONS     1       1      1      1

    Y(1)          0      -2     -1     -1

2.3.4.2.4. Doiron 4-12 Design
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    Y(2)          0       1      1      2
    Y(3)          0       0      1     -1
    Y(4)          0       2      1      1
    Y(5)          0       1     -1      0
    Y(6)          0      -1      0      1
    Y(7)          0      -1     -2     -1
    Y(8)          0       1      0     -1
    Y(9)          0      -1     -1     -2
    Y(10)         0      -1      1      0
    Y(11)         0       1      2      1
    Y(12)         0       0     -1      1
    R*            6       6      6      4
 
    R* = Value of the reference standard

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS 
 NOM FACTOR 
               1   1   1   1
  1  0.0000    +               
  1  0.5000        +           
  1  0.5000            +       
  1  0.5000                +
  1  0.5000        +    
   
    

Explanation of notation and interpretation of tables

2.3.4.2.4. Doiron 4-12 Design
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.2. Drift-elimination designs for gage blocks

2.3.4.2.5.Doiron 5-10 Design

 Doiron 5-10 Design                                                             

 OBSERVATIONS   1   1   1   1   1

     Y(1)       +   -               
     Y(2)                   -   +   
     Y(3)       +       -           
     Y(4)           -           +   
     Y(5)               -   +       
     Y(6)       +           -       
     Y(7)       -       +           
     Y(8)               +       -   
     Y(9)       -           +       
     Y(10)          +           -   

 RESTRAINT      +

 CHECK STANDARD     +                   

 DEGREES OF FREEDOM  =      6

                      SOLUTION MATRIX  
                       DIVISOR =  90

 OBSERVATIONS    1        1      1      1      1

    Y(1)         0      -50    -10    -10    -30
    Y(2)         0       20      4    -14     30
    Y(3)         0      -10    -29    -11    -15

2.3.4.2.5. Doiron 5-10 Design

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3425.htm (1 of 2) [5/1/2006 10:12:01 AM]
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    Y(4)         0      -20      5      5     15
    Y(5)         0        0    -18     18      0
    Y(6)         0      -10    -11    -29    -15
    Y(7)         0       10     29     11     15
    Y(8)         0      -20     14     -4    -30
    Y(9)         0       10     11     29     15
    Y(10)        0       20     -5     -5    -15
    R*          90       90     90     90     90

    R* = Value of the reference standard

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS 
 NOM FACTOR 
               1   1   1   1   1
  1  0.0000    +                   
  1  0.7454        +               
  1  0.5676            +           
  1  0.5676                +       
  1  0.7071                    +
  1  0.7454        +    
 
    

Explanation of notation and interpretation of tables

2.3.4.2.5. Doiron 5-10 Design
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.2. Drift-elimination designs for gage blocks

2.3.4.2.6.Doiron 6-12 Design

 Doiron 6-12 Design                                                             

 OBSERVATIONS   1   1   1   1   1   1

     Y(1)       +   -                   
     Y(2)                   -   +       
     Y(3)               -           +   
     Y(4)                       -   +   
     Y(5)           -       +           
     Y(6)               +   -           
     Y(7)       +                   -   
     Y(8)           +           -       
     Y(9)           +   -               
     Y(10)      -               +       
     Y(11)          +               -   
     Y(12)      -           +           

 RESTRAINT      +

 CHECK STANDARD     +                       

 DEGREES OF FREEDOM  =      7

                      SOLUTION MATRIX  
                       DIVISOR = 360

 OBSERVATIONS   1         1      1      1      1      1

    Y(1)        0      -136    -96    -76    -72    -76

2.3.4.2.6. Doiron 6-12 Design

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3426.htm (1 of 2) [5/1/2006 10:12:01 AM]
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    Y(2)        0        -4    -24    -79     72     11
    Y(3)        0       -20   -120    -35      0     55
    Y(4)        0         4     24    -11    -72     79
    Y(5)        0       -60      0     75      0    -15
    Y(6)        0        20    120    -55      0     35
    Y(7)        0       -76    -96    -61    -72   -151
    Y(8)        0        64     24      4    -72      4
    Y(9)        0        40   -120    -20      0    -20
    Y(10)       0        72     72     72    144     72
    Y(11)       0        60      0     15      0    -75
    Y(12)       0        76     96    151     72     61
    R*        360       360    360    360    360    360

    R* = Value of the reference standard

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS 
 NOM FACTOR 
               1   1   1   1   1   1
  1  0.0000    +                       
  1  0.6146        +                   
  1  0.7746            +               
  1  0.6476                +           
  1  0.6325                    +       
  1  0.6476                        + 
  1  0.6146        +     
    

Explanation of notation and interpretation of tables

2.3.4.2.6. Doiron 6-12 Design
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.2. Drift-elimination designs for gage blocks

2.3.4.2.7.Doiron 7-14 Design

 Doiron 7-14 Design                                                             

 OBSERVATIONS   1   1   1   1   1   1   1

     Y(1)       +   -                       
     Y(2)                   -       +       
     Y(3)               +       -           
     Y(4)           +                   -   
     Y(5)       +                   -       
     Y(6)               -       +           
     Y(7)           +       -               
     Y(8)               +               -   
     Y(9)                       +   -       
     Y(10)      -                       +   
     Y(11)          -               +       
     Y(12)              -   +               
     Y(13)      -           +               
     Y(14)                      -       +   

 RESTRAINT      + 

 CHECK STANDARD     +                          

 DEGREES OF FREEDOM  =      8

                      PARAMETER VALUES  
                       DIVISOR = 1015

 OBSERVATIONS   1         1      1      1      1      1     

2.3.4.2.7. Doiron 7-14 Design

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3427.htm (1 of 3) [5/1/2006 10:12:01 AM]
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1

    Y(1)        0      -406   -203   -203   -203   -203  
-203
    Y(2)        0         0    -35   -210     35    210     
0
    Y(3)        0         0    175     35   -175    -35     
0
    Y(4)        0       203   -116     29   -116     29  
-261
    Y(5)        0      -203   -229   -214   -264   -424  
-174
    Y(6)        0         0   -175    -35    175     35     
0
    Y(7)        0       203    -61   -221    -26    -11    
29
    Y(8)        0         0    305     90    130     55  
-145
    Y(9)        0         0    220     15    360   -160   
145
    Y(10)       0       203    319    174    319    174   
464
    Y(11)       0      -203     26     11     61    221   
-29
    Y(12)       0         0   -360    160   -220    -15  
-145
    Y(13)       0       203    264    424    229    214   
174
    Y(14)       0         0   -130    -55   -305    -90   
145
    R*       1015      1015   1015   1015   1015   1015  
1015

    R* = Value of the reference standard

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS 
 NOM FACTOR 
               1   1   1   1   1   1   1
  1  0.0000    +                           
  1  0.6325        +                       
  1  0.7841            +                   
  1  0.6463                +               
  1  0.7841                    +           
  1  0.6463                        +       
  1  0.6761                            +   

2.3.4.2.7. Doiron 7-14 Design

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3427.htm (2 of 3) [5/1/2006 10:12:01 AM]



  1  0.6325        + 
    

Explanation of notation and interpretation of tables

2.3.4.2.7. Doiron 7-14 Design
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.2. Drift-elimination designs for gage blocks

2.3.4.2.8.Doiron 8-16 Design

 Doiron 8-16 Design

 OBSERVATIONS   1   1   1   1   1   1   1   1

     Y(1)       +   -                           
     Y(2)                           +       -   
     Y(3)                   -           +       
     Y(4)       -               +               
     Y(5)               +           -           
     Y(6)                               -   +   
     Y(7)               -   +                   
     Y(8)           -               +           
     Y(9)                       -       +       
     Y(10)      -           +                   
     Y(11)          +                       -   
     Y(12)              -       +               
     Y(13)      -           +                   
     Y(14)                  -               +   
     Y(15)              +       -               
     Y(16)          +                   -       

 RESTRAINT      +

 CHECK STANDARD     +                               

 DEGREES OF FREEDOM  =      9

                             SOLUTION MATRIX  

2.3.4.2.8. Doiron 8-16 Design

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3428.htm (1 of 3) [5/1/2006 10:12:01 AM]
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                              DIVISOR = 2852

 OBSERVATIONS  1          1      1      1      1      1     
1      1

    Y(1)       0      -1392   -620   -472   -516   -976  
-824   -916
    Y(2)       0         60    248    -78     96    878  
-112   -526
    Y(3)       0        352    124   -315    278    255   
864    289
    Y(4)       0        516    992    470   1396    706   
748    610
    Y(5)       0       -356    620     35    286   -979   
-96   -349
    Y(6)       0         92      0     23   -138    253  
-552    667
    Y(7)       0       -148   -992    335   -522   -407  
-104    -81
    Y(8)       0       -416    372    113    190    995    
16    177
    Y(9)       0        308   -248    170   -648    134   
756    342
    Y(10)      0        472    620    955    470    585   
640    663
    Y(11)      0        476   -124   -191    -94   -117  
-128   -703
    Y(12)      0       -104   -620   -150    404   -286     
4   -134
    Y(13)      0        472    620    955    470    585   
640    663
    Y(14)      0        444    124   -292    140    508   
312    956
    Y(15)      0        104    620    150   -404    286    
-4    134
    Y(16)      0        568   -124   -168   -232    136  
-680    -36
    R*      2852       2852   2852   2852   2852   2852  
2852   2852

    R* = value of reference block

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS 
 WT  FACTOR 
               1   1   1   1   1   1   1   1

2.3.4.2.8. Doiron 8-16 Design
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  1  0.0000    +                               
  1  0.6986        +                           
  1  0.7518            +                       
  1  0.5787                +                   
  1  0.6996                    +               
  1  0.8313                        +           
  1  0.7262                            +       
  1  0.7534                                +   
  1  0.6986        +   
    

Explanation of notation and interpretation of tables

2.3.4.2.8. Doiron 8-16 Design
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.2. Drift-elimination designs for gage blocks

2.3.4.2.9.Doiron 9-18 Design

 Doiron 9-18 Design

 OBSERVATIONS   1   1   1   1   1   1   1   1   1

     Y(1)       +   -                               
     Y(2)                               -       +   
     Y(3)           +   -                           
     Y(4)                   -   +                   
     Y(5)                           +       -       
     Y(6)           -       +                       
     Y(7)               +               -           
     Y(8)                                   +   -   
     Y(9)       -               +                   
     Y(10)                  +       -               
     Y(11)      -                               +   
     Y(12)                      -           +       
     Y(13)      -           +                       
     Y(14)          +       -                       
     Y(15)                      -       +           
     Y(16)      +                               -   
     Y(17)              -           +               
     Y(18)                              +   -       

 RESTRAINT      +

 CHECK STANDARD     +                                   

 DEGREES OF FREEDOM  =     10

2.3.4.2.9. Doiron 9-18 Design

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3429.htm (1 of 3) [5/1/2006 10:12:02 AM]
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                             SOLUTION MATRIX  
                              DIVISOR = 8247

 OBSERVATIONS   1         1      1      1      1      1     
1      1      1

    Y(1)        0     -3680  -2305  -2084  -1175  -1885 
-1350  -1266   -654
    Y(2)        0      -696  -1422   -681  -1029   -984 
-2586   -849   1203
    Y(3)        0      1375  -3139    196   -491  -1279 
-1266   -894   -540
    Y(4)        0      -909   -222  -1707   1962   -432   
675    633    327
    Y(5)        0       619   1004    736   -329   2771  
-378  -1674   -513
    Y(6)        0     -1596   -417   1140    342    303    
42    186     57
    Y(7)        0       955   2828    496   -401    971 
-1689   -411   -525
    Y(8)        0       612    966    741   1047   1434   
852   2595  -1200
    Y(9)        0      1175   1666   1517   3479   1756  
2067   2085   1038
    Y(10)       0       199  -1276   1036   -239  -3226  
-801  -1191   -498
    Y(11)       0       654   1194    711   1038   1209  
1719   1722   2922
    Y(12)       0        91    494    -65  -1394    887   
504   2232    684
    Y(13)       0      2084   1888   3224   1517   2188  
1392   1452    711
    Y(14)       0      1596    417  -1140   -342   -303   
-42   -186    -57
    Y(15)       0       175    950   -125  -1412    437  
2238    486    681
    Y(16)       0      -654  -1194   -711  -1038  -1209 
-1719  -1722  -2922
    Y(17)       0      -420  -2280    300     90   2250  
-423    483     15
    Y(18)       0        84    456    -60    -18   -450  
1734  -1746     -3
    R*       8247      8247   8247   8247   8247   8247  
8247   8247   8247

2.3.4.2.9. Doiron 9-18 Design
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    R* = Value of the reference standard

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS 
 NOM FACTOR 
               1   1   1   1   1   1   1   1   1
  1  0.0000    +                                   
  1  0.6680        +                               
  1  0.8125            +                           
  1  0.6252                +                       
  1  0.6495                    +                   
  1  0.8102                        +               
  1  0.7225                            +           
  1  0.7235                                +       
  1  0.5952                                    +   
  1  0.6680        +  
    

Explanation of notation and interpretation of tables

2.3.4.2.9. Doiron 9-18 Design
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.2. Drift-elimination designs for gage blocks

2.3.4.2.10.Doiron 10-20 Design

 Doiron 10-20 Design                                                            

 OBSERVATIONS   1   1   1   1   1   1   1   1   1   1

     Y(1)       +   -                                   
     Y(2)                               +   -           
     Y(3)                   -                       +   
     Y(4)                       +   -                   
     Y(5)           +                           -       
     Y(6)               +   -                           
     Y(7)                                   +   -       
     Y(8)       -                                   +   
     Y(9)                           +   -               
     Y(10)                                      +   -   
     Y(11)                      +       -               
     Y(12)          +   -                               
     Y(13)                  +                       -   
     Y(14)                          -           +       
     Y(15)              +                   -           
     Y(16)      +               -                       
     Y(17)              -               +               
     Y(18)                  +   -                       
     Y(19)      -                           +           
     Y(20)          -               +                   

 RESTRAINT      +

 CHECK STANDARD     +                                       

2.3.4.2.10. Doiron 10-20 Design

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc342a.htm (1 of 3) [5/1/2006 10:12:02 AM]
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 DEGREES OF FREEDOM  =     11

                               SOLUTION MATRIX  
                              DIVISOR  =  33360

 OBSERVATIONS 1          1      1      1      1      1     
1      1      1

    Y(1)      0     -15300  -9030  -6540  -5970  -9570 
-7770  -6510  -9240
    Y(2)      0       1260   1594   1716   3566   3470  
9078  -5678    -24
    Y(3)      0       -960  -2856  -7344  -2664  -1320 
-1992  -1128    336
    Y(4)      0      -3600  -1536    816   5856  -9120 
-1632  -1728  -3744
    Y(5)      0       6060    306  -1596   -906  -1050  
-978  -2262  -8376
    Y(6)      0       2490   8207  -8682  -1187   1165  
2769   2891    588
    Y(7)      0      -2730    809  -1494   -869  -2885   
903   6557  -8844
    Y(8)      0       5580   7218  11412   6102   6630  
6366   5514   8472
    Y(9)      0       1800  -2012   -408   -148   7340 
-7524  -1916   1872
    Y(10)     0       3660   1506  -3276    774   3990  
2382   3258   9144
    Y(11)     0      -1800  -3548    408   5708  -1780 
-9156  -3644  -1872
    Y(12)     0       6270  -9251  -3534  -1609    455 
-3357  -3023    516
    Y(13)     0        960   2856   7344   2664   1320  
1992   1128   -336
    Y(14)     0       -330   -391    186  -2549  -7925 
-2457   1037   6996
    Y(15)     0       2520   8748   3432   1572   1380  
1476  -5796    -48
    Y(16)     0      -5970  -7579  -8766 -15281  -9425 
-9573  -6007  -6876
    Y(17)     0      -1260  -7154  -1716   1994   2090  
7602    118     24
    Y(18)     0        570   2495   9990  -6515  -1475 
-1215    635   1260
    Y(19)     0       6510   9533   6642   6007   7735  

2.3.4.2.10. Doiron 10-20 Design
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9651  15329   8772
    Y(20)     0      -5730     85   1410   3455   8975  
3435   1225   1380
    R*    33360      33360  33360  33360  33360  33360 
33360  33360  33360

    R* = Value of the reference standard

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS 
 NOM FACTOR 
               1   1   1   1   1   1   1   1   1   1
  1  0.0000    +                                       
  1  0.6772        +                                   
  1  0.7403            +                               
  1  0.7498                +                           
  1  0.6768                    +                       
  1  0.7456                        +                   
  1  0.7493                            +               
  1  0.6779                                +           
  1  0.7267                                    +       
  1  0.6961                                        +   
  1  0.6772        +   
    

Explanation of notation and interpretation of tables

2.3.4.2.10. Doiron 10-20 Design
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.2. Drift-elimination designs for gage blocks

2.3.4.2.11.Doiron 11-22 Design

 Doiron 11-22 Design                                                            

 OBSERVATIONS   1   1   1   1   1   1   1   1   1   1   1

     Y(1)       +   -                                       
     Y(2)                       +   -                       
     Y(3)                                   +       -       
     Y(4)                   +                   -           
     Y(5)           +   -                                   
     Y(6)                                           +   -   
     Y(7)                               -       +           
     Y(8)       -               +                           
     Y(9)               +   -                               
     Y(10)      +                   -                       
     Y(11)          +                       -               
     Y(12)              -               +                   
     Y(13)                          +   -                   
     Y(14)          -                                   +   
     Y(15)                  +   -                           
     Y(16)                                      +       -   
     Y(17)                              +   -               
     Y(18)      -                                   +       
     Y(19)              +                       -           
     Y(20)                      -           +               
     Y(21)                  -                           +   
     Y(22)                          +               -       

 RESTRAINT      +

 CHECK STANDARD     +                                           

2.3.4.2.11. Doiron 11-22 Design
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 DEGREES OF FREEDOM  =     12

                              SOLUTION MATRIX  
                              DIVISOR = 55858

 OBSERVATIONS      1      1      1      1      1      1     
1      1      1      1

    Y(1)      0    -26752 -18392 -15532  -9944  -8778 -14784
-15466 -16500 -10384 -17292
    Y(2)      0      1166   1119   3976  12644 -11757  -1761  
2499   1095  -2053   1046
    Y(3)      0      5082   4446   3293   4712    160   5882 
15395   3527  -9954    487
    Y(4)      0      -968  -1935  10496   2246   -635  -4143  
-877 -13125   -643  -1060
    Y(5)      0      8360 -18373  -8476  -3240  -3287  -8075 
-1197  -9443  -1833  -2848
    Y(6)      0     -6908  -7923  -9807  -2668    431  -4753 
-1296 -10224   9145 -18413
    Y(7)      0      1716   3084   6091    404  -2452 -10544 
-2023  15073    332   5803
    Y(8)      0      9944  13184  15896  24476  11832  13246 
14318  13650   9606  12274
    Y(9)      0      2860  12757 -11853  -2712    145   3585   
860    578   -293  -2177
    Y(10)     0     -8778 -12065 -11920 -11832 -23589 -15007
-11819 -12555 -11659 -11228
    Y(11)     0     11286   1729   -271  -4374  -3041  -3919
-14184   -180  -3871   1741
    Y(12)     0     -3608 -13906  -4734     62   2942  11102  
2040  -2526    604  -2566
    Y(13)     0     -6006 -10794  -7354  -1414   8582 -18954 
-6884 -10862  -1162  -6346
    Y(14)     0     -9460   1748   6785   2330   2450   2790    
85   6877   4680  16185
    Y(15)     0      5588  10824  19965  -8580     88   6028  
1485  11715   2904  10043
    Y(16)     0      -792   5803   3048   1376   1327   5843  
1129  15113  -1911 -10100
    Y(17)     0      -682   6196   3471  -1072   3188  15258
-10947   6737  -1434   2023
    Y(18)     0     10384  12217  12510   9606  11659  12821 
14255  13153  24209  15064

2.3.4.2.11. Doiron 11-22 Design
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    Y(19)     0      1892  10822  -1357   -466   -490   -558   
-17 -12547   -936  -3237
    Y(20)     0      5522   3479    -93 -10158    -13   5457 
15332   3030   4649   3277
    Y(21)     0      1760  -3868 -13544  -3622   -692  -1700  
-252  -1988   2554  11160
    Y(22)     0     -1606   -152   -590   2226  11930   2186 
-2436   -598 -12550  -3836
    R*    55858     55858  55858  55858  55858  55858  55858 
55858  55858  55858  55858
    
    R* = Value of the reference standard

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS 
 NOM FACTOR 
               1   1   1   1   1   1   1   1   1   1   1
  1  0.0000    +                                       
  1  0.6920        +                                   
  1  0.8113            +                               
  1  0.8013                +                           
  1  0.6620                    +                       
  1  0.6498                        +                   
  1  0.7797                            +               
  1  0.7286                                +           
  1  0.8301                                    +       
  1  0.6583                                        +    
  1  0.6920        + 
    

Explanation of notation and interpretation of tables

2.3.4.2.11. Doiron 11-22 Design

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc342b.htm (3 of 3) [5/1/2006 10:12:02 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs

2.3.4.3.Designs for electrical quantities

Standard
cells

Banks of saturated standard cells that are nominally one volt are the
basis for maintaining the unit of voltage in many laboratories.

Bias
problem

It has been observed that potentiometer measurements of the difference
between two saturated standard cells, connected in series opposition, are
effected by a thermal emf which remains constant even when the
direction of the circuit is reversed.

Designs for
eliminating
bias

A calibration design for comparing standard cells can be constructed to
be left-right balanced so that:

A constant bias, P, does not contaminate the estimates for the
individual cells.

●   

P is estimated as the average of difference measurements.●   

Designs for
electrical
quantities

Designs are given for the following classes of electrical artifacts. These
designs are left-right balanced and may be appropriate for artifacts other
than electrical standards.

Saturated standard reference cells●   

Saturated standard test cells●   

Zeners●   

Resistors●   

2.3.4.3. Designs for electrical quantities
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Standard
cells in a
single box

Left-right balanced designs for comparing standard cells among
themselves where the restraint is over all reference cells are listed
below. These designs are not appropriate for assigning values to test
cells.

Estimates for individual standard cells and the bias term, P, are shown
under the heading, 'SOLUTION MATRIX'. These designs also have the
advantage of requiring a change of connections to only one cell at a
time.

Design for 3 standard cells1.  

Design for 4 standard cells2.  

Design for 5 standard cells3.  

Design for 6 standard cells4.  

Test cells Calibration designs for assigning values to test cells in a common
environment on the basis of comparisons with reference cells with
known values are shown below. The designs in this catalog are left-right
balanced.

Design for 4 test cells and 4 reference cells1.  

Design for 8 test cells and 8 reference cells2.  

Zeners Increasingly, zeners are replacing saturated standard cells as artifacts for
maintaining and disseminating the volt. Values are assigned to test
zeners, based on a group of reference zeners, using calibration designs.

Design for 4 reference zeners and 2 test zeners1.  

Design for 4 reference zeners and 3 test zeners2.  

Standard
resistors

Designs for comparing standard resistors that are used for maintaining
and disseminating the ohm are listed in this section.

Design for 3 reference resistors and 1 test resistor1.  

Design for 4 reference resistors and 1 test resistor2.  

2.3.4.3. Designs for electrical quantities
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.3. Designs for electrical quantities

2.3.4.3.1.Left-right balanced design for 3
standard cells

Design 1,1,1

                  CELLS
 OBSERVATIONS   1   1   1
     Y(1)       +   -
     Y(2)       +       -
     Y(3)           +   -
     Y(4)       -   +
     Y(5)       -       +
     Y(6)           -   +

 RESTRAINT      +   +   +

 DEGREES OF FREEDOM  =  3

                      SOLUTION MATRIX
                        DIVISOR = 6
 OBSERVATIONS      1      1      1      P
    Y(1)           1     -1      0      1
    Y(2)           1      0     -1      1
    Y(3)           0      1     -1      1
    Y(4)          -1      1      0      1
    Y(5)          -1      0      1      1
    Y(6)           0     -1      1      1
    R*             2      2      2      0

    R* = AVERAGE VALUE OF 3 REFERENCE CELLS

    P = LEFT-RIGHT BIAS

2.3.4.3.1. Left-right balanced design for 3 standard cells
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FACTORS FOR COMPUTING STANDARD DEVIATIONS
  V  FACTOR      CELLS
               1   1   1
  1  0.3333    +
  1  0.3333        +
  1  0.3333            +

Explanation of notation and interpretation of tables

2.3.4.3.1. Left-right balanced design for 3 standard cells
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.3. Designs for electrical quantities

2.3.4.3.2.Left-right balanced design for 4
standard cells

Design 1,1,1,1

 OBSERVATIONS   1   1   1   1
     Y(1)       +   -
     Y(2)       +       -
     Y(3)           +   -
     Y(4)           +       -
     Y(5)               +   -
     Y(6)       -       +
     Y(7)           -   +
     Y(8)           -       +
     Y(9)       -           +
     Y(10)              -   +
     Y(11)      -   +
     Y(12)      +           -

 RESTRAINT      +   +   +   +

 DEGREES OF FREEDOM  =  8

                         SOLUTION MATRIX
                           DIVISOR =  8
 OBSERVATIONS      1      1      1      1      P

    Y(1)           1     -1      0      0      1
    Y(2)           1      0     -1      0      1
    Y(3)           0      1     -1      0      1
    Y(4)           0      1      0     -1      1

2.3.4.3.2. Left-right balanced design for 4 standard cells
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    Y(5)           0      0      1     -1      1
    Y(6)          -1      0      1      0      1
    Y(7)           0     -1      1      0      1
    Y(8)           0     -1      0      1      1
    Y(9)          -1      0      0      1      1
    Y(10)          0      0     -1      1      1
    Y(11)         -1      1      0      0      1
    Y(12)          1      0      0     -1      1
    R*             2      2      2      2      0

    R* = AVERAGE VALUE OF 4 REFERENCE CELLS

    P = LEFT-RIGHT BIAS

 FACTORS FOR COMPUTING STANDARD DEVIATIONS
  V  FACTOR        CELLS
               1   1   1   1
  1  0.3062    +
  1  0.3062        +
  1  0.3062            +
  1  0.3062                +

Explanation of notation and interpretation of tables

2.3.4.3.2. Left-right balanced design for 4 standard cells
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.3. Designs for electrical quantities

2.3.4.3.3.Left-right balanced design for 5
standard cells

Design 1,1,1,1,1

OBSERVATIONS     1   1   1   1   1

      Y(1)       +   -
      Y(2)       +       -
      Y(3)           +   -
      Y(4)           +       -
      Y(5)               +   -
      Y(6)               +       -
      Y(7)                   +   -
      Y(8)       -           +
      Y(9)       -               +
      Y(10)          -           +

  RESTRAINT      +   +   +   +   +

  DEGREES OF FREEDOM  =  5

                            SOLUTION MATRIX
                              DIVISOR = 5

  OBSERVATIONS      1      1      1      1      1      P

     Y(1)           1     -1      0      0      0      1

2.3.4.3.3. Left-right balanced design for 5 standard cells

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3433.htm (1 of 2) [5/1/2006 10:12:03 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


     Y(2)           1      0     -1      0      0      1
     Y(3)           0      1     -1      0      0      1
     Y(4)           0      1      0     -1      0      1
     Y(5)           0      0      1     -1      0      1
     Y(6)           0      0      1      0     -1      1
     Y(7)           0      0      0      1     -1      1
     Y(8)          -1      0      0      1      0      1
     Y(9)          -1      0      0      0      1      1
     Y(10)          0     -1      0      0      1      1
     R*             1      1      1      1      1      0

     R* = AVERAGE VALUE OF 5 REFERENCE CELLS

     P = LEFT-RIGHT BIAS

  FACTORS FOR COMPUTING REPEATABILITY STANDARD DEVIATIONS
   V  FACTOR          CELLS
                1   1   1   1   1
   1  0.4000    +
   1  0.4000        +
   1  0.4000            +
   1  0.4000                +
   1  0.4000                    +

Explanation of notation and interpretation of tables

2.3.4.3.3. Left-right balanced design for 5 standard cells
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.3. Designs for electrical quantities

2.3.4.3.4.Left-right balanced design for 6
standard cells

Design 1,1,1,1,1,1

                       CELLS
OBSERVATIONS    1   1   1   1   1   1
     Y(1)       +   -
     Y(2)       +       -
     Y(3)           +   -
     Y(4)           +       -
     Y(5)               +   -
     Y(6)               +       -
     Y(7)                   +   -
     Y(8)                   +       -
     Y(9)                       +   -
     Y(10)      -               +
     Y(11)      -                   +
     Y(12)          -               +
     Y(13)      +           -
     Y(14)          +           -
     Y(15)              +           -

 RESTRAINT      +   +   +   +   +   +

 DEGREES OF FREEDOM = 9

                            SOLUTION MATRIX
                              DIVISOR = 6

2.3.4.3.4. Left-right balanced design for 6 standard cells

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3434.htm (1 of 3) [5/1/2006 10:12:03 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


 OBSERVATIONS      1      1      1      1      1      1     
P

    Y(1)           1     -1      0      0      0      0     
1
    Y(2)           1      0     -1      0      0      0     
1
    Y(3)           0      1     -1      0      0      0     
1
    Y(4)           0      1      0     -1      0      0     
1
    Y(5)           0      0      1     -1      0      0     
1
    Y(6)           0      0      1      0     -1      0     
1
    Y(7)           0      0      0      1     -1      0     
1
    Y(8)           0      0      0      1      0     -1     
1
    Y(9)           0      0      0      0      1     -1     
1
    Y(10)         -1      0      0      0      1      0     
1
    Y(11)         -1      0      0      0      0      1     
1
    Y(12)          0     -1      0      0      0      1     
1
    Y(13)          1      0      0     -1      0      0     
1
    Y(14)          0      1      0      0     -1      0     
1
    Y(15)          0      0      1      0      0     -1     
1
    R*             1      1      1      1      1      1     
0

    R* = AVERAGE VALUE OF 6 REFERENCE CELLS

    P = LEFT-RIGHT BIAS

 FACTORS FOR COMPUTING STANDARD DEVIATIONS
  V  FACTOR            CELLS
               1   1   1   1   1   1
  1  0.3727    +
  1  0.3727        +

2.3.4.3.4. Left-right balanced design for 6 standard cells
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  1  0.3727            +
  1  0.3727                +
  1  0.3727                    +
  1  0.3727                        +

Explanation of notation and interpretation of tables

2.3.4.3.4. Left-right balanced design for 6 standard cells
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.3. Designs for electrical quantities

2.3.4.3.5.Left-right balanced design for 4
references and 4 test items

Design for 4 references and 4 test items.

 OBSERVATIONS   1   1   1   1   1   1   1   1

     Y(1)       +               -
     Y(2)       +                       -
     Y(3)               +               -
     Y(4)               +       -
     Y(5)           +               -
     Y(6)           +                       -
     Y(7)                   +               -
     Y(8)                   +       -
     Y(9)       -                   +
     Y(10)      -                           +
     Y(11)              -                   +
     Y(12)              -           +
     Y(13)          -           +
     Y(14)          -                   +
     Y(15)                  -           +
     Y(16)                  -   +

 RESTRAINT      +   +   +   +

 DEGREES OF FREEDOM = 8

                                    SOLUTION MATRIX
                                     DIVISOR = 16

2.3.4.3.5. Left-right balanced design for 4 references and 4 test items
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 OBSERVATIONS      1      1      1      1      1      1     
1      1     P

    Y(1)           3     -1     -1     -1     -4      0     
0      0     1
    Y(2)           3     -1     -1     -1      0      0    
-4      0     1
    Y(3)          -1     -1      3     -1      0      0    
-4      0     1
    Y(4)          -1     -1      3     -1     -4      0     
0      0     1
    Y(5)          -1      3     -1     -1      0     -4     
0      0     1
    Y(6)          -1      3     -1     -1      0      0     
0     -4     1
    Y(7)          -1     -1     -1      3      0      0     
0     -4     1
    Y(8)          -1     -1     -1      3      0     -4     
0      0     1
    Y(9)          -3      1      1      1      0      4     
0      0     1
    Y(10)         -3      1      1      1      0      0     
0      4     1
    Y(11)          1      1     -3      1      0      0     
0      4     1
    Y(12)          1      1     -3      1      0      4     
0      0     1
    Y(13)          1     -3      1      1      4      0     
0      0     1
    Y(14)          1     -3      1      1      0      0     
4      0     1
    Y(15)          1      1      1     -3      0      0     
4      0     1
    Y(16)          1      1      1     -3      4      0     
0      0     1
    R*             4      4      4      4      4      4     
4      4     0

    R* = AVERAGE VALUE OF REFERENCE CELLS

    P = ESTIMATE OF LEFT-RIGHT BIAS

 FACTORS FOR COMPUTING STANDARD DEVIATIONS
  V  FACTORS             CELLS

2.3.4.3.5. Left-right balanced design for 4 references and 4 test items
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               1   1   1   1   1   1   1   1
  1  0.4330    +
  1  0.4330        +
  1  0.4330            +
  1  0.4330                +
  1  0.5000                    +
  1  0.5000                        +
  1  0.5000                            +
  1  0.5000                                +

Explanation of notation and interpretation of tables

2.3.4.3.5. Left-right balanced design for 4 references and 4 test items
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.3. Designs for electrical quantities

2.3.4.3.6.Design for 8 references and 8 test
items

Design for 8 references and 8 test items.

                TEST CELLS                      REFERENCE
CELLS
 OBSERVATIONS   1   1   1   1   1   1   1   1   1   1   1  
1   1   1   1   1

     Y(1)       +                               -
     Y(2)       -                                   +
     Y(3)           -                                   +
     Y(4)           +                                      
-
     Y(5)               +                                      
-
     Y(6)               -                                          
+
     Y(7)                   -                                          
+
     Y(8)                   +                                              
-
     Y(9)                       +               -
     Y(10)                          +               -
     Y(11)                          -                   +
     Y(12)                              -                  
+
     Y(13)                              +                      
-
     Y(14)                                  +                      
-
     Y(15)                                  -                          

2.3.4.3.6. Design for 8 references and 8 test items
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+
     Y(16)                      -                                          
+

 RESTRAINT                                      +   +   +  
+   +   +   +   +

 DEGREES OF FREEDOM = 0

                          SOLUTION MATRIX FOR TEST CELLS
                                    DIVISOR = 16
 OBSERVATIONS      1      1      1      1      1      1     
1      1

    Y(1)           8      4      0     -4     -6      6     
2     -2
    Y(2)          -8      4      0     -4     -6      6     
2     -2
    Y(3)           4     -8     -4      0      2      6    
-6     -2
    Y(4)           4      8     -4      0      2      6    
-6     -2
    Y(5)           0     -4      8      4      2     -2    
-6      6
    Y(6)           0     -4     -8      4      2     -2    
-6      6
    Y(7)          -4      0      4     -8     -6     -2     
2      6
    Y(8)          -4      0      4      8     -6     -2     
2      6
    Y(9)          -6     -2      2      6      8     -4     
0      4
    Y(10)         -6      6      2     -2     -4      8     
4      0
    Y(11)         -6      6      2     -2     -4     -8     
4      0
    Y(12)          2      6     -6     -2      0      4    
-8     -4
    Y(13)          2      6     -6     -2      0      4     
8     -4
    Y(14)          2     -2     -6      6      4      0    
-4      8
    Y(15)          2     -2     -6      6      4      0    
-4     -8
    Y(16)         -6     -2      2      6     -8     -4     
0      4

2.3.4.3.6. Design for 8 references and 8 test items
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    R              2      2      2      2      2      2     
2      2

                          SOLUTION MATRIX FOR REFERENCE
CELLS
                                    DIVISOR = 16
 OBSERVATIONS      1      1      1      1      1      1     
1      1     P

    Y(1)          -7      7      5      3      1     -1    
-3     -5     1
    Y(2)          -7      7      5      3      1     -1    
-3     -5     1
    Y(3)           3      5      7     -7     -5     -3    
-1      1     1
    Y(4)           3      5      7     -7     -5     -3    
-1      1     1
    Y(5)           1     -1     -3     -5     -7      7     
5      3     1
    Y(6)           1     -1     -3     -5     -7      7     
5      3     1
    Y(7)          -5     -3     -1      1      3      5     
7     -7     1
    Y(8)          -5     -3     -1      1      3      5     
7     -7     1
    Y(9)          -7     -5     -3     -1      1      3     
5      7     1
    Y(10)         -5     -7      7      5      3      1    
-1     -3     1
    Y(11)         -5     -7      7      5      3      1    
-1     -3     1
    Y(12)          1      3      5      7     -7     -5    
-3     -1     1
    Y(13)          1      3      5      7     -7     -5    
-3     -1     1
    Y(14)          3      1     -1     -3     -5     -7     
7      5     1
    Y(15)          3      1     -1     -3     -5     -7     
7      5     1
    Y(16)         -7     -5     -3     -1      1      3     
5      7     1
    R*             2      2      2      2      2      2     
2      2     0

    R* = AVERAGE VALUE OF 8 REFERENCE CELLS

2.3.4.3.6. Design for 8 references and 8 test items
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    P = ESTIMATE OF LEFT-RIGHT BIAS

FACTORS FOR COMPUTING STANDARD DEVIATIONS FOR TEST CELLS
  V  FACTORS           TEST CELLS
               1   1   1   1   1   1   1   1
  1  1.1726    +
  1  1.1726        +
  1  1.1726            +
  1  1.1726                +
  1  1.1726                    +
  1  1.1726                        +
  1  1.1726                            +
  1  1.1726                                +

Explanation of notation and interpretation of tables

2.3.4.3.6. Design for 8 references and 8 test items

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3436.htm (4 of 4) [5/1/2006 10:12:04 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.3. Designs for electrical quantities

2.3.4.3.7.Design for 4 reference zeners and
2 test zeners

Design for 4 references zeners and 2 test zeners.

                       ZENERS
 OBSERVATIONS   1   1   1   1   1   1

     Y(1)       +               -
     Y(2)       +                   -
     Y(3)           +           -
     Y(4)           +               -
     Y(5)               +       -
     Y(6)               +           -
     Y(7)                   +   -
     Y(8)                   +       -
     Y(9)                   -   +
     Y(10)                  -       +
     Y(11)              -       +
     Y(12)              -           +
     Y(13)          -           +
     Y(14)          -               +
     Y(15)      -               +
     Y(16)      -                   +

 RESTRAINT      +   +   +   +

 CHECK STANDARD +   -

 DEGREES OF FREEDOM  =  10

2.3.4.3.7. Design for 4 reference zeners and 2 test zeners

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3437.htm (1 of 3) [5/1/2006 10:12:04 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


                             SOLUTION MATRIX
                              DIVISOR = 16

 OBSERVATIONS      1      1      1      1      1      1     
P

    Y(1)           3     -1     -1     -1     -2      0     
1
    Y(2)           3     -1     -1     -1      0     -2     
1
    Y(3)          -1      3     -1     -1     -2      0     
1
    Y(4)          -1      3     -1     -1      0     -2     
1
    Y(5)          -1     -1      3     -1     -2      0     
1
    Y(6)          -1     -1      3     -1      0     -2     
1
    Y(7)          -1     -1     -1      3     -2      0     
1
    Y(8)          -1     -1     -1      3      0     -2     
1
    Y(9)           1      1      1     -3      2      0     
1
    Y(10)          1      1      1     -3      0      2     
1
    Y(11)          1      1     -3      1      2      0     
1
    Y(12)          1      1     -3      1      0      2     
1
    Y(13)          1     -3      1      1      2      0     
1
    Y(14)          1     -3      1      1      0      2     
1
    Y(15)         -3      1      1      1      2      0     
1
    Y(16)         -3      1      1      1      0      2     
1
    R*             4      4      4      4      4      4     
0

    R* = AVERAGE VALUE OF 4 REFERENCE STANDARDS

    P = LEFT-RIGHT EFFECT

2.3.4.3.7. Design for 4 reference zeners and 2 test zeners
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 FACTORS FOR COMPUTING STANDARD DEVIATIONS
  V  FACTORS           ZENERS
               1   1   1   1   1   1   P
  1  0.4330    +
  1  0.4330        +
  1  0.4330            +
  1  0.4330                +
  1  0.3536                    +
  1  0.3536                        +
  1  0.2500                            +

Explanation of notation and interpretation of tables

2.3.4.3.7. Design for 4 reference zeners and 2 test zeners

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3437.htm (3 of 3) [5/1/2006 10:12:04 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.3. Designs for electrical quantities

2.3.4.3.8.Design for 4 reference zeners and
3 test zeners

Design for 4 references and 3 test zeners.

                       ZENERS

 OBSERVATIONS   1   1   1   1   1   1   1

     Y(1)       -   +
     Y(2)       -       +
     Y(3)           +       -
     Y(4)       +                       -
     Y(5)       +                   -
     Y(6)       +               -
     Y(7)           -           +
     Y(8)           -               +
     Y(9)           -                   +
     Y(10)              -               +
     Y(11)              -           +
     Y(12)              -       +
     Y(13)                  +   -
     Y(14)                  +       -
     Y(15)                  +           -
     Y(16)              +   -
     Y(17)          +       -
     Y(18)      -       +

 RESTRAINT      +   +   +   +

 CHECK STANDARD +   -

2.3.4.3.8. Design for 4 reference zeners and 3 test zeners
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 DEGREES OF FREEDOM = 11

                             SOLUTION MATRIX
                             DIVISOR  = 1260

 OBSERVATIONS     1      1      1      1      1      1     
1     P

    Y(1)        -196    196    -56     56      0      0     
0   70
    Y(2)        -160    -20    160     20      0      0     
0   70
    Y(3)          20    160    -20   -160      0      0     
0   70
    Y(4)         143    -53    -17    -73      0      0  
-315   70
    Y(5)         143    -53    -17    -73      0   -315     
0   70
    Y(6)         143    -53    -17    -73   -315      0     
0   70
    Y(7)          53   -143     73     17    315      0     
0   70
    Y(8)          53   -143     73     17      0    315     
0   70
    Y(9)          53   -143     73     17      0      0   
315   70
    Y(10)         17     73   -143     53      0      0   
315   70
    Y(11)         17     73   -143     53      0    315     
0   70
    Y(12)         17     73   -143     53    315      0     
0   70
    Y(13)        -73    -17    -53    143   -315      0     
0   70
    Y(14)        -73    -17    -53    143      0   -315     
0   70
    Y(15)        -73    -17    -53    143      0      0  
-315   70
    Y(16)         56    -56    196   -196      0      0     
0   70
    Y(17)         20    160    -20   -160      0      0     
0   70
    Y(18)       -160    -20    160     20      0      0     

2.3.4.3.8. Design for 4 reference zeners and 3 test zeners
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0   70
    R*           315    315    315    315    315    315   
315    0

    R* = Average value of the 4 reference zeners

    P = left-right effect

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS

  V    K1      1   1   1   1   1   1   1
  1  0.5000                    +
  1  0.5000                        +
  1  0.5000                            +
  2  0.7071                    +   +
  3  0.8660                    +   +   +
  0  0.5578    +   -
                            

Explanation of notation and interpretation of tables

2.3.4.3.8. Design for 4 reference zeners and 3 test zeners
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.3. Designs for electrical quantities

2.3.4.3.9.Design for 3 references and 1 test
resistor

Design 1,1,1,1

 OBSERVATIONS   1   1   1   1

     Y(1)       +   -
     Y(2)       +       -
     Y(3)       +           -
     Y(4)       -           +
     Y(5)       -       +
     Y(6)       -   +

 RESTRAINT      +   +   +

 DEGREES OF FREEDOM = 3

                      SOLUTION MATRIX
                        DIVISOR = 6

OBSERVATIONS       1      1      1      1

    Y(1)           1     -2      1      1
    Y(2)           1      1     -2      1
    Y(3)           0      0      0     -3
    Y(4)           0      0      0      3
    Y(5)          -1     -1      2     -1
    Y(6)          -1      2     -1     -1
    R              2      2      2      2

    R = AVERAGE VALUE OF 3 REFERENCE RESISTORS

2.3.4.3.9. Design for 3 references and 1 test resistor
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 FACTORS FOR COMPUTING STANDARD DEVIATIONS
 OHM FACTORS     RESISTORS
               1   1   1   1
  1  0.3333    +
  1  0.5270        +
  1  0.5270            +
  1  0.7817                +

Explanation of notation and interpretation of tables

2.3.4.3.9. Design for 3 references and 1 test resistor
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.3. Designs for electrical quantities

2.3.4.3.10.Design for 4 references and 1
test resistor

Design 1,1,1,1,1

 OBSERVATIONS   1   1   1   1   1

     Y(1)       +               -
     Y(2)           +           -
     Y(3)               +       -
     Y(4)                   +   -
     Y(5)                   -   +
     Y(6)               -       +
     Y(7)           -           +
     Y(8)       -               +

 RESTRAINT      +   +   +   +

 DEGREES OF FREEDOM  =      4

                          SOLUTION MATRIX
                            DIVISOR = 8

 OBSERVATIONS      1      1      1      1      1

    Y(1)           3     -1     -1     -1     -1
    Y(2)          -1      3     -1     -1     -1
    Y(3)          -1     -1      3     -1     -1

2.3.4.3.10. Design for 4 references and 1 test resistor
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    Y(4)          -1     -1     -1      3     -1
    Y(5)           1      1      1     -3      1
    Y(6)           1      1     -3      1      1
    Y(7)           1     -3      1      1      1
    Y(8)          -3      1      1      1      1
    R              2      2      2      2      2

    R = AVERAGE VALUE OF REFERENCE RESISTORS

 FACTORS FOR COMPUTING STANDARD DEVIATIONS
 OHM FACTORS
               1   1   1   1   1
  1  0.6124    +
  1  0.6124        +
  1  0.6124            +
  1  0.6124                +
  1  0.3536                    +     

Explanation of notation and interpretation of tables

2.3.4.3.10. Design for 4 references and 1 test resistor
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs

2.3.4.4.Roundness measurements

Roundness
measurements

Measurements of roundness require 360° traces of the workpiece made with a
turntable-type instrument or a stylus-type instrument. A least squares fit of points
on the trace to a circle define the parameters of noncircularity of the workpiece. A
diagram of the measurement method is shown below.

The diagram
shows the
trace and Y,
the distance
from the
spindle center
to the trace at
the angle.

A least
squares circle
fit to data at
equally spaced
angles gives
estimates of P
- R, the
noncircularity,
where R =
radius of the
circle and P =
distance from
the center of
the circle to
the trace.

2.3.4.4. Roundness measurements
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Low precision
measurements

Some measurements of roundness do not require a high level of precision, such as
measurements on cylinders, spheres, and ring gages where roundness is not of
primary importance. For this purpose, a single trace is made of the workpiece.

Weakness of
single trace
method

The weakness of this method is that the deviations contain both the spindle error
and the workpiece error, and these two errors cannot be separated with the single
trace. Because the spindle error is usually small and within known limits, its effect
can be ignored except when the most precise measurements are needed.

High precision
measurements

High precision measurements of roundness are appropriate where an object, such
as a hemisphere, is intended to be used primarily as a roundness standard.

Measurement
method

The measurement sequence involves making multiple traces of the roundness
standard where the standard is rotated between traces. Least-squares analysis of the
resulting measurements enables the noncircularity of the spindle to be separated
from the profile of the standard.

Choice of
measurement
method

A synopsis of the measurement method and the estimation technique are given in
this chapter for:

Single-trace method●   

Multiple-trace method●   

The reader is encouraged to obtain a copy of the publication on roundness (Reeve)
for a more complete description of the measurement method and analysis.

2.3.4.4. Roundness measurements
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.4. Roundness measurements

2.3.4.4.1.Single-trace roundness design

Low precision
measurements

Some measurements of roundness do not require a high level of
precision, such as measurements on cylinders, spheres, and ring gages
where roundness is not of primary importance. The diagram of the
measurement method shows the trace and Y, the distance from the
spindle center to the trace at the angle. A least-squares circle fit to data
at equally spaced angles gives estimates of P - R, the noncircularity,
where R = radius of the circle and P = distance from the center of the
circle to the trace.

Single trace
method

For this purpose, a single trace covering exactly 360° is made of the

workpiece and measurements  at angles  of the distance between

the center of the spindle and the trace, are made at

equally spaced angles. A least-squares circle fit to the data gives the
following estimators of the parameters of the circle.

.

2.3.4.4.1. Single-trace roundness design
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Noncircularity
of workpiece

The deviation of the trace from the circle at angle , which defines

the noncircularity of the workpiece, is estimated by:

Weakness of
single trace
method

The weakness of this method is that the deviations contain both the
spindle error and the workpiece error, and these two errors cannot be
separated with the single trace. Because the spindle error is usually
small and within known limits, its effect can be ignored except when
the most precise measurements are needed.

2.3.4.4.1. Single-trace roundness design
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.4. Roundness measurements

2.3.4.4.2.Multiple-trace roundness designs

High
precision
measurements

High precision roundness measurements are required when an object,
such as a hemisphere, is intended to be used primarily as a roundness
standard. The method outlined on this page is appropriate for either a
turntable-type instrument or a spindle-type instrument.

Measurement
method

The measurement sequence involves making multiple traces of the
roundness standard where the standard is rotated between traces.
Least-squares analysis of the resulting measurements enables the
noncircularity of the spindle to be separated from the profile of the
standard. The reader is referred to the publication on the subject
(Reeve) for details covering measurement techniques and analysis.

Method of n
traces

The number of traces that are made on the workpiece is arbitrary but
should not be less than four. The workpiece is centered as well as
possible under the spindle. The mark on the workpiece which denotes
the zero angular position is aligned with the zero position of the
spindle as shown in the graph. A trace is made with the workpiece in
this position. The workpiece is then rotated clockwise by 360/n
degrees and another trace is made. This process is continued until n
traces have been recorded.

Mathematical
model for
estimation

For i = 1,...,n, the ith angular position is denoted by

Definition of
terms relating
to distances
to the least
squares circle

The deviation from the least squares circle (LSC) of the workpiece at

the  position is .

The deviation of the spindle from its LSC at the  position is .

2.3.4.4.2. Multiple-trace roundness designs
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Terms
relating to
parameters of
least squares
circle

For the jth graph, let the three parameters that define the LSC be given
by

defining the radius R, a, and b as shown in the graph. In an idealized
measurement system these parameters would be constant for all j. In
reality, each rotation of the workpiece causes it to shift a small amount
vertically and horizontally. To account for this shift, separate
parameters are needed for each trace.

Correction
for
obstruction to
stylus

Let  be the observed distance (in polar graph units) from the center

of the jth graph to the point on the curve that corresponds to the 

position of the spindle. If K is the magnification factor of the
instrument in microinches/polar graph unit and  is the angle between
the lever arm of the stylus and the tangent to the workpiece at the point
of contact (which normally can be set to zero if there is no
obstruction), the transformed observations to be used in the estimation
equations are:

.

Estimates for
parameters

The estimation of the individual parameters is obtained as a
least-squares solution that requires six restraints which essentially
guarantee that the sum of the vertical and horizontal deviations of the
spindle from the center of the LSC are zero. The expressions for the
estimators are as follows:

2.3.4.4.2. Multiple-trace roundness designs
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where

Finally, the standard deviations of the profile estimators are given by:

2.3.4.4.2. Multiple-trace roundness designs
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Computation
of standard
deviation

The computation of the residual standard deviation of the fit requires,
first, the computation of the predicted values,

The residual standard deviation with v = n*n - 5n + 6 degrees of
freedom is

2.3.4.4.2. Multiple-trace roundness designs
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs

2.3.4.5.Designs for angle blocks

Purpose The purpose of this section is to explain why calibration of angle blocks of
the same size in groups is more efficient than calibration of angle blocks
individually.

Calibration
schematic for
five angle
blocks
showing the
reference as
block 1 in the
center of the
diagram, the
check
standard as
block 2 at the
top; and the
test blocks as
blocks 3, 4,
and 5.

A schematic of a calibration scheme for 1 reference block, 1 check standard,
and three test blocks is shown below. The reference block, R, is shown in the
center of the diagram and the check standard, C, is shown at the top of the
diagram.

2.3.4.5. Designs for angle blocks
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Block sizes Angle blocks normally come in sets of

1, 3, 5, 20, and 30 seconds

1, 3, 5, 20, 30 minutes

1, 3, 5, 15, 30, 45 degrees

and blocks of the same nominal size from 4, 5 or 6 different sets can be
calibrated simultaneously using one of the designs shown in this catalog.

Design for 4 angle blocks●   

Design for 5 angle blocks●   

Design for 6 angle blocks●   

Restraint The solution to the calibration design depends on the known value of a
reference block, which is compared with the test blocks. The reference block
is designated as block 1 for the purpose of this discussion.

Check
standard

It is suggested that block 2 be reserved for a check standard that is maintained
in the laboratory for quality control purposes.

Calibration
scheme

A calibration scheme developed by Charles Reeve (Reeve) at the National
Institute of Standards and Technology for calibrating customer angle blocks
is explained on this page. The reader is encouraged to obtain a copy of the
publication for details on the calibration setup and quality control checks for
angle block calibrations.

Series of
measurements
for calibrating
4, 5, and 6
angle blocks
simultaneously

For all of the designs, the measurements are made in groups of seven starting
with the measurements of blocks in the following order: 2-3-2-1-2-4-2.
Schematically, the calibration design is completed by counter-clockwise
rotation of the test blocks about the reference block, one-at-a-time, with 7
readings for each series reduced to 3 difference measurements. For n angle
blocks (including the reference block), this amounts to n - 1 series of 7
readings. The series for 4, 5, and 6 angle blocks are shown below.

Measurements
for 4 angle
blocks

Series 1: 2-3-2-1-2-4-2
Series 2: 4-2-4-1-4-3-4
Series 3: 3-4-3-1-3-2-3

2.3.4.5. Designs for angle blocks
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Measurements
for 5 angle
blocks (see
diagram)

Series 1: 2-3-2-1-2-4-2
Series 2: 5-2-5-1-5-3-5
Series 3: 4-5-4-1-4-2-4
Series 4: 3-4-3-1-3-5-3

Measurements
for 6 angle
blocks

Series 1: 2-3-2-1-2-4-2
Series 2: 6-2-6-1-6-3-6
Series 3: 5-6-5-1-5-2-5
Series 4: 4-5-4-1-4-6-4
Series 5: 3-4-3-1-3-5-3

Equations for
the
measurements
in the first
series showing
error sources

The equations explaining the seven measurements for the first series in terms
of the errors in the measurement system are:

Z11 = B + X1 +         error11
Z12 = B + X2 +   d + error12
Z13 = B + X3 + 2d + error13
Z14 = B + X4 + 3d + error14
Z15 = B + X5 + 4d + error15
Z16 = B + X6 + 5d + error16
Z17 = B + X7 + 6d + error17

with B a bias associated with the instrument, d is a linear drift factor, X is the
value of the angle block to be determined; and the error terms relate to
random errors of measurement.

2.3.4.5. Designs for angle blocks
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Calibration
procedure
depends on
difference
measurements

The check block, C, is measured before and after each test block, and the
difference measurements (which are not the same as the difference
measurements for calibrations of mass weights, gage blocks, etc.) are
constructed to take advantage of this situation. Thus, the 7 readings are
reduced to 3 difference measurements for the first series as follows:

For all series, there are 3(n - 1) difference measurements, with the first
subscript in the equations above referring to the series number. The difference
measurements are free of drift and instrument bias.

Design matrix As an example, the design matrix for n = 4 angle blocks is shown below.

        1       1       1       1

         0       1      -1       0 
        -1       1       0       0 
         0       1       0      -1 
         0      -1       0       1 
        -1       0       0       1 
         0       0      -1       1 
         0       0       1      -1 
        -1       0       1       0 
         0      -1       1       0 

The design matrix is shown with the solution matrix for identification
purposes only because the least-squares solution is weighted (Reeve) to
account for the fact that test blocks are measured twice as many times as the
reference block. The weight matrix is not shown.

2.3.4.5. Designs for angle blocks
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Solutions to
the calibration
designs
measurements

Solutions to the angle block designs are shown on the following pages. The
solution matrix and factors for the repeatability standard deviation are to be
interpreted as explained in solutions to calibration designs . As an example,
the solution for the design for n=4 angle blocks is as follows:

The solution for the reference standard is shown under the first column of the
solution matrix; for the check standard under the second column; for the first
test block under the third column; and for the second test block under the
fourth column. Notice that the estimate for the reference block is guaranteed
to be R*, regardless of the measurement results, because of the restraint that
is imposed on the design. Specifically,

Solutions are correct only for the restraint as shown.

Calibrations
can be run for
top and
bottom faces
of blocks

The calibration series is run with the blocks all face "up" and is then repeated
with the blocks all face "down", and the results averaged. The difference
between the two series can be large compared to the repeatability standard
deviation, in which case a between-series component of variability must be
included in the calculation of the standard deviation of the reported average.

2.3.4.5. Designs for angle blocks
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Calculation of
standard
deviations
when the
blocks are
measured in
two
orientations

For n blocks, the differences between the values for the blocks measured in
the top ( denoted by "t") and bottom (denoted by "b") positions are denoted
by:

The standard deviation of the average (for each block) is calculated from
these differences to be:

Standard
deviations
when the
blocks are
measured in
only one
orientation

If the blocks are measured in only one orientation, there is no way to estimate
the between-series component of variability and the standard deviation for the
value of each block is computed as

stest = K1s1

where K1 is shown under "Factors for computing repeatability standard

deviations" for each design and  is the repeatability standard deviation as
estimated from the design. Because this standard deviation may seriously
underestimate the uncertainty, a better approach is to estimate the standard
deviation from the data on the check standard over time. An expanded
uncertainty is computed according to the ISO guidelines.

2.3.4.5. Designs for angle blocks
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.5. Designs for angle blocks

2.3.4.5.1.Design for 4 angle blocks

                     DESIGN MATRIX
                1       1       1       1

   Y(1)         0       1      -1       0 
   Y(2)        -1       1       0       0 
   Y(3)         0       1       0      -1 
   Y(4)         0      -1       0       1 
   Y(5)        -1       0       0       1 
   Y(6)         0       0      -1       1 
   Y(7)         0       0       1      -1 
   Y(8)        -1       0       1       0 
   Y(9)         0      -1       1       0    

 REFERENCE      +

 CHECK STANDARD         +

 
 DEGREES OF FREEDOM  =  6

                            SOLUTION MATRIX
                            DIVISOR  =  24

 OBSERVATIONS   1          1              1             1

 Y(11)          0      2.2723000     -5.0516438    
-1.2206578
 Y(12)          0      9.3521166      7.3239479     
7.3239479
 Y(13)          0      2.2723000     -1.2206578    
-5.0516438

2.3.4.5.1. Design for 4 angle blocks
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 Y(21)          0     -5.0516438     -1.2206578     
2.2723000
 Y(22)          0      7.3239479      7.3239479     
9.3521166
 Y(23)          0     -1.2206578     -5.0516438     
2.2723000
 Y(31)          0     -1.2206578      2.2723000    
-5.0516438
 Y(32)          0      7.3239479      9.3521166     
7.3239479
 Y(33)          0     -5.0516438      2.2723000    
-1.2206578
 R*             1      1.             1.             1.

 R* = VALUE OF REFERENCE ANGLE BLOCK

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 SIZE  K1
               1   1   1   1
  1  0.0000    +
  1  0.9749        +
  1  0.9749            +
  1  0.9749                +
  1  0.9749        +

Explanation of notation and interpretation of tables

2.3.4.5.1. Design for 4 angle blocks
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.5. Designs for angle blocks

2.3.4.5.2.Design for 5 angle blocks

                       DESIGN MATRIX

               1       1       1       1       1
  
               0       1      -1       0       0 
              -1       1       0       0       0 
               0       1       0      -1       0 
               0      -1       0       0       1 
              -1       0       0       0       1 
               0       0      -1       0       1   
               0       0       0       1      -1 
              -1       0       0       1       0 
               0      -1       0       1       0 
               0       0       1      -1       0 
              -1       0       1       0       0 
               0       0       1       0      -1 
 

 REFERENCE     +

 CHECK STANDARD        +

 
 DEGREES OF FREEDOM  =  8

                           SOLUTION MATRIX
                            DIVISOR = 24

 OBSERVATIONS  1        1         1         1         1

  Y(11)    0.00000   3.26463  -5.48893  -0.21200  -1.56370
  Y(12)    0.00000   7.95672   5.38908   5.93802   4.71618

2.3.4.5.2. Design for 5 angle blocks
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  Y(13)    0.00000   2.48697  -0.89818  -4.80276  -0.78603
  Y(21)    0.00000  -5.48893  -0.21200  -1.56370   3.26463
  Y(22)    0.00000   5.38908   5.93802   4.71618   7.95672
  Y(23)    0.00000  -0.89818  -4.80276  -0.78603   2.48697
  Y(31)    0.00000  -0.21200  -1.56370   3.26463  -5.48893
  Y(32)    0.00000   5.93802   4.71618   7.95672   5.38908
  Y(33)    0.00000  -4.80276  -0.78603   2.48697  -0.89818
  Y(41)    0.00000  -1.56370   3.26463  -5.48893  -0.21200
  Y(42)    0.00000   4.71618   7.95672   5.38908   5.93802
  Y(43)    0.00000  -0.78603   2.48697  -0.89818  -4.80276
  R*       1.        1.        1.        1.        1.

  R* = VALUE OF REFERENCE ANGLE BLOCK

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 SIZE  K1
               1   1   1   1   1
  1  0.0000    +
  1  0.7465        +
  1  0.7465            +
  1  0.7456                +
  1  0.7456                    +
  1  0.7465        +

Explanation of notation and interpretation of tables

2.3.4.5.2. Design for 5 angle blocks

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3452.htm (2 of 2) [5/1/2006 10:12:19 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.5. Designs for angle blocks

2.3.4.5.3.Design for 6 angle blocks

                         DESIGN MATRIX

            1       1       1       1       1      1
  
            0       1      -1       0       0      0
           -1       1       0       0       0      0
            0       1       0      -1       0      0
            0      -1       0       0       0      1
           -1       0       0       0       0      1
            0       0      -1       0       0      1
            0       0       0       0       1     -1
           -1       0       0       0       1      0
            0      -1       0       0       1      0
            0       0       0       1      -1      0
           -1       0       0       1       0      0
            0       0       0       1       0     -1
            0       0       1      -1       0      0
           -1       0       1       0       0      0
            0       0       1       0      -1      0
 

 REFERENCE  +

 CHECK STANDARD     +

 
 DEGREES OF FREEDOM  = 10

                           SOLUTION MATRIX
                            DIVISOR = 24

 OBSERVATIONS  1         1         1         1         1        

2.3.4.5.3. Design for 6 angle blocks
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1

  Y(11)     0.0000    3.2929   -5.2312   -0.7507   -0.6445  
-0.6666
  Y(12)     0.0000    6.9974    4.6324    4.6495    3.8668   
3.8540
  Y(13)     0.0000    3.2687   -0.7721   -5.2098   -0.6202  
-0.6666
  Y(21)     0.0000   -5.2312   -0.7507   -0.6445   -0.6666   
3.2929
  Y(22)     0.0000    4.6324    4.6495    3.8668    3.8540   
6.9974
  Y(23)     0.0000   -0.7721   -5.2098   -0.6202   -0.6666   
3.2687
  Y(31)     0.0000   -0.7507   -0.6445   -0.6666    3.2929  
-5.2312
  Y(32)     0.0000    4.6495    3.8668    3.8540    6.9974   
4.6324
  Y(33)     0.0000   -5.2098   -0.6202   -0.6666    3.2687  
-0.7721
  Y(41)     0.0000   -0.6445   -0.6666    3.2929   -5.2312  
-0.7507
  Y(42)     0.0000    3.8668    3.8540    6.9974    4.6324   
4.6495
  Y(43)     0.0000   -0.6202   -0.6666    3.2687   -0.7721  
-5.2098
  Y(51)     0.0000   -0.6666    3.2929   -5.2312   -0.7507  
-0.6445
  Y(52)     0.0000    3.8540    6.9974    4.6324    4.6495   
3.8668
  Y(53)     0.0000   -0.6666    3.2687   -0.7721   -5.2098  
-0.6202
  R*        1.        1.        1.        1.        1.       
1.

  R* = VALUE OF REFERENCE ANGLE BLOCK

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS
 SIZE  K1
               1   1   1   1   1   1
  1  0.0000    +
  1  0.7111        +
  1  0.7111            +
  1  0.7111                +
  1  0.7111                    +

2.3.4.5.3. Design for 6 angle blocks
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  1  0.7111                        +
  1  0.7111        +

Explanation of notation and interpretation of tables

2.3.4.5.3. Design for 6 angle blocks

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc3453.htm (3 of 3) [5/1/2006 10:12:19 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs

2.3.4.6.Thermometers in a bath

Measurement
sequence

Calibration of liquid in glass thermometers is usually carried out in a
controlled bath where the temperature in the bath is increased steadily
over time to calibrate the thermometers over their entire range. One
way of accounting for the temperature drift is to measure the
temperature of the bath with a standard resistance thermometer at the
beginning, middle and end of each run of K test thermometers. The test
thermometers themselves are measured twice during the run in the
following time sequence:

where R1, R2, R3 represent the measurements on the standard resistance
thermometer and T1, T2, ... , TK and T'1, T'2, ... , T'K represent the pair
of measurements on the K test thermometers.

Assumptions
regarding
temperature

The assumptions for the analysis are that:

Equal time intervals are maintained between measurements on
the test items.

●   

Temperature increases by  with each interval.●   

A temperature change of  is allowed for the reading of the
resistance thermometer in the middle of the run.

●   

Indications
for test
thermometers

It can be shown (Cameron and Hailes) that the average reading for a
test thermometer is its indication at the temperature implied by the
average of the three resistance readings. The standard deviation
associated with this indication is calculated from difference readings
where

is the difference for the ith thermometer. This difference is an estimate
of .

2.3.4.6. Thermometers in a bath
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Estimates of
drift

The estimates of the shift due to the resistance thermometer and
temperature drift are given by:

Standard
deviations

The residual variance is given by

.

The standard deviation of the indication assigned to the ith test
thermometer is

and the standard deviation for the estimates of shift and drift are

respectively.

2.3.4.6. Thermometers in a bath
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs

2.3.4.7.Humidity standards

Humidity standards The calibration of humidity standards
usually involves the comparison of
reference weights with cylinders
containing moisture. The designs shown
in this catalog are drift-eliminating and
may be suitable for artifacts other than
humidity cylinders.

List of designs

2 reference weights and 3 cylinders●   

2.3.4.7. Humidity standards
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2. Measurement Process Characterization
2.3. Calibration
2.3.4. Catalog of calibration designs
2.3.4.7. Humidity standards

2.3.4.7.1.Drift-elimination design for 2
reference weights and 3 cylinders

 OBSERVATIONS   1   1   1   1   1

     Y(1)       +   -
     Y(2)                   +   -
     Y(3)               +   -
     Y(4)           +   -
     Y(5)       -               +
     Y(6)       -           +
     Y(7)               +       -
     Y(8)           +       -
     Y(9)           -           +
     Y(10)      +       -

 RESTRAINT      +   +

 CHECK STANDARD +   -

 DEGREES OF FREEDOM = 6

                         SOLUTION MATRIX
                          DIVISOR  =  10

 OBSERVATIONS      1      1      1      1      1

2.3.4.7.1. Drift-elimination design for 2 reference weights and 3 cylinders
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    Y(1)           2     -2      0      0      0
    Y(2)           0      0      0      2     -2
    Y(3)           0      0      2     -2      0
    Y(4)          -1      1     -3     -1     -1
    Y(5)          -1      1      1      1      3
    Y(6)          -1      1      1      3      1
    Y(7)           0      0      2      0     -2
    Y(8)          -1      1     -1     -3     -1
    Y(9)           1     -1      1      1      3
    Y(10)          1     -1     -3     -1     -1
    R*             5      5      5      5      5

    R* = average value of the two reference weights

 FACTORS FOR REPEATABILITY STANDARD DEVIATIONS 
   
 WT    K1      1   1   1   1   1
  1  0.5477                    +
  1  0.5477                +
  1  0.5477            +
  2  0.8944            +   +
  3  1.2247            +   +   +
  0  0.6325    +   -          

Explanation of notation and interpretation of tables

2.3.4.7.1. Drift-elimination design for 2 reference weights and 3 cylinders
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2. Measurement Process Characterization
2.3. Calibration

2.3.5.Control of artifact calibration

Purpose The purpose of statistical control in the calibration process is to
guarantee the 'goodness' of calibration results within predictable limits
and to validate the statement of uncertainty of the result. Two types of
control can be imposed on a calibration process that makes use of
statistical designs:

Control of instrument precision or short-term variability1.  

Control of bias and long-term variability

Example of a Shewhart control chart❍   

Example of an EWMA control chart❍   

2.  

Short-term
standard
deviation

The short-term standard deviation from each design is the basis for
controlling instrument precision. Because the measurements for a single
design are completed in a short time span, this standard deviation
estimates the basic precision of the instrument. Designs should be
chosen to have enough measurements so that the standard deviation
from the design has at least 3 degrees of freedom where the degrees of
freedom are (n - m + 1) with

n = number of difference measurements●   

m = number of artifacts.●   

Check
standard

Measurements on a check standard provide the mechanism for
controlling the bias and long-term variability of the calibration process.
The check standard is treated as one of the test items in the calibration
design, and its value as computed from each calibration run is the basis
for accepting or rejecting the calibration. All designs cataloged in this
Handbook have provision for a check standard.

The check standard should be of the same type and geometry as items
that are measured in the designs. These artifacts must be stable and
available to the calibration process on a continuing basis. There should
be a check standard at each critical level of measurement. For example,
for mass calibrations there should be check standards at the 1 kg; 100 g,
10 g, 1 g, 0.1 g levels, etc. For gage blocks, there should be check

2.3.5. Control of artifact calibration
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standards at all nominal lengths.

A check standard can also be a mathematical construction, such as the
computed difference between the calibrated values of two reference
standards in a design.

Database of
check
standard
values

The creation and maintenance of the database of check standard values
is an important aspect of the control process. The results from each
calibration run are recorded in the database. The best way to record this
information is in one file with one line (row in a spreadsheet) of
information in fixed fields for each calibration run. A list of typical
entries follows:

Date1.  

Identification for check standard2.  

Identification for the calibration design3.  

Identification for the instrument4.  

Check standard value5.  

Repeatability standard deviation from design6.  

Degrees of freedom7.  

Operator identification8.  

Flag for out-of-control signal9.  

Environmental readings (if pertinent)10.  

2.3.5. Control of artifact calibration
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2. Measurement Process Characterization
2.3. Calibration
2.3.5. Control of artifact calibration

2.3.5.1.Control of precision

Control
parameters
from
historical
data

A modified control chart procedure is used for controlling instrument
precision. The procedure is designed to be implemented in real time
after a baseline and control limit for the instrument of interest have been
established from the database of short-term standard deviations. A
separate control chart is required for each instrument -- except where
instruments are of the same type with the same basic precision, in which
case they can be treated as one.

The baseline is the process standard deviation that is pooled from k = 1,

..., K individual repeatability standard deviations,  , in the database,

each having  degrees of freedom. The pooled repeatability standard

deviation is

with degrees of freedom

.

2.3.5.1. Control of precision
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Control
procedure is
invoked in
real-time for
each
calibration
run

The control procedure compares each new repeatability standard
deviation that is recorded for the instrument with an upper control limit,
UCL. Usually, only the upper control limit is of interest because we are
primarily interested in detecting degradation in the instrument's
precision. A possible complication is that the control limit is dependent
on the degrees of freedom in the new standard deviation and is
computed as follows:

 .

The quantity under the radical is the upper  percentage point from the
F table where  is chosen small to be, say, 05. The other two terms
refer to the degrees of freedom in the new standard deviation and the
degrees of freedom in the process standard deviation.

Limitation
of graphical
method

The graphical method of plotting every new estimate of repeatability on
a control chart does not work well when the UCL can change with each
calibration design, depending on the degrees of freedom. The algebraic
equivalent is to test if the new standard deviation exceeds its control
limit, in which case the short-term precision is judged to be out of
control and the current calibration run is rejected. For more guidance,
see Remedies and strategies for dealing with out-of-control signals.

As long as the repeatability standard deviations are in control, there is
reason for confidence that the precision of the instrument has not
degraded.

Case study:
Mass
balance
precision

It is recommended that the repeatability standard deviations be plotted
against time on a regular basis to check for gradual degradation in the
instrument. Individual failures may not trigger a suspicion that the
instrument is in need of adjustment or tuning.

2.3.5.1. Control of precision
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2. Measurement Process Characterization
2.3. Calibration
2.3.5. Control of artifact calibration
2.3.5.1. Control of precision

2.3.5.1.1.Example of control chart for precision

Example of a
control chart
for precision
of a mass
balance

Mass calibrations usually start with the comparison of kilograms standards using a high
precision balance as a comparator. Many of the measurements at the kilogram level that
were made at NIST between 1975 and 1990 were made on balance #12 using a 1,1,1,1
calibration design. The redundancy in the calibration design produces estimates for the
individual kilograms and a repeatability standard deviation with three degrees of freedom
for each calibration run. These standard deviations estimate the precision of the balance.

Need for
monitoring
precision

The precision of the balance is monitored to check for:

Slow degradation in the balance1.  

Anomalous behavior at specific times2.  

Monitoring
technique for
standard
deviations

The standard deviations over time and many calibrations are tracked and monitored using a
control chart for standard deviations. The database and control limits are updated on a
yearly or bi-yearly basis and standard deviations for each calibration run in the next cycle
are compared with the control limits. In this case, the standard deviations from 117
calibrations between 1975 and 1985 were pooled to obtain a repeatability standard
deviation with v = 3*117 = 351 degrees of freedom, and the control limits were computed
at the 1% significance level.

Run the
software
macro for
creating the
control chart
for balance
#12

Dataplot commands for creating the control chart are as follows:

dimension 30 columns
skip 4
read mass.dat t id y bal s ds
let n = size s
y1label MICROGRAMS
x1label TIME IN YEARS
xlimits 75 90
x2label STANDARD DEVIATIONS ON BALANCE 12
characters * blank blank blank
lines blank solid dotted dotted
let ss=s*s
let sp=mean ss
let sp=sqrt(sp)
let scc=sp  for i = 1 1 n
let f = fppf(.99,3,351)

2.3.5.1.1. Example of control chart for precision
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let f=sqrt(f)
let sul=f*scc
plot s scc sul vs t

Control chart
for precision

TIME IN YEARS

Interpretation
of the control
chart

The control chart shows that the precision of the balance remained in control through 1990
with only two violations of the control limits. For those occasions, the calibrations were
discarded and repeated. Clearly, for the second violation, something significant occurred
that invalidated the calibration results.

Further
interpretation
of the control
chart

However, it is also clear from the pattern of standard deviations over time that the precision
of the balance was gradually degrading and more and more points were approaching the
control limits. This finding led to a decision to replace this balance for high accuracy
calibrations.

2.3.5.1.1. Example of control chart for precision
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2. Measurement Process Characterization
2.3. Calibration
2.3.5. Control of artifact calibration

2.3.5.2.Control of bias and long-term
variability

Control
parameters
are estimated
using
historical
data

A control chart procedure is used for controlling bias and long-term
variability. The procedure is designed to be implemented in real time
after a baseline and control limits for the check standard of interest
have been established from the database of check standard values. A
separate control chart is required for each check standard. The control
procedure outlined here is based on a Shewhart control chart with
upper and lower control limits that are symmetric about the average.
The EWMA control procedure that is sensitive to small changes in the
process is discussed on another page.

For a
Shewhart
control
procedure, the
average and
standard
deviation of
historical
check
standard
values are the
parameters of
interest

The check standard values are denoted by

The baseline is the process average which is computed from the check
standard values as

The process standard deviation is

with (K - 1) degrees of freedom.

2.3.5.2. Control of bias and long-term variability
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The control
limits depend
on the t-
distribution
and the
degrees of
freedom in the
process
standard
deviation

If  has been computed from historical data, the upper and lower
control limits are:

with  denoting the upper  critical value from the

t-table with v = (K - 1) degrees of freedom.

Run software
macro for
computing the
t-factor

Dataplot can compute the value of the t-statistic. For a conservative
case with  = 0.05 and K = 6, the commands

let alphau = 1 - 0.05/2
let k = 6
let v1 = k-1
let t = tppf(alphau, v1)

return the following value:

THE COMPUTED VALUE OF THE CONSTANT T =
0.2570583E+01

Simplification
for large
degrees of
freedom

It is standard practice to use a value of 3 instead of a critical value
from the t-table, given the process standard deviation has large degrees
of freedom, say, v > 15.

The control
procedure is
invoked in
real-time and
a failure
implies that
the current
calibration
should be
rejected

The control procedure compares the check standard value, C, from
each calibration run with the upper and lower control limits. This
procedure should be implemented in real time and does not necessarily
require a graphical presentation. The check standard value can be
compared algebraically with the control limits. The calibration run is
judged to be out-of-control if either:

C > UCL

or

C < LCL

2.3.5.2. Control of bias and long-term variability
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Actions to be
taken

If the check standard value exceeds one of the control limits, the
process is judged to be out of control and the current calibration run is
rejected. The best strategy in this situation is to repeat the calibration
to see if the failure was a chance occurrence. Check standard values
that remain in control, especially over a period of time, provide
confidence that no new biases have been introduced into the
measurement process and that the long-term variability of the process
has not changed.

Out-of-control
signals that
recur require
investigation

Out-of-control signals, particularly if they recur, can be symptomatic
of one of the following conditions:

Change or damage to the reference standard(s)●   

Change or damage to the check standard●   

Change in the long-term variability of the calibration process●   

For more guidance, see Remedies and strategies for dealing with
out-of-control signals.

Caution - be
sure to plot
the data

If the tests for control are carried out algebraically, it is recommended
that, at regular intervals, the check standard values be plotted against
time to check for drift or anomalies in the measurement process.

2.3.5.2. Control of bias and long-term variability
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2. Measurement Process Characterization
2.3. Calibration
2.3.5. Control of artifact calibration
2.3.5.2. Control of bias and long-term variability

2.3.5.2.1.Example of Shewhart control chart for mass
calibrations

Example of a
control chart
for mass
calibrations at
the kilogram
level

Mass calibrations usually start with the comparison of four kilogram standards using a high precision
balance as a comparator. Many of the measurements at the kilogram level that were made at NIST
between 1975 and 1990 were made on balance #12 using a 1,1,1,1 calibration design. The restraint for
this design is the known average of two kilogram reference standards. The redundancy in the
calibration design produces individual estimates for the two test kilograms and the two reference
standards.

Check
standard

There is no slot in the 1,1,1,1 design for an artifact check standard when the first two kilograms are
reference standards; the third kilogram is a test weight; and the fourth is a summation of smaller
weights that act as the restraint in the next series. Therefore, the check standard is a computed
difference between the values of the two reference standards as estimated from the design. The
convention with mass calibrations is to report the correction to nominal, in this case the correction to
1000 g, as shown in the control charts below.

Need for
monitoring

The kilogram check standard is monitored to check for:

Long-term degradation in the calibration process1.  

Anomalous behavior at specific times2.  

Monitoring
technique for
check standard
values

Check standard values over time and many calibrations are tracked and monitored using a Shewhart
control chart. The database and control limits are updated when needed and check standard values for
each calibration run in the next cycle are compared with the control limits. In this case, the values
from 117 calibrations between 1975 and 1985 were averaged to obtain a baseline and process standard
deviation with v = 116 degrees of freedom. Control limits are computed with a factor of k = 3 to
identify truly anomalous data points.

Run the
software
macro for
creating the
Shewhart
control chart

Dataplot commands for creating the control chart are as follows:

dimension 500 30
skip 4
read mass.dat t id y bal s ds
let n = size y
title mass check standard 41
y1label micrograms
x1label time in years
xlimits 75 90
let ybar=mean y subset t < 85
let sd=standard deviation y subset t < 85
let cc=ybar  for i = 1 1 n
let ul=cc+3*sd

2.3.5.2.1. Example of Shewhart control chart for mass calibrations
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let ll=cc-3*sd
characters * blank blank blank * blank blank blank
lines blank solid dotted dotted blank solid dotted dotted
plot y cc ul ll vs t
.end of calculations 

Control chart
of
measurements
of kilogram
check standard
showing a
change in the
process after
1985

Interpretation
of the control
chart

The control chart shows only two violations of the control limits. For those occasions, the calibrations
were discarded and repeated. The configuration of points is unacceptable if many points are close to a
control limit and there is an unequal distribution of data points on the two sides of the control chart --
indicating a change in either:

process average which may be related to a change in the reference standards●   

or

variability which may be caused by a change in the instrument precision or may be the result of
other factors on the measurement process.

●   

Small changes
only become
obvious over
time

Unfortunately, it takes time for the patterns in the data to emerge because individual violations of the
control limits do not necessarily point to a permanent shift in the process. The Shewhart control chart
is not powerful for detecting small changes, say of the order of at most one standard deviation, which
appears to be approximately the case in this application. This level of change might seem
insignificant, but the calculation of uncertainties for the calibration process depends on the control
limits.

2.3.5.2.1. Example of Shewhart control chart for mass calibrations
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Re-establishing
the limits
based on
recent data
and EWMA
option

If the limits for the control chart are re-calculated based on the data after 1985, the extent of the
change is obvious. Because the exponentially weighted moving average (EWMA) control chart is
capable of detecting small changes, it may be a better choice for a high precision process that is
producing many control values.

Run
continuation of
software
macro for
updating
Shewhart
control chart

Dataplot commands for updating the control chart are as follows:

let ybar2=mean y subset t > 85
let sd2=standard deviation y subset t > 85
let n = size y
let cc2=ybar2  for i = 1 1 n
let ul2=cc2+3*sd2
let ll2=cc2-3*sd2
plot y cc ul ll vs t subset t < 85 and
plot y cc2 ul2 ll2 vs t subset t > 85                               

Revised
control chart
based on check
standard
measurements
after 1985

2.3.5.2.1. Example of Shewhart control chart for mass calibrations
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2. Measurement Process Characterization
2.3. Calibration
2.3.5. Control of artifact calibration
2.3.5.2. Control of bias and long-term variability

2.3.5.2.2.Example of EWMA control chart for mass
calibrations

Small
changes only
become
obvious over
time

Unfortunately, it takes time for the patterns in the data to emerge because individual violations of the
control limits do not necessarily point to a permanent shift in the process. The Shewhart control chart
is not powerful for detecting small changes, say of the order of at most one standard deviation, which
appears to be the case for the calibration data shown on the previous page. The EWMA (exponentially
weighted moving average) control chart is better suited for this purpose.

Explanation
of EWMA
statistic at
the kilogram
level

The exponentially weighted moving average (EWMA) is a statistic for monitoring the process that
averages the data in a way that gives less and less weight to data as they are further removed in time
from the current measurement. The EWMA statistic at time t is computed recursively from individual
data points which are ordered in time to be

where the first EWMA statistic is the average of historical data.

Control
mechanism
for EWMA

The EWMA control chart can be made sensitive to small changes or a gradual drift in the process by

the choice of the weighting factor, . A weighting factor between 0.2 - 0.3 has been suggested for
this purpose (Hunter), and 0.15 is another popular choice.

Limits for the
control chart

The target or center line for the control chart is the average of historical data. The upper (UCL) and
lower (LCL) limits are

where s is the standard deviation of the historical data; the function under the radical is a good
approximation to the component of the standard deviation of the EWMA statistic that is a function of
time; and k is the multiplicative factor, defined in the same manner as for the Shewhart control chart,
which is usually taken to be 3.

2.3.5.2.2. Example of EWMA control chart for mass calibrations
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Example of
EWMA chart
for check
standard data
for kilogram
calibrations
showing
multiple
violations of
the control
limits for the
EWMA
statistics

The target (average) and process standard deviation are computed from the check standard data taken
prior to 1985. The computation of the EWMA statistic begins with the data taken at the start of 1985.
In the control chart below, the control data after 1985 are shown in green, and the EWMA statistics
are shown as black dots superimposed on the raw data. The control limits are calculated according to
the equation above where the process standard deviation, s = 0.03065 mg and k = 3. The EWMA
statistics, and not the raw data, are of interest in looking for out-of-control signals. Because the
EWMA statistic is a weighted average, it has a smaller standard deviation than a single control
measurement, and, therefore, the EWMA control limits are narrower than the limits for a Shewhart
control chart.

Run the
software
macro for
creating the
Shewhart
control chart

Dataplot commands for creating the control chart are as follows:

dimension 500 30
skip 4
read mass.dat x id y bal s ds
let n = number y
let cutoff = 85.0
let tag = 2 for i = 1 1 n
let tag = 1 subset x < cutoff
xlimits 75 90
let m = mean y subset tag 1
let s = sd y subset tag 1
let lambda = .2
let fudge = sqrt(lambda/(2-lambda))
let mean = m for i = 1 1 n

2.3.5.2.2. Example of EWMA control chart for mass calibrations
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let upper = mean + 3*fudge*s
let lower = mean - 3*fudge*s
let nm1 = n-1
let start = 106
let pred2 = mean
loop for i = start 1 nm1
   let ip1 = i+1
   let yi = y(i)
   let predi = pred2(i)
   let predip1 = lambda*yi + (1-lambda)*predi
   let pred2(ip1) = predip1
end loop
char * blank * circle blank blank
char size 2 2 2 1 2 2
char fill on all
lines blank dotted blank solid solid solid
plot y mean versus x and
plot y pred2 lower upper versus x subset x > cutoff 

Interpretation
of the control
chart

The EWMA control chart shows many violations of the control limits starting at approximately the
mid-point of 1986. This pattern emerges because the process average has actually shifted about one
standard deviation, and the EWMA control chart is sensitive to small changes.

2.3.5.2.2. Example of EWMA control chart for mass calibrations
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2. Measurement Process Characterization
2.3. Calibration

2.3.6. Instrument calibration over a regime

Topics This section discusses the creation of a calibration curve for calibrating
instruments (gauges) whose responses cover a large range. Topics are:

Models for instrument calibration●   

Data collection●   

Assumptions●   

Conditions that can invalidate the calibration procedure●   

Data analysis and model validation●   

Calibration of future measurements●   

Uncertainties of calibrated values●   

Purpose of
instrument
calibration

Instrument calibration is intended to eliminate or reduce bias in an
instrument's readings over a range for all continuous values. For this
purpose, reference standards with known values for selected points
covering the range of interest are measured with the instrument in
question. Then a functional relationship is established between the
values of the standards and the corresponding measurements. There are
two basic situations.

Instruments
which require
correction for
bias

The instrument reads in the same units as the reference
standards. The purpose of the calibration is to identify and
eliminate any bias in the instrument relative to the defined unit
of measurement. For example, optical imaging systems that
measure the width of lines on semiconductors read in
micrometers, the unit of interest. Nonetheless, these instruments
must be calibrated to values of reference standards if line width
measurements across the industry are to agree with each other.

●   

2.3.6. Instrument calibration over a regime
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Instruments
whose
measurements
act as
surrogates for
other
measurements

The instrument reads in different units than the reference
standards. The purpose of the calibration is to convert the
instrument readings to the units of interest. An example is
densitometer measurements that act as surrogates for
measurements of radiation dosage. For this purpose, reference
standards are irradiated at several dosage levels and then
measured by radiometry. The same reference standards are
measured by densitometer. The calibrated results of future
densitometer readings on medical devices are the basis for
deciding if the devices have been sterilized at the proper
radiation level.

●   

Basic steps
for correcting
the
instrument for
bias

The calibration method is the same for both situations and requires the
following basic steps:

Selection of reference standards with known values to cover the
range of interest.

●   

Measurements on the reference standards with the instrument to
be calibrated.

●   

Functional relationship between the measured and known values
of the reference standards (usually a least-squares fit to the data)
called a calibration curve.

●   

Correction of all measurements by the inverse of the calibration
curve.

●   

Schematic
example of a
calibration
curve and
resulting
value

A schematic explanation is provided by the figure below for load cell
calibration. The loadcell measurements (shown as *) are plotted on the
y-axis against the corresponding values of known load shown on the
x-axis.

A quadratic fit to the loadcell data produces the calibration curve that
is shown as the solid line. For a future measurement with the load cell,
Y' = 1.344 on the y-axis, a dotted line is drawn through Y' parallel to
the x-axis. At the point where it intersects the calibration curve,
another dotted line is drawn parallel to the y-axis. Its point of
intersection with the x-axis at X' = 13.417 is the calibrated value.

2.3.6. Instrument calibration over a regime
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime

2.3.6.1.Models for instrument calibration

Notation The following notation is used in this chapter in discussing models for
calibration curves.

Y denotes a measurement on a reference standard●   

X denotes the known value of a reference standard●   

 denotes measurement error.●   

a, b and c denote coefficients to be determined●   

Possible forms
for calibration
curves

There are several models for calibration curves that can be considered
for instrument calibration. They fall into the following classes:

Linear:●   

Quadratic:●   

Power:●   

Non-linear:●   

2.3.6.1. Models for instrument calibration

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc361.htm (1 of 4) [5/1/2006 10:12:24 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Special case
of linear
model - no
calibration
required

An instrument requires no calibration if

a=0 and b=1

i.e., if measurements on the reference standards agree with their
known values given an allowance for measurement error, the
instrument is already calibrated. Guidance on collecting data,
estimating and testing the coefficients is given on other pages.

Advantages of
the linear
model

The linear model ISO 11095 is widely applied to instrument
calibration because it has several advantages over more complicated
models.

Computation of coefficients and standard deviations is easy.●   

Correction for bias is easy.●   

There is often a theoretical basis for the model.●   

The analysis of uncertainty is tractable.●   

Warning on
excluding the
intercept term
from the
model

It is often tempting to exclude the intercept, a, from the model
because a zero stimulus on the x-axis should lead to a zero response
on the y-axis. However, the correct procedure is to fit the full model
and test for the significance of the intercept term.

Quadratic
model and
higher order
polynomials

Responses of instruments or measurement systems which cannot be
linearized, and for which no theoretical model exists, can sometimes
be described by a quadratic model (or higher-order polynomial). An
example is a load cell where force exerted on the cell is a non-linear
function of load.

Disadvantages
of quadratic
models

Disadvantages of quadratic and higher-order polynomials are:

They may require more reference standards to capture the
region of curvature.

●   

There is rarely a theoretical justification; however, the adequacy
of the model can be tested statistically.

●   

The correction for bias is more complicated than for the linear
model.

●   

The uncertainty analysis is difficult.●   

2.3.6.1. Models for instrument calibration
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Warning A plot of the data, although always recommended, is not sufficient for
identifying the correct model for the calibration curve. Instrument
responses may not appear non-linear over a large interval. If the
response and the known values are in the same units, differences from
the known values should be plotted versus the known values.

Power model
treated as a
linear model

The power model is appropriate when the measurement error is
proportional to the response rather than being additive. It is frequently
used for calibrating instruments that measure dosage levels of
irradiated materials.

The power model is a special case of a non-linear model that can be
linearized by a natural logarithm transformation to

so that the model to be fit to the data is of the familiar linear form

where W, Z and e are the transforms of the variables, Y, X and the

measurement error, respectively, and a' is the natural logarithm of a.

Non-linear
models and
their
limitations

Instruments whose responses are not linear in the coefficients can
sometimes be described by non-linear models. In some cases, there are
theoretical foundations for the models; in other cases, the models are
developed by trial and error. Two classes of non-linear functions that
have been shown to have practical value as calibration functions are:

Exponential1.  

Rational2.  

Non-linear models are an important class of calibration models, but
they have several significant limitations.

The model itself may be difficult to ascertain and verify.●   

There can be severe computational difficulties in estimating the
coefficients.

●   

Correction for bias cannot be applied algebraically and can only
be approximated by interpolation.

●   

Uncertainty analysis is very difficult.●   

2.3.6.1. Models for instrument calibration
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Example of an
exponential
function

An exponential function is shown in the equation below. Instruments
for measuring the ultrasonic response of reference standards with
various levels of defects (holes) that are submerged in a fluid are
described by this function.

Example of a
rational
function

A rational function is shown in the equation below. Scanning electron
microscope measurements of line widths on semiconductors are
described by this function (Kirby).

2.3.6.1. Models for instrument calibration
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime

2.3.6.2.Data collection

Data
collection

The process of collecting data for creating the calibration curve is
critical to the success of the calibration program. General rules for
designing calibration experiments apply, and guidelines that are
adequate for the calibration models in this chapter are given below.

Selection of
reference
standards

A minimum of five reference standards is required for a linear
calibration curve, and ten reference standards should be adequate for
more complicated calibration models.

The optimal strategy in selecting the reference standards is to space the
reference standards at points corresponding to equal increments on the
y-axis, covering the range of the instrument. Frequently, this strategy is
not realistic because the person producing the reference materials is
often not the same as the person who is creating the calibration curve.
Spacing the reference standards at equal intervals on the x-axis is a good
alternative.

Exception to
the rule
above -
bracketing

If the instrument is not to be calibrated over its entire range, but only
over a very short range for a specific application, then it may not be
necessary to develop a complete calibration curve, and a bracketing
technique (ISO 11095) will provide satisfactory results. The bracketing
technique assumes that the instrument is linear over the interval of
interest, and, in this case, only two reference standards are required --
one at each end of the interval.

Number of
repetitions
on each
reference
standard

A minimum of two measurements on each reference standard is required
and four is recommended. The repetitions should be separated in time
by days or weeks. These repetitions provide the data for determining
whether a candidate model is adequate for calibrating the instrument.

2.3.6.2. Data collection
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2.3.6.2. Data collection
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime

2.3.6.3.Assumptions for instrument
calibration

Assumption
regarding
reference
values

The basic assumption regarding the reference values of artifacts that
are measured in the calibration experiment is that they are known
without error. In reality, this condition is rarely met because these
values themselves usually come from a measurement process.
Systematic errors in the reference values will always bias the results,
and random errors in the reference values can bias the results.

Rule of thumb It has been shown by Bruce Hoadly, in an internal NIST publication,
that the best way to mitigate the effect of random fluctuations in the
reference values is to plan for a large spread of values on the x-axis
relative to the precision of the instrument.

Assumptions
regarding
measurement
errors

The basic assumptions regarding measurement errors associated with
the instrument are that they are:

free from outliers●   

independent●   

of equal precision●   

from a normal distribution.●   

2.3.6.3. Assumptions for instrument calibration
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime

2.3.6.4.What can go wrong with the
calibration procedure

Calibration
procedure
may fail to
eliminate
bias

There are several circumstances where the calibration curve will not
reduce or eliminate bias as intended. Some are discussed on this page. A
critical exploratory analysis of the calibration data should expose such
problems.

Lack of
precision

Poor instrument precision or unsuspected day-to-day effects may result
in standard deviations that are large enough to jeopardize the calibration.
There is nothing intrinsic to the calibration procedure that will improve
precision, and the best strategy, before committing to a particular
instrument, is to estimate the instrument's precision in the environment
of interest to decide if it is good enough for the precision required.

Outliers in
the
calibration
data

Outliers in the calibration data can seriously distort the calibration
curve, particularly if they lie near one of the endpoints of the calibration
interval.

Isolated outliers (single points) should be deleted from the
calibration data.

●   

An entire day's results which are inconsistent with the other data
should be examined and rectified before proceeding with the
analysis.

●   

2.3.6.4. What can go wrong with the calibration procedure
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Systematic
differences
among
operators

It is possible for different operators to produce measurements with
biases that differ in sign and magnitude. This is not usually a problem
for automated instrumentation, but for instruments that depend on line
of sight, results may differ significantly by operator. To diagnose this
problem, measurements by different operators on the same artifacts are
plotted and compared. Small differences among operators can be
accepted as part of the imprecision of the measurement process, but
large systematic differences among operators require resolution.
Possible solutions are to retrain the operators or maintain separate
calibration curves by operator.

Lack of
system
control

The calibration procedure, once established, relies on the instrument
continuing to respond in the same way over time. If the system drifts or
takes unpredictable excursions, the calibrated values may not be
properly corrected for bias, and depending on the direction of change,
the calibration may further degrade the accuracy of the measurements.
To assure that future measurements are properly corrected for bias, the
calibration procedure should be coupled with a statistical control
procedure for the instrument.

Example of
differences
among
repetitions
in the
calibration
data

An important point, but one that is rarely considered, is that there can be
differences in responses from repetition to repetition that will invalidate
the analysis. A plot of the aggregate of the calibration data may not
identify changes in the instrument response from day-to-day. What is
needed is a plot of the fine structure of the data that exposes any day to
day differences in the calibration data.

Warning -
calibration
can fail
because of
day-to-day
changes

A straight-line fit to the aggregate data will produce a 'calibration curve'.
However, if straight lines fit separately to each day's measurements
show very disparate responses, the instrument, at best, will require
calibration on a daily basis and, at worst, may be sufficiently lacking in
control to be usable.

2.3.6.4. What can go wrong with the calibration procedure
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime
2.3.6.4. What can go wrong with the calibration procedure

2.3.6.4.1.Example of day-to-day changes in
calibration

Calibration
data over 4
days

Line width measurements on 10 NIST reference standards were made with an optical
imaging system on each of four days. The four data points for each reference value
appear to overlap in the plot because of the wide spread in reference values relative
to the precision. The plot suggests that a linear calibration line is appropriate for
calibrating the imaging system.

This plot
shows
measurements
made on 10
reference
materials
repeated on
four days with
the 4 points
for each day
overlapping

REFERENCE VALUES (µm)

2.3.6.4.1. Example of day-to-day changes in calibration
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This plot
shows the
differences
between each
measurement
and the
corresponding
reference
value.
Because days
are not
identified, the
plot gives no
indication of
problems in
the control of
the imaging
system from
from day to
day.

REFERENCE VALUES (µm)

This plot, with
linear
calibration
lines fit to
each day's
measurements
individually,
shows how
the response
of the imaging
system
changes
dramatically
from day to
day. Notice
that the slope
of the
calibration
line goes from
positive on
day 1 to

2.3.6.4.1. Example of day-to-day changes in calibration
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negative on
day 3.

REFERENCE VALUES (µm)

Interpretation
of calibration
findings

Given the lack of control for this measurement process, any calibration procedure
built on the average of the calibration data will fail to properly correct the system on
some days and invalidate resulting measurements. There is no good solution to this
problem except daily calibration.

2.3.6.4.1. Example of day-to-day changes in calibration
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime

2.3.6.5. Data analysis and model validation

First step -
plot the
calibration
data

If the model for the calibration curve is not known from theoretical considerations
or experience, it is necessary to identify and validate a model for the calibration
curve. To begin this process, the calibration data are plotted as a function of known
values of the reference standards; this plot should suggest a candidate model for
describing the data. A linear model should always be a consideration. If the
responses and their known values are in the same units, a plot of differences
between responses and known values is more informative than a plot of the data for
exposing structure in the data.

Warning -
regarding
statistical
software

Once an initial model has been chosen, the coefficients in the model are estimated
from the data using a statistical software package. It is impossible to
over-emphasize the importance of using reliable and documented software for this
analysis.

Output
required from
a software
package

With the exception of non-linear models, the software package will use the method
of least squares for estimating the coefficients. The software package should also
be capable of performing a 'weighted' fit for situations where errors of
measurement are non-constant over the calibration interval. The choice of weights
is usually the responsibility of the user. The software package should, at the
minimum, provide the following information:

Coefficients of the calibration curve●   

Standard deviations of the coefficients●   

Residual standard deviation of the fit●   

F-ratio for goodness of fit (if there are repetitions on the y-axis at each
reference value)

●   

Typical
analysis of a
quadratic fit

The following output is from the statistical software package, Dataplot where load
cell measurements are modeled as a quadratic function of known loads. There are 3
repetitions at each load level for a total of 33 measurements. The commands

2.3.6.5. Data analysis and model validation
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Run software
macro read loadcell.dat x y

quadratic fit y x

return the following output:

F-ratio for
judging the
adequacy of
the model.

LACK OF FIT F-RATIO = 0.3482 = THE 6.3445% POINT OF THE 
F DISTRIBUTION WITH 8 AND 22 DEGREES OF FREEDOM

Coefficients
and their
standard
deviations and
associated t
values

COEFFICIENT ESTIMATES     ST. DEV.    T VALUE

1 a  -0.183980E-04      (0.2450E-04)   -0.75

2 b   0.100102          (0.4838E-05)    0.21E+05

3 c   0.703186E-05      (0.2013E-06)   35.

RESIDUAL STANDARD DEVIATION = 0.0000376353

RESIDUAL DEGREES OF FREEDOM = 30

Note: The T-VALUE for a coefficient in the table above is the estimate of the
coefficient divided by its standard deviation.

The F-ratio is
used to test
the goodness
of the fit to the
data

The F-ratio provides information on the model as a good descriptor of the data. The
F-ratio is compared with a critical value from the F-table. An F-ratio smaller than
the critical value indicates that all significant structure has been captured by the
model.

F-ratio < 1
always
indicates a
good fit

For the load cell analysis, a plot of the data suggests a linear fit. However, the
linear fit gives a very large F-ratio. For the quadratic fit, the F-ratio = 0.3482 with
v1 = 8 and v2 = 20 degrees of freedom. The critical value of F(0.05, 8, 20) = 2.45
indicates that the quadratic function is sufficient for describing the data. A fact to
keep in mind is that an F-ratio < 1 does not need to be checked against a critical
value; it always indicates a good fit to the data.

Note: Dataplot reports a probability associated with the F-ratio (6.334%), where a
probability > 95% indicates an F-ratio that is significant at the 5% level. Other
software may report in other ways; therefore, it is necessary to check the
interpretation for each package.

2.3.6.5. Data analysis and model validation

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc365.htm (2 of 3) [5/1/2006 10:12:25 AM]

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc365.dp
http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc365.dp


The t-values
are used to
test the
significance of
individual
coefficients

The t-values can be compared with critical values from a t-table. However, for a
test at the 5% significance level, a t-value < 2 is a good indicator of
non-significance. The t-value for the intercept term, a, is < 2 indicating that the
intercept term is not significantly different from zero. The t-values for the linear
and quadratic terms are significant indicating that these coefficients are needed in
the model. If the intercept is dropped from the model, the analysis is repeated to
obtain new estimates for the coefficients, b and c.

Residual
standard
deviation

The residual standard deviation estimates the standard deviation of a single
measurement with the load cell.

Further
considerations
and tests of
assumptions

The residuals (differences between the measurements and their fitted values) from
the fit should also be examined for outliers and structure that might invalidate the
calibration curve. They are also a good indicator of whether basic assumptions of
normality and equal precision for all measurements are valid.

If the initial model proves inappropriate for the data, a strategy for improving the
model is followed.

2.3.6.5. Data analysis and model validation
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime
2.3.6.5. Data analysis and model validation

2.3.6.5.1.Data on load cell #32066

Three
repetitions
on a load
cell at
eleven
known loads

       X          Y

       2.     0.20024    
       2.     0.20016    
       2.     0.20024
       4.     0.40056    
       4.     0.40045    
       4.     0.40054
       6.     0.60087    
       6.     0.60075    
       6.     0.60086
       8.     0.80130    
       8.     0.80122    
       8.     0.80127
      10.     1.00173    
      10.     1.00164    
      10.     1.00173
      12.     1.20227    
      12.     1.20218    
      12.     1.20227
      14.     1.40282    
      14.     1.40278    
      14.     1.40279
      16.     1.60344    
      16.     1.60339    
      16.     1.60341
      18.     1.80412    
      18.     1.80409    
      18.     1.80411
      20.     2.00485    
      20.     2.00481    
      20.     2.00483

2.3.6.5.1. Data on load cell #32066
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      21.     2.10526    
      21.     2.10524    
      21.     2.10524

2.3.6.5.1. Data on load cell #32066
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime

2.3.6.6.Calibration of future measurements

Purpose The purpose of creating the calibration curve is to correct future
measurements made with the same instrument to the correct units of
measurement. The calibration curve can be applied many, many times
before it is discarded or reworked as long as the instrument remains in
statistical control. Chemical measurements are an exception where
frequently the calibration curve is used only for a single batch of
measurements, and a new calibration curve is created for the next batch.

Notation The notation for this section is as follows:

Y' denotes a future measurement.●   

X' denotes the associated calibrated value.●   

 are the estimates of the coefficients, a, b, c.●   

 are standard deviations of the coefficients, a, b, c.●   

Procedure To apply a correction to a future measurement, Y*, to obtain the

calibration value X* requires the inverse of the calibration curve.

2.3.6.6. Calibration of future measurements
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Linear
calibration
line

The inverse of the calibration line for the linear model

gives the calibrated value

Tests for the
intercept
and slope of
calibration
curve -- If
both
conditions
hold, no
calibration
is needed.

Before correcting for the calibration line by the equation above, the
intercept and slope should be tested for a=0, and b=1. If both

there is no need for calibration. If, on the other hand only the test for
a=0 fails, the error is constant; if only the test for b=1 fails, the errors
are related to the size of the reference standards.

Table
look-up for
t-factor

The factor, , is found in the t-table where v is the degrees of

freedom for the residual standard deviation from the calibration curve,
and alpha is chosen to be small, say, 0.05.

Quadratic
calibration
curve

The inverse of the calibration curve for the quadratic model

requires a root

The correct root (+ or -) can usually be identified from practical
considerations.

2.3.6.6. Calibration of future measurements
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Power curve The inverse of the calibration curve for the power model

gives the calibrated value

where b and the natural logarithm of a are estimated from the power
model transformed to a linear function.

Non-linear
and other
calibration
curves

For more complicated models, the inverse for the calibration curve is
obtained by interpolation from a graph of the function or from predicted
values of the function.

2.3.6.6. Calibration of future measurements
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime

2.3.6.7.Uncertainties of calibrated values

Purpose The purpose is to quantify the uncertainty of a 'future' result that has
been corrected by the calibration curve. In principle, the uncertainty
quantifies any possible difference between the calibrated value and its
reference base (which normally depends on reference standards).

Explanation
in terms of
reference
artifacts

Measurements of interest are future measurements on unknown
artifacts, but one way to look at the problem is to ask: If a measurement
is made on one of the reference standards and the calibration curve is
applied to obtain the calibrated value, how well will this value agree
with the 'known' value of the reference standard?

Difficulties The answer is not easy because of the intersection of two uncertainties
associated with

the calibration curve itself because of limited data1.  

the 'future' measurement2.  

If the calibration experiment were to be repeated, a slightly different
calibration curve would result even for a system in statistical control.
An exposition of the intersection of the two uncertainties is given for
the calibration of proving rings ( Hockersmith and Ku).

ISO
approach to
uncertainty
can be based
on check
standards or
propagation
of error

General procedures for computing an uncertainty based on ISO
principles of uncertainty analysis are given in the chapter on modeling.

Type A uncertainties for calibrated values from calibration curves can
be derived from

check standard values●   

propagation of error●   

An example of type A uncertainties of calibrated values from a linear
calibration curve are analyzed from measurements on linewidth check
standards. Comparison of the uncertainties from check standards and

2.3.6.7. Uncertainties of calibrated values
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propagation of error for the linewidth calibration data are also
illustrated.

An example of the derivation of propagation of error type A
uncertainties for calibrated values from a quadratic calibration curve
for loadcells is discussed on the next page.

2.3.6.7. Uncertainties of calibrated values
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime
2.3.6.7. Uncertainties of calibrated values

2.3.6.7.1.Uncertainty for quadratic
calibration using propagation of
error

Propagation
of error for
uncertainty
of calibrated
values of
loadcells

The purpose of this page is to show the propagation of error for
calibrated values of a loadcell based on a quadratic calibration curve
where the model for instrument response is

The calibration data are instrument responses at known loads (psi), and

estimates of the quadratic coefficients, a, b, c, and their associated
standard deviations are shown with the analysis.

A graph of the calibration curve showing a measurement Y' corrected to
X', the proper load (psi), is shown below.

2.3.6.7.1. Uncertainty for quadratic calibration using propagation of error
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Uncertainty of
the calibrated
value X' can
be evaluated
using software
capable of
algebraic
representation

The uncertainty to be evaluated is the uncertainty of the calibrated value, X', computed
for any future measurement, Y', made with the calibrated instrument where

2.3.6.7.1. Uncertainty for quadratic calibration using propagation of error
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Propagation
of error using
Mathematica

The analysis of uncertainty is demonstrated with the software package, Mathematica
(Wolfram). The format for inputting the solution to the quadratic calibration curve in
Mathematica is as follows:

In[10]:=
f = (-b + (b^2 - 4 c (a - Y))^(1/2))/(2 c)

Mathematica
representation

The Mathematica representation is

Out[10]=

           2
-b + Sqrt[b  - 4 c (a - Y)]
---------------------------
            2 c

Partial
derivatives

The partial derivatives are computed using the D function. For example, the partial
derivative of f with respect to Y is given by:

In[11]:=
dfdY=D[f, {Y,1}]

The Mathematica representation is:

Out[11]=

          1
----------------------
      2
Sqrt[b  - 4 c (a - Y)]

Partial
derivatives
with respect to
a, b, c

The other partial derivatives are computed similarly.

In[12]:=
dfda=D[f, {a,1}]

Out[12]=

            1
-(----------------------)
        2
  Sqrt[b  - 4 c (a - Y)]

In[13]:=
dfdb=D[f,{b,1}]

2.3.6.7.1. Uncertainty for quadratic calibration using propagation of error
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Out[13]=

               b
-1 + ----------------------
           2
     Sqrt[b  - 4 c (a - Y)]
---------------------------
            2 c

In[14]:=dfdc=D[f, {c,1}]

Out[14]=

             2
-(-b + Sqrt[b  - 4 c (a - Y)])            a - Y
------------------------------ - ------------------------
                2                        2
             2 c                 c Sqrt[b  - 4 c (a - Y)]

The variance
of the
calibrated
value from
propagation of
error

The variance of X' is defined from propagation of error as follows:

In[15]:=
u2 =(dfdY)^2 (sy)^2 + (dfda)^2 (sa)^2 + (dfdb)^2 (sb)^2 
      + (dfdc)^2 (sc)^2

The values of the coefficients and their respective standard deviations from the
quadratic fit to the calibration curve are substituted in the equation. The standard
deviation of the measurement, Y, may not be the same as the standard deviation from
the fit to the calibration data if the measurements to be corrected are taken with a
different system; here we assume that the instrument to be calibrated has a standard
deviation that is essentially the same as the instrument used for collecting the
calibration data and the residual standard deviation from the quadratic fit is the
appropriate estimate.

In[16]:=
% /. a -> -0.183980 10^-4 
% /. sa -> 0.2450 10^-4
% /. b ->  0.100102          
% /. sb -> 0.4838 10^-5
% /. c ->  0.703186 10^-5      
% /. sc -> 0.2013 10^-6
% /. sy -> 0.0000376353

2.3.6.7.1. Uncertainty for quadratic calibration using propagation of error
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Simplification
of output

Intermediate outputs from Mathematica, which are not shown, are simplified. (Note that
the % sign means an operation on the last output.) Then the standard deviation is
computed as the square root of the variance.

In[17]:=
u2 = Simplify[%]
u=u2^.5

Out[24]=

                                0.100102             2
Power[0.11834 (-1 + --------------------------------)  + 
                    Sqrt[0.0100204 + 0.0000281274 Y]
 
                    -9
          2.01667 10
   -------------------------- + 
   0.0100204 + 0.0000281274 Y
 
             -14                 9
   4.05217 10    Power[1.01221 10  - 
 
                10
      1.01118 10   Sqrt[0.0100204 + 0.0000281274 Y] + 
 
         142210. (0.000018398 + Y)
      --------------------------------, 2], 0.5]
      Sqrt[0.0100204 + 0.0000281274 Y]

Input for
displaying
standard
deviations of
calibrated
values as a
function of Y'

The standard deviation expressed above is not easily interpreted but it is easily graphed.
A graph showing standard deviations of calibrated values, X', as a function of
instrument response, Y', is displayed in Mathematica given the following input:

In[31]:= Plot[u,{Y,0,2.}]

2.3.6.7.1. Uncertainty for quadratic calibration using propagation of error
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Graph
showing the
standard
deviations of
calibrated
values X' for
given
instrument
responses Y'
ignoring
covariance
terms in the
propagation of
error

Problem with
propagation of
error

The propagation of error shown above is not correct because it ignores the covariances
among the coefficients, a, b, c. Unfortunately, some statistical software packages do
not display these covariance terms with the other output from the analysis.

Covariance
terms for
loadcell data

The variance-covariance terms for the loadcell data set are shown below.

   a      6.0049021-10
   b     -1.0759599-10   2.3408589-11
   c      4.0191106-12  -9.5051441-13   4.0538705-14 

The diagonal elements are the variances of the coefficients, a, b, c, respectively, and
the off-diagonal elements are the covariance terms.

2.3.6.7.1. Uncertainty for quadratic calibration using propagation of error
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Recomputation
of the
standard
deviation of X'

To account for the covariance terms, the variance of X' is redefined by adding the
covariance terms. Appropriate substitutions are made; the standard deviations are
recomputed and graphed as a function of instrument response.

In[25]:=
u2 = u2 + 2 dfda dfdb sab2 + 2 dfda dfdc sac2 + 2 dfdb dfdc
sbc2
% /. sab2 -> -1.0759599 10^-10
% /. sac2 -> 4.0191106 10^-12
% /. sbc2 -> -9.5051441 10^-13
u2 = Simplify[%]
u = u2^.5
Plot[u,{Y,0,2.}]

The graph below shows the correct estimates for the standard deviation of X' and gives
a means for assessing the loss of accuracy that can be incurred by ignoring covariance
terms. In this case, the uncertainty is reduced by including covariance terms, some of
which are negative.

Graph
showing the
standard
deviations of
calibrated
values, X', for
given
instrument
responses, Y',
with
covariance
terms included
in the
propagation of
error

2.3.6.7.1. Uncertainty for quadratic calibration using propagation of error
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime
2.3.6.7. Uncertainties of calibrated values

2.3.6.7.2.Uncertainty for linear calibration using
check standards

Check
standards
provide a
mechanism
for
calculating
uncertainties

The easiest method for calculating type A uncertainties for calibrated values from a
calibration curve requires periodic measurements on check standards. The check
standards, in this case, are artifacts at the lower, mid-point and upper ends of the
calibration curve. The measurements on the check standard are made in a way that
randomly samples the output of the calibration procedure.

Calculation of
check
standard
values

The check standard values are the raw measurements on the artifacts corrected by the
calibration curve. The standard deviation of these values should estimate the uncertainty
associated with calibrated values. The success of this method of estimating the
uncertainties depends on adequate sampling of the measurement process.

Measurements
corrected by a
linear
calibration
curve

As an example, consider measurements of linewidths on photomask standards, made with
an optical imaging system and corrected by a linear calibration curve. The three control
measurements were made on reference standards with values at the lower, mid-point, and
upper end of the calibration interval.

Run software
macro for
computing the
standard
deviation

Dataplot commands for computing the standard deviation from the control data are:

read linewid2.dat day position x y
let b0 = 0.2817
let b1 = 0.9767
let w = ((y - b0)/b1) - x 
let sdcal = standard deviation w

Standard
deviation of
calibrated
values

Dataplot returns the following standard deviation

THE COMPUTED VALUE OF THE CONSTANT SDCAL  =  0.62036246E-01 

2.3.6.7.2. Uncertainty for linear calibration using check standards
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Comparison
with
propagation
of error

The standard deviation, 0.062 µm, can be compared with a propagation of error analysis.

Other sources
of uncertainty

In addition to the type A uncertainty, there may be other contributors to the uncertainty
such as the uncertainties of the values of the reference materials from which the
calibration curve was derived.

2.3.6.7.2. Uncertainty for linear calibration using check standards
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2. Measurement Process Characterization
2.3. Calibration
2.3.6. Instrument calibration over a regime
2.3.6.7. Uncertainties of calibrated values

2.3.6.7.3.Comparison of check standard analysis
and propagation of error

Propagation
of error for
the linear
calibration

The analysis of uncertainty for calibrated values from a linear calibration line can be
addressed using propagation of error. On the previous page, the uncertainty was
estimated from check standard values.

Estimates
from
calibration
data

The calibration data consist of 40 measurements with an optical imaging system on 10
line width artifacts. A linear fit to the data using the software package Omnitab (Omnitab

80 ) gives a calibration curve with the following estimates for the intercept, a, and the

slope, b:

   a       .23723513
   b       .98839599
-------------------------------------------------------
 RESIDUAL STANDARD DEVIATION =            .038654864
   BASED ON DEGREES OF FREEDOM        40 -   2 =  38

with the following variances and covariances:

   a      2.2929900-04
   b     -2.9703502-05   4.5966426-06

2.3.6.7.3. Comparison of check standard analysis and propagation of error
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Propagation
of error
using
Mathematica

The propagation of error is accomplished with the following instructions using the
software package Mathematica (Wolfram):

f=(y -a)/b
dfdy=D[f, {y,1}]
dfda=D[f, {a,1}]
dfdb=D[f,{b,1}]
u2 =dfdy^2 sy^2 + dfda^2 sa2 + dfdb^2 sb2 + 2 dfda dfdb sab2
% /. a-> .23723513
% /. b-> .98839599
% /. sa2 -> 2.2929900 10^-04
% /. sb2 -> 4.5966426 10^-06
% /. sab2 -> -2.9703502 10^-05
% /. sy -> .038654864
u2 = Simplify[%]
u = u2^.5
Plot[u, {y, 0, 12}]

Standard
deviation of
calibrated
value X'

The output from Mathematica gives the standard deviation of a calibrated value, X', as a
function of instrument response:

                                         -6  2 0.5
(0.00177907 - 0.0000638092 y + 4.81634 10   y )

Graph
showing
standard
deviation of
calibrated
value X'
plotted as a
function of
instrument
response Y'
for a linear
calibration

2.3.6.7.3. Comparison of check standard analysis and propagation of error
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Comparison
of check
standard
analysis and
propagation
of error

Comparison of the analysis of check standard data, which gives a standard deviation of
0.062 µm, and propagation of error, which gives a maximum standard deviation of 0.042
µm, suggests that the propagation of error may underestimate the type A uncertainty. The
check standard measurements are undoubtedly sampling some sources of variability that
do not appear in the formal propagation of error formula.

2.3.6.7.3. Comparison of check standard analysis and propagation of error
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2. Measurement Process Characterization
2.3. Calibration

2.3.7. Instrument control for linear
calibration

Purpose The purpose of the control program is to guarantee that the calibration
of an instrument does not degrade over time.

Approach This is accomplished by exercising quality control on the instrument's
output in much the same way that quality control is exercised on
components in a process using a modification of the Shewhart control
chart.

Check
standards
needed for
the control
program

For linear calibration, it is sufficient to control the end-points and the
middle of the calibration interval to ensure that the instrument does not
drift out of calibration. Therefore, check standards are required at three
points; namely,

at the lower-end of the regime●   

at the mid-range of the regime●   

at the upper-end of the regime●   

Data
collection

One measurement is needed on each check standard for each checking
period. It is advisable to start by making control measurements at the
start of each day or as often as experience dictates. The time between
checks can be lengthened if the instrument continues to stay in control.

Definition of
control
value

To conform to the notation in the section on instrument corrections, X*
denotes the known value of a standard, and X denotes the measurement
on the standard.

A control value is defined as the difference

If the calibration is perfect, control values will be randomly distributed
about zero and fall within appropriate upper and lower limits on a
control chart.

2.3.7. Instrument control for linear calibration

http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc37.htm (1 of 3) [5/1/2006 10:12:27 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Calculation
of control
limits

The upper and lower control limits (Croarkin and Varner)) are,
respectively,

where s is the residual standard deviation of the fit from the calibration
experiment, and  is the slope of the linear calibration curve.

Values t* The critical value, , can be found in the t* table for p = 3; v is the
degrees of freedom for the residual standard deviation; and  is equal to
0.05.

Run
software
macro for t*

Dataplot will compute the critical value of the t* statistic. For the case

where  = 0.05, m = 3 and v = 38, say, the commands

let alpha = 0.05
let m = 3
let v = 38
let zeta = .5*(1 - exp(ln(1-alpha)/m))
let TSTAR = tppf(zeta, v)

return the following value:

THE COMPUTED VALUE OF THE CONSTANT TSTAR =
0.2497574E+01

Sensitivity to
departure
from
linearity

If

the instrument is in statistical control. Statistical control in this context
implies not only that measurements are repeatable within certain limits
but also that instrument response remains linear. The test is sensitive to
departures from linearity.

2.3.7. Instrument control for linear calibration
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Control
chart for a
system
corrected by
a linear
calibration
curve

An example of measurements of line widths on photomask standards,
made with an optical imaging system and corrected by a linear
calibration curve, are shown as an example. The three control
measurements were made on reference standards with values at the
lower, mid-point, and upper end of the calibration interval.

2.3.7. Instrument control for linear calibration
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2. Measurement Process Characterization
2.3. Calibration
2.3.7. Instrument control for linear calibration

2.3.7.1.Control chart for a linear calibration
line

Purpose Line widths of three photomask reference standards (at the low, middle
and high end of the calibration line) were measured on six days with
an optical imaging system that had been calibrated from similar
measurements on 10 reference artifacts. The control values and limits
for the control chart , which depend on the intercept and slope of the
linear calibration line, monitor the calibration and linearity of the
optical imaging system.

Initial
calibration
experiment

The initial calibration experiment consisted of 40 measurements (not
shown here) on 10 artifacts and produced a linear calibration line with:

Intercept = 0.2817●   

Slope = 0.9767●   

Residual standard deviation = 0.06826 micrometers●   

Degrees of freedom = 38●   

Line width
measurements
made with an
optical
imaging
system

The control measurements, Y, and known values, X, for the three
artifacts at the upper, mid-range, and lower end (U, M, L) of the
calibration line are shown in the following table:

DAY POSITION    X        Y

 1    L       0.76    1.12
 1    M       3.29    3.49
 1    U       8.89    9.11
 2    L       0.76    0.99
 2    M       3.29    3.53
 2    U       8.89    8.89
 3    L       0.76    1.05
 3    M       3.29    3.46
 3    U       8.89    9.02
 4    L       0.76    0.76
 4    M       3.29    3.75
 4    U       8.89    9.30
 5    L       0.76    0.96
 5    M       3.29    3.53

2.3.7.1. Control chart for a linear calibration line
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 5    U       8.89    9.05
 6    L       0.76    1.03
 6    M       3.29    3.52
 6    U       8.89    9.02

Run software
macro for
control chart

Dataplot commands for computing the control limits and producing the
control chart are:

read linewid.dat day position x y
let b0 = 0.2817
let b1 = 0.9767
let s = 0.06826
let df = 38
let alpha = 0.05
let m = 3
let zeta = .5*(1 - exp(ln(1-alpha)/m))
let TSTAR = tppf(zeta, df)
let W = ((y - b0)/b1) - x 
let n = size w
let center = 0 for i = 1  1  n
let LCL = CENTER + s*TSTAR/b1
let UCL = CENTER - s*TSTAR/b1
characters * blank blank blank
lines blank dashed solid solid
y1label control values
xlabel TIME IN DAYS
plot W CENTER UCL LCL vs day

Interpretation
of control
chart

The control measurements show no evidence of drift and are within the
control limits except on the fourth day when all three control values
are outside the limits. The cause of the problem on that day cannot be
diagnosed from the data at hand, but all measurements made on that
day, including workload items, should be rejected and remeasured.

2.3.7.1. Control chart for a linear calibration line
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2.3.7.1. Control chart for a linear calibration line
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2. Measurement Process Characterization

2.4.Gauge R & R studies

The purpose of this section is to outline the steps that can be taken to
characterize the performance of gauges and instruments used in a
production setting in terms of errors that affect the measurements.

What are the issues for a gauge R & R study?

What are the design considerations for the study?

Artifacts1.  

Operators2.  

Gauges, parameter levels, configurations3.  

How do we collect data for the study?

How do we quantify variability of measurements?

Repeatability1.  

Reproducibility2.  

Stability3.  

How do we identify and analyze bias?

Resolution1.  

Linearity2.  

Hysteresis3.  

Drift4.  

Differences among gauges5.  

Differences among geometries, configurations6.  

Remedies and strategies

How do we quantify uncertainties of measurements made with the
gauges?

2.4. Gauge R & R studies
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2.4. Gauge R & R studies
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2. Measurement Process Characterization
2.4. Gauge R & R studies

2.4.1.What are the important issues?

Basic issues The basic issue for the study is the behavior of gauges in a particular
environment with respect to:

Repeatability●   

Reproducibility●   

Stability●   

Bias●   

Strategy The strategy is to conduct and analyze a study that examines the
behavior of similar gauges to see if:

They exhibit different levels of precision;●   

Instruments in the same environment produce equivalent results;●   

Operators in the same environment produce equivalent results;●   

Responses of individual gauges are affected by configuration or
geometry changes or changes in setup procedures.

●   

Other goals Other goals are to:

Test the resolution of instruments●   

Test the gauges for linearity●   

Estimate differences among gauges (bias)●   

Estimate differences caused by geometries, configurations●   

Estimate operator biases●   

Incorporate the findings in an uncertainty budget●   

2.4.1. What are the important issues?
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2. Measurement Process Characterization
2.4. Gauge R & R studies

2.4.2.Design considerations

Design
considerations

Design considerations for a gauge study are choices of:

Artifacts (check standards)●   

Operators●   

Gauges●   

Parameter levels●   

Configurations, etc.●   

Selection of
artifacts or
check
standards

The artifacts for the study are check standards or test items of a type
that are typically measured with the gauges under study. It may be
necessary to include check standards for different parameter levels if
the gauge is a multi-response instrument. The discussion of check
standards should be reviewed to determine the suitability of available
artifacts.

Number of
artifacts

The number of artifacts for the study should be Q (Q > 2). Check
standards for a gauge study are needed only for the limited time
period (two or three months) of the study.

Selection of
operators

Only those operators who are trained and experienced with the
gauges should be enlisted in the study, with the following constraints:

If there is a small number of operators who are familiar with
the gauges, they should all be included in the study.

●   

If the study is intended to be representative of a large pool of
operators, then a random sample of L (L > 2) operators should
be chosen from the pool.

●   

If there is only one operator for the gauge type, that operator
should make measurements on K (K > 2) days.

●   

2.4.2. Design considerations
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Selection of
gauges

If there is only a small number of gauges in the facility, then all
gauges should be included in the study.

If the study is intended to represent a larger pool of gauges, then a
random sample of I (I > 3) gauges should be chosen for the study.

Limit the initial
study

If the gauges operate at several parameter levels (for example;
frequencies), an initial study should be carried out at 1 or 2 levels
before a larger study is undertaken.

If there are differences in the way that the gauge can be operated, an
initial study should be carried out for one or two configurations
before a larger study is undertaken.

2.4.2. Design considerations
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2. Measurement Process Characterization
2.4. Gauge R & R studies

2.4.3.Data collection for time-related
sources of variability

Time-related
analysis

The purpose of this page is to present several options for collecting data
for estimating time-dependent effects in a measurement process.

Time
intervals

The following levels of time-dependent errors are considered in this
section based on the characteristics of many measurement systems and
should be adapted to a specific measurement situation as needed.

Level-1 Measurements taken over a short time to capture the
precision of the gauge

1.  

Level-2 Measurements taken over days (of other appropriate time
increment)

2.  

Level-3 Measurements taken over runs separated by months3.  

Time
intervals

Simple design for 2 levels of random error●   

Nested design for 2 levels of random error●   

Nested design for 3 levels of random error●   

In all cases, data collection and analysis are straightforward, and there is
no reason to estimate interaction terms when dealing with
time-dependent errors. Two levels should be sufficient for
characterizing most measurement systems. Three levels are
recommended for measurement systems where sources of error are not
well understood and have not previously been studied.

2.4.3. Data collection for time-related sources of variability
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.3. Data collection for time-related sources of variability

2.4.3.1.Simple design

Constraints
on time and
resources

In planning a gauge study, particularly for the first time, it is advisable
to start with a simple design and progress to more complicated and/or
labor intensive designs after acquiring some experience with data
collection and analysis. The design recommended here is appropriate as
a preliminary study of variability in the measurement process that
occurs over time. It requires about two days of measurements separated
by about a month with two repetitions per day.

Relationship
to 2-level
and 3-level
nested
designs

The disadvantage of this design is that there is minimal data for
estimating variability over time. A 2-level nested design and a 3-level
nested design, both of which require measurments over time, are
discussed on other pages.

Plan of
action

Choose at least Q = 10 work pieces or check standards, which are
essentially identical insofar as their expected responses to the
measurement method. Measure each of the check standards twice with
the same gauge, being careful to randomize the order of the check
standards.

After about a month, repeat the measurement sequence, randomizing
anew the order in which the check standards are measured.

Notation Measurements on the check standards are designated:

with the first index identifying the month of measurement and the
second index identifying the repetition number.

2.4.3.1. Simple design
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Analysis of
data

The level-1 standard deviation, which describes the basic precision of
the gauge, is

with v1 = 2Q degrees of freedom.

The level-2 standard deviation, which describes the variability of the
measurement process over time, is

with v2 = Q degrees of freedom.

Relationship
to
uncertainty
for a test
item

The standard deviation that defines the uncertainty for a single
measurement on a test item, often referred to as the reproducibility
standard deviation (ASTM), is given by

The time-dependent component is

There may be other sources of uncertainty in the measurement process
that must be accounted for in a formal analysis of uncertainty.

2.4.3.1. Simple design
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.3. Data collection for time-related sources of variability

2.4.3.2.   2-level nested design

Check
standard
measurements
for estimating
time-dependent
sources of
variability

Measurements on a check standard are recommended for studying the effect of
sources of variability that manifest themselves over time. Data collection and
analysis are straightforward, and there is no reason to estimate interaction terms
when dealing with time-dependent errors. The measurements can be made at one of
two levels. Two levels should be sufficient for characterizing most measurement
systems. Three levels are recommended for measurement systems for which sources
of error are not well understood and have not previously been studied.

Time intervals
in a nested
design

The following levels are based on the characteristics of many measurement systems
and should be adapted to a specific measurement situation as needed.

Level-1 Measurements taken over a short term to estimate gauge precision●   

Level-2 Measurements taken over days (of other appropriate time increment)●   

Definition of
number of
measurements
at each level

The following symbols are defined for this chapter:

Level-1 J (J > 1) repetitions●   

Level-2 K (K > 2) days●   

Schedule for
making
measurements

A schedule for making check standard measurements over time (once a day, twice a
week, or whatever is appropriate for sampling all conditions of measurement) should
be set up and adhered to. The check standard measurements should be structured in
the same way as values reported on the test items. For example, if the reported values
are averages of two repetitions made within 5 minutes of each other, the check
standard values should be averages of the two measurements made in the same
manner.

Exception One exception to this rule is that there should be at least J = 2 repetitions per day,
etc. Without this redundancy, there is no way to check on the short-term precision of
the measurement system.

2.4.3.2. 2-level nested design
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Depiction of
schedule for
making check
standard
measurements
with 4
repetitions per
day over K
days on the
surface of a
silicon wafer

K days - 4 repetitions

2-level design for check standard measurements

Operator
considerations

The measurements should be taken with ONE operator. Operator is not usually a
consideration with automated systems. However, systems that require decisions
regarding line edge or other feature delineations may be operator dependent.

Case Study:
Resistivity
check standard

Results should be recorded along with pertinent environmental readings and
identifications for significant factors. The best way to record this information is in
one file with one line or row (on a spreadsheet) of information in fixed fields for
each check standard measurement.

Data analysis
of gauge
precision

The check standard measurements are represented by

for the jth repetition on the kth day. The mean for the kth day is

and the (level-1) standard deviation for gauge precision with v = J - 1 degrees of
freedom is

.

2.4.3.2. 2-level nested design
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Pooling
increases the
reliability of
the estimate of
the standard
deviation

The pooled level-1 standard deviation with v = K(J - 1) degrees of freedom is

.

Data analysis
of process
(level-2)
standard
deviation

The level-2 standard deviation of the check standard represents the process
variability. It is computed with v = K - 1 degrees of freedom as:

where

Relationship to
uncertainty for
a test item

The standard deviation that defines the uncertainty for a single measurement on a test
item, often referred to as the reproducibility standard deviation (ASTM), is given by

The time-dependent component is

There may be other sources of uncertainty in the measurement process that must be
accounted for in a formal analysis of uncertainty.

2.4.3.2. 2-level nested design
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.3. Data collection for time-related sources of variability

2.4.3.3.   3-level nested design

Advantages
of nested
designs

A nested design is recommended for studying the effect of sources of
variability that manifest themselves over time. Data collection and
analysis are straightforward, and there is no reason to estimate
interaction terms when dealing with time-dependent errors. Nested
designs can be run at several levels. Three levels are recommended for
measurement systems where sources of error are not well understood
and have not previously been studied.

Time
intervals in
a nested
design

The following levels are based on the characteristics of many
measurement systems and should be adapted to a specific measurement
situation as need be. A typical design is shown below.

Level-1 Measurements taken over a short-time to capture the
precision of the gauge

●   

Level-2 Measurements taken over days (or other appropriate time
increment)

●   

Level-3 Measurements taken over runs separated by months●   

2.4.3.3. 3-level nested design
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Definition of
number of
measurements
at each level

The following symbols are defined for this chapter:

Level-1 J (J > 1) repetitions●   

Level-2 K (K > 2) days●   

Level-3 L (L > 2) runs●   

For the design shown above, J = 4; K = 3 and L = 2. The design can
be repeated for:

Q (Q > 2) check standards●   

I (I > 3) gauges if the intent is to characterize several similar
gauges

●   

2-level nested
design

The design can be truncated at two levels to estimate repeatability and
day-to-day variability if there is no reason to estimate longer-term
effects. The analysis remains the same through the first two levels.

2.4.3.3. 3-level nested design
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Advantages This design has advantages in ease of use and computation. The
number of repetitions at each level need not be large because
information is being gathered on several check standards.

Operator
considerations

The measurements should be made with ONE operator. Operator is
not usually a consideration with automated systems. However,
systems that require decisions regarding line edge or other feature
delineations may be operator dependent. If there is reason to believe
that results might differ significantly by operator, 'operators' can be
substituted for 'runs' in the design. Choose L (L > 2) operators at
random from the pool of operators who are capable of making
measurements at the same level of precision. (Conduct a small
experiment with operators making repeatability measurements, if
necessary, to verify comparability of precision among operators.)
Then complete the data collection and analysis as outlined. In this
case, the level-3 standard deviation estimates operator effect.

Caution Be sure that the design is truly nested; i.e., that each operator reports
results for the same set of circumstances, particularly with regard to
day of measurement so that each operator measures every day, or
every other day, and so forth.

Randomize on
gauges

Randomize with respect to gauges for each check standard; i.e.,
choose the first check standard and randomize the gauges; choose the
second check standard and randomize gauges; and so forth.

Record results
in a file

Record the average and standard deviation from each group of J
repetitions by:

check standard●   

gauge●   

Case Study:
Resistivity
Gauges

Results should be recorded along with pertinent environmental
readings and identifications for significant factors. The best way to
record this information is in one file with one line or row (on a
spreadsheet) of information in fixed fields for each check standard
measurement. A list of typical entries follows.

Month1.  

Day2.  

Year3.  

Operator identification4.  

Check standard identification5.  

Gauge identification6.  

Average of J repetitions7.  

2.4.3.3. 3-level nested design
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Short-term standard deviation from J repetitions8.  

Degrees of freedom9.  

Environmental readings (if pertinent)10.  

2.4.3.3. 3-level nested design
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2. Measurement Process Characterization
2.4. Gauge R & R studies

2.4.4.Analysis of variability

Analysis of
variability
from a nested
design

The purpose of this section is to show the effect of various levels of
time-dependent effects on the variability of the measurement process with
standard deviations for each level of a 3-level nested design.

Level 1 - repeatability/short-term precision●   

Level 2 - reproducibility/day-to-day●   

Level 3 - stability/run-to-run●   

The graph below depicts possible scenarios for a 2-level design
(short-term repetitions and days) to illustrate the concepts.

Depiction of 2
measurement
processes with
the same
short-term
variability
over 6 days
where process
1 has large
between-day
variability and
process 2 has
negligible
between-day
variability

            Process 1                Process 2
 Large between-day variability   Small between-day
variability

2.4.4. Analysis of variability
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Distributions of short-term measurements over 6 days
where distances from centerlines illustrate

between-day variability

Hint on using
tabular
method of
analysis

An easy way to begin is with a 2-level table with J columns and K rows
for the repeatability/reproducibility measurements and proceed as follows:

Compute an average for each row and put it in the J+1 column.1.  

Compute the level-1 (repeatability) standard deviation for each row
and put it in the J+2 column.

2.  

Compute the grand average and the level-2 standard deviation from
data in the J+1 column.

3.  

Repeat the table for each of the L runs.4.  

Compute the level-3 standard deviation from the L grand averages.5.  

2.4.4. Analysis of variability
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Level-1: LK
repeatability
standard
deviations can
be computed
from the data

The measurements from the nested design are denoted by

Equations corresponding to the tabular analysis are shown below. Level-1
repeatability standard deviations, s1lk, are pooled over the K days and L
runs. Individual standard deviations with (J - 1) degrees of freedom each
are computed from J repetitions as

where

Level-2: L
reproducibility
standard
deviations can
be computed
from the data

The level-2 standard deviation, s2l, is pooled over the L runs. Individual

standard deviations with (K - 1) degrees of freedom each are computed
from K daily averages as

where

2.4.4. Analysis of variability
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Level-3: A
single global
standard
deviation can
be computed
from the L-run
averages

A level-3 standard deviation with (L - 1) degrees of freedom is computed
from the L-run averages as

where

Relationship
to uncertainty
for a test item

The standard deviation that defines the uncertainty for a single
measurement on a test item is given by

where the pooled values, s1 and s2, are the usual

and

There may be other sources of uncertainty in the measurement process that
must be accounted for in a formal analysis of uncertainty.

2.4.4. Analysis of variability
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.4. Analysis of variability

2.4.4.1.Analysis of repeatability

Case study:
Resistivity
probes

The repeatability quantifies the basic precision for the gauge. A level-1 repeatability
standard deviation is computed for each group of J repetitions, and a graphical analysis is
recommended for deciding if repeatability is dependent on the check standard, the
operator, or the gauge. Two graphs are recommended. These should show:

Plot of repeatability standard deviations versus check standard with day coded●   

Plot of repeatability standard deviations versus check standard with gauge coded●   

Typically, we expect the standard deviation to be gauge dependent -- in which case there
should be a separate standard deviation for each gauge. If the gauges are all at the same
level of precision, the values can be combined over all gauges.

Repeatability
standard
deviations
can be
pooled over
operators,
runs, and
check
standards

A repeatability standard deviation from J repetitions is not a reliable estimate of the
precision of the gauge. Fortunately, these standard deviations can be pooled over days;
runs; and check standards, if appropriate, to produce a more reliable precision measure.
The table below shows a mechanism for pooling. The pooled repeatability standard

deviation, , has LK(J - 1) degrees of freedom for measurements taken over:

J repetitions●   

K days●   

L runs●   

Basic
pooling rules

The table below gives the mechanism for pooling repeatability standard deviations over
days and runs. The pooled value is an average of weighted variances and is shown as the
last entry in the right-hand column of the table. The pooling can also cover check
standards, if appropriate.

2.4.4.1. Analysis of repeatability
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View of
entire
dataset from
the nested
design

To illustrate the calculations, a subset of data collected in a nested design for one check
standard (#140) and one probe (#2362) are shown below. The measurements are
resistivity (ohm.cm) readings with six repetitions per day. The individual level-1 standard
deviations from the six repetitions and degrees of freedom are recorded in the last two
columns of the database.

Run  Wafer  Probe  Month  Day  Op  Temp    Average  Stddev 
df

 1    140    2362    3    15   1   23.08   96.0771  0.1024 
5
 1    140    2362    3    17   1   23.00   95.9976  0.0943 
5
 1    140    2362    3    18   1   23.01   96.0148  0.0622 
5
 1    140    2362    3    22   1   23.27   96.0397  0.0702 
5
 1    140    2362    3    23   2   23.24   96.0407  0.0627 
5
 1    140    2362    3    24   2   23.13   96.0445  0.0622 
5
 
 2    140    2362    4    12   1   22.88   96.0793  0.0996 
5
 2    140    2362    4    18   2   22.76   96.1115  0.0533 
5
 2    140    2362    4    19   2   22.79   96.0803  0.0364 
5
 2    140    2362    4    19   1   22.71   96.0411  0.0768 
5
 2    140    2362    4    20   2   22.84   96.0988  0.1042 
5
 2    140    2362    4    21   1   22.94   96.0482  0.0868 
5

2.4.4.1. Analysis of repeatability
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Pooled repeatability standard deviations over days, runs

Source of Variability Degrees of
Freedom Standard Deviations Sum of Squares (SS)

Probe 2362

run 1 - day 1

run 1 - day 2

run 1 - day 3

run 1 - day 4

run 1 - day 5

run 1 - day 6

run 2 - day 1

run 2 - day 2

run 2 - day 3

run 2 - day 4

run 2 - day 5

run 2 - day 6

      5

      5

      5

      5

      5

      5

      5

      5

      5

      5

      5

      5

   0.1024

   0.0943

   0.0622

   0.0702

   0.0627

   0.0622

   0.0996

   0.0533

   0.0364

   0.0768

   0.1042

   0.0868

   0.05243

   0.04446

   0.01934

   0.02464

   0.01966

   0.01934

   0.04960

   0.01420

   0.00662

   0.02949

   0.05429

   0.03767

gives the total degrees
of freedom for s1

     60
gives the total sum of
squares for s1

   0.37176

The pooled value of s1 is given by 
   0.07871

2.4.4.1. Analysis of repeatability

http://www.itl.nist.gov/div898/handbook/mpc/section4/mpc441.htm (3 of 4) [5/1/2006 10:12:39 AM]



Run software
macro for
pooling
standard
deviations

The Dataplot commands (corresponding to the calculations in the table above)

dimension 500 30
read mpc411.dat run wafer probe month day op temp avg s1i vi
let ssi=vi*s1i*s1i
let ss=sum ssi
let v = sum vi
let s1 = (ss/v)**0.5
print s1 v

return the following pooled values for the repeatability standard deviation and degrees of
freedom.

 PARAMETERS AND CONSTANTS--

     S1      --  0.7871435E-01
     V       --  0.6000000E+02

2.4.4.1. Analysis of repeatability
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.4. Analysis of variability

2.4.4.2.Analysis of reproducibility

Case study:
Resistivity
gauges

Day-to-day variability can be assessed by a graph of check standard values (averaged over J
repetitions) versus day with a separate graph for each check standard. Graphs for all check standards
should be plotted on the same page to obtain an overall view of the measurement situation.

Pooling
results in
more
reliable
estimates

The level-2 standard deviations with (K - 1) degrees of a freedom are computed from the check
standard values for days and pooled over runs as shown in the table below. The pooled level-2
standard deviation has degrees of freedom L(K - 1) for measurements made over:

K days●   

L runs●   

Mechanism
for pooling

The table below gives the mechanism for pooling level-2 standard deviations over runs. The pooled
value is an average of weighted variances and is the last entry in the right-hand column of the table.
The pooling can be extended in the same manner to cover check standards, if appropriate.

Level-2 standard deviations for a single gauge pooled over runs
Source of
variability Standard deviations Degrees

freedom
Sum of squares
(SS)

Days

Run 1
 
Run 2

Pooled value

   0.027280

   0.027560

                              

    5
 
    5

-------
 
   10

   0.003721

   0.003798

-------------

   0.007519

   0.02742

2.4.4.2. Analysis of reproducibility
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Run
software
macro for
computing
level-2
standard
deviations
and pooling
over runs

A subset of data (shown on previous page) collected in a nested design on one check standard
(#140) with probe (#2362) on six days are analyzed for between-day effects. Dataplot commands to
compute the level-2 standard deviations and pool over runs 1 and 2 are:

dimension 500 30
read mpc441.dat run wafer probe mo day op temp
y s df
let n1 = count y subset run 1
let df1 = n1 - 1
let n2 = count y subset run 2
let df2 = n2 - 1
let v2 = df1 + df2
let s2run1 = standard deviation y subset run 1
let s2run2 = standard deviation y subset run 2
let s2 = df1*(s2run1)**2 + df2*(s2run2)**2
let s2 = (s2/v2)**.5
print s2run1 df1
print s2run2 df2
print s2 v2

Dataplot
output

Dataplot returns the following level-2 standard deviations and degrees of freedom:

 PARAMETERS AND CONSTANTS--

     S2RUN1  --  0.2728125E-01
     DF1     --  0.5000000E+01

 PARAMETERS AND CONSTANTS--

     S2RUN2  --  0.2756367E-01
     DF2     --  0.5000000E+01

 PARAMETERS AND CONSTANTS--

     S2  --  0.2742282E-01
     v2  --  0.1000000E+02

2.4.4.2. Analysis of reproducibility
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Relationship
to day effect

The level-2 standard deviation is related to the standard deviation for between-day precision and
gauge precision by

The size of the day effect can be calculated by subtraction using the formula above once the other
two standard deviations have been estimated reliably.

Computation
of
component
for days

The Dataplot commands:

let J = 6
let varday = s2**2 - (s1**2)/J
returns the following value for the variance for days:

THE COMPUTED VALUE OF THE CONSTANT 
VARDAY = -0.2880149E-03 

The negative number for the variance is interpreted as meaning that the variance component for
days is zero. However, with only 10 degrees of freedom for the level-2 standard deviation, this
estimate is not necessarily reliable. The standard deviation for days over the entire database shows a
significant component for days.

2.4.4.2. Analysis of reproducibility
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.4. Analysis of variability

2.4.4.3.Analysis of stability

Case study:
Resistivity
probes

Run-to-run variability can be assessed graphically by a plot of check standard
values (averaged over J repetitions) versus time with a separate graph for each
check standard. Data on all check standards should be plotted on one page to
obtain an overall view of the measurement situation.

Advantage
of pooling

A level-3 standard deviation with (L - 1) degrees of freedom is computed from
the run averages. Because there will rarely be more than 2 runs per check
standard, resulting in 1 degree of freedom per check standard, it is prudent to
have three or more check standards in the design in order to take advantage of
pooling. The mechanism for pooling over check standards is shown in the table
below. The pooled standard deviation has Q(L - 1) degrees and is shown as the
last entry in the right-hand column of the table.

Example of
pooling

Level-3 standard deviations for a single gauge pooled over check
standards

Source of
variability

Standard
deviation

Degrees of freedom
(DF)

Sum of squares
(SS)

Level-3

Chk std 138

Chk std 139

Chk std 140

Chk std 141

Chk std 142

Sum

0.0223

0.0027

0.0289

0.0133

0.0205

    1

    1

    1

    1

    1
--------------
    5

0.0004973

0.0000073

0.0008352

0.0001769

0.0004203
-----------
0.0019370

2.4.4.3. Analysis of stability
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Pooled value 0.0197

Run
software
macro for
computing
level-3
standard
deviation

A subset of data collected in a nested design on one check standard (#140) with
probe (#2362) for six days and two runs is analyzed for between-run effects.
Dataplot commands to compute the level-3 standard deviation from the
averages of 2 runs are:

dimension 30 columns
read mpc441.dat run wafer probe mo ...
     day op temp y s df
let y1 = average y subset run 1
let y2 = average y subset run 2
let ybar = (y1 + y2)/2
let ss = (y1-ybar)**2 + (y2-ybar)**2
let v3 = 1
let s3 = (ss/v3)**.5
print s3 v3

Dataplot
output

Dataplot returns the level-3 standard deviation and degrees of freedom:

 PARAMETERS AND CONSTANTS--

     S3      --  0.2885137E-01
     V3      --  0.1000000E+01

Relationship
to long-term
changes,
days and
gauge
precision

The size of the between-run effect can be calculated by subtraction using the
standard deviations for days and gauge precision as

2.4.4.3. Analysis of stability
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.4. Analysis of variability
2.4.4.4.

2.4.4.4.4.Example of calculations

Example of
repeatability
calculations

Short-term standard deviations based on

J = 6 repetitions with 5 degrees of freedom●   

K = 6 days●   

L = 2 runs●   

were recorded with a probing instrument on Q = 5 wafers. The
standard deviations were pooled over K = 6 days and L = 2 runs to
give 60 degrees of freedom for each wafer. The pooling of
repeatability standard deviations over the 5 wafers is demonstrated in
the table below.

Pooled repeatability standard deviation for a single gauge

Source of
variability Sum of Squares (SS)

Degrees of
freedom
(DF)

Std Devs

Repeatability

Wafer #138

Wafer #139

Wafer #140

Wafer #141

Wafer #142

          0.48115

          0.69209

          0.48483

          1.21752

          0.30076

     60

     60

     60

     60

     60

2.4.4.4.4. Example of calculations
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  SUM

          3.17635     300   0.10290

2.4.4.4.4. Example of calculations
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2. Measurement Process Characterization
2.4. Gauge R & R studies

2.4.5.Analysis of bias

Definition of
bias

The terms 'bias' and 'systematic error' have the same meaning in this
handbook. Bias is defined ( VIM) as the difference between the
measurement result and its unknown 'true value'. It can often be
estimated and/or eliminated by calibration to a reference standard.

Potential
problem

Calibration relates output to 'true value' in an ideal environment.
However, it may not assure that the gauge reacts properly in its working
environment. Temperature, humidity, operator, wear, and other factors
can introduce bias into the measurements. There is no single method for
dealing with this problem, but the gauge study is intended to uncover
biases in the measurement process.

Sources of
bias

Sources of bias that are discussed in this Handbook include:

Lack of gauge resolution●   

Lack of linearity●   

Drift●   

Hysteresis●   

Differences among gauges●   

Differences among geometries●   

Differences among operators●   

Remedial actions and strategies●   

2.4.5. Analysis of bias
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.5. Analysis of bias

2.4.5.1.Resolution

Resolution Resolution (MSA) is the ability of the measurement system to detect
and faithfully indicate small changes in the characteristic of the
measurement result.

Definition from
(MSA) manual

The resolution of the instrument is  if there is an equal probability
that the indicated value of any artifact, which differs from a

reference standard by less than , will be the same as the indicated
value of the reference.

Good versus
poor

A small  implies good resolution -- the measurement system can
discriminate between artifacts that are close together in value.

A large  implies poor resolution -- the measurement system can
only discriminate between artifacts that are far apart in value.

Warning The number of digits displayed does not indicate the resolution of
the instrument.

Manufacturer's
statement of
resolution

Resolution as stated in the manufacturer's specifications is usually a
function of the least-significant digit (LSD) of the instrument and
other factors such as timing mechanisms. This value should be
checked in the laboratory under actual conditions of measurement.

Experimental
determination
of resolution

To make a determination in the laboratory, select several artifacts
with known values over a range from close in value to far apart. Start
with the two artifacts that are farthest apart and make measurements
on each artifact. Then, measure the two artifacts with the second
largest difference, and so forth, until two artifacts are found which
repeatedly give the same result. The difference between the values of
these two artifacts estimates the resolution.

2.4.5.1. Resolution
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Consequence of
poor resolution

No useful information can be gained from a study on a gauge with
poor resolution relative to measurement needs.

2.4.5.1. Resolution
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.5. Analysis of bias

2.4.5.2.Linearity of the gauge

Definition of
linearity for
gauge studies

Linearity is given a narrow interpretation in this Handbook to indicate
that gauge response increases in equal increments to equal increments
of stimulus, or, if the gauge is biased, that the bias remains constant
throughout the course of the measurement process.

Data
collection
and
repetitions

A determination of linearity requires Q (Q > 4) reference standards
that cover the range of interest in fairly equal increments and J (J > 1)
measurements on each reference standard. One measurement is made
on each of the reference standards, and the process is repeated J times.

Plot of the
data

A test of linearity starts with a plot of the measured values versus
corresponding values of the reference standards to obtain an indication
of whether or not the points fall on a straight line with slope equal to 1
-- indicating linearity.

Least-squares
estimates of
bias and
slope

A least-squares fit of the data to the model

Y = a + bX + measurement error

where Y is the measurement result and X is the value of the reference

standard, produces an estimate of the intercept, a, and the slope, b.

Output from
software
package

The intercept and bias are estimated using a statistical software
package that should provide the following information:

Estimates of the intercept and slope, ●   

Standard deviations of the intercept and slope●   

Residual standard deviation of the fit●   

F-test for goodness of fit●   

2.4.5.2. Linearity of the gauge
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Test for
linearity

Tests for the slope and bias are described in the section on instrument
calibration. If the slope is different from one, the gauge is non-linear
and requires calibration or repair. If the intercept is different from zero,
the gauge has a bias.

Causes of
non-linearity

The reference manual on Measurement Systems Analysis (MSA) lists
possible causes of gauge non-linearity that should be investigated if the
gauge shows symptoms of non-linearity.

Gauge not properly calibrated at the lower and upper ends of the
operating range

1.  

Error in the value of X at the maximum or minimum range2.  

Worn gauge3.  

Internal design problems (electronics)4.  

Note - on
artifact
calibration

The requirement of linearity for artifact calibration is not so stringent.
Where the gauge is used as a comparator for measuring small
differences among test items and reference standards of the same
nominal size, as with calibration designs, the only requirement is that
the gauge be linear over the small on-scale range needed to measure
both the reference standard and the test item.

Situation
where the
calibration of
the gauge is
neglected

Sometimes it is not economically feasible to correct for the calibration
of the gauge ( Turgel and Vecchia). In this case, the bias that is
incurred by neglecting the calibration is estimated as a component of
uncertainty.

2.4.5.2. Linearity of the gauge
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.5. Analysis of bias

2.4.5.3.Drift

Definition Drift can be defined (VIM) as a slow change in the response of a gauge.

Instruments
used as
comparators
for
calibration

Short-term drift can be a problem for comparator measurements. The
cause is frequently heat build-up in the instrument during the time of
measurement. It would be difficult, and probably unproductive, to try to
pinpoint the extent of such drift with a gauge study. The simplest
solution is to use drift-free designs for collecting calibration data. These
designs mitigate the effect of linear drift on the results.

Long-term drift should not be a problem for comparator measurements
because such drift would be constant during a calibration design and
would cancel in the difference measurements.

Instruments
corrected by
linear
calibration

For instruments whose readings are corrected by a linear calibration
line, drift can be detected using a control chart technique and
measurements on three or more check standards.

Drift in
direct
reading
instruments
and
uncertainty
analysis

For other instruments, measurements can be made on a daily basis on
two or more check standards over a preset time period, say, one month.
These measurements are plotted on a time scale to determine the extent
and nature of any drift. Drift rarely continues unabated at the same rate
and in the same direction for a long time period.

Thus, the expectation from such an experiment is to document the
maximum change that is likely to occur during a set time period and
plan adjustments to the instrument accordingly. A further impact of the
findings is that uncorrected drift is treated as a type A component in the
uncertainty analysis.

2.4.5.3. Drift
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.5. Analysis of bias

2.4.5.4.Differences among gauges

Purpose A gauge study should address whether gauges agree with one another and whether
the agreement (or disagreement) is consistent over artifacts and time.

Data
collection

For each gauge in the study, the analysis requires measurements on

Q (Q > 2) check standards●   

K (K > 2) days●   

The measurements should be made by a single operator.

Data
reduction

The steps in the analysis are:

Measurements are averaged over days by artifact/gauge configuration.1.  

For each artifact, an average is computed over gauges.2.  

Differences from this average are then computed for each gauge.3.  

If the design is run as a 3-level design, the statistics are computed separately
for each run.

4.  

Data from a
gauge study

The data in the table below come from resistivity (ohm.cm) measurements on Q = 5
artifacts on K = 6 days. Two runs were made which were separated by about a
month's time. The artifacts are silicon wafers and the gauges are four-point probes
specifically designed for measuring resistivity of silicon wafers. Differences from the
wafer means are shown in the table.

Biases for 5
probes from a
gauge study
with 5
artifacts on 6
days

 Table of biases for probes and silicon wafers (ohm.cm)
                          Wafers
 
 Probe       138      139       140       141      142
---------------------------------------------------------
     1    0.02476  -0.00356   0.04002   0.03938   0.00620

   181    0.01076   0.03944   0.01871  -0.01072   0.03761

   182    0.01926   0.00574  -0.02008   0.02458  -0.00439

2.4.5.4. Differences among gauges
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  2062   -0.01754  -0.03226  -0.01258  -0.02802  -0.00110

  2362   -0.03725  -0.00936  -0.02608  -0.02522  -0.03830

Plot of
differences
among
probes

A graphical analysis can be more effective for detecting differences among gauges
than a table of differences. The differences are plotted versus artifact identification
with each gauge identified by a separate plotting symbol. For ease of interpretation,
the symbols for any one gauge can be connected by dotted lines.

Interpretation Because the plots show differences from the average by artifact, the center line is the
zero-line, and the differences are estimates of bias. Gauges that are consistently
above or below the other gauges are biased high or low, respectively, relative to the
average. The best estimate of bias for a particular gauge is its average bias over the Q
artifacts. For this data set, notice that probe #2362 is consistently biased low relative
to the other probes.

Strategies for
dealing with
differences
among
gauges

Given that the gauges are a random sample of like-kind gauges, the best estimate in
any situation is an average over all gauges. In the usual production or metrology
setting, however, it may only be feasible to make the measurements on a particular
piece with one gauge. Then, there are two methods of dealing with the differences
among gauges.

Correct each measurement made with a particular gauge for the bias of that
gauge and report the standard deviation of the correction as a type A
uncertainty.

1.  

Report each measurement as it occurs and assess a type A uncertainty for the
differences among the gauges.

2.  

2.4.5.4. Differences among gauges
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.5. Analysis of bias

2.4.5.5.Geometry/configuration differences

How to deal
with
configuration
differences

The mechanism for identifying and/or dealing with differences among geometries or
configurations in an instrument is basically the same as dealing with differences among
the gauges themselves.

Example of
differences
among wiring
configurations

An example is given of a study of configuration differences for a single gauge. The
gauge, a 4-point probe for measuring resistivity of silicon wafers, can be wired in
several ways. Because it was not possible to test all wiring configurations during the
gauge study, measurements were made in only two configurations as a way of
identifying possible problems.

Data on
wiring
configurations
and a plot of
differences
between the 2
wiring
configurations

Measurements were made on six wafers over six days (except for 5 measurements on
wafer 39) with probe #2062 wired in two configurations. This sequence of
measurements was repeated after about a month resulting in two runs. Differences
between measurements in the two configurations on the same day are shown in the
following table.

Differences between wiring configurations

  Wafer Day     Probe    Run 1     Run 2

   17.   1      2062.   -0.0108    0.0088
   17.   2      2062.   -0.0111    0.0062
   17.   3      2062.   -0.0062    0.0074
   17.   4      2062.    0.0020    0.0047
   17.   5      2062.    0.0018    0.0049
   17.   6      2062.    0.0002    0.0000

   39.   1      2062.   -0.0089    0.0075
   39.   3      2062.   -0.0040   -0.0016
   39.   4      2062.   -0.0022    0.0052
   39.   5      2062.   -0.0012    0.0085

2.4.5.5. Geometry/configuration differences
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   39.   6      2062.   -0.0034   -0.0018

   63.   1      2062.   -0.0016    0.0092
   63.   2      2062.   -0.0111    0.0040
   63.   3      2062.   -0.0059    0.0067
   63.   4      2062.   -0.0078    0.0016
   63.   5      2062.   -0.0007    0.0020
   63.   6      2062.    0.0006    0.0017

  103.   1      2062.   -0.0050    0.0076
  103.   2      2062.   -0.0140    0.0002
  103.   3      2062.   -0.0048    0.0025
  103.   4      2062.    0.0018    0.0045
  103.   5      2062.    0.0016   -0.0025
  103.   6      2062.    0.0044    0.0035

  125.   1      2062.   -0.0056    0.0099
  125.   2      2062.   -0.0155    0.0123
  125.   3      2062.   -0.0010    0.0042
  125.   4      2062.   -0.0014    0.0098
  125.   5      2062.    0.0003    0.0032
  125.   6      2062.   -0.0017    0.0115

Test of
difference
between
configurations

Because there are only two configurations, a t-test is used to decide if there is a
difference. If

the difference between the two configurations is statistically significant.

The average and standard deviation computed from the 29 differences in each run are
shown in the table below along with the t-values which confirm that the differences are
significant for both runs.

Average differences between wiring
configurations

 Run  Probe     Average       Std dev    N     
t 

2.4.5.5. Geometry/configuration differences
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  1    2062   - 0.00383       0.00514    29  
-4.0
  2    2062   + 0.00489       0.00400    29  
+6.6

Unexpected
result

The data reveal a wiring bias for both runs that changes direction between runs. This is a
somewhat disturbing finding, and further study of the gauges is needed. Because neither
wiring configuration is preferred or known to give the 'correct' result, the differences are
treated as a component of the measurement uncertainty.

2.4.5.5. Geometry/configuration differences
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2. Measurement Process Characterization
2.4. Gauge R & R studies
2.4.5. Analysis of bias

2.4.5.6.Remedial actions and strategies

Variability The variability of the gauge in its normal operating mode needs to be
examined in light of measurement requirements.

If the standard deviation is too large, relative to requirements, the
uncertainty can be reduced by making repeated measurements and
taking advantage of the standard deviation of the average (which is
reduced by a factor of  when n measurements are averaged).

Causes of
excess
variability

If multiple measurements are not economically feasible in the
workload, then the performance of the gauge must be improved.
Causes of variability which should be examined are:

Wear●   

Environmental effects such as humidity●   

Temperature excursions●   

Operator technique●   

Resolution There is no remedy for a gauge with insufficient resolution. The gauge
will need to be replaced with a better gauge.

Lack of
linearity

Lack of linearity can be dealt with by correcting the output of the
gauge to account for bias that is dependent on the level of the stimulus.
Lack of linearity can be tolerated (left uncorrected) if it does not
increase the uncertainty of the measurement result beyond its
requirement.

Drift It would be very difficult to correct a gauge for drift unless there is
sufficient history to document the direction and size of the drift. Drift
can be tolerated if it does not increase the uncertainty of the
measurement result beyond its requirement.

2.4.5.6. Remedial actions and strategies
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Differences
among gauges
or
configurations

Significant differences among gauges/configurations can be treated in
one of two ways:

By correcting each measurement for the bias of the specific
gauge/configuration.

1.  

By accepting the difference as part of the uncertainty of the
measurement process.

2.  

Differences
among
operators

Differences among operators can be viewed in the same way as
differences among gauges. However, an operator who is incapable of
making measurements to the required precision because of an
untreatable condition, such as a vision problem, should be re-assigned
to other tasks.

2.4.5.6. Remedial actions and strategies
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2. Measurement Process Characterization
2.4. Gauge R & R studies

2.4.6.Quantifying uncertainties from a
gauge study

Gauge
studies can
be used as
the basis for
uncertainty
assessment

One reason for conducting a gauge study is to quantify uncertainties in
the measurement process that would be difficult to quantify under
conditions of actual measurement.

This is a reasonable approach to take if the results are truly
representative of the measurement process in its working environment.
Consideration should be given to all sources of error, particularly those
sources of error which do not exhibit themselves in the short-term run.

Potential
problem with
this
approach

The potential problem with this approach is that the calculation of
uncertainty depends totally on the gauge study. If the measurement
process changes its characteristics over time, the standard deviation
from the gauge study will not be the correct standard deviation for the
uncertainty analysis. One way to try to avoid such a problem is to carry
out a gauge study both before and after the measurements that are being
characterized for uncertainty. The 'before' and 'after' results should
indicate whether or not the measurement process changed in the
interim.

Uncertainty
analysis
requires
information
about the
specific
measurement

The computation of uncertainty depends on the particular measurement
that is of interest. The gauge study gathers the data and estimates
standard deviations for sources that contribute to the uncertainty of the
measurement result. However, specific formulas are needed to relate
these standard deviations to the standard deviation of a measurement
result.

2.4.6. Quantifying uncertainties from a gauge study
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General
guidance

The following sections outline the general approach to uncertainty
analysis and give methods for combining the standard deviations into a
final uncertainty:

Approach1.  

Methods for type A evaluations2.  

Methods for type B evaluations3.  

Propagation of error4.  

Error budgets and sensitivity coefficients5.  

Standard and expanded uncertainties6.  

Treatment of uncorrected biases7.  

Type A
evaluations
of random
error

Data collection methods and analyses of random sources of uncertainty
are given for the following:

Repeatability of the gauge1.  

Reproducibility of the measurement process2.  

Stability (very long-term) of the measurement process3.  

Biases - Rule
of thumb

The approach for biases is to estimate the maximum bias from a gauge
study and compute a standard uncertainty from the maximum bias
assuming a suitable distribution. The formulas shown below assume a
uniform distribution for each bias.

Determining
resolution

If the resolution of the gauge is , the standard uncertainty for
resolution is

Determining
non-linearity

If the maximum departure from linearity for the gauge has been
determined from a gauge study, and it is reasonable to assume that the
gauge is equally likely to be engaged at any point within the range
tested, the standard uncertainty for linearity is

2.4.6. Quantifying uncertainties from a gauge study
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Hysteresis Hysteresis, as a performance specification, is defined (NCSL RP-12) as
the maximum difference between the upscale and downscale readings
on the same artifact during a full range traverse in each direction. The
standard uncertainty for hysteresis is

Determining
drift

Drift in direct reading instruments is defined for a specific time interval
of interest. The standard uncertainty for drift is

where Y0 and Yt are measurements at time zero and t, respectively.

Other biases Other sources of bias are discussed as follows:

Differences among gauges1.  

Differences among configurations2.  

Case study:
Type A
uncertainties
from a
gauge study

A case study on type A uncertainty analysis from a gauge study is
recommended as a guide for bringing together the principles and
elements discussed in this section. The study in question characterizes
the uncertainty of resistivity measurements made on silicon wafers.

2.4.6. Quantifying uncertainties from a gauge study
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2. Measurement Process Characterization

2.5.Uncertainty analysis

Uncertainty
measures
'goodness'
of a test
result

This section discusses the uncertainty of measurement results.
Uncertainty is a measure of the 'goodness' of a result. Without such a
measure, it is impossible to judge the fitness of the value as a basis for
making decisions relating to health, safety, commerce or scientific
excellence.

Contents What are the issues for uncertainty analysis?1.  

Approach to uncertainty analysis

Steps1.  

2.  

Type A evaluations

Type A evaluations of random error

Time-dependent components1.  

Measurement configurations2.  

1.  

Type A evaluations of material inhomogeneities

Data collection and analysis1.  

2.  

Type A evaluations of bias

Treatment of inconsistent bias1.  

Treatment of consistent bias2.  

Treatment of bias with sparse data3.  

3.  

3.  

Type B evaluations

Assumed distributions1.  

4.  

Propagation of error considerations

Functions of a single variable1.  

Functions of two variables2.  

Functions of several variables3.  

5.  

Error budgets and sensitivity coefficients

Sensitivity coefficients for measurements on the test item1.  

Sensitivity coefficients for measurements on a check2.  

6.  

2.5. Uncertainty analysis
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standard

Sensitivity coefficients for measurements with a 2-level
design

3.  

Sensitivity coefficients for measurements with a 3-level
design

4.  

Example of error budget5.  

Standard and expanded uncertainties

Degrees of freedom1.  

7.  

Treatment of uncorrected bias

Computation of revised uncertainty1.  

8.  

2.5. Uncertainty analysis
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2. Measurement Process Characterization
2.5. Uncertainty analysis

2.5.1. Issues

Issues for
uncertainty
analysis

Evaluation of uncertainty is an ongoing process that can consume
time and resources. It can also require the services of someone who
is familiar with data analysis techniques, particularly statistical
analysis. Therefore, it is important for laboratory personnel who are
approaching uncertainty analysis for the first time to be aware of the
resources required and to carefully lay out a plan for data collection
and analysis.

Problem areas Some laboratories, such as test laboratories, may not have the
resources to undertake detailed uncertainty analyses even though,
increasingly, quality management standards such as the ISO 9000
series are requiring that all measurement results be accompanied by
statements of uncertainty.

Other situations where uncertainty analyses are problematical are:

One-of-a-kind measurements●   

Dynamic measurements that depend strongly on the
application for the measurement

●   

Directions being
pursued

What can be done in these situations? There is no definitive answer
at this time. Several organizations, such as the National Conference
of Standards Laboratories (NCSL) and the International Standards
Organization (ISO) are investigating methods for dealing with this
problem, and there is a document in draft that will recommend a
simplified approach to uncertainty analysis based on results of
interlaboratory tests.

2.5.1. Issues
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Relationship to
interlaboratory
test results

Many laboratories or industries participate in interlaboratory studies
where the test method itself is evaluated for:

repeatability within laboratories●   

reproducibility across laboratories●   

These evaluations do not lead to uncertainty statements because the
purpose of the interlaboratory test is to evaluate, and then improve,
the test method as it is applied across the industry. The purpose of
uncertainty analysis is to evaluate the result of a particular
measurement, in a particular laboratory, at a particular time.
However, the two purposes are related.

Default
recommendation
for test
laboratories

If a test laboratory has been party to an interlaboratory test that
follows the recommendations and analyses of an American Society
for Testing Materials standard (ASTM E691) or an ISO standard
(ISO 5725), the laboratory can, as a default, represent its standard
uncertainty for a single measurement as the reproducibility standard
deviation as defined in ASTM E691 and ISO 5725. This standard
deviation includes components for within-laboratory repeatability
common to all laboratories and between-laboratory variation.

Drawbacks of
this procedure

The standard deviation computed in this manner describes a future
single measurement made at a laboratory randomly drawn from the
group and leads to a prediction interval (Hahn & Meeker) rather
than a confidence interval. It is not an ideal solution and may
produce either an unrealistically small or unacceptably large
uncertainty for a particular laboratory. The procedure can reward
laboratories with poor performance or those that do not follow the
test procedures to the letter and punish laboratories with good
performance. Further, the procedure does not take into account
sources of uncertainty other than those captured in the
interlaboratory test. Because the interlaboratory test is a snapshot at
one point in time, characteristics of the measurement process over
time cannot be accurately evaluated. Therefore, it is a strategy to be
used only where there is no possibility of conducting a realistic
uncertainty investigation.

2.5.1. Issues
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2. Measurement Process Characterization
2.5. Uncertainty analysis

2.5.2.Approach

Procedures
in this
chapter

The procedures in this chapter are intended for test laboratories,
calibration laboratories, and scientific laboratories that report results of
measurements from ongoing or well-documented processes.

Pertinent
sections

The following pages outline methods for estimating the individual
uncertainty components, which are consistent with materials presented
in other sections of this Handbook, and rules and equations for
combining them into a final expanded uncertainty. The general
framework is:

ISO Approach1.  

Outline of steps to uncertainty analysis2.  

Methods for type A evaluations3.  

Methods for type B evaluations4.  

Propagation of error considerations5.  

Uncertainty budgets and sensitivity coefficients6.  

Standard and expanded uncertainties7.  

Treatment of uncorrected bias8.  

Specific
situations are
outlined in
other places
in this
chapter

Methods for calculating uncertainties for specific results are explained
in the following sections:

Calibrated values of artifacts●   

Calibrated values from calibration curves

From propagation of error❍   

From check standard measurements❍   

Comparison of check standards and propagation of error❍   

●   

Gauge R & R studies●   

Type A components for resistivity measurements●   

Type B components for resistivity measurements●   

2.5.2. Approach
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ISO
definition of
uncertainty

Uncertainty, as defined in the ISO Guide to the Expression of
Uncertainty in Measurement (GUM) and the International Vocabulary
of Basic and General Terms in Metrology (VIM), is a

"parameter, associated with the result of a measurement,
that characterizes the dispersion of the values that could
reasonably be attributed to the measurand."

Consistent
with
historical
view of
uncertainty

This definition is consistent with the well-established concept that an
uncertainty statement assigns credible limits to the accuracy of a
reported value, stating to what extent that value may differ from its
reference value (Eisenhart). In some cases, reference values will be
traceable to a national standard, and in certain other cases, reference
values will be consensus values based on measurements made
according to a specific protocol by a group of laboratories.

Accounts for
both random
error and
bias

The estimation of a possible discrepancy takes into account both
random error and bias in the measurement process. The distinction to
keep in mind with regard to random error and bias is that random
errors cannot be corrected, and biases can, theoretically at least, be
corrected or eliminated from the measurement result.

Relationship
to precision
and bias
statements

Precision and bias are properties of a measurement method.
Uncertainty is a property of a specific result for a single test item that
depends on a specific measurement configuration
(laboratory/instrument/operator, etc.). It depends on the repeatability of
the instrument; the reproducibility of the result over time; the number
of measurements in the test result; and all sources of random and
systematic error that could contribute to disagreement between the
result and its reference value.

Handbook
follows the
ISO
approach

This Handbook follows the ISO approach (GUM) to stating and
combining components of uncertainty. To this basic structure, it adds a
statistical framework for estimating individual components,
particularly those that are classified as type A uncertainties.

2.5.2. Approach
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Basic ISO
tenets

The ISO approach is based on the following rules:

Each uncertainty component is quantified by a standard
deviation.

●   

All biases are assumed to be corrected and any uncertainty is the
uncertainty of the correction.

●   

Zero corrections are allowed if the bias cannot be corrected and
an uncertainty is assessed.

●   

All uncertainty intervals are symmetric.●   

ISO
approach to
classifying
sources of
error

Components are grouped into two major categories, depending on the
source of the data and not on the type of error, and each component is
quantified by a standard deviation. The categories are:

Type A - components evaluated by statistical methods●   

Type B - components evaluated by other means (or in other
laboratories)

●   

Interpretation
of this
classification

One way of interpreting this classification is that it distinguishes
between information that comes from sources local to the measurement
process and information from other sources -- although this
interpretation does not always hold. In the computation of the final
uncertainty it makes no difference how the components are classified
because the ISO guidelines treat type A and type B evaluations in the
same manner.

Rule of
quadrature

All uncertainty components (standard deviations) are combined by
root-sum-squares (quadrature) to arrive at a 'standard uncertainty', u,
which is the standard deviation of the reported value, taking into
account all sources of error, both random and systematic, that affect the
measurement result.

Expanded
uncertainty
for a high
degree of
confidence

If the purpose of the uncertainty statement is to provide coverage with
a high level of confidence, an expanded uncertainty is computed as

U = k u

where k is chosen to be the  critical value from the t-table for

v degrees of freedom.

For large degrees of freedom, it is suggested to use k = 2 to
approximate 95% coverage. Details for these calculations are found
under degrees of freedom.

2.5.2. Approach
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Type B
evaluations

Type B evaluations apply to random errors and biases for which there
is little or no data from the local process, and to random errors and
biases from other measurement processes.

2.5.2. Approach
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.2. Approach

2.5.2.1.Steps

Steps in
uncertainty
analysis -
define the
result to be
reported

The first step in the uncertainty evaluation is the definition of the result
to be reported for the test item for which an uncertainty is required. The
computation of the standard deviation depends on the number of
repetitions on the test item and the range of environmental and
operational conditions over which the repetitions were made, in addition
to other sources of error, such as calibration uncertainties for reference
standards, which influence the final result. If the value for the test item
cannot be measured directly, but must be calculated from measurements
on secondary quantities, the equation for combining the various
quantities must be defined. The steps to be followed in an uncertainty
analysis are outlined for two situations:

Outline of
steps to be
followed in
the
evaluation
of
uncertainty
for a single
quantity

A. Reported value involves measurements on one quantity.
Compute a type A standard deviation for random sources of error
from:

Replicated results for the test item.❍   

Measurements on a check standard.❍   

Measurements made according to a 2-level designed
experiment

❍   

Measurements made according to a 3-level designed
experiment

❍   

1.  

Make sure that the collected data and analysis cover all sources of
random error such as:

instrument imprecision❍   

day-to-day variation❍   

long-term variation❍   

and bias such as:

differences among instruments❍   

operator differences.❍   

2.  

2.5.2.1. Steps
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Compute a standard deviation for each type B component of
uncertainty.

3.  

Combine type A and type B standard deviations into a standard
uncertainty for the reported result using sensitivity factors.

4.  

Compute an expanded uncertainty.5.  

Outline of
steps to be
followed in
the
evaluation
of
uncertainty
involving
several
secondary
quantities

B. - Reported value involves more than one quantity.
Write down the equation showing the relationship between the
quantities.

Write-out the propagation of error equation and do a
preliminary evaluation, if possible, based on propagation of
error.

❍   

1.  

If the measurement result can be replicated directly, regardless
of the number of secondary quantities in the individual
repetitions, treat the uncertainty evaluation as in (A.1) to (A.5)
above, being sure to evaluate all sources of random error in the
process.

2.  

If the measurement result cannot be replicated directly, treat
each measurement quantity as in (A.1) and (A.2) and:

Compute a standard deviation for each measurement
quantity.

❍   

Combine the standard deviations for the individual
quantities into a standard deviation for the reported result
via propagation of error.

❍   

3.  

Compute a standard deviation for each type B component of
uncertainty.

4.  

Combine type A and type B standard deviations into a standard
uncertainty for the reported result.

5.  

Compute an expanded uncertainty.6.  

Compare the uncerainty derived by propagation of error with the
uncertainty derived by data analysis techniques.

7.  

2.5.2.1. Steps
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2. Measurement Process Characterization
2.5. Uncertainty analysis

2.5.3.Type A evaluations

Type A
evaluations
apply to
both error
and bias

Type A evaluations can apply to both random error and bias. The only
requirement is that the calculation of the uncertainty component be
based on a statistical analysis of data. The distinction to keep in mind
with regard to random error and bias is that:

random errors cannot be corrected●   

biases can, theoretically at least, be corrected or eliminated from
the result.

●   

Caveat for
biases

The ISO guidelines are based on the assumption that all biases are
corrected and that the only uncertainty from this source is the
uncertainty of the correction. The section on type A evaluations of bias
gives guidance on how to assess, correct and calculate uncertainties
related to bias.

Random
error and
bias require
different
types of
analyses

How the source of error affects the reported value and the context for
the uncertainty determines whether an analysis of random error or bias
is appropriate.

Consider a laboratory with several instruments that can reasonably be
assumed to be representative of all similar instruments. Then the
differences among these instruments can be considered to be a random
effect if the uncertainty statement is intended to apply to the result of
any instrument, selected at random, from this batch.

If, on the other hand, the uncertainty statement is intended to apply to
one specific instrument, then the bias of this instrument relative to the
group is the component of interest.

The following pages outline methods for type A evaluations of:

Random errors1.  

Bias2.  

2.5.3. Type A evaluations
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.3. Type A evaluations

2.5.3.1.Type A evaluations of random
components

Type A
evaluations of
random
components

Type A sources of uncertainty fall into three main categories:

Uncertainties that reveal themselves over time1.  

Uncertainties caused by specific conditions of measurement2.  

Uncertainties caused by material inhomogeneities3.  

Time-dependent
changes are a
primary source
of random
errors

One of the most important indicators of random error is time, with
the root cause perhaps being environmental changes over time.
Three levels of time-dependent effects are discussed in this section.

Many possible
configurations
may exist in a
laboratory for
making
measurements

Other sources of uncertainty are related to measurement
configurations within the laboratory. Measurements on test items are
usually made on a single day, with a single operator, on a single
instrument, etc. If the intent of the uncertainty is to characterize all
measurements made in the laboratory, the uncertainty should
account for any differences due to:

instruments1.  

operators2.  

geometries3.  

other4.  

2.5.3.1. Type A evaluations of random components
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Examples of
causes of
differences
within a
laboratory

Examples of causes of differences within a well-maintained
laboratory are:

Differences among instruments for measurements of derived
units, such as sheet resistance of silicon, where the
instruments cannot be directly calibrated to a reference base

1.  

Differences among operators for optical measurements that
are not automated and depend strongly on operator sightings

2.  

Differences among geometrical or electrical configurations of
the instrumentation

3.  

Calibrated
instruments do
not fall in this
class

Calibrated instruments do not normally fall in this class because
uncertainties associated with the instrument's calibration are
reported as type B evaluations, and the instruments in the laboratory
should agree within the calibration uncertainties. Instruments whose
responses are not directly calibrated to the defined unit are
candidates for type A evaluations. This covers situations in which
the measurement is defined by a test procedure or standard practice
using a specific instrument type.

Evaluation
depends on the
context for the
uncertainty

How these differences are treated depends primarily on the context
for the uncertainty statement. The differences, depending on the
context, will be treated either as random differences, or as bias
differences.

Uncertainties
due to
inhomogeneities

Artifacts, electrical devices, and chemical substances, etc. can be
inhomogeneous relative to the quantity that is being characterized by
the measurement process. If this fact is known beforehand, it may be
possible to measure the artifact very carefully at a specific site and
then direct the user to also measure at this site. In this case, there is
no contribution to measurement uncertainty from inhomogeneity.

However, this is not always possible, and measurements may be
destructive. As an example, compositions of chemical compounds
may vary from bottle to bottle. If the reported value for the lot is
established from measurements on a few bottles drawn at random
from the lot, this variability must be taken into account in the
uncertainty statement.

Methods for testing for inhomogeneity and assessing the appropriate
uncertainty are discussed on another page.

2.5.3.1. Type A evaluations of random components
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.3. Type A evaluations
2.5.3.1. Type A evaluations of random components

2.5.3.1.1.Type A evaluations of
time-dependent effects

Time-dependent
changes are a
primary source
of random errors

One of the most important indicators of random error is time.
Effects not specifically studied, such as environmental changes,
exhibit themselves over time. Three levels of time-dependent errors
are discussed in this section. These can be usefully characterized
as:

Level-1 or short-term errors (repeatability, imprecision)1.  

Level-2 or day-to-day errors (reproducibility)2.  

Level-3 or long-term errors (stability - which may not be a
concern for all processes)

3.  

Day-to-day
errors can be the
dominant source
of uncertainty

With instrumentation that is exceedingly precise in the short run,
changes over time, often caused by small environmental effects,
are frequently the dominant source of uncertainty in the
measurement process. The uncertainty statement is not 'true' to its
purpose if it describes a situation that cannot be reproduced over
time. The customer for the uncertainty is entitled to know the range
of possible results for the measurement result, independent of the
day or time of year when the measurement was made.

Two levels may
be sufficient

Two levels of time-dependent errors are probably sufficient for
describing the majority of measurement processes. Three levels
may be needed for new measurement processes or processes whose
characteristics are not well understood.

2.5.3.1.1. Type A evaluations of time-dependent effects
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Measurements on
test item are used
to assess
uncertainty only
when no other
data are
available

Repeated measurements on the test item generally do not cover a
sufficient time period to capture day-to-day changes in the
measurement process. The standard deviation of these
measurements is quoted as the estimate of uncertainty only if no
other data are available for the assessment. For J short-term
measurements, this standard deviation has v = J - 1 degrees of
freedom.

A check standard
is the best device
for capturing all
sources of
random error

The best approach for capturing information on time-dependent
sources of uncertainties is to intersperse the workload with
measurements on a check standard taken at set intervals over the
life of the process. The standard deviation of the check standard
measurements estimates the overall temporal component of
uncertainty directly -- thereby obviating the estimation of
individual components.

Nested design for
estimating type A
uncertainties

Case study:
Temporal
uncertainty from
a 3-level nested
design

A less-efficient method for estimating time-dependent sources of
uncertainty is a designed experiment. Measurements can be made
specifically for estimating two or three levels of errors. There are
many ways to do this, but the easiest method is a nested design
where J short-term measurements are replicated on K days and the
entire operation is then replicated over L runs (months, etc.). The
analysis of these data leads to:

 = standard deviation with (J -1) degrees of freedom for

short-term errors

●   

= standard deviation with (K -1) degrees of freedom for

day-to-day errors

●   

= standard deviation with (L -1) degrees of freedom for

very long-term errors

●   

Approaches
given in this
chapter

The computation of the uncertainty of the reported value for a test
item is outlined for situations where temporal sources of
uncertainty are estimated from:

measurements on the test item itself1.  

measurements on a check standard2.  

measurements from a 2-level nested design (gauge study)3.  

measurements from a 3-level nested design (gauge study)4.  

2.5.3.1.1. Type A evaluations of time-dependent effects
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.3. Type A evaluations
2.5.3.1. Type A evaluations of random components

2.5.3.1.2.Measurement configuration within the
laboratory

Purpose of
this page

The purpose of this page is to outline options for estimating uncertainties related to
the specific measurement configuration under which the test item is measured, given
other possible measurement configurations. Some of these may be controllable and
some of them may not, such as:

instrument●   

operator●   

temperature●   

humidity●   

The effect of uncontrollable environmental conditions in the laboratory can often be
estimated from check standard data taken over a period of time, and methods for
calculating components of uncertainty are discussed on other pages. Uncertainties
resulting from controllable factors, such as operators or instruments chosen for a
specific measurement, are discussed on this page.

First, decide
on context for
uncertainty

The approach depends primarily on the context for the uncertainty statement. For
example, if instrument effect is the question, one approach is to regard, say, the
instruments in the laboratory as a random sample of instruments of the same type
and to compute an uncertainty that applies to all results regardless of the particular
instrument on which the measurements are made. The other approach is to compute
an uncertainty that applies to results using a specific instrument.

Next,
evaluate
whether or
not there are
differences

To treat instruments as a random source of uncertainty requires that we first
determine if differences due to instruments are significant. The same can be said for
operators, etc.

Plan for
collecting
data

To evaluate the measurement process for instruments, select a random sample of I (I
> 4) instruments from those available. Make measurements on Q (Q >2) artifacts
with each instrument.

2.5.3.1.2. Measurement configuration within the laboratory
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Graph
showing
differences
among
instruments

For a graphical analysis, differences from the average for each artifact can be plotted
versus artifact, with instruments individually identified by a special plotting symbol.
The plot is examined to determine if some instruments always read high or low
relative to the other instruments and if this behavior is consistent across artifacts. If
there are systematic and significant differences among instruments, a type A
uncertainty for instruments is computed. Notice that in the graph for resistivity
probes, there are differences among the probes with probes #4 and #5, for example,
consistently reading low relative to the other probes. A standard deviation that
describes the differences among the probes is included as a component of the
uncertainty.

Standard
deviation for
instruments

Given the measurements,

for each of Q artifacts and I instruments, the pooled standard deviation that describes
the differences among instruments is:

where

Example of
resistivity
measurements
on silicon
wafers

A two-way table of resistivity measurements (ohm.cm) with 5 probes on 5 wafers
(identified as: 138, 139, 140, 141, 142) is shown below. Standard deviations for
probes with 4 degrees of freedom each are shown for each wafer. The pooled
standard deviation over all wafers, with 20 degrees of freedom, is the type A
standard deviation for instruments.

                             Wafers

 Probe       138      139      140       141      142

-------------------------------------------------------

     1     95.1548  99.3118  96.1018  101.1248  94.2593
   281     95.1408  99.3548  96.0805  101.0747  94.2907
.  283     95.1493  99.3211  96.0417  101.1100  94.2487
  2062     95.1125  99.2831  96.0492  101.0574  94.2520
  2362     95.0928  99.3060  96.0357  101.0602  94.2148

2.5.3.1.2. Measurement configuration within the laboratory
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Std dev    0.02643  0.02612  0.02826   0.03038  0.02711
DF               4        4        4         4        4  

Pooled standard deviation  =  0.02770      DF = 20

2.5.3.1.2. Measurement configuration within the laboratory
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.3. Type A evaluations

2.5.3.2.Material inhomogeneity

Purpose of this
page

The purpose of this page is to outline methods for assessing
uncertainties related to material inhomogeneities. Artifacts, electrical
devices, and chemical substances, etc. can be inhomogeneous
relative to the quantity that is being characterized by the
measurement process.

Effect of
inhomogeneity
on the
uncertainty

Inhomogeneity can be a factor in the uncertainty analysis where

an artifact is characterized by a single value and the artifact is
inhomogeneous over its surface, etc.

1.  

a lot of items is assigned a single value from a few samples
from the lot and the lot is inhomogeneous from sample to
sample.

2.  

An unfortunate aspect of this situation is that the uncertainty from
inhomogeneity may dominate the uncertainty. If the measurement
process itself is very precise and in statistical control, the total
uncertainty may still be unacceptable for practical purposes because
of material inhomogeneities.

Targeted
measurements
can eliminate
the effect of
inhomogeneity

It may be possible to measure an artifact very carefully at a specific
site and direct the user to also measure at this site. In this case there
is no contribution to measurement uncertainty from inhomogeneity.

Example Silicon wafers are doped with boron to produce desired levels of
resistivity (ohm.cm). Manufacturing processes for semiconductors
are not yet capable (at least at the time this was originally written) of
producing 2" diameter wafers with constant resistivity over the
surfaces. However, because measurements made at the center of a
wafer by a certification laboratory can be reproduced in the
industrial setting, the inhomogeneity is not a factor in the uncertainty
analysis -- as long as only the center-point of the wafer is used for
future measurements.

2.5.3.2. Material inhomogeneity
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Random
inhomogeneities

Random inhomogeneities are assessed using statistical methods for
quantifying random errors. An example of inhomogeneity is a
chemical compound which cannot be sufficiently homogenized with
respect to isotopes of interest. Isotopic ratio determinations, which
are destructive, must be determined from measurements on a few
bottles drawn at random from the lot.

Best strategy The best strategy is to draw a sample of bottles from the lot for the
purpose of identifying and quantifying between-bottle variability.
These measurements can be made with a method that lacks the
accuracy required to certify isotopic ratios, but is precise enough to
allow between-bottle comparisons. A second sample is drawn from
the lot and measured with an accurate method for determining
isotopic ratios, and the reported value for the lot is taken to be the
average of these determinations. There are therefore two components
of uncertainty assessed:

component that quantifies the imprecision of the average1.  

component that quantifies how much an individual bottle can
deviate from the average.

2.  

Systematic
inhomogeneities

Systematic inhomogeneities require a somewhat different approach.
Roughness can vary systematically over the surface of a 2" square
metal piece lathed to have a specific roughness profile. The
certification laboratory can measure the piece at several sites, but
unless it is possible to characterize roughness as a mathematical
function of position on the piece, inhomogeneity must be assessed as
a source of uncertainty.

Best strategy In this situation, the best strategy is to compute the reported value as
the average of measurements made over the surface of the piece and
assess an uncertainty for departures from the average. The
component of uncertainty can be assessed by one of several methods
for evaluating bias -- depending on the type of inhomogeneity.

2.5.3.2. Material inhomogeneity
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Standard
method

The simplest approach to the computation of uncertainty for
systematic inhomogeneity is to compute the maximum deviation
from the reported value and, assuming a uniform, normal or
triangular distribution for the distribution of inhomogeneity,
compute the appropriate standard deviation. Sometimes the
approximate shape of the distribution can be inferred from the
inhomogeneity measurements. The standard deviation for
inhomogeneity assuming a uniform distribution is:

2.5.3.2. Material inhomogeneity
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.3. Type A evaluations
2.5.3.2. Material inhomogeneity

2.5.3.2.1. Data collection and analysis

Purpose of
this page

The purpose of this page is to outline methods for:

collecting data●   

testing for inhomogeneity●   

quantifying the component of uncertainty●   

Balanced
measurements
at 2-levels

The simplest scheme for identifying and quantifying the effect of inhomogeneity
of a measurement result is a balanced (equal number of measurements per cell)
2-level nested design. For example, K bottles of a chemical compound are drawn
at random from a lot and J (J > 1) measurements are made per bottle. The
measurements are denoted by

where the k index runs over bottles and the j index runs over repetitions within a
bottle.

Analysis of
measurements

The between (bottle) variance is calculated using an analysis of variance
technique that is repeated here for convenience.

where

and

2.5.3.2.1. Data collection and analysis
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Between
bottle
variance may
be negative

If this variance is negative, there is no contribution to uncertainty, and the bottles
are equivalent with regard to their chemical compositions. Even if the variance is
positive, inhomogeneity still may not be statistically significant, in which case it is
not required to be included as a component of the uncertainty.

If the between-bottle variance is statistically significantly (i.e., judged to be
greater than zero), then inhomogeneity contributes to the uncertainty of the
reported value.

Certification,
reported
value and
associated
uncertainty

The purpose of assessing inhomogeneity is to be able to assign a value to the
entire batch based on the average of a few bottles, and the determination of
inhomogeneity is usually made by a less accurate method than the certification
method. The reported value for the batch would be the average of N repetitions
on Q bottles using the certification method.

The uncertainty calculation is summarized below for the case where the only
contribution to uncertainty from the measurement method itself is the repeatability
standard deviation, s1 associated with the certification method. For more
complicated scenarios, see the pages on uncertainty budgets.

If  sreported value 

If , we need to distinguish two cases and their interpretations:

The standard deviation

leads to an interval that covers the difference between the reported value
and the average for a bottle selected at random from the batch.

1.  

The standard deviation

allows one to test the instrument using a single measurement. The
prediction interval for the difference between the reported value and a
single measurement, made with the same precision as the certification
measurements, on a bottle selected at random from the batch. This is
appropriate when the instrument under test is similar to the certification
instrument. If the difference is not within the interval, the user's instrument
is in need of calibration.

2.  

2.5.3.2.1. Data collection and analysis
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Relationship
to prediction
intervals

When the standard deviation for inhomogeneity is included in the calculation, as
in the last two cases above, the uncertainty interval becomes a prediction interval
( Hahn & Meeker) and is interpreted as characterizing a future measurement on a
bottle drawn at random from the lot.

2.5.3.2.1. Data collection and analysis
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.3. Type A evaluations

2.5.3.3.Type A evaluations of bias

Sources of
bias relate to
the specific
measurement
environment

The sources of bias discussed on this page cover specific measurement
configurations. Measurements on test items are usually made on a
single day, with a single operator, with a single instrument, etc. Even if
the intent of the uncertainty is to characterize only those measurements
made in one specific configuration, the uncertainty must account for
any significant differences due to:

instruments1.  

operators2.  

geometries3.  

other4.  

Calibrated
instruments
do not fall in
this class

Calibrated instruments do not normally fall in this class because
uncertainties associated with the instrument's calibration are reported as
type B evaluations, and the instruments in the laboratory should agree
within the calibration uncertainties. Instruments whose responses are
not directly calibrated to the defined unit are candidates for type A
evaluations. This covers situations where the measurement is defined
by a test procedure or standard practice using a specific instrument
type.

The best
strategy is to
correct for
bias and
compute the
uncertainty
of the
correction

This problem was treated on the foregoing page as an analysis of
random error for the case where the uncertainty was intended to apply
to all measurements for all configurations. If measurements for only
one configuration are of interest, such as measurements made with a
specific instrument, or if a smaller uncertainty is required, the
differences among, say, instruments are treated as biases. The best
strategy in this situation is to correct all measurements made with a
specific instrument to the average for the instruments in the laboratory
and compute a type A uncertainty for the correction. This strategy, of
course, relies on the assumption that the instruments in the laboratory
represent a random sample of all instruments of a specific type.

2.5.3.3. Type A evaluations of bias
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Only limited
comparisons
can be made
among
sources of
possible bias

However, suppose that it is possible to make comparisons among, say,
only two instruments and neither is known to be 'unbiased'. This
scenario requires a different strategy because the average will not
necessarily be an unbiased result. The best strategy if there is a
significant difference between the instruments, and this should be
tested, is to apply a 'zero' correction and assess a type A uncertainty of
the correction.

Guidelines
for treatment
of biases

The discussion above is intended to point out that there are many
possible scenarios for biases and that they should be treated on a
case-by-case basis. A plan is needed for:

gathering data●   

testing for bias (graphically and/or statistically)●   

estimating biases●   

assessing uncertainties associated with significant biases.●   

caused by:

instruments●   

operators●   

configurations, geometries, etc.●   

inhomogeneities●   

Plan for
testing for
assessing
bias

Measurements needed for assessing biases among instruments, say,
requires a random sample of I (I > 1) instruments from those available
and measurements on Q (Q >2) artifacts with each instrument. The
same can be said for the other sources of possible bias. General
strategies for dealing with significant biases are given in the table
below.

Data collection and analysis for assessing biases related to:

lack of resolution of instrument●   

non-linearity of instrument●   

drift●   

are addressed in the section on gauge studies.

Sources of
data for
evaluating
this type of
bias

Databases for evaluating bias may be available from:

check standards●   

gauge R and R studies●   

control measurements●   

2.5.3.3. Type A evaluations of bias
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Strategies for assessing corrections and uncertainties associated with
significant biases

Type of bias Examples Type of correction Uncertainty

1. Inconsistent
Sign change (+ to -)
Varying magnitude

Zero
Based on
maximum

bias

2. Consistent
Instrument bias ~ same
magnitude over many

artifacts

Bias (for a single
instrument) = difference

from average over several
instruments

Standard
deviation of
correction

3. Not correctable because
of sparse data - consistent

or inconsistent

Limited testing; e.g., only
2 instruments, operators,

configurations, etc.
Zero

Standard
deviation of
correction

4. Not correctable -
consistent

Lack of resolution,
non-linearity, drift,

material inhomogeneity

Zero
Based on
maximum

bias

Strategy for
no
significant
bias

If there is no significant bias over time, there is no correction and no
contribution to uncertainty.

2.5.3.3. Type A evaluations of bias
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.3. Type A evaluations
2.5.3.3. Type A evaluations of bias

2.5.3.3.1. Inconsistent bias

Strategy for
inconsistent
bias -- apply
a zero
correction

If there is significant bias but it changes direction over time, a zero
correction is assumed and the standard deviation of the correction is
reported as a type A uncertainty; namely,

Computations
based on
uniform or
normal
distribution

The equation for estimating the standard deviation of the correction
assumes that biases are uniformly distributed between {-max |bias|, +
max |bias|}. This assumption is quite conservative. It gives a larger
uncertainty than the assumption that the biases are normally distributed.
If normality is a more reasonable assumption, substitute the number '3'
for the 'square root of 3' in the equation above.

Example of
change in
bias over
time

The results of resistivity measurements with five probes on five silicon
wafers are shown below for probe #283, which is the probe of interest
at this level with the artifacts being 1 ohm.cm wafers. The bias for
probe #283 is negative for run 1 and positive for run 2 with the runs
separated by a two-month time period. The correction is taken to be
zero.

          Table of biases (ohm.cm) for probe 283
            Wafer Probe    Run 1       Run 2

            -----------------------------------

              11   283   0.0000340  -0.0001841
              26   283  -0.0001000   0.0000861
              42   283   0.0000181   0.0000781
             131   283  -0.0000701   0.0001580

2.5.3.3.1. Inconsistent bias
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             208   283  -0.0000240   0.0001879

          Average  283  -0.0000284   0.0000652

A conservative assumption is that the bias could fall somewhere within
the limits ± a, with a = maximum bias or 0.0000652 ohm.cm. The
standard deviation of the correction is included as a type A systematic
component of the uncertainty.

2.5.3.3.1. Inconsistent bias
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.3. Type A evaluations
2.5.3.3. Type A evaluations of bias

2.5.3.3.2.Consistent bias

Consistent
bias

Bias that is significant and persists consistently over time for a specific
instrument, operator, or configuration should be corrected if it can be reliably
estimated from repeated measurements. Results with the instrument of interest are
then corrected to:

Corrected result = Measurement - Estimate of bias

The example below shows how bias can be identified graphically from
measurements on five artifacts with five instruments and estimated from the
differences among the instruments.

Graph
showing
consistent
bias for
probe #5

An analysis of bias for five instruments based on measurements on five artifacts
shows differences from the average for each artifact plotted versus artifact with
instruments individually identified by a special plotting symbol. The plot is
examined to determine if some instruments always read high or low relative to the
other instruments, and if this behavior is consistent across artifacts. Notice that on
the graph for resistivity probes, probe #2362, (#5 on the graph), which is the
instrument of interest for this measurement process, consistently reads low
relative to the other probes. This behavior is consistent over 2 runs that are
separated by a two-month time period.

Strategy -
correct for
bias

Because there is significant and consistent bias for the instrument of interest, the
measurements made with that instrument should be corrected for its average bias
relative to the other instruments.

2.5.3.3.2. Consistent bias
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Computation
of bias

Given the measurements,

on Q artifacts with I instruments, the average bias for instrument, I' say, is

where

Computation
of correction

The correction that should be made to measurements made with instrument I' is

Type A
uncertainty
of the
correction

The type A uncertainty of the correction is the standard deviation of the average
bias or

Example of
consistent
bias for
probe #2362
used to
measure
resistivity of
silicon
wafers

The table below comes from the table of resistivity measurements from a type A
analysis of random effects with the average for each wafer subtracted from each
measurement. The differences, as shown, represent the biases for each probe with
respect to the other probes. Probe #2362 has an average bias, over the five wafers,
of -0.02724 ohm.cm. If measurements made with this probe are corrected for this
bias, the standard deviation of the correction is a type A uncertainty.

 Table of biases for probes and silicon wafers (ohm.cm)

                        Wafers
Probe      138      139       140       141      142
-------------------------------------------------------
    1   0.02476  -0.00356   0.04002   0.03938   0.00620
  181   0.01076   0.03944   0.01871  -0.01072   0.03761

2.5.3.3.2. Consistent bias
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  182   0.01926   0.00574  -0.02008   0.02458  -0.00439
 2062  -0.01754  -0.03226  -0.01258  -0.02802  -0.00110
 2362  -0.03725  -0.00936  -0.02608  -0.02522  -0.03830

Average bias for probe #2362 = - 0.02724

Standard deviation of bias = 0.01171 with
4 degrees of freedom  

Standard deviation of correction =
0.01171/sqrt(5) = 0.00523

Note on
different
approaches
to
instrument
bias

The analysis on this page considers the case where only one instrument is used to
make the certification measurements; namely probe #2362, and the certified
values are corrected for bias due to this probe. The analysis in the section on type
A analysis of random effects considers the case where any one of the probes could
be used to make the certification measurements.

2.5.3.3.2. Consistent bias
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.3. Type A evaluations
2.5.3.3. Type A evaluations of bias

2.5.3.3.3. Bias with sparse data

Strategy for
dealing with
limited data

The purpose of this discussion is to outline methods for dealing with
biases that may be real but which cannot be estimated reliably because
of the sparsity of the data. For example, a test between two, of many
possible, configurations of the measurement process cannot produce a
reliable enough estimate of bias to permit a correction, but it can reveal
problems with the measurement process. The strategy for a significant
bias is to apply a 'zero' correction. The type A uncertainty component is
the standard deviation of the correction, and the calculation depends on
whether the bias is

inconsistent●   

consistent●   

Example of
differences
among wiring
settings

An example is given of a study of wiring settings for a single gauge. The
gauge, a 4-point probe for measuring resistivity of silicon wafers, can be
wired in several ways. Because it was not possible to test all wiring
configurations during the gauge study, measurements were made in only
two configurations as a way of identifying possible problems.

Data on
wiring
configurations

Measurements were made on six wafers over six days (except for 5
measurements on wafer 39) with probe #2062 wired in two
configurations. This sequence of measurements was repeated after about
a month resulting in two runs. A database of differences between
measurements in the two configurations on the same day are analyzed
for significance.

2.5.3.3.3. Bias with sparse data
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Run software
macro for
making
plotting
differences
between the 2
wiring
configurations

A plot of the differences between the 2 configurations shows that the
differences for run 1 are, for the most part, < zero, and the differences
for run 2 are > zero. The following Dataplot commands produce the plot:

dimension 500 30
read mpc536.dat wafer day probe d1 d2
let n = count probe
let t = sequence 1 1 n
let zero = 0 for i = 1 1 n
lines dotted blank blank
characters blank 1 2
x1label = DIFFERENCES BETWEEN 2 WIRING
CONFIGURATIONS 
x2label SEQUENCE BY WAFER AND DAY
plot zero d1 d2 vs t

2.5.3.3.3. Bias with sparse data
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Statistical test
for difference
between 2
configurations

A t-statistic is used as an approximate test where we are assuming the differences are
approximately normal. The average difference and standard deviation of the
difference are required for this test. If

the difference between the two configurations is statistically significant.

The average and standard deviation computed from the N = 29 differences in each
run from the table above are shown along with corresponding t-values which confirm
that the differences are significant, but in opposite directions, for both runs.

Average differences between wiring
configurations

2.5.3.3.3. Bias with sparse data
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 Run Probe    Average    Std dev    N    t

  1    2062      - 0.00383       0.00514     29    - 4.0

  2    2062      + 0.00489       0.00400     29    + 6.6 

Run software
macro for
making t-test

The following Dataplot commands

let dff = n-1
let avgrun1 = average d1
let avgrun2 = average d2
let sdrun1 = standard deviation d1
let sdrun2 = standard deviation d2
let t1 = ((n-1)**.5)*avgrun1/sdrun1
let t2 = ((n-1)**.5)*avgrun2/sdrun2
print avgrun1 sdrun1 t1
print avgrun2 sdrun2 t2
let tcrit=tppf(.975,dff)

reproduce the statistical tests in the table.

 PARAMETERS AND CONSTANTS--

     AVGRUN1 -- -0.3834483E-02
     SDRUN1  --  0.5145197E-02
     T1      -- -0.4013319E+01

 PARAMETERS AND CONSTANTS--

     AVGRUN2 --  0.4886207E-02
     SDRUN2  --  0.4004259E-02
     T2      --  0.6571260E+01

2.5.3.3.3. Bias with sparse data
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Case of
inconsistent
bias

The data reveal a significant wiring bias for both runs that changes direction between
runs. Because of this inconsistency, a 'zero' correction is applied to the results, and
the type A uncertainty is taken to be

For this study, the type A uncertainty for wiring bias is

Case of
consistent
bias

Even if the bias is consistent over time, a 'zero' correction is applied to the results,
and for a single run, the estimated standard deviation of the correction is

For two runs (1 and 2), the estimated standard deviation of the correction is

2.5.3.3.3. Bias with sparse data
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2. Measurement Process Characterization
2.5. Uncertainty analysis

2.5.4.Type B evaluations

Type B
evaluations
apply to both
error and
bias

Type B evaluations can apply to both random error and bias. The
distinguishing feature is that the calculation of the uncertainty
component is not based on a statistical analysis of data. The distinction
to keep in mind with regard to random error and bias is that:

random errors cannot be corrected●   

biases can, theoretically at least, be corrected or eliminated from
the result.

●   

Sources of
type B
evaluations

Some examples of sources of uncertainty that lead to type B evaluations
are:

Reference standards calibrated by another laboratory●   

Physical constants used in the calculation of the reported value●   

Environmental effects that cannot be sampled●   

Possible configuration/geometry misalignment in the instrument●   

Lack of resolution of the instrument●   

Documented
sources of
uncertainty
from other
processes

Documented sources of uncertainty, such as calibration reports for
reference standards or published reports of uncertainties for physical
constants, pose no difficulties in the analysis. The uncertainty will
usually be reported as an expanded uncertainty, U, which is converted
to the standard uncertainty,

u = U/k

If the k factor is not known or documented, it is probably conservative
to assume that k = 2.

2.5.4. Type B evaluations
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Sources of
uncertainty
that are
local to the
measurement
process

Sources of uncertainty that are local to the measurement process but
which cannot be adequately sampled to allow a statistical analysis
require type B evaluations. One technique, which is widely used, is to
estimate the worst-case effect, a, for the source of interest, from

experience●   

scientific judgment●   

scant data●   

A standard deviation, assuming that the effect is two-sided, can then be
computed based on a uniform, triangular, or normal distribution of
possible effects.

Following the Guide to the Expression of Uncertainty of Measurement
(GUM), the convention is to assign infinite degrees of freedom to
standard deviations derived in this manner.

2.5.4. Type B evaluations
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.4. Type B evaluations

2.5.4.1.Standard deviations from assumed
distributions

Difficulty of
obtaining
reliable
uncertainty
estimates

The methods described on this page attempt to avoid the difficulty of
allowing for sources of error for which reliable estimates of uncertainty
do not exist. The methods are based on assumptions that may, or may
not, be valid and require the experimenter to consider the effect of the
assumptions on the final uncertainty.

Difficulty of
obtaining
reliable
uncertainty
estimates

The ISO guidelines do not allow worst-case estimates of bias to be
added to the other components, but require they in some way be
converted to equivalent standard deviations. The approach is to consider
that any error or bias, for the situation at hand, is a random draw from a
known statistical distribution. Then the standard deviation is calculated
from known (or assumed) characteristics of the distribution.
Distributions that can be considered are:

Uniform●   

Triangular●   

Normal (Gaussian)●   

Standard
deviation for
a uniform
distribution

The uniform distribution leads to the most conservative estimate of
uncertainty; i.e., it gives the largest standard deviation. The calculation
of the standard deviation is based on the assumption that the end-points,
± a, of the distribution are known. It also embodies the assumption that
all effects on the reported value, between -a and +a, are equally likely
for the particular source of uncertainty.

2.5.4.1. Standard deviations from assumed distributions
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Standard
deviation for
a triangular
distribution

The triangular distribution leads to a less conservative estimate of
uncertainty; i.e., it gives a smaller standard deviation than the uniform
distribution. The calculation of the standard deviation is based on the
assumption that the end-points, ± a, of the distribution are known and
the mode of the triangular distribution occurs at zero.

Standard
deviation for
a normal
distribution

The normal distribution leads to the least conservative estimate of
uncertainty; i.e., it gives the smallest standard deviation. The calculation
of the standard deviation is based on the assumption that the end-points,
± a, encompass 99.7 percent of the distribution.

Degrees of
freedom

In the context of using the Welch-Saitterthwaite formula with the above
distributions, the degrees of freedom is assumed to be infinite.

2.5.4.1. Standard deviations from assumed distributions
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2. Measurement Process Characterization
2.5. Uncertainty analysis

2.5.5. Propagation of error considerations

Top-down
approach
consists of
estimating the
uncertainty
from direct
repetitions of
the
measurement
result

The approach to uncertainty analysis that has been followed up to this point in the
discussion has been what is called a top-down approach. Uncertainty components are
estimated from direct repetitions of the measurement result. To contrast this with a
propagation of error approach, consider the simple example where we estimate the area
of a rectangle from replicate measurements of length and width. The area

area = length x width

can be computed from each replicate. The standard deviation of the reported area is
estimated directly from the replicates of area.

Advantages of
top-down
approach

This approach has the following advantages:

proper treatment of covariances between measurements of length and width●   

proper treatment of unsuspected sources of error that would emerge if
measurements covered a range of operating conditions and a sufficiently long
time period

●   

independence from propagation of error model●   

Propagation
of error
approach
combines
estimates from
individual
auxiliary
measurements

The formal propagation of error approach is to compute:

standard deviation from the length measurements1.  

standard deviation from the width measurements2.  

and combine the two into a standard deviation for area using the approximation for
products of two variables (ignoring a possible covariance between length and width),

2.5.5. Propagation of error considerations
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Exact formula Goodman (1960) derived an exact formula for the variance between two products.
Given two random variables, x and y (correspond to width and length in the above
approximate formula), the exact formula for the variance is:

with

X = E(x) and Y = E(y) (corresponds to width and length, respectively, in the
approximate formula)

●   

V(x) = variance of x and V(y) = variance Y (corresponds to s2 for width and
length, respectively, in the approximate formula)

●   

Eij = {( x)i, ( y)j} where x = x - X and y = y - Y●   

●   

To obtain the standard deviation, simply take the square root of the above formula.
Also, an estimate of the statistic is obtained by substituting sample estimates for the
corresponding population values on the right hand side of the equation.

Approximate
formula
assumes
indpendence

The approximate formula assumes that length and width are independent. The exact
formula assumes that length and width are not independent.

Disadvantages
of
propagation
of error
approach

In the ideal case, the propagation of error estimate above will not differ from the
estimate made directly from the area measurements. However, in complicated scenarios,
they may differ because of:

unsuspected covariances●   

disturbances that affect the reported value and not the elementary measurements
(usually a result of mis-specification of the model)

●   

mistakes in propagating the error through the defining formulas●   

Propagation
of error
formula

Sometimes the measurement of interest cannot be replicated directly and it is necessary
to estimate its uncertainty via propagation of error formulas (Ku). The propagation of
error formula for

Y = f(X, Z, ... )

a function of one or more variables with measurements, X, Z, ... gives the following
estimate for the standard deviation of Y:

where

2.5.5. Propagation of error considerations
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 is the standard deviation of the X measurements●   

 is the standard deviation of Z measurements●   

 is the standard deviation of Y measurements●   

 is the partial derivative of the function Y with respect to X, etc.●   

 is the estimated covariance between the X,Z measurements●   

Treatment of
covariance
terms

Covariance terms can be difficult to estimate if measurements are not made in pairs.
Sometimes, these terms are omitted from the formula. Guidance on when this is
acceptable practice is given below:

If the measurements of X, Z are independent, the associated covariance term is
zero.

1.  

Generally, reported values of test items from calibration designs have non-zero
covariances that must be taken into account if Y is a summation such as the mass
of two weights, or the length of two gage blocks end-to-end, etc.

2.  

Practically speaking, covariance terms should be included in the computation
only if they have been estimated from sufficient data. See Ku (1966) for guidance
on what constitutes sufficient data.

3.  

Sensitivity
coefficients

The partial derivatives are the sensitivity coefficients for the associated components.

Examples of
propagation
of error
analyses

Examples of propagation of error that are shown in this chapter are:

Case study of propagation of error for resistivity measurements●   

Comparison of check standard analysis and propagation of error for linear
calibration

●   

Propagation of error for quadratic calibration showing effect of covariance terms●   

Specific
formulas

Formulas for specific functions can be found in the following sections:

functions of a single variable●   

functions of two variables●   

functions of many variables●   

2.5.5. Propagation of error considerations
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.5. Propagation of error considerations

2.5.5.1.Formulas for functions of one
variable

Case:
Y=f(X,Z)

Standard deviations of reported values that are functions of a single
variable are reproduced from a paper by H. Ku (Ku).

The reported value, Y, is a function of the average of N measurements
on a single variable.

Notes

Function  of 

is an average of N
measurements

Standard deviation of 

 = standard deviation of X.

 

 

 

 

2.5.5.1. Formulas for functions of one variable
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Approximation
could be
seriously in
error if n is
small--

Not directly
derived from
the formulas Note: we need to assume that the original

data follow an approximately normal
distribution.

2.5.5.1. Formulas for functions of one variable
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.5. Propagation of error considerations

2.5.5.2.Formulas for functions of two
variables

Case:
Y=f(X,Z)

Standard deviations of reported values that are functions of
measurements on two variables are reproduced from a paper by H. Ku
(Ku).

The reported value, Y is a function of averages of N measurements on
two variables.

Function  of , 

 and  are averages of N
measurements

Standard deviation of 

 = standard dev of X;

 = standard dev of Z;

= covariance of X,Z

Note: Covariance term is to be included only if there is
a reliable estimate

2.5.5.2. Formulas for functions of two variables
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Note: this is an approximation. The exact result could be
obtained starting from the exact formula for the standard
deviation of a product derived by Goodman (1960).

2.5.5.2. Formulas for functions of two variables
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.5. Propagation of error considerations

2.5.5.3.Propagation of error for many
variables

Simplification
for dealing
with many
variables

Propagation of error for several variables can be simplified considerably if:

The function, Y, is a simple multiplicative function of secondary
variables

●   

Uncertainty is evaluated as a percentage●   

Example of
three variables

For three variables, X, Z, W, the function

has a standard deviation in absolute units of

In % units, the standard deviation can be written as

if all covariances are negligible. These formulas are easily extended to more
than three variables.

Software can
simplify
propagation of
error

Propagation of error for more complicated functions can be done reliably
with software capable of algebraic representations such as Mathematica
(Wolfram).

2.5.5.3. Propagation of error for many variables
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Example from
fluid flow of
non-linear
function

For example, discharge coefficients for fluid flow are computed from the
following equation (Whetstone et al.)

where

Representation
of the defining
equation

The defining equation is input as

Cd=m(1 - (d/D)^4)^(1/2)/(K d^2 F p^(1/2)
delp^(1/2))

Mathematica
representation

and is represented in Mathematica as follows:

Out[1]=
               4
              d
    Sqrt[1 - ---] m
               4
              D
-----------------------
 2
d  F K Sqrt[delp] Sqrt[p]

2.5.5.3. Propagation of error for many variables
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Partial
derivatives -
first partial
derivative with
respect to
orifice
diameter

Partial derivatives are derived via the function D where, for example,

D[Cd, {d,1}]
indicates the first partial derivative of the discharge coefficient with respect
to orifice diameter, and the result returned by Mathematica is

Out[2]=

               4
              d
 -2 Sqrt[1 - ---] m
               4
              D
--------------------------    -  
 3
d  F K Sqrt[delp] Sqrt[p]

 
                 2 d m
  ------------------------------------
             4
            d    4
  Sqrt[1 - ---] D  F K Sqrt[delp] Sqrt[p]
             4
            D

First partial
derivative with
respect to
pressure

Similarly, the first partial derivative of the discharge coefficient with respect
to pressure is represented by

D[Cd, {p,1}]
with the result

Out[3]=

                 4
                d
  -  (Sqrt[1 - ---] m)

2.5.5.3. Propagation of error for many variables
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                 4
                D
----------------------
   2                 3/2
2 d  F K Sqrt[delp] p

Comparison of
check
standard
analysis and
propagation of
error

The software can also be used to combine the partial derivatives with the
appropriate standard deviations, and then the standard deviation for the
discharge coefficient can be evaluated and plotted for specific values of the
secondary variables.

2.5.5.3. Propagation of error for many variables
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2. Measurement Process Characterization
2.5. Uncertainty analysis

2.5.6.Uncertainty budgets and sensitivity
coefficients

Case study
showing
uncertainty
budget

Uncertainty components are listed in a table along with their
corresponding sensitivity coefficients, standard deviations and degrees
of freedom. A table of typical entries illustrates the concept.

Typical budget of type A and type B
uncertainty components

Type A components Sensitivity coefficient Standard
deviation

Degrees
freedom

1. Time (repeatability) v1
2. Time (reproducibility) v2

3. Time (long-term) v3
Type B components    

5. Reference standard (nominal test / nominal ref) v4

Sensitivity
coefficients
show how
components are
related to result

The sensitivity coefficient shows the relationship of the individual
uncertainty component to the standard deviation of the reported
value for a test item. The sensitivity coefficient relates to the result
that is being reported and not to the method of estimating
uncertainty components where the uncertainty, u, is

2.5.6. Uncertainty budgets and sensitivity coefficients
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Sensitivity
coefficients for
type A
components of
uncertainty

This section defines sensitivity coefficients that are appropriate for
type A components estimated from repeated measurements. The
pages on type A evaluations, particularly the pages related to
estimation of repeatability and reproducibility components, should
be reviewed before continuing on this page. The convention for the
notation for sensitivity coefficients for this section is that:

 refers to the sensitivity coefficient for the repeatability

standard deviation, 

1.  

 refers to the sensitivity coefficient for the reproducibility

standard deviation, 

2.  

 refers to the sensitivity coefficient for the stability

standard deviation, 

3.  

with some of the coefficients possibly equal to zero.

Note on
long-term
errors

Even if no day-to-day nor run-to-run measurements were made in
determining the reported value, the sensitivity coefficient is
non-zero if that standard deviation proved to be significant in the
analysis of data.

Sensitivity
coefficients for
other type A
components of
random error

Procedures for estimating differences among instruments, operators,
etc., which are treated as random components of uncertainty in the
laboratory, show how to estimate the standard deviations so that the
sensitivity coefficients = 1.

Sensitivity
coefficients for
type A
components for
bias

This Handbook follows the ISO guidelines in that biases are
corrected (correction may be zero), and the uncertainty component
is the standard deviation of the correction. Procedures for dealing
with biases show how to estimate the standard deviation of the
correction so that the sensitivity coefficients are equal to one.

2.5.6. Uncertainty budgets and sensitivity coefficients
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Sensitivity
coefficients for
specific
applications

The following pages outline methods for computing sensitivity
coefficients where the components of uncertainty are derived in the
following manner:

From measurements on the test item itself1.  

From measurements on a check standard2.  

From measurements in a 2-level design3.  

From measurements in a 3-level design4.  

and give an example of an uncertainty budget with sensitivity
coefficients from a 3-level design.

Sensitivity
coefficients for
type B
evaluations

The majority of sensitivity coefficients for type B evaluations will
be one with a few exceptions. The sensitivity coefficient for the
uncertainty of a reference standard is the nominal value of the test
item divided by the nominal value of the reference standard.

Case
study-sensitivity
coefficients for
propagation of
error

If the uncertainty of the reported value is calculated from
propagation of error, the sensitivity coefficients are the multipliers
of the individual variance terms in the propagation of error formula.
Formulas are given for selected functions of:

functions of a single variable1.  

functions of two variables2.  

several variables3.  

2.5.6. Uncertainty budgets and sensitivity coefficients
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.6. Uncertainty budgets and sensitivity coefficients

2.5.6.1.Sensitivity coefficients for
measurements on the test item

From data
on the test
item itself

If the temporal component is estimated from N short-term readings on
the test item itself

Y1, Y2, ..., YN

and

and the reported value is the average, the standard deviation of the
reported value is

with degrees of freedom .

Sensitivity
coefficients

The sensitivity coefficient is . The risk in using this method
is that it may seriously underestimate the uncertainty.

2.5.6.1. Sensitivity coefficients for measurements on the test item
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To improve
the
reliability of
the
uncertainty
calculation

If possible, the measurements on the test item should be repeated over M
days and averaged to estimate the reported value. The standard deviation
for the reported value is computed from the daily averages>, and the
standard deviation for the temporal component is:

with degrees of freedom  where  are the daily averages

and  is the grand average.

The sensitivity coefficients are: a1 = 0; a2 = .

Note on
long-term
errors

Even if no day-to-day nor run-to-run measurements were made in
determining the reported value, the sensitivity coefficient is non-zero if
that standard deviation proved to be significant in the analysis of data.

2.5.6.1. Sensitivity coefficients for measurements on the test item
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.6. Uncertainty budgets and sensitivity coefficients

2.5.6.2.Sensitivity coefficients for
measurements on a check standard

From
measurements
on check
standards

If the temporal component of the measurement process is evaluated
from measurements on a check standard and there are M days (M = 1
is permissible) of measurements on the test item that are structured in
the same manner as the measurements on the check standard, the
standard deviation for the reported value is

with degrees of freedom  from the K entries in the
check standard database.

Standard
deviation
from check
standard
measurements

The computation of the standard deviation from the check standard
values and its relationship to components of instrument precision and
day-to-day variability of the process are explained in the section on
two-level nested designs using check standards.

Sensitivity
coefficients

The sensitivity coefficients are: a1; a2 = .

2.5.6.2. Sensitivity coefficients for measurements on a check standard
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.6. Uncertainty budgets and sensitivity coefficients

2.5.6.3. Sensitivity coefficients for measurements
from a 2-level design

Sensitivity
coefficients
from a
2-level
design

If the temporal components are estimated from a 2-level nested design, and the reported
value for a test item is an average over

N short-term repetitions●   

M (M = 1 is permissible) days●   

of measurements on the test item, the standard deviation for the reported value is:

See the relationships in the section on 2-level nested design for definitions of the
standard deviations and their respective degrees of freedom.

Problem
with
estimating
degrees of
freedom

If degrees of freedom are required for the uncertainty of the reported value, the formula
above cannot be used directly and must be rewritten in terms of the standard deviations,

 and .

Sensitivity
coefficients

The sensitivity coefficients are: a1 = ; a2 = .

Specific sensitivity coefficients are shown in the table below for selections of N, M.

2.5.6.3. Sensitivity coefficients for measurements from a 2-level design
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  Sensitivity coefficients for two components 
              of uncertainty

Number

short-term

N

Number

day-to-day

M

Short-term

sensitivity
coefficient

Day-to-day

sensitivity
coefficient

1 1 1

N 1 1

N M

2.5.6.3. Sensitivity coefficients for measurements from a 2-level design
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.6. Uncertainty budgets and sensitivity coefficients

2.5.6.4.Sensitivity coefficients for
measurements from a 3-level
design

Sensitivity
coefficients
from a
3-level
design

Case study
showing
sensitivity
coefficients
for 3-level
design

If the temporal components are estimated from a 3-level nested design
and the reported value is an average over

N short-term repetitions●   

M days●   

P runs●   

of measurements on the test item, the standard deviation for the reported
value is:

See the section on analysis of variability for definitions and
relationships among the standard deviations shown in the equation
above.

Problem
with
estimating
degrees of
freedom

If degrees of freedom are required for the uncertainty, the formula above
cannot be used directly and must be rewritten in terms of the standard
deviations , , and .

Sensitivity
coefficients

The sensitivity coefficients are:

a1 = ; a2 = ;

a3 = .

Specific sensitivity coefficients are shown in the table below for
selections of N, M, P. In addition, the following constraints must be
observed:

J must be > or = N and K must be > or = M

2.5.6.4. Sensitivity coefficients for measurements from a 3-level design
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     Sensitivity coefficients for three
components of uncertainty

Number

short-term

N

Number

day-to-day

M

Number

run-to-run

P

Short-term

sensitivity coefficient

Day-to-day

sensitivity coefficient

Run-to-run

sensitivity
coefficient

1 1 1 1

N 1 1 1

N M 1 1

N M P

2.5.6.4. Sensitivity coefficients for measurements from a 3-level design
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.6. Uncertainty budgets and sensitivity coefficients

2.5.6.5.Example of uncertainty budget

Example of
uncertainty
budget for
three
components
of temporal
uncertainty

An uncertainty budget that illustrates several principles of uncertainty
analysis is shown below. The reported value for a test item is the
average of N short-term measurements where the temporal components
of uncertainty were estimated from a 3-level nested design with J
short-term repetitions over K days.

The number of measurements made on the test item is the same as the
number of short-term measurements in the design; i.e., N = J. Because
there were no repetitions over days or runs on the test item, M = 1; P =
1. The sensitivity coefficients for this design are shown on the
foregoing page.

Example of
instrument
bias

This example also illustrates the case where the measuring instrument
is biased relative to the other instruments in the laboratory, with a bias
correction applied accordingly. The sensitivity coefficient, given that
the bias correction is based on measurements on Q artifacts, is defined
as a4 = 1, and the standard deviation, s4, is the standard deviation of the
correction.

Example of error budget for type A and type B
uncertainties

Type A components Sensitivity coefficient Standard
deviation

Degrees
freedom

1. Repeatability  = 0 J - 1

2. Reproducibility  = K - 1

2. Stability  = 1 L - 1

3. Instrument bias  = 1 Q - 1

2.5.6.5. Example of uncertainty budget
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2. Measurement Process Characterization
2.5. Uncertainty analysis

2.5.7.Standard and expanded uncertainties

Definition of
standard
uncertainty

The sensitivity coefficients and standard deviations are combined by
root sum of squares to obtain a 'standard uncertainty'. Given R
components, the standard uncertainty is:

Expanded
uncertainty
assures a
high level of
confidence

If the purpose of the uncertainty statement is to provide coverage with
a high level of confidence, an expanded uncertainty is computed as

where k is chosen to be the  critical value from the t-table with v
degrees of freedom. For large degrees of freedom, k = 2 approximates
95% coverage.

Interpretation
of uncertainty
statement

The expanded uncertainty defined above is assumed to provide a high
level of coverage for the unknown true value of the measurement of
interest so that for any measurement result, Y,

2.5.7. Standard and expanded uncertainties
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.7. Standard and expanded uncertainties

2.5.7.1.Degrees of freedom

Degrees of
freedom for
individual
components
of
uncertainty

Degrees of freedom for type A uncertainties are the degrees of freedom
for the respective standard deviations. Degrees of freedom for Type B
evaluations may be available from published reports or calibration
certificates. Special cases where the standard deviation must be
estimated from fragmentary data or scientific judgment are assumed to
have infinite degrees of freedom; for example,

Worst-case estimate based on a robustness study or other
evidence

●   

Estimate based on an assumed distribution of possible errors●   

Type B uncertainty component for which degrees of freedom are
not documented

●   

Degrees of
freedom for
the standard
uncertainty

Degrees of freedom for the standard uncertainty, u, which may be a
combination of many standard deviations, is not generally known. This
is particularly troublesome if there are large components of uncertainty
with small degrees of freedom. In this case, the degrees of freedom is
approximated by the Welch-Satterthwaite formula (Brownlee).

Case study:
Uncertainty
and degrees
of freedom

A case study of type A uncertainty analysis shows the computations of
temporal components of uncertainty; instrument bias; geometrical bias;
standard uncertainty; degrees of freedom; and expanded uncertainty.

2.5.7.1. Degrees of freedom
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2. Measurement Process Characterization
2.5. Uncertainty analysis

2.5.8.Treatment of uncorrected bias

Background The ISO Guide ( ISO) for expressing measurement uncertainties
assumes that all biases are corrected and that the uncertainty applies to
the corrected result. For measurements at the factory floor level, this
approach has several disadvantages. It may not be practical, may be
expensive and may not be economically sound to correct for biases that
do not impact the commercial value of the product (Turgel and
Vecchia).

Reasons for
not
correcting
for bias

Corrections may be expensive to implement if they require
modifications to existing software and "paper and pencil" corrections
can be both time consuming and prone to error. In the scientific or
metrology laboratory, biases may be documented in certain situations,
but the mechanism that causes the bias may not be fully understood, or
repeatable, which makes it difficult to argue for correction. In these
cases, the best course of action is to report the measurement as taken
and adjust the uncertainty to account for the "bias".

The question
is how to
adjust the
uncertainty

A method needs to be developed which assures that the resulting
uncertainty has the following properties (Phillips and Eberhardt):

The final uncertainty must be greater than or equal to the
uncertainty that would be quoted if the bias were corrected.

1.  

The final uncertainty must reduce to the same uncertainty given
that the bias correction is applied.

2.  

The level of coverage that is achieved by the final uncertainty
statement should be at least the level obtained for the case of
corrected bias.

3.  

The method should be transferable so that both the uncertainty
and the bias can be used as components of uncertainty in another
uncertainty statement.

4.  

The method should be easy to implement.5.  

2.5.8. Treatment of uncorrected bias

http://www.itl.nist.gov/div898/handbook/mpc/section5/mpc58.htm (1 of 2) [5/1/2006 10:13:10 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


2.5.8. Treatment of uncorrected bias
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2. Measurement Process Characterization
2.5. Uncertainty analysis
2.5.8. Treatment of uncorrected bias

2.5.8.1.Computation of revised uncertainty

Definition of
the bias and
corrected
measurement

If the bias is  and the corrected measurement is defined by

 ,

the corrected value of Y has the usual expanded uncertainty interval
which is symmetric around the unknown true value for the
measurement process and is of the following type:

Definition of
asymmetric
uncertainty
interval to
account for
uncorrected
measurement

If no correction is made for the bias, the uncertainty interval is
contaminated by the effect of the bias term as follows:

and can be rewritten in terms of upper and lower endpoints that are
asymmetric around the true value; namely,

Conditions
on the
relationship
between the
bias and U

The definition above can lead to a negative uncertainty limit; e.g., if
the bias is positive and greater than U, the upper endpoint becomes
negative. The requirement that the uncertainty limits be greater than or
equal to zero for all values of the bias guarantees non-negative
uncertainty limits and is accepted at the cost of somewhat wider
uncertainty intervals. This leads to the following set of restrictions on
the uncertainty limits:

2.5.8.1. Computation of revised uncertainty
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Situation
where bias is
not known
exactly but
must be
estimated

If the bias is not known exactly, its magnitude is estimated from
repeated measurements, from sparse data or from theoretical
considerations, and the standard deviation is estimated from repeated
measurements or from an assumed distribution. The standard deviation
of the bias becomes a component in the uncertainty analysis with the
standard uncertainty restructured to be:

and the expanded uncertainty limits become:

.

Interpretation The uncertainty intervals described above have the desirable properties
outlined on a previous page. For more information on theory and
industrial examples, the reader should consult the paper by the authors
of this technique (Phillips and Eberhardt).

2.5.8.1. Computation of revised uncertainty
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2. Measurement Process Characterization

2.6.Case studies

Contents The purpose of this section is to illustrate the planning, procedures, and
analyses outlined in the various sections of this chapter with data taken
from measurement processes at the National Institute of Standards and
Technology. A secondary goal is to give the reader an opportunity to run
the analyses in real-time using the software package, Dataplot.

Gauge study of resistivity probes1.  

Check standard study for resistivity measurements2.  

Type A uncertainty analysis3.  

Type B uncertainty analysis and propagation of error4.  

2.6. Case studies
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2. Measurement Process Characterization
2.6. Case studies

2.6.1.Gauge study of resistivity probes

Purpose The purpose of this case study is to outline the analysis of a gauge study
that was undertaken to identify the sources of uncertainty in resistivity
measurements of silicon wafers.

Outline Background and data1.  

Analysis and interpretation2.  

Graphs showing repeatability standard deviations3.  

Graphs showing day-to-day variability4.  

Graphs showing differences among gauges5.  

Run this example yourself with Dataplot6.  

Dataplot macros7.  

2.6.1. Gauge study of resistivity probes
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2. Measurement Process Characterization
2.6. Case studies
2.6.1. Gauge study of resistivity probes

2.6.1.1.Background and data

Description of
measurements

Measurements of resistivity on 100 ohm.cm wafers were made
according to an ASTM Standard Test Method (ASTM F84) to assess
the sources of uncertainty in the measurement system. Resistivity
measurements have been studied over the years, and it is clear from
those data that there are sources of variability affecting the process
beyond the basic imprecision of the gauges. Changes in measurement
results have been noted over days and over months and the data in this
study are structured to quantify these time-dependent changes in the
measurement process.

Gauges The gauges for the study were five probes used to measure resistivity
of silicon wafers. The five gauges are assumed to represent a random
sample of typical 4-point gauges for making resistivity measurements.
There is a question of whether or not the gauges are essentially
equivalent or whether biases among them are possible.

Check
standards

The check standards for the study were five wafers selected at random
from the batch of 100 ohm.cm wafers.

Operators The effect of operator was not considered to be significant for this
study.

2.6.1.1. Background and data
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Database of
measurements

The 3-level nested design consisted of:

J = 6 measurements at the center of each wafer per day●   

K = 6 days●   

L = 2 runs●   

To characterize the probes and the influence of wafers on the
measurements, the design was repeated over:

Q = 5 wafers (check standards 138, 139, 140, 141, 142)●   

I = 5 probes (1, 281, 283, 2062, 2362)●   

The runs were separated by about one month in time. The J = 6
measurements at the center of each wafer are reduced to an average
and repeatability standard deviation and recorded in a database with
identifications for wafer, probe, and day.

2.6.1.1. Background and data
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2. Measurement Process Characterization
2.6. Case studies
2.6.1. Gauge study of resistivity probes
2.6.1.1. Background and data

2.6.1.1.1.Database of resistivity
measurements

The check standards
are five wafers chosen
at random from a
batch of wafers

Measurements of resistivity (ohm.cm) were made according to an
ASTM Standard Test Method (F4) at NIST to assess the sources of
uncertainty in the measurement system. The gauges for the study
were five probes owned by NIST; the check standards for the
study were five wafers selected at random from a batch of wafers
cut from one silicon crystal doped with phosphorous to give a
nominal resistivity of 100 ohm.cm.

Measurements on the
check standards are
used to estimate
repeatability, day
effect, and run effect

The effect of operator was not considered to be significant for this
study; therefore, 'day' replaces 'operator' as a factor in the nested
design. Averages and standard deviations from J = 6
measurements at the center of each wafer are shown in the table.

J = 6 measurements at the center of the wafer per day●   

K = 6 days (one operator) per repetition●   

L = 2 runs (complete)●   

Q = 5 wafers (check standards 138, 139, 140, 141, 142)●   

R = 5 probes (1, 281, 283, 2062, 2362)●   

2.6.1.1.1. Database of resistivity measurements
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Run Wafer  Probe   Month   Day       Op    Temp    Average  
Std Dev

1  138.      1.      3.     15.      1.   22.98   95.1772   
0.1191
1  138.      1.      3.     17.      1.   23.02   95.1567   
0.0183
1  138.      1.      3.     18.      1.   22.79   95.1937   
0.1282
1  138.      1.      3.     21.      1.   23.17   95.1959   
0.0398
1  138.      1.      3.     23.      2.   23.25   95.1442   
0.0346
1  138.      1.      3.     23.      1.   23.20   95.0610   
0.1539
1  138.    281.      3.     16.      1.   22.99   95.1591   
0.0963
1  138.    281.      3.     17.      1.   22.97   95.1195   
0.0606
1  138.    281.      3.     18.      1.   22.83   95.1065   
0.0842
1  138.    281.      3.     21.      1.   23.28   95.0925   
0.0973
1  138.    281.      3.     23.      2.   23.14   95.1990   
0.1062
1  138.    281.      3.     23.      1.   23.16   95.1682   
0.1090
1  138.    283.      3.     16.      1.   22.95   95.1252   
0.0531
1  138.    283.      3.     17.      1.   23.08   95.1600   
0.0998
1  138.    283.      3.     18.      1.   23.13   95.0818   
0.1108
1  138.    283.      3.     21.      1.   23.28   95.1620   
0.0408
1  138.    283.      3.     22.      1.   23.36   95.1735   
0.0501
1  138.    283.      3.     24.      2.   22.97   95.1932   
0.0287
1  138.   2062.      3.     16.      1.   22.97   95.1311   
0.1066
1  138.   2062.      3.     17.      1.   22.98   95.1132   
0.0415

2.6.1.1.1. Database of resistivity measurements
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1  138.   2062.      3.     18.      1.   23.16   95.0432   
0.0491
1  138.   2062.      3.     21.      1.   23.16   95.1254   
0.0603
1  138.   2062.      3.     22.      1.   23.28   95.1322   
0.0561
1  138.   2062.      3.     24.      2.   23.19   95.1299   
0.0349
1  138.   2362.      3.     15.      1.   23.08   95.1162   
0.0480
1  138.   2362.      3.     17.      1.   23.01   95.0569   
0.0577
1  138.   2362.      3.     18.      1.   22.97   95.0598   
0.0516
1  138.   2362.      3.     22.      1.   23.23   95.1487   
0.0386
1  138.   2362.      3.     23.      2.   23.28   95.0743   
0.0256
1  138.   2362.      3.     24.      2.   23.10   95.1010   
0.0420
1  139.      1.      3.     15.      1.   23.01   99.3528   
0.1424
1  139.      1.      3.     17.      1.   23.00   99.2940   
0.0660
1  139.      1.      3.     17.      1.   23.01   99.2340   
0.1179
1  139.      1.      3.     21.      1.   23.20   99.3489   
0.0506
1  139.      1.      3.     23.      2.   23.22   99.2625   
0.1111
1  139.      1.      3.     23.      1.   23.22   99.3787   
0.1103
1  139.    281.      3.     16.      1.   22.95   99.3244   
0.1134
1  139.    281.      3.     17.      1.   22.98   99.3378   
0.0949
1  139.    281.      3.     18.      1.   22.86   99.3424   
0.0847
1  139.    281.      3.     22.      1.   23.17   99.4033   
0.0801
1  139.    281.      3.     23.      2.   23.10   99.3717   
0.0630
1  139.    281.      3.     23.      1.   23.14   99.3493   
0.1157
1  139.    283.      3.     16.      1.   22.94   99.3065   
0.0381

2.6.1.1.1. Database of resistivity measurements
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1  139.    283.      3.     17.      1.   23.09   99.3280   
0.1153
1  139.    283.      3.     18.      1.   23.11   99.3000   
0.0818
1  139.    283.      3.     21.      1.   23.25   99.3347   
0.0972
1  139.    283.      3.     22.      1.   23.36   99.3929   
0.1189
1  139.    283.      3.     23.      1.   23.18   99.2644   
0.0622
1  139.   2062.      3.     16.      1.   22.94   99.3324   
0.1531
1  139.   2062.      3.     17.      1.   23.08   99.3254   
0.0543
1  139.   2062.      3.     18.      1.   23.15   99.2555   
0.1024
1  139.   2062.      3.     18.      1.   23.18   99.1946   
0.0851
1  139.   2062.      3.     22.      1.   23.27   99.3542   
0.1227
1  139.   2062.      3.     24.      2.   23.23   99.2365   
0.1218
1  139.   2362.      3.     15.      1.   23.08   99.2939   
0.0818
1  139.   2362.      3.     17.      1.   23.02   99.3234   
0.0723
1  139.   2362.      3.     18.      1.   22.93   99.2748   
0.0756
1  139.   2362.      3.     22.      1.   23.29   99.3512   
0.0475
1  139.   2362.      3.     23.      2.   23.25   99.2350   
0.0517
1  139.   2362.      3.     24.      2.   23.05   99.3574   
0.0485
1  140.      1.      3.     15.      1.   23.07   96.1334   
0.1052
1  140.      1.      3.     17.      1.   23.08   96.1250   
0.0916
1  140.      1.      3.     18.      1.   22.77   96.0665   
0.0836
1  140.      1.      3.     21.      1.   23.18   96.0725   
0.0620
1  140.      1.      3.     23.      2.   23.20   96.1006   
0.0582
1  140.      1.      3.     23.      1.   23.21   96.1131   
0.1757

2.6.1.1.1. Database of resistivity measurements
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1  140.    281.      3.     16.      1.   22.94   96.0467   
0.0565
1  140.    281.      3.     17.      1.   22.99   96.1081   
0.1293
1  140.    281.      3.     18.      1.   22.91   96.0578   
0.1148
1  140.    281.      3.     22.      1.   23.15   96.0700   
0.0495
1  140.    281.      3.     22.      1.   23.33   96.1052   
0.1722
1  140.    281.      3.     23.      1.   23.19   96.0952   
0.1786
1  140.    283.      3.     16.      1.   22.89   96.0650   
0.1301
1  140.    283.      3.     17.      1.   23.07   96.0870   
0.0881
1  140.    283.      3.     18.      1.   23.07   95.8906   
0.1842
1  140.    283.      3.     21.      1.   23.24   96.0842   
0.1008
1  140.    283.      3.     22.      1.   23.34   96.0189   
0.0865
1  140.    283.      3.     23.      1.   23.19   96.1047   
0.0923
1  140.   2062.      3.     16.      1.   22.95   96.0379   
0.2190
1  140.   2062.      3.     17.      1.   22.97   96.0671   
0.0991
1  140.   2062.      3.     18.      1.   23.15   96.0206   
0.0648
1  140.   2062.      3.     21.      1.   23.14   96.0207   
0.1410
1  140.   2062.      3.     22.      1.   23.32   96.0587   
0.1634
1  140.   2062.      3.     24.      2.   23.17   96.0903   
0.0406
1  140.   2362.      3.     15.      1.   23.08   96.0771   
0.1024
1  140.   2362.      3.     17.      1.   23.00   95.9976   
0.0943
1  140.   2362.      3.     18.      1.   23.01   96.0148   
0.0622
1  140.   2362.      3.     22.      1.   23.27   96.0397   
0.0702
1  140.   2362.      3.     23.      2.   23.24   96.0407   
0.0627

2.6.1.1.1. Database of resistivity measurements

http://www.itl.nist.gov/div898/handbook/mpc/section6/mpc6111.htm (5 of 15) [5/1/2006 10:13:12 AM]



1  140.   2362.      3.     24.      2.   23.13   96.0445   
0.0622
1  141.      1.      3.     15.      1.   23.01  101.2124   
0.0900
1  141.      1.      3.     17.      1.   23.08  101.1018   
0.0820
1  141.      1.      3.     18.      1.   22.75  101.1119   
0.0500
1  141.      1.      3.     21.      1.   23.21  101.1072   
0.0641
1  141.      1.      3.     23.      2.   23.25  101.0802   
0.0704
1  141.      1.      3.     23.      1.   23.19  101.1350   
0.0699
1  141.    281.      3.     16.      1.   22.93  101.0287   
0.0520
1  141.    281.      3.     17.      1.   23.00  101.0131   
0.0710
1  141.    281.      3.     18.      1.   22.90  101.1329   
0.0800
1  141.    281.      3.     22.      1.   23.19  101.0562   
0.1594
1  141.    281.      3.     23.      2.   23.18  101.0891   
0.1252
1  141.    281.      3.     23.      1.   23.17  101.1283   
0.1151
1  141.    283.      3.     16.      1.   22.85  101.1597   
0.0990
1  141.    283.      3.     17.      1.   23.09  101.0784   
0.0810
1  141.    283.      3.     18.      1.   23.08  101.0715   
0.0460
1  141.    283.      3.     21.      1.   23.27  101.0910   
0.0880
1  141.    283.      3.     22.      1.   23.34  101.0967   
0.0901
1  141.    283.      3.     24.      2.   23.00  101.1627   
0.0888
1  141.   2062.      3.     16.      1.   22.97  101.1077   
0.0970
1  141.   2062.      3.     17.      1.   22.96  101.0245   
0.1210
1  141.   2062.      3.     18.      1.   23.19  100.9650   
0.0700
1  141.   2062.      3.     18.      1.   23.18  101.0319   
0.1070
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1  141.   2062.      3.     22.      1.   23.34  101.0849   
0.0960
1  141.   2062.      3.     24.      2.   23.21  101.1302   
0.0505
1  141.   2362.      3.     15.      1.   23.08  101.0471   
0.0320
1  141.   2362.      3.     17.      1.   23.01  101.0224   
0.1020
1  141.   2362.      3.     18.      1.   23.05  101.0702   
0.0580
1  141.   2362.      3.     22.      1.   23.22  101.0904   
0.1049
1  141.   2362.      3.     23.      2.   23.29  101.0626   
0.0702
1  141.   2362.      3.     24.      2.   23.15  101.0686   
0.0661
1  142.      1.      3.     15.      1.   23.02   94.3160   
0.1372
1  142.      1.      3.     17.      1.   23.04   94.2808   
0.0999
1  142.      1.      3.     18.      1.   22.73   94.2478   
0.0803
1  142.      1.      3.     21.      1.   23.19   94.2862   
0.0700
1  142.      1.      3.     23.      2.   23.25   94.1859   
0.0899
1  142.      1.      3.     23.      1.   23.21   94.2389   
0.0686
1  142.    281.      3.     16.      1.   22.98   94.2640   
0.0862
1  142.    281.      3.     17.      1.   23.00   94.3333   
0.1330
1  142.    281.      3.     18.      1.   22.88   94.2994   
0.0908
1  142.    281.      3.     21.      1.   23.28   94.2873   
0.0846
1  142.    281.      3.     23.      2.   23.07   94.2576   
0.0795
1  142.    281.      3.     23.      1.   23.12   94.3027   
0.0389
1  142.    283.      3.     16.      1.   22.92   94.2846   
0.1021
1  142.    283.      3.     17.      1.   23.08   94.2197   
0.0627
1  142.    283.      3.     18.      1.   23.09   94.2119   
0.0785
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1  142.    283.      3.     21.      1.   23.29   94.2536   
0.0712
1  142.    283.      3.     22.      1.   23.34   94.2280   
0.0692
1  142.    283.      3.     24.      2.   22.92   94.2944   
0.0958
1  142.   2062.      3.     16.      1.   22.96   94.2238   
0.0492
1  142.   2062.      3.     17.      1.   22.95   94.3061   
0.2194
1  142.   2062.      3.     18.      1.   23.16   94.1868   
0.0474
1  142.   2062.      3.     21.      1.   23.11   94.2645   
0.0697
1  142.   2062.      3.     22.      1.   23.31   94.3101   
0.0532
1  142.   2062.      3.     24.      2.   23.24   94.2204   
0.1023
1  142.   2362.      3.     15.      1.   23.08   94.2437   
0.0503
1  142.   2362.      3.     17.      1.   23.00   94.2115   
0.0919
1  142.   2362.      3.     18.      1.   22.99   94.2348   
0.0282
1  142.   2362.      3.     22.      1.   23.26   94.2124   
0.0513
1  142.   2362.      3.     23.      2.   23.27   94.2214   
0.0627
1  142.   2362.      3.     24.      2.   23.08   94.1651   
0.1010
2  138.      1.      4.     13.      1.   23.12   95.1996   
0.0645
2  138.      1.      4.     15.      1.   22.73   95.1315   
0.1192
2  138.      1.      4.     18.      2.   22.76   95.1845   
0.0452
2  138.      1.      4.     19.      1.   22.73   95.1359   
0.1498
2  138.      1.      4.     20.      2.   22.73   95.1435   
0.0629
2  138.      1.      4.     21.      2.   22.93   95.1839   
0.0563
2  138.    281.      4.     14.      2.   22.46   95.2106   
0.1049
2  138.    281.      4.     18.      2.   22.80   95.2505   
0.0771
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2  138.    281.      4.     18.      2.   22.77   95.2648   
0.1046
2  138.    281.      4.     20.      2.   22.80   95.2197   
0.1779
2  138.    281.      4.     20.      2.   22.87   95.2003   
0.1376
2  138.    281.      4.     21.      2.   22.95   95.0982   
0.1611
2  138.    283.      4.     18.      2.   22.83   95.1211   
0.0794
2  138.    283.      4.     13.      1.   23.17   95.1327   
0.0409
2  138.    283.      4.     18.      1.   22.67   95.2053   
0.1525
2  138.    283.      4.     19.      2.   23.00   95.1292   
0.0655
2  138.    283.      4.     21.      2.   22.91   95.1669   
0.0619
2  138.    283.      4.     21.      2.   22.96   95.1401   
0.0831
2  138.   2062.      4.     15.      1.   22.64   95.2479   
0.2867
2  138.   2062.      4.     15.      1.   22.67   95.2224   
0.1945
2  138.   2062.      4.     19.      2.   22.99   95.2810   
0.1960
2  138.   2062.      4.     19.      1.   22.75   95.1869   
0.1571
2  138.   2062.      4.     21.      2.   22.84   95.3053   
0.2012
2  138.   2062.      4.     21.      2.   22.92   95.1432   
0.1532
2  138.   2362.      4.     12.      1.   22.74   95.1687   
0.0785
2  138.   2362.      4.     18.      2.   22.75   95.1564   
0.0430
2  138.   2362.      4.     19.      2.   22.88   95.1354   
0.0983
2  138.   2362.      4.     19.      1.   22.73   95.0422   
0.0773
2  138.   2362.      4.     20.      2.   22.86   95.1354   
0.0587
2  138.   2362.      4.     21.      2.   22.94   95.1075   
0.0776
2  139.      1.      4.     13.      2.   23.14   99.3274   
0.0220
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2  139.      1.      4.     15.      2.   22.77   99.5020   
0.0997
2  139.      1.      4.     18.      2.   22.80   99.4016   
0.0704
2  139.      1.      4.     19.      1.   22.68   99.3181   
0.1245
2  139.      1.      4.     20.      2.   22.78   99.3858   
0.0903
2  139.      1.      4.     21.      2.   22.93   99.3141   
0.0255
2  139.    281.      4.     14.      2.   23.05   99.2915   
0.0859
2  139.    281.      4.     15.      2.   22.71   99.4032   
0.1322
2  139.    281.      4.     18.      2.   22.79   99.4612   
0.1765
2  139.    281.      4.     20.      2.   22.74   99.4001   
0.0889
2  139.    281.      4.     20.      2.   22.91   99.3765   
0.1041
2  139.    281.      4.     21.      2.   22.92   99.3507   
0.0717
2  139.    283.      4.     13.      2.   23.11   99.3848   
0.0792
2  139.    283.      4.     18.      2.   22.84   99.4952   
0.1122
2  139.    283.      4.     18.      2.   22.76   99.3220   
0.0915
2  139.    283.      4.     19.      2.   23.03   99.4165   
0.0503
2  139.    283.      4.     21.      2.   22.87   99.3791   
0.1138
2  139.    283.      4.     21.      2.   22.98   99.3985   
0.0661
2  139.   2062.      4.     14.      2.   22.43   99.4283   
0.0891
2  139.   2062.      4.     15.      2.   22.70   99.4139   
0.2147
2  139.   2062.      4.     19.      2.   22.97   99.3813   
0.1143
2  139.   2062.      4.     19.      1.   22.77   99.4314   
0.1685
2  139.   2062.      4.     21.      2.   22.79   99.4166   
0.2080
2  139.   2062.      4.     21.      2.   22.94   99.4052   
0.2400
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2  139.   2362.      4.     12.      1.   22.82   99.3408   
0.1279
2  139.   2362.      4.     18.      2.   22.77   99.3116   
0.1131
2  139.   2362.      4.     19.      2.   22.82   99.3241   
0.0519
2  139.   2362.      4.     19.      1.   22.74   99.2991   
0.0903
2  139.   2362.      4.     20.      2.   22.88   99.3049   
0.0783
2  139.   2362.      4.     21.      2.   22.94   99.2782   
0.0718
2  140.      1.      4.     13.      1.   23.10   96.0811   
0.0463
2  140.      1.      4.     15.      2.   22.75   96.1460   
0.0725
2  140.      1.      4.     18.      2.   22.78   96.1582   
0.1428
2  140.      1.      4.     19.      1.   22.70   96.1039   
0.1056
2  140.      1.      4.     20.      2.   22.75   96.1262   
0.0672
2  140.      1.      4.     21.      2.   22.93   96.1478   
0.0562
2  140.    281.      4.     15.      2.   22.71   96.1153   
0.1097
2  140.    281.      4.     14.      2.   22.49   96.1297   
0.1202
2  140.    281.      4.     18.      2.   22.81   96.1233   
0.1331
2  140.    281.      4.     20.      2.   22.78   96.1731   
0.1484
2  140.    281.      4.     20.      2.   22.89   96.0872   
0.0857
2  140.    281.      4.     21.      2.   22.91   96.1331   
0.0944
2  140.    283.      4.     13.      2.   23.22   96.1135   
0.0983
2  140.    283.      4.     18.      2.   22.85   96.1111   
0.1210
2  140.    283.      4.     18.      2.   22.78   96.1221   
0.0644
2  140.    283.      4.     19.      2.   23.01   96.1063   
0.0921
2  140.    283.      4.     21.      2.   22.91   96.1155   
0.0704
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2  140.    283.      4.     21.      2.   22.94   96.1308   
0.0258
2  140.   2062.      4.     15.      2.   22.60   95.9767   
0.2225
2  140.   2062.      4.     15.      2.   22.66   96.1277   
0.1792
2  140.   2062.      4.     19.      2.   22.96   96.1858   
0.1312
2  140.   2062.      4.     19.      1.   22.75   96.1912   
0.1936
2  140.   2062.      4.     21.      2.   22.82   96.1650   
0.1902
2  140.   2062.      4.     21.      2.   22.92   96.1603   
0.1777
2  140.   2362.      4.     12.      1.   22.88   96.0793   
0.0996
2  140.   2362.      4.     18.      2.   22.76   96.1115   
0.0533
2  140.   2362.      4.     19.      2.   22.79   96.0803   
0.0364
2  140.   2362.      4.     19.      1.   22.71   96.0411   
0.0768
2  140.   2362.      4.     20.      2.   22.84   96.0988   
0.1042
2  140.   2362.      4.     21.      1.   22.94   96.0482   
0.0868
2  141.      1.      4.     13.      1.   23.07  101.1984   
0.0803
2  141.      1.      4.     15.      2.   22.72  101.1645   
0.0914
2  141.      1.      4.     18.      2.   22.75  101.2454   
0.1109
2  141.      1.      4.     19.      1.   22.69  101.1096   
0.1376
2  141.      1.      4.     20.      2.   22.83  101.2066   
0.0717
2  141.      1.      4.     21.      2.   22.93  101.0645   
0.1205
2  141.    281.      4.     15.      2.   22.72  101.1615   
0.1272
2  141.    281.      4.     14.      2.   22.40  101.1650   
0.0595
2  141.    281.      4.     18.      2.   22.78  101.1815   
0.1393
2  141.    281.      4.     20.      2.   22.73  101.1106   
0.1189
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2  141.    281.      4.     20.      2.   22.86  101.1420   
0.0713
2  141.    281.      4.     21.      2.   22.94  101.0116   
0.1088
2  141.    283.      4.     13.      2.   23.26  101.1554   
0.0429
2  141.    283.      4.     18.      2.   22.85  101.1267   
0.0751
2  141.    283.      4.     18.      2.   22.76  101.1227   
0.0826
2  141.    283.      4.     19.      2.   22.82  101.0635   
0.1715
2  141.    283.      4.     21.      2.   22.89  101.1264   
0.1447
2  141.    283.      4.     21.      2.   22.96  101.0853   
0.1189
2  141.   2062.      4.     15.      2.   22.65  101.1332   
0.2532
2  141.   2062.      4.     15.      1.   22.68  101.1487   
0.1413
2  141.   2062.      4.     19.      2.   22.95  101.1778   
0.1772
2  141.   2062.      4.     19.      1.   22.77  101.0988   
0.0884
2  141.   2062.      4.     21.      2.   22.87  101.1686   
0.2940
2  141.   2062.      4.     21.      2.   22.94  101.3289   
0.2072
2  141.   2362.      4.     12.      1.   22.83  101.1353   
0.0585
2  141.   2362.      4.     18.      2.   22.83  101.1201   
0.0868
2  141.   2362.      4.     19.      2.   22.91  101.0946   
0.0855
2  141.   2362.      4.     19.      1.   22.71  100.9977   
0.0645
2  141.   2362.      4.     20.      2.   22.87  101.0963   
0.0638
2  141.   2362.      4.     21.      2.   22.94  101.0300   
0.0549
2  142.      1.      4.     13.      1.   23.07   94.3049   
0.1197
2  142.      1.      4.     15.      2.   22.73   94.3153   
0.0566
2  142.      1.      4.     18.      2.   22.77   94.3073   
0.0875
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2  142.      1.      4.     19.      1.   22.67   94.2803   
0.0376
2  142.      1.      4.     20.      2.   22.80   94.3008   
0.0703
2  142.      1.      4.     21.      2.   22.93   94.2916   
0.0604
2  142.    281.      4.     14.      2.   22.90   94.2557   
0.0619
2  142.    281.      4.     18.      2.   22.83   94.3542   
0.1027
2  142.    281.      4.     18.      2.   22.80   94.3007   
0.1492
2  142.    281.      4.     20.      2.   22.76   94.3351   
0.1059
2  142.    281.      4.     20.      2.   22.88   94.3406   
0.1508
2  142.    281.      4.     21.      2.   22.92   94.2621   
0.0946
2  142.    283.      4.     13.      2.   23.25   94.3124   
0.0534
2  142.    283.      4.     18.      2.   22.85   94.3680   
0.1643
2  142.    283.      4.     18.      1.   22.67   94.3442   
0.0346
2  142.    283.      4.     19.      2.   22.80   94.3391   
0.0616
2  142.    283.      4.     21.      2.   22.91   94.2238   
0.0721
2  142.    283.      4.     21.      2.   22.95   94.2721   
0.0998
2  142.   2062.      4.     14.      2.   22.49   94.2915   
0.2189
2  142.   2062.      4.     15.      2.   22.69   94.2803   
0.0690
2  142.   2062.      4.     19.      2.   22.94   94.2818   
0.0987
2  142.   2062.      4.     19.      1.   22.76   94.2227   
0.2628
2  142.   2062.      4.     21.      2.   22.74   94.4109   
0.1230
2  142.   2062.      4.     21.      2.   22.94   94.2616   
0.0929
2  142.   2362.      4.     12.      1.   22.86   94.2052   
0.0813
2  142.   2362.      4.     18.      2.   22.83   94.2824   
0.0605

2.6.1.1.1. Database of resistivity measurements

http://www.itl.nist.gov/div898/handbook/mpc/section6/mpc6111.htm (14 of 15) [5/1/2006 10:13:12 AM]



2  142.   2362.      4.     19.      2.   22.85   94.2396   
0.0882
2  142.   2362.      4.     19.      1.   22.75   94.2087   
0.0702
2  142.   2362.      4.     20.      2.   22.86   94.2937   
0.0591
2  142.   2362.      4.     21.      1.   22.93   94.2330   
0.0556

2.6.1.1.1. Database of resistivity measurements
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2. Measurement Process Characterization
2.6. Case studies
2.6.1. Gauge study of resistivity probes

2.6.1.2.Analysis and interpretation

Graphs of
probe effect on
repeatability

A graphical analysis shows repeatability standard deviations plotted
by wafer and probe. Probes are coded by numbers with probe #2362
coded as #5. The plots show that for both runs the precision of this
probe is better than for the other probes.

Probe #2362, because of its superior precision, was chosen as the tool
for measuring all 100 ohm.cm resistivity wafers at NIST. Therefore,
the remainder of the analysis focuses on this probe.

Plot of
repeatability
standard
deviations for
probe #2362
from the
nested design
over days,
wafers, runs

The precision of probe #2362 is first checked for consistency by
plotting the repeatability standard deviations over days, wafers and
runs. Days are coded by letter. The plots verify that, for both runs,
probe repeatability is not dependent on wafers or days although the
standard deviations on days D, E, and F of run 2 are larger in some
instances than for the other days. This is not surprising because
repeated probing on the wafer surfaces can cause slight degradation.
Then the repeatability standard deviations are pooled over:

K = 6 days for K(J - 1) = 30 degrees of freedom●   

L = 2 runs for LK(J - 1) = 60 degrees of freedom●   

Q = 5 wafers for QLK(J - 1) = 300 degrees of freedom●   

The results of pooling are shown below. Intermediate steps are not
shown, but the section on repeatability standard deviations shows an
example of pooling over wafers.

2.6.1.2. Analysis and interpretation
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Pooled level-1 standard deviations (ohm.cm)

  Probe   Run 1    DF      Run 2     DF   
Pooled   DF

  2362.   0.0658  150      0.0758   150   
0.0710  300

Graphs of
reproducibility
and stability for
probe #2362

Averages of the 6 center measurements on each wafer are plotted on
a single graph for each wafer. The points (connected by lines) on the
left side of each graph are averages at the wafer center plotted over 5
days; the points on the right are the same measurements repeated
after one month as a check on the stability of the measurement
process. The plots show day-to-day variability as well as slight
variability from run-to-run.

Earlier work discounts long-term drift in the gauge as the cause of
these changes. A reasonable conclusion is that day-to-day and
run-to-run variations come from random fluctuations in the
measurement process.

Level-2
(reproducibility)
standard
deviations
computed from
day averages
and pooled over
wafers and runs

Level-2 standard deviations (with K - 1 = 5 degrees of freedom
each) are computed from the daily averages that are recorded in the
database. Then the level-2 standard deviations are pooled over:

L = 2 runs for L(K - 1) = 10 degrees of freedom●   

Q = 5 wafers for QL(K - 1) = 50 degrees of freedom●   

as shown in the table below. The table shows that the level-2
standard deviations are consistent over wafers and runs.

2.6.1.2. Analysis and interpretation
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Level-2 standard deviations (ohm.cm) for 5 wafers

                    Run 1                  
Run 2
 Wafer  Probe   Average  Stddev  DF    Average
Stddev  DF

  138.  2362.  95.0928   0.0359  5    95.1243 
0.0453  5
  139.  2362.  99.3060   0.0472  5    99.3098 
0.0215  5
  140.  2362.  96.0357   0.0273  5    96.0765 
0.0276  5
  141.  2362. 101.0602   0.0232  5   101.0790 
0.0537  5
  142.  2362.  94.2148   0.0274  5    94.2438 
0.0370  5

        2362.   Pooled   0.0333 25            
0.0388 25

              (over 2 runs)                   
0.0362 50

Level-3
(stability)
standard
deviations
computed
from run
averages
and pooled
over wafers

Level-3 standard deviations are computed from the averages of the two
runs. Then the level-3 standard deviations are pooled over the five
wafers to obtain a standard deviation with 5 degrees of freedom as
shown in the table below.

2.6.1.2. Analysis and interpretation
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Level-3 standard deviations (ohm.cm) for 5 wafers

               Run 1      Run 2
Wafer Probe  Average     Average      Diff    
Stddev  DF

138.  2362.  95.0928     95.1243     -0.0315  
0.0223   1
139.  2362.  99.3060     99.3098     -0.0038  
0.0027   1
140.  2362.  96.0357     96.0765     -0.0408  
0.0289   1
141.  2362. 101.0602    101.0790     -0.0188  
0.0133   1
142.  2362.  94.2148     94.2438     -0.0290  
0.0205   1

      2362.                           Pooled  
0.0197   5

Graphs of
probe
biases

A graphical analysis shows the relative biases among the 5 probes. For each
wafer, differences from the wafer average by probe are plotted versus wafer
number. The graphs verify that probe #2362 (coded as 5) is biased low
relative to the other probes. The bias shows up more strongly after the
probes have been in use (run 2).

2.6.1.2. Analysis and interpretation
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Formulas
for
computation
of biases for
probe
#2362

Biases by probe are shown in the following table.

Differences from the mean for each wafer
     Wafer Probe    Run 1     Run 2

      138.    1.   0.0248   -0.0119
      138.  281.   0.0108    0.0323
      138.  283.   0.0193   -0.0258
      138. 2062.  -0.0175    0.0561
      138. 2362.  -0.0372   -0.0507

      139.    1.  -0.0036   -0.0007
      139.  281.   0.0394    0.0050
      139.  283.   0.0057    0.0239
      139. 2062.  -0.0323    0.0373
      139. 2362.  -0.0094   -0.0657

      140.    1.   0.0400    0.0109
      140.  281.   0.0187    0.0106
      140.  283.  -0.0201    0.0003
      140. 2062.  -0.0126    0.0182
      140. 2362.  -0.0261   -0.0398

      141.    1.   0.0394    0.0324
      141.  281.  -0.0107   -0.0037
      141.  283.   0.0246   -0.0191
      141. 2062.  -0.0280    0.0436
      141. 2362.  -0.0252   -0.0534

      142.    1.   0.0062    0.0093
      142.  281.   0.0376    0.0174
      142.  283.  -0.0044    0.0192
      142. 2062.  -0.0011    0.0008
      142. 2362.  -0.0383   -0.0469

2.6.1.2. Analysis and interpretation
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How to deal
with bias
due to the
probe

Probe #2362 was chosen for the certification process because of its
superior precision, but its bias relative to the other probes creates a
problem. There are two possibilities for handling this problem:

Correct all measurements made with probe #2362 to the average
of the probes.

1.  

Include the standard deviation for the difference among probes in
the uncertainty budget.

2.  

The better choice is (1) if we can assume that the probes in the study
represent a random sample of probes of this type. This is particularly
true when the unit (resistivity) is defined by a test method.

2.6.1.2. Analysis and interpretation
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2. Measurement Process Characterization
2.6. Case studies
2.6.1. Gauge study of resistivity probes

2.6.1.3.Repeatability standard deviations

Run 1 -
Graph of
repeatability
standard
deviations
for probe
#2362 -- 6
days and 5
wafers
showing
that
repeatability
is constant
across
wafers and
days

2.6.1.3. Repeatability standard deviations
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Run 2 -
Graph of
repeatability
standard
deviations
for probe
#2362 -- 6
days and 5
wafers
showing
that
repeatability
is constant
across
wafers and
days

2.6.1.3. Repeatability standard deviations
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Run 1 -
Graph
showing
repeatability
standard
deviations
for five
probes as a
function of
wafers and
probes

Symbols for codes: 1 = #1; 2 = #281; 3 = #283; 4 = #2062; 5 =
#2362

2.6.1.3. Repeatability standard deviations

http://www.itl.nist.gov/div898/handbook/mpc/section6/mpc613.htm (3 of 4) [5/1/2006 10:13:14 AM]



Run 2 -
Graph
showing
repeatability
standard
deviations
for 5 probes
as a
function of
wafers and
probes

Symbols for probes: 1 = #1; 2 = #281; 3 = #283; 4 = #2062; 5 =
#2362

2.6.1.3. Repeatability standard deviations
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2. Measurement Process Characterization
2.6. Case studies
2.6.1. Gauge study of resistivity probes

2.6.1.4.Effects of days and long-term stability

Effects of
days and
long-term
stability on
the
measurements

The data points that are plotted in the five graphs shown below are averages of resistivity
measurements at the center of each wafer for wafers #138, 139, 140, 141, 142. Data for each of
two runs are shown on each graph. The six days of measurements for each run are separated by
approximately one month and show, with the exception of wafer #139, that there is a very slight
shift upwards between run 1 and run 2. The size of the effect is estimated as a level-3 standard
deviation in the analysis of the data.

Wafer 138

2.6.1.4. Effects of days and long-term stability
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Wafer 139

Wafer 140

2.6.1.4. Effects of days and long-term stability
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Wafer 141

2.6.1.4. Effects of days and long-term stability
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Wafer 142

2.6.1.4. Effects of days and long-term stability
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2.6.1.4. Effects of days and long-term stability
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2. Measurement Process Characterization
2.6. Case studies
2.6.1. Gauge study of resistivity probes

2.6.1.5. Differences among 5 probes

Run 1 -
Graph of
differences
from
wafer
averages
for each of
5 probes
showing
that
probes
#2062 and
#2362 are
biased low
relative to
the other
probes

Symbols for probes: 1 = #1; 2 = #281; 3 = #283; 4 = #2062; 5 =
#2362

2.6.1.5. Differences among 5 probes
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Run 2 -
Graph of
differences
from
wafer
averages
for each of
5 probes
showing
that probe
#2362
continues
to be
biased low
relative to
the other
probes

Symbols for probes: 1 = #1; 2 = #281; 3 = #283; 4 = #2062; 5 =
#2362

2.6.1.5. Differences among 5 probes
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2. Measurement Process Characterization
2.6. Case studies
2.6.1. Gauge study of resistivity probes

2.6.1.6.Run gauge study example using
Dataplot

View of
Dataplot
macros for
this case
study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output Window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step.

The links in this column will connect you with
more detailed information about each analysis
step from the case study description.

Graphical analyses of variability Graphs to
test for:

Wafer/day effect on repeatability (run 1)1.  

Wafer/day effect on repeatability (run 2)2.  

Probe effect on repeatability (run 1)3.  

Probe effect on repeatability (run 2)4.  

Reproducibility and stability5.  

1. and 2. Interpretation: The plots verify that, for
both runs, the repeatability of probe #2362 is not
dependent on wafers or days, although the
standard deviations on days D, E, and F of run 2
are larger in some instances than for the other
days.

3. and 4. Interpretation: Probe #2362 appears as
#5 in the plots which show that, for both runs,
the precision of this probe is better than for the
other probes.

2.6.1.6. Run gauge study example using Dataplot™
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5. Interpretation: There is a separate plot for
each wafer. The points on the left side of each
plot are averages at the wafer center plotted over
5 days; the points on the right are the same
measurements repeated after one month to check
on the stability of the measurement process. The
plots show day-to-day variability as well as
slight variability from run-to-run.

Table of estimates for probe #2362
Level-1 (repeatability)1.  

Level-2 (reproducibility)2.  

Level-3 (stability)3.  

1., 2. and 3.: Interpretation: The repeatability of
the gauge (level-1 standard deviation) dominates
the imprecision associated with measurements
and days and runs are less important
contributors. Of course, even if the gauge has
high precision, biases may contribute
substantially to the uncertainty of measurement.

Bias estimates
Differences among probes - run 11.  

Differences among probes - run 22.  

1. and 2. Interpretation: The graphs show the
relative biases among the 5 probes. For each
wafer, differences from the wafer average by
probe are plotted versus wafer number. The
graphs verify that probe #2362 (coded as 5) is
biased low relative to the other probes. The bias
shows up more strongly after the probes have
been in use (run 2).

2.6.1.6. Run gauge study example using Dataplot™
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2. Measurement Process Characterization
2.6. Case studies
2.6.1. Gauge study of resistivity probes

2.6.1.7.Dataplot macros

Plot of wafer
and day effect
on
repeatability
standard
deviations for
run 1

reset data
reset plot control
reset i/o
dimension 500 30
label size 3
read mpc61.dat run wafer probe mo day op hum y sw
y1label ohm.cm
title GAUGE STUDY
lines blank all
let z = pattern 1 2 3 4 5 6 for I = 1 1 300
let z2 = wafer + z/10 -0.25
characters a b c d e f
X1LABEL WAFERS
X2LABEL REPEATABILITY STANDARD DEVIATIONS BY WAFER AND DAY
X3LABEL CODE FOR DAYS: A, B, C, D, E, F
TITLE RUN 1
plot sw z2 day subset run 1

Plot of wafer
and day effect
on
repeatability
standard
deviations for
run 2

reset data
reset plot control
reset i/o
dimension 500 30
label size 3
read mpc61.dat run wafer probe mo day op hum y sw
y1label ohm.cm
title GAUGE STUDY
lines blank all
let z = pattern 1 2 3 4 5 6 for I = 1 1 300
let z2 = wafer + z/10 -0.25
characters a b c d e f
X1LABEL WAFERS
X2LABEL REPEATABILITY STANDARD DEVIATIONS BY WAFER AND DAY
X3LABEL CODE FOR DAYS: A, B, C, D, E, F
TITLE RUN 2
plot sw z2 day subset run 2

2.6.1.7. Dataplot macros
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Plot of
repeatability
standard
deviations for
5 probes - run
1

reset data
reset plot control
reset i/o
dimension 500 30
label size 3
read mpc61.dat run wafer probe mo day op hum y sw
y1label ohm.cm
title GAUGE STUDY
lines blank all
let z = pattern 1 2 3 4 5 6 for I = 1 1 300
let z2 = wafer + z/10 -0.25
characters 1 2 3 4 5
X1LABEL WAFERS
X2LABEL REPEATABILITY STANDARD DEVIATIONS BY WAFER AND PROBE
X3LABEL CODE FOR PROBES: 1= SRM1; 2= 281; 3=283; 4=2062;
5=2362
TITLE RUN 1
plot sw z2 probe subset run 1

Plot of
repeatability
standard
deviations for
5 probes - run
2

reset data
reset plot control
reset i/o
dimension 500 30
label size 3
read mpc61.dat run wafer probe mo day op hum y sw
y1label ohm.cm
title GAUGE STUDY
lines blank all
let z = pattern 1 2 3 4 5 6 for I = 1 1 300
let z2 = wafer + z/10 -0.25
characters 1 2 3 4 5
X1LABEL WAFERS
X2LABEL REPEATABILITY STANDARD DEVIATIONS BY WAFER AND PROBE
X3LABEL CODE FOR PROBES: 1= SRM1; 2= 281; 3=283; 4=2062;
5=2362
TITLE RUN 2
plot sw z2 probe subset run 2

2.6.1.7. Dataplot macros
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Plot of
differences
from the wafer
mean for 5
probes - run 1

reset data
reset plot control
reset i/o
dimension 500 30
read mpc61a.dat wafer probe d1 d2
let biasrun1 = mean d1 subset probe 2362
print biasrun1
title GAUGE STUDY FOR 5 PROBES
Y1LABEL OHM.CM
lines dotted dotted dotted dotted dotted solid
characters 1 2 3 4 5 blank
xlimits 137 143
let zero = pattern 0 for I = 1 1 30
x1label DIFFERENCES AMONG PROBES VS WAFER (RUN 1)
plot d1 wafer probe and
plot zero wafer

Plot of
differences
from the wafer
mean for 5
probes - run 2

reset data
reset plot control
reset i/o
dimension 500 30
read mpc61a.dat wafer probe d1 d2
let biasrun2 = mean d2 subset probe 2362
print biasrun2
title GAUGE STUDY FOR 5 PROBES
Y1LABEL OHM.CM
lines dotted dotted dotted dotted dotted solid
characters 1 2 3 4 5 blank
xlimits 137 143
let zero = pattern 0 for I = 1 1 30
x1label DIFFERENCES AMONG PROBES VS WAFER (RUN 2)
plot d2 wafer probe and
plot zero wafer

Plot of
averages by
day showing
reproducibility
and stability
for
measurements
made with
probe #2362
on 5 wafers

reset data
reset plot control
reset i/o
dimension 300 50
label size 3
read mcp61b.dat  wafer probe mo1 day1 y1 mo2 day2 y2 diff
let t = mo1+(day1-1)/31.
let t2= mo2+(day2-1)/31.
x3label WAFER 138
multiplot 3 2
plot y1 t subset wafer 138 and

2.6.1.7. Dataplot macros
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plot y2 t2 subset wafer 138
x3label wafer 139
plot y1 t subset wafer 139 and
plot y2 t2 subset wafer 139
x3label WAFER 140
plot y1 t subset wafer 140 and
plot y2 t2 subset wafer 140
x3label WAFER 140
plot y1 t subset wafer 141 and
plot y2 t2 subset wafer 141
x3label WAFER 142
plot y1 t subset wafer 142 and
plot y2 t2 subset wafer 142

2.6.1.7. Dataplot macros
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2. Measurement Process Characterization
2.6. Case studies

2.6.2.Check standard for resistivity
measurements

Purpose The purpose of this page is to outline the analysis of check standard data
with respect to controlling the precision and long-term variability of the
process.

Outline Background and data1.  

Analysis and interpretation2.  

Run this example yourself using Dataplot3.  

2.6.2. Check standard for resistivity measurements
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2. Measurement Process Characterization
2.6. Case studies
2.6.2. Check standard for resistivity measurements

2.6.2.1.Background and data

Explanation of
check standard
measurements

The process involves the measurement of resistivity (ohm.cm) of
individual silicon wafers cut from a single crystal (# 51939). The
wafers were doped with phosphorous to give a nominal resistivity of
100 ohm.cm. A single wafer (#137), chosen at random from a batch
of 130 wafers, was designated as the check standard for this process.

Design of data
collection and
Database

The measurements were carried out according to an ASTM Test
Method (F84) with NIST probe #2362. The measurements on the
check standard duplicate certification measurements that were being
made, during the same time period, on individual wafers from crystal
#51939. For the check standard there were:

J = 6 repetitions at the center of the wafer on each day●   

K = 25 days●   

The K = 25 days cover the time during which the individual wafers
were being certified at the National Institute of Standards and
Technology.

2.6.2.1. Background and data
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2. Measurement Process Characterization
2.6. Case studies
2.6.2. Check standard for resistivity measurements
2.6.2.1. Background and data

2.6.2.1.1.Database for resistivity check
standard

Description of
check
standard

A single wafer (#137), chosen at random from a batch of 130 wafers,
is the check standard for resistivity measurements at the 100 ohm.cm
level at the National Institute of Standards and Technology. The
average of six measurements at the center of the wafer is the check
standard value for one occasion, and the standard deviation of the six
measurements is the short-term standard deviation. The columns of
the database contain the following:

Crystal ID1.  

Check standard ID2.  

Month3.  

Day4.  

Hour5.  

Minute6.  

Operator7.  

Humidity8.  

Probe ID9.  

Temperature10.  

Check standard value11.  

Short-term standard deviation12.  

Degrees of freedom13.  

2.6.2.1.1. Database for resistivity check standard
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Database of
measurements
on check
standard

Crystal Waf Mo Da Hr Mn Op Hum Probe Temp Avg Stddev
DF

51939 137 03 24 18 01 drr 42 2362 23.003 97.070 0.085
5

51939 137 03 25 12 41 drr 35 2362 23.115 97.049 0.052
5

51939 137 03 25 15 57 drr 33 2362 23.196 97.048 0.038
5

51939 137 03 28 10 10 JMT 47 2362 23.383 97.084 0.036
5

51939 137 03 28 13 31 JMT 44 2362 23.491 97.106 0.049
5

51939 137 03 28 17 33 drr 43 2362 23.352 97.014 0.036
5

51939 137 03 29 14 40 drr 36 2362 23.202 97.047 0.052
5

51939 137 03 29 16 33 drr 35 2362 23.222 97.078 0.117
5

51939 137 03 30 05 45 JMT 32 2362 23.337 97.065 0.085
5

51939 137 03 30 09 26 JMT 33 2362 23.321 97.061 0.052
5

51939 137 03 25 14 59 drr 34 2362 22.993 97.060 0.060
5

51939 137 03 31 10 10 JMT 37 2362 23.164 97.102 0.048
5

51939 137 03 31 13 00 JMT 37 2362 23.169 97.096 0.026
5

51939 137 03 31 15 32 JMT 35 2362 23.156 97.035 0.088
5

51939 137 04 01 13 05 JMT 34 2362 23.097 97.114 0.031
5

51939 137 04 01 15 32 JMT 34 2362 23.127 97.069 0.037
5

51939 137 04 01 10 32 JMT 48 2362 22.963 97.095 0.032
5

51939 137 04 06 14 38 JMT 49 2362 23.454 97.088 0.056
5

2.6.2.1.1. Database for resistivity check standard
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51939 137 04 07 10 50 JMT 34 2362 23.285 97.079 0.067
5

51939 137 04 07 15 46 JMT 33 2362 23.123 97.016 0.116
5

51939 137 04 08 09 37 JMT 33 2362 23.373 97.051 0.046
5

51939 137 04 08 12 53 JMT 33 2362 23.296 97.070 0.078
5

51939 137 04 08 15 03 JMT 33 2362 23.218 97.065 0.040
5

51939 137 04 11 09 30 JMT 36 2362 23.415 97.111 0.038
5

51939 137 04 11 11 34 JMT 35 2362 23.395 97.073 0.039
5

2.6.2.1.1. Database for resistivity check standard
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2. Measurement Process Characterization
2.6. Case studies
2.6.2. Check standard for resistivity measurements

2.6.2.2.Analysis and interpretation

Estimates of
the
repeatability
standard
deviation and
level-2
standard
deviation

The level-1 standard deviations (with J - 1 = 5 degrees of freedom
each) from the database are pooled over the K = 25 days to obtain a
reliable estimate of repeatability. This pooled value is

s1 = 0.04054 ohm.cm

with K(J - 1) = 125 degrees of freedom. The level-2 standard
deviation is computed from the daily averages to be

s2 = 0.02680 ohm.cm

with K - 1 = 24 degrees of freedom.

Relationship
to uncertainty
calculations

These standard deviations are appropriate for estimating the
uncertainty of the average of six measurements on a wafer that is of
the same material and construction as the check standard. The
computations are explained in the section on sensitivity coefficients
for check standard measurements. For other numbers of measurements
on the test wafer, the computations are explained in the section on
sensitivity coefficients for level-2 designs.

Illustrative
table showing
computations
of
repeatability
and level-2
standard
deviations

A tabular presentation of a subset of check standard data (J = 6
repetitions and K = 6 days) illustrates the computations. The pooled
repeatability standard deviation with K(J - 1) = 30 degrees of freedom
from this limited database is shown in the next to last row of the table.
A level-2 standard deviation with K - 1= 5 degrees of freedom is
computed from the center averages and is shown in the last row of the
table.

2.6.2.2. Analysis and interpretation
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Control chart
for probe
#2362

The control chart for monitoring the precision of probe #2362 is
constructed as discussed in the section on control charts for standard
deviations. The upper control limit (UCL) for testing for degradation
of the probe is computed using the critical value from the F table with
numerator degrees of freedom J - 1 = 5 and denominator degrees of
freedom K(J - 1) = 125. For a 0.05 significance level,

F0.05(5,125) = 2.29

UCL =  *s1 = 0.09238 ohm.cm

Interpretation
of control
chart for
probe #2362

The control chart shows two points exceeding the upper control limit.
We expect 5% of the standard deviations to exceed the UCL for a
measurement process that is in-control. Two outliers are not indicative
of significant problems with the repeatability for the probe, but the
probe should be monitored closely in the future.

Control chart
for bias and
variability

The control limits for monitoring the bias and long-term variability of
resistivity with a Shewhart control chart are given by

UCL = Average + 2*s2 = 97.1234 ohm.cm
Centerline = Average = 97.0698 ohm.cm
LCL = Average - 2*s2 = 97.0162 ohm.cm

Interpretation
of control
chart for bias

The control chart shows that the points scatter randomly about the
center line with no serious problems, although one point exceeds the
upper control limit and one point exceeds the lower control limit by a
small amount. The conclusion is that there is:

No evidence of bias, change or drift in the measurement
process.

●   

No evidence of long-term lack of control.●   

Future measurements that exceed the control limits must be evaluated
for long-term changes in bias and/or variability.

2.6.2.2. Analysis and interpretation
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2. Measurement Process Characterization
2.6. Case studies
2.6.2. Check standard for resistivity measurements
2.6.2.2. Analysis and interpretation

2.6.2.2.1.Repeatability and level-2 standard
deviations

Example The table below illustrates the computation of repeatability and level-2 standard
deviations from measurements on a check standard. The check standard
measurements are resistivities at the center of a 100 ohm.cm wafer. There are J
= 6 repetitions per day and K = 5 days for this example.

Table of
data,
averages,
and
repeatability
standard
deviations

Measurements on check standard #137

Repetitions per day
Days 1 2 3 4 5 6

1 96.920 97.054 97.057 97.035 97.189 96.965
2 97.118 96.947 97.110 97.047 96.945 97.013
3 97.034 97.084 97.023 97.045 97.061 97.074
4 97.047 97.099 97.087 97.076 97.117 97.070
5 97.127 97.067 97.106 96.995 97.052 97.121
6 96.995 96.984 97.053 97.065 96.976 96.997

Averages 97.040 97.039 97.073 97.044 97.057 97.037
Repeatability
Standard
Deviations

0.0777 0.0602 0.0341 0.0281 0.0896 0.0614

Pooled
Repeatability
Standard
Deviation

0.0625
30 df

Level-2
Standard
Deviation

0.0139
5 df

2.6.2.2.1. Repeatability and level-2 standard deviations
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2.6.2.2.1. Repeatability and level-2 standard deviations
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2. Measurement Process Characterization
2.6. Case studies
2.6.2. Check standard for resistivity measurements

2.6.2.3.Control chart for probe precision

Control
chart for
probe
#2362
showing
violations
of the
control
limits --
all
standard
deviations
are based
on 6
repetitions
and the
control
limits are
95%
limits

2.6.2.3. Control chart for probe precision
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2. Measurement Process Characterization
2.6. Case studies
2.6.2. Check standard for resistivity measurements

2.6.2.4.Control chart for bias and long-term
variability

Shewhart
control chart
for
measurements
on a
resistivity
check
standard
showing that
the process is
in-control --
all
measurements
are averages
of 6
repetitions

2.6.2.4. Control chart for bias and long-term variability
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2. Measurement Process Characterization
2.6. Case studies
2.6.2. Check standard for resistivity measurements

2.6.2.5.Run check standard example
yourself

View of
Dataplot
macros for
this case
study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot. It is required that you
have already downloaded and installed Dataplot and configured your
browser to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output Window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step.

The links in this column will connect you with
more detailed information about each analysis
step from the case study description.

Graphical tests of assumptions
Histogram

Normal probability plot

The histogram and normal probability plots
show no evidence of non-normality.

Control chart for precision

Control chart for probe #2362

Computations:

Pooled repeatability standard deviation1.  

Control limit2.  

The precision control chart shows two points
exceeding the upper control limit. We expect 5%
of the standard deviations to exceed the UCL
even when the measurement process is
in-control.

2.6.2.5. Run check standard example yourself
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Control chart for check standard

Control chart for check standard #137

Computations:

Average check standard value1.  

Process standard deviation2.  

Upper and lower control limits3.  

The Shewhart control chart shows that the points
scatter randomly about the center line with no
serious problems, although one point exceeds
the upper control limit and one point exceeds the
lower control limit by a small amount. The
conclusion is that there is no evidence of bias or
lack of long-term control.

2.6.2.5. Run check standard example yourself
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2. Measurement Process Characterization
2.6. Case studies
2.6.2. Check standard for resistivity measurements

2.6.2.6.Dataplot macros

Histogram
for check
standard
#137 to test
assumption
of normality

reset data
reset plot control
reset i/o
dimension 500 30
skip 14
read mpc62.dat crystal wafer mo day hour min op hum probe
temp y sw df
histogram y

Normal
probability
plot for
check
standard
#137 to test
assumption
of normality

reset data
reset plot control
reset i/o
dimension 500 30
skip 14
read mpc62.dat crystal wafer mo day hour min op hum probe
temp y sw df
normal probabilty plot y

Control
chart for
precision of
probe
#2372 and
computation
of control
parameter
estimates

reset data
reset plot control
reset i/o
dimension 500 30
skip 14
read mpc62.dat crystal wafer mo day hour min op hum probe
temp y sw df
let time = mo +(day-1)/31.
let s = sw*sw
let spool = mean s
let spool = spool**.5
print spool
let f = fppf(.95, 5, 125)
let ucl = spool*(f)**.5

2.6.2.6. Dataplot macros
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print ucl
title Control chart for precision
characters blank blank O
lines solid dashed blank
y1label ohm.cm
x1label Time in days
x2label Standard deviations with probe #2362
x3label 5% upper control limit
let center = sw - sw + spool
let cl = sw - sw + ucl
plot center cl sw vs time

Shewhart
control
chart for
check
standard
#137 with
computation
of control
chart
parameters

reset data
reset plot control
reset i/o
dimension 500 30
skip 14
read mpc62.dat crystal wafer mo day hour min op hum probe
temp y sw df
let time = mo +(day-1)/31.
let avg = mean y
let sprocess = standard deviation y
let ucl = avg + 2*sprocess
let lcl = avg - 2*sprocess
print avg
print sprocess
print ucl lcl
title Shewhart control chart
characters O blank blank blank
lines blank dashed solid dashed
y1label ohm.cm
x1label Time in days
x2label Check standard 137 with probe 2362
x3label 2-sigma control limits
let ybar = y - y + avg
let lc1 = y - y + lcl
let lc2 = y - y + ucl
plot y lc1 ybar lc2 vs time

2.6.2.6. Dataplot macros
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2. Measurement Process Characterization
2.6. Case studies

2.6.3.Evaluation of type A uncertainty

Purpose The purpose of this case study is to demonstrate the computation of
uncertainty for a measurement process with several sources of
uncertainty from data taken during a gauge study.

Outline Background and data for the study1.  

Graphical and quantitative analyses and interpretations2.  

Run this example yourself with Dataplot3.  

2.6.3. Evaluation of type A uncertainty
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2. Measurement Process Characterization
2.6. Case studies
2.6.3. Evaluation of type A uncertainty

2.6.3.1.Background and data

Description of
measurements

The measurements in question are resistivities (ohm.cm) of silicon
wafers. The intent is to calculate an uncertainty associated with the
resistivity measurements of approximately 100 silicon wafers that
were certified with probe #2362 in wiring configuration A, according
to ASTM Method F84 (ASTM F84) which is the defined reference
for this measurement. The reported value for each wafer is the
average of six measurements made at the center of the wafer on a
single day. Probe #2362 is one of five probes owned by the National
Institute of Standards and Technology that is capable of making the
measurements.

Sources of
uncertainty in
NIST
measurements

The uncertainty analysis takes into account the following sources of
variability:

Repeatability of measurements at the center of the wafer●   

Day-to-day effects●   

Run-to-run effects●   

Bias due to probe #2362●   

Bias due to wiring configuration●   

Database of
3-level nested
design -- for
estimating
time-dependent
sources of
uncertainty

The certification measurements themselves are not the primary
source for estimating uncertainty components because they do not
yield information on day-to-day effects and long-term effects. The
standard deviations for the three time-dependent sources of
uncertainty are estimated from a 3-level nested design. The design
was replicated on each of Q = 5 wafers which were chosen at
random, for this purpose, from the lot of wafers. The certification
measurements were made between the two runs in order to check on
the long-term stability of the process. The data consist of
repeatability standard deviations (with J - 1 = 5 degrees of freedom
each) from measurements at the wafer center.

2.6.3.1. Background and data
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2.6.3.1. Background and data
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2. Measurement Process Characterization
2.6. Case studies
2.6.3. Evaluation of type A uncertainty
2.6.3.1. Background and data

2.6.3.1.1.Database of resistivity
measurements

Check standards are
five wafers chosen at
random from a batch
of wafers

Measurements of resistivity (ohm.cm) were made according to an
ASTM Standard Test Method (F4) at the National Institute of
Standards and Technology to assess the sources of uncertainty in
the measurement system. The gauges for the study were five
probes owned by NIST; the check standards for the study were
five wafers selected at random from a batch of wafers cut from one
silicon crystal doped with phosphorous to give a nominal
resistivity of 100 ohm.cm.

Measurements on the
check standards are
used to estimate
repeatability, day
effect, run effect

The effect of operator was not considered to be significant for this
study. Averages and standard deviations from J = 6 measurements
at the center of each wafer are shown in the table.

J = 6 measurements at the center of the wafer per day●   

K = 6 days (one operator) per repetition●   

L = 2 runs (complete)●   

Q = 5 wafers (check standards 138, 139, 140, 141, 142)●   

I = 5 probes (1, 281, 283, 2062, 2362)●   
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Standard
Run Wafer  Probe   Month   Day  Operator   Temp    Average
Deviation

1  138.      1.      3.     15.      1.   22.98   95.1772   
0.1191
1  138.      1.      3.     17.      1.   23.02   95.1567   
0.0183
1  138.      1.      3.     18.      1.   22.79   95.1937   
0.1282
1  138.      1.      3.     21.      1.   23.17   95.1959   
0.0398
1  138.      1.      3.     23.      2.   23.25   95.1442   
0.0346
1  138.      1.      3.     23.      1.   23.20   95.0610   
0.1539
1  138.    281.      3.     16.      1.   22.99   95.1591   
0.0963
1  138.    281.      3.     17.      1.   22.97   95.1195   
0.0606
1  138.    281.      3.     18.      1.   22.83   95.1065   
0.0842
1  138.    281.      3.     21.      1.   23.28   95.0925   
0.0973
1  138.    281.      3.     23.      2.   23.14   95.1990   
0.1062
1  138.    281.      3.     23.      1.   23.16   95.1682   
0.1090
1  138.    283.      3.     16.      1.   22.95   95.1252   
0.0531
1  138.    283.      3.     17.      1.   23.08   95.1600   
0.0998
1  138.    283.      3.     18.      1.   23.13   95.0818   
0.1108
1  138.    283.      3.     21.      1.   23.28   95.1620   
0.0408
1  138.    283.      3.     22.      1.   23.36   95.1735   
0.0501
1  138.    283.      3.     24.      2.   22.97   95.1932   
0.0287
1  138.   2062.      3.     16.      1.   22.97   95.1311   
0.1066
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1  138.   2062.      3.     17.      1.   22.98   95.1132   
0.0415
1  138.   2062.      3.     18.      1.   23.16   95.0432   
0.0491
1  138.   2062.      3.     21.      1.   23.16   95.1254   
0.0603
1  138.   2062.      3.     22.      1.   23.28   95.1322   
0.0561
1  138.   2062.      3.     24.      2.   23.19   95.1299   
0.0349
1  138.   2362.      3.     15.      1.   23.08   95.1162   
0.0480
1  138.   2362.      3.     17.      1.   23.01   95.0569   
0.0577
1  138.   2362.      3.     18.      1.   22.97   95.0598   
0.0516
1  138.   2362.      3.     22.      1.   23.23   95.1487   
0.0386
1  138.   2362.      3.     23.      2.   23.28   95.0743   
0.0256
1  138.   2362.      3.     24.      2.   23.10   95.1010   
0.0420
1  139.      1.      3.     15.      1.   23.01   99.3528   
0.1424
1  139.      1.      3.     17.      1.   23.00   99.2940   
0.0660
1  139.      1.      3.     17.      1.   23.01   99.2340   
0.1179
1  139.      1.      3.     21.      1.   23.20   99.3489   
0.0506
1  139.      1.      3.     23.      2.   23.22   99.2625   
0.1111
1  139.      1.      3.     23.      1.   23.22   99.3787   
0.1103
1  139.    281.      3.     16.      1.   22.95   99.3244   
0.1134
1  139.    281.      3.     17.      1.   22.98   99.3378   
0.0949
1  139.    281.      3.     18.      1.   22.86   99.3424   
0.0847
1  139.    281.      3.     22.      1.   23.17   99.4033   
0.0801
1  139.    281.      3.     23.      2.   23.10   99.3717   
0.0630
1  139.    281.      3.     23.      1.   23.14   99.3493   
0.1157
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1  139.    283.      3.     16.      1.   22.94   99.3065   
0.0381
1  139.    283.      3.     17.      1.   23.09   99.3280   
0.1153
1  139.    283.      3.     18.      1.   23.11   99.3000   
0.0818
1  139.    283.      3.     21.      1.   23.25   99.3347   
0.0972
1  139.    283.      3.     22.      1.   23.36   99.3929   
0.1189
1  139.    283.      3.     23.      1.   23.18   99.2644   
0.0622
1  139.   2062.      3.     16.      1.   22.94   99.3324   
0.1531
1  139.   2062.      3.     17.      1.   23.08   99.3254   
0.0543
1  139.   2062.      3.     18.      1.   23.15   99.2555   
0.1024
1  139.   2062.      3.     18.      1.   23.18   99.1946   
0.0851
1  139.   2062.      3.     22.      1.   23.27   99.3542   
0.1227
1  139.   2062.      3.     24.      2.   23.23   99.2365   
0.1218
1  139.   2362.      3.     15.      1.   23.08   99.2939   
0.0818
1  139.   2362.      3.     17.      1.   23.02   99.3234   
0.0723
1  139.   2362.      3.     18.      1.   22.93   99.2748   
0.0756
1  139.   2362.      3.     22.      1.   23.29   99.3512   
0.0475
1  139.   2362.      3.     23.      2.   23.25   99.2350   
0.0517
1  139.   2362.      3.     24.      2.   23.05   99.3574   
0.0485
1  140.      1.      3.     15.      1.   23.07   96.1334   
0.1052
1  140.      1.      3.     17.      1.   23.08   96.1250   
0.0916
1  140.      1.      3.     18.      1.   22.77   96.0665   
0.0836
1  140.      1.      3.     21.      1.   23.18   96.0725   
0.0620
1  140.      1.      3.     23.      2.   23.20   96.1006   
0.0582
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1  140.      1.      3.     23.      1.   23.21   96.1131   
0.1757
1  140.    281.      3.     16.      1.   22.94   96.0467   
0.0565
1  140.    281.      3.     17.      1.   22.99   96.1081   
0.1293
1  140.    281.      3.     18.      1.   22.91   96.0578   
0.1148
1  140.    281.      3.     22.      1.   23.15   96.0700   
0.0495
1  140.    281.      3.     22.      1.   23.33   96.1052   
0.1722
1  140.    281.      3.     23.      1.   23.19   96.0952   
0.1786
1  140.    283.      3.     16.      1.   22.89   96.0650   
0.1301
1  140.    283.      3.     17.      1.   23.07   96.0870   
0.0881
1  140.    283.      3.     18.      1.   23.07   95.8906   
0.1842
1  140.    283.      3.     21.      1.   23.24   96.0842   
0.1008
1  140.    283.      3.     22.      1.   23.34   96.0189   
0.0865
1  140.    283.      3.     23.      1.   23.19   96.1047   
0.0923
1  140.   2062.      3.     16.      1.   22.95   96.0379   
0.2190
1  140.   2062.      3.     17.      1.   22.97   96.0671   
0.0991
1  140.   2062.      3.     18.      1.   23.15   96.0206   
0.0648
1  140.   2062.      3.     21.      1.   23.14   96.0207   
0.1410
1  140.   2062.      3.     22.      1.   23.32   96.0587   
0.1634
1  140.   2062.      3.     24.      2.   23.17   96.0903   
0.0406
1  140.   2362.      3.     15.      1.   23.08   96.0771   
0.1024
1  140.   2362.      3.     17.      1.   23.00   95.9976   
0.0943
1  140.   2362.      3.     18.      1.   23.01   96.0148   
0.0622
1  140.   2362.      3.     22.      1.   23.27   96.0397   
0.0702
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1  140.   2362.      3.     23.      2.   23.24   96.0407   
0.0627
1  140.   2362.      3.     24.      2.   23.13   96.0445   
0.0622
1  141.      1.      3.     15.      1.   23.01  101.2124   
0.0900
1  141.      1.      3.     17.      1.   23.08  101.1018   
0.0820
1  141.      1.      3.     18.      1.   22.75  101.1119   
0.0500
1  141.      1.      3.     21.      1.   23.21  101.1072   
0.0641
1  141.      1.      3.     23.      2.   23.25  101.0802   
0.0704
1  141.      1.      3.     23.      1.   23.19  101.1350   
0.0699
1  141.    281.      3.     16.      1.   22.93  101.0287   
0.0520
1  141.    281.      3.     17.      1.   23.00  101.0131   
0.0710
1  141.    281.      3.     18.      1.   22.90  101.1329   
0.0800
1  141.    281.      3.     22.      1.   23.19  101.0562   
0.1594
1  141.    281.      3.     23.      2.   23.18  101.0891   
0.1252
1  141.    281.      3.     23.      1.   23.17  101.1283   
0.1151
1  141.    283.      3.     16.      1.   22.85  101.1597   
0.0990
1  141.    283.      3.     17.      1.   23.09  101.0784   
0.0810
1  141.    283.      3.     18.      1.   23.08  101.0715   
0.0460
1  141.    283.      3.     21.      1.   23.27  101.0910   
0.0880
1  141.    283.      3.     22.      1.   23.34  101.0967   
0.0901
1  141.    283.      3.     24.      2.   23.00  101.1627   
0.0888
1  141.   2062.      3.     16.      1.   22.97  101.1077   
0.0970
1  141.   2062.      3.     17.      1.   22.96  101.0245   
0.1210
1  141.   2062.      3.     18.      1.   23.19  100.9650   
0.0700
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1  141.   2062.      3.     18.      1.   23.18  101.0319   
0.1070
1  141.   2062.      3.     22.      1.   23.34  101.0849   
0.0960
1  141.   2062.      3.     24.      2.   23.21  101.1302   
0.0505
1  141.   2362.      3.     15.      1.   23.08  101.0471   
0.0320
1  141.   2362.      3.     17.      1.   23.01  101.0224   
0.1020
1  141.   2362.      3.     18.      1.   23.05  101.0702   
0.0580
1  141.   2362.      3.     22.      1.   23.22  101.0904   
0.1049
1  141.   2362.      3.     23.      2.   23.29  101.0626   
0.0702
1  141.   2362.      3.     24.      2.   23.15  101.0686   
0.0661
1  142.      1.      3.     15.      1.   23.02   94.3160   
0.1372
1  142.      1.      3.     17.      1.   23.04   94.2808   
0.0999
1  142.      1.      3.     18.      1.   22.73   94.2478   
0.0803
1  142.      1.      3.     21.      1.   23.19   94.2862   
0.0700
1  142.      1.      3.     23.      2.   23.25   94.1859   
0.0899
1  142.      1.      3.     23.      1.   23.21   94.2389   
0.0686
1  142.    281.      3.     16.      1.   22.98   94.2640   
0.0862
1  142.    281.      3.     17.      1.   23.00   94.3333   
0.1330
1  142.    281.      3.     18.      1.   22.88   94.2994   
0.0908
1  142.    281.      3.     21.      1.   23.28   94.2873   
0.0846
1  142.    281.      3.     23.      2.   23.07   94.2576   
0.0795
1  142.    281.      3.     23.      1.   23.12   94.3027   
0.0389
1  142.    283.      3.     16.      1.   22.92   94.2846   
0.1021
1  142.    283.      3.     17.      1.   23.08   94.2197   
0.0627
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1  142.    283.      3.     18.      1.   23.09   94.2119   
0.0785
1  142.    283.      3.     21.      1.   23.29   94.2536   
0.0712
1  142.    283.      3.     22.      1.   23.34   94.2280   
0.0692
1  142.    283.      3.     24.      2.   22.92   94.2944   
0.0958
1  142.   2062.      3.     16.      1.   22.96   94.2238   
0.0492
1  142.   2062.      3.     17.      1.   22.95   94.3061   
0.2194
1  142.   2062.      3.     18.      1.   23.16   94.1868   
0.0474
1  142.   2062.      3.     21.      1.   23.11   94.2645   
0.0697
1  142.   2062.      3.     22.      1.   23.31   94.3101   
0.0532
1  142.   2062.      3.     24.      2.   23.24   94.2204   
0.1023
1  142.   2362.      3.     15.      1.   23.08   94.2437   
0.0503
1  142.   2362.      3.     17.      1.   23.00   94.2115   
0.0919
1  142.   2362.      3.     18.      1.   22.99   94.2348   
0.0282
1  142.   2362.      3.     22.      1.   23.26   94.2124   
0.0513
1  142.   2362.      3.     23.      2.   23.27   94.2214   
0.0627
1  142.   2362.      3.     24.      2.   23.08   94.1651   
0.1010
2  138.      1.      4.     13.      1.   23.12   95.1996   
0.0645
2  138.      1.      4.     15.      1.   22.73   95.1315   
0.1192
2  138.      1.      4.     18.      2.   22.76   95.1845   
0.0452
2  138.      1.      4.     19.      1.   22.73   95.1359   
0.1498
2  138.      1.      4.     20.      2.   22.73   95.1435   
0.0629
2  138.      1.      4.     21.      2.   22.93   95.1839   
0.0563
2  138.    281.      4.     14.      2.   22.46   95.2106   
0.1049
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2  138.    281.      4.     18.      2.   22.80   95.2505   
0.0771
2  138.    281.      4.     18.      2.   22.77   95.2648   
0.1046
2  138.    281.      4.     20.      2.   22.80   95.2197   
0.1779
2  138.    281.      4.     20.      2.   22.87   95.2003   
0.1376
2  138.    281.      4.     21.      2.   22.95   95.0982   
0.1611
2  138.    283.      4.     18.      2.   22.83   95.1211   
0.0794
2  138.    283.      4.     13.      1.   23.17   95.1327   
0.0409
2  138.    283.      4.     18.      1.   22.67   95.2053   
0.1525
2  138.    283.      4.     19.      2.   23.00   95.1292   
0.0655
2  138.    283.      4.     21.      2.   22.91   95.1669   
0.0619
2  138.    283.      4.     21.      2.   22.96   95.1401   
0.0831
2  138.   2062.      4.     15.      1.   22.64   95.2479   
0.2867
2  138.   2062.      4.     15.      1.   22.67   95.2224   
0.1945
2  138.   2062.      4.     19.      2.   22.99   95.2810   
0.1960
2  138.   2062.      4.     19.      1.   22.75   95.1869   
0.1571
2  138.   2062.      4.     21.      2.   22.84   95.3053   
0.2012
2  138.   2062.      4.     21.      2.   22.92   95.1432   
0.1532
2  138.   2362.      4.     12.      1.   22.74   95.1687   
0.0785
2  138.   2362.      4.     18.      2.   22.75   95.1564   
0.0430
2  138.   2362.      4.     19.      2.   22.88   95.1354   
0.0983
2  138.   2362.      4.     19.      1.   22.73   95.0422   
0.0773
2  138.   2362.      4.     20.      2.   22.86   95.1354   
0.0587
2  138.   2362.      4.     21.      2.   22.94   95.1075   
0.0776
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2  139.      1.      4.     13.      2.   23.14   99.3274   
0.0220
2  139.      1.      4.     15.      2.   22.77   99.5020   
0.0997
2  139.      1.      4.     18.      2.   22.80   99.4016   
0.0704
2  139.      1.      4.     19.      1.   22.68   99.3181   
0.1245
2  139.      1.      4.     20.      2.   22.78   99.3858   
0.0903
2  139.      1.      4.     21.      2.   22.93   99.3141   
0.0255
2  139.    281.      4.     14.      2.   23.05   99.2915   
0.0859
2  139.    281.      4.     15.      2.   22.71   99.4032   
0.1322
2  139.    281.      4.     18.      2.   22.79   99.4612   
0.1765
2  139.    281.      4.     20.      2.   22.74   99.4001   
0.0889
2  139.    281.      4.     20.      2.   22.91   99.3765   
0.1041
2  139.    281.      4.     21.      2.   22.92   99.3507   
0.0717
2  139.    283.      4.     13.      2.   23.11   99.3848   
0.0792
2  139.    283.      4.     18.      2.   22.84   99.4952   
0.1122
2  139.    283.      4.     18.      2.   22.76   99.3220   
0.0915
2  139.    283.      4.     19.      2.   23.03   99.4165   
0.0503
2  139.    283.      4.     21.      2.   22.87   99.3791   
0.1138
2  139.    283.      4.     21.      2.   22.98   99.3985   
0.0661
2  139.   2062.      4.     14.      2.   22.43   99.4283   
0.0891
2  139.   2062.      4.     15.      2.   22.70   99.4139   
0.2147
2  139.   2062.      4.     19.      2.   22.97   99.3813   
0.1143
2  139.   2062.      4.     19.      1.   22.77   99.4314   
0.1685
2  139.   2062.      4.     21.      2.   22.79   99.4166   
0.2080
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2  139.   2062.      4.     21.      2.   22.94   99.4052   
0.2400
2  139.   2362.      4.     12.      1.   22.82   99.3408   
0.1279
2  139.   2362.      4.     18.      2.   22.77   99.3116   
0.1131
2  139.   2362.      4.     19.      2.   22.82   99.3241   
0.0519
2  139.   2362.      4.     19.      1.   22.74   99.2991   
0.0903
2  139.   2362.      4.     20.      2.   22.88   99.3049   
0.0783
2  139.   2362.      4.     21.      2.   22.94   99.2782   
0.0718
2  140.      1.      4.     13.      1.   23.10   96.0811   
0.0463
2  140.      1.      4.     15.      2.   22.75   96.1460   
0.0725
2  140.      1.      4.     18.      2.   22.78   96.1582   
0.1428
2  140.      1.      4.     19.      1.   22.70   96.1039   
0.1056
2  140.      1.      4.     20.      2.   22.75   96.1262   
0.0672
2  140.      1.      4.     21.      2.   22.93   96.1478   
0.0562
2  140.    281.      4.     15.      2.   22.71   96.1153   
0.1097
2  140.    281.      4.     14.      2.   22.49   96.1297   
0.1202
2  140.    281.      4.     18.      2.   22.81   96.1233   
0.1331
2  140.    281.      4.     20.      2.   22.78   96.1731   
0.1484
2  140.    281.      4.     20.      2.   22.89   96.0872   
0.0857
2  140.    281.      4.     21.      2.   22.91   96.1331   
0.0944
2  140.    283.      4.     13.      2.   23.22   96.1135   
0.0983
2  140.    283.      4.     18.      2.   22.85   96.1111   
0.1210
2  140.    283.      4.     18.      2.   22.78   96.1221   
0.0644
2  140.    283.      4.     19.      2.   23.01   96.1063   
0.0921

2.6.3.1.1. Database of resistivity measurements
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2  140.    283.      4.     21.      2.   22.91   96.1155   
0.0704
2  140.    283.      4.     21.      2.   22.94   96.1308   
0.0258
2  140.   2062.      4.     15.      2.   22.60   95.9767   
0.2225
2  140.   2062.      4.     15.      2.   22.66   96.1277   
0.1792
2  140.   2062.      4.     19.      2.   22.96   96.1858   
0.1312
2  140.   2062.      4.     19.      1.   22.75   96.1912   
0.1936
2  140.   2062.      4.     21.      2.   22.82   96.1650   
0.1902
2  140.   2062.      4.     21.      2.   22.92   96.1603   
0.1777
2  140.   2362.      4.     12.      1.   22.88   96.0793   
0.0996
2  140.   2362.      4.     18.      2.   22.76   96.1115   
0.0533
2  140.   2362.      4.     19.      2.   22.79   96.0803   
0.0364
2  140.   2362.      4.     19.      1.   22.71   96.0411   
0.0768
2  140.   2362.      4.     20.      2.   22.84   96.0988   
0.1042
2  140.   2362.      4.     21.      1.   22.94   96.0482   
0.0868
2  141.      1.      4.     13.      1.   23.07  101.1984   
0.0803
2  141.      1.      4.     15.      2.   22.72  101.1645   
0.0914
2  141.      1.      4.     18.      2.   22.75  101.2454   
0.1109
2  141.      1.      4.     19.      1.   22.69  101.1096   
0.1376
2  141.      1.      4.     20.      2.   22.83  101.2066   
0.0717
2  141.      1.      4.     21.      2.   22.93  101.0645   
0.1205
2  141.    281.      4.     15.      2.   22.72  101.1615   
0.1272
2  141.    281.      4.     14.      2.   22.40  101.1650   
0.0595
2  141.    281.      4.     18.      2.   22.78  101.1815   
0.1393

2.6.3.1.1. Database of resistivity measurements
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2  141.    281.      4.     20.      2.   22.73  101.1106   
0.1189
2  141.    281.      4.     20.      2.   22.86  101.1420   
0.0713
2  141.    281.      4.     21.      2.   22.94  101.0116   
0.1088
2  141.    283.      4.     13.      2.   23.26  101.1554   
0.0429
2  141.    283.      4.     18.      2.   22.85  101.1267   
0.0751
2  141.    283.      4.     18.      2.   22.76  101.1227   
0.0826
2  141.    283.      4.     19.      2.   22.82  101.0635   
0.1715
2  141.    283.      4.     21.      2.   22.89  101.1264   
0.1447
2  141.    283.      4.     21.      2.   22.96  101.0853   
0.1189
2  141.   2062.      4.     15.      2.   22.65  101.1332   
0.2532
2  141.   2062.      4.     15.      1.   22.68  101.1487   
0.1413
2  141.   2062.      4.     19.      2.   22.95  101.1778   
0.1772
2  141.   2062.      4.     19.      1.   22.77  101.0988   
0.0884
2  141.   2062.      4.     21.      2.   22.87  101.1686   
0.2940
2  141.   2062.      4.     21.      2.   22.94  101.3289   
0.2072
2  141.   2362.      4.     12.      1.   22.83  101.1353   
0.0585
2  141.   2362.      4.     18.      2.   22.83  101.1201   
0.0868
2  141.   2362.      4.     19.      2.   22.91  101.0946   
0.0855
2  141.   2362.      4.     19.      1.   22.71  100.9977   
0.0645
2  141.   2362.      4.     20.      2.   22.87  101.0963   
0.0638
2  141.   2362.      4.     21.      2.   22.94  101.0300   
0.0549
2  142.      1.      4.     13.      1.   23.07   94.3049   
0.1197
2  142.      1.      4.     15.      2.   22.73   94.3153   
0.0566

2.6.3.1.1. Database of resistivity measurements
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2  142.      1.      4.     18.      2.   22.77   94.3073   
0.0875
2  142.      1.      4.     19.      1.   22.67   94.2803   
0.0376
2  142.      1.      4.     20.      2.   22.80   94.3008   
0.0703
2  142.      1.      4.     21.      2.   22.93   94.2916   
0.0604
2  142.    281.      4.     14.      2.   22.90   94.2557   
0.0619
2  142.    281.      4.     18.      2.   22.83   94.3542   
0.1027
2  142.    281.      4.     18.      2.   22.80   94.3007   
0.1492
2  142.    281.      4.     20.      2.   22.76   94.3351   
0.1059
2  142.    281.      4.     20.      2.   22.88   94.3406   
0.1508
2  142.    281.      4.     21.      2.   22.92   94.2621   
0.0946
2  142.    283.      4.     13.      2.   23.25   94.3124   
0.0534
2  142.    283.      4.     18.      2.   22.85   94.3680   
0.1643
2  142.    283.      4.     18.      1.   22.67   94.3442   
0.0346
2  142.    283.      4.     19.      2.   22.80   94.3391   
0.0616
2  142.    283.      4.     21.      2.   22.91   94.2238   
0.0721
2  142.    283.      4.     21.      2.   22.95   94.2721   
0.0998
2  142.   2062.      4.     14.      2.   22.49   94.2915   
0.2189
2  142.   2062.      4.     15.      2.   22.69   94.2803   
0.0690
2  142.   2062.      4.     19.      2.   22.94   94.2818   
0.0987
2  142.   2062.      4.     19.      1.   22.76   94.2227   
0.2628
2  142.   2062.      4.     21.      2.   22.74   94.4109   
0.1230
2  142.   2062.      4.     21.      2.   22.94   94.2616   
0.0929
2  142.   2362.      4.     12.      1.   22.86   94.2052   
0.0813

2.6.3.1.1. Database of resistivity measurements
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2  142.   2362.      4.     18.      2.   22.83   94.2824   
0.0605
2  142.   2362.      4.     19.      2.   22.85   94.2396   
0.0882
2  142.   2362.      4.     19.      1.   22.75   94.2087   
0.0702
2  142.   2362.      4.     20.      2.   22.86   94.2937   
0.0591
2  142.   2362.      4.     21.      1.   22.93   94.2330   
0.0556

2.6.3.1.1. Database of resistivity measurements
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2. Measurement Process Characterization
2.6. Case studies
2.6.3. Evaluation of type A uncertainty
2.6.3.1. Background and data

2.6.3.1.2.Measurements on wiring
configurations

Check wafers were
measured with the
probe wired in two
configurations

Measurements of resistivity (ohm.cm) were made according to an
ASTM Standard Test Method (F4) to identify differences
between 2 wiring configurations for probe #2362. The check
standards for the study were five wafers selected at random from
a batch of wafers cut from one silicon crystal doped with
phosphorous to give a nominal resistivity of 100 ohm.cm.

Description of
database

The data are averages of K = 6 days' measurements and J = 6
repetitions at the center of each wafer. There are L = 2 complete
runs, separated by two months time, on each wafer.

The data recorded in the 10 columns are:

Wafer1.  

Probe2.  

Average - configuration A; run 13.  

Standard deviation - configuration A; run 14.  

Average - configuration B; run 15.  

Standard deviation - configuration B; run 16.  

Average - configuration A; run 27.  

Standard deviation - configuration A; run 28.  

Average - configuration B; run 29.  

Standard deviation - configuration B; run 210.  

2.6.3.1.2. Measurements on wiring configurations
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Wafer Probe Config A-run1   Config B-run1   Config A-run2  
Config B-run2.

138. 2362.  95.1162 0.0480  95.0993 0.0466  95.1687 0.0785 
95.1589 0.0642
138. 2362.  95.0569 0.0577  95.0657 0.0450  95.1564 0.0430 
95.1705 0.0730
138. 2362.  95.0598 0.0516  95.0622 0.0664  95.1354 0.0983 
95.1221 0.0695
138. 2362.  95.1487 0.0386  95.1625 0.0311  95.0422 0.0773 
95.0513 0.0840
138. 2362.  95.0743 0.0256  95.0599 0.0488  95.1354 0.0587 
95.1531 0.0482
138. 2362.  95.1010 0.0420  95.0944 0.0393  95.1075 0.0776 
95.1537 0.0230
139. 2362.  99.2939 0.0818  99.3018 0.0905  99.3408 0.1279 
99.3637 0.1025
139. 2362.  99.3234 0.0723  99.3488 0.0350  99.3116 0.1131 
99.3881 0.0451
139. 2362.  99.2748 0.0756  99.3571 0.1993  99.3241 0.0519 
99.3737 0.0699
139. 2362.  99.3512 0.0475  99.3512 0.1286  99.2991 0.0903 
99.3066 0.0709
139. 2362.  99.2350 0.0517  99.2255 0.0738  99.3049 0.0783 
99.3040 0.0744
139. 2362.  99.3574 0.0485  99.3605 0.0459  99.2782 0.0718 
99.3680 0.0470
140. 2362.  96.0771 0.1024  96.0915 0.1257  96.0793 0.0996 
96.1041 0.0890
140. 2362.  95.9976 0.0943  96.0057 0.0806  96.1115 0.0533 
96.0774 0.0983
140. 2362.  96.0148 0.0622  96.0244 0.0833  96.0803 0.0364 
96.1004 0.0758
140. 2362.  96.0397 0.0702  96.0422 0.0738  96.0411 0.0768 
96.0677 0.0663
140. 2362.  96.0407 0.0627  96.0738 0.0800  96.0988 0.1042 
96.0585 0.0960
140. 2362.  96.0445 0.0622  96.0557 0.1129  96.0482 0.0868 
96.0062 0.0895
141. 2362. 101.0471 0.0320 101.0241 0.0670 101.1353 0.0585
101.1156 0.1027
141. 2362. 101.0224 0.1020 101.0660 0.1030 101.1201 0.0868
101.1077 0.1141

2.6.3.1.2. Measurements on wiring configurations
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141. 2362. 101.0702 0.0580 101.0509 0.0710 101.0946 0.0855
101.0455 0.1070
141. 2362. 101.0904 0.1049 101.0983 0.0894 100.9977 0.0645
101.0274 0.0666
141. 2362. 101.0626 0.0702 101.0614 0.0849 101.0963 0.0638
101.1106 0.0788
141. 2362. 101.0686 0.0661 101.0811 0.0490 101.0300 0.0549
101.1073 0.0663
142. 2362.  94.2437 0.0503  94.2088 0.0815  94.2052 0.0813 
94.2487 0.0719
142. 2362.  94.2115 0.0919  94.2043 0.1176  94.2824 0.0605 
94.2886 0.0499
142. 2362.  94.2348 0.0282  94.2324 0.0519  94.2396 0.0882 
94.2739 0.1075
142. 2362.  94.2124 0.0513  94.2347 0.0694  94.2087 0.0702 
94.2023 0.0416
142. 2362.  94.2214 0.0627  94.2416 0.0757  94.2937 0.0591 
94.2600 0.0731
142. 2362.  94.1651 0.1010  94.2287 0.0919  94.2330 0.0556 
94.2406 0.0651

2.6.3.1.2. Measurements on wiring configurations
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2. Measurement Process Characterization
2.6. Case studies
2.6.3. Evaluation of type A uncertainty

2.6.3.2.Analysis and interpretation

Purpose of this
page

The purpose of this page is to outline an analysis of data taken during a
gauge study to quantify the type A uncertainty component for resistivity
(ohm.cm) measurements on silicon wafers made with a gauge that was part
of the initial study.

Summary of
standard
deviations at
three levels

The level-1, level-2, and level-3 standard deviations for the uncertainty
analysis are summarized in the table below from the gauge case study.

Standard deviations for probe #2362

 Level      Symbol     Estimate     DF
 Level-1      s1       0.0710     300
 Level-2      s2       0.0362      50
 Level-3      s3       0.0197       5

Calculation of
individual
components
for days and
runs

The standard deviation that estimates the day effect is

The standard deviation that estimates the run effect is

2.6.3.2. Analysis and interpretation
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Calculation of
the standard
deviation of
the certified
value showing
sensitivity
coefficients

The certified value for each wafer is the average of N = 6 repeatability
measurements at the center of the wafer on M = 1 days and over P = 1 runs.
Notice that N, M and P are not necessarily the same as the number of
measurements in the gauge study per wafer; namely, J, K and L. The
standard deviation of a certified value (for time-dependent sources of
error), is

Standard deviations for days and runs are included in this calculation, even
though there were no replications over days or runs for the certification
measurements. These factors contribute to the overall uncertainty of the
measurement process even though they are not sampled for the particular
measurements of interest.

The equation
must be
rewritten to
calculate
degrees of
freedom

Degrees of freedom cannot be calculated from the equation above because
the calculations for the individual components involve differences among
variances. The table of sensitivity coefficients for a 3-level design shows
that for

N = J, M = 1, P = 1

the equation above can be rewritten in the form

Then the degrees of freedom can be approximated using the
Welch-Satterthwaite method.

Probe bias -
Graphs of
probe biases

A graphical analysis shows the relative biases among the 5 probes. For
each wafer, differences from the wafer average by probe are plotted versus
wafer number. The graphs verify that probe #2362 (coded as 5) is biased
low relative to the other probes. The bias shows up more strongly after the
probes have been in use (run 2).

2.6.3.2. Analysis and interpretation
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How to deal
with bias due
to the probe

Probe #2362 was chosen for the certification process because of its superior
precision, but its bias relative to the other probes creates a problem. There
are two possibilities for handling this problem:

Correct all measurements made with probe #2362 to the average of
the probes.

1.  

Include the standard deviation for the difference among probes in the
uncertainty budget.

2.  

The best strategy, as followed in the certification process, is to correct all
measurements for the average bias of probe #2362 and take the standard
deviation of the correction as a type A component of uncertainty.

Correction for
bias or probe
#2362 and
uncertainty

Biases by probe and wafer are shown in the gauge case study. Biases for
probe #2362 are summarized in table below for the two runs. The
correction is taken to be the negative of the average bias. The standard
deviation of the correction is the standard deviation of the average of the
ten biases.

  Estimated biases for probe #2362
 
Wafer Probe    Run 1    Run 2     All

  138  2362  -0.0372  -0.0507
  139  2362  -0.0094  -0.0657
  140  2362  -0.0261  -0.0398
  141  2362  -0.0252  -0.0534
  142  2362  -0.0383  -0.0469

  Average    -0.0272  -0.0513  -0.0393
  Standard deviation            0.0162
  (10 values)

Configurations
Database and
plot of
differences

Measurements on the check wafers were made with the probe wired in two
different configurations (A, B). A plot of differences between configuration
A and configuration B shows no bias between the two configurations.

2.6.3.2. Analysis and interpretation
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Test for
difference
between
configurations

This finding is consistent over runs 1 and 2 and is confirmed by the
t-statistics in the table below where the average differences and standard
deviations are computed from 6 days of measurements on 5 wafers. A
t-statistic < 2 indicates no significant difference. The conclusion is that
there is no bias due to wiring configuration and no contribution to
uncertainty from this source.

  Differences between configurations

Status  Average  Std dev   DF    t
 
Pre   -0.00858   0.0242    29  1.9  
Post  -0.0110    0.0354    29  1.7

Error budget
showing
sensitivity
coefficients,
standard
deviations and
degrees of
freedom

The error budget showing sensitivity coefficients for computing the
standard uncertainty and degrees of freedom is outlined below.

Error budget for resistivity (ohm.cm)

Source Type Sensitivity
Standard
Deviation DF

Repeatability A a1 = 0 0.0710 300

Reproducibility A a2 = 0.0362 50

Run-to-run A a3 = 1 0.0197 5

Probe #2362 A a4 = 0.0162 5

Wiring
Configuration A

A a5 = 1 0 --

Standard
uncertainty
includes
components
for
repeatability,
days, runs and
probe

The standard uncertainty is computed from the error budget as

2.6.3.2. Analysis and interpretation
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Approximate
degrees of
freedom and
expanded
uncertainty

The degrees of freedom associated with u are approximated by the
Welch-Satterthwaite formula as:

where the i are the degrees of freedom given in the rightmost column of
the table.

The critical value at the 0.05 significance level with 42 degrees of freedom,
from the t-table, is 2.018 so the expanded uncertainty is

U = 2.018 u = 0.078 ohm.cm

2.6.3.2. Analysis and interpretation
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2. Measurement Process Characterization
2.6. Case studies
2.6.3. Evaluation of type A uncertainty
2.6.3.2. Analysis and interpretation

2.6.3.2.1.Difference between 2 wiring
configurations

Measurements
with the probe
configured in
two ways

The graphs below are constructed from resistivity measurements
(ohm.cm) on five wafers where the probe (#2362) was wired in two
different configurations, A and B. The probe is a 4-point probe with
many possible wiring configurations. For this experiment, only two
configurations were tested as a means of identifying large
discrepancies.

Artifacts for the
study

The five wafers; namely, #138, #139, #140, #141, and #142 are
coded 1, 2, 3, 4, 5, respectively, in the graphs. These wafers were
chosen at random from a batch of approximately 100 wafers that
were being certified for resistivity.

Interpretation Differences between measurements in configurations A and B,
made on the same day, are plotted over six days for each wafer. The
two graphs represent two runs separated by approximately two
months time. The dotted line in the center is the zero line. The
pattern of data points scatters fairly randomly above and below the
zero line -- indicating no difference between configurations for
probe #2362. The conclusion applies to probe #2362 and cannot be
extended to all probes of this type.

2.6.3.2.1. Difference between 2 wiring configurations
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2. Measurement Process Characterization
2.6. Case studies
2.6.3. Evaluation of type A uncertainty

2.6.3.3.Run the type A uncertainty analysis
using Dataplot

View of
Dataplot
macros for
this case
study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output Window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step.

The links in this column will connect you with
more detailed information about each analysis
step from the case study description.

Time-dependent components from 3-level
nested design

Pool repeatability standard deviations for:

Run 11.  

Run 2

Compute level-2 standard deviations for:

2.  

Run 13.  

Run 24.  

Pool level-2 standard deviations5.  

Database of measurements with probe #2362

The repeatability standard deviation is
0.0658 ohm.cm for run 1 and 0.0758
ohm.cm for run 2. This represents the
basic precision of the measuring
instrument.

1.  

The level-2 standard deviation pooled
over 5 wafers and 2 runs is 0.0362
ohm.cm. This is significant in the
calculation of uncertainty.

2.  

The level-3 standard deviation pooled3.  
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Compute level-3 standard deviations6.  over 5 wafers is 0.0197 ohm.cm. This is
small compared to the other components
but is included in the uncertainty
calculation for completeness.

Bias due to probe #2362
Plot biases for 5 NIST probes1.  

Compute wafer bias and average bias for
probe #2362

2.  

Correction for bias and standard deviation3.  

Database of measurements with 5 probes

The plot shows that probe #2362 is biased
low relative to the other probes and that
this bias is consistent over 5 wafers.

1.  

The bias correction is the average bias =
0.0393 ohm.cm over the 5 wafers. The
correction is to be subtracted from all
measurements made with probe #2362.

2.  

The uncertainty of the bias correction =
0.0051 ohm.cm is computed from the
standard deviation of the biases for the 5
wafers.

3.  

Bias due to wiring configuration A
Plot differences between wiring
configurations

1.  

Averages, standard deviations and
t-statistics

2.  

Database of wiring configurations A and B

The plot of measurements in wiring
configurations A and B shows no
difference between A and B.

1.  

The statistical test confirms that there is
no difference between the wiring
configurations.

2.  

Uncertainty
Standard uncertainty, df, t-value and
expanded uncertainty

1.  

Elements of error budget

The uncertainty is computed from the
error budget. The uncertainty for an
average of 6 measurements on one day
with probe #2362 is 0.078 with 42
degrees of freedom.

1.  
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2. Measurement Process Characterization
2.6. Case studies
2.6.3. Evaluation of type A uncertainty

2.6.3.4.Dataplot macros

Reads data and
plots the
repeatability
standard
deviations for
probe #2362
and pools
standard
deviations over
days, wafers --
run 1

reset data
reset plot control
reset i/o
dimension 500 rows
label size 3
set read format f1.0,f6.0,f8.0,32x,f10.4,f10.4
read mpc633a.dat run wafer probe y sr
retain run wafer probe y sr    subset probe =  2362
let df = sr - sr + 5.
y1label ohm.cm
characters * all
lines blank all
x2label Repeatability standard deviations for probe 2362 -
run 1
plot sr subset run 1
let var = sr*sr
let df11 = sum df subset run 1
let s11 = sum var subset run 1
. repeatability standard deviation for run 1
let s11 = (5.*s11/df11)**(1/2)
print s11 df11
. end of calculations

Reads data and
plots
repeatability
standard
deviations for
probe #2362
and pools
standard
deviations over
days, wafers --
run 2

reset data
reset plot control
reset i/o
dimension 500 30
label size 3
set read format f1.0,f6.0,f8.0,32x,f10.4,f10.4
read mpc633a.dat run wafer probe y sr
retain run wafer probe y sr subset probe 2362
let df = sr - sr + 5.
y1label ohm.cm
characters * all
lines blank all
x2label Repeatability standard deviations for probe 2362 -
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run 2
plot sr subset run 2
let var = sr*sr
let df11 = sum df subset run 1
let df12 = sum df subset run 2
let s11 = sum var subset run 1
let s12 = sum var subset run 2
let s11 = (5.*s11/df11)**(1/2)
let s12 = (5.*s12/df12)**(1/2)
print s11 df11
print s12 df12
let s1 = ((s11**2 + s12**2)/2.)**(1/2)
let df1=df11+df12
. repeatability standard deviation and df for run 2
print s1 df1
. end of calculations

Computes
level-2
standard
deviations from
daily averages
and pools over
wafers -- run 1

reset data
reset plot control
reset i/o
dimension 500 rows
label size 3
set read format f1.0,f6.0,f8.0,32x,f10.4,f10.4
read mpc633a.dat run wafer probe y sr
retain run wafer probe y sr subset probe 2362
sd plot y wafer subset run 1
let s21 = yplot
let wafer1 = xplot
retain s21 wafer1 subset tagplot = 1
let nwaf = size s21
let df21 = 5 for i = 1 1 nwaf
. level-2 standard deviations and df for 5 wafers - run 1
print wafer1 s21 df21
. end of calculations

Computes
level-2
standard
deviations from
daily averages
and pools over
wafers -- run 2

reset data
reset plot control
reset i/o
dimension 500 rows
label size 3
set read format f1.0,f6.0,f8.0,32x,f10.4,f10.4
read mpc633a.dat run wafer probe y sr
retain run wafer probe y sr subset probe 2362
sd plot y wafer subset run 2
let s22 = yplot
let wafer1 = xplot
retain s22 wafer1 subset tagplot = 1
let nwaf = size s22

2.6.3.4. Dataplot macros

http://www.itl.nist.gov/div898/handbook/mpc/section6/mpc634.htm (2 of 8) [5/1/2006 10:13:29 AM]



let df22 = 5 for i = 1 1 nwaf
. level-2 standard deviations and df for 5 wafers - run 1
print wafer1 s22 df22
. end of calculations

Pools level-2
standard
deviations over
wafers and
runs

reset data
reset plot control
reset i/o
dimension 500 30
label size 3
set read format f1.0,f6.0,f8.0,32x,f10.4,f10.4
read mpc633a.dat run wafer probe y sr
retain run wafer probe y sr subset probe 2362
sd plot y wafer subset run 1
let s21 = yplot
let wafer1 = xplot
sd plot y wafer subset run 2
let s22 = yplot
retain s21 s22 wafer1 subset tagplot = 1
let nwaf = size wafer1
let df21 = 5 for i = 1 1 nwaf
let df22 = 5 for i = 1 1 nwaf
let s2a = (s21**2)/5 + (s22**2)/5
let s2 = sum s2a
let s2 = sqrt(s2/2) 
let df2a = df21 + df22
let df2 = sum df2a
. pooled level-2 standard deviation and df across wafers and
runs
print s2 df2
. end of calculations

Computes
level-3standard
deviations from
run averages
and pools over
wafers

reset data
reset plot control
reset i/o
dimension 500 rows
label size 3
set read format f1.0,f6.0,f8.0,32x,f10.4,f10.4
read mpc633a.dat run wafer probe y sr
retain run wafer probe y sr subset probe 2362
.
mean plot y wafer subset run 1
let m31 = yplot
let wafer1 = xplot
mean plot y wafer subset run 2
let m32 = yplot
retain m31 m32 wafer1 subset tagplot = 1
let nwaf = size m31

2.6.3.4. Dataplot macros
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let s31 =(((m31-m32)**2)/2.)**(1/2)
let df31 = 1 for i = 1 1 nwaf
. level-3 standard deviations and df for 5 wafers
print wafer1 s31 df31
let s31 = (s31**2)/5
let s3 = sum s31
let s3 = sqrt(s3)
let df3=sum df31
. pooled level-3 std deviation and df over 5 wafers
print s3 df3
. end of calculations

Plot
differences
from the
average wafer
value for each
probe showing
bias for probe
#2362

reset data
reset plot control
reset i/o
dimension 500 30
read mpc61a.dat wafer probe d1 d2
let biasrun1 = mean d1 subset probe 2362
let biasrun2 = mean d2 subset probe 2362
print biasrun1 biasrun2
title GAUGE STUDY FOR 5 PROBES
Y1LABEL OHM.CM
lines dotted dotted dotted dotted dotted solid
characters 1 2 3 4 5 blank
xlimits 137 143
let zero = pattern 0 for I = 1 1 30
x1label DIFFERENCES AMONG PROBES VS WAFER (RUN 1)
plot d1 wafer probe and
plot zero wafer
let biasrun2 = mean d2 subset probe 2362
print biasrun2
title GAUGE STUDY FOR 5 PROBES
Y1LABEL OHM.CM
lines dotted dotted dotted dotted dotted solid
characters 1 2 3 4 5 blank
xlimits 137 143
let zero = pattern 0 for I = 1 1 30
x1label DIFFERENCES AMONG PROBES VS WAFER (RUN 2)
plot d2 wafer probe and
plot zero wafer
. end of calculations

2.6.3.4. Dataplot macros
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Compute bias
for probe
#2362 by wafer

reset data
reset plot control
reset i/o
dimension 500 30
label size 3
set read format f1.0,f6.0,f8.0,32x,f10.4,f10.4
read mpc633a.dat run wafer probe y sr
set read format
.
cross tabulate mean y run wafer
retain run wafer probe y sr subset probe 2362
skip 1
read dpst1f.dat runid wafid ybar
print runid wafid ybar
let ngroups = size ybar
skip 0
.
let m3 = y - y
feedback off
loop for k = 1 1 ngroups
    let runa = runid(k)
    let wafera = wafid(k)
    let ytemp = ybar(k)
    let m3 = ytemp subset run = runa subset wafer = wafera
end of loop
feedback on
.
let d = y - m3
let bias1 = average d subset run 1
let bias2 = average d subset run 2
.
mean plot d wafer subset run 1
let b1 = yplot
let wafer1 = xplot
mean plot d wafer subset run 2
let b2 = yplot
retain b1 b2 wafer1 subset tagplot = 1
let nwaf = size b1
. biases for run 1 and run 2 by wafers
print wafer1 b1 b2
. average biases over wafers for run 1 and run 2
print bias1 bias2
. end of calculations

2.6.3.4. Dataplot macros
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Compute
correction for
bias for
measurements
with probe
#2362 and the
standard
deviation of the
correction

reset data
reset plot control
reset i/o
dimension 500 30
label size 3
set read format f1.0,f6.0,f8.0,32x,f10.4,f10.4
read mpc633a.dat run wafer probe y sr
set read format
.
cross tabulate mean y run wafer
retain run wafer probe y sr subset probe 2362
skip 1
read dpst1f.dat runid wafid ybar
let ngroups = size ybar
skip 0
.
let m3 = y - y
feedback off
loop for k = 1 1 ngroups
    let runa = runid(k)
    let wafera = wafid(k)
    let ytemp = ybar(k)
    let m3 = ytemp subset run = runa subset wafer = wafera
end of loop
feedback on
.
let d = y - m3
let bias1 = average d subset run 1
let bias2 = average d subset run 2
.
mean plot d wafer subset run 1
let b1 = yplot
let wafer1 = xplot
mean plot d wafer subset run 2
let b2 = yplot
retain b1 b2 wafer1 subset tagplot = 1
.
extend b1 b2
let sd = standard deviation b1
let sdcorr = sd/(10**(1/2))
let correct = -(bias1+bias2)/2.
. correction for probe #2362, standard dev, and standard dev
of corr
print correct sd sdcorr
. end of calculations

2.6.3.4. Dataplot macros
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Plot
differences
between wiring
configurations
A and B

reset data
reset plot control
reset i/o
dimension 500 30
label size 3
read mpc633k.dat wafer probe a1 s1 b1 s2 a2 s3 b2 s4
let diff1 = a1 - b1
let diff2 = a2 - b2
let t = sequence 1 1 30
lines blank all
characters 1 2 3 4 5
y1label ohm.cm
x1label Config A - Config B -- Run 1
x2label over 6 days and 5 wafers
x3label legend for wafers 138, 139, 140, 141, 142: 1, 2, 3,
4, 5
plot diff1 t wafer
x1label Config A - Config B -- Run 2
plot diff2 t wafer
. end of calculations

Compute
average
differences
between
configuration
A and B;
standard
deviations and
t-statistics for
testing
significance

reset data
reset plot control
reset i/o
separator character @
dimension 500 rows
label size 3
read mpc633k.dat wafer probe a1 s1 b1 s2 a2 s3 b2 s4
let diff1 = a1 - b1
let diff2 = a2 - b2
let d1 = average diff1
let d2 = average diff2
let s1 = standard deviation diff1
let s2 = standard deviation diff2
let t1 = (30.)**(1/2)*(d1/s1)
let t2 = (30.)**(1/2)*(d2/s2)
. Average config A-config B; std dev difference; t-statistic
for run 1
print d1 s1 t1
. Average config A-config B; std dev difference; t-statistic
for run 2
print d2 s2 t2
separator character ;
. end of calculations
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Compute
standard
uncertainty,
effective
degrees of
freedom, t
value and
expanded
uncertainty

reset data
reset plot control
reset i/o
dimension 500 rows
label size 3
read mpc633m.dat sz a df
let c = a*sz*sz
let d = c*c
let e = d/(df)
let sume = sum e
let u = sum c
let u = u**(1/2)
let effdf=(u**4)/sume
let tvalue=tppf(.975,effdf)
let expu=tvalue*u
.
. uncertainty, effective degrees of freedom, tvalue and
. expanded uncertainty
print u effdf tvalue expu
. end of calculations
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2. Measurement Process Characterization
2.6. Case studies

2.6.4.Evaluation of type B uncertainty and
propagation of error

Focus of this
case study

The purpose of this case study is to demonstrate uncertainty analysis using
statistical techniques coupled with type B analyses and propagation of
error. It is a continuation of the case study of type A uncertainties.

Background -
description of
measurements
and
constraints

The measurements in question are volume resistivities (ohm.cm) of silicon
wafers which have the following definition:

 = Xo.Ka
.Ft .t.Ft/s

with explanations of the quantities and their nominal values shown below:

 = resistivity = 0.00128 ohm.cm
X = voltage/current (ohm)
t = thicknesswafer(cm) = 0.628 cm
Ka = factorelectrical = 4.50 ohm.cm
FF = correctiontemp 
Ft/s = factorthickness/separation  1.0

Type A
evaluations

The resistivity measurements, discussed in the case study of type A
evaluations, were replicated to cover the following sources of uncertainty
in the measurement process, and the associated uncertainties are reported in
units of resistivity (ohm.cm).

Repeatability of measurements at the center of the wafer●   

Day-to-day effects●   

Run-to-run effects●   

Bias due to probe #2362●   

Bias due to wiring configuration●   

2.6.4. Evaluation of type B uncertainty and propagation of error
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Need for
propagation
of error

Not all factors could be replicated during the gauge experiment. Wafer
thickness and measurements required for the scale corrections were
measured off-line. Thus, the type B evaluation of uncertainty is computed
using propagation of error. The propagation of error formula in units of
resistivity is as follows:

Standard
deviations for
type B
evaluations

Standard deviations for the type B components are summarized here. For a
complete explanation, see the publication (Ehrstein and Croarkin).

Electrical
measurements

There are two basic sources of uncertainty for the electrical measurements.
The first is the least-count of the digital volt meter in the measurement of X
with a maximum bound of

a = 0.0000534 ohm

which is assumed to be the half-width of a uniform distribution. The
second is the uncertainty of the electrical scale factor. This has two sources
of uncertainty:

error in the solution of the transcendental equation for determining
the factor

1.  

errors in measured voltages2.  

The maximum bounds to these errors are assumed to be half-widths of

a = 0.0001 ohm.cm and a = 0.00038 ohm.cm
respectively, from uniform distributions. The corresponding standard
deviations are shown below.

sx = 0.0000534/  = 0.0000308 ohm

2.6.4. Evaluation of type B uncertainty and propagation of error
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Thickness The standard deviation for thickness, t, accounts for two sources of
uncertainty:

calibration of the thickness measuring tool with precision gauge
blocks

1.  

variation in thicknesses of the silicon wafers2.  

The maximum bounds to these errors are assumed to be half-widths of

a = 0.000015 cm and a = 0.000001 cm
respectively, from uniform distributions. Thus, the standard deviation for
thickness is

Temperature
correction

The standard deviation for the temperature correction is calculated from its
defining equation as shown below. Thus, the standard deviation for the
correction is the standard deviation associated with the measurement of
temperature multiplied by the temperature coefficient, C(t) = 0.0083.
The maximum bound to the error of the temperature measurement is
assumed to be the half-width

a = 0.13 °C
of a triangular distribution. Thus the standard deviation of the correction
for

is

Thickness
scale factor

The standard deviation for the thickness scale factor is negligible.

2.6.4. Evaluation of type B uncertainty and propagation of error
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Associated
sensitivity
coefficients

Sensitivity coefficients for translating the standard deviations for the type B
components into units of resistivity (ohm.cm) from the propagation of error
equation are listed below and in the error budget. The sensitivity coefficient
for a source is the multiplicative factor associated with the standard
deviation in the formula above; i.e., the partial derivative with respect to
that variable from the propagation of error equation.

a6 = ( /X) = 100/0.111 = 900.901
a7 = ( /Ka) = 100/4.50 = 22.222
a8 = ( /t) = 100/0.628 = 159.24
a9 = ( /FT) = 100
a10 = ( /Ft/S) = 100

Sensitivity
coefficients
and degrees
of freedom

Sensitivity coefficients for the type A components are shown in the case
study of type A uncertainty analysis and repeated below. Degrees of
freedom for type B uncertainties based on assumed distributions, according
to the convention, are assumed to be infinite.

Error budget
showing
sensitivity
coefficients,
standard
deviations
and degrees
of freedom

The error budget showing sensitivity coefficients for computing the relative
standard uncertainty of volume resistivity (ohm.cm) with degrees of
freedom is outlined below.

Error budget for volume resistivity (ohm.cm)

Source Type Sensitivity
Standard
Deviation DF

Repeatability A a1 = 0 0.0710 300

Reproducibility A a2 = 0.0362 50

Run-to-run A a3 = 1 0.0197 5

Probe #2362 A a4 = 0.0162 5

Wiring
Configuration A

A a5 = 1 0 --

Resistance
ratio

B a6 = 900.901 0.0000308

Electrical
scale

B a7 = 22.222 0.000227

Thickness B a8 = 159.20 0.00000868

Temperature
correction

B a9 = 100 0.000441

2.6.4. Evaluation of type B uncertainty and propagation of error
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Thickness
scale

B a10 = 100 0 --

Standard
uncertainty

The standard uncertainty is computed as:

Approximate
degrees of
freedom and
expanded
uncertainty

The degrees of freedom associated with u are approximated by the
Welch-Satterthwaite formula as:

This calculation is not affected by components with infinite degrees of
freedom, and therefore, the degrees of freedom for the standard uncertainty
is the same as the degrees of freedom for the type A uncertainty. The
critical value at the 0.05 significance level with 42 degrees of freedom,
from the t-table, is 2.018 so the expanded uncertainty is

U = 2.018 u = 0.13 ohm.cm

2.6.4. Evaluation of type B uncertainty and propagation of error
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3.Production Process Characterization

The goal of this chapter is to learn how to plan and conduct a Production Process
Characterization Study (PPC) on manufacturing processes. We will learn how to model
manufacturing processes and use these models to design a data collection scheme and to
guide data analysis activities. We will look in detail at how to analyze the data collected
in characterization studies and how to interpret and report the results. The accompanying
Case Studies provide detailed examples of several process characterization studies.

1. Introduction

Definition1.  

Uses2.  

Terminology/Concepts3.  

PPC Steps4.  

2. Assumptions

General Assumptions1.  

Specific PPC Models2.  

3. Data Collection

Set Goals1.  

Model the Process2.  

Define Sampling Plan3.  

4. Analysis

First Steps1.  

Exploring Relationships2.  

Model Building3.  

Variance Components4.  

Process Stability5.  

Process Capability6.  

Checking Assumptions7.  

5. Case Studies

Furnace Case Study1.  

Machine Case Study2.  

Detailed Chapter Table of Contents
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3. Production Process Characterization

3.1. Introduction to Production Process
Characterization

Overview
Section

The goal of this section is to provide an introduction to PPC. We will
define PPC and the terminology used and discuss some of the possible
uses of a PPC study. Finally, we will look at the steps involved in
designing and executing a PPC study.

Contents:
Section 1

What is PPC?1.  

What are PPC studies used for? 2.  

What terminology is used in PPC? 

Location, Spread and Shape 1.  

Process Variability 2.  

Propagating Error 3.  

Populations and Sampling 4.  

Process Models5.  

Experiments and Experimental Design6.  

3.  

What are the steps of a PPC? 

Plan PPC 1.  

Collect Data 2.  

Analyze and Interpret Data 3.  

Report Conclusions 4.  

4.  

3.1. Introduction to Production Process Characterization

http://www.itl.nist.gov/div898/handbook/ppc/section1/ppc1.htm [5/1/2006 10:17:18 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


3. Production Process Characterization
3.1. Introduction to Production Process Characterization

3.1.1.What is PPC?

In PPC, we
build
data-based
models

Process characterization is an activity in which we:

identify the key inputs and outputs of a process●   

collect data on their behavior over the entire operating range●   

estimate the steady-state behavior at optimal operating conditions●   

and build models describing the parameter relationships across
the operating range

●   

The result of this activity is a set of mathematical process models that
we can use to monitor and improve the process.

This is a
three-step
process

This activity is typically a three-step process.

The Screening Step

In this phase we identify all possible significant process inputs
and outputs and conduct a series of screening experiments in
order to reduce that list to the key inputs and outputs. These
experiments will also allow us to develop initial models of the
relationships between those inputs and outputs.

The Mapping Step

In this step we map the behavior of the key outputs over their
expected operating ranges. We do this through a series of more
detailed experiments called Response Surface experiments.

The Passive Step

In this step we allow the process to run at nominal conditions and
estimate the process stability and capability.

Not all of
the steps
need to be
performed

The first two steps are only needed for new processes or when the
process has undergone some significant engineering change.  There are,
however, many times throughout the life of a process when the third
step is needed. Examples might be: initial process qualification, control
chart development, after minor process adjustments, after schedule
equipment maintenance, etc. 

3.1.1. What is PPC?
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization

3.1.2.What are PPC Studies Used For?

PPC is the core
of any CI
program

Process characterization is an integral part of any continuous
improvement program. There are many steps in that program for
which process characterization is required. These might include:

When process
characterization
is required

when we are bringing a new process or tool into use.●   

when we are bringing a tool or process back up after
scheduled/unscheduled maintenance.

●   

when we want to compare tools or processes.●   

when we want to check the health of our process during the
monitoring phase.

●   

when we are troubleshooting a bad process.●   

The techniques described in this chapter are equally applicable to the
other chapters covered in this Handbook. These include:

Process
characterization
techniques are
applicable in
other areas

calibration●   

process monitoring●   

process improvement●   

process/product comparison●   

reliability●   

3.1.2. What are PPC Studies Used For?
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization

3.1.3.Terminology/Concepts

There are just a few fundamental concepts needed for PPC.
This section will review these ideas briefly and provide
links to other sections in the Handbook where they are
covered in more detail. 

Distribution(location,
spread, shape)

For basic data analysis, we will need to understand how to
estimate location, spread and shape from the data. These
three measures comprise what is known as the distribution
of the data. We will look at both graphical and numerical
techniques.

Process variability We need to thoroughly understand the concept of process
variability. This includes how variation explains the
possible range of expected data values, the various
classifications of variability, and the role that variability
plays in process stability and capability.

Error propagation We also need to understand how variation propagates
through our manufacturing processes and how to
decompose the total observed variation into components
attributable to the contributing sources.

Populations and
sampling

It is important to have an understanding of the various
issues related to sampling. We will define a population and
discuss how to acquire representative random samples from
the population of interest.  We will also discuss a useful
formula for estimating the number of observations required
to answer specific questions.

Modeling For modeling, we will need to know how to identify
important factors and responses.  We will also need to know
how to graphically and quantitatively build models of the
relationships between the factors and responses. 

3.1.3. Terminology/Concepts
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Experiments Finally, we will need to know about the basics of designed
experiments including screening designs and response
surface designs so that we can quantify these relationships.
This topic will receive only a cursory treatment in this
chapter. It is covered in detail in the process improvement
chapter. However, examples of its use are in the case
studies.
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.1.Distribution (Location, Spread and
Shape)

Distributions
are
characterized
by location,
spread and
shape

A fundamental concept in representing any of the outputs from a
production process is that of a distribution. Distributions arise because
any manufacturing process output will not yield the same value every
time it is measured. There will be a natural scattering of the measured
values about some central tendency value. This scattering about a
central value is known as a distribution. A distribution is characterized
by three values:

Location
The location is the expected value of the output being measured.
For a stable process, this is the value around which the process
has stabilized.

Spread
The spread is the expected amount of variation associated with
the output. This tells us the range of possible values that we
would expect to see.

Shape
The shape shows how the variation is distributed about the
location. This tells us if our variation is symmetric about the
mean or if it is skewed or possibly multimodal.

A primary
goal of PPC
is to estimate
the
distributions
of the
process
outputs

One of the primary goals of a PPC study is to characterize our process
outputs in terms of these three measurements. If we can demonstrate
that our process is stabilized about a constant location, with a constant
variance and a known stable shape, then we have a process that is both
predictable and controllable. This is required before we can set up
control charts or conduct experiments.

3.1.3.1. Distribution (Location, Spread and Shape)
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Click on
each item to
read more
detail

The table below shows the most common numerical and graphical
measures of location, spread and shape.

Parameter Numerical Graphical

Location
mean
median

scatter plot
boxplot
histogram

Spread
variance
range
inter-quartile range 

boxplot 
histogram

Shape
skewness
kurtosis

boxplot 
histogram 
probability plot
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.2.Process Variability

Variability
is present
everywhere

All manufacturing and measurement processes exhibit variation. For example, when we take sample
data on the output of a process, such as critical dimensions, oxide thickness, or resistivity, we
observe that all the values are NOT the same. This results in a collection of observed values
distributed about some location value. This is what we call spread or variability. We represent
variability numerically with the variance calculation and graphically with a  histogram.

How does
the
standard
deviation
describe the
spread of
the data?

The standard deviation (square root of the variance) gives insight into the spread of the data through
the use of what is known as the Empirical Rule. This rule (shown in the graph below) is:

Approximately 60-78% of the data are within a distance of one standard deviation from the average
( -s, +s).

Approximately 90-98% of the data are within a distance of two standard deviations from the
average ( -2s, +2s).

More than 99% of the data are within a distance of three standard deviations from the average (
-3s, +3s).

3.1.3.2. Process Variability
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Variability
accumulates
from many
sources

This observed variability is an accumulation of many different sources of variation that have
occurred throughout the manufacturing process. One of the more important activities of process
characterization is to identify and quantify these various sources of variation so that they may be
minimized.

There are
also
different
types

There are not only different sources of variation, but there are also different types of variation. Two
important classifications of variation for the purposes of PPC are controlled variation and
uncontrolled variation.

Click here
to see
examples

CONTROLLED VARIATION

Variation that is characterized by a stable and consistent pattern of variation over time. This
type of variation will be random in nature and will be exhibited by a uniform fluctuation
about a constant level.

UNCONTROLLED VARIATION

Variation that is characterized by a pattern of variation that changes over time and hence is
unpredictable. This type of variation will typically contain some structure.

Stable
processes
only exhibit
controlled
variation

This concept of controlled/uncontrolled variation is important in determining if a process is stable.
A process is deemed stable if it runs in a consistent and predictable manner. This means that the
average process value is constant and the variability is controlled. If the variation is uncontrolled,
then either the process average is changing or the process variation is changing or both. The first
process in the example above is stable; the second is not.

3.1.3.2. Process Variability
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In the course of process characterization we should endeavor to eliminate all sources of uncontrolled
variation. 

3.1.3.2. Process Variability
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts
3.1.3.2. Process Variability

3.1.3.2.1.Controlled/Uncontrolled Variation

Two trend
plots

The two figures below are two trend plots from two different oxide growth processes.
Thirty wafers were sampled from each process: one per day over 30 days. Thickness
at the center was measured on each wafer. The x-axis of each graph is the wafer
number and the y-axis is the film thickness in angstroms.

Examples
of"in
control" and
"out of
control"
processes

The first process is an example of a process that is "in control" with random
fluctuation about a process location of approximately 990. The second process is an
example of a process that is "out of control" with a process location trending upward
after observation 20.

This process
exhibits
controlled
variation.
Note the
random
fluctuation
about a
constant
mean.

3.1.3.2.1. Controlled/Uncontrolled Variation
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This process
exhibits
uncontrolled
variation.
Note the
structure in
the
variation in
the form of
a linear
trend.

3.1.3.2.1. Controlled/Uncontrolled Variation
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.3.Propagating Error

The
variation we
see can
come from
many
sources

When we estimate the variance at a particular process step, this variance
is typically not just a result of the current step, but rather is an
accumulation of variation from previous steps and from measurement
error. Therefore, an important question that we need to answer in PPC is
how the variation from the different sources accumulates. This will
allow us to partition the total variation and assign the parts to the
various sources. Then we can attack the sources that contribute the
most.

How do I
partition the
error?

Usually we can model the contribution of the various sources of error to
the total error through a simple linear relationship. If we have a simple
linear relationship between two variables, say, 

then the variance associated with, y, is given by,

.

If the variables are not correlated, then there is no covariance and the
last term in the above equation drops off.  A good example of this is the
case in which we have both process error and measurement error. Since
these are usually independent of each other, the total observed variance
is just the sum of the variances for process and measurement.
Remember to never add standard deviations, we must add variances.

How do I
calculate the
individual
components?

Of course, we rarely have the individual components of variation and
wish to know the total variation. Usually, we have an estimate of the
overall variance and wish to break that variance down into its individual
components. This is known as components of variance estimation and is
dealt with in detail in the  analysis of variance page later in this chapter.

3.1.3.3. Propagating Error
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3.1.3.3. Propagating Error
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.4.Populations and Sampling

We take
samples
from a
target
population
and make
inferences

In survey sampling, if you want to know what everyone thinks about a
particular topic, you can just ask everyone and record their answers.
Depending on how you define the term, everyone (all the adults in a
town, all the males in the USA, etc.), it may be impossible or
impractical to survey everyone.  The other option is to survey a small
group (Sample) of the people whose opinions you are interested in
(Target Population) , record their opinions and use that information to
make inferences about what everyone thinks. Opinion pollsters have
developed a whole body of tools for doing just that and many of those
tools apply to manufacturing as well.  We can use these sampling
techniques to take a few measurements from a process and make
statements about the behavior of that process.

Facts about
a sample
are not
necessarily
facts about
a population

If it weren't for process variation we could just take one sample and
everything would be known about the target population.  Unfortunately
this is never the case.  We cannot take facts about the sample to be facts
about the population.  Our job is to reach appropriate conclusions about
the population despite this variation.  The more observations we take
from a population, the more our sample data resembles the population.
When we have reached the point at which facts about the sample are
reasonable approximations of facts about the population, then we say the
sample is adequate.

Four
attributes of
samples

Adequacy of a sample depends on the following four attributes:

Representativeness of the sample (is it random?)●   

Size of the sample●   

Variability in the population●   

Desired precision of the estimates●   

We will learn about choosing representative samples of adequate size in
the section on  defining sampling plans.

3.1.3.4. Populations and Sampling
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3.1.3.4. Populations and Sampling
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.5.Process Models

Black box
model and
fishbone
diagram

As we will see in Section 3 of this chapter, one of the first steps in PPC is to model the
process that is under investigation. Two very useful tools for doing this are the
black-box model and the fishbone diagram.

We use the
black-box
model to
describe
our
processes

We can use the simple black-box model, shown below, to describe most of the tools and
processes we will encounter in PPC.  The process will be stimulated by inputs. These
inputs can either be controlled (such as recipe or machine settings) or uncontrolled (such
as humidity, operators, power fluctuations, etc.). These inputs interact with our process
and produce outputs. These outputs are usually some characteristic of our process that
we can measure. The measurable inputs and outputs can be sampled in order to observe
and understand how they behave and relate to each other.

Diagram
of the
black box
model

3.1.3.5. Process Models
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These inputs and outputs are also known as Factors and Responses, respectively. 

Factors 

Observed inputs used to explain response behavior (also called explanatory
variables). Factors may be fixed-level controlled inputs or sampled uncontrolled
inputs. 

Responses 

Sampled process outputs. Responses may also be functions of sampled outputs
such as average thickness or uniformity. 

Factors
and
Responses
are further
classified
by
variable
type

We further categorize factors and responses according to their Variable Type, which
indicates the amount of information they contain. As the name implies, this classification
is useful for data modeling activities and is critical for selecting the proper analysis
technique. The table below summarizes this categorization. The types are listed in order
of the amount of information they contain with Measurement containing the most
information and Nominal containing the least.

3.1.3.5. Process Models
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Table
describing
the
different
variable
types

Type Description Example

Measurement
discrete/continuous, order is
important,  infinite range

particle count, oxide thickness,
pressure, temperature

Ordinal
discrete, order is important, finite
range

run #, wafer #, site, bin

Nominal
discrete, no order, very few
possible values

good/bad, bin,
high/medium/low, shift,
operator

 

Fishbone
diagrams
help to
decompose
complexity

We can use the fishbone diagram to further refine the modeling process. Fishbone
diagrams are very useful for decomposing the complexity of our manufacturing
processes. Typically, we choose a process characteristic (either Factors or Responses)
and list out the general categories that may influence the characteristic (such as material,
machine method, environment, etc.), and then provide more specific detail within each
category. Examples of how to do this are given in the section on Case Studies.

Sample
fishbone
diagram

3.1.3.5. Process Models
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.6.Experiments and Experimental
Design

Factors and
responses

Besides just observing our processes for evidence of stability and
capability, we quite often want to know about the relationships
between the various Factors and Responses.

We look for
correlations
and causal
relationships

There are generally two types of relationships that we are interested in
for purposes of PPC.  They are: 

Correlation

Two variables are said to be correlated if an observed change in
the level of one variable is accompanied by a change in the level
of another variable.  The change may be in the same direction
(positive correlation) or in the opposite direction (negative
correlation).

Causality

There is a causal relationship between two variables if a change
in the level of one variable causes a change in the other variable.

Note that correlation does not imply causality.  It is possible for two
variables to be associated with each other without one of them causing
the observed behavior in the other.  When this is the case it is usually
because there is a third (possibly unknown) causal factor. 

Our goal is to
find causal
relationships

Generally, our ultimate goal in PPC is to find and quantify causal
relationships. Once this is done, we can then take advantage of these
relationships to improve and control our processes.

Find
correlations
and then try
to establish
causal
relationships

Generally, we first need to find and explore correlations and then try to
establish causal relationships. It is much easier to find correlations as
these are just properties of the data. It is much more difficult to prove
causality as this additionally requires sound engineering judgment. 
There is a systematic procedure we can use to accomplish this in an
efficient manner. We do this through the use of designed experiments.

3.1.3.6. Experiments and Experimental Design
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First we
screen, then
we build
models

When we have many potential factors and we want to see which ones
are correlated and have the potential to be involved in causal
relationships with the responses, we use screening designs to reduce
the number of candidates.  Once we have a reduced set of influential
factors, we can use response surface designs to model the causal
relationships with the responses across the operating range of the
process factors.

Techniques
discussed in
process
improvement
chapter

The techniques are covered in detail in the  process improvement
section and will not be discussed much in this chapter. Examples of
how the techniques are used in PPC are given in the Case Studies.

3.1.3.6. Experiments and Experimental Design
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization

3.1.4.PPC Steps

Follow these
4  steps to
ensure
efficient use
of resources

The primary activity of a PPC is to collect and analyze data so that we
may draw conclusions about and ultimately improve our production
processes. In many industrial applications, access to production facilities
for the purposes of conducting experiments is very limited.  Thus we
must be very careful in how we go about these activities so that we can
be sure of doing them in a cost-effective manner.

Step 1: Plan The most important step by far is the planning step. By faithfully
executing this step, we will ensure that we only collect data in the most
efficient manner possible and still support the goals of the PPC.
Planning should generate the following:

a statement of the goals●   

a descriptive process model (a list of process inputs and outputs)●   

a description of the sampling plan (including a description of the
procedure and settings to be used to run the process during the
study with clear assignments for each person involved)

●   

a description of the method of data collection, tasks and
responsibilities, formatting, and storage

●   

an outline of the data analysis●   

All decisions that affect how the characterization will be conducted
should be made during the planning phase. The process characterization
should be conducted according to this plan, with all exceptions noted.

Step 2:
Collect

Data collection is essentially just the execution of the sampling plan part
of the previous step. If a good job were done in the planning step, then
this step should be pretty straightforward. It is important to execute to
the plan as closely as possible and to note any exceptions.

Step 3:
Analyze and
interpret

This is the combination of quantitative (regression, ANOVA,
correlation, etc.) and graphical (histograms, scatter plots, box plots, etc.)
analysis techniques that are applied to the collected data in order to
accomplish the goals of the PPC.

3.1.4. PPC Steps
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Step 4:
Report

Reporting is an important step that should not be overlooked.  By
creating an informative report and archiving it in an accessible place, we
can ensure that others have access to the information generated by the
PPC. Often, the work involved in a PPC can be minimized by using the
results of other, similar studies. Examples of PPC reports can be found
in the Case Studies section.

Further
information

The planning and data collection steps are described in detail in the data
collection section. The analysis and interpretation steps are covered in
detail in the analysis section. Examples of the reporting step can be seen
in the Case Studies.

3.1.4. PPC Steps
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3. Production Process Characterization

3.2.Assumptions / Prerequisites

Primary
goal is to
identify and
quantify
sources of
variation

The primary goal of PPC is to identify and quantify sources of variation.
Only by doing this will we be able to define an effective plan for
variation reduction and process improvement. Sometimes, in order to
achieve this goal, we must first build mathematical/statistical models of
our processes. In these models we will identify influential factors and
the responses on which they have an effect. We will use these models to
understand how the sources of variation are influenced by the important
factors. This subsection will review many of the modeling tools we have
at our disposal to accomplish these tasks. In particular, the models
covered in this section are linear models, Analysis of Variance
(ANOVA) models and discrete models.

Contents:
Section 2

General Assumptions 1.  

Continuous Linear2.  

Analysis of Variance 

One-Way1.  

Crossed2.  

Nested 3.  

3.  

Discrete4.  

3.2. Assumptions / Prerequisites
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3. Production Process Characterization
3.2. Assumptions / Prerequisites

3.2.1.General Assumptions

Assumption:
process is sum
of a systematic
component and
a random
component

In order to employ the modeling techniques described in this section,
there are a few assumptions about the process under study that must
be made. First, we must assume that the process can adequately be
modeled as the sum of a systematic component and a random
component. The systematic component is the mathematical model
part and the random component is the error or noise present in the
system. We also assume that the systematic component is fixed over
the range of operating conditions and that the random component has
a constant location, spread and distributional form.

Assumption:
data used to fit
these models
are
representative
of the process
being modeled

Finally, we assume that the data used to fit these models are
representative of the process being modeled. As a result, we must
additionally assume that the measurement system used to collect the
data has been studied and proven to be capable of making
measurements to the desired precision and accuracy.  If this is not the
case, refer to the Measurement Capability Section of this Handbook.

3.2.1. General Assumptions
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3. Production Process Characterization
3.2. Assumptions / Prerequisites

3.2.2.Continuous Linear Model

Description The continuous linear model (CLM) is probably the most commonly used
model in PPC. It is applicable in many instances ranging from simple
control charts to response surface models.

The CLM is a mathematical function that relates explanatory variables
(either discrete or continuous) to a single continuous response variable.  It is
called linear because the coefficients of the terms are expressed as a linear
sum. The terms themselves do not have to be linear.

Model The general form of the CLM is:

This equation just says that if we have p explanatory variables then the
response is modeled by a constant term plus a sum of functions of those
explanatory variables, plus some random error term. This will become clear
as we look at some examples below.

Estimation The coefficients for the parameters in the CLM are estimated by the method
of least squares. This is a method that gives estimates which minimize the
sum of the squared distances from the observations to the fitted line or
plane. See the chapter on Process Modeling for a more complete discussion
on estimating the coefficients for these models.

Testing The tests for the CLM involve testing that the model as a whole is a good
representation of the process and whether any of the coefficients in the
model are zero or have no effect on the overall fit. Again, the details for
testing are given in the chapter on Process Modeling.

Assumptions For estimation purposes, there are no additional assumptions necessary for
the CLM beyond those stated in the assumptions section. For testing
purposes, however, it is necessary to assume that the error term is
adequately modeled by a Gaussian distribution.

3.2.2. Continuous Linear Model
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Uses The CLM has many uses such as building predictive process models over a
range of process settings that exhibit linear behavior, control charts, process
capability, building models from the data produced by designed
experiments, and building response surface models for automated process
control applications.

Examples Shewhart Control Chart - The simplest example of a very common usage
of the CLM is the underlying model used for Shewhart control charts. This
model assumes that the process parameter being measured is a constant with
additive Gaussian noise and is given by:

Diffusion Furnace - Suppose we want to model the average wafer sheet
resistance as a function of the location or zone in a furnace tube, the
temperature, and the anneal time. In this case, let there be 3 distinct zones
(front, center, back) and temperature and time are continuous explanatory
variables.  This model is given by the CLM:

Diffusion Furnace (cont.) - Usually, the fitted line for the average wafer
sheet resistance is not straight but has some curvature to it. This can be
accommodated by adding a quadratic term for the time parameter as
follows:

3.2.2. Continuous Linear Model
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3. Production Process Characterization
3.2. Assumptions / Prerequisites

3.2.3.Analysis of Variance Models
(ANOVA)

ANOVA
allows us to
compare the
effects of
multiple
levels of
multiple
factors

One of the most common analysis activities in PPC is comparison. We
often compare the performance of similar tools or processes. We also
compare the effect of different treatments such as recipe settings. When
we compare two things, such as two tools running the same operation,
we use  comparison techniques. When we want to compare multiple
things, like multiple tools running the same operation or multiple tools
with multiple operators running the same operation, we turn to ANOVA
techniques to perform the analysis.

ANOVA
splits the
data into
components

The easiest way to understand ANOVA is through a concept known as
value splitting. ANOVA splits the observed data values into components
that are attributable to the different levels of the factors. Value splitting
is best explained by example.

Example:
Turned Pins

The simplest example of value splitting is when we just have one level
of one factor. Suppose we have a turning operation in a machine shop
where we are turning pins to a diameter of .125 +/- .005 inches. 
Throughout the course of a day we take five samples of pins and obtain
the following measurements: .125, .127, .124, .126, .128.

We can split these data values into a common value (mean) and
residuals (what's left over) as follows:

.125 .127 .124 .126 .128

=

.126 .126 .126 .126 .126

+

-.001 .001 -.002 .000 .002

3.2.3. Analysis of Variance Models (ANOVA)
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From these tables, also called overlays, we can easily calculate the
location and spread of the data as follows:

mean = .126

std. deviation = .0016.

Other
layouts

While the above example is a trivial structural layout, it illustrates how
we can split data values into its components. In the next sections, we
will look at more complicated structural layouts for the data. In
particular we will look at multiple levels of one factor ( One-Way
ANOVA ) and multiple levels of two factors (Two-Way ANOVA)
where the factors are crossed and  nested.

3.2.3. Analysis of Variance Models (ANOVA)
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3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)

3.2.3.1.One-Way ANOVA

Description We say we have a one-way layout when we have a single factor with
several levels and multiple observations at each level. With this kind of
layout we can calculate the mean of the observations within each level
of our factor. The residuals will tell us about the variation within each
level. We can also average the means of each level to obtain a grand
mean. We can then look at the deviation of the mean of each level from
the grand mean to understand something about the level effects. Finally,
we can compare the variation within levels to the variation across levels.
Hence the name analysis of variance.

Model It is easy to model all of this with an equation of the form:

This equation indicates that the jth data value, from level i, is the sum of
three components: the common value (grand mean), the level effect (the
deviation of each level mean from the grand mean), and the residual
(what's left over).

Estimation

click here to
see details
of one-way
value
splitting

Estimation for the one-way layout can be performed one of two ways.
First, we can calculate the total variation, within-level variation and
across-level variation. These can be summarized in a table as shown
below and tests can be made to determine if the factor levels are
significant. The value splitting example illustrates the calculations
involved.

3.2.3.1. One-Way ANOVA
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ANOVA
table for
one-way
case

In general, the ANOVA table for the one-way case is given by:

Source Sum of Squares Degrees of
Freedom Mean Square

Factor 
levels

I-1
/(I-1)

residuals I(J-1)
/I(J-1)

corrected total IJ-1  

Level effects
must sum to
zero

The other way is through the use of CLM techniques. If you look at the
model above you will notice that it is in the form of a CLM. The only
problem is that the model is saturated and no unique solution exists. We
overcome this problem by applying a constraint to the model. Since the
level effects are just deviations from the grand mean, they must sum to
zero. By applying the constraint that the level effects must sum to zero,
we can now obtain a unique solution to the CLM equations. Most
analysis programs will handle this for you automatically. See the chapter
on  Process Modeling for a more complete discussion on estimating the
coefficients for these models.

Testing The testing we want to do in this case is to see if the observed data
support the hypothesis that the levels of the factor are significantly
different from each other. The way we do this is by comparing the
within-level variancs to the between-level variance.

If we assume that the observations within each level have the same
variance, we can calculate the variance within each level and pool these
together to obtain an estimate of the overall population variance. This
works out to be the mean square of the residuals.

Similarly, if there really were no level effect, the mean square across
levels would be an estimate of the overall variance. Therefore, if there
really were no level effect, these two estimates would be just two
different ways to estimate the same parameter and should be close
numerically. However, if there is a level effect, the level mean square
will be higher than the residual mean square.

3.2.3.1. One-Way ANOVA
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It can be shown that given the assumptions about the data stated below,
the ratio of the level mean square and the residual mean square follows
an F distribution with degrees of freedom as shown in the ANOVA
table. If the F-value is significant at a given level of confidence (greater
than the cut-off value in a F-Table), then there is a level effect present in
the data.

Assumptions For estimation purposes, we assume the data can adequately be modeled
as the sum of a deterministic component and a random component. We
further assume that the fixed (deterministic) component can be modeled
as the sum of an overall mean and some contribution from the factor
level. Finally, it is assumed that the random component can be modeled
with a Gaussian distribution with fixed location and spread.

Uses The one-way ANOVA is useful when we want to compare the effect of
multiple levels of one factor and we have multiple observations at each
level. The factor can be either discrete (different machine, different
plants, different shifts, etc.) or continuous (different gas flows,
temperatures, etc.).

Example Let's extend the machining example by assuming that we have five
different machines making the same part and we take five random
samples from each machine to obtain the following diameter data:

Machine
1 2 3 4 5

.125 .118 .123 .126 .118

.127 .122 .125 .128 .129

.125 .120 .125 .126 .127

.126 .124 .124 .127 .120

.128 .119 .126 .129 .121

Analyze Using ANOVA software or the techniques of the value-splitting
example, we summarize the data into an ANOVA table as follows:

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-value

Factor
levels

.000137 4 .000034 4.86 > 2.87

residuals .000132 20 .000007  
corrected total .000269 24   

3.2.3.1. One-Way ANOVA
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Test By dividing the Factor-level mean square by the residual mean square,
we obtain a F-value of 4.86 which is greater than the cut-off value of
2.87 for the F-distribution at 4 and 20 degrees of freedom and 95%
confidence. Therefore, there is sufficient evidence to reject the
hypothesis that the levels are all the same.

Conclusion From the analysis of these data we can conclude that the factor
"machine" has an effect. There is a statistically significant difference in
the pin diameters across the machines on which they were
manufactured.

3.2.3.1. One-Way ANOVA
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3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)
3.2.3.1. One-Way ANOVA

3.2.3.1.1.One-Way Value-Splitting

Example Let's use the data from the machining example to illustrate how to use
the techniques of value-splitting to break each data value into its
component parts. Once we have the component parts, it is then a trivial
matter to calculate the sums of squares and form the F-value for the
test. 
 

Machine
1 2 3 4 5

.125 .118 .123 .126 .118

.127 .122 .125 .128 .129

.125 .120 .125 .126 .127

.126 .124 .124 .127 .120

.128 .119 .126 .129 .121

Calculate
level-means

Remember from our model,  , we say each

observation is the sum of a common value, a level effect and a residual
value. Value-splitting just breaks each observation into its component
parts. The first step in value-splitting is to calculate the mean values
(rounding to the nearest thousandth) within each machine to get the
level means. 

Machine
1 2 3 4 5

.1262 .1206 .1246 .1272 .123

Sweep level
means

We can then sweep (subtract the level mean from each associated data
value) the means through the original data table to get the residuals:

3.2.3.1.1. One-Way Value-Splitting
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Machine
1 2 3 4 5

-.0012 -.0026 -.0016 -.0012 -.005
.0008 .0014 .0004 .0008 .006

-.0012 -.0006 .0004 -.0012 .004
-.0002 .0034 -.0006 -.0002 -.003
.0018 -.0016 .0014 .0018 -.002

Calculate
the grand
mean

The next step is to calculate the grand mean from the individual
machine means as:

Grand
Mean
.12432

Sweep the
grand mean
through the
level means

Finally, we can sweep the grand mean through the individual level
means to obtain the level effects:

Machine
1 2 3 4 5

.00188 -.00372 .00028 .00288 -.00132

It is easy to verify that the original data table can be constructed by
adding the overall mean, the machine effect and the appropriate
residual.

Calculate
ANOVA
values

Now that we have the data values split and the overlays created, the next
step is to calculate the various values in the One-Way ANOVA table.
We have three values to calculate for each overlay. They are the sums of
squares, the degrees of freedom, and the mean squares.

Total sum of
squares

The total sum of squares is calculated by summing the squares of all the
data values and subtracting from this number the square of the grand
mean times the total number of data values. We usually don't calculate
the mean square for the total sum of squares because we don't use this
value in any statistical test.

3.2.3.1.1. One-Way Value-Splitting
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Residual
sum of
squares,
degrees of
freedom and
mean square

The residual sum of squares is calculated by summing the squares of the
residual values. This is equal to .000132. The degrees of freedom is the
number of unconstrained values. Since the residuals for each level of the
factor must sum to zero, once we know four of them, the last one is
determined. This means we have four unconstrained values for each
level, or 20 degrees of freedom. This gives a mean square of .000007.

Level sum of
squares,
degrees of
freedom and
mean square

Finally, to obtain the sum of squares for the levels, we sum the squares
of each value in the level effect overlay and multiply the sum by the
number of observations for each level (in this case 5) to obtain a value
of .000137. Since the deviations from the level means must sum to zero,
we have only four unconstrained values so the degrees of freedom for
level effects is 4. This produces a mean square of .000034.

Calculate
F-value

The last step is to calculate the F-value and perform the test of equal
level means. The F- value is just the level mean square divided by the
residual mean square. In this case the F-value=4.86. If we look in an
F-table for 4 and 20 degrees of freedom at 95% confidence, we see that
the critical value is 2.87, which means that we have a significant result
and that there is thus evidence of a strong machine effect. By looking at
the level-effect overlay we see that this is driven by machines 2 and 4.

3.2.3.1.1. One-Way Value-Splitting

http://www.itl.nist.gov/div898/handbook/ppc/section2/ppc2311.htm (3 of 3) [5/1/2006 10:17:24 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)

3.2.3.2.Two-Way Crossed ANOVA

Description When we have two factors with at least two levels and one or more
observations at each level, we say we have a two-way layout. We say
that the two-way layout is crossed when every level of Factor A occurs
with every level of Factor B. With this kind of layout we can estimate
the effect of each factor (Main Effects) as well as any interaction
between the factors.

Model If we assume that we have K observations at each combination of I
levels of Factor A and J levels of Factor B, then we can model the
two-way layout with an equation of the form:

This equation just says that the kth data value for the jth level of Factor
B and the ith level of Factor A is the sum of five components: the
common value (grand mean), the level effect for Factor A, the level
effect for Factor B, the interaction effect, and the residual. Note that (ab)
does not mean multiplication; rather that there is interaction between the
two factors.

Estimation Like the one-way case, the estimation for the two-way layout can be
done either by calculating the variance components or by using CLM
techniques.

Click here
for the value
splitting
example

For the variance components methods we display the data in a two
dimensional table with the levels of Factor A in columns and the levels
of Factor B in rows. The replicate observations fill each cell. We can
sweep out the common value, the row effects, the column effects, the
interaction effects and the residuals using  value-splitting techniques.
Sums of squares can be calculated and summarized in an ANOVA table
as shown below.

3.2.3.2. Two-Way Crossed ANOVA
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Source Sum of Squares
Degrees

of
Freedom

Mean Square

rows I-1
/(I-1)

columns J-1
/(J-1)

interaction (I-1)(J-1)

/(I-1)(J-1)

residuals IJ(K-1) /IJ(K-1)

corrected
total

IJK-1  

We can use CLM techniques to do the estimation. We still have the
problem that the model is saturated and no unique solution exists. We
overcome this problem by applying the constraints to the model that the
two main effects and interaction effects each sum to zero.

Testing Like testing in the one-way case, we are testing that two main effects
and the interaction are zero. Again we just form a ratio of each main
effect mean square and the interaction mean square to the residual mean
square. If the assumptions stated below are true then those ratios follow
an F-distribution and the test is performed by comparing the F-ratios to
values in an F-table with the appropriate degrees of freedom and
confidence level.

Assumptions For estimation purposes, we assume the data can be adequately modeled
as described in the model above. It is assumed that the random
component can be modeled with a Gaussian distribution with fixed
location and spread.

Uses The two-way crossed ANOVA is useful when we want to compare the
effect of multiple levels of two factors and we can combine every level
of one factor with every level of the other factor. If we have multiple
observations at each level, then we can also estimate the effects of
interaction between the two factors.

3.2.3.2. Two-Way Crossed ANOVA
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Example Let's extend the one-way machining example by assuming that we want
to test if there are any differences in pin diameters due to different types
of coolant. We still have five different machines making the same part
and we take five samples from each machine for each coolant type to
obtain the following data:

Machine

Coolant
A

1 2 3 4 5
.125 .118 .123 .126 .118
.127 .122 .125 .128 .129
.125 .120 .125 .126 .127
.126 .124 .124 .127 .120
.128 .119 .126 .129 .121

Coolant
B

.124 .116 .122 .126 .125

.128 .125 .121 .129 .123

.127 .119 .124 .125 .114

.126 .125 .126 .130 .124

.129 .120 .125 .124 .117

Analyze For analysis details see the crossed two-way value splitting example. 
We can summarize the analysis results in an ANOVA table as follows: 

Source Sum of
Squares

Degrees of
Freedom Mean Square F-value

machine .000303 4 .000076 8.8 > 2.61
coolant .00000392 1 .00000392 .45 < 4.08

interaction .00001468 4 .00000367 .42 < 2.61
residuals .000346 40 .0000087  

corrected total .000668 49   

Test By dividing the mean square for machine by the mean square for
residuals we obtain an F-value of 8.8 which is greater  than the cut-off
value of  2.61 for 4 and 40 degrees of freedom and a confidence of
95%.  Likewise the F-values for Coolant and Interaction, obtained by
dividing their mean squares by the residual mean square, are less than
their respective cut-off values.

3.2.3.2. Two-Way Crossed ANOVA
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Conclusion From the ANOVA table we can conclude that machine is the most
important factor and is statistically significant. Coolant is not significant
and neither is the interaction. These results would lead us to believe that
some tool-matching efforts would be useful for improving this process.

3.2.3.2. Two-Way Crossed ANOVA
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3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)
3.2.3.2. Two-Way Crossed ANOVA

3.2.3.2.1.Two-way Crossed Value-Splitting
Example

Example:
Coolant is
completely
crossed with
machine

The data table below is five samples each collected from five different
lathes each running two different types of coolant. The measurement is
the diameter of a turned pin.

Machine

Coolant
A

1 2 3 4 5
.125 .118 .123 .126 .118
.127 .122 .125 .128 .129
.125 .120 .125 .126 .127
.126 .124 .124 .127 .120
.128 .119 .126 .129 .121

Coolant
B

.124 .116 .122 .126 .125

.128 .125 .121 .129 .123

.127 .119 .124 .125 .114

.126 .125 .126 .130 .124

.129 .120 .125 .124 .117

For the crossed two-way case, the first thing we need to do is to sweep
the cell means from the data table to obtain the residual values. This is
shown in the tables below.

3.2.3.2.1. Two-way Crossed Value-Splitting Example
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The first
step is to
sweep out
the cell
means to
obtain the
residuals
and means

Machine
1 2 3 4 5

A .1262 .1206 .1246 .1272 .123
B .1268 .121 .1236 .1268 .1206

Coolant
A

-.0012 -.0026 -.0016 -.0012 -.005
.0008 .0014 .0004 .0008 .006

-.0012 -.0006 .0004 -.0012 .004
-.0002 .0034 -.0006 -.0002 -.003
.0018 -.0016 .0014 .0018 -.002

Coolant
B

-.0028 -.005 -.0016 -.0008 .0044
.0012 .004 -.0026 .0022 .0024
.0002 -.002 .0004 -.0018 -.0066

-.0008 .004 .0024 .0032 .0034
.0022 -.001 .0014 -.0028 -.0036

Sweep the
row means

The next step is to sweep out the row means. This gives the table below.

Machine
1 2 3 4 5

A .1243 .0019 -.0037 .0003 .0029 -.0013
B .1238 .003 -.0028 -.0002 .003 -.0032

Sweep the
column
means

Finally, we sweep the column means to obtain the grand mean, row
(coolant) effects, column (machine) effects and the interaction effects.

Machine
1 2 3 4 5

.1241 .0025 -.0033 .00005 .003 -.0023
A .0003 -.0006 -.0005 .00025 .0000 .001
B -.0003 .0006 .0005 -.00025 .0000 -.001

3.2.3.2.1. Two-way Crossed Value-Splitting Example
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What do
these tables
tell us?

By looking at the table of residuals, we see that the residuals for coolant
B tend to be a little higher than for coolant A. This implies that there
may be more variability in diameter when we use coolant B. From the
effects table above, we see that machines 2 and 5 produce smaller pin
diameters than the other machines. There is also a very slight coolant
effect but the machine effect is larger. Finally, there also appears to be
slight interaction effects. For instance, machines 1 and 2 had smaller
diameters with coolant A but the opposite was true for machines 3,4 and
5.

Calculate
sums of
squares and
mean
squares

We can calculate the values for the ANOVA table according to the
formulae in the table on the crossed two-way page. This gives the table
below. From the F-values we see that the machine effect is significant
but the coolant and the interaction are not.

Source Sums of
Squares

Degrees of
Freedom

Mean
Square F-value

Machine .000303 4 .000076 8.8 > 2.61
Coolant .00000392 1 .00000392 .45 < 4.08

Interaction .00001468 4 .00000367 .42 < 2.61
Residual .000346 40 .0000087  

Corrected
Total .000668 49   

3.2.3.2.1. Two-way Crossed Value-Splitting Example
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3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)

3.2.3.3.Two-Way Nested ANOVA

Description Sometimes, constraints prevent us from crossing every level of one factor
with every level of the other factor. In these cases we are forced into what
is known as a nested layout. We say we have a nested layout when fewer
than all levels of one factor occur within each level of the other factor. An
example of this might be if we want to study the effects of different
machines and different operators on some output characteristic, but we
can't have the operators change the machines they run. In this case, each
operator is not crossed with each machine but rather only runs one
machine.

Model If Factor B is nested within Factor A, then a level of Factor B can only
occur within one level of Factor A and there can be no interaction. This
gives the following model:

This equation indicates that each data value is the sum of a common value
(grand mean), the level effect for Factor A, the level effect of Factor B
nested Factor A, and the residual.

Estimation For a nested design we typically use variance components methods to
perform the analysis.  We can sweep out the common value, the row
effects, the column effects and the residuals using  value-splitting
techniques. Sums of squares can be calculated and summarized in an
ANOVA table as shown below.

Click here
for nested
value-
splitting
example

It is important to note that with this type of layout, since each level of one
factor is only present with one level of the other factor, we can't estimate
interaction between the two.

3.2.3.3. Two-Way Nested ANOVA
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ANOVA
table for
nested case

Source Sum of Squares Degrees of
Freedom Mean Square

rows I-1
/(I-1)

columns I(J-1)
/I(J-1)

residuals IJ(K-1) /IJ(K-1)

corrected
total

IJK-1  

As with the crossed layout, we can also use CLM techniques. We still have
the problem that the model is saturated and no unique solution exists. We
overcome this problem by applying to the model the constraints that the
two main effects sum to zero.

Testing We are testing that two main effects are zero. Again we just form a ratio of
each main effect mean square to the residual mean square. If the
assumptions stated below are true then those ratios follow an F-distribution
and the test is performed by comparing the F-ratios to values in an F-table
with the appropriate degrees of freedom and confidence level.

Assumptions For estimation purposes, we assume the data can be adequately modeled as
described in the model above. It is assumed that the random component can
be modeled with a Gaussian distribution with fixed location and spread.

Uses The two-way nested ANOVA is useful when we are constrained from
combining all the levels of one factor with all of the levels of the other
factor. These designs are most useful when we have what is called a
random effects situation. When the levels of a factor are chosen at random
rather than selected intentionally, we say we have a random effects model.
An example of this is when we select lots from a production run, then
select units from the lot. Here the units are nested within lots and the effect
of each factor is random.

3.2.3.3. Two-Way Nested ANOVA
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Example Let's change the two-way machining example slightly by assuming that we
have five different machines making the same part and each machine has
two operators, one for the day shift and one for the night shift. We take five
samples from each machine for each operator to obtain the following data:

Machine

Operator
Day

1 2 3 4 5
.125 .118 .123 .126 .118
.127 .122 .125 .128 .129
.125 .120 .125 .126 .127
.126 .124 .124 .127 .120
.128 .119 .126 .129 .121

Operator
Night

.124 .116 .122 .126 .125

.128 .125 .121 .129 .123

.127 .119 .124 .125 .114

.126 .125 .126 .130 .124

.129 .120 .125 .124 .117

Analyze For analysis details see the nested two-way value splitting example. We
can summarize the analysis results in an ANOVA table as follows: 

Source Sum of
Squares

Degrees of
Freedom Mean Square F-value

Machine .000303 4 .0000758
8.77 >
2.61

Operator(Machine) .0000186 5 .00000372
.428 <
2.45

Residuals .000346 40 .0000087  
Corrected Total .000668 49   

Test By dividing the mean square for machine by the mean square for residuals
we obtain an F-value of 8.5 which is greater than the cut-off value of  2.61
for 4 and 40 degrees of freedom and a confidence of 95%.  Likewise the
F-value for Operator(Machine), obtained by dividing its mean square by
the residual mean square is less than the cut-off value of 2.45 for 5 and 40
degrees of freedom and 95% confidence.

3.2.3.3. Two-Way Nested ANOVA
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Conclusion From the ANOVA table we can conclude that the Machine is the most
important factor and is statistically significant. The effect of Operator
nested within Machine is not statistically significant. Again, any
improvement activities should be focused on the tools.

3.2.3.3. Two-Way Nested ANOVA
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3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)
3.2.3.3. Two-Way Nested ANOVA

3.2.3.3.1.Two-Way Nested Value-Splitting Example

Example:
Operator
is nested
within
machine.

The data table below contains data collected from five different lathes, each run by two
different operators. Note we are concerned here with the effect of operators, so the layout is
nested. If we were concerned with shift instead of operator, the layout would be crossed.
The measurement is the diameter of a turned pin.

Machine Operator
Sample

1 2 3 4 5

1
Day .125 .127 .125 .126 .128
Night .124 .128 .127 .126 .129

2
Day .118 .122 .120 .124 .119
Night .116 .125 .119 .125 .120

3
Day .123 .125 .125 .124 .126
Night .122 .121 .124 .126 .125

4
Day .126 .128 .126 .127 .129
Night .126 .129 .125 .130 .124

5
Day .118 .129 .127 .120 .121
Night .125 .123 .114 .124 .117

For the nested two-way case, just as in the crossed case, the first thing we need to do is to
sweep the cell means from the data table to obtain the residual values. We then sweep the
nested factor (Operator) and the top level factor (Machine) to obtain the table below.

Machine Operator
Common Machine Operator

 Sample
 1 2 3 4 5

1
Day

.12404

.00246
-.0003 -.0012 .0008 -.0012 -.0002 .0018

Night .0003 -.0028 .0012 .002 -.0008 .0022

2
Day

-.00324
-.0002 -.0026 .0014 -.0006 .0034 -.0016

Night .0002 -.005 .004 -.002 .004 -.001

3
Day

.00006
.0005 -.0016 .0004 .0004 -.0006 .0014

Night -.0005 -.0016 -.0026 .0004 .0024 .0014

4
Day

.00296
.0002 -.0012 .0008 -.0012 -.002 .0018

Night -.0002 -.0008 .0022 -.0018 .0032 -.0028
Day .0012 -.005 .006 .004 -.003 -.002

3.2.3.3.1. Two-Way Nested Value-Splitting Example
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5 -.00224Night -.0012 .0044 .0024 -.0066 .0034 -.0036

What
does this
table tell
us?

By looking at the residuals we see that machines 2 and 5 have the greatest variability.
There does not appear to be much of an operator effect but there is clearly a strong machine
effect.

Calculate
sums of
squares
and
mean
squares

We can calculate the values for the ANOVA table according to the formulae in the table on
the nested two-way page. This produces the table below. From the F-values we see that the
machine effect is significant but the operator effect is not. (Here it is assumed that both
factors are fixed).

Source Sums of Squares Degrees of Freedom Mean Square F-value
Machine .000303 4 .0000758 8.77 > 2.61

Operator(Machine) .0000186 5 .00000372 .428 < 2.45
Residual .000346 40 .0000087  

Corrected Total .000668 49   

3.2.3.3.1. Two-Way Nested Value-Splitting Example
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3. Production Process Characterization
3.2. Assumptions / Prerequisites

3.2.4.Discrete Models

Description There are many instances when we are faced with the analysis of
discrete data rather than continuous data. Examples of this are yield
(good/bad), speed bins (slow/fast/faster/fastest), survey results
(favor/oppose), etc. We then try to explain the discrete outcomes with
some combination of discrete and/or continuous explanatory variables.
In this situation the modeling techniques we have learned so far (CLM
and ANOVA) are no longer appropriate.

Contingency
table
analysis and
log-linear
model

There are two primary methods available for the analysis of discrete
response data. The first one applies to situations in which we have
discrete explanatory variables and discrete responses and is known as
Contingency Table Analysis. The model for this is covered in detail in
this section. The second model applies when we have both discrete and
continuous explanatory variables and is referred to as a Log-Linear
Model. That model is beyond the scope of this Handbook, but interested
readers should refer to the reference section of this chapter for a list of
useful books on the topic.

Model Suppose we have n individuals that we classify according to two
criteria, A and B. Suppose there are r levels of criterion A and s levels
of criterion B. These responses can be displayed in an r x s table. For
example, suppose we have a box of manufactured parts that we classify
as good or bad and whether they came from supplier 1, 2 or 3.

Now, each cell of this table will have a count of the individuals who fall
into its particular combination of classification levels. Let's call this
count Nij. The sum of all of these counts will be equal to the total
number of individuals, N. Also, each row of the table will sum to Ni.
and each column will sum to N.j .

3.2.4. Discrete Models
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Under the assumption that there is no interaction between the two
classifying variables (like the number of good or bad parts does not
depend on which supplier they came from), we can calculate the counts
we would expect to see in each cell. Let's call the expected count for any
cell Eij . Then the expected value for a cell is Eij = Ni. * N.j /N . All we
need to do then is to compare the expected counts to the observed
counts. If there is a consderable difference between the observed counts
and the expected values, then the two variables interact in some way.

Estimation The estimation is very simple. All we do is make a table of the observed
counts and then calculate the expected counts as described above.

Testing The test is performed using a Chi-Square goodness-of-fit test according
to the following formula:

where the summation is across all of the cells in the table.

Given the assumptions stated below, this statistic has approximately a
chi-square distribution and is therefore compared against a chi-square
table with (r-1)(s-1) degrees of freedom, with r and s as previously
defined. If the value of the test statistic is less than the chi-square value
for a given level of confidence, then the classifying variables are
declared independent, otherwise they are judged to be dependent.

Assumptions The estimation and testing results above hold regardless of whether the
sample model is Poisson, multinomial, or product-multinomial. The
chi-square results start to break down if the counts in any cell are small,
say < 5.

Uses The contingency table method is really just a test of interaction between
discrete explanatory variables for discrete responses. The example given
below is for two factors. The methods are equally applicable to more
factors, but as with any interaction, as you add more factors the
interpretation of the results becomes more difficult.

Example Suppose we are comparing the yield from two manufacturing processes.
We want want to know if one process has a higher yield.

3.2.4. Discrete Models
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Make table
of counts

Good Bad Totals
Process A 86 14 100
Process B 80 20 100

Totals 166 34 200

Table 1. Yields for two production processes

We obtain the expected values by the formula given above.  This gives
the table below.

Calculate
expected
counts

Good Bad Totals
Process A 83 17 100
Process B 83 17 100

Totals 166 34 200

Table 2. Expected values for two production processes

Calculate
chi-square
statistic and
compare to
table value

The chi-square statistic is 1.276. This is below the chi-square value for 1
degree of freedom and 90% confidence of 2.71 . Therefore, we conclude
that there is not a (significant) difference in process yield.

Conclusion Therefore, we conclude that there is no statistically significant
difference between the two processes.

3.2.4. Discrete Models
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3. Production Process Characterization

3.3.Data Collection for PPC

Start with
careful
planning

The data collection process for PPC starts with careful planning. The
planning consists of the definition of clear and concise goals, developing
process models and devising a sampling plan.

Many things
can go
wrong in the
data
collection

This activity of course ends without the actual collection of the data
which is usually not as straightforward as it might appear. Many things
can go wrong in the execution of the sampling plan. The problems can
be mitigated with the use of check lists and by carefully documenting all
exceptions to the original sampling plan.

Table of
Contents

Set Goals1.  

Modeling Processes

Black-Box Models1.  

Fishbone Diagrams2.  

Relationships and Sensitivities3.  

2.  

Define the Sampling Plan

Identify the parameters, ranges and resolution1.  

Design sampling scheme2.  

Select sample sizes3.  

Design data storage formats4.  

Assign roles and responsibilities5.  

3.  

3.3. Data Collection for PPC
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3. Production Process Characterization
3.3. Data Collection for PPC

3.3.1.Define Goals

State concise
goals

The goal statement is one of the most important parts of the
characterization plan. With clearly and concisely stated goals, the rest
of the planning process falls naturally into place.

Goals
usually
defined in
terms of key
specifications

The goals are usually defined in terms of key specifications or
manufacturing indices. We typically want to characterize a process and
compare the results against these specifications. However, this is not
always the case. We may, for instance, just want to quantify key
process parameters and use our estimates of those parameters in some
other activity like controller design or process improvement.

Example
goal
statements

Click on each of the links below to see Goal Statements for each of the
case studies.

Furnace Case Study (Goal)1.  

Machine Case Study (Goal)2.  

3.3.1. Define Goals
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3. Production Process Characterization
3.3. Data Collection for PPC

3.3.2.Process Modeling

Identify
influential
parameters

Process modeling begins by identifying all of the important factors and
responses. This is usually best done as a team effort and is limited to the
scope set by the goal statement.

Document
with
black-box
models

This activity is best documented in the form of a black-box model as
seen in the figure below. In this figure all of the outputs are shown on
the right and all of the controllable inputs are shown on the left. Any
inputs or factors that may be observable but not controllable are shown
on the top or bottom.

3.3.2. Process Modeling
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Model
relationships
using
fishbone
diagrams

The next step is to model relationships of the previously identified
factors and responses. In this step we choose a parameter and identify
all of the other parameters that may have an influence on it. This
process is easily documented with fishbone diagrams as illustrated in
the figure below. The influenced parameter is put on the center line and
the influential factors are listed off of the centerline and can be grouped
into major categories like Tool, Material, Work Methods and
Environment.

Document
relationships
and
sensitivities

The final step is to document all known information about the
relationships and sensitivities between the inputs and outputs. Some of
the inputs may be correlated with each other as well as the outputs.
There may be detailed mathematical models available from other
studies or the information available may be vague such as for a
machining process we know that as the feed rate increases, the quality
of the finish decreases.

It is best to document this kind of information in a table with all of the
inputs and outputs listed both on the left column and on the top row.
Then, correlation information can be filled in for each of the appropriate
cells. See the case studies for an example.

3.3.2. Process Modeling
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Examples Click on each of the links below to see the process models for each of
the case studies.

Case Study 1 (Process Model)1.  

Case Study 2 (Process Model)2.  

3.3.2. Process Modeling
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3. Production Process Characterization
3.3. Data Collection for PPC

3.3.3.Define Sampling Plan

Sampling
plan is
detailed
outline of
measurements
to be taken

A sampling plan is a detailed outline of which measurements will be
taken at what times, on which material, in what manner, and by whom.
Sampling plans should be designed in such a way that the resulting
data will contain a representative sample of the parameters of interest
and allow for all questions, as stated in the goals, to be answered.

Steps in the
sampling plan

The steps involved in developing a sampling plan are:

identify the parameters to be measured, the range of possible
values, and the required resolution

1.  

design a sampling scheme that details how and when samples
will be taken

2.  

select sample sizes3.  

design data storage formats4.  

assign roles and responsibilities5.  

Verify and
execute

Once the sampling plan has been developed, it can be verified and then
passed on to the responsible parties for execution.

3.3.3. Define Sampling Plan
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3. Production Process Characterization
3.3. Data Collection for PPC
3.3.3. Define Sampling Plan

3.3.3.1. Identifying Parameters, Ranges and
Resolution

Our goals and the models we built in the previous steps should
provide all of the information needed for selecting parameters and
determining the expected ranges and the required measurement
resolution.

Goals will tell
us what to
measure and
how

The first step is to carefully examine the goals. This will tell you
which response variables need to be sampled and how. For instance, if
our goal states that we want to determine if an oxide film can be
grown on a wafer to within 10 Angstroms of the target value with a
uniformity of <2%, then we know we have to measure the film
thickness on the wafers to an accuracy of at least +/- 3 Angstroms and
we must measure at multiple sites on the wafer in order to calculate
uniformity.

The goals and the models we build will also indicate which
explanatory variables need to be sampled and how. Since the fishbone
diagrams define the known important relationships, these will be our
best guide as to which explanatory variables are candidates for
measurement.

Ranges help
screen outliers

Defining the expected ranges of values is useful for screening outliers.
In the machining example , we would not expect to see many values
that vary more than +/- .005" from nominal. Therefore we know that
any values that are much beyond this interval are highly suspect and
should be remeasured.

3.3.3.1. Identifying Parameters, Ranges and Resolution
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Resolution
helps choose
measurement
equipment

Finally, the required resolution for the measurements should be
specified. This specification will help guide the choice of metrology
equipment and help define the measurement procedures. As a rule of
thumb, we would like our measurement resolution to be at least 1/10
of our tolerance. For the oxide growth example, this means that we
want to measure with an accuracy of 2 Angstroms. Similarly, for the
turning operation we would need to measure the diameter within
.001". This means that vernier calipers would be adequate as the
measurement device for this application.

Examples Click on each of the links below to see the parameter descriptions for
each of the case studies.

Case Study 1 (Sampling Plan)1.  

Case Study 2 (Sampling Plan)2.  

3.3.3.1. Identifying Parameters, Ranges and Resolution
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3. Production Process Characterization
3.3. Data Collection for PPC
3.3.3. Define Sampling Plan

3.3.3.2. Choosing a Sampling Scheme

A sampling
scheme defines
what data will
be obtained
and how

A sampling scheme is a detailed description of what data will be
obtained and how this will be done. In PPC we are faced with two
different situations for developing sampling schemes. The first is
when we are conducting a controlled experiment. There are very
efficient and exact methods for developing sampling schemes for
designed experiments and the reader is referred to the Process
Improvement chapter for details.

Passive data
collection

The second situation is when we are conducting a passive data
collection (PDC) study to learn about the inherent properties of a
process. These types of studies are usually for comparison purposes
when we wish to compare properties of processes against each other
or against some hypothesis. This is the situation that we will focus on
here.

There are two
principles that
guide our
choice of
sampling
scheme

Once we have selected our response parameters, it would seem to be a
rather straightforward exercise to take some measurements, calculate
some statistics and draw conclusions. There are, however, many
things which can go wrong along the way that can be avoided with
careful planning and knowing what to watch for. There are two
overriding principles that will guide the design of our sampling
scheme.

The first is
precision

The first principle is that of precision. If the sampling scheme is
properly laid out, the difference between our estimate of some
parameter of interest and its true value will be due only to random
variation. The size of this random variation is measured by a quantity
called standard error. The magnitude of the standard error is known
as precision. The smaller the standard error, the more precise are our
estimates.

3.3.3.2. Choosing a Sampling Scheme
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Precision of
an estimate
depends on
several factors

The precision of any estimate will depend on:

the inherent variability of the process estimator●   

the measurement error●   

the number of independent replications (sample size)●   

the efficiency of the sampling scheme.●   

The second is
systematic
sampling error
(or
confounded
effects)

The second principle is the avoidance of systematic errors. Systematic
sampling error occurs when the levels of one explanatory variable are
the same as some other unaccounted for explanatory variable. This is
also referred to as confounded effects. Systematic sampling error is
best seen by example.

Example 1: We want to compare the effect of two
different coolants on the resulting surface finish from a
turning operation. It is decided to run one lot, change the
coolant and then run another lot. With this sampling
scheme, there is no way to distinguish the coolant effect
from the lot effect or from tool wear considerations.
There is systematic sampling error in this sampling
scheme.

Example 2: We wish to examine the effect of two
pre-clean procedures on the uniformity of an oxide
growth process. We clean one cassette of wafers with
one method and another cassette with the other method.
We load one cassette in the front of the furnace tube and
the other cassette in the middle. To complete the run, we
fill the rest of the tube with other lots. With this sampling
scheme, there is no way to distinguish between the effect
of the different pre-clean methods and the cassette effect
or the tube location effect. Again, we have systematic
sampling errors.

Stratification
helps to
overcome
systematic
error

The way to combat systematic sampling errors (and at the same time
increase precision) is through stratification and randomization.
Stratification is the process of segmenting our population across
levels of some factor so as to minimize variability within those
segments or strata. For instance, if we want to try several different
process recipes to see which one is best, we may want to be sure to
apply each of the recipes to each of the three work shifts. This will
ensure that we eliminate any systematic errors caused by a shift effect.
This is where the ANOVA designs are particularly useful.

3.3.3.2. Choosing a Sampling Scheme
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Randomization
helps too

Randomization is the process of randomly applying the various
treatment combinations. In the above example, we would not want to
apply recipe 1, 2 and 3 in the same order for each of the three shifts
but would instead randomize the order of the three recipes in each
shift. This will avoid any systematic errors caused by the order of the
recipes.

Examples The issues here are many and complicated. Click on each of the links
below to see the sampling schemes for each of the case studies.

Case Study 1 (Sampling Plan)1.  

Case Study 2 (Sampling Plan)2.  

3.3.3.2. Choosing a Sampling Scheme
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3. Production Process Characterization
3.3. Data Collection for PPC
3.3.3. Define Sampling Plan

3.3.3.3.Selecting Sample Sizes

Consider
these things
when
selecting a
sample size

When choosing a sample size, we must consider the following issues:

What population parameters we want to estimate●   

Cost of sampling (importance of information)●   

How much is already known●   

Spread (variability) of the population●   

Practicality: how hard is it to collect data●   

How precise we want the final estimates to be●   

Cost of
taking
samples

The cost of sampling issue helps us determine how precise our
estimates should be. As we will see below, when choosing sample
sizes we need to select risk values.  If the decisions we will make from
the sampling activity are very valuable, then we will want low risk
values and hence larger sample sizes.

Prior
information

If our process has been studied before, we can use that prior
information to reduce sample sizes. This can be done by using prior
mean and variance estimates and by stratifying the population to
reduce variation within groups.

Inherent
variability

We take samples to form estimates of some characteristic of the
population of interest. The variance of that estimate is proportional to
the inherent variability of the population divided by the sample size:

.

with  denoting the parameter we are trying to estimate. This means
that if the variability of the population is large, then we must take many
samples. Conversely, a small population variance means we don't have
to take as many samples.

3.3.3.3. Selecting Sample Sizes
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Practicality Of course the sample size you select must make sense. This is where
the trade-offs usually occur. We want to take enough observations to
obtain reasonably precise estimates of the parameters of interest but we
also want to do this within a practical resource budget. The important
thing is to quantify the risks associated with the chosen sample size.

Sample size
determination

In summary, the steps involved in estimating a sample size are:

There must be a statement about what is expected of the sample.
We must determine what is it we are trying to estimate, how
precise we want the estimate to be, and what are we going to do
with the estimate once we have it. This should easily be derived
from the goals.

1.  

We must find some equation that connects the desired precision
of the estimate with the sample size. This is a probability
statement. A couple are given below; see your statistician if
these are not appropriate for your situation.

2.  

This equation may contain unknown properties of the population
such as the mean or variance. This is where prior information
can help.

3.  

If you are stratifying the population in order to reduce variation,
sample size determination must be performed for each stratum.

4.  

The final sample size should be scrutinized for practicality. If it
is unacceptable, the only way to reduce it is to accept less
precision in the sample estimate.

5.  

Sampling
proportions

When we are sampling proportions we start with a probability
statement about the desired precision. This is given by:

where

 is the estimated proportion●   

P is the unknown population parameter●   

 is the specified precision of the estimate●   

 is the probability value (usually low)●   

This equation simply shows that we want the probability that the

precision of our estimate being less than we want is . Of course we

like to set  low, usually .1 or less. Using some assumptions about
the proportion being approximately normally distributed we can obtain
an estimate of the required sample size as:

3.3.3.3. Selecting Sample Sizes

http://www.itl.nist.gov/div898/handbook/ppc/section3/ppc333.htm (2 of 4) [5/1/2006 10:17:38 AM]



where z is the ordinate on the Normal curve corresponding to .

Example Let's say we have a new process we want to try. We plan to run the
new process and sample the output for yield (good/bad). Our current
process has been yielding 65% (p=.65, q=.35). We decide that we want

the estimate of the new process yield to be accurate to within  = .10

at 95% confidence (  = .05, z=2). Using the formula above we get a
sample size estimate of n=91. Thus, if we draw 91 random parts from
the output of the new process and estimate the yield, then we are 95%
sure the yield estimate is within .10 of the true process yield.

Estimating
location:
relative error

If we are sampling continuous normally distributed variables, quite
often we are concerned about the relative error of our estimates rather
than the absolute error. The probability statement connecting the
desired precision to the sample size is given by:

where  is the (unknown) population mean and  is the sample mean.

Again, using the normality assumptions we obtain the estimated
sample size to be:

with 2 denoting the population variance.

Estimating
location:
absolute
error

If instead of relative error, we wish to use absolute error, the equation
for sample size looks alot like the one for the case of proportions:

where  is the population standard deviation (but in practice is
usually replaced by an engineering guesstimate).

3.3.3.3. Selecting Sample Sizes
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Example Suppose we want to sample a stable process that deposits a 500
Angstrom film on a semiconductor wafer in order to determine the
process mean so that we can set up a control chart on the process. We

want to estimate the mean within 10 Angstroms (  = 10) of the true
mean with 95% confidence (  = .05, Z = 2). Our initial guess
regarding the variation in the process is that one standard deviation is
about 20 Angstroms. This gives a sample size estimate of n = 16. Thus,
if we take at least 16 samples from this process and estimate the mean
film thickness, we can be 95% sure that the estimate is within 10% of
the true mean value.

3.3.3.3. Selecting Sample Sizes
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3. Production Process Characterization
3.3. Data Collection for PPC
3.3.3. Define Sampling Plan

3.3.3.4.Data Storage and Retrieval

Data control
depends on
facility size

If you are in a small manufacturing facility or a lab, you can simply
design a sampling plan, run the material, take the measurements, fill in
the run sheet and go back to your computer to analyze the results. There
really is not much to be concerned with regarding data storage and
retrieval.

In most larger facilities, however, the people handling the material
usually have nothing to do with the design. Quite often the
measurements are taken automatically and may not even be made in the
same country where the material was produced. Your data go through a
long chain of automatic acquisition, storage, reformatting, and retrieval
before you are ever able to see it. All of these steps are fraught with
peril and should be examined closely to ensure that valuable data are not
lost or accidentally altered.

Know the
process
involved

In the planning phase of the PPC, be sure to understand the entire data
collection process. Things to watch out for include:

automatic measurement machines rejecting outliers●   

only summary statistics (mean and standard deviation) being
saved

●   

values for explanatory variables (location, operator, etc.) are not
being saved

●   

how missing values are handled●   

Consult with
support staff
early on

It is important to consult with someone from the organization
responsible for maintaining the data system early in the planning phase
of the PPC.  It can also be worthwhile to perform some "dry runs" of the
data collection to ensure you will be able to actually acquire the data in
the format as defined in the plan.

3.3.3.4. Data Storage and Retrieval

http://www.itl.nist.gov/div898/handbook/ppc/section3/ppc334.htm (1 of 2) [5/1/2006 10:17:38 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


3.3.3.4. Data Storage and Retrieval

http://www.itl.nist.gov/div898/handbook/ppc/section3/ppc334.htm (2 of 2) [5/1/2006 10:17:38 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


3. Production Process Characterization
3.3. Data Collection for PPC
3.3.3. Define Sampling Plan

3.3.3.5.Assign Roles and Responsibilities

PPC is a team
effort, get
everyone
involved early

In today's manufacturing environment, it is unusual when an
investigative study is conducted by a single individual. Most PPC
studies will be a team effort. It is important that all individuals who
will be involved in the study become a part of the team from the
beginning. Many of the various collateral activities will need
approvals and sign-offs. Be sure to account for that cycle time in your
plan.

Table showing
roles and
potential
responsibilities

A partial list of these individuals along with their roles and potential
responsibilities is given in the table below. There may be multiple
occurrences of each of these individuals across shifts or process steps,
so be sure to include everyone.

Tool Owner Controls Tool
Operations

Schedules tool time●   

Ensures tool state●   

Advises on
experimental design

●   

Process Owner Controls Process
Recipe

Advises on
experimental design

●   

Controls recipe settings●   

Tool Operator Executes
Experimental Plan

Executes experimental
runs

●   

May take
measurements

●   

Metrology Own Measurement
Tools

Maintains metrology
equipment

●   

Conducts gauge studies●   

May take
measurements

●   

3.3.3.5. Assign Roles and Responsibilities
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CIM Owns Enterprise
Information
System

Maintains data
collection system

●   

Maintains equipment
interfaces and data
formatters

●   

Maintains databases
and information access

●   

Statistician Consultant Consults on
experimental design

●   

Consults on data
analysis

●   

Quality Control Controls Material Ensures quality of
incoming material

●   

Must approve shipment
of outgoing material
(especially for recipe
changes)

●   

3.3.3.5. Assign Roles and Responsibilities
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3. Production Process Characterization

3.4.Data Analysis for PPC

In this section we will learn how to analyze and interpret the data we
collected in accordance with our data collection plan.

Click on
desired
topic to read
more

This section discusses the following topics:

Initial Data Analysis 

Gather Data1.  

Quality Checking the Data 2.  

Summary Analysis (Location, Spread and Shape) 3.  

1.  

Exploring Relationships 

Response Correlations1.  

Exploring Main Effects 2.  

Exploring First-Order Interactions 3.  

2.  

Building Models 

Fitting Polynomial Models 1.  

Fitting Physical Models2.  

3.  

Analyzing Variance Structure 4.  

Assessing Process Stablility5.  

Assessing Process Capability6.  

 Checking Assumptions 7.  

3.4. Data Analysis for PPC
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.1.First Steps

Gather all
of the data
into one
place

After executing the data collection plan for the characterization study,
the data must be gathered up for analysis. Depending on the scope of the
study, the data may reside in one place or in many different places. It
may be in common factory databases, flat files on individual computers,
or handwritten on run sheets. Whatever the case, the first step will be to
collect all of the data from the various sources and enter it into a single
data file.  The most convenient format for most data analyses is the
variables-in-columns format. This format has the variable names in
column headings and the values for the variables in the rows.

Perform a
quality
check on the
data using
graphical
and
numerical
techniques

The next step is to perform a quality check on the data. Here we are
typically looking for data entry problems, unusual data values, missing
data, etc. The two most useful tools for this step are the scatter plot and
the histogram. By constructing scatter plots of all of the response
variables, any data entry problems will be easily identified.  Histograms
of response variables are also quite useful for identifying data entry
problems. Histograms of explanatory variables help identify problems
with the execution of the sampling plan. If the counts for each level of
the explanatory variables are not the same as called for in the sampling
plan, you know you may have an execution problem. Running
numerical summary statistics on all of the variables (both response and
explanatory) also helps to identify data problems.

Summarize
data by
estimating
location,
spread and
shape

Once the data quality problems are identified and fixed, we should
estimate the location, spread and shape for all of the response variables.
This is easily done with a combination of histograms and numerical
summary statistics.

3.4.1. First Steps
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.2.Exploring Relationships

The first
analysis of
our data is
exploration

Once we have a data file created in the desired format, checked the
data integrity, and have estimated the summary statistics on the
response variables, the next step is to start exploring the data and to try
to understand the underlying structure. The most useful tools will be
various forms of the basic scatter plot and box plot.

These techniques will allow pairwise explorations for examining
relationships between any pair of response variables, any pair of
explanatory and response variables, or a response variable as a
function of any two explanatory variables. Beyond three dimensions
we are pretty much limited by our human frailties at visualization.

Graph
everything
that makes
sense

In this exploratory phase, the key is to graph everything that makes
sense to graph. These pictures will not only reveal any additional
quality problems with the data but will also reveal influential data
points and will guide the subsequent modeling activities.

Graph
responses,
then
explanatory
versus
response,
then
conditional
plots

The order that generally proves most effective for data analysis is to
first graph all of the responses against each other in a pairwise fashion.
Then we graph responses against the explanatory variables. This will
give an indication of the main factors that have an effect on response
variables. Finally, we graph response variables, conditioned on the
levels of explanatory factors. This is what reveals interactions between
explanatory variables. We will use nested boxplots and block plots to
visualize interactions.

3.4.2. Exploring Relationships

http://www.itl.nist.gov/div898/handbook/ppc/section4/ppc42.htm [5/1/2006 10:17:39 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


3. Production Process Characterization
3.4. Data Analysis for PPC
3.4.2. Exploring Relationships

3.4.2.1.Response Correlations

Make
scatter
plots of
all of the
response
variables

In this first phase of exploring our data, we plot all of the response variables in a pairwise fashion.
The individual scatter plots are displayed in a matrix form with the y-axis scaling the same for all
plots in a row of the matrix.

Check the
slope of
the data
on the
scatter
plots

The scatterplot matrix shows how the response variables are related to each other. If there is a linear
trend with a positive slope, this indicates that the responses are positively correlated. If there is a
linear trend with a negative slope, then the variables are negatively correlated. If the data appear
random with no slope, the variables are probably not correlated. This will be important information
for subsequent model building steps.

This
scatterplot
matrix
shows
examples
of both
negatively
and
positively
correlated
variables

An example of a scatterplot matrix is given below. In this semiconductor manufacturing example,
three responses, yield (Bin1), N-channel Id effective (NIDEFF), and P-channel Id effective
(PIDEFF) are plotted against each other in a scatterplot matrix. We can see that Bin1 is positively
correlated with NIDEFF and negatively correlated with PIDEFF. Also, as expected, NIDEFF is
negatively correlated with PIDEFF. This kind of information will prove to be useful when we build
models for yield improvement.

3.4.2.1. Response Correlations
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3. Production Process Characterization
3.4. Data Analysis for PPC
3.4.2. Exploring Relationships

3.4.2.2.Exploring Main Effects

The next
step is to
look for
main effects

The next step in the exploratory analysis of our data is to see which factors have an effect on which
response variables and to quantify that effect. Scatter plots and box plots will be the tools of choice
here.

Watch out
for varying
sample
sizes across
levels

This step is relatively self explanatory. However there are two points of caution. First, be cognizant
of not only the trends in these graphs but also the amount of data represented in those trends. This is
especially true for categorical explanatory variables. There may be many more observations in some
levels of the categorical variable than in others. In any event, take unequal sample sizes into account
when making inferences.

Graph
implicit as
well as
explicit
explanatory
variables

The second point is to be sure to graph the responses against implicit explanatory variables (such as
observation order) as well as the explicit explanatory variables. There may be interesting insights in
these hidden explanatory variables.

Example:
wafer
processing

In the example below, we have collected data on the particles added to a wafer during a particular
processing step. We ran a number of cassettes through the process and sampled wafers from certain
slots in the cassette. We also kept track of which load lock the wafers passed through. This was done
for two different process temperatures. We measured both small particles (< 2 microns) and large
particles (> 2 microns). We plot the responses (particle counts) against each of the explanatory
variables.

Cassette
does not
appear to
be an
important
factor for
small or
large
particles

This first graph is a box plot of the number of small particles added for each cassette type. The "X"'s
in the plot represent the maximum, median, and minimum number of particles.

3.4.2.2. Exploring Main Effects

http://www.itl.nist.gov/div898/handbook/ppc/section4/ppc422.htm (1 of 9) [5/1/2006 10:17:50 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm


The second graph is a box plot of the number of large particles added for each cassette type.

3.4.2.2. Exploring Main Effects
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We conclude from these two box plots that cassette does not appear to be an important factor for
small or large particles.

There is a
difference
between
slots for
small
particles,
one slot is
different for
large
particles

We next generate box plots of small and large particles for the slot variable. First, the box plot for
small particles.

3.4.2.2. Exploring Main Effects

http://www.itl.nist.gov/div898/handbook/ppc/section4/ppc422.htm (3 of 9) [5/1/2006 10:17:50 AM]



Next, the box plot for large particles.

3.4.2.2. Exploring Main Effects
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We conclude that there is a difference between slots for small particles. We also conclude that one
slot appears to be different for large particles.

Load lock
may have a
slight effect
for small
and large
particles

We next generate box plots of small and large particles for the load lock variable. First, the box plot
for small particles.

3.4.2.2. Exploring Main Effects
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Next, the box plot for large particles.

3.4.2.2. Exploring Main Effects
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We conclude that there may be a slight effect for load lock for small and large particles.

For small
particles,
temperature
has a
strong
effect on
both
location
and spread.
For large
particles,
there may
be a slight
temperature
effect but
this may
just be due
to the
outliers

We next generate box plots of small and large particles for the temperature variable. First, the box
plot for small particles.

3.4.2.2. Exploring Main Effects
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Next, the box plot for large particles.

3.4.2.2. Exploring Main Effects
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'

We conclude that temperature has a strong effect on both location and spread for small particles. We
conclude that there might be a small temperature effect for large particles, but this may just be due to
outliers.

3.4.2.2. Exploring Main Effects
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3. Production Process Characterization
3.4. Data Analysis for PPC
3.4.2. Exploring Relationships

3.4.2.3.Exploring First Order Interactions

It is
important
to identify
interactions

The final step (and perhaps the most important one) in the exploration phase is to find any first order
interactions. When the difference in the response between the levels of one factor is not the same for
all of the levels of another factor we say we have an interaction between those two factors. When
we are trying to optimize responses based on factor settings, interactions provide for compromise.

The eyes
can be
deceiving -
be careful

Interactions can be seen visually by using nested box plots. However, caution should be exercised
when identifying interactions through graphical means alone. Any graphically identified interactions
should be verified by numerical methods as well.

Previous
example
continued

To continue the previous example, given below are nested box plots of the small and large particles.
The load lock is nested within the two temperature values. There is some evidence of possible
interaction between these two factors. The effect of load lock is stronger at the lower temperature
than at the higher one. This effect is stronger for the smaller particles than for the larger ones. As
this example illustrates, when you have significant interactions the main effects must be interpreted
conditionally. That is, the main effects do not tell the whole story by themselves.

For small
particles,
the load
lock effect
is not as
strong for
high
temperature
as it is for
low
temperature

The following is the box plot of small particles for load lock nested within temperature.

3.4.2.3. Exploring First Order Interactions
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We conclude from this plot that for small particles, the load lock effect is not as strong for high
temperature as it is for low temperature.

The same
may be true
for large
particles
but not as
strongly

The following is the box plot of large particles for load lock nested within temperature.

3.4.2.3. Exploring First Order Interactions
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We conclude from this plot that for large particles, the load lock effect may not be as strong for high
temperature as it is for low temperature. However, this effect is not as strong as it is for small
particles.

3.4.2.3. Exploring First Order Interactions
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.3.Building Models

Black box
models

When we develop a data collection plan we build black box models of the
process we are studying like the one below:

In our data
collection plan
we drew
process model
pictures

3.4.3. Building Models
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Numerical
models are
explicit
representations
of our process
model pictures

In the Exploring Relationships section, we looked at how to identify the
input/output relationships through graphical methods. However, if we want to
quantify the relationships and test them for statistical significance, we must
resort to building mathematical models.

Polynomial
models are
generic
descriptors of
our output
surface

There are two cases that we will cover for building mathematical models. If our
goal is to develop an empirical prediction equation or to identify statistically
significant explanatory variables and quantify their influence on output
responses, we typically build polynomial models. As the name implies, these are
polynomial functions (typically linear or quadratic functions) that describe the
relationships between the explanatory variables and the response variable.

Physical
models
describe the
underlying
physics of our
processes

On the other hand, if our goal is to fit an existing theoretical equation, then we
want to build physical models. Again, as the name implies, this pertains to the
case when we already have equations representing the physics involved in the
process and we want to estimate specific parameter values.

3.4.3. Building Models
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3. Production Process Characterization
3.4. Data Analysis for PPC
3.4.3. Building Models

3.4.3.1.Fitting Polynomial Models

Polynomial
models are a
great tool
for
determining
which input
factors drive
responses
and in what
direction

We use polynomial models to estimate and predict the shape of
response values over a range of input parameter values. Polynomial
models are a great tool for determining which input factors drive
responses and in what direction. These are also the most common
models used for analysis of designed experiments. A quadratic
(second-order) polynomial model for two explanatory variables has the
form of the equation below. The single x-terms are called the main
effects. The squared terms are called the quadratic effects and are used
to model curvature in the response surface. The cross-product terms are
used to model interactions between the explanatory variables.

We generally
don't need
more than
second-order
equations

In most engineering and manufacturing applications we are concerned
with at most second-order polynomial models. Polynomial equations
obviously could become much more complicated as we increase the
number of explanatory variables and hence the number of cross-product
terms. Fortunately, we rarely see significant interaction terms above the
two-factor level. This helps to keep the equations at a manageable level.

Use multiple
regression to
fit
polynomial
models

When the number of factors is small (less than 5), the complete
polynomial equation can be fitted using the technique known as
multiple regression. When the number of factors is large, we should use
a technique known as stepwise regression. Most statistical analysis
programs have a stepwise regression capability. We just enter all of the
terms of the polynomial models and let the software choose which
terms best describe the data. For a more thorough discussion of this
topic and some examples, refer to the process improvement chapter.

3.4.3.1. Fitting Polynomial Models
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3. Production Process Characterization
3.4. Data Analysis for PPC
3.4.3. Building Models

3.4.3.2.Fitting Physical Models

Sometimes
we want
to use a
physical
model

Sometimes, rather than approximating response behavior with polynomial
models, we know and can model the physics behind the underlying process. In
these cases we would want to fit physical models to our data. This kind of
modeling allows for better prediction and is less subject to variation than
polynomial models (as long as the underlying process doesn't change).

We will
use a
CMP
process to
illustrate

We will illustrate this concept with an example. We have collected data on a
chemical/mechanical planarization process (CMP) at a particular semiconductor
processing step. In this process, wafers are polished using a combination of
chemicals in a polishing slurry using polishing pads. We polished a number of
wafers for differing periods of time in order to calculate material removal rates.

CMP
removal
rate can
be
modeled
with a
non-linear
equation

From first principles we know that removal rate changes with time. Early on,
removal rate is high and as the wafer becomes more planar the removal rate
declines. This is easily modeled with an exponential function of the form:

removal rate = p1 + p2 x exp  p3 x time

where p1, p2, and p3 are the parameters we want to estimate.

A
non-linear
regression
routine
was used
to fit the
data to
the
equation

The equation was fit to the data using a non-linear regression routine. A plot of
the original data and the fitted line are given in the image below. The fit is quite
good. This fitted equation was subsequently used in process optimization work.

3.4.3.2. Fitting Physical Models
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.4.Analyzing Variance Structure

Studying
variation is
important
in PPC

One of the most common activities in process characterization work is to study the variation
associated with the process and to try to determine the important sources of that variation. This
is called analysis of variance. Refer to the section of this chapter on ANOVA models for a
discussion of the theory behind this kind of analysis.

The key is
to know the
structure

The key to performing an analysis of variance is identifying the structure represented by the
data. In the ANOVA models section we discussed one-way layouts and two-way layouts where
the factors are either crossed or nested. Review these sections if you want to learn more about
ANOVA structural layouts.

To perform the analysis, we just identify the structure, enter the data for each of the factors and
levels into a statistical analysis program and then interpret the ANOVA table and other output.
This is all illustrated in the example below.

Example:
furnace
oxide
thickness
with a
1-way
layout

The example is a furnace operation in semiconductor manufacture where we are growing an
oxide layer on a wafer. Each lot of wafers is placed on quartz containers (boats) and then placed
in a long tube-furnace. They are then raised to a certain temperature and held for a period of
time in a gas flow. We want to understand the important factors in this operation. The furnace is
broken down into four sections (zones) and two wafers from each lot in each zone are measured
for the thickness of the oxide layer.

Look at
effect of
zone
location on
oxide
thickness

The first thing to look at is the effect of zone location on the oxide thickness. This is a classic 
one-way layout. The factor is furnace zone and we have four levels. A plot of the data and an
ANOVA table are given below.

3.4.4. Analyzing Variance Structure
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The zone
effect is
masked by
the
lot-to-lot
variation

ANOVA
table

Analysis of Variance

 
Source DF SS Mean Square F Ratio Prob > F
Zone 3 912.6905 304.23 0.467612 0.70527
Within 164 106699.1 650.604   

Let's
account for
lot with a
nested
layout

From the graph there does not appear to be much of a zone effect; in fact, the ANOVA table
indicates that it is not significant. The problem is that variation due to lots is so large that it is
masking the zone effect. We can fix this by adding a factor for lot. By treating this as a nested
two-way layout, we obtain the ANOVA table below.

Now both
lot and zone
are
revealed as
important

Analysis of Variance

 
Source DF SS Mean Square F Ratio Prob > F
Lot 20 61442.29 3072.11 5.37404 1.39e-7
Zone[lot] 63 36014.5 571.659 4.72864 3.9e-11
Within 84 10155 120.893   

Conclusions Since the "Prob > F" is less than .05, for both lot and zone, we know that these factors are
statistically significant at the 95% level of confidence.

3.4.4. Analyzing Variance Structure
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.5.Assessing Process Stability

A process is
stable if it has a
constant mean
and a constant
variance over
time

A manufacturing process cannot be released to production until it has
been proven to be stable. Also, we cannot begin to talk about process
capability until we have demonstrated stability in our process. A
process is said to be stable when all of the response parameters that
we use to measure the process have both constant means and
constant variances over time, and also have a constant distribution.
This is equivalent to our earlier definition of controlled variation.

The graphical
tool we use to
assess stability
is the scatter
plot or the
control chart

The graphical tool we use to assess process stability is the scatter
plot. We collect a sufficient number of independent samples (greater
than 100) from our process over a sufficiently long period of time
(this can be specified in days, hours of processing time or number of
parts processed) and plot them on a scatter plot with sample order on
the x-axis and the sample value on the y-axis. The plot should look
like constant random variation about a constant mean. Sometimes it
is helpful to calculate control limits and plot them on the scatter plot
along with the data. The two plots in the controlled variation
example are good illustrations of stable and unstable processes.

Numerically,
we assess its
stationarity
using the
autocorrelation
function

Numerically, we evaluate process stability through a times series
analysis concept know as stationarity. This is just another way of
saying that the process has a constant mean and a constant variance.
The numerical technique used to assess stationarity is the
autocovariance function.

Graphical
methods
usually good
enough

Typically, graphical methods are good enough for evaluating process
stability. The numerical methods are generally only used for
modeling purposes.

3.4.5. Assessing Process Stability
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.6.Assessing Process Capability

Capability
compares a
process
against its
specification

Process capability analysis entails comparing the performance of a process against its specifications.
We say that a process is capable if virtually all of the possible variable values fall within the
specification limits.

Use a
capability
chart

Graphically, we assess process capability by plotting the process specification limits on a histogram
of the observations. If the histogram falls within the specification limits, then the process is capable.
This is illustrated in the graph below. Note how the process is shifted below target and the process
variation is too large. This is an example of an incapable process.

Notice how
the process is
off target and
has too much
variation

Numerically, we measure capability with a capability index. The general equation for the capability
index, Cp, is:

3.4.6. Assessing Process Capability
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Numerically,
we use the Cp
index

Interpretation
of the Cp
index

This equation just says that the measure of our process capability is how much of our observed
process variation is covered by the process specifications. In this case the process variation is
measured by 6 standard deviations (+/- 3 on each side of the mean). Clearly, if Cp > 1.0, then the
process specification covers almost all of our process observations.

Cp does not
account for
process that
is off center

The only problem with with the Cp index is that it does not account for a process that is off-center.
We can modify this equation slightly to account for off-center processes to obtain the Cpk index as
follows:

Or the Cpk
index

Cpk accounts
for a process
being off
center

This equation just says to take the minimum distance between our specification limits and the
process mean and divide it by 3 standard deviations to arrive at the measure of process capability.
This is all covered in more detail in the process capability section of the process monitoring chapter.
For the example above, note how the Cpk value is less than the Cp value. This is because the process
distribution is not centered between the specification limits.

3.4.6. Assessing Process Capability
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.7.Checking Assumptions

Check the
normality of
the data

Many of the techniques discussed in this chapter, such as hypothesis tests, control charts and
capability indices, assume that the underlying structure of the data can be adequately modeled by a
normal distribution. Many times we encounter data where this is not the case.

Some causes
of non-
normality

There are several things that could cause the data to appear non-normal, such as:

The data come from two or more different sources. This type of data will often have a
multi-modal distribution. This can be solved by identifying the reason for the multiple sets of
data and analyzing the data separately.

●   

The data come from an unstable process. This type of data is nearly impossible to analyze
because the results of the analysis will have no credibility due to the changing nature of the
process.

●   

The data were generated by a stable, yet fundamentally non-normal mechanism. For example,
particle counts are non-normal by the very nature of the particle generation process. Data of
this type can be handled using transformations.

●   

We can
sometimes
transform the
data to make it
look normal

For the last case, we could try transforming the data using what is known as a power
transformation. The power transformation is given by the equation:

where Y represents the data and lambda is the transformation value. Lambda is typically any value
between -2 and 2. Some of the more common values for lambda are 0, 1/2, and -1, which give the
following transformations:

General
algorithm for
trying to make
non-normal
data
approximately
normal

The general algorithm for trying to make non-normal data appear to be approximately normal is to:

Determine if the data are non-normal. (Use normal probability plot and histogram).1.  

Find a transformation that makes the data look approximately normal, if possible. Some data
sets may include zeros (i.e., particle data). If the data set does include zeros, you must first
add a constant value to the data and then transform the results.

2.  

3.4.7. Checking Assumptions
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Example:
particle count
data

As an example, let's look at some particle count data from a semiconductor processing step. Count
data are inherently non-normal. Below are histograms and normal probability plots for the original
data and the ln, sqrt and inverse of the data. You can see that the log transform does the best job of
making the data appear as if it is normal. All analyses can be performed on the log-transformed data
and the assumptions will be approximately satisfied.

The original
data is
non-normal,
the log
transform
looks fairly
normal

Neither the
square root
nor the inverse
transformation
looks normal

3.4.7. Checking Assumptions
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3. Production Process Characterization

3.5.Case Studies

Summary This section presents several case studies that demonstrate the
application of production process characterizations to specific problems.

Table of
Contents

The following case studies are available.

Furnace Case Study1.  

Machine Case Study2.  

3.5. Case Studies
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3. Production Process Characterization
3.5. Case Studies

3.5.1.Furnace Case Study

Introduction This case study analyzes a furnace oxide growth process.

Table of
Contents

The case study is broken down into the following steps.

Background and Data1.  

Initial Analysis of Response Variable2.  

Identify Sources of Variation3.  

Analysis of Variance4.  

Final Conclusions5.  

Work This Example Yourself6.  

3.5.1. Furnace Case Study
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3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.1.Background and Data

Introduction In a semiconductor manufacturing process flow, we have a step
whereby we grow an oxide film on the silicon wafer using a furnace.
In this step, a cassette of wafers is placed in a quartz "boat" and the
boats are placed in the furnace. The furnace can hold four boats. A gas
flow is created in the furnace and it is brought up to temperature and
held there for a specified period of time (which corresponds to the
desired oxide thickness). This study was conducted to determine if the
process was stable and to characterize sources of variation so that a
process control strategy could be developed.

Goal The goal of this study is to determine if this process is capable of
consistently growing oxide films with a thickness of 560 Angstroms
+/- 100 Angstroms. An additional goal is to determine important
sources of variation for use in the development of a process control
strategy.

Process
Model

In the picture below we are modeling this process with one output
(film thickness) that is influenced by four controlled factors (gas flow,
pressure, temperature and time) and two uncontrolled factors (run and
zone). The four controlled factors are part of our recipe and will
remain constant throughout this study. We know that there is
run-to-run variation that is due to many different factors (input
material variation, variation in consumables, etc.). We also know that
the different zones in the furnace have an effect. A zone is a region of
the furnace tube that holds one boat. There are four zones in these
tubes. The zones in the middle of the tube grow oxide a little bit
differently from the ones on the ends. In fact, there are temperature
offsets in the recipe to help minimize this problem.

3.5.1.1. Background and Data
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Sensitivity
Model

The sensitivity model for this process is fairly straightforward and is
given in the figure below. The effects of the machin are mostly related
to the preventative maintenance (PM) cycle. We want to make sure the
quartz tube has been cleaned recently, the mass flow controllers are in
good shape and the temperature controller has been calibrated recently.
The same is true of the measurement equipment where the thickness
readings will be taken. We want to make sure a gauge study has been
performed. For material, the incoming wafers will certainly have an
effect on the outgoing thickness as well as the quality of the gases used.
Finally, the recipe will have an effect including gas flow, temperature
offset for the different zones, and temperature profile (how quickly we
raise the temperature, how long we hold it and how quickly we cool it
off).

3.5.1.1. Background and Data
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Sampling
Plan

Given our goal statement and process modeling, we can now define a
sampling plan. The primary goal is to determine if the process is
capable. This just means that we need to monitor the process over some
period of time and compare the estimates of process location and spread
to the specifications. An additional goal is to identify sources of
variation to aid in setting up a process control strategy. Some obvious
sources of variation are incoming wafers, run-to-run variability,
variation due to operators or shift, and variation due to zones within a
furnace tube. One additional constraint that we must work under is that
this study should not have a significant impact on normal production
operations.

Given these constraints, the following sampling plan was selected. It
was decided to monitor the process for one day (three shifts). Because
this process is operator independent, we will not keep shift or operator
information but just record run number. For each run, we will randomly
assign cassettes of wafers to a zone. We will select two wafers from
each zone after processing and measure two sites on each wafer. This
plan should give reasonable estimates of run-to-run variation and within
zone variability as well as good overall estimates of process location and
spread.

We are expecting readings around 560 Angstroms. We would not expect
many readings above 700 or below 400. The measurement equipment is
accurate to within 0.5 Angstroms which is well within the accuracy
needed for this study.

3.5.1.1. Background and Data
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Data
The following are the data that were collected for this study.

RUN   ZONE    WAFER    THICKNESS
--------------------------------
 1       1       1       546
 1       1       2       540
 1       2       1       566
 1       2       2       564
 1       3       1       577
 1       3       2       546
 1       4       1       543
 1       4       2       529
 2       1       1       561
 2       1       2       556
 2       2       1       577
 2       2       2       553
 2       3       1       563
 2       3       2       577
 2       4       1       556
 2       4       2       540
 3       1       1       515
 3       1       2       520
 3       2       1       548
 3       2       2       542
 3       3       1       505
 3       3       2       487
 3       4       1       506
 3       4       2       514
 4       1       1       568
 4       1       2       584
 4       2       1       570
 4       2       2       545
 4       3       1       589
 4       3       2       562
 4       4       1       569
 4       4       2       571
 5       1       1       550
 5       1       2       550
 5       2       1       562
 5       2       2       580
 5       3       1       560
 5       3       2       554
 5       4       1       545
 5       4       2       546
 6       1       1       584
 6       1       2       581
 6       2       1       567
 6       2       2       558
 6       3       1       556
 6       3       2       560
 6       4       1       591
 6       4       2       599

3.5.1.1. Background and Data
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 7       1       1       593
 7       1       2       626
 7       2       1       584
 7       2       2       559
 7       3       1       634
 7       3       2       598
 7       4       1       569
 7       4       2       592
 8       1       1       522
 8       1       2       535
 8       2       1       535
 8       2       2       581
 8       3       1       527
 8       3       2       520
 8       4       1       532
 8       4       2       539
 9       1       1       562
 9       1       2       568
 9       2       1       548
 9       2       2       548
 9       3       1       533
 9       3       2       553
 9       4       1       533
 9       4       2       521
10       1       1       555
10       1       2       545
10       2       1       584
10       2       2       572
10       3       1       546
10       3       2       552
10       4       1       586
10       4       2       584
11       1       1       565
11       1       2       557
11       2       1       583
11       2       2       585
11       3       1       582
11       3       2       567
11       4       1       549
11       4       2       533
12       1       1       548
12       1       2       528
12       2       1       563
12       2       2       588
12       3       1       543
12       3       2       540
12       4       1       585
12       4       2       586
13       1       1       580
13       1       2       570
13       2       1       556
13       2       2       569
13       3       1       609
13       3       2       625

3.5.1.1. Background and Data

http://www.itl.nist.gov/div898/handbook/ppc/section5/ppc511.htm (5 of 7) [5/1/2006 10:18:01 AM]



13       4       1       570
13       4       2       595
14       1       1       564
14       1       2       555
14       2       1       585
14       2       2       588
14       3       1       564
14       3       2       583
14       4       1       563
14       4       2       558
15       1       1       550
15       1       2       557
15       2       1       538
15       2       2       525
15       3       1       556
15       3       2       547
15       4       1       534
15       4       2       542
16       1       1       552
16       1       2       547
16       2       1       563
16       2       2       578
16       3       1       571
16       3       2       572
16       4       1       575
16       4       2       584
17       1       1       549
17       1       2       546
17       2       1       584
17       2       2       593
17       3       1       567
17       3       2       548
17       4       1       606
17       4       2       607
18       1       1       539
18       1       2       554
18       2       1       533
18       2       2       535
18       3       1       522
18       3       2       521
18       4       1       547
18       4       2       550
19       1       1       610
19       1       2       592
19       2       1       587
19       2       2       587
19       3       1       572
19       3       2       612
19       4       1       566
19       4       2       563
20       1       1       569
20       1       2       609
20       2       1       558
20       2       2       555

3.5.1.1. Background and Data
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20       3       1       577
20       3       2       579
20       4       1       552
20       4       2       558
21       1       1       595
21       1       2       583
21       2       1       599
21       2       2       602
21       3       1       598
21       3       2       616
21       4       1       580
21       4       2       575

3.5.1.1. Background and Data
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3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.2. Initial Analysis of Response Variable

Initial Plots
of Response
Variable

The initial step is to assess data quality and to look for anomalies. This is done by generating a
normal probability plot, a histogram, and a boxplot. For convenience, these are generated on a
single page.

Conclusions
From the
Plots

We can make the following conclusions based on these initial plots.

The box plot indicates one outlier. However, this outlier is only slightly smaller than the
other numbers.

●   

The normal probability plot and the histogram (with an overlaid normal density) indicate
that this data set is reasonably approximated by a normal distribution.

●   

3.5.1.2. Initial Analysis of Response Variable
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Parameter
Estimates

Parameter estimates for the film thickness are summarized in the
following table.

Parameter Estimates

Type Parameter Estimate
Lower (95%)
Confidence

Bound

Upper (95%)
Confidence

Bound
Location Mean 563.0357 559.1692 566.9023

Dispersion
Standard
Deviation

25.3847 22.9297 28.4331

Quantiles Quantiles for the film thickness are summarized in the following table.

Quantiles for Film Thickness

100.0% Maximum 634.00
99.5%  634.00
97.5%  615.10
90.0%  595.00
75.0% Upper Quartile 582.75
50.0% Median 562.50
25.0% Lower Quartile 546.25
10.0%  532.90
2.5%  514.23
0.5%  487.00
0.0% Minimum 487.00

Capability
Analysis

From the above preliminary analysis, it looks reasonable to proceed with the capability
analysis.

Dataplot generated the following capabilty analysis.

  
****************************************************
*            CAPABILITY ANALYSIS                   *
*     NUMBER OF OBSERVATIONS       =      168      *
*     MEAN                         =    563.03571  *
*     STANDARD DEVIATION           =     25.38468  *
****************************************************
*  LOWER SPEC LIMIT  (LSL)         =    460.00000  *

3.5.1.2. Initial Analysis of Response Variable
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*  UPPER SPEC LIMIT  (USL)         =    660.00000  *
*  TARGET         (TARGET)         =    560.00000  *
*  USL COST      (USLCOST)         =   UNDEFINED   *
****************************************************
*  CP                              =      1.31313  *
*  CP LOWER 95% CI                 =      1.17234  *
*  CP UPPER 95% CI                 =      1.45372  *
*  CPL                             =      1.35299  *
*  CPL LOWER 95% CI                =      1.21845  *
*  CPL UPPER 95% CI                =      1.48753  *
*  CPU                             =      1.27327  *
*  CPU LOWER 95% CI                =      1.14217  *
*  CPU UPPER 95% CI                =      1.40436  *
*  CPK                             =      1.27327  *
*  CPK LOWER 95% CI                =      1.12771  *
*  CPK UPPER 95% CI                =      1.41882  *
*  CNPK                            =      1.35762  *
*  CPM                             =      1.30384  *
*  CPM LOWER 95% CI                =      1.16405  *
*  CPM UPPER 95% CI                =      1.44344  *
*  CC                              =      0.00460  *
*  ACTUAL      % DEFECTIVE         =      0.00000  *
*  THEORETICAL % DEFECTIVE         =      0.00915  *
*  ACTUAL (BELOW) % DEFECTIVE      =      0.00000  *
*  THEORETICAL(BELOW)  % DEFECTIVE =      0.00247  *
*  ACTUAL (ABOVE) % DEFECTIVE      =      0.00000  *
*  THEORETICAL(ABOVE)  % DEFECTIVE =      0.00668  *
*  EXPECTED LOSS                   =    UNDEFINED  *
****************************************************

Summary of
Percent
Defective

From the above capability analysis output, we can summarize the percent defective (i.e.,
the number of items outside the specification limits) in the following table.

Percentage Outside Specification Limits

Specification Value Percent Actual Theoretical (%
Based On Normal)

Lower Specification
Limit

460
Percent Below
LSL = 100*
((LSL - )/s)

0.0000 0.0025%

Upper Specification
Limit

660
Percent Above
USL = 100*(1 - 
((USL - )/s))

0.0000 0.0067%

Specification Target 560
Combined Percent

Below LSL and
Above USL

0.0000 0.0091%

Standard Deviation 25.38468    

with  denoting the normal cumulative distribution function,  the sample mean, and s
the sample standard deviation.

3.5.1.2. Initial Analysis of Response Variable
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Summary of
Capability
Index
Statistics

From the above capability analysis output, we can summarize various capability index
statistics in the following table.

Capability Index Statistics

Capability Statistic Index Lower CI Upper CI
CP 1.313 1.172 1.454

CPK 1.273 1.128 1.419
CPM 1.304 1.165 1.442
CPL 1.353 1.218 1.488
CPU 1.273 1.142 1.404

Conclusions The above capability analysis indicates that the process is capable and we can proceed
with the analysis.

3.5.1.2. Initial Analysis of Response Variable
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3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.3. Identify Sources of Variation

The next part of the analysis is to break down the sources of variation.

Box Plot by
Run

The following is a box plot of the thickness by run number.

Conclusions
From Box
Plot

We can make the following conclusions from this box plot.

There is significant run-to-run variation.1.  

Although the means of the runs are different, there is no discernable trend due to run.2.  

In addition to the run-to-run variation, there is significant within-run variation as well. This
suggests that a box plot by furnace location may be useful as well.

3.  

3.5.1.3. Identify Sources of Variation
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Box Plot by
Furnace
Location

The following is a box plot of the thickness by furnace location.

Conclusions
From Box
Plot

We can make the following conclusions from this box plot.

There is considerable variation within a given furnace location.1.  

The variation between furnace locations is small. That is, the locations and scales of each
of the four furnace locations are fairly comparable (although furnace location 3 seems to
have a few mild outliers).

2.  

Box Plot by
Wafer

The following is a box plot of the thickness by wafer.

3.5.1.3. Identify Sources of Variation
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Conclusion
From Box
Plot

From this box plot, we conclude that wafer does not seem to be a significant factor.

Block Plot In order to show the combined effects of run, furnace location, and wafer, we draw a block plot of
the thickness. Note that for aesthetic reasons, we have used connecting lines rather than enclosing
boxes.

3.5.1.3. Identify Sources of Variation
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Conclusions
From Block
Plot

We can draw the following conclusions from this block plot.

There is significant variation both between runs and between furnace locations. The
between-run variation appears to be greater.

1.  

Run 3 seems to be an outlier.2.  

3.5.1.3. Identify Sources of Variation
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3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.4.Analysis of Variance

Analysis of
Variance

The next step is to confirm our interpretation of the plots in the previous
section by running an analysis of variance.

In this case, we want to run a nested analysis of variance. Although
Dataplot does not perform a nested analysis of variance directly, in this
case we can use the Dataplot ANOVA command with some additional
computations to generate the needed analysis.

The basic steps are to use a one-way ANOA to compute the appropriate
values for the run variable. We then run a one-way ANOVA with all the
combinations of run and furnace location to compute the "within"
values. The values for furnace location nested within run are then
computed as the difference between the previous two ANOVA runs.

The Dataplot macro provides the details of this computation. This
computation can be summarized in the following table.

Analysis of Variance

Source Degrees of
Freedom

Sum of
Squares

Mean
Square
Error

F Ratio Prob > F

Run 20 61,442.29 3,072.11 5.37404 0.0000001
Furnace
Location

[Run]

63 36,014.5 571.659 4.72864 3.85e-11

Within 84 10,155 120.893   
Total 167 107,611.8 644.382   

3.5.1.4. Analysis of Variance
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Components
of Variance

From the above analysis of variance table, we can compute the
components of variance. Recall that for this data set we have 2 wafers
measured at 4 furnace locations for 21 runs. This leads to the following
set of equations.

3072.11 = (4*2)*Var(Run) + 2*Var(Furnace Location) +
Var(Within)
571.659 = 2*Var(Furnace Location) + Var(Within)
120.893 = Var(Within)

Solving these equations yields the following components of variance
table.

Components of Variance

Component Variance
Component

Percent of
Total

Sqrt(Variance
Component)

Run 312.55694 47.44 17.679
Furnace

Location[Run]
225.38294 34.21 15.013

Within 120.89286 18.35 10.995

3.5.1.4. Analysis of Variance
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3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.5.Final Conclusions

Final
Conclusions

This simple study of a furnace oxide growth process indicated that the
process is capable and showed that both run-to-run and
zone-within-run are significant sources of variation. We should take
this into account when designing the control strategy for this process.
The results also pointed to where we should look when we perform
process improvement activities.

3.5.1.5. Final Conclusions
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3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.6.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run
this case study yourself. Each step may use results
from previous steps, so please be patient. Wait until
the software verifies that the current step is complete
before clicking on the next step.

The links in this column will connect you with more
detailed information about each analysis step from the
case study description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 4 columns of numbers 
    into Dataplot, variables run, zone,
    wafer, and filmthic.

3.5.1.6. Work This Example Yourself
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2. Analyze the response variable.

   1. Normal probability plot,
      box plot, and histogram of
      film thickness.

   2. Compute summary statistics
      and quantiles of film
      thickness.

   3. Perform a capability analysis.

 1. Initial plots indicate that the
    film thickness is reasonably
    approximated by a normal 
    distribution with no significant
    outliers.

 2. Mean is 563.04 and standard
    deviation is 25.38.  Data range
    from 487 to 634.

 3. Capability analysis indicates
    that the process is capable.

3. Identify Sources of Variation.

   1. Generate a box plot by run.

   2. Generate a box plot by furnace
      location.

   3. Generate a box plot by wafer.

   4. Generate a block plot.

 1. The box plot shows significant
    variation both between runs and
    within runs.

 2. The box plot shows significant
    variation within furnace location
    but not between furnace location.

 3. The box plot shows no significant
    effect for wafer.

 4. The block plot shows both run
    and furnace location are
    significant.

3.5.1.6. Work This Example Yourself
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4. Perform an Analysis of Variance

   1. Perform the analysis of
      variance and compute the
      components of variance.

 1. The results of the ANOVA are
    summarized in an ANOVA table
    and a components of variance
    table.

3.5.1.6. Work This Example Yourself
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3. Production Process Characterization
3.5. Case Studies

3.5.2.Machine Screw Case Study

Introduction This case study analyzes three automatic screw machines with the intent
of replacing one of them.

Table of
Contents

The case study is broken down into the following steps.

Background and Data1.  

Box Plots by Factor2.  

Analysis of Variance3.  

Throughput4.  

Final Conclusions5.  

Work This Example Yourself6.  

3.5.2. Machine Screw Case Study
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.1.Background and Data

Introduction A machine shop has three automatic screw machines that produce
various parts. The shop has enough capital to replace one of the
machines. The quality control department has been asked to conduct a
study and make a recommendation as to which machine should be
replaced. It was decided to monitor one of the most commonly
produced parts (an 1/8th inch diameter pin) on each of the machines
and see which machine is the least stable.

Goal The goal of this study is to determine which machine is least stable in
manufacturing a steel pin with a diameter of .125 +/- .003 inches.
Stability will be measured in terms of a constant variance about a
constant mean. If all machines are stable, the decision will be based on
process variability and throughput. Namely, the machine with the
highest variability and lowest throughput will be selected for
replacement.

Process
Model

The process model for this operation is trivial and need not be
addressed.

Sensitivity
Model

The sensitivity model, however, is important and is given in the figure
below. The material is not very important. All machines will receive
barstock from the same source and the coolant will be the same. The
method is important. Each machine is slightly different and the
operator must make adjustments to the speed (how fast the part
rotates), feed (how quickly the cut is made) and stops (where cuts are
finished) for each machine. The same operator will be running all three
machines simultaneously. Measurement is not too important. An
experienced QC engineer will be collecting the samples and making
the measurements. Finally, the machine condition is really what this
study is all about. The wear on the ways and the lead screws will
largely determine the stability of the machining process. Also, tool
wear is important. The same type of tool inserts will be used on all
three machines. The tool insert wear will be monitored by the operator

3.5.2.1. Background and Data
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and they will be changed as needed.

Sampling
Plan

Given our goal statement and process modeling, we can now define a sampling
plan. The primary goal is to determine if the process is stable and to compare the
variances of the three machines. We also need to monitor throughput so that we
can compare the productivity of the three machines.

There is an upcoming three-day run of the particular part of interest, so this
study will be conducted on that run. There is a suspected time-of-day effect that
we must account for. It is sometimes the case that the machines do not perform
as well in the morning, when they are first started up, as they do later in the day.
To account for this we will sample parts in the morning and in the afternoon. So
as not to impact other QC operations too severely, it was decided to sample 10
parts, twice a day, for three days from each of the three machines. Daily
throughput will be recorded as well.

We are expecting readings around .125 +/- .003 inches. The parts will be
measured using a standard micrometer with readings recorded to 0.0001 of an
inch. Throughput will be measured by reading the part counters on the machines
at the end of each day.

3.5.2.1. Background and Data
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Data The following are the data that were collected for this study.

MACHINE      DAY        TIME      SAMPLE      DIAMETER
 (1-3)      (1-3)      1 = AM     (1-10)      (inches)
                       2 = PM
------------------------------------------------------
   1          1           1          1          0.1247
   1          1           1          2          0.1264
   1          1           1          3          0.1252
   1          1           1          4          0.1253
   1          1           1          5          0.1263
   1          1           1          6          0.1251
   1          1           1          7          0.1254
   1          1           1          8          0.1239
   1          1           1          9          0.1235
   1          1           1         10          0.1257
   1          1           2          1          0.1271
   1          1           2          2          0.1253
   1          1           2          3          0.1265
   1          1           2          4          0.1254
   1          1           2          5          0.1243
   1          1           2          6          0.124
   1          1           2          7          0.1246
   1          1           2          8          0.1244
   1          1           2          9          0.1271
   1          1           2         10          0.1241
   1          2           1          1          0.1251
   1          2           1          2          0.1238
   1          2           1          3          0.1255
   1          2           1          4          0.1234
   1          2           1          5          0.1235
   1          2           1          6          0.1266
   1          2           1          7          0.125
   1          2           1          8          0.1246
   1          2           1          9          0.1243
   1          2           1         10          0.1248
   1          2           2          1          0.1248
   1          2           2          2          0.1235
   1          2           2          3          0.1243
   1          2           2          4          0.1265
   1          2           2          5          0.127
   1          2           2          6          0.1229
   1          2           2          7          0.125
   1          2           2          8          0.1248
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   1          2           2          9          0.1252
   1          2           2         10          0.1243
   1          3           1          1          0.1255
   1          3           1          2          0.1237
   1          3           1          3          0.1235
   1          3           1          4          0.1264
   1          3           1          5          0.1239
   1          3           1          6          0.1266
   1          3           1          7          0.1242
   1          3           1          8          0.1231
   1          3           1          9          0.1232
   1          3           1         10          0.1244
   1          3           2          1          0.1233
   1          3           2          2          0.1237
   1          3           2          3          0.1244
   1          3           2          4          0.1254
   1          3           2          5          0.1247
   1          3           2          6          0.1254
   1          3           2          7          0.1258
   1          3           2          8          0.126
   1          3           2          9          0.1235
   1          3           2         10          0.1273
   2          1           1          1          0.1239
   2          1           1          2          0.1239
   2          1           1          3          0.1239
   2          1           1          4          0.1231
   2          1           1          5          0.1221
   2          1           1          6          0.1216
   2          1           1          7          0.1233
   2          1           1          8          0.1228
   2          1           1          9          0.1227
   2          1           1         10          0.1229
   2          1           2          1          0.122
   2          1           2          2          0.1239
   2          1           2          3          0.1237
   2          1           2          4          0.1216
   2          1           2          5          0.1235
   2          1           2          6          0.124
   2          1           2          7          0.1224
   2          1           2          8          0.1236
   2          1           2          9          0.1236
   2          1           2         10          0.1217
   2          2           1          1          0.1247
   2          2           1          2          0.122
   2          2           1          3          0.1218
   2          2           1          4          0.1237
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   2          2           1          5          0.1234
   2          2           1          6          0.1229
   2          2           1          7          0.1235
   2          2           1          8          0.1237
   2          2           1          9          0.1224
   2          2           1         10          0.1224
   2          2           2          1          0.1239
   2          2           2          2          0.1226
   2          2           2          3          0.1224
   2          2           2          4          0.1239
   2          2           2          5          0.1237
   2          2           2          6          0.1227
   2          2           2          7          0.1218
   2          2           2          8          0.122
   2          2           2          9          0.1231
   2          2           2         10          0.1244
   2          3           1          1          0.1219
   2          3           1          2          0.1243
   2          3           1          3          0.1231
   2          3           1          4          0.1223
   2          3           1          5          0.1218
   2          3           1          6          0.1218
   2          3           1          7          0.1225
   2          3           1          8          0.1238
   2          3           1          9          0.1244
   2          3           1         10          0.1236
   2          3           2          1          0.1231
   2          3           2          2          0.1223
   2          3           2          3          0.1241
   2          3           2          4          0.1215
   2          3           2          5          0.1221
   2          3           2          6          0.1236
   2          3           2          7          0.1229
   2          3           2          8          0.1205
   2          3           2          9          0.1241
   2          3           2         10          0.1232
   3          1           1          1          0.1255
   3          1           1          2          0.1215
   3          1           1          3          0.1219
   3          1           1          4          0.1253
   3          1           1          5          0.1232
   3          1           1          6          0.1266
   3          1           1          7          0.1271
   3          1           1          8          0.1209
   3          1           1          9          0.1212
   3          1           1         10          0.1249
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   3          1           2          1          0.1228
   3          1           2          2          0.126
   3          1           2          3          0.1242
   3          1           2          4          0.1236
   3          1           2          5          0.1248
   3          1           2          6          0.1243
   3          1           2          7          0.126
   3          1           2          8          0.1231
   3          1           2          9          0.1234
   3          1           2         10          0.1246
   3          2           1          1          0.1207
   3          2           1          2          0.1279
   3          2           1          3          0.1268
   3          2           1          4          0.1222
   3          2           1          5          0.1244
   3          2           1          6          0.1225
   3          2           1          7          0.1234
   3          2           1          8          0.1244
   3          2           1          9          0.1207
   3          2           1         10          0.1264
   3          2           2          1          0.1224
   3          2           2          2          0.1254
   3          2           2          3          0.1237
   3          2           2          4          0.1254
   3          2           2          5          0.1269
   3          2           2          6          0.1236
   3          2           2          7          0.1248
   3          2           2          8          0.1253
   3          2           2          9          0.1252
   3          2           2         10          0.1237
   3          3           1          1          0.1217
   3          3           1          2          0.122
   3          3           1          3          0.1227
   3          3           1          4          0.1202
   3          3           1          5          0.127
   3          3           1          6          0.1224
   3          3           1          7          0.1219
   3          3           1          8          0.1266
   3          3           1          9          0.1254
   3          3           1         10          0.1258
   3          3           2          1          0.1236
   3          3           2          2          0.1247
   3          3           2          3          0.124
   3          3           2          4          0.1235
   3          3           2          5          0.124
   3          3           2          6          0.1217
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   3          3           2          7          0.1235
   3          3           2          8          0.1242
   3          3           2          9          0.1247
   3          3           2         10          0.125
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.2.Box Plots by Factors

Initial Steps The initial step is to plot box plots of the measured diameter for each of the explanatory variables.

Box Plot by
Machine

The following is a box plot of the diameter by machine.

Conclusions
From Box
Plot

We can make the following conclusions from this box plot.

The location appears to be significantly different for the three machines, with machine 2
having the smallest median diameter and machine 1 having the largest median diameter.

1.  

Machines 1 and 2 have comparable variability while machine 3 has somewhat larger
variability.

2.  

3.5.2.2. Box Plots by Factors
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Box Plot by
Day

The following is a box plot of the diameter by day.

Conclusions
From Box
Plot

We can draw the following conclusion from this box plot. Neither the location nor the spread
seem to differ significantly by day.

Box Plot by
Time of Day

The following is a box plot of the time of day.

3.5.2.2. Box Plots by Factors
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Conclusion
From Box
Plot

We can draw the following conclusion from this box plot. Neither the location nor the spread
seem to differ significantly by time of day.

Box Plot by
Sample
Number

The following is a box plot of the sample number.

3.5.2.2. Box Plots by Factors
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Conclusion
From Box
Plot

We can draw the following conclusion from this box plot. Although there are some minor
differences in location and spread between the samples, these differences do not show a
noticeable pattern and do not seem significant.
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.3.Analysis of Variance

Analysis of
Variance
using All
Factors

We can confirm our interpretation of the box plots by running an
analysis of variance. Dataplot generated the following analysis of
variance output when all four factors were included.

  
                 **********************************
                 **********************************
                 **  4-WAY ANALYSIS OF VARIANCE  **
                 **********************************
                 **********************************
  
       NUMBER OF OBSERVATIONS           =      180
       NUMBER OF FACTORS                =        4
       NUMBER OF LEVELS FOR FACTOR  1  =        3
       NUMBER OF LEVELS FOR FACTOR  2  =        3
       NUMBER OF LEVELS FOR FACTOR  3  =        2
       NUMBER OF LEVELS FOR FACTOR  4  =       10
       BALANCED CASE
       RESIDUAL    STANDARD DEVIATION   =   
0.13743976597E-02
       RESIDUAL    DEGREES OF FREEDOM   =      165
       NO REPLICATION CASE
       NUMBER OF DISTINCT CELLS         =      180
  
                          *****************
                          *  ANOVA TABLE  *
                          *****************
  
 SOURCE              DF SUM OF SQUARES    MEAN SQUARE   F
STATISTIC    F CDF SIG
 -------------------------------------------------------------------------------
 TOTAL (CORRECTED)  179       0.000437       0.000002
 -------------------------------------------------------------------------------
 FACTOR  1            2       0.000111       0.000055      
29.3159 100.000%  **
 FACTOR  2            2       0.000004       0.000002       
0.9884  62.565%
 FACTOR  3            1       0.000002       0.000002       
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1.2478  73.441%
 FACTOR  4            9       0.000009       0.000001       
0.5205  14.172%
 -------------------------------------------------------------------------------
 RESIDUAL           165       0.000312       0.000002
  
       RESIDUAL    STANDARD DEVIATION =        0.00137439766
       RESIDUAL    DEGREES OF FREEDOM =           165

                          ****************
                          *  ESTIMATION  *
                          ****************
  
       GRAND MEAN                       =   
0.12395893037E+00
       GRAND STANDARD DEVIATION         =   
0.15631503193E-02
  
  
              LEVEL-ID      NI      MEAN      EFFECT    
SD(EFFECT)
 --------------------------------------------------------------------
 FACTOR 1--    1.00000     60.    0.12489    0.00093   
0.00014
         --    2.00000     60.    0.12297   -0.00099   
0.00014
         --    3.00000     60.    0.12402    0.00006   
0.00014
 FACTOR 2--    1.00000     60.    0.12409    0.00013   
0.00014
         --    2.00000     60.    0.12403    0.00007   
0.00014
         --    3.00000     60.    0.12376   -0.00020   
0.00014
 FACTOR 3--    1.00000     90.    0.12384   -0.00011   
0.00010
         --    2.00000     90.    0.12407    0.00011   
0.00010
 FACTOR 4--    1.00000     18.    0.12371   -0.00025   
0.00031
         --    2.00000     18.    0.12405    0.00009   
0.00031
         --    3.00000     18.    0.12398    0.00002   
0.00031
         --    4.00000     18.    0.12382   -0.00014   
0.00031
         --    5.00000     18.    0.12426    0.00030   
0.00031
         --    6.00000     18.    0.12379   -0.00016   
0.00031
         --    7.00000     18.    0.12406    0.00010   
0.00031
         --    8.00000     18.    0.12376   -0.00020   
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0.00031
         --    9.00000     18.    0.12376   -0.00020   
0.00031
         --   10.00000     18.    0.12440    0.00044   
0.00031
  
  
         MODEL               RESIDUAL STANDARD DEVIATION
 -------------------------------------------------------
 CONSTANT             ONLY--        0.0015631503
 CONSTANT & FACTOR  1 ONLY--        0.0013584237
 CONSTANT & FACTOR  2 ONLY--        0.0015652323
 CONSTANT & FACTOR  3 ONLY--        0.0015633047
 CONSTANT & FACTOR  4 ONLY--        0.0015876852
 CONSTANT & ALL 4 FACTORS --        0.0013743977
  

Interpretation
of ANOVA
Output

The first thing to note is that Dataplot fits an overall mean when
performing the ANOVA. That is, it fits the model

as opposed to the model

These models are mathematically equivalent. The effect estimates in
the first model are relative to the overall mean. The effect estimates for
the second model can be obtained by simply adding the overall mean to
effect estimates from the first model.

We are primarily interested in identifying the significant factors. The
last column of the ANOVA table prints a "**" for statistically
significant factors. Only factor 1 (the machine) is statistically
significant. This confirms what the box plots in the previous section
had indicated graphically.

Analysis of
Variance
Using Only
Machine

The previous analysis of variance indicated that only the machine
factor was statistically significant. The following shows the ANOVA
output using only the machine factor.

3.5.2.3. Analysis of Variance

http://www.itl.nist.gov/div898/handbook/ppc/section5/ppc523.htm (3 of 6) [5/1/2006 10:18:12 AM]



  
                 **********************************
                 **********************************
                 **  1-WAY ANALYSIS OF VARIANCE  **
                 **********************************
                 **********************************
  
       NUMBER OF OBSERVATIONS           =      180
       NUMBER OF FACTORS                =        1
       NUMBER OF LEVELS FOR FACTOR  1  =        3
       BALANCED CASE
       RESIDUAL    STANDARD DEVIATION   =   
0.13584237313E-02
       RESIDUAL    DEGREES OF FREEDOM   =      177
       REPLICATION CASE
       REPLICATION STANDARD DEVIATION   =   
0.13584237313E-02
       REPLICATION DEGREES OF FREEDOM   =      177
       NUMBER OF DISTINCT CELLS         =        3
  
                          *****************
                          *  ANOVA TABLE  *
                          *****************
  
 SOURCE              DF SUM OF SQUARES    MEAN SQUARE   F
STATISTIC    F CDF SIG
 -------------------------------------------------------------------------------
 TOTAL (CORRECTED)  179       0.000437       0.000002
 -------------------------------------------------------------------------------
 FACTOR  1            2       0.000111       0.000055      
30.0094 100.000%  **
 -------------------------------------------------------------------------------
 RESIDUAL           177       0.000327       0.000002
  
       RESIDUAL    STANDARD DEVIATION =        0.00135842373
       RESIDUAL    DEGREES OF FREEDOM =           177
       REPLICATION STANDARD DEVIATION =        0.00135842373
       REPLICATION DEGREES OF FREEDOM =           177

                          ****************
                          *  ESTIMATION  *
                          ****************
  
       GRAND MEAN                       =   
0.12395893037E+00
       GRAND STANDARD DEVIATION         =   
0.15631503193E-02
  
  
              LEVEL-ID      NI      MEAN      EFFECT    
SD(EFFECT)
 --------------------------------------------------------------------

3.5.2.3. Analysis of Variance
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 FACTOR 1--    1.00000     60.    0.12489    0.00093   
0.00014
         --    2.00000     60.    0.12297   -0.00099   
0.00014
         --    3.00000     60.    0.12402    0.00006   
0.00014
  
  
         MODEL               RESIDUAL STANDARD DEVIATION
 -------------------------------------------------------
 CONSTANT             ONLY--        0.0015631503
 CONSTANT & FACTOR  1 ONLY--        0.0013584237

Interpretation
of ANOVA
Output

At this stage, we are interested in the effect estimates for the machine variable. These can be
summarized in the following table.

Means for Oneway Anova

Level Number Mean Standard Error Lower 95% CI Upper 95% CI
1 60 0.124887 0.00018 0.12454 0.12523
2 60 0.122968 0.00018 0.12262 0.12331
3 60 0.124022 0.00018 0.12368 0.12437

The Dataplot macro file shows the computations required to go from the Dataplot ANOVA
output to the numbers in the above table.

Model
Validation

As a final step, we validate the model by generating a 4-plot of the residuals.

3.5.2.3. Analysis of Variance
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The 4-plot does not indicate any significant problems with the ANOVA model.
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.4.Throughput

Summary of
Throughput

The throughput is summarized in the following table (this was part of the original data collection,
not the result of analysis).

Machine Day 1 Day 2 Day 3
1 576 604 583
2 657 604 586
3 510 546 571

This table shows that machine 3 had significantly lower throughput.

Graphical
Representation
of Throughput

We can show the throughput graphically.

The graph clearly shows the lower throughput for machine 3.

3.5.2.4. Throughput
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Analysis of
Variance for
Throughput

We can confirm the statistical significance of the lower throughput of machine 3 by running an
analysis of variance.

  
                 **********************************
                 **********************************
                 **  1-WAY ANALYSIS OF VARIANCE  **
                 **********************************
                 **********************************
  
       NUMBER OF OBSERVATIONS           =        9
       NUMBER OF FACTORS                =        1
       NUMBER OF LEVELS FOR FACTOR  1  =        3
       BALANCED CASE
       RESIDUAL    STANDARD DEVIATION   =   
0.28953985214E+02
       RESIDUAL    DEGREES OF FREEDOM   =        6
       REPLICATION CASE
       REPLICATION STANDARD DEVIATION   =   
0.28953985214E+02
       REPLICATION DEGREES OF FREEDOM   =        6
       NUMBER OF DISTINCT CELLS         =        3
  
                          *****************
                          *  ANOVA TABLE  *
                          *****************
  
 SOURCE              DF SUM OF SQUARES    MEAN SQUARE   F
STATISTIC    F CDF SIG
 -------------------------------------------------------------------------------
 TOTAL (CORRECTED)    8   13246.888672    1655.861084
 -------------------------------------------------------------------------------
 FACTOR  1            2    8216.898438    4108.449219       
4.9007  94.525%
 -------------------------------------------------------------------------------
 RESIDUAL             6    5030.000000     838.333313
  
       RESIDUAL    STANDARD DEVIATION =       28.95398521423
       RESIDUAL    DEGREES OF FREEDOM =             6
       REPLICATION STANDARD DEVIATION =       28.95398521423
       REPLICATION DEGREES OF FREEDOM =             6

                          ****************
                          *  ESTIMATION  *
                          ****************
  
       GRAND MEAN                       =   
0.58188891602E+03
       GRAND STANDARD DEVIATION         =   

3.5.2.4. Throughput
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0.40692272186E+02
  
  
              LEVEL-ID      NI      MEAN      EFFECT    
SD(EFFECT)
 --------------------------------------------------------------------
 FACTOR 1--    1.00000      3.  587.66669    5.77777  
13.64904
         --    2.00000      3.  615.66669   33.77777  
13.64904
         --    3.00000      3.  542.33331  -39.55560  
13.64904
  
  
         MODEL               RESIDUAL STANDARD DEVIATION
 -------------------------------------------------------
 CONSTANT             ONLY--       40.6922721863
 CONSTANT & FACTOR  1 ONLY--       28.9539852142

Interpretation
of ANOVA
Output

We summarize the effect estimates in the following table.

Means for Oneway Anova

Level Number Mean Standard Error Lower 95%
CI

Upper 95%
CI

1 3 587.667 16.717 546.76 628.57
2 3 615.667 16.717 574.76 656.57
3 3 542.33 16.717 501.43 583.24

The Dataplot macro file shows the computations required to go from
the Dataplot ANOVA output to the numbers in the above table.

3.5.2.4. Throughput
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.5.Final Conclusions

Final
Conclusions

The analysis shows that machines 1 and 2 had about the same
variablity but significantly different locations. The throughput for
machine 2 was also higher with greater variability than for machine 1.
An interview with the operator revealed that he realized the second
machine was not set correctly. However, he did not want to change the
settings because he knew a study was being conducted and was afraid
he might impact the results by making changes. Machine 3 had
significantly more variation and lower throughput. The operator
indicated that the machine had to be taken down several times for
minor repairs. Given the preceeding analysis results, the team
recommended replacing machine 3.

3.5.2.5. Final Conclusions

http://www.itl.nist.gov/div898/handbook/ppc/section5/ppc525.htm [5/1/2006 10:18:13 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.6.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this
case study yourself. Each step may use results from
previous steps, so please be patient. Wait until the
software verifies that the current step is complete
before clicking on the next step.

The links in this column will connect you with more
detailed information about each analysis step from the
case study description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 5 columns of numbers 
    into Dataplot, variables machine,
    day, time, sample, and diameter.

3.5.2.6. Work This Example Yourself
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2. Box Plots by Factor Variables

   1. Generate a box plot by machine.

   2. Generate a box plot by day.

   3. Generate a box plot by time of
      day.

   4. Generate a box plot by
      sample.

 1. The box plot shows significant
    variation for both location and
    spread.

 2. The box plot shows no significant
    location or spread effects for
    day.

 3. The box plot shows no significant
    location or spread effects for
    time of day.

 4. The box plot shows no significant
    location or spread effects for
    sample.

3. Analysis of Variance

   1. Perform an analysis of variance
      with all factors.

   2. Perform an analysis of variance
      with only the machine factor.

   3. Perform model validation by
      generating a 4-plot of the
      residuals.

 1. The analysis of variance shows
    that only the machine factor
    is statistically significant.

 2. The analysis of variance shows
    the overall mean and the 
    effect estimates for the levels
    of the machine variable.

 3. The 4-plot of the residuals does
    not indicate any significant
    problems with the model.

3.5.2.6. Work This Example Yourself
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4. Graph of Throughput

   1. Generate a graph of the
      throughput.

   2. Perform an analysis of
      variance of the throughput.

 1. The graph shows the throughput
    for machine 3 is lower than
    the other machines.

 2. The effect estimates from the
    ANIVA are given.

3.5.2.6. Work This Example Yourself
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4.Process Modeling

The goal for this chapter is to present the background and specific analysis techniques
needed to construct a statistical model that describes a particular scientific or
engineering process. The types of models discussed in this chapter are limited to those
based on an explicit mathematical function. These types of models can be used for
prediction of process outputs, for calibration, or for process optimization.

1. Introduction

Definition1.  

Terminology2.  

Uses3.  

Methods4.  

2. Assumptions

Assumptions1.  

3. Design

Definition1.  

Importance2.  

Design Principles3.  

Optimal Designs4.  

Assessment5.  

4. Analysis

Modeling Steps1.  

Model Selection2.  

Model Fitting3.  

Model Validation4.  

Model Improvement5.  

5. Interpretation & Use

Prediction1.  

Calibration2.  

Optimization3.  

6. Case Studies

Load Cell Output1.  

Alaska Pipeline2.  

Ultrasonic Reference Block3.  

Thermal Expansion of Copper4.  

Detailed Table of Contents: Process Modeling

References: Process Modeling

Appendix: Some Useful Functions for Process Modeling
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4.   Process Modeling - Detailed Table of
Contents  [4.]

The goal for this chapter is to present the background and specific analysis techniques needed to
construct a statistical model that describes a particular scientific or engineering process. The types
of models discussed in this chapter are limited to those based on an explicit mathematical
function. These types of models can be used for prediction of process outputs, for calibration, or
for process optimization.

Introduction to Process Modeling  [4.1.]

What is process modeling?  [4.1.1.]1.  

What terminology do statisticians use to describe process models?  [4.1.2.]2.  

What are process models used for?  [4.1.3.]

Estimation  [4.1.3.1.]1.  

Prediction  [4.1.3.2.]2.  

Calibration  [4.1.3.3.]3.  

Optimization  [4.1.3.4.]4.  

3.  

What are some of the different statistical methods for model building?  [4.1.4.]

Linear Least Squares Regression  [4.1.4.1.]1.  

Nonlinear Least Squares Regression  [4.1.4.2.]2.  

Weighted Least Squares Regression  [4.1.4.3.]3.  

LOESS (aka LOWESS)  [4.1.4.4.]4.  

4.  

1.  

Underlying Assumptions for Process Modeling  [4.2.]

What are the typical underlying assumptions in process modeling?  [4.2.1.]

The process is a statistical process.  [4.2.1.1.]1.  

The means of the random errors are zero.  [4.2.1.2.]2.  

The random errors have a constant standard deviation.  [4.2.1.3.]3.  

The random errors follow a normal distribution.  [4.2.1.4.]4.  

The data are randomly sampled from the process.  [4.2.1.5.]5.  

1.  

2.  
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The explanatory variables are observed without error.  [4.2.1.6.]6.  

Data Collection for Process Modeling  [4.3.]

What is design of experiments (aka DEX or DOE)?  [4.3.1.]1.  

Why is experimental design important for process modeling?  [4.3.2.]2.  

What are some general design principles for process modeling?  [4.3.3.]3.  

I've heard some people refer to "optimal" designs, shouldn't I use those?  [4.3.4.]4.  

How can I tell if a particular experimental design is good for my
application?  [4.3.5.]

5.  

3.  

Data Analysis for Process Modeling  [4.4.]

What are the basic steps for developing an effective process model?  [4.4.1.]1.  

How do I select a function to describe my process?  [4.4.2.]

Incorporating Scientific Knowledge into Function Selection  [4.4.2.1.]1.  

Using the Data to Select an Appropriate Function  [4.4.2.2.]2.  

Using Methods that Do Not Require Function Specification  [4.4.2.3.]3.  

2.  

How are estimates of the unknown parameters obtained?  [4.4.3.]

Least Squares  [4.4.3.1.]1.  

Weighted Least Squares  [4.4.3.2.]2.  

3.  

How can I tell if a model fits my data?  [4.4.4.]

How can I assess the sufficiency of the functional part of the model?  [4.4.4.1.]1.  

How can I detect non-constant variation across the data?  [4.4.4.2.]2.  

How can I tell if there was drift in the measurement process?  [4.4.4.3.]3.  

How can I assess whether the random errors are independent from one to the
next?  [4.4.4.4.]

4.  

How can I test whether or not the random errors are distributed
normally?  [4.4.4.5.]

5.  

How can I test whether any significant terms are missing or misspecified in the
functional part of the model?  [4.4.4.6.]

6.  

How can I test whether all of the terms in the functional part of the model are
necessary?  [4.4.4.7.]

7.  

4.  

If my current model does not fit the data well, how can I improve it?  [4.4.5.]

Updating the Function Based on Residual Plots  [4.4.5.1.]1.  

Accounting for Non-Constant Variation Across the Data  [4.4.5.2.]2.  

Accounting for Errors with a Non-Normal Distribution  [4.4.5.3.]3.  

5.  
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Use and Interpretation of Process Models  [4.5.]

What types of predictions can I make using the model?  [4.5.1.]

How do I estimate the average response for a particular set of predictor
variable values?  [4.5.1.1.]

1.  

How can I predict the value and and estimate the uncertainty of a single
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2.  
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How can I use my process model for calibration?  [4.5.2.]

Single-Use Calibration Intervals  [4.5.2.1.]1.  
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4. Process Modeling

4.1. Introduction to Process Modeling

Overview of
Section 4.1

The goal for this section is to give the big picture of function-based
process modeling. This includes a discussion of what process modeling
is, the goals of process modeling, and a comparison of the different
statistical methods used for model building. Detailed information on
how to collect data, construct appropriate models, interpret output, and
use process models is covered in the following sections. The final
section of the chapter contains case studies that illustrate the general
information presented in the first five sections using data from a variety
of scientific and engineering applications.

Contents of
Section 4.1

What is process modeling?1.  

What terminology do statisticians use to describe process models?2.  

What are process models used for?

Estimation1.  

Prediction2.  

Calibration3.  

Optimization4.  

3.  

What are some of the statistical methods for model building?

Linear Least Squares Regression1.  

Nonlinear Least Squares Regression2.  

Weighted Least Squares Regression3.  

LOESS (aka LOWESS)4.  

4.  

4.1. Introduction to Process Modeling
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4. Process Modeling
4.1. Introduction to Process Modeling

4.1.1.What is process modeling?

Basic
Definition

Process modeling is the concise description of the total variation in one quantity, , by
partitioning it into

a deterministic component given by a mathematical function of one or more other
quantities,  , plus

1.  

a random component that follows a particular probability distribution.2.  

Example For example, the total variation of the measured pressure of a fixed amount of a gas in a tank can
be described by partitioning the variability into its deterministic part, which is a function of the
temperature of the gas, plus some left-over random error. Charles' Law states that the pressure of
a gas is proportional to its temperature under the conditions described here, and in this case most
of the variation will be deterministic. However, due to measurement error in the pressure gauge,
the relationship will not be purely deterministic. The random errors cannot be characterized
individually, but will follow some probability distribution that will describe the relative
frequencies of occurrence of different-sized errors.

Graphical
Interpretation

Using the example above, the definition of process modeling can be graphically depicted like
this:

4.1.1. What is process modeling?
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Click Figure
for Full-Sized
Copy

The top left plot in the figure shows pressure data that vary deterministically with temperature
except for a small amount of random error. The relationship between pressure and temperature is
a straight line, but not a perfect straight line. The top row plots on the right-hand side of the
equals sign show a partitioning of the data into a perfect straight line and the remaining
"unexplained" random variation in the data (note the different vertical scales of these plots). The
plots in the middle row of the figure show the deterministic structure in the data again and a
histogram of the random variation. The histogram shows the relative frequencies of observing
different-sized random errors. The bottom row of the figure shows how the relative frequencies of
the random errors can be summarized by a (normal) probability distribution.

An Example
from a More
Complex
Process

Of course, the straight-line example is one of the simplest functions used for process modeling.
Another example is shown below. The concept is identical to the straight-line example, but the
structure in the data is more complex. The variation in  is partitioned into a deterministic part,
which is a function of another variable, , plus some left-over random variation. (Again note the
difference in the vertical axis scales of the two plots in the top right of the figure.) A probability
distribution describes the leftover random variation.

4.1.1. What is process modeling?
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An Example
with Multiple
Explanatory
Variables

The examples of process modeling shown above have only one explanatory variable but the
concept easily extends to cases with more than one explanatory variable. The three-dimensional
perspective plots below show an example with two explanatory variables. Examples with three or
more explanatory variables are exactly analogous, but are difficult to show graphically.

4.1.1. What is process modeling?
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4. Process Modeling
4.1. Introduction to Process Modeling

4.1.2.What terminology do statisticians use
to describe process models?

Model
Components

There are three main parts to every process model. These are

the response variable, usually denoted by ,1.  

the mathematical function, usually denoted as , and2.  

the random errors, usually denoted by .3.  

Form of
Model

The general form of the model is

.

All process models discussed in this chapter have this general form. As
alluded to earlier, the random errors that are included in the model make
the relationship between the response variable and the predictor
variables a "statistical" one, rather than a perfect deterministic one. This
is because the functional relationship between the response and
predictors holds only on average, not for each data point.

Some of the details about the different parts of the model are discussed
below, along with alternate terminology for the different components of
the model.

Response
Variable

The response variable, , is a quantity that varies in a way that we hope
to be able to summarize and exploit via the modeling process. Generally
it is known that the variation of the response variable is systematically
related to the values of one or more other variables before the modeling
process is begun, although testing the existence and nature of this
dependence is part of the modeling process itself.

4.1.2. What terminology do statisticians use to describe process models?
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Mathematical
Function

The mathematical function consists of two parts. These parts are the
predictor variables, , and the parameters, . The
predictor variables are observed along with the response variable. They
are the quantities described on the previous page as inputs to the

mathematical function, . The collection of all of the predictor

variables is denoted by  for short.

The parameters are the quantities that will be estimated during the
modeling process. Their true values are unknown and unknowable,
except in simulation experiments. As for the predictor variables, the
collection of all of the parameters is denoted by  for short.

The parameters and predictor variables are combined in different forms
to give the function used to describe the deterministic variation in the
response variable. For a straight line with an unknown intercept and
slope, for example, there are two parameters and one predictor variable

.

For a straight line with a known slope of one, but an unknown intercept,
there would only be one parameter

.

For a quadratic surface with two predictor variables, there are six
parameters for the full model.

.

4.1.2. What terminology do statisticians use to describe process models?
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Random
Error

Like the parameters in the mathematical function, the random errors are
unknown. They are simply the difference between the data and the
mathematical function. They are assumed to follow a particular
probability distribution, however, which is used to describe their
aggregate behavior. The probability distribution that describes the errors
has a mean of zero and an unknown standard deviation, denoted by ,
that is another parameter in the model, like the 's.

Alternate
Terminology

Unfortunately, there are no completely standardardized names for the
parts of the model discussed above. Other publications or software may
use different terminology. For example, another common name for the
response variable is "dependent variable". The response variable is also
simply called "the response" for short. Other names for the predictor
variables include "explanatory variables", "independent variables",
"predictors" and "regressors". The mathematical function used to
describe the deterministic variation in the response variable is sometimes
called the "regression function", the "regression equation", the
"smoothing function", or the "smooth".

Scope of
"Model"

In its correct usage, the term "model" refers to the equation above and
also includes the underlying assumptions made about the probability
distribution used to describe the variation of the random errors. Often,
however, people will also use the term "model" when referring
specifically to the mathematical function describing the deterministic
variation in the data. Since the function is part of the model, the more
limited usage is not wrong, but it is important to remember that the term
"model" might refer to more than just the mathematical function.

4.1.2. What terminology do statisticians use to describe process models?
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4. Process Modeling
4.1. Introduction to Process Modeling

4.1.3.What are process models used for?

Three Main
Purposes

Process models are used for four main purposes:

estimation,1.  

prediction,2.  

calibration, and3.  

optimization.4.  

The rest of this page lists brief explanations of the different uses of
process models. More detailed explanations of the uses for process
models are given in the subsections of this section listed at the bottom
of this page.

Estimation The goal of estimation is to determine the value of the regression
function (i.e., the average value of the response variable), for a
particular combination of the values of the predictor variables.
Regression function values can be estimated for any combination of
predictor variable values, including values for which no data have been
measured or observed. Function values estimated for points within the
observed space of predictor variable values are sometimes called
interpolations. Estimation of regression function values for points
outside the observed space of predictor variable values, called
extrapolations, are sometimes necessary, but require caution.

Prediction The goal of prediction is to determine either

the value of a new observation of the response variable, or1.  

the values of a specified proportion of all future observations of
the response variable

2.  

for a particular combination of the values of the predictor variables.
Predictions can be made for any combination of predictor variable
values, including values for which no data have been measured or
observed. As in the case of estimation, predictions made outside the
observed space of predictor variable values are sometimes necessary,
but require caution.

4.1.3. What are process models used for?
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Calibration The goal of calibration is to quantitatively relate measurements made
using one measurement system to those of another measurement system.
This is done so that measurements can be compared in common units or
to tie results from a relative measurement method to absolute units.

Optimization Optimization is performed to determine the values of process inputs that
should be used to obtain the desired process output. Typical
optimization goals might be to maximize the yield of a process, to
minimize the processing time required to fabricate a product, or to hit a
target product specification with minimum variation in order to
maintain specified tolerances.

Further
Details

Estimation1.  

Prediction2.  

Calibration3.  

Optimization4.  

4.1.3. What are process models used for?
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.3. What are process models used for?

4.1.3.1.Estimation

More on
Estimation

As mentioned on the preceding page, the primary goal of estimation is to determine the value of
the regression function that is associated with a specific combination of predictor variable values.
The estimated values are computed by plugging the value(s) of the predictor variable(s) into the
regression equation, after estimating the unknown parameters from the data. This process is
illustrated below using the Pressure/Temperature example from a few pages earlier.

Example Suppose in this case the predictor variable value of interest is a temperature of 47 degrees.
Computing the estimated value of the regression function using the equation

yields an estimated average pressure of 192.4655.

4.1.3.1. Estimation
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Of course, if the pressure/temperature experiment were repeated, the estimates of the parameters
of the regression function obtained from the data would differ slightly each time because of the
randomness in the data and the need to sample a limited amount of data. Different parameter
estimates would, in turn, yield different estimated values. The plot below illustrates the type of
slight variation that could occur in a repeated experiment.

Estimated
Value from
a Repeated
Experiment

4.1.3.1. Estimation
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Uncertainty
of the
Estimated
Value

A critical part of estimation is an assessment of how much an estimated value will fluctuate due
to the noise in the data. Without that information there is no basis for comparing an estimated
value to a target value or to another estimate. Any method used for estimation should include an
assessment of the uncertainty in the estimated value(s). Fortunately it is often the case that the
data used to fit the model to a process can also be used to compute the uncertainty of estimated
values obtained from the model. In the pressure/temperature example a confidence interval for the
value of the regresion function at 47 degrees can be computed from the data used to fit the model.
The plot below shows a 99% confidence interval produced using the original data. This interval
gives the range of plausible values for the average pressure for a temperature of 47 degrees based
on the parameter estimates and the noise in the data.

99%
Confidence
Interval for
Pressure at
T=47

4.1.3.1. Estimation
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Length of
Confidence
Intervals

Because the confidence interval is an interval for the value of the regression function, the
uncertainty only includes the noise that is inherent in the estimates of the regression parameters.
The uncertainty in the estimated value can be less than the uncertainty of a single measurement
from the process because the data used to estimate the unknown parameters is essentially
averaged (in a way that depends on the statistical method being used) to determine each
parameter estimate. This "averaging" of the data tends to cancel out errors inherent in each
individual observed data point. The noise in the this type of result is generally less than the noise
in the prediction of one or more future measurements, which must account for both the
uncertainty in the estimated parameters and the uncertainty of the new measurement.

More Info For more information on the interpretation and computation confidence, intervals see Section 5.1

4.1.3.1. Estimation
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.3. What are process models used for?

4.1.3.2.Prediction

More on
Prediction

As mentioned earlier, the goal of prediction is to determine future value(s) of the response
variable that are associated with a specific combination of predictor variable values. As in
estimation, the predicted values are computed by plugging the value(s) of the predictor variable(s)
into the regression equation, after estimating the unknown parameters from the data. The
difference between estimation and prediction arises only in the computation of the uncertainties.
These differences are illustrated below using the Pressure/Temperature example in parallel with
the example illustrating estimation.

Example Suppose in this case the predictor variable value of interest is a temperature of 47 degrees.
Computing the predicted value using the equation

yields a predicted pressure of 192.4655.

4.1.3.2. Prediction
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Of course, if the pressure/temperature experiment were repeated, the estimates of the parameters
of the regression function obtained from the data would differ slightly each time because of the
randomness in the data and the need to sample a limited amount of data. Different parameter
estimates would, in turn, yield different predicted values. The plot below illustrates the type of
slight variation that could occur in a repeated experiment.

Predicted
Value from
a Repeated
Experiment

4.1.3.2. Prediction
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Prediction
Uncertainty

A critical part of prediction is an assessment of how much a predicted value will fluctuate due to
the noise in the data. Without that information there is no basis for comparing a predicted value to
a target value or to another prediction. As a result, any method used for prediction should include
an assessment of the uncertainty in the predicted value(s). Fortunately it is often the case that the
data used to fit the model to a process can also be used to compute the uncertainty of predictions
from the model. In the pressure/temperature example a prediction interval for the value of the
regresion function at 47 degrees can be computed from the data used to fit the model. The plot
below shows a 99% prediction interval produced using the original data. This interval gives the
range of plausible values for a single future pressure measurement observed at a temperature of
47 degrees based on the parameter estimates and the noise in the data.

99%
Prediction
Interval for
Pressure at
T=47

4.1.3.2. Prediction
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Length of
Prediction
Intervals

Because the prediction interval is an interval for the value of a single new measurement from the
process, the uncertainty includes the noise that is inherent in the estimates of the regression
parameters and the uncertainty of the new measurement. This means that the interval for a new
measurement will be wider than the confidence interval for the value of the regression function.
These intervals are called prediction intervals rather than confidence intervals because the latter
are for parameters, and a new measurement is a random variable, not a parameter.

Tolerance
Intervals

Like a prediction interval, a tolerance interval brackets the plausible values of new measurements
from the process being modeled. However, instead of bracketing the value of a single
measurement or a fixed number of measurements, a tolerance interval brackets a specified
percentage of all future measurements for a given set of predictor variable values. For example, to
monitor future pressure measurements at 47 degrees for extreme values, either low or high, a
tolerance interval that brackets 98% of all future measurements with high confidence could be
used. If a future value then fell outside of the interval, the system would then be checked to
ensure that everything was working correctly. A 99% tolerance interval that captures 98% of all
future pressure measurements at a temperature of 47 degrees is 192.4655 +/- 14.5810. This
interval is wider than the prediction interval for a single measurement because it is designed to
capture a larger proportion of all future measurements. The explanation of tolerance intervals is
potentially confusing because there are two percentages used in the description of the interval.
One, in this case 99%, describes how confident we are that the interval will capture the quantity
that we want it to capture. The other, 98%, describes what the target quantity is, which in this
case that is 98% of all future measurements at T=47 degrees.

4.1.3.2. Prediction
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More Info For more information on the interpretation and computation of prediction and tolerance intervals,
see Section 5.1.

4.1.3.2. Prediction
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.3. What are process models used for?

4.1.3.3.Calibration

More on
Calibration

As mentioned in the page introducing the different uses of process models, the goal of calibration
is to quantitatively convert measurements made on one of two measurement scales to the other
measurement scale. The two scales are generally not of equal importance, so the conversion
occurs in only one direction. The primary measurement scale is usually the scientifically relevant
scale and measurements made directly on this scale are often the more precise (relatively) than
measurements made on the secondary scale. A process model describing the relationship between
the two measurement scales provides the means for conversion. A process model that is
constructed primarily for the purpose of calibration is often referred to as a "calibration curve". A
graphical depiction of the calibration process is shown in the plot below, using the example
described next.

Example Thermocouples are a common type of temperature measurement device that is often more
practical than a thermometer for temperature assessment. Thermocouples measure temperature in
terms of voltage, however, rather than directly on a temperature scale. In addition, the response of
a particular thermocouple depends on the exact formulation of the metals used to construct it,
meaning two thermocouples will respond somewhat differently under identical measurement
conditions. As a result, thermocouples need to be calibrated to produce interpretable measurement
information. The calibration curve for a thermocouple is often constructed by comparing
thermocouple output to relatively precise thermometer data. Then, when a new temperature is
measured with the thermocouple, the voltage is converted to temperature terms by plugging the
observed voltage into the regression equation and solving for temperature.

The plot below shows a calibration curve for a thermocouple fit with a locally quadratic model
using a method called LOESS. Traditionally, complicated, high-degree polynomial models have
been used for thermocouple calibration, but locally linear or quadratic models offer better
computational stability and more flexibility. With the locally quadratic model the solution of the
regression equation for temperature is done numerically rather than analytically, but the concept
of calibration is identical regardless of which type of model is used. It is important to note that the
thermocouple measurements, made on the secondary measurement scale, are treated as the
response variable and the more precise thermometer results, on the primary scale, are treated as
the predictor variable because this best satisfies the underlying assumptions of the analysis.

4.1.3.3. Calibration
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Thermocouple
Calibration

Just as in estimation or prediction, if the calibration experiment were repeated, the results would
vary slighly due to the randomness in the data and the need to sample a limited amount of data
from the process. This means that an uncertainty statement that quantifies how much the results
of a particular calibration could vary due to randomness is necessary. The plot below shows what
would happen if the thermocouple calibration were repeated under conditions identical to the first
experiment.

Calibration
Result from
Repeated
Experiment

4.1.3.3. Calibration
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Calibration
Uncertainty

Again, as with prediction, the data used to fit the process model can also be used to determine the
uncertainty in the calibration. Both the variation in the estimated model parameters and in the
new voltage observation need to be accounted for. This is similar to uncertainty for the prediction
of a new measurement. In fact, calibration intervals are computed by solving for the predictor
variable value in the formulas for a prediction interval end points. The plot below shows a 99%
calibration interval for the original calibration data used in the first plot on this page. The area of
interest in the plot has been magnified so the endpoints of the interval can be visually
differentiated. The calibration interval is 387.3748 +/- 0.307 degrees Celsius.

4.1.3.3. Calibration
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In almost all calibration applications the ultimate quantity of interest is the true value of the
primary-scale measurement method associated with a measurement made on the secondary scale.
As a result, there are no analogs of the prediction interval or tolerance interval in calibration.

More Info More information on the construction and interpretation of calibration intervals can be found in
Section 5.2 of this chapter. There is also more information on calibration, especially "one-point"
calibrations and other special cases, in Section 3 of Chapter 2: Measurement Process
Characterization.

4.1.3.3. Calibration
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.3. What are process models used for?

4.1.3.4.Optimization

More on
Optimization

As mentioned earlier, the goal of optimization is to determine the necessary process input values
to obtain a desired output. Like calibration, optimization involves substitution of an output value
for the response variable and solving for the associated predictor variable values. The process
model is again the link that ties the inputs and output together. Unlike calibration and prediction,
however, successful optimization requires a cause-and-effect relationship between the predictors
and the response variable. Designed experiments, run in a randomized order, must be used to
ensure that the process model represents a cause-and-effect relationship between the variables.
Quadratic models are typically used, along with standard calculus techniques for finding
minimums and maximums, to carry out an optimization. Other techniques can also be used,
however. The example discussed below includes a graphical depiction of the optimization
process.

Example In a manufacturing process that requires a chemical reaction to take place, the temperature and
pressure under which the process is carried out can affect reaction time. To maximize the
throughput of this process, an optimization experiment was carried out in the neighborhood of the
conditions felt to be best, using a central composite design with 13 runs. Calculus was used to
determine the input values associated with local extremes in the regression function. The plot
below shows the quadratic surface that was fit to the data and conceptually how the input values
associated with the maximum throughput are found.

4.1.3.4. Optimization
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As with prediction and calibration, randomness in the data and the need to sample data from the
process affect the results. If the optimization experiment were carried out again under identical
conditions, the optimal input values computed using the model would be slightly different. Thus,
it is important to understand how much random variability there is in the results in order to
interpret the results correctly.

Optimization
Result from
Repeated
Experiment

4.1.3.4. Optimization
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Optimization
Uncertainty

As with prediction and calibration, the uncertainty in the input values estimated to maximize
throughput can also be computed from the data used to fit the model. Unlike prediction or
calibration, however, optimization almost always involves simultaneous estimation of several
quantities, the values of the process inputs. As a result, we will compute a joint confidence region
for all of the input values, rather than separate uncertainty intervals for each input. This
confidence region will contain the complete set of true process inputs that will maximize
throughput with high probability. The plot below shows the contours of equal throughput on a
map of various possible input value combinations. The solid contours show throughput while the
dashed contour in the center encloses the plausible combinations of input values that yield
optimum results. The "+" marks the estimated optimum value. The dashed region is a 95% joint
confidence region for the two process inputs. In this region the throughput of the process will be
approximately 217 units/hour.

4.1.3.4. Optimization
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Plot,
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More Info Computational details for optimization are primarily presented in Chapter 5: Process
Improvement along with material on appropriate experimental designs for optimization. Section
5.5.3. specifically focuses on optimization methods and their associated uncertainties.

4.1.3.4. Optimization
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4. Process Modeling
4.1. Introduction to Process Modeling

4.1.4.What are some of the different
statistical methods for model
building?

Selecting an
Appropriate
Stat
Method:
General
Case

For many types of data analysis problems there are no more than a
couple of general approaches to be considered on the route to the
problem's solution. For example, there is often a dichotomy between
highly-efficient methods appropriate for data with noise from a normal
distribution and more general methods for data with other types of
noise. Within the different approaches for a specific problem type, there
are usually at most a few competing statistical tools that can be used to
obtain an appropriate solution. The bottom line for most types of data
analysis problems is that selection of the best statistical method to solve
the problem is largely determined by the goal of the analysis and the
nature of the data.

Selecting an
Appropriate
Stat
Method:
Modeling

Model building, however, is different from most other areas of statistics
with regard to method selection. There are more general approaches and
more competing techniques available for model building than for most
other types of problems. There is often more than one statistical tool that
can be effectively applied to a given modeling application. The large
menu of methods applicable to modeling problems means that there is
both more opportunity for effective and efficient solutions and more
potential to spend time doing different analyses, comparing different
solutions and mastering the use of different tools. The remainder of this
section will introduce and briefly discuss some of the most popular and
well-established statistical techniques that are useful for different model
building situations.

Process
Modeling
Methods

Linear Least Squares Regression1.  

Nonlinear Least Squares Regression2.  

Weighted Least Squares Regression3.  

LOESS (aka LOWESS)4.  

4.1.4. What are some of the different statistical methods for model building?
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4.1.4. What are some of the different statistical methods for model building?
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.4. What are some of the different statistical methods for model building?

4.1.4.1.Linear Least Squares Regression

Modeling
Workhorse

Linear least squares regression is by far the most widely used
modeling method. It is what most people mean when they say they
have used "regression", "linear regression" or "least squares" to fit a
model to their data. Not only is linear least squares regression the
most widely used modeling method, but it has been adapted to a broad
range of situations that are outside its direct scope. It plays a strong
underlying role in many other modeling methods, including the other
methods discussed in this section: nonlinear least squares regression,
weighted least squares regression and LOESS.

Definition of a
Linear Least
Squares
Model

Used directly, with an appropriate data set, linear least squares
regression can be used to fit the data with any function of the form

in which

each explanatory variable in the function is multiplied by an
unknown parameter,

1.  

there is at most one unknown parameter with no corresponding
explanatory variable, and

2.  

all of the individual terms are summed to produce the final
function value.

3.  

In statistical terms, any function that meets these criteria would be
called a "linear function". The term "linear" is used, even though the
function may not be a straight line, because if the unknown parameters
are considered to be variables and the explanatory variables are
considered to be known coefficients corresponding to those
"variables", then the problem becomes a system (usually
overdetermined) of linear equations that can be solved for the values
of the unknown parameters. To differentiate the various meanings of
the word "linear", the linear models being discussed here are often

4.1.4.1. Linear Least Squares Regression
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said to be "linear in the parameters" or "statistically linear".

Why "Least
Squares"?

Linear least squares regression also gets its name from the way the
estimates of the unknown parameters are computed. The "method of
least squares" that is used to obtain parameter estimates was
independently developed in the late 1700's and the early 1800's by the
mathematicians Karl Friedrich Gauss, Adrien Marie Legendre and
(possibly) Robert Adrain [Stigler (1978)] [Harter (1983)] [Stigler
(1986)] working in Germany, France and America, respectively. In the
least squares method the unknown parameters are estimated by
minimizing the sum of the squared deviations between the data and
the model. The minimization process reduces the overdetermined
system of equations formed by the data to a sensible system of 
(where  is the number of parameters in the functional part of the
model) equations in  unknowns. This new system of equations is
then solved to obtain the parameter estimates. To learn more about
how the method of least squares is used to estimate the parameters,
see Section 4.4.3.1.

Examples of
Linear
Functions

As just mentioned above, linear models are not limited to being
straight lines or planes, but include a fairly wide range of shapes. For
example, a simple quadratic curve

is linear in the statistical sense. A straight-line model in 

or a polynomial in 

is also linear in the statistical sense because they are linear in the
parameters, though not with respect to the observed explanatory
variable, .

4.1.4.1. Linear Least Squares Regression
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Nonlinear
Model
Example

Just as models that are linear in the statistical sense do not have to be
linear with respect to the explanatory variables, nonlinear models can
be linear with respect to the explanatory variables, but not with respect
to the parameters. For example,

is linear in , but it cannot be written in the general form of a linear
model presented above. This is because the slope of this line is
expressed as the product of two parameters. As a result, nonlinear
least squares regression could be used to fit this model, but linear least
squares cannot be used. For further examples and discussion of
nonlinear models see the next section, Section 4.1.4.2.

Advantages of
Linear Least
Squares

Linear least squares regression has earned its place as the primary tool
for process modeling because of its effectiveness and completeness.

Though there are types of data that are better described by functions
that are nonlinear in the parameters, many processes in science and
engineering are well-described by linear models. This is because
either the processes are inherently linear or because, over short ranges,
any process can be well-approximated by a linear model.

The estimates of the unknown parameters obtained from linear least
squares regression are the optimal estimates from a broad class of
possible parameter estimates under the usual assumptions used for
process modeling. Practically speaking, linear least squares regression
makes very efficient use of the data. Good results can be obtained
with relatively small data sets.

Finally, the theory associated with linear regression is well-understood
and allows for construction of different types of easily-interpretable
statistical intervals for predictions, calibrations, and optimizations.
These statistical intervals can then be used to give clear answers to
scientific and engineering questions.

Disadvantages
of Linear
Least Squares

The main disadvantages of linear least squares are limitations in the
shapes that linear models can assume over long ranges, possibly poor
extrapolation properties, and sensitivity to outliers.

4.1.4.1. Linear Least Squares Regression
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Linear models with nonlinear terms in the predictor variables curve
relatively slowly, so for inherently nonlinear processes it becomes
increasingly difficult to find a linear model that fits the data well as
the range of the data increases. As the explanatory variables become
extreme, the output of the linear model will also always more extreme.
This means that linear models may not be effective for extrapolating
the results of a process for which data cannot be collected in the
region of interest. Of course extrapolation is potentially dangerous
regardless of the model type.

Finally, while the method of least squares often gives optimal
estimates of the unknown parameters, it is very sensitive to the
presence of unusual data points in the data used to fit a model. One or
two outliers can sometimes seriously skew the results of a least
squares analysis. This makes model validation, especially with respect
to outliers, critical to obtaining sound answers to the questions
motivating the construction of the model.

4.1.4.1. Linear Least Squares Regression
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.4. What are some of the different statistical methods for model building?

4.1.4.2.Nonlinear Least Squares
Regression

Extension of
Linear Least
Squares
Regression

Nonlinear least squares regression extends linear least squares
regression for use with a much larger and more general class of
functions. Almost any function that can be written in closed form can
be incorporated in a nonlinear regression model. Unlike linear
regression, there are very few limitations on the way parameters can
be used in the functional part of a nonlinear regression model. The
way in which the unknown parameters in the function are estimated,
however, is conceptually the same as it is in linear least squares
regression.

Definition of a
Nonlinear
Regression
Model

As the name suggests, a nonlinear model is any model of the basic
form

.

in which

the functional part of the model is not linear with respect to the
unknown parameters, , and

1.  

the method of least squares is used to estimate the values of the
unknown parameters.

2.  

4.1.4.2. Nonlinear Least Squares Regression
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Due to the way in which the unknown parameters of the function are
usually estimated, however, it is often much easier to work with
models that meet two additional criteria:

the function is smooth with respect to the unknown parameters,
and

3.  

the least squares criterion that is used to obtain the parameter
estimates has a unique solution.

4.  

These last two criteria are not essential parts of the definition of a
nonlinear least squares model, but are of practical importance.

Examples of
Nonlinear
Models

Some examples of nonlinear models include:

4.1.4.2. Nonlinear Least Squares Regression
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Advantages of
Nonlinear
Least Squares

The biggest advantage of nonlinear least squares regression over many
other techniques is the broad range of functions that can be fit.
Although many scientific and engineering processes can be described
well using linear models, or other relatively simple types of models,
there are many other processes that are inherently nonlinear. For
example, the strengthening of concrete as it cures is a nonlinear
process. Research on concrete strength shows that the strength
increases quickly at first and then levels off, or approaches an
asymptote in mathematical terms, over time. Linear models do not
describe processes that asymptote very well because for all linear
functions the function value can't increase or decrease at a declining
rate as the explanatory variables go to the extremes. There are many
types of nonlinear models, on the other hand, that describe the
asymptotic behavior of a process well. Like the asymptotic behavior
of some processes, other features of physical processes can often be
expressed more easily using nonlinear models than with simpler
model types.

Being a "least squares" procedure, nonlinear least squares has some of
the same advantages (and disadvantages) that linear least squares
regression has over other methods. One common advantage is
efficient use of data. Nonlinear regression can produce good estimates
of the unknown parameters in the model with relatively small data
sets. Another advantage that nonlinear least squares shares with linear
least squares is a fairly well-developed theory for computing
confidence, prediction and calibration intervals to answer scientific
and engineering questions. In most cases the probabilistic
interpretation of the intervals produced by nonlinear regression are
only approximately correct, but these intervals still work very well in
practice.

Disadvantages
of Nonlinear
Least Squares

The major cost of moving to nonlinear least squares regression from
simpler modeling techniques like linear least squares is the need to use
iterative optimization procedures to compute the parameter estimates.
With functions that are linear in the parameters, the least squares
estimates of the parameters can always be obtained analytically, while
that is generally not the case with nonlinear models. The use of
iterative procedures requires the user to provide starting values for the
unknown parameters before the software can begin the optimization.
The starting values must be reasonably close to the as yet unknown
parameter estimates or the optimization procedure may not converge.
Bad starting values can also cause the software to converge to a local
minimum rather than the global minimum that defines the least
squares estimates.

4.1.4.2. Nonlinear Least Squares Regression
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Disadvantages shared with the linear least squares procedure includes
a strong sensitivity to outliers. Just as in a linear least squares analysis,
the presence of one or two outliers in the data can seriously affect the
results of a nonlinear analysis. In addition there are unfortunately
fewer model validation tools for the detection of outliers in nonlinear
regression than there are for linear regression.

4.1.4.2. Nonlinear Least Squares Regression

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd142.htm (4 of 4) [5/1/2006 10:21:54 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


4. Process Modeling
4.1. Introduction to Process Modeling
4.1.4. What are some of the different statistical methods for model building?

4.1.4.3.Weighted Least Squares Regression

Handles
Cases Where
Data Quality
Varies

One of the common assumptions underlying most process modeling methods, including linear
and nonlinear least squares regression, is that each data point provides equally precise
information about the deterministic part of the total process variation. In other words, the standard
deviation of the error term is constant over all values of the predictor or explanatory variables.
This assumption, however, clearly does not hold, even approximately, in every modeling
application. For example, in the semiconductor photomask linespacing data shown below, it
appears that the precision of the linespacing measurements decreases as the line spacing
increases. In situations like this, when it may not be reasonable to assume that every observation
should be treated equally, weighted least squares can often be used to maximize the efficiency of
parameter estimation. This is done by attempting to give each data point its proper amount of
influence over the parameter estimates. A procedure that treats all of the data equally would give
less precisely measured points more influence than they should have and would give highly
precise points too little influence.

Linespacing
Measurement
Error Data

4.1.4.3. Weighted Least Squares Regression
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Model Types
and Weighted
Least Squares

Unlike linear and nonlinear least squares regression, weighted least squares regression is not
associated with a particular type of function used to describe the relationship between the process
variables. Instead, weighted least squares reflects the behavior of the random errors in the model;
and it can be used with functions that are either linear or nonlinear in the parameters. It works by
incorporating extra nonnegative constants, or weights, associated with each data point, into the
fitting criterion. The size of the weight indicates the precision of the information contained in the
associated observation. Optimizing the weighted fitting criterion to find the parameter estimates
allows the weights to determine the contribution of each observation to the final parameter
estimates. It is important to note that the weight for each observation is given relative to the
weights of the other observations; so different sets of absolute weights can have identical effects.

Advantages of
Weighted
Least Squares

Like all of the least squares methods discussed so far, weighted least squares is an efficient
method that makes good use of small data sets. It also shares the ability to provide different types
of easily interpretable statistical intervals for estimation, prediction, calibration and optimization.
In addition, as discussed above, the main advantage that weighted least squares enjoys over other
methods is the ability to handle regression situations in which the data points are of varying
quality. If the standard deviation of the random errors in the data is not constant across all levels
of the explanatory variables, using weighted least squares with weights that are inversely
proportional to the variance at each level of the explanatory variables yields the most precise
parameter estimates possible.

Disadvantages
of Weighted
Least Squares

The biggest disadvantage of weighted least squares, which many people are not aware of, is
probably the fact that the theory behind this method is based on the assumption that the weights
are known exactly. This is almost never the case in real applications, of course, so estimated
weights must be used instead. The effect of using estimated weights is difficult to assess, but
experience indicates that small variations in the the weights due to estimation do not often affect a
regression analysis or its interpretation. However, when the weights are estimated from small
numbers of replicated observations, the results of an analysis can be very badly and unpredictably
affected. This is especially likely to be the case when the weights for extreme values of the
predictor or explanatory variables are estimated using only a few observations. It is important to
remain aware of this potential problem, and to only use weighted least squares when the weights
can be estimated precisely relative to one another [Carroll and Ruppert (1988), Ryan (1997)].

Weighted least squares regression, like the other least squares methods, is also sensitive to the
effects of outliers. If potential outliers are not investigated and dealt with appropriately, they will
likely have a negative impact on the parameter estimation and other aspects of a weighted least
squares analysis. If a weighted least squares regression actually increases the influence of an
outlier, the results of the analysis may be far inferior to an unweighted least squares analysis.

Futher
Information

Further information on the weighted least squares fitting criterion can be found in Section 4.3.
Discussion of methods for weight estimation can be found in Section 4.5.

4.1.4.3. Weighted Least Squares Regression
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.4. What are some of the different statistical methods for model building?

4.1.4.4.LOESS (aka LOWESS)

Useful When

Unknown &
Complicated

LOESS is one of many "modern" modeling methods that build on
"classical" methods, such as linear and nonlinear least squares
regression. Modern regression methods are designed to address
situations in which the classical procedures do not perform well or
cannot be effectively applied without undue labor. LOESS combines
much of the simplicity of linear least squares regression with the
flexibility of nonlinear regression. It does this by fitting simple models
to localized subsets of the data to build up a function that describes the
deterministic part of the variation in the data, point by point. In fact,
one of the chief attractions of this method is that the data analyst is not
required to specify a global function of any form to fit a model to the
data, only to fit segments of the data.

The trade-off for these features is increased computation. Because it is
so computationally intensive, LOESS would have been practically
impossible to use in the era when least squares regression was being
developed. Most other modern methods for process modeling are
similar to LOESS in this respect. These methods have been
consciously designed to use our current computational ability to the
fullest possible advantage to achieve goals not easily achieved by
traditional approaches.

4.1.4.4. LOESS (aka LOWESS)
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Definition of a
LOESS Model

LOESS, originally proposed by Cleveland (1979) and further
developed by Cleveland and Devlin (1988), specifically denotes a
method that is (somewhat) more descriptively known as locally
weighted polynomial regression. At each point in the data set a
low-degree polynomial is fit to a subset of the data, with explanatory
variable values near the point whose response is being estimated. The
polynomial is fit using weighted least squares, giving more weight to
points near the point whose response is being estimated and less
weight to points further away. The value of the regression function for
the point is then obtained by evaluating the local polynomial using the
explanatory variable values for that data point. The LOESS fit is
complete after regression function values have been computed for
each of the n data points. Many of the details of this method, such as
the degree of the polynomial model and the weights, are flexible. The
range of choices for each part of the method and typical defaults are
briefly discussed next.

Localized
Subsets of
Data

The subsets of data used for each weighted least squares fit in LOESS
are determined by a nearest neighbors algorithm. A user-specified
input to the procedure called the "bandwidth" or "smoothing
parameter" determines how much of the data is used to fit each local
polynomial. The smoothing parameter, q, is a number between
(d+1)/n and 1, with d denoting the degree of the local polynomial. The
value of q is the proportion of data used in each fit. The subset of data
used in each weighted least squares fit is comprised of the nq
(rounded to the next largest integer) points whose explanatory
variables values are closest to the point at which the response is being
estimated.

q is called the smoothing parameter because it controls the flexibility
of the LOESS regression function. Large values of q produce the
smoothest functions that wiggle the least in response to fluctuations in
the data. The smaller q is, the closer the regression function will
conform to the data. Using too small a value of the smoothing
parameter is not desirable, however, since the regression function will
eventually start to capture the random error in the data. Useful values
of the smoothing parameter typically lie in the range 0.25 to 0.5 for
most LOESS applications.

4.1.4.4. LOESS (aka LOWESS)

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd144.htm (2 of 5) [5/1/2006 10:21:55 AM]



Degree of
Local
Polynomials

The local polynomials fit to each subset of the data are almost always
of first or second degree; that is, either locally linear (in the straight
line sense) or locally quadratic. Using a zero degree polynomial turns
LOESS into a weighted moving average. Such a simple local model
might work well for some situations, but may not always approximate
the underlying function well enough. Higher-degree polynomials
would work in theory, but yield models that are not really in the spirit
of LOESS. LOESS is based on the ideas that any function can be well
approximated in a small neighborhood by a low-order polynomial and
that simple models can be fit to data easily. High-degree polynomials
would tend to overfit the data in each subset and are numerically
unstable, making accurate computations difficult.

Weight
Function

As mentioned above, the weight function gives the most weight to the
data points nearest the point of estimation and the least weight to the
data points that are furthest away. The use of the weights is based on
the idea that points near each other in the explanatory variable space
are more likely to be related to each other in a simple way than points
that are further apart. Following this logic, points that are likely to
follow the local model best influence the local model parameter
estimates the most. Points that are less likely to actually conform to
the local model have less influence on the local model parameter
estimates.

The traditional weight function used for LOESS is the tri-cube weight
function,

.

However, any other weight function that satisfies the properties listed
in Cleveland (1979) could also be used. The weight for a specific
point in any localized subset of data is obtained by evaluating the
weight function at the distance between that point and the point of
estimation, after scaling the distance so that the maximum absolute
distance over all of the points in the subset of data is exactly one.

Examples A simple computational example is given here to further illustrate
exactly how LOESS works. A more realistic example, showing a
LOESS model used for thermocouple calibration, can be found in
Section 4.1.3.2

4.1.4.4. LOESS (aka LOWESS)
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Advantages of
LOESS

As discussed above, the biggest advantage LOESS has over many
other methods is the fact that it does not require the specification of a
function to fit a model to all of the data in the sample. Instead the
analyst only has to provide a smoothing parameter value and the
degree of the local polynomial. In addition, LOESS is very flexible,
making it ideal for modeling complex processes for which no
theoretical models exist. These two advantages, combined with the
simplicity of the method, make LOESS one of the most attractive of
the modern regression methods for applications that fit the general
framework of least squares regression but which have a complex
deterministic structure.

Although it is less obvious than for some of the other methods related
to linear least squares regression, LOESS also accrues most of the
benefits typically shared by those procedures. The most important of
those is the theory for computing uncertainties for prediction and
calibration. Many other tests and procedures used for validation of
least squares models can also be extended to LOESS models.

Disadvantages
of LOESS

Although LOESS does share many of the best features of other least
squares methods, efficient use of data is one advantage that LOESS
doesn't share. LOESS requires fairly large, densely sampled data sets
in order to produce good models. This is not really surprising,
however, since LOESS needs good empirical information on the local
structure of the process in order perform the local fitting. In fact, given
the results it provides, LOESS could arguably be more efficient
overall than other methods like nonlinear least squares. It may simply
frontload the costs of an experiment in data collection but then reduce
analysis costs.

Another disadvantage of LOESS is the fact that it does not produce a
regression function that is easily represented by a mathematical
formula. This can make it difficult to transfer the results of an analysis
to other people. In order to transfer the regression function to another
person, they would need the data set and software for LOESS
calculations. In nonlinear regression, on the other hand, it is only
necessary to write down a functional form in order to provide
estimates of the unknown parameters and the estimated uncertainty.
Depending on the application, this could be either a major or a minor
drawback to using LOESS.

4.1.4.4. LOESS (aka LOWESS)
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Finally, as discussed above, LOESS is a computational intensive
method. This is not usually a problem in our current computing
environment, however, unless the data sets being used are very large.
LOESS is also prone to the effects of outliers in the data set, like other
least squares methods. There is an iterative, robust version of LOESS
[Cleveland (1979)] that can be used to reduce LOESS' sensitivity to
outliers, but extreme outliers can still overcome even the robust
method.

4.1.4.4. LOESS (aka LOWESS)
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4. Process Modeling

4.2.Underlying Assumptions for Process
Modeling

Implicit
Assumptions
Underlie
Most
Actions

Most, if not all, thoughtful actions that people take are based on ideas,
or assumptions, about how those actions will affect the goals they want
to achieve. The actual assumptions used to decide on a particular course
of action are rarely laid out explicitly, however. Instead, they are only
implied by the nature of the action itself. Implicit assumptions are
inherent to process modeling actions, just as they are to most other types
of action. It is important to understand what the implicit assumptions are
for any process modeling method because the validity of these
assumptions affect whether or not the goals of the analysis will be met.

Checking
Assumptions
Provides
Feedback on
Actions

If the implicit assumptions that underlie a particular action are not true,
then that action is not likely to meet expectations either. Sometimes it is
abundantly clear when a goal has been met, but unfortunately that is not
always the case. In particular, it is usually not possible to obtain
immediate feedback on the attainment of goals in most process
modeling applications. The goals of process modeling, sucha as
answering a scientific or engineering question, depend on the
correctness of a process model, which can often only be directly and
absolutely determined over time. In lieu of immediate, direct feedback,
however, indirect information on the effectiveness of a process
modeling analysis can be obtained by checking the validity of the
underlying assumptions. Confirming that the underlying assumptions
are valid helps ensure that the methods of analysis were appropriate and
that the results will be consistent with the goals.

Overview of
Section 4.2

This section discusses the specific underlying assumptions associated
with most model-fitting methods. In discussing the underlying
assumptions, some background is also provided on the consequences of
stopping the modeling process short of completion and leaving the
results of an analysis at odds with the underlying assumptions. Specific
data analysis methods that can be used to check whether or not the
assumptions hold in a particular case are discussed in Section 4.4.4.

4.2. Underlying Assumptions for Process Modeling
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Contents of
Section 4.2

What are the typical underlying assumptions in process
modeling?

The process is a statistical process.1.  

The means of the random errors are zero.2.  

The random errors have a constant standard deviation.3.  

The random errors follow a normal distribution.4.  

The data are randomly sampled from the process.5.  

The explanatory variables are observed without error.6.  

1.  

4.2. Underlying Assumptions for Process Modeling
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling

4.2.1.What are the typical underlying
assumptions in process modeling?

Overview of
Section 4.2.1

This section lists the typical assumptions underlying most process
modeling methods. On each of the following pages, one of the six
major assumptions is described individually; the reasons for it's
importance are also briefly discussed; and any methods that are not
subject to that particular assumption are noted. As discussed on the
previous page, these are implicit assumptions based on properties
inherent to the process modeling methods themselves. Successful use
of these methods in any particular application hinges on the validity of
the underlying assumptions, whether their existence is acknowledged
or not. Section 4.4.4 discusses methods for checking the validity of
these assumptions.

Typical
Assumptions
for Process
Modeling

The process is a statistical process.1.  

The means of the random errors are zero.2.  

The random errors have a constant standard deviation.3.  

The random errors follow a normal distribution.4.  

The data are randomly sampled from the process.5.  

The explanatory variables are observed without error.6.  

4.2.1. What are the typical underlying assumptions in process modeling?
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.1.The process is a statistical process.

"Statistical"
Implies
Random
Variation

The most basic assumption inherent to all statistical methods for
process modeling is that the process to be described is actually a
statistical process. This assumption seems so obvious that it is
sometimes overlooked by analysts immersed in the details of a
process or in a rush to uncover information of interest from an
exciting new data set. However, in order to successfully model a
process using statistical methods, it must include random variation.
Random variation is what makes the process statistical rather than
purely deterministic.

Role of
Random
Variation

The overall goal of all statistical procedures, including those designed
for process modeling, is to enable valid conclusions to be drawn from
noisy data. As a result, statistical procedures are designed to compare
apparent effects found in a data set to the noise in the data in order to
determine whether the effects are more likely to be caused by a
repeatable underlying phenomenon of some sort or by fluctuations in
the data that happened by chance. Thus the random variation in the
process serves as a baseline for drawing conclusions about the nature
of the deterministic part of the process. If there were no random noise
in the process, then conclusions based on statistical methods would no
longer make sense or be appropriate.

4.2.1.1. The process is a statistical process.

http://www.itl.nist.gov/div898/handbook/pmd/section2/pmd211.htm (1 of 2) [5/1/2006 10:21:56 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


This
Assumption
Usually Valid

Fortunately this assumption is valid for most physical processes.
There will be random error in the measurements almost any time
things need to be measured. In fact, there are often other sources of
random error, over and above measurement error, in complex, real-life
processes. However, examples of non-statistical processes include

physical processes in which the random error is negligible
compared to the systematic errors,

1.  

processes based on deterministic computer simulations,2.  

processes based on theoretical calculations.3.  

If models of these types of processes are needed, use of mathematical
rather than statistical process modeling tools would be more
appropriate.

Distinguishing
Process Types

One sure indicator that a process is statistical is if repeated
observations of the process response under a particular fixed condition
yields different results. The converse, repeated observations of the
process response always yielding the same value, is not a sure
indication of a non-statistical process, however. For example, in some
types of computations in which complex numerical methods are used
to approximate the solutions of theoretical equations, the results of a
computation might deviate from the true solution in an essentially
random way because of the interactions of round-off errors, multiple
levels of approximation, stopping rules, and other sources of error.
Even so, the result of the computation might be the same each time it
is repeated because all of the initial conditions of the calculation are
reset to the same values each time the calculation is made. As a result,
scientific or engineering knowledge of the process must also always
be used to determine whether or not a given process is statistical.

4.2.1.1. The process is a statistical process.
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.2.The means of the random errors are
zero.

Parameter
Estimation
Requires
Known
Relationship
Between
Data and
Regression
Function

To be able to estimate the unknown parameters in the regression
function, it is necessary to know how the data at each point in the
explanatory variable space relate to the corresponding value of the
regression function. For example, if the measurement system used to
observe the values of the response variable drifts over time, then the
deterministic variation in the data would be the sum of the drift
function and the true regression function. As a result, either the data
would need to be adjusted prior to fitting the model or the fitted model
would need to be adjusted after the fact to obtain the regression
function. In either case, information about the form of the drift function
would be needed. Since it would be difficult to generalize an activity
like drift correction to a generic process, and since it would also be
unnecessary for many processes, most process modeling methods rely
on having data in which the observed responses are directly equal, on
average, to the regression function values. Another way of expressing
this idea is to say the mean of the random errors at each combination of
explanatory variable values is zero.

Validity of
Assumption
Improved by
Experimental
Design

The validity of this assumption is determined by both the nature of the
process and, to some extent, by the data collection methods used. The
process may be one in which the data are easily measured and it will be
clear that the data have a direct relationship to the regression function.
When this is the case, use of optimal methods of data collection are not
critical to the success of the modeling effort. Of course, it is rarely
known that this will be the case for sure, so it is usually worth the effort
to collect the data in the best way possible.

4.2.1.2. The means of the random errors are zero.
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Other processes may be less easily dealt with, being subject to
measurement drift or other systematic errors. For these processes it
may be possible to eliminate or at least reduce the effects of the
systematic errors by using good experimental design techniques, such
as randomization of the measurement order. Randomization can
effectively convert systematic measurement errors into additional
random process error. While adding to the random error of the process
is undesirable, this will provide the best possible information from the
data about the regression function, which is the current goal.

In the most difficult processes even good experimental design may not
be able to salvage a set of data that includes a high level of systematic
error. In these situations the best that can be hoped for is recognition of
the fact that the true regression function has not been identified by the
analysis. Then effort can be put into finding a better way to solve the
problem by correcting for the systematic error using additional
information, redesigning the measurement system to eliminate the
systematic errors, or reformulating the problem to obtain the needed
information another way.

Assumption
Violated by
Errors in
Observation
of 

Another more subtle violation of this assumption occurs when the
explanatory variables are observed with random error. Although it
intuitively seems like random errors in the explanatory variables should
cancel out on average, just as random errors in the observation of the
response variable do, that is unfortunately not the case. The direct
linkage between the unknown parameters and the explanatory variables
in the functional part of the model makes this situation much more
complicated than it is for the random errors in the response variable .
More information on why this occurs can be found in Section 4.2.1.6.

4.2.1.2. The means of the random errors are zero.
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.3.The random errors have a constant
standard deviation.

All Data
Treated
Equally by
Most
Process
Modeling
Methods

Due to the presence of random variation, it can be difficult to determine
whether or not all of the data in a data set are of equal quality. As a
result, most process modeling procedures treat all of the data equally
when using it to estimate the unknown parameters in the model. Most
methods also use a single estimate of the amount of random variability
in the data for computing prediction and calibration uncertainties.
Treating all of the data in the same way also yields simpler,
easier-to-use models. Not surprisingly, however, the decision to treat the
data like this can have a negative effect on the quality of the resulting
model too, if it turns out the data are not all of equal quality.

Data
Quality
Measured by
Standard
Deviation

Of course data quality can't be measured point-by-point since it is clear
from direct observation of the data that the amount of error in each point
varies. Instead, points that have the same underlying average squared
error, or variance, are considered to be of equal quality. Even though
the specific process response values observed at points that meet this
criterion will have different errors, the data collected at such points will
be of equal quality over repeated data collections. Since the standard
deviation of the data at each set of explanatory variable values is simply
the square root of its variance, the standard deviation of the data for
each different combination of explanatory variables can also be used to
measure data quality. The standard deviation is preferred, in fact,
because it has the advantage of being measured in the same units as the
response variable, making it easier to relate to this statistic.

4.2.1.3. The random errors have a constant standard deviation.
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Assumption
Not Needed
for Weighted
Least
Squares

The assumption that the random errors have constant standard deviation
is not implicit to weighted least squares regression. Instead, it is
assumed that the weights provided in the analysis correctly indicate the
differing levels of variability present in the response variables. The
weights are then used to adjust the amount of influence each data point
has on the estimates of the model parameters to an appropriate level.
They are also used to adjust prediction and calibration uncertainties to
the correct levels for different regions of the data set.

Assumption
Does Apply
to LOESS

Even though it uses weighted least squares to estimate the model
parameters, LOESS still relies on the assumption of a constant standard
deviation. The weights used in LOESS actually reflect the relative level
of similarity between mean response values at neighboring points in the
explanatory variable space rather than the level of response precision at
each set of explanatory variable values. Actually, because LOESS uses
separate parameter estimates in each localized subset of data, it does not
require the assumption of a constant standard deviation of the data for
parameter estimation. The subsets of data used in LOESS are usually
small enough that the precision of the data is roughly constant within
each subset. LOESS normally makes no provisions for adjusting
uncertainty computations for differing levels of precision across a data
set, however.

4.2.1.3. The random errors have a constant standard deviation.
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.4.The random errors follow a normal
distribution.

Primary Need
for
Distribution
Information is
Inference

After fitting a model to the data and validating it, scientific or
engineering questions about the process are usually answered by
computing statistical intervals for relevant process quantities using the
model. These intervals give the range of plausible values for the
process parameters based on the data and the underlying assumptions
about the process. Because of the statistical nature of the process,
however, the intervals cannot always be guaranteed to include the true
process parameters and still be narrow enough to be useful. Instead the
intervals have a probabilistic interpretation that guarantees coverage of
the true process parameters a specified proportion of the time. In order
for these intervals to truly have their specified probabilistic
interpretations, the form of the distribution of the random errors must
be known. Although the form of the probability distribution must be
known, the parameters of the distribution can be estimated from the
data.

Of course the random errors from different types of processes could be
described by any one of a wide range of different probability
distributions in general, including the uniform, triangular, double
exponential, binomial and Poisson distributions. With most process
modeling methods, however, inferences about the process are based on
the idea that the random errors are drawn from a normal distribution.
One reason this is done is because the normal distribution often
describes the actual distribution of the random errors in real-world
processes reasonably well. The normal distribution is also used
because the mathematical theory behind it is well-developed and
supports a broad array of inferences on functions of the data relevant
to different types of questions about the process.

4.2.1.4. The random errors follow a normal distribution.
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Non-Normal
Random
Errors May
Result in
Incorrect
Inferences

Of course, if it turns out that the random errors in the process are not
normally distributed, then any inferences made about the process may
be incorrect. If the true distribution of the random errors is such that
the scatter in the data is less than it would be under a normal
distribution, it is possible that the intervals used to capture the values
of the process parameters will simply be a little longer than necessary.
The intervals will then contain the true process parameters more often
than expected. It is more likely, however, that the intervals will be too
short or will be shifted away from the true mean value of the process
parameter being estimated. This will result in intervals that contain the
true process parameters less often than expected. When this is the case,
the intervals produced under the normal distribution assumption will
likely lead to incorrect conclusions being drawn about the process.

Parameter
Estimation
Methods Can
Require
Gaussian
Errors

The methods used for parameter estimation can also imply the
assumption of normally distributed random errors. Some methods, like
maximum likelihood, use the distribution of the random errors directly
to obtain parameter estimates. Even methods that do not use
distributional methods for parameter estimation directly, like least
squares, often work best for data that are free from extreme random
fluctuations. The normal distribution is one of the probability
distributions in which extreme random errors are rare. If some other
distribution actually describes the random errors better than the normal
distribution does, then different parameter estimation methods might
need to be used in order to obtain good estimates of the values of the
unknown parameters in the model.

4.2.1.4. The random errors follow a normal distribution.
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.5.The data are randomly sampled
from the process.

Data Must
Reflect the
Process

Since the random variation inherent in the process is critical to
obtaining satisfactory results from most modeling methods, it is
important that the data reflect that random variation in a representative
way. Because of the nearly infinite number of ways non-representative
sampling might be done, however, few, if any, statistical methods
would ever be able to correct for the effects that would have on the data.
Instead, these methods rely on the assumption that the data will be
representative of the process. This means that if the variation in the data
is not representative of the process, the nature of the deterministic part

of the model, described by the function, , will be incorrect.
This, in turn, is likely to lead to incorrect conclusions being drawn
when the model is used to answer scientific or engineering questions
about the process.

Data Best
Reflects the
Process Via
Unbiased
Sampling

Given that we can never determine what the actual random errors in a
particular data set are, representative samples of data are best obtained
by randomly sampling data from the process. In a simple random
sample, every response from the population(s) being sampled has an
equal chance of being observed. As a result, while it cannot guarantee
that each sample will be representative of the process, random sampling
does ensure that the act of data collection does not leave behind any
biases in the data, on average. This means that most of the time, over
repeated samples, the data will be representative of the process. In
addition, under random sampling, probability theory can be used to
quantify how often particular modeling procedures will be affected by
relatively extreme variations in the data, allowing us to control the error
rates experienced when answering questions about the process.

4.2.1.5. The data are randomly sampled from the process.
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This
Assumption
Relatively
Controllable

Obtaining data is of course something that is actually done by the
analyst rather than being a feature of the process itself. This gives the
analyst some ability to ensure that this assumption will be valid. Paying
careful attention to data collection procedures and employing
experimental design principles like randomization of the run order will
yield a sample of data that is as close as possible to being perfectly
randomly sampled from the process. Section 4.3.3 has additional
discussion of some of the principles of good experimental design.

4.2.1.5. The data are randomly sampled from the process.
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.6.The explanatory variables are
observed without error.

Assumption
Needed for
Parameter
Estimation

As discussed earlier in this section, the random errors (the 's) in the
basic model,

,

must have a mean of zero at each combination of explanatory variable
values to obtain valid estimates of the parameters in the functional part
of the process model (the 's). Some of the more obvious sources of
random errors with non-zero means include

drift in the process,1.  

drift in the measurement system used to obtain the process data,
and

2.  

use of a miscalibrated measurement system.3.  

However, the presence of random errors in the measured values of the
explanatory variables is another, more subtle, source of 's with
non-zero means.

Explanatory
Variables
Observed
with Random
Error Add
Terms to 

The values of explanatory variables observed with independent,

normally distributed random errors, , can be differentiated from their
true values using the definition

.

Then applying the mean value theorem from multivariable calculus

shows that the random errors in a model based on ,

,

4.2.1.6. The explanatory variables are observed without error.
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are [Seber (1989)]

with  denoting the random error associated with the basic form of
the model,

,

under all of the usual assumptions (denoted here more carefully than is

usually necessary), and  is a value between  and . This

extra term in the expression of the random error, ,

complicates matters because  is typically not a constant.

For most functions,  will depend on the explanatory

variable values and, more importantly, on . This is the source of the
problem with observing the explanatory variable values with random
error.

 Correlated
with

Because each of the components of , denoted by , are functions

of the components of , similarly denoted by , whenever any of the

components of  simplify to expressions that are not

constant, the random variables  and  will be correlated.

This correlation will then usually induce a non-zero mean in the

product .

4.2.1.6. The explanatory variables are observed without error.
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For example, a positive correlation between  and  means

that when  is large,  will also tend to be large. Similarly,

when  is small,  will also tend to be small. This could

cause  and  to always have the same sign, which would

preclude their product having a mean of zero since all of the values of
 would be greater than or equal to zero. A negative

correlation, on the other hand, could mean that these two random
variables would always have opposite signs, resulting in a negative

mean for . These examples are extreme, but illustrate

how correlation can cause trouble even if both  and  have
zero means individually. What will happen in any particular modeling

situation will depend on the variability of the 's, the form of the
function, the true values of the 's, and the values of the explanatory
variables.

Biases Can
Affect
Parameter
Estimates
When Means
of 's are 0

Even if the 's have zero means, observation of the explanatory
variables with random error can still bias the parameter estimates.
Depending on the method used to estimate the parameters, the
explanatory variables can be used in the computation of the parameter

estimates in ways that keep the 's from canceling out. One
unfortunate example of this phenomenon is the use of least squares to
estimate the parameters of a straight line. In this case, because of the
simplicity of the model,

,

the term  simplifies to . Because this term does not

involve , it does not induce non-zero means in the 's. With the way
the explanatory variables enter into the formulas for the estimates of
the 's, the random errors in the explanatory variables do not cancel
out on average. This results in parameter estimators that are biased and
will not approach the true parameter values no matter how much data
are collected.

4.2.1.6. The explanatory variables are observed without error.
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Berkson
Model Does
Not Depend
on this
Assumption

There is one type of model in which errors in the measurement of the
explanatory variables do not bias the parameter estimates. The Berkson
model [Berkson (1950)] is a model in which the observed values of the
explanatory variables are directly controlled by the experimenter while
their true values vary for each observation. The differences between
the observed and true values for each explanatory variable are assumed
to be independent random variables from a normal distribution with a
mean of zero. In addition, the errors associated with each explanatory
variable must be independent of the errors associated with all of the
other explanatory variables, and also independent of the observed
values of each explanatory variable. Finally, the Berkson model
requires the functional part of the model to be a straight line, a plane,
or a higher-dimension first-order model in the explanatory variables.
When these conditions are all met, the errors in the explanatory
variables can be ignored.

Applications for which the Berkson model correctly describes the data
are most often situations in which the experimenter can adjust
equipment settings so that the observed values of the explanatory
variables will be known ahead of time. For example, in a study of the
relationship between the temperature used to dry a sample for chemical
analysis and the resulting concentration of a volatile consituent, an
oven might be used to prepare samples at temperatures of 300 to 500
degrees in 50 degree increments. In reality, however, the true
temperature inside the oven will probably not exactly equal 450
degrees each time that setting is used (or 300 when that setting is used,
etc). The Berkson model would apply, though, as long as the errors in
measuring the temperature randomly differed from one another each
time an observed value of 450 degrees was used and the mean of the
true temperatures over many repeated runs at an oven setting of 450
degrees really was 450 degrees. Then, as long as the model was also a
straight line relating the concentration to the observed values of
temperature, the errors in the measurement of temperature would not
bias the estimates of the parameters.

4.2.1.6. The explanatory variables are observed without error.
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Assumption
Validity
Requires
Careful
Consideration

The validity of this assumption requires careful consideration in
scientific and engineering applications. In these types of applications it
is most often the case that the response variable and the explanatory
variables will all be measured with some random error. Fortunately,
however, there is also usually some knowledge of the relative amount
of information in the observed values of each variable. This allows a
rough assessment of how much bias there will be in the estimated
values of the parameters. As long as the biases in the parameter
estimators have a negligible effect on the intended use of the model,
then this assumption can be considered valid from a practical
viewpoint. Section 4.4.4, which covers model validation, points to a
discussion of a practical method for checking the validity of this
assumption.

4.2.1.6. The explanatory variables are observed without error.
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4. Process Modeling

4.3.Data Collection for Process Modeling

Collecting
Good Data

This section lays out some general principles for collecting data for
construction of process models. Using well-planned data collection
procedures is often the difference between successful and unsuccessful
experiments. In addition, well-designed experiments are often less
expensive than those that are less well thought-out, regardless of overall
success or failure.

Specifically, this section will answer the question:

What can the analyst do even prior to collecting the data (that is,
at the experimental design stage) that would allow the analyst to
do an optimal job of modeling the process?

Contents:
Section 3

This section deals with the following five questions:

What is design of experiments (aka DEX or DOE)?1.  

Why is experimental design important for process modeling?2.  

What are some general design principles for process modeling?3.  

I've heard some people refer to "optimal" designs, shouldn't I use
those?

4.  

How can I tell if a particular experimental design is good for my
application?

5.  

4.3. Data Collection for Process Modeling
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4. Process Modeling
4.3. Data Collection for Process Modeling

4.3.1.What is design of experiments (aka
DEX or DOE)?

Systematic
Approach to
Data Collection

Design of experiments (DEX or DOE) is a systematic, rigorous
approach to engineering problem-solving that applies principles and
techniques at the data collection stage so as to ensure the generation
of valid, defensible, and supportable engineering conclusions. In
addition, all of this is carried out under the constraint of a minimal
expenditure of engineering runs, time, and money.

DEX Problem
Areas

There are 4 general engineering problem areas in which DEX may
be applied:

Comparative1.  

Screening/Characterizing2.  

Modeling3.  

Optimizing4.  

Comparative In the first case, the engineer is interested in assessing whether a
change in a single factor has in fact resulted in a
change/improvement to the process as a whole.

Screening
Characterization

In the second case, the engineer is interested in "understanding" the
process as a whole in the sense that he/she wishes (after design and
analysis) to have in hand a ranked list of important through
unimportant factors (most important to least important) that affect
the process.

Modeling In the third case, the engineer is interested in functionally modeling
the process with the output being a good-fitting (= high predictive
power) mathematical function, and to have good (= maximal
accuracy) estimates of the coefficients in that function.

4.3.1. What is design of experiments (aka DEX or DOE)?
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Optimizing In the fourth case, the engineer is interested in determining optimal
settings of the process factors; that is, to determine for each factor
the level of the factor that optimizes the process response.

In this section, we focus on case 3: modeling.

4.3.1. What is design of experiments (aka DEX or DOE)?
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4. Process Modeling
4.3. Data Collection for Process Modeling

4.3.2.Why is experimental design
important for process modeling?

Output from
Process
Model is
Fitted
Mathematical
Function

The output from process modeling is a fitted mathematical function
with estimated coefficients. For example, in modeling resistivity, , as
a function of dopant density, , an analyst may suggest the function

in which the coefficients to be estimated are , , and . Even for

a given functional form, there is an infinite number of potential
coefficient values that potentially may be used. Each of these
coefficient values will in turn yield predicted values.

What are
Good
Coefficient
Values?

Poor values of the coefficients are those for which the resulting
predicted values are considerably different from the observed raw data

. Good values of the coefficients are those for which the resulting
predicted values are close to the observed raw data . The best values
of the coefficients are those for which the resulting predicted values are
close to the observed raw data , and the statistical uncertainty
connected with each coefficient is small.

There are two considerations that are useful for the generation of "best"
coefficients:

Least squares criterion1.  

Design of experiment principles2.  

4.3.2. Why is experimental design important for process modeling?
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Least
Squares
Criterion

For a given data set (e.g., 10 ( , ) pairs), the most common procedure

for obtaining the coefficients for  is the least squares

estimation criterion. This criterion yields coefficients with predicted
values that are closest to the raw data  in the sense that the sum of the
squared differences between the raw data and the predicted values is as
small as possible.

The overwhelming majority of regression programs today use the least
squares criterion for estimating the model coefficients. Least squares
estimates are popular because

the estimators are statistically optimal (BLUEs: Best Linear
Unbiased Estimators);

1.  

the estimation algorithm is mathematically tractable, in closed
form, and therefore easily programmable.

2.  

How then can this be improved? For a given set of  values it cannot
be; but frequently the choice of the  values is under our control. If we
can select the  values, the coefficients will have less variability than if
the  are not controlled.

Design of
Experiment
Principles

As to what values should be used for the 's, we look to established
experimental design principles for guidance.

Principle 1:
Minimize
Coefficient
Estimation
Variation

The first principle of experimental design is to control the values
within the  vector such that after the  data are collected, the
subsequent model coefficients are as good, in the sense of having the
smallest variation, as possible.

The key underlying point with respect to design of experiments and
process modeling is that even though (for simple ( , ) fitting, for
example) the least squares criterion may yield optimal (minimal
variation) estimators for a given distribution of  values, some
distributions of data in the  vector may yield better (smaller variation)
coefficient estimates than other  vectors. If the analyst can specify the
values in the  vector, then he or she may be able to drastically change
and reduce the noisiness of the subsequent least squares coefficient
estimates.

4.3.2. Why is experimental design important for process modeling?
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Five Designs To see the effect of experimental design on process modeling, consider
the following simplest case of fitting a line:

Suppose the analyst can afford 10 observations (that is, 10 ( , ) pairs)
for the purpose of determining optimal (that is, minimal variation)
estimators of  and . What 10  values should be used for the

purpose of collecting the corresponding 10  values? Colloquially,
where should the 10  values be sprinkled along the horizontal axis so
as to minimize the variation of the least squares estimated coefficients
for  and ? Should the 10  values be:

ten equi-spaced values across the range of interest?1.  

five replicated equi-spaced values across the range of interest?2.  

five values at the minimum of the  range and five values at the
maximum of the  range?

3.  

one value at the minimum, eight values at the mid-range, and
one value at the maximum?

4.  

four values at the minimum, two values at mid-range, and four
values at the maximum?

5.  

or (in terms of "quality" of the resulting estimates for  and )

perhaps it doesn't make any difference?

For each of the above five experimental designs, there will of course be
 data collected, followed by the generation of least squares estimates

for  and , and so each design will in turn yield a fitted line.

Are the Fitted
Lines Better
for Some
Designs?

But are the fitted lines, i.e., the fitted process models, better for some
designs than for others? Are the coefficient estimator variances smaller
for some designs than for others? For given estimates, are the resulting
predicted values better (that is, closer to the observed  values) than for
other designs? The answer to all of the above is YES. It DOES make a
difference.

The most popular answer to the above question about which design to
use for linear modeling is design #1 with ten equi-spaced points. It can
be shown, however, that the variance of the estimated slope parameter
depends on the design according to the relationship

.

4.3.2. Why is experimental design important for process modeling?
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Therefore to obtain minimum variance estimators, one maximizes the
denominator on the right. To maximize the denominator, it is (for an
arbitrarily fixed ), best to position the 's as far away from  as
possible. This is done by positioning half of the 's at the lower
extreme and the other half at the upper extreme. This is design #3
above, and this "dumbbell" design (half low and half high) is in fact the
best possible design for fitting a line. Upon reflection, this is intuitively
arrived at by the adage that "2 points define a line", and so it makes the
most sense to determine those 2 points as far apart as possible (at the
extremes) and as well as possible (having half the data at each
extreme). Hence the design of experiment solution to model processing
when the model is a line is the "dumbbell" design--half the X's at each
extreme.

What is the
Worst
Design?

What is the worst design in the above case? Of the five designs, the
worst design is the one that has maximum variation. In the
mathematical expression above, it is the one that minimizes the
denominator, and so this is design #4 above, for which almost all of the
data are located at the mid-range. Clearly the estimated line in this case
is going to chase the solitary point at each end and so the resulting
linear fit is intuitively inferior.

Designs 1, 2,
and 5

What about the other 3 designs? Designs 1, 2, and 5 are useful only for
the case when we think the model may be linear, but we are not sure,
and so we allow additional points that permit fitting a line if
appropriate, but build into the design the "capacity" to fit beyond a line
(e.g., quadratic, cubic, etc.) if necessary. In this regard, the ordering of
the designs would be

design 5 (if our worst-case model is quadratic),●   

design 2 (if our worst-case model is quartic)●   

design 1 (if our worst-case model is quintic and beyond)●   

4.3.2. Why is experimental design important for process modeling?
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4. Process Modeling
4.3. Data Collection for Process Modeling

4.3.3.What are some general design
principles for process modeling?

Experimental
Design
Principles
Applied to
Process
Modeling

There are six principles of experimental design as applied to process
modeling:

Capacity for Primary Model1.  

Capacity for Alternative Model2.  

Minimum Variance of Coefficient Estimators3.  

Sample where the Variation Is4.  

Replication5.  

Randomization6.  

We discuss each in detail below.

Capacity for
Primary
Model

For your best-guess model, make sure that the design has the capacity
for estimating the coefficients of that model. For a simple example of
this, if you are fitting a quadratic model, then make sure you have at
least three distinct horixontal axis points.

Capacity for
Alternative
Model

If your best-guess model happens to be inadequate, make sure that the
design has the capacity to estimate the coefficients of your best-guess
back-up alternative model (which means implicitly that you should
have already identified such a model). For a simple example, if you
suspect (but are not positive) that a linear model is appropriate, then it
is best to employ a globally robust design (say, four points at each
extreme and three points in the middle, for a ten-point design) as
opposed to the locally optimal design (such as five points at each
extreme). The locally optimal design will provide a best fit to the line,
but have no capacity to fit a quadratic. The globally robust design will
provide a good (though not optimal) fit to the line and additionally
provide a good (though not optimal) fit to the quadratic.

4.3.3. What are some general design principles for process modeling?
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Minimum
Variance of
Coefficient
Estimators

For a given model, make sure the design has the property of
minimizing the variation of the least squares estimated coefficients.
This is a general principle that is always in effect but which in
practice is hard to implement for many models beyond the simpler

1-factor  models. For more complicated 1-factor

models, and for most multi-factor  models, the

expressions for the variance of the least squares estimators, although
available, are complicated and assume more than the analyst typically
knows. The net result is that this principle, though important, is harder
to apply beyond the simple cases.

Sample Where
the Variation
Is (Non
Constant
Variance
Case)

Regardless of the simplicity or complexity of the model, there are
situations in which certain regions of the curve are noisier than others.
A simple case is when there is a linear relationship between  and 
but the recording device is proportional rather than absolute and so
larger values of  are intrinsically noisier than smaller values of . In
such cases, sampling where the variation is means to have more
replicated points in those regions that are noisier. The practical
answer to how many such replicated points there should be is

with  denoting the theoretical standard deviation for that given
region of the curve. Usually  is estimated by a-priori guesses for
what the local standard deviations are.

Sample Where
the Variation
Is (Steep
Curve Case)

A common occurence for non-linear models is for some regions of the
curve to be steeper than others. For example, in fitting an exponential
model (small  corresponding to large , and large  corresponding
to small ) it is often the case that the  data in the steep region are
intrinsically noisier than the  data in the relatively flat regions. The
reason for this is that commonly the  values themselves have a bit of
noise and this -noise gets translated into larger -noise in the steep
sections than in the shallow sections. In such cases, when we know
the shape of the response curve well enough to identify
steep-versus-shallow regions, it is often a good idea to sample more
heavily in the steep regions than in the shallow regions. A practical
rule-of-thumb for where to position the  values in such situations is
to

sketch out your best guess for what the resulting curve will be;1.  

4.3.3. What are some general design principles for process modeling?
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partition the vertical (that is the ) axis into  equi-spaced
points (with  denoting the total number of data points that you
can afford);

2.  

draw horizontal lines from each vertical axis point to where it
hits the sketched-in curve.

3.  

drop a vertical projection line from the curve intersection point
to the horizontal axis.

4.  

These will be the recommended  values to use in the design.

The above rough procedure for an exponentially decreasing curve
would thus yield a logarithmic preponderance of points in the steep
region of the curve and relatively few points in the flatter part of the
curve.

Replication If affordable, replication should be part of every design. Replication
allows us to compute a model-independent estimate of the process
standard deviation. Such an estimate may then be used as a criterion
in an objective lack-of-fit test to assess whether a given model is
adequate. Such an objective lack-of-fit F-test can be employed only if
the design has built-in replication. Some replication is essential;
replication at every point is ideal.

Randomization Just because the 's have some natural ordering does not mean that
the data should be collected in the same order as the 's. Some aspect
of randomization should enter into every experiment, and experiments
for process modeling are no exception. Thus if your are sampling ten
points on a curve, the ten  values should not be collected by
sequentially stepping through the  values from the smallest to the
largest. If you do so, and if some extraneous drifting or wear occurs in
the machine, the operator, the environment, the measuring device,
etc., then that drift will unwittingly contaminate the  values and in
turn contaminate the final fit. To minimize the effect of such potential
drift, it is best to randomize (use random number tables) the sequence
of the  values. This will not make the drift go away, but it will
spread the drift effect evenly over the entire curve, realistically
inflating the variation of the fitted values, and providing some
mechanism after the fact (at the residual analysis model validation
stage) for uncovering or discovering such a drift. If you do not
randomize the run sequence, you give up your ability to detect such a
drift if it occurs.

4.3.3. What are some general design principles for process modeling?
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4. Process Modeling
4.3. Data Collection for Process Modeling

4.3.4. I've heard some people refer to
"optimal" designs, shouldn't I use
those?

Classical
Designs Heavily
Used in Industry

The most heavily used designs in industry are the "classical designs"
(full factorial designs, fractional factorial designs, Latin square
designs, Box-Behnken designs, etc.). They are so heavily used
because they are optimal in their own right and have served superbly
well in providing efficient insight into the underlying structure of
industrial processes.

Reasons
Classical
Designs May
Not Work

Cases do arise, however, for which the tabulated classical designs do
not cover a particular practical situation. That is, user constraints
preclude the use of tabulated classical designs because such classical
designs do not accommodate user constraints. Such constraints
include:

Limited maximum number of runs:

User constraints in budget and time may dictate a maximum
allowable number of runs that is too small or too "irregular"
(e.g., "13") to be accommodated by classical designs--even
fractional factorial designs.

1.  

Impossible factor combinations:

The user may have some factor combinations that are
impossible to run. Such combinations may at times be
specified (to maintain balance and orthogonality) as part of a
recommeded classical design. If the user simply omits this
impossible run from the design, the net effect may be a
reduction in the quality and optimaltiy of the classical design.

2.  

Too many levels:

The number of factors and/or the number of levels of some
factors intended for use may not be included in tabulations of
classical designs.

3.  

4.3.4. I've heard some people refer to "optimal" designs, shouldn't I use those?
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4. Complicated underlying model:

The user may be assuming an underlying model that is too
complicated (or too non-linear), so that classical designs
would be inappropriate.

What to Do If
Classical
Designs Do Not
Exist?

If user constraints are such that classical designs do not exist to
accommodate such constraints, then what is the user to do?

The previous section's list of design criteria (capability for the
primary model, capability for the alternate model, minimum
variation of estimated coefficients, etc.) is a good passive target to
aim for in terms of desirable design properties, but provides little
help in terms of an active formal construction methodology for
generating a design.

Common
Optimality
Criteria

To satisfy this need, an "optimal design" methodology has been
developed to generate a design when user constraints preclude the
use of tabulated classical designs. Optimal designs may be optimal
in many different ways, and what may be an optimal design
according to one criterion may be suboptimal for other criteria.
Competing criteria have led to a literal alphabet-soup collection of
optimal design methodologies. The four most popular ingredients in
that "soup" are:

D-optimal designs: minimize the generalized variance of the
parameter estimators.

A-optimal designs: minimize the average variance of the parameter
estimators.

G-optimal designs: minimize the maximum variance of the
predicted values.

V-optimal designs: minimize the average variance of the predicted
values.

Need 1: a Model The motivation for optimal designs is the practical constraints that
the user has. The advantage of optimal designs is that they do
provide a reasonable design-generating methodology when no other
mechanism exists. The disadvantage of optimal designs is that they
require a model from the user. The user may not have this model.

All optimal designs are model-dependent, and so the quality of the
final engineering conclusions that result from the ensuing design,
data, and analysis is dependent on the correctness of the analyst's
assumed model. For example, if the responses from a particular
process are actually being drawn from a cubic model and the analyst
assumes a linear model and uses the corresponding optimal design
to generate data and perform the data analysis, then the final
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engineering conclusions will be flawed and invalid. Hence one price
for obtaining an in-hand generated design is the designation of a
model. All optimal designs need a model; without a model, the
optimal design-generation methodology cannot be used, and general
design principles must be reverted to.

Need 2: a
Candidate Set of
Points

The other price for using optimal design methodology is a
user-specified set of candidate points. Optimal designs will not
generate the best design points from some continuous region--that is
too much to ask of the mathematics. Optimal designs will generate
the best subset of  points from a larger superset of candidate
points. The user must specify this candidate set of points. Most
commonly, the superset of candidate points is the full factorial
design over a fine-enough grid of the factor space with which the
analyst is comfortable. If the grid is too fine, and the resulting
superset overly large, then the optimal design methodology may
prove computationally challenging.

Optimal
Designs are
Computationally
Intensive

The optimal design-generation methodology is computationally
intensive. Some of the designs (e.g., D-optimal) are better than other
designs (such as A-optimal and G-optimal) in regard to efficiency of
the underlying search algorithm. Like most mathematical
optimization techniques, there is no iron-clad guarantee that the
result from the optimal design methodology is in fact the true
optimum. However, the results are usually satisfactory from a
practical point of view, and are far superior than any ad hoc designs.

For further details about optimal designs, the analyst is referred to
Montgomery (2001).

4.3.4. I've heard some people refer to "optimal" designs, shouldn't I use those?
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4. Process Modeling
4.3. Data Collection for Process Modeling

4.3.5.How can I tell if a particular
experimental design is good for my
application?

Assess
Relative to
the Six
Design
Principles

If you have a design, generated by whatever method, in hand, how can
you assess its after-the-fact goodness? Such checks can potentially
parallel the list of the six general design principles. The design can be
assessed relative to each of these six principles. For example, does it
have capacity for the primary model, does it have capacity for an
alternative model, etc.

Some of these checks are quantitative and complicated; other checks
are simpler and graphical. The graphical checks are the most easily
done and yet are among the most informative. We include two such
graphical checks and one quantitative check.

Graphically
Check for
Univariate
Balance

If you have a design that claims to be globally good in k factors, then
generally that design should be locally good in each of the individual k
factors. Checking high-dimensional global goodness is difficult, but
checking low-dimensional local goodness is easy. Generate k counts
plots, with the levels of factors  plotted on the horizontal axis of each
plot and the number of design points for each level in factor  on the
vertical axis. For most good designs, these counts should be about the
same (= balance) for all levels of a factor. Exceptions exist, but such
balance is a low-level characteristic of most good designs.

4.3.5. How can I tell if a particular experimental design is good for my application?
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Graphically
Check for
Bivariate
Balance

If you have a design that is purported to be globally good in k factors,
then generally that design should be locally good in all pairs of the
individual k factors. Graphically check for such 2-way balance by
generating plots for all pairs of factors, where the horizontal axis of a
given plot is  and the vertical axis is . The response variable  does
NOT come into play in these plots. We are only interested in
characteristics of the design, and so only the  variables are involved.
The 2-way plots of most good designs have a certain symmetric and
balanced look about them--all combination points should be covered
and each combination point should have about the same number of
points.

Check for
Minimal
Variation

For optimal designs, metrics exist (D-efficiency, A-efficiency, etc.) that
can be computed and that reflect the quality of the design. Further,
relative ratios of standard deviations of the coefficient estimators and
relative ratios of predicted values can be computed and compared for
such designs. Such calculations are commonly performed in computer
packages which specialize in the generation of optimal designs.

4.3.5. How can I tell if a particular experimental design is good for my application?
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4. Process Modeling

4.4.Data Analysis for Process Modeling

Building a
Good Model

This section contains detailed discussions of the necessary steps for
developing a good process model after data have been collected. A
general model-building framework, applicable to multiple statistical
methods, is described with method-specific points included when
necessary.

Contents:
Section 4

What are the basic steps for developing an effective process
model?

1.  

How do I select a function to describe my process?

Incorporating Scientific Knowledge into Function Selection1.  

Using the Data to Select an Appropriate Function2.  

Using Methods that Do Not Require Function Specification3.  

2.  

How are estimates of the unknown parameters obtained?

Least Squares1.  

Weighted Least Squares2.  

3.  

How can I tell if a model fits my data?

How can I assess the sufficiency of the functional part of
the model?

1.  

How can I detect non-constant variation across the data?2.  

How can I tell if there was drift in the measurement
process?

3.  

How can I assess whether the random errors are
independent from one to the next?

4.  

How can I test whether or not the random errors are
normally distributed?

5.  

How can I test whether any significant terms are missing or
misspecified in the functional part of the model?

6.  

How can I test whether all of the terms in the functional
part of the model are necessary?

7.  

4.  

4.4. Data Analysis for Process Modeling
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If my current model does not fit the data well, how can I improve
it?

Updating the Function Based on Residual Plots1.  

Accounting for Non-Constant Variation Across the Data2.  

Accounting for Errors with a Non-Normal Distribution3.  

5.  

4.4. Data Analysis for Process Modeling
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4. Process Modeling
4.4. Data Analysis for Process Modeling

4.4.1.What are the basic steps for developing an
effective process model?

Basic Steps
Provide
Universal
Framework

The basic steps used for model-building are the same across all modeling methods. The
details vary somewhat from method to method, but an understanding of the common steps,
combined with the typical underlying assumptions needed for the analysis, provides a
framework in which the results from almost any method can be interpreted and understood.

Basic Steps
of Model
Building

The basic steps of the model-building process are:

model selection1.  

model fitting, and2.  

model validation.3.  

These three basic steps are used iteratively until an appropriate model for the data has been
developed. In the model selection step, plots of the data, process knowledge and
assumptions about the process are used to determine the form of the model to be fit to the
data. Then, using the selected model and possibly information about the data, an
appropriate model-fitting method is used to estimate the unknown parameters in the model.
When the parameter estimates have been made, the model is then carefully assessed to see
if the underlying assumptions of the analysis appear plausible. If the assumptions seem
valid, the model can be used to answer the scientific or engineering questions that prompted
the modeling effort. If the model validation identifies problems with the current model,
however, then the modeling process is repeated using information from the model
validation step to select and/or fit an improved model.

A
Variation
on the
Basic Steps

The three basic steps of process modeling described in the paragraph above assume that the
data have already been collected and that the same data set can be used to fit all of the
candidate models. Although this is often the case in model-building situations, one variation
on the basic model-building sequence comes up when additional data are needed to fit a
newly hypothesized model based on a model fit to the initial data. In this case two
additional steps, experimental design and data collection, can be added to the basic
sequence between model selection and model-fitting. The flow chart below shows the basic
model-fitting sequence with the integration of the related data collection steps into the
model-building process.

4.4.1. What are the basic steps for developing an effective process model?
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Model
Building
Sequence

4.4.1. What are the basic steps for developing an effective process model?
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Examples illustrating the model-building sequence in real applications can be found in the
case studies in Section 4.6. The specific tools and techniques used in the basic
model-building steps are described in the remainder of this section.

Design of
Initial
Experiment

Of course, considering the model selection and fitting before collecting the initial data is
also a good idea. Without data in hand, a hypothesis about what the data will look like is
needed in order to guess what the initial model should be. Hypothesizing the outcome of an
experiment is not always possible, of course, but efforts made in the earliest stages of a
project often maximize the efficiency of the whole model-building process and result in the
best possible models for the process. More details about experimental design can be found
in Section 4.3 and in Chapter 5: Process Improvement.

4.4.1. What are the basic steps for developing an effective process model?
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4. Process Modeling
4.4. Data Analysis for Process Modeling

4.4.2.How do I select a function to describe
my process?

Synthesis of
Process
Information
Necessary

Selecting a model of the right form to fit a set of data usually requires
the use of empirical evidence in the data, knowledge of the process and
some trial-and-error experimentation. As mentioned on the previous
page, model building is always an iterative process. Much of the need to
iterate stems from the difficulty in initially selecting a function that
describes the data well. Details about the data are often not easily visible
in the data as originally observed. The fine structure in the data can
usually only be elicited by use of model-building tools such as residual
plots and repeated refinement of the model form. As a result, it is
important not to overlook any of the sources of information that indicate
what the form of the model should be.

Answer Not
Provided by
Statistics
Alone

Sometimes the different sources of information that need to be
integrated to find an effective model will be contradictory. An open
mind and a willingness to think about what the data are saying is
important. Maintaining balance and looking for alternate sources for
unusual effects found in the data are also important. For example, in the
load cell calibration case study the statistical analysis pointed out that
the model initially thought to be appropriate did not account for all of
the structure in the data. A refined model was developed, but the
appearance of an unexpected result brings up the question of whether
the original understanding of the problem was inaccurate, or whether the
need for an alternate model was due to experimental artifacts. In the
load cell problem it was easy to accept that the refined model was closer
to the truth, but in a more complicated case additional experiments
might have been needed to resolve the issue.

4.4.2. How do I select a function to describe my process?
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Knowing
Function
Types Helps

Another helpful ingredient in model selection is a wide knowledge of
the shapes that different mathematical functions can assume. Knowing
something about the models that have been found to work well in the
past for different application types also helps. A menu of different
functions on the next page, Section 4.4.2.1. (links provided below),
provides one way to learn about the function shapes and flexibility.
Section 4.4.2.2. discusses how general function features and qualitative
scientific information can be combined to help with model selection.
Finally, Section 4.4.2.3. points to methods that don't require
specification of a particular function to be fit to the data, and how
models of those types can be refined.

Incorporating Scientific Knowledge into Function Selection1.  

Using the Data to Select an Appropriate Function2.  

Using Methods that Do Not Require Function Specification3.  

4.4.2. How do I select a function to describe my process?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.2. How do I select a function to describe my process?

4.4.2.1. Incorporating Scientific Knowledge
into Function Selection

Choose
Functions
Whose
Properties
Match the
Process

Incorporating scientific knowledge into selection of the function
used in a process model is clearly critical to the success of the
model. When a scientific theory describing the mechanics of a
physical system can provide a complete functional form for the
process, then that type of function makes an ideal starting point for
model development. There are many cases, however, for which there
is incomplete scientific information available. In these cases it is
considerably less clear how to specify a functional form to initiate
the modeling process. A practical approach is to choose the simplest
possible functions that have properties ascribed to the process.

Example:
Concrete
Strength Versus
Curing Time

For example, if you are modeling concrete strength as a function of
curing time, scientific knowledge of the process indicates that the
strength will increase rapidly at first, but then level off as the
hydration reaction progresses and the reactants are converted to their
new physical form. The leveling off of the strength occurs because
the speed of the reaction slows down as the reactants are converted
and unreacted materials are less likely to be in proximity all of the
time. In theory, the reaction will actually stop altogether when the
reactants are fully hydrated and are completely consumed. However,
a full stop of the reaction is unlikely in reality because there is
always some unreacted material remaining that reacts increasingly
slowly. As a result, the process will approach an asymptote at its
final strength.

4.4.2.1. Incorporating Scientific Knowledge into Function Selection
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Polynomial
Models for
Concrete
Strength
Deficient

Considering this general scientific information, modeling this
process using a straight line would not reflect the physical aspects of
this process very well. For example, using the straight-line model,
the concrete strength would be predicted to continue increasing at
the same rate over its entire lifetime, though we know that is not
how it behaves. The fact that the response variable in a straight-line
model is unbounded as the predictor variable becomes extreme is
another indication that the straight-line model is not realistic for
concrete strength. In fact, this relationship between the response and
predictor as the predictor becomes extreme is common to all
polynomial models, so even a higher-degree polynomial would
probably not make a good model for describing concrete strength. A
higher-degree polynomial might be able to curve toward the data as
the strength leveled off, but it would eventually have to diverge from
the data because of its mathematical properties.

Rational
Function
Accommodates
Scientific
Knowledge
about Concrete
Strength

A more reasonable function for modeling this process might be a
rational function. A rational function, which is a ratio of two
polynomials of the same predictor variable, approaches an
asymptote if the degrees of the polynomials in the numerator and
denominator are the same. It is still a very simple model, although it
is nonlinear in the unknown parameters. Even if a rational function
does not ultimately prove to fit the data well, it makes a good
starting point for the modeling process because it incorporates the
general scientific knowledge we have of the process, without being
overly complicated. Within the family of rational functions, the
simplest model is the "linear over linear" rational function

so this would probably be the best model with which to start. If the
linear-over-linear model is not adequate, then the initial fit can be
followed up using a higher-degree rational function, or some other
type of model that also has a horizontal asymptote.

4.4.2.1. Incorporating Scientific Knowledge into Function Selection

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd421.htm (2 of 3) [5/1/2006 10:22:08 AM]

http://www.itl.nist.gov/div898/handbook/pmd/section8/pmd815.htm


Focus on the
Region of
Interest

Although the concrete strength example makes a good case for
incorporating scientific knowledge into the model, it is not
necessarily a good idea to force a process model to follow all of the
physical properties that the process must follow. At first glance it
seems like incorporating physical properties into a process model
could only improve it; however, incorporating properties that occur
outside the region of interest for a particular application can actually
sacrifice the accuracy of the model "where it counts" for increased
accuracy where it isn't important. As a result, physical properties
should only be incorporated into process models when they directly
affect the process in the range of the data used to fit the model or in
the region in which the model will be used.

Information on
Function
Shapes

In order to translate general process properties into mathematical
functions whose forms may be useful for model development, it is
necessary to know the different shapes that various mathematical
functions can assume. Unfortunately there is no easy, systematic
way to obtain this information. Families of mathematical functions,
like polynomials or rational functions, can assume quite different
shapes that depend on the parameter values that distinguish one
member of the family from another. Because of the wide range of
potential shapes these functions may have, even determining and
listing the general properties of relatively simple families of
functions can be complicated. Section 8 of this chapter gives some
of the properties of a short list of simple functions that are often
useful for process modeling. Another reference that may be useful is
the Handbook of Mathematical Functions by Abramowitz and
Stegun [1964]. The Digital Library of Mathematical Functions, an
electronic successor to the Handbook of Mathematical Functions
that is under development at NIST, may also be helpful.

4.4.2.1. Incorporating Scientific Knowledge into Function Selection
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.2. How do I select a function to describe my process?

4.4.2.2.Using the Data to Select an Appropriate Function

Plot the Data The best way to select an initial model is to plot the data. Even if you have a good idea of what
the form of the regression function will be, plotting allows a preliminary check of the underlying
assumptions required for the model fitting to succeed. Looking at the data also often provides
other insights about the process or the methods of data collection that cannot easily be obtained
from numerical summaries of the data alone.

Example The data from the Pressure/Temperature example is plotted below. From the plot it looks like a
straight-line model will fit the data well. This is as expected based on Charles' Law. In this case
there are no signs of any problems with the process or data collection.

Straight-Line
Model Looks
Appropriate

4.4.2.2. Using the Data to Select an Appropriate Function

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd422.htm (1 of 7) [5/1/2006 10:22:09 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mspt1_f.gif


Start with Least
Complex
Functions First

A key point when selecting a model is to start with the simplest function that looks as though it
will describe the structure in the data. Complex models are fine if required, but they should not be
used unnecessarily. Fitting models that are more complex than necessary means that random
noise in the data will be modeled as deterministic structure. This will unnecessarily reduce the
amount of data available for estimation of the residual standard deviation, potentially increasing
the uncertainties of the results obtained when the model is used to answer engineering or
scientific questions. Fortunately, many physical systems can be modeled well with straight-line,
polynomial, or simple nonlinear functions.

Quadratic
Polynomial a
Good Starting
Point

Developing
Models in
Higher
Dimensions

When the function describing the deterministic variability in the response variable depends on
several predictor (input) variables, it can be difficult to see how the different variables relate to
one another. One way to tackle this problem that often proves useful is to plot cross-sections of
the data and build up a function one dimension at a time. This approach will often shed more light
on the relationships between the different predictor variables and the response than plots that
lump different levels of one or more predictor variables together on plots of the response variable
versus another predictor variable.

4.4.2.2. Using the Data to Select an Appropriate Function
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Polymer
Relaxation
Example

For example, materials scientists are interested in how cylindrical polymer samples that have
been twisted by a fixed amount relax over time. They are also interested in finding out how
temperature may affect this process. As a result, both time and temperature are thought to be
important factors for describing the systematic variation in the relaxation data plotted below.
When the torque is plotted against time, however, the nature of the relationship is not clearly
shown. Similarly, when torque is plotted versus the temperature the effect of temperature is also
unclear. The difficulty in interpreting these plots arises because the plot of torque versus time
includes data for several different temperatures and the plot of torque versus temperature includes
data observed at different times. If both temperature and time are necessary parts of the function
that describes the data, these plots are collapsing what really should be displayed as a
three-dimensional surface onto a two-dimensional plot, muddying the picture of the data.

Polymer
Relaxation
Data

4.4.2.2. Using the Data to Select an Appropriate Function
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Multiplots
Reveal
Structure

If cross-sections of the data are plotted in multiple plots instead of lumping different explanatory
variable values together, the relationships between the variables can become much clearer. Each
cross-sectional plot below shows the relationship between torque and time for a particular
temperature. Now the relationship between torque and time for each temperature is clear. It is
also easy to see that the relationship differs for different temperatures. At a temperature of 25
degrees there is a sharp drop in torque between 0 and 20 minutes and then the relaxation slows.
At a temperature of 75 degrees, however, the relaxation drops at a rate that is nearly constant over
the whole experimental time period. The fact that the profiles of torque versus time vary with
temperature confirms that any functional description of the polymer relaxation process will need
to include temperature.

Cross-Sections
of the Data

4.4.2.2. Using the Data to Select an Appropriate Function
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Cross-Sectional
Models Provide
Further Insight

Further insight into the appropriate function to use can be obtained by separately modeling each
cross-section of the data and then relating the individual models to one another. Fitting the
accepted stretched exponential relationship between torque ( ) and time ( ),

,

to each cross-section of the polymer data and then examining plots of the estimated parameters
versus temperature roughly indicates how temperature should be incorporated into a model of the
polymer relaxation data. The individual stretched exponentials fit to each cross-section of the data
are shown in the plot above as solid curves through the data. Plots of the estimated values of each
of the four parameters in the stretched exponential versus temperature are shown below.

Cross-Section
Parameters vs.
Temperature

The solid line near the center of each plot of the cross-sectional parameters from the stretched
exponential is the mean of the estimated parameter values across all six levels of temperature.
The dashed lines above and below the solid reference line provide approximate bounds on how
much the parameter estimates could vary due to random variation in the data. These bounds are
based on the typical value of the standard deviations of the estimates from each individual
stretched exponential fit. From these plots it is clear that only the values of  significantly differ
from one another across the temperature range. In addition, there is a clear increasing trend in the
parameter estimates for . For each of the other parameters, the estimate at each temperature
falls within the uncertainty bounds and no clear structure is visible.

4.4.2.2. Using the Data to Select an Appropriate Function
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Based on the plot of estimated  values above, augmenting the  term in the standard stretched
exponential so that the new denominator is quadratic in temperature (denoted by ) should
provide a good starting model for the polymer relaxation process. The choice of a quadratic in
temperature is suggested by the slight curvature in the plot of the individually estimated
parameter values. The resulting model is

.

4.4.2.2. Using the Data to Select an Appropriate Function
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.2. How do I select a function to describe my process?

4.4.2.3.Using Methods that Do Not Require Function
Specification

Functional
Form Not
Needed, but
Some Input
Required

Although many modern regression methods, like LOESS, do not require the user to specify a
single type of function to fit the entire data set, some initial information still usually needs to be
provided by the user. Because most of these types of regression methods fit a series of simple
local models to the data, one quantity that usually must be specified is the size of the
neighborhood each simple function will describe. This type of parameter is usually called the
bandwidth or smoothing parameter for the method. For some methods the form of the simple
functions must also be specified, while for others the functional form is a fixed property of the
method.

Input
Parameters
Control
Function
Shape

The smoothing parameter controls how flexible the functional part of the model will be. This, in
turn, controls how closely the function will fit the data, just as the choice of a straight line or a
polynomial of higher degree determines how closely a traditional regression model will track the
deterministic structure in a set of data. The exact information that must be specified in order to fit
the regression function to the data will vary from method to method. Some methods may require
other user-specified parameters require, in addition to a smoothing parameter, to fit the regression
function. However, the purpose of the user-supplied information is similar for all methods.

Starting
Simple still
Best

As for more traditional methods of regression, simple regression functions are better than
complicated ones in local regression. The complexity of a regression function can be gauged by
its potential to track the data. With traditional modeling methods, in which a global function that
describes the data is given explictly, it is relatively easy to differentiate between simple and
complicated models. With local regression methods, on the other hand, it can sometimes difficult
to tell how simple a particular regression function actually is based on the inputs to the procedure.
This is because of the different ways of specifying local functions, the effects of changes in the
smoothing parameter, and the relationships between the different inputs. Generally, however, any
local functions should be as simple as possible and the smoothing parameter should be set so that
each local function is fit to a large subset of the data. For example, if the method offers a choice
of local functions, a straight line would typically be a better starting point than a higher-order
polynomial or a statistically nonlinear function.

Function
Specification
for LOESS

To use LOESS, the user must specify the degree, d, of the local polynomial to be fit to the data,
and the fraction of the data, q, to be used in each fit. In this case, the simplest possible initial
function specification is d=1 and q=1. While it is relatively easy to understand how the degree of
the local polynomial affects the simplicity of the initial model, it is not as easy to determine how
the smoothing parameter affects the function. However, plots of the data from the computational
example of LOESS in Section 1 with four potential choices of the initial regression function show
that the simplest LOESS function, with d=1 and q=1, is too simple to capture much of the
structure in the data.

4.4.2.3. Using Methods that Do Not Require Function Specification
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LOESS
Regression
Functions
with Different
Initial
Parameter
Specifications

Experience
Suggests
Good Values
to Use

Although the simplest possible LOESS function is not flexible enough to describe the data well,
any of the other functions shown in the figure would be reasonable choices. All of the latter
functions track the data well enough to allow assessment of the different assumptions that need to
be checked before deciding that the model really describes the data well. None of these functions
is probably exactly right, but they all provide a good enough fit to serve as a starting point for
model refinement. The fact that there are several LOESS functions that are similar indicates that
additional information is needed to determine the best of these functions. Although it is debatable,
experience indicates that it is probably best to keep the initial function simple and set the
smoothing parameter so each local function is fit to a relatively small subset of the data.
Accepting this principle, the best of these initial models is the one in the upper right corner of the
figure with d=1 and q=0.5.

4.4.2.3. Using Methods that Do Not Require Function Specification
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4. Process Modeling
4.4. Data Analysis for Process Modeling

4.4.3.How are estimates of the unknown
parameters obtained?

Parameter
Estimation
in General

After selecting the basic form of the functional part of the model, the
next step in the model-building process is estimation of the unknown
parameters in the function. In general, this is accomplished by solving
an optimization problem in which the objective function (the function
being minimized or maximized) relates the response variable and the
functional part of the model containing the unknown parameters in a
way that will produce parameter estimates that will be close to the true,
unknown parameter values. The unknown parameters are, loosely
speaking, treated as variables to be solved for in the optimization, and
the data serve as known coefficients of the objective function in this
stage of the modeling process.

In theory, there are as many different ways of estimating parameters as
there are objective functions to be minimized or maximized. However, a
few principles have dominated because they result in parameter
estimators that have good statistical properties. The two major methods
of parameter estimation for process models are maximum likelihood and
least squares. Both of these methods provide parameter estimators that
have many good properties. Both maximum likelihood and least squares
are sensitive to the presence of outliers, however. There are also many
newer methods of parameter estimation, called robust methods, that try
to balance the efficiency and desirable properties of least squares and
maximum likelihood with a lower sensitivity to outliers.

4.4.3. How are estimates of the unknown parameters obtained?
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Overview of
Section 4.3

Although robust techniques are valuable, they are not as well developed
as the more traditional methods and often require specialized software
that is not readily available. Maximum likelihood also requires
specialized algorithms in general, although there are important special
cases that do not have such a requirement. For example, for data with
normally distributed random errors, the least squares and maximum
likelihood parameter estimators are identical. As a result of these
software and developmental issues, and the coincidence of maximum
likelihood and least squares in many applications, this section currently
focuses on parameter estimation only by least squares methods. The
remainder of this section offers some intuition into how least squares
works and illustrates the effectiveness of this method.

Contents of
Section 4.3

Least Squares1.  

Weighted Least Squares2.  

4.4.3. How are estimates of the unknown parameters obtained?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.3. How are estimates of the unknown parameters obtained?

4.4.3.1.Least Squares

General LS
Criterion

In least squares (LS) estimation, the unknown values of the parameters, , in the

regression function, , are estimated by finding numerical values for the parameters that

minimize the sum of the squared deviations between the observed responses and the functional
portion of the model. Mathematically, the least (sum of) squares criterion that is minimized to
obtain the parameter estimates is

As previously noted,  are treated as the variables in the optimization and the predictor
variable values,  are treated as coefficients. To emphasize the fact that the estimates
of the parameter values are not the same as the true values of the parameters, the estimates are
denoted by . For linear models, the least squares minimization is usually done

analytically using calculus. For nonlinear models, on the other hand, the minimization must
almost always be done using iterative numerical algorithms.

LS for
Straight
Line

To illustrate, consider the straight-line model,

.

For this model the least squares estimates of the parameters would be computed by minimizing

Doing this by

taking partial derivatives of  with respect to  and ,1.  

setting each partial derivative equal to zero, and2.  

solving the resulting system of two equations with two unknowns3.  

yields the following estimators for the parameters:

4.4.3.1. Least Squares
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.

These formulas are instructive because they show that the parameter estimators are functions of
both the predictor and response variables and that the estimators are not independent of each
other unless . This is clear because the formula for the estimator of the intercept depends
directly on the value of the estimator of the slope, except when the second term in the formula for

 drops out due to multiplication by zero. This means that if the estimate of the slope deviates a

lot from the true slope, then the estimate of the intercept will tend to deviate a lot from its true
value too. This lack of independence of the parameter estimators, or more specifically the
correlation of the parameter estimators, becomes important when computing the uncertainties of
predicted values from the model. Although the formulas discussed in this paragraph only apply to
the straight-line model, the relationship between the parameter estimators is analogous for more
complicated models, including both statistically linear and statistically nonlinear models.

Quality of
Least
Squares
Estimates

From the preceding discussion, which focused on how the least squares estimates of the model
parameters are computed and on the relationship between the parameter estimates, it is difficult to
picture exactly how good the parameter estimates are. They are, in fact, often quite good. The plot
below shows the data from the Pressure/Temperature example with the fitted regression line and
the true regression line, which is known in this case because the data were simulated. It is clear
from the plot that the two lines, the solid one estimated by least squares and the dashed being the
true line obtained from the inputs to the simulation, are almost identical over the range of the
data. Because the least squares line approximates the true line so well in this case, the least
squares line will serve as a useful description of the deterministic portion of the variation in the
data, even though it is not a perfect description. While this plot is just one example, the
relationship between the estimated and true regression functions shown here is fairly typical.

Comparison
of LS Line
and True
Line

4.4.3.1. Least Squares
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Quantifying
the Quality
of the Fit
for Real
Data

From the plot above it is easy to see that the line based on the least squares estimates of  and
 is a good estimate of the true line for these simulated data. For real data, of course, this type of

direct comparison is not possible. Plots comparing the model to the data can, however, provide
valuable information on the adequacy and usefulness of the model. In addition, another measure
of the average quality of the fit of a regression function to a set of data by least squares can be
quantified using the remaining parameter in the model, , the standard deviation of the error term
in the model.

Like the parameters in the functional part of the model,  is generally not known, but it can also
be estimated from the least squares equations. The formula for the estimate is

,

with  denoting the number of observations in the sample and  is the number of parameters in

the functional part of the model.  is often referred to as the "residual standard deviation" of the
process.

4.4.3.1. Least Squares
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Because  measures how the individual values of the response variable vary with respect to their
true values under , it also contains information about how far from the truth quantities

derived from the data, such as the estimated values of the parameters, could be. Knowledge of the
approximate value of  plus the values of the predictor variable values can be combined to
provide estimates of the average deviation between the different aspects of the model and the
corresponding true values, quantities that can be related to properties of the process generating
the data that we would like to know.

More information on the correlation of the parameter estimators and computing uncertainties for
different functions of the estimated regression parameters can be found in Section 5.

4.4.3.1. Least Squares
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.3. How are estimates of the unknown parameters obtained?

4.4.3.2.Weighted Least Squares

As mentioned in Section 4.1, weighted least squares (WLS) regression
is useful for estimating the values of model parameters when the
response values have differing degrees of variability over the
combinations of the predictor values. As suggested by the name,
parameter estimation by the method of weighted least squares is closely
related to parameter estimation by "ordinary", "regular", "unweighted"
or "equally-weighted" least squares.

General
WLS
Criterion

In weighted least squares parameter estimation, as in regular least
squares, the unknown values of the parameters, , in the
regression function are estimated by finding the numerical values for the
parameter estimates that minimize the sum of the squared deviations
between the observed responses and the functional portion of the model.
Unlike least squares, however, each term in the weighted least squares
criterion includes an additional weight, , that determines how much
each observation in the data set influences the final parameter estimates.
The weighted least squares criterion that is minimized to obtain the
parameter estimates is

4.4.3.2. Weighted Least Squares

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd432.htm (1 of 2) [5/1/2006 10:22:11 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Some Points
Mostly in
Common
with
Regular LS
(But Not
Always!!!)

Like regular least squares estimators:

The weighted least squares estimators are denoted by 
to emphasize the fact that the estimators are not the same as the
true values of the parameters.

1.  

 are treated as the "variables" in the optimization,

while values of the response and predictor variables and the
weights are treated as constants.

2.  

The parameter estimators will be functions of both the predictor
and response variables and will generally be correlated with one
another. (WLS estimators are also functions of the weights, .)

3.  

Weighted least squares minimization is usually done analytically
for linear models and numerically for nonlinear models.

4.  

4.4.3.2. Weighted Least Squares
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4. Process Modeling
4.4. Data Analysis for Process Modeling

4.4.4.How can I tell if a model fits my data?

 Is Not
Enough!

Model validation is possibly the most important step in the model building sequence. It is
also one of the most overlooked. Often the validation of a model seems to consist of

nothing more than quoting the  statistic from the fit (which measures the fraction of
the total variability in the response that is accounted for by the model). Unfortunately, a

high  value does not guarantee that the model fits the data well. Use of a model that
does not fit the data well cannot provide good answers to the underlying engineering or
scientific questions under investigation.

Main
Tool:
Graphical
Residual
Analysis

There are many statistical tools for model validation, but the primary tool for most
process modeling applications is graphical residual analysis. Different types of plots of
the residuals (see definition below) from a fitted model provide information on the
adequacy of different aspects of the model. Numerical methods for model validation,

such as the  statistic, are also useful, but usually to a lesser degree than graphical
methods. Graphical methods have an advantage over numerical methods for model
validation because they readily illustrate a broad range of complex aspects of the
relationship between the model and the data. Numerical methods for model validation
tend to be narrowly focused on a particular aspect of the relationship between the model
and the data and often try to compress that information into a single descriptive number
or test result.

Numerical
Methods'
Forte

Numerical methods do play an important role as confirmatory methods for graphical
techniques, however. For example, the lack-of-fit test for assessing the correctness of the
functional part of the model can aid in interpreting a borderline residual plot. There are
also a few modeling situations in which graphical methods cannot easily be used. In these
cases, numerical methods provide a fallback position for model validation. One common
situation when numerical validation methods take precedence over graphical methods is
when the number of parameters being estimated is relatively close to the size of the data
set. In this situation residual plots are often difficult to interpret due to constraints on the
residuals imposed by the estimation of the unknown parameters. One area in which this
typically happens is in optimization applications using designed experiments. Logistic
regression with binary data is another area in which graphical residual analysis can be
difficult.

4.4.4. How can I tell if a model fits my data?
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Residuals The residuals from a fitted model are the differences between the responses observed at
each combination values of the explanatory variables and the corresponding prediction of
the response computed using the regression function. Mathematically, the definition of
the residual for the ith observation in the data set is written

,

with  denoting the ith response in the data set and  represents the list of explanatory
variables, each set at the corresponding values found in the ith observation in the data set.

Example The data listed below are from the Pressure/Temperature example introduced in Section
4.1.1. The first column shows the order in which the observations were made, the second
column indicates the day on which each observation was made, and the third column
gives the ambient temperature recorded when each measurement was made. The fourth
column lists the temperature of the gas itself (the explanatory variable) and the fifth
column contains the observed pressure of the gas (the response variable). Finally, the
sixth column gives the corresponding values from the fitted straight-line regression
function.

and the last column lists the residuals, the difference between columns five and six.

Data,
Fitted
Values &
Residuals

 Run          Ambient                            Fitted
Order  Day  Temperature  Temperature  Pressure    Value   
Residual
 1      1      23.820      54.749      225.066   222.920    
2.146
 2      1      24.120      23.323      100.331    99.411    
0.920
 3      1      23.434      58.775      230.863   238.744   
-7.881
 4      1      23.993      25.854      106.160   109.359   
-3.199
 5      1      23.375      68.297      277.502   276.165    
1.336
 6      1      23.233      37.481      148.314   155.056   
-6.741
 7      1      24.162      49.542      197.562   202.456   
-4.895
 8      1      23.667      34.101      138.537   141.770   
-3.232

4.4.4. How can I tell if a model fits my data?
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 9      1      24.056      33.901      137.969   140.983   
-3.014
10      1      22.786      29.242      117.410   122.674   
-5.263
11      2      23.785      39.506      164.442   163.013    
1.429
12      2      22.987      43.004      181.044   176.759    
4.285
13      2      23.799      53.226      222.179   216.933    
5.246
14      2      23.661      54.467      227.010   221.813    
5.198
15      2      23.852      57.549      232.496   233.925   
-1.429
16      2      23.379      61.204      253.557   248.288    
5.269
17      2      24.146      31.489      139.894   131.506    
8.388
18      2      24.187      68.476      273.931   276.871   
-2.940
19      2      24.159      51.144      207.969   208.753   
-0.784
20      2      23.803      68.774      280.205   278.040    
2.165
21      3      24.381      55.350      227.060   225.282    
1.779
22      3      24.027      44.692      180.605   183.396   
-2.791
23      3      24.342      50.995      206.229   208.167   
-1.938
24      3      23.670      21.602       91.464    92.649   
-1.186
25      3      24.246      54.673      223.869   222.622    
1.247
26      3      25.082      41.449      172.910   170.651    
2.259
27      3      24.575      35.451      152.073   147.075    
4.998
28      3      23.803      42.989      169.427   176.703   
-7.276
29      3      24.660      48.599      192.561   198.748   
-6.188
30      3      24.097      21.448       94.448    92.042    
2.406
31      4      22.816      56.982      222.794   231.697   
-8.902
32      4      24.167      47.901      199.003   196.008    
2.996

4.4.4. How can I tell if a model fits my data?

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm (3 of 4) [5/1/2006 10:22:12 AM]



33      4      22.712      40.285      168.668   166.077    
2.592
34      4      23.611      25.609      109.387   108.397    
0.990
35      4      23.354      22.971       98.445    98.029    
0.416
36      4      23.669      25.838      110.987   109.295    
1.692
37      4      23.965      49.127      202.662   200.826    
1.835
38      4      22.917      54.936      224.773   223.653    
1.120
39      4      23.546      50.917      216.058   207.859    
8.199
40      4      24.450      41.976      171.469   172.720   
-1.251

Why Use
Residuals?

If the model fit to the data were correct, the residuals would approximate the random
errors that make the relationship between the explanatory variables and the response
variable a statistical relationship. Therefore, if the residuals appear to behave randomly, it
suggests that the model fits the data well. On the other hand, if non-random structure is
evident in the residuals, it is a clear sign that the model fits the data poorly. The
subsections listed below detail the types of plots to use to test different aspects of a model
and give guidance on the correct interpretations of different results that could be observed
for each type of plot.

Model
Validation
Specifics

How can I assess the sufficiency of the functional part of the model?1.  

How can I detect non-constant variation across the data?2.  

How can I tell if there was drift in the process?3.  

How can I assess whether the random errors are independent from one to the next?4.  

How can I test whether or not the random errors are distributed normally?5.  

How can I test whether any significant terms are missing or misspecified in the
functional part of the model?

6.  

How can I test whether all of the terms in the functional part of the model are
necessary?

7.  

4.4.4. How can I tell if a model fits my data?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.1.How can I assess the sufficiency of the
functional part of the model?

Main Tool:
Scatter Plots

Scatter plots of the residuals versus the predictor variables in the model and versus potential
predictors that are not included in the model are the primary plots used to assess sufficiency of
the functional part of the model. Plots in which the residuals do not exhibit any systematic
structure indicate that the model fits the data well. Plots of the residuals versus other predictor
variables, or potential predictors, that exhibit systematic structure indicate that the form of the
function can be improved in some way.

Pressure /
Temperature
Example

The residual scatter plot below, of the residuals from a straight line fit to the
Pressure/Temperature data introduced in Section 4.1.1. and also discussed in the previous section,
does not indicate any problems with the model. The reference line at 0 emphasizes that the
residuals are split about 50-50 between positive and negative. There are no systematic patterns

apparent in this plot. Of course, just as the  statistic cannot justify a particular model on its
own, no single residual plot can completely justify the adoption of a particular model either. If a
plot of these residuals versus another variable did show systematic structure, the form of model
with respect to that variable would need to be changed or that variable, if not in the model, would
need to be added to the model. It is important to plot the residuals versus every available variable
to ensure that a candidate model is the best model possible.

4.4.4.1. How can I assess the sufficiency of the functional part of the model?
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Importance of
Environmental
Variables

One important class of potential predictor variables that is often overlooked is environmental
variables. Environmental variables include things like ambient temperature in the area where
measurements are being made and ambient humidity. In most cases environmental variables are
not expected to have any noticeable effect on the process, but it is always good practice to check
for unanticipated problems caused by environmental conditions. Sometimes the catch-all
environmental variables can also be used to assess the validity of a model. For example, if an
experiment is run over several days, a plot of the residuals versus day can be used to check for
differences in the experimental conditions at different times. Any differences observed will not
necessarily be attributable to a specific cause, but could justify further experiments to try to
identify factors missing from the model, or other model misspecifications. The two residual plots
below show the pressure/temperature residuals versus ambient lab temperature and day. In both
cases the plots provide further evidence that the straight line model gives an adequate description
of the data. The plot of the residuals versus day does look a little suspicious with a slight cyclic
pattern between days, but doesn't indicate any overwhelming problems. It is likely that this
apparent difference between days is just due to the random variation in the data.

4.4.4.1. How can I assess the sufficiency of the functional part of the model?
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Pressure /
Temperature
Residuals vs
Environmental
Variables
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Residual
Scatter Plots
Work Well for
All Methods

The examples of residual plots given above are for the simplest possible case, straight line
regression via least squares, but the residual plots are used in exactly the same way for almost all
of the other statistical methods used for model building. For example, the residual plot below is
for the LOESS model fit to the thermocouple calibration data introduced in Section 4.1.3.2. Like
the plots above, this plot does not signal any problems with the fit of the LOESS model to the
data. The residuals are scattered both above and below the reference line at all temperatures.
Residuals adjacent to one another in the plot do not tend to have similar signs. There are no
obvious systematic patterns of any type in this plot.

Validation of
LOESS Model
for
Thermocouple
Calibration
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An Alternative
to the LOESS
Model

Based on the plot of voltage (response) versus the temperature (predictor) for the thermocouple
calibration data, a quadratic model would have been a reasonable initial model for these data. The
quadratic model is the simplest possible model that could account for the curvature in the data.
The scatter plot of the residuals versus temperature for a quadratic model fit to the data clearly
indicates that it is a poor fit, however. This residual plot shows strong cyclic structure in the
residuals. If the quadratic model did fit the data, then this structure would not be left behind in the
residuals. One thing to note in comparing the residual plots for the quadratic and LOESS models,
besides the amount of structure remaining in the data in each case, is the difference in the scales
of the two plots. The residuals from the quadratic model have a range that is approximately fifty
times the range of the LOESS residuals.

Validation of
the Quadratic
Model
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.2.How can I detect non-constant variation across
the data?

Scatter Plots
Allow
Comparison
of Random
Variation
Across Data

Similar to their use in checking the sufficiency of the functional form of the model, scatter plots
of the residuals are also used to check the assumption of constant standard deviation of random
errors. Scatter plots of the residuals versus the explanatory variables and versus the predicted
values from the model allow comparison of the amount of random variation in different parts of
the data. For example, the plot below shows residuals from a straight-line fit to the
Pressure/Temperature data. In this plot the range of the residuals looks essentially constant across
the levels of the predictor variable, temperature. The scatter in the residuals at temperatures
between 20 and 30 degrees is similar to the scatter in the residuals between 40 and 50 degrees and
between 55 and 70 degrees. This suggests that the standard deviation of the random errors is the
same for the responses observed at each temperature.

Residuals
from Pressure
/ Temperature
Example

4.4.4.2. How can I detect non-constant variation across the data?
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Modification
of Example

To illustrate how the residuals from the Pressure/Temperature data would look if the standard
deviation was not constant across the different temperature levels, a modified version of the data
was simulated. In the modified version, the standard deviation increases with increasing values of
pressure. Situations like this, in which the standard deviation increases with increasing values of
the response, are among the most common ways that non-constant random variation occurs in
physical science and engineering applications. A plot of the data is shown below. Comparison of
these two versions of the data is interesting because in the original units of the data they don't
look strikingly different.

Pressure
Data with
Non-Constant
Residual
Standard
Deviation

Residuals
Indicate
Non-Constant
Standard
Deviation

The residual plot from a straight-line fit to the modified data, however, highlights the
non-constant standard deviation in the data. The horn-shaped residual plot, starting with residuals
close together around 20 degrees and spreading out more widely as the temperature (and the
pressure) increases, is a typical plot indicating that the assumptions of the analysis are not
satisfied with this model. Other residual plot shapes besides the horn shape could indicate
non-constant standard deviation as well. For example, if the response variable for a data set
peaked in the middle of the range of the predictors and was small for extreme values of the
predictors, the residuals plotted versus the predictors would look like two horns with the bells
facing one another. In a case like this, a plot of the residuals versus the predicted values would
exhibit the single horn shape, however.

4.4.4.2. How can I detect non-constant variation across the data?
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Residuals
from Modified
Pressure
Data

Residual
Plots
Comparing
Variability
Apply to Most
Methods

The use of residual plots to check the assumption of constant standard deviation works in the
same way for most modeling methods. It is not limited to least squares regression even though
that is almost always the context in which it is explained. The plot below shows the residuals
from a LOESS fit to the data from the Thermocouple Calibration example. The even spread of the
residuals across the range of the data does not indicate any changes in the standard deviation,
leading us to the conclusion that this assumption is not unreasonable for these data.

Residuals
from LOESS
Fit to
Thermocouple
Calibration
Data
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Correct
Function
Needed to
Check for
Constant
Standard
Deviation

One potential pitfall in using residual plots to check for constant standard deviation across the
data is that the functional part of the model must adequately describe the systematic variation in
the data. If that is not the case, then the typical horn shape observed in the residuals could be due
to an artifact of the function fit to the data rather than to non-constant variation. For example, in
the Polymer Relaxation example it was hypothesized that both time and temperature are related to
the response variable, torque. However, if a single stretched exponential model in time was the
initial model used for the process, the residual plots could be misinterpreted fairly easily, leading
to the false conclusion that the standard deviation is not constant across the data. When the
functional part of the model does not fit the data well, the residuals do not reflect purely random
variations in the process. Instead, they reflect the remaining structure in the data not accounted
for by the function. Because the residuals are not random, they cannot be used to answer
questions about the random part of the model. This also emphasizes the importance of plotting the
data before fitting the initial model, even if a theoretical model for the data is available. Looking
at the data before fitting the initial model, at least in this case, would likely forestall this potential
problem.

4.4.4.2. How can I detect non-constant variation across the data?

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd442.htm (4 of 6) [5/1/2006 10:22:13 AM]

http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mvtc1_f.gif


Polymer
Relaxation
Data Modeled
as a Single
Stretched
Exponential

Residuals
from Single
Stretched
Exponential
Model
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Getting Back
on Course
After a Bad
Start

Fortunately, even if the initial model were incorrect, and the residual plot above was made, there
are clues in this plot that indicate that the horn shape (pointing left this time) is not caused by
non-constant standard deviation. The cluster of residuals at time zero that have a residual torque
near one indicate that the functional part of the model does not fit the data. In addition, even when
the residuals occur with equal frequency above and below zero, the spacing of the residuals at
each time does not really look random. The spacing is too regular to represent random
measurement errors. At measurement times near the low end of the scale, the spacing of the
points increases as the residuals decrease and at the upper end of the scale the spacing decreases
as the residuals decrease. The patterns in the spacing of the residuals also points to the fact that
the functional form of the model is not correct and needs to be corrected before drawing
conclusions about the distribution of the residuals.

4.4.4.2. How can I detect non-constant variation across the data?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.3.How can I tell if there was drift in the
measurement process?

Run Order
Plots Reveal
Drift in the
Process

"Run order" or "run sequence" plots of the residuals are used to check for drift in the process. The
run order residual plot is a special type of scatter plot in which each residual is plotted versus an
index that indicates the order (in time) in which the data were collected. This plot is useful,
however, only if data have been collected in a randomized run order, or some other order that is
not increasing or decreasing in any of the predictor variables used in the model. If the data have
been collected in a time order that is increasing or decreasing with the predictor variables, then
any drift in the process may not be able to be separated from the functional relationship between
the predictors and the response. This is why randomization is emphasized in experiment design.

Pressure /
Temperature
Example

To show in a more concrete way how run order plots work, the plot below shows the residuals
from a straight-line fit to the Pressure/Temperature data plotted in run order. Comparing the run
order plot to a listing of the data with the residuals shows how the residual for the first data point
collected is plotted versus the run order index value 1, the second residual is plotted versus an
index value of 2, and so forth.

Run
Sequence
Plot for the
Pressure /
Temperature
Data

4.4.4.3. How can I tell if there was drift in the measurement process?
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No Drift
Indicated

Taken as a whole, this plot essentially shows that there is only random scatter in the relationship
between the observed pressures and order in which the data were collected, rather than any
systematic relationship. Although there appears to be a slight trend in the residuals when plotted
in run order, the trend is small when measured against short-term random variation in the data,
indicating that it is probably not a real effect. The presence of this apparent trend does emphasize,
however, that practice and judgment are needed to correctly interpret these plots. Although
residual plots are a very useful tool, if critical judgment is not used in their interpretation, you can
see things that aren't there or miss things that are. One hint that the slight slope visible in the data
is not worrisome in this case is the fact that the residuals overlap zero across all runs. If the
process was drifting significantly, it is likely that there would be some parts of the run sequence
in which the residuals would not overlap zero. If there is still some doubt about the slight trend
visible in the data after using this graphical procedure, a term describing the drift can be added to
the model and tested numerically to see if it has a significant impact on the results.

Modification
of Example

To illustrate how the residuals from the Pressure/Temperature data would look if there were drift
in the process, a modified version of the data was simulated. A small drift of 0.3
units/measurement was added to the process. A plot of the data is shown below. In this run
sequence plot a clear, strong trend is visible and there are portions of the run order where the
residuals do not overlap zero. Because the structure is so evident in this case, it is easy to
conclude that some sort of drift is present. Then, of course, its cause needs to be determined so
that appropriate steps can be taken to eliminate the drift from the process or to account for it in
the model.

4.4.4.3. How can I tell if there was drift in the measurement process?
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Run
Sequence
Plot for
Pressure /
Temperature
Data with
Drift

 As in the case when the standard deviation was not constant across the data set, comparison of
these two versions of the data is interesting because the drift is not apparent in either data set
when viewed in the scale of the data. This highlights the need for graphical residual analysis
when developing process models.

Applicable
to Most
Regression
Methods

The run sequence plot, like most types of residual plots, can be used to check for drift in many
regression methods. It is not limited to least squares fitting or one particular type of model. The
run sequence plot below shows the residuals from the fit of the nonlinear model

to the data from the Polymer Relaxation example. The even spread of the residuals across the
range of the data indicates that there is no apparent drift in this process.
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Sequence
Plot for
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Data
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.4.How can I assess whether the random errors are
independent from one to the next?

Lag Plot
Shows
Dependence
Between
Residuals

The lag plot of the residuals, another special type of scatter plot, suggests whether or not the
errors are independent. If the errors are not independent, then the estimate of the error standard
deviation will be biased, potentially leading to improper inferences about the process. The lag
plot works by plotting each residual value versus the value of the successive residual (in
chronological order of observation). The first residual is plotted versus the second, the second
versus the third, etc. Because of the way the residuals are paired, there will be one less point on
this plot than on most other types of residual plots.

Interpretation If the errors are independent, there should be no pattern or structure in the lag plot. In this case
the points will appear to be randomly scattered across the plot in a scattershot fashion. If there is
significant dependence between errors, however, some sort of deterministic pattern will likely be
evident.

Examples Lag plots for the Pressure/Temperature example, the Thermocouple Calibration example, and the
Polymer Relaxation example are shown below. The lag plots for these three examples suggest
that the errors from each fit are independent. In each case, the residuals are randomly scattered
about the origin with no apparent structure. The last plot, for the Polymer Relaxation data, shows
an apparent slight correlation between the residuals and the lagged residuals, but experience
suggests that this could easily be due to random error and is not likely to be a real issue. In fact,
the lag plot can also emphasize outlying observations and a few of the larger residuals (in
absolute terms) may be pulling our eyes unduly. The normal probability plot, which is also good
at identifying outliers, will be discussed next, and will shed further light on any unusual points in
the data set.

Lag Plot:
Temperature /
Pressure
Example

4.4.4.4. How can I assess whether the random errors are independent from one to the next?
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Lag Plot:
Thermocouple
Calibration
Example
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Lag Plot:
Polymer
Relaxation
Example
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Next Steps Some of the different patterns that might be found in the residuals when the errors are not
independent are illustrated in the general discussion of the lag plot. If the residuals are not
random, then time series methods might be required to fully model the data. Some time series
basics are given in Section 4 of the chapter on Process Monitoring. Before jumping to
conclusions about the need for time series methods, however, be sure that a run order plot does
not show any trends, or other structure, in the data. If there is a trend in the run order plot,
whether caused by drift or by the use of the wrong functional form, the source of the structure
shown in the run order plot will also induce structure in the lag plot. Structure induced in the lag
plot in this way does not necessarily indicate dependence in successive random errors. The lag
plot can only be interpreted clearly after accounting for any structure in the run order plot.

4.4.4.4. How can I assess whether the random errors are independent from one to the next?

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd444.htm (4 of 4) [5/1/2006 10:22:14 AM]

http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mvpr4_f.gif
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.5.How can I test whether or not the random errors
are distributed normally?

Histogram
and Normal
Probability
Plot Used for
Normality
Checks

The histogram and the normal probability plot are used to check whether or not it is reasonable to
assume that the random errors inherent in the process have been drawn from a normal
distribution. The normality assumption is needed for the error rates we are willing to accept when
making decisions about the process. If the random errors are not from a normal distribution,
incorrect decisions will be made more or less frequently than the stated confidence levels for our
inferences indicate.

Normal
Probability
Plot

The normal probability plot is constructed by plotting the sorted values of the residuals versus the
associated theoretical values from the standard normal distribution. Unlike most residual scatter
plots, however, a random scatter of points does not indicate that the assumption being checked is
met in this case. Instead, if the random errors are normally distributed, the plotted points will lie
close to straight line. Distinct curvature or other signficant deviations from a straight line indicate
that the random errors are probably not normally distributed. A few points that are far off the line
suggest that the data has some outliers in it.

Examples Normal probability plots for the Pressure/Temperature example, the Thermocouple Calibration
example, and the Polymer Relaxation example are shown below. The normal probability plots for
these three examples indicate that that it is reasonable to assume that the random errors for these
processes are drawn from approximately normal distributions. In each case there is a strong linear
relationship between the residuals and the theoretical values from the standard normal
distribution. Of course the plots do show that the relationship is not perfectly deterministic (and it
never will be), but the linear relationship is still clear. Since none of the points in these plots
deviate much from the linear relationship defined by the residuals, it is also reasonable to
conclude that there are no outliers in any of these data sets.

Normal
Probability
Plot:
Temperature /
Pressure
Example
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Calibration
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Further
Discussion
and Examples

If the random errors from one of these processes were not normally distributed, then significant
curvature may have been visible in the relationship between the residuals and the quantiles from
the standard normal distribution, or there would be residuals at the upper and/or lower ends of the
line that clearly did not fit the linear relationship followed by the bulk of the data. Examples of
some typical cases obtained with non-normal random errors are illustrated in the general
discussion of the normal probability plot.

Histogram The normal probability plot helps us determine whether or not it is reasonable to assume that the
random errors in a statistical process can be assumed to be drawn from a normal distribution. An
advantage of the normal probability plot is that the human eye is very sensitive to deviations from
a straight line that might indicate that the errors come from a non-normal distribution. However,
when the normal probability plot suggests that the normality assumption may not be reasonable, it
does not give us a very good idea what the distribution does look like. A histogram of the
residuals from the fit, on the other hand, can provide a clearer picture of the shape of the
distribution. The fact that the histogram provides more general distributional information than
does the normal probability plot suggests that it will be harder to discern deviations from
normality than with the more specifically-oriented normal probability plot.

Examples Histograms for the three examples used to illustrate the normal probability plot are shown below.
The histograms are all more-or-less bell-shaped, confirming the conclusions from the normal
probability plots. Additional examples can be found in the gallery of graphical techniques.

4.4.4.5. How can I test whether or not the random errors are distributed normally?
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Histogram:
Temperature /
Pressure
Example

Histogram:
Thermocouple
Calibration
Example

4.4.4.5. How can I test whether or not the random errors are distributed normally?

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd445.htm (5 of 7) [5/1/2006 10:22:15 AM]

http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mvpt12_f.gif


Histogram:
Polymer
Relaxation
Example
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Important
Note

One important detail to note about the normal probability plot and the histogram is that they
provide information on the distribution of the random errors from the process only if

the functional part of the model is correctly specified,1.  

the standard deviation is constant across the data,2.  

there is no drift in the process, and3.  

the random errors are independent from one run to the next.4.  

If the other residual plots indicate problems with the model, the normal probability plot and
histogram will not be easily interpretable.

4.4.4.5. How can I test whether or not the random errors are distributed normally?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.6.How can I test whether any
significant terms are missing or
misspecified in the functional part
of the model?

Statistical
Tests Can
Augment
Ambiguous
Residual Plots

Although the residual plots discussed on pages 4.4.4.1 and 4.4.4.3 will
often indicate whether any important variables are missing or
misspecified in the functional part of the model, a statistical test of the
hypothesis that the model is sufficient may be helpful if the plots leave
any doubt. Although it may seem tempting to use this type of
statistical test in place of residual plots since it apparently assesses the
fit of the model objectively, no single test can provide the rich
feedback to the user that a graphical analysis of the residuals can
provide. Furthermore, while model completeness is one of the most
important aspects of model adequacy, this type of test does not address
other important aspects of model quality. In statistical jargon, this type
of test for model adequacy is usually called a "lack-of-fit" test.

General
Strategy

The most common strategy used to test for model adequacy is to
compare the amount of random variation in the residuals from the data
used to fit the model with an estimate of the random variation in the
process using data that are independent of the model. If these two
estimates of the random variation are similar, that indicates that no
significant terms are likely to be missing from the model. If the
model-dependent estimate of the random variation is larger than the
model-independent estimate, then significant terms probably are
missing or misspecified in the functional part of the model.

4.4.4.6. How can I test whether any significant terms are missing or misspecified in the functional part of the model?
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Testing Model
Adequacy
Requires
Replicate
Measurements

The need for a model-independent estimate of the random variation
means that replicate measurements made under identical experimental
conditions are required to carry out a lack-of-fit test. If no replicate
measurements are available, then there will not be any baseline
estimate of the random process variation to compare with the results
from the model. This is the main reason that the use of replication is
emphasized in experimental design.

Data Used to
Fit Model
Can Be
Partitioned to
Compute
Lack-of-Fit
Statistic

Although it might seem like two sets of data would be needed to carry
out the lack-of-fit test using the strategy described above, one set of
data to fit the model and compute the residual standard deviation and
the other to compute the model-independent estimate of the random
variation, that is usually not necessary. In most regression
applications, the same data used to fit the model can also be used to
carry out the lack-of-fit test, as long as the necessary replicate
measurements are available. In these cases, the lack-of-fit statistic is
computed by partitioning the residual standard deviation into two
independent estimators of the random variation in the process. One
estimator depends on the model and the sample means of the

replicated sets of data ( ), while the other estimator is a pooled
standard deviation based on the variation observed in each set of

replicated measurements ( ). The squares of these two estimators of
the random variation are often called the "mean square for lack-of-fit"
and the "mean square for pure error," respectively, in statistics texts.

The notation  and  is used here instead to emphasize the fact
that, if the model fits the data, these quantities should both be good
estimators of .

Estimating 
Using
Replicate
Measurements

The model-independent estimator of  is computed using the formula

with  denoting the sample size of the data set used to fit the model,
 is the number of unique combinations of predictor variable levels,

 is the number of replicated observations at the ith combination of
predictor variable levels, the  are the regression responses indexed
by their predictor variable levels and number of replicate
measurements, and  is the mean of the responses at the itth

combination of predictor variable levels. Notice that the formula for
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 depends only on the data and not on the functional part of the

model. This shows that  will be a good estimator of , regardless of
whether the model is a complete description of the process or not.

Estimating 
Using the
Model

Unlike the formula for , the formula for 

(with  denoting the number of unknown parameters in the model)
does depend on the functional part of the model. If the model were
correct, the value of the function would be a good estimate of the
mean value of the response for every combination of predictor variable
values. When the function provides good estimates of the mean

response at the ith combination, then  should be close in value to 
and should also be a good estimate of . If, on the other hand, the
function is missing any important terms (within the range of the data),
or if any terms are misspecified, then the function will provide a poor
estimate of the mean response for some combinations of the predictors

and  will tend to be greater than .

Carrying Out
the Test for
Lack-of-Fit

Combining the ideas presented in the previous two paragraphs,
following the general strategy outlined above, the adequacy of the
functional part of the model can be assessed by comparing the values

of  and . If , then one or more important terms may be
missing or misspecified in the functional part of the model. Because of

the random error in the data, however, we know that  will

sometimes be larger than  even when the model is adequate. To
make sure that the hypothesis that the model is adequate is not rejected

by chance, it is necessary to understand how much greater than  the

value of  might typically be when the model does fit the data. Then

the hypothesis can be rejected only when  is significantly greater

than .
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 When the model does fit the data, it turns out that the ratio

follows an F distribution. Knowing the probability distribution that
describes the behavior of the statistic, , we can control the
probability of rejecting the hypothesis that the model is adequate in
cases when the model actually is adequate. Rejecting the hypothesis
that the model is adequate only when  is greater than an upper-tail
cut-off value from the F distribution with a user-specified probability
of wrongly rejecting the hypothesis gives us a precise, objective,

probabilistic definition of when  is significantly greater than .
The user-specified probability used to obtain the cut-off value from the
F distribution is called the "significance level" of the test. The
significance level for most statistical tests is denoted by . The most
commonly used value for the significance level is , which
means that the hypothesis of an adequate model will only be rejected
in 5% of tests for which the model really is adequate. Cut-off values
can be computed using most statistical software or from tables of the F
distribution. In addition to needing the significance level to obtain the
cut-off value, the F distribution is indexed by the degrees of freedom

associated with each of the two estimators of . , which appears in

the numerator of , has  degrees of freedom. , which
appears in the denominator of , has  degrees of freedom.

Alternative
Formula for

Although the formula given above more clearly shows the nature of

, the numerically equivalent formula below is easier to use in
computations

.
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.7.How can I test whether all of the terms in
the functional part of the model are
necessary?

Unnecessary
Terms in the
Model Affect
Inferences

Models that are generally correct in form, but that include extra, unnecessary terms are
said to "over-fit" the data. The term over-fitting is used to describe this problem because
the extra terms in the model make it more flexible than it should be, allowing it to fit
some of the random variation in the data as if it were deterministic structure. Because
the parameters for any unnecessary terms in the model usually have estimated values
near zero, it may seem as though leaving them in the model would not hurt anything. It
is true, actually, that having one or two extra terms in the model does not usually have
much negative impact. However, if enough extra terms are left in the model, the
consequences can be serious. Among other things, including unnecessary terms in the
model can cause the uncertainties estimated from the data to be larger than necessary,
potentially impacting scientific or engineering conclusions to be drawn from the
analysis of the data.

Empirical
and Local
Models
Most Prone
to
Over-fitting
the Data

Over-fitting is especially likely to occur when developing purely empirical models for
processes when there is no external understanding of how much of the total variation in
the data might be systematic and how much is random. It also happens more frequently
when using regression methods that fit the data locally instead of using an explicitly
specified function to describe the structure in the data. Explicit functions are usually
relatively simple and have few terms. It is usually difficult to know how to specify an
explicit function that fits the noise in the data, since noise will not typically display
much structure. This is why over-fitting is not usually a problem with these types of
models. Local models, on the other hand, can easily be made to fit very complex
patterns, allowing them to find apparent structure in process noise if care is not
exercised.

Statistical
Tests for
Over-fitting

Just as statistical tests can be used to check for significant missing or misspecified terms
in the functional part of a model, they can also be used to determine if any unnecessary
terms have been included. In fact, checking for over-fitting of the data is one area in
which statistical tests are more effective than residual plots. To test for over-fitting,
however, individual tests of the importance of each parameter in the model are used
rather than following using a single test as done when testing for terms that are missing
or misspecified in the model.

4.4.4.7. How can I test whether all of the terms in the functional part of the model are necessary?
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Tests of
Individual
Parameters

Most output from regression software also includes individual statistical tests that
compare the hypothesis that each parameter is equal to zero with the alternative that it is
not zero. These tests are convenient because they are automatically included in most
computer output, do not require replicate measurements, and give specific information
about each parameter in the model. However, if the different predictor variables
included in the model have values that are correlated, these tests can also be quite
difficult to interpret. This is because these tests are actually testing whether or not each
parameter is zero given that all of the other predictors are included in the model.

Test
Statistics
Based on
Student's t
Distribution

The test statistics for testing whether or not each parameter is zero are typically based
on Student's t distribution. Each parameter estimate in the model is measured in terms
of how many standard deviations it is from its hypothesized value of zero. If the
parameter's estimated value is close enough to the hypothesized value that any deviation
can be attributed to random error, the hypothesis that the parameter's true value is zero
is not rejected. If, on the other hand, the parameter's estimated value is so far away from
the hypothesized value that the deviation cannot be plausibly explained by random
error, the hypothesis that the true value of the parameter is zero is rejected.

Because the hypothesized value of each parameter is zero, the test statistic for each of
these tests is simply the estimated parameter value divided by its estimated standard
deviation,

which provides a measure of the distance between the estimated and hypothesized
values of the parameter in standard deviations. Based on the assumptions that the
random errors are normally distributed and the true value of the parameter is zero (as
we have hypothesized), the test statistic has a Student's t distribution with 
degrees of freedom. Therefore, cut-off values for the t distribution can be used to
determine how extreme the test statistic must be in order for each parameter estimate to
be too far away from its hypothesized value for the deviation to be attributed to random
error. Because these tests are generally used to simultaneously test whether or not a
parameter value is greater than or less than zero, the tests should each be used with
cut-off values with a significance level of . This will guarantee that the hypothesis
that each parameter equals zero will be rejected by chance with probability . Because
of the symmetry of the t distribution, only one cut-off value, the upper or the lower one,
needs to be determined, and the other will be it's negative. Equivalently, many people
simply compare the absolute value of the test statistic to the upper cut-off value.

4.4.4.7. How can I test whether all of the terms in the functional part of the model are necessary?
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Parameter
Tests for the
Pressure /
Temperature
Example

To illustrate the use of the individual tests of the significance of each parameter in a
model, the Dataplot output for the Pressure/Temperature example is shown below. In
this case a straight-line model was fit to the data, so the output includes tests of the
significance of the intercept and slope. The estimates of the intercept and the slope are
7.75 and 3.93, respectively. Their estimated standard deviations are listed in the next
column followed by the test statistics to determine whether or not each parameter is
zero. At the bottom of the output the estimate of the residual standard deviation, , and
its degrees of freedom are also listed.

Dataplot
Output:
Pressure /
Temperature
Example

LEAST SQUARES POLYNOMIAL FIT
SAMPLE SIZE N       =       40
DEGREE              =        1
NO REPLICATION CASE

      PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
 1  A0                   7.74899       ( 2.354    )       
3.292
 2  A1                   3.93014       (0.5070E-01)       
77.51

RESIDUAL    STANDARD DEVIATION =         4.299098
RESIDUAL    DEGREES OF FREEDOM =          38

Looking up the cut-off value from the tables of the t distribution using a significance
level of  and 38 degrees of freedom yields a cut-off value of 2.024 (the
cut-off is obtained from the column labeled "0.025" since this is a two-sided test and
0.05/2 = 0.025). Since both of the test statistics are larger in absolute value than the
cut-off value of 2.024, the appropriate conclusion is that both the slope and intercept are
significantly different from zero at the 95% confidence level.
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4. Process Modeling
4.4. Data Analysis for Process Modeling

4.4.5. If my current model does not fit the
data well, how can I improve it?

What Next? Validating a model using residual plots, formal hypothesis tests and
descriptive statistics would be quite frustrating if discovery of a
problem meant restarting the modeling process back at square one.
Fortunately, however, there are also techniques and tools to remedy
many of the problems uncovered using residual analysis. In some cases
the model validation methods themselves suggest appropriate changes
to a model at the same time problems are uncovered. This is especially
true of the graphical tools for model validation, though tests on the
parameters in the regression function also offer insight into model
refinement. Treatments for the various model deficiencies that were
diagnosed in Section 4.4.4. are demonstrated and discussed in the
subsections listed below.

Methods for
Model
Improvement

Updating the Function Based on Residual Plots1.  

Accounting for Non-Constant Variation Across the Data2.  

Accounting for Errors with a Non-Normal Distribution3.  

4.4.5. If my current model does not fit the data well, how can I improve it?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.5. If my current model does not fit the data well, how can I improve it?

4.4.5.1.Updating the Function Based on Residual Plots

Residual
Plots Guide
Model
Refinement

If the plots of the residuals used to check the adequacy of the functional part of the model indicate
problems, the structure exhibited in the plots can often be used to determine how to improve the
functional part of the model. For example, suppose the initial model fit to the thermocouple
calibration data was a quadratic polynomial. The scatter plot of the residuals versus temperature
showed that there was structure left in the data when this model was used.

Residuals vs
Temperature:
Quadratic
Model

The shape of the residual plot, which looks like a cubic polynomial, suggests that adding another
term to the polynomial might account for the structure left in the data by the quadratic model.
After fitting the cubic polynomial, the magnitude of the residuals is reduced by a factor of about
30, indicating a big improvement in the model.

4.4.5.1. Updating the Function Based on Residual Plots

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd451.htm (1 of 2) [5/1/2006 10:22:17 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mvtc2_f.gif


Residuals vs
Temperature:
Cubic Model

Increasing
Residual
Complexity
Suggests
LOESS
Model

Although the model is improved, there is still structure in the residuals. Based on this structure, a
higher-degree polynomial looks like it would fit the data. Polynomial models become numerically
unstable as their degree increases, however. Therfore, after a few iterations like this, leading to
polynomials of ever-increasing degree, the structure in the residuals is indicating that a
polynomial does not actually describe the data very well. As a result, a different type of model,
such as a nonlinear model or a LOESS model, is probably more appropriate for these data. The
type of model needed to describe the data, however, can be arrived at systematically using the
structure in the residuals at each step.

4.4.5.1. Updating the Function Based on Residual Plots
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.5. If my current model does not fit the data well, how can I improve it?

4.4.5.2.Accounting for Non-Constant Variation Across the
Data

Two Basic
Approaches:
Transformation and
Weighting

There are two basic approaches to obtaining improved parameter estimators for data in which the
standard deviation of the error is not constant across all combinations of predictor variable values:

transforming the data so it meets the standard assumptions, and1.  

using weights in the parameter estimation to account for the unequal standard deviations.2.  

Both methods work well in a wide range of situations. The choice of which to use often hinges on
personal preference because in many engineering and industrial applications the two methods
often provide practically the same results. In fact, in most experiments there is usually not enough
data to determine which of the two models works better. Sometimes, however, when there is
scientific information about the nature of the model, one method or the other may be preferred
because it is more consistent with an existing theory. In other cases, the data may make one of the
methods more convenient to use than the other.

Using
Transformations

The basic steps for using transformations to handle data with unequal subpopulation standard
deviations are:

Transform the response variable to equalize the variation across the levels of the predictor
variables.

1.  

Transform the predictor variables, if necessary, to attain or restore a simple functional form
for the regression function.

2.  

Fit and validate the model in the transformed variables.3.  

Transform the predicted values back into the original units using the inverse of the
transformation applied to the response variable.

4.  

Typical
Transformations for
Stabilization of
Variation

Appropriate transformations to stabilize the variability may be suggested by scientific knowledge
or selected using the data. Three transformations that are often effective for equalizing the
standard deviations across the values of the predictor variables are:

,1.  

 (note: the base of the logarithm does not really matter), and2.  

.3.  

Other transformations can be considered, of course, but in a surprisingly wide range of problems
one of these three transformations will work well. As a result, these are good transformations to
start with, before moving on to more specialized transformations.

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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Modified Pressure /
Temperature Example

To illustrate how to use transformations to stabilize the variation in the data, we will return to the
modified version of the Pressure/Temperature example. The residuals from a straight-line fit to
that data clearly showed that the standard deviation of the measurements was not constant across
the range of temperatures.

Residuals from
Modified Pressure
Data

Stabilizing the
Variation

The first step in the process is to compare different transformations of the response variable,
pressure, to see which one, if any, stabilizes the variation across the range of temperatures. The
straight-line relationship will not hold for all of the transformations, but at this stage of the
process that is not a concern. The functional relationship can usually be corrected after stabilizing
the variation. The key for this step is to find a transformation that makes the uncertainty in the
data approximately the same at the lowest and highest temperatures (and in between). The plot
below shows the modified Pressure/Temperature data in its original units, and with the response
variable transformed using each of the three typical transformations. Remember you can click on
the plot to see a larger view for easier comparison.

Transformations of
the Pressure

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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Inverse Pressure Has
Constant Variation

After comparing the effects of the different transformations, it looks like using the inverse of the
pressure will make the standard deviation approximately constant across all temperatures.
However, it is somewhat difficult to tell how the standard deviations really compare on a plot of
this size and scale. To better see the variation, a full-sized plot of temperature versus the inverse
of the pressure is shown below. In that plot it is easier to compare the variation across
temperatures. For example, comparing the variation in the pressure values at a temperature of
about 25 with the variation in the pressure values at temperatures near 45 and 70, this plot shows
about the same level of variation at all three temperatures. It will still be critical to look at
residual plots after fitting the model to the transformed variables, however, to really see whether
or not the transformation we've chosen is effective. The residual scale is really the only scale that
can reveal that level of detail.

Enlarged View of
Temperature Versus
1/Pressure
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Transforming
Temperature to
Linearity

Having found a transformation that appears to stabilize the standard deviations of the
measurements, the next step in the process is to find a transformation of the temperature that will
restore the straight-line relationship, or some other simple relationship, between the temperature
and pressure. The same three basic transformations that can often be used to stabilize the
variation are also usually able to transform the predictor to restore the original relationship
between the variables. Plots of the temperature and the three transformations of the temperature
versus the inverse of the pressure are shown below.

Transformations of
the Temperature
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 Comparing the plots of the various transformations of the temperature versus the inverse of the
pressure, it appears that the straight-line relationship between the variables is restored when the
inverse of the temperature is used. This makes intuitive sense because if the temperature and
pressure are related by a straight line, then the same transformation applied to both variables
should change them both similarly, retaining their original relationship. Now, after fitting a
straight line to the transformed data, the residuals plotted versus both the transformed and original
values of temperature indicate that the straight-line model fits the data and that the random
variation no longer increases with increasing temperature. Additional diagnostic plots of the
residuals confirm that the model fits the data well.

Residuals From the
Fit to the
Transformed Data
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Using Weighted Least
Squares

As discussed in the overview of different methods for building process models, the goal when
using weighted least squares regression is to ensure that each data point has an appropriate level
of influence on the final parameter estimates. Using the weighted least squares fitting criterion,
the parameter estimates are obtained by minimizing

.

Optimal results, which minimize the uncertainty in the parameter estimators, are obtained when
the weights, , used to estimate the values of the unknown parameters are inversely proportional
to the variances at each combination of predictor variable values:

.

Unfortunately, however, these optimal weights, which are based on the true variances of each
data point, are never known. Estimated weights have to be used instead. When estimated weights
are used, the optimality properties associated with known weights no longer strictly apply.
However, if the weights can be estimated with high enough precision, their use can significantly
improve the parameter estimates compared to the results that would be obtained if all of the data
points were equally weighted.

Direct Estimation of
Weights

If there are replicates in the data, the most obvious way to estimate the weights is to set the
weight for each data point equal to the reciprocal of the sample variance obtained from the set of
replicate measurements to which the data point belongs. Mathematically, this would be

where

 are the weights indexed by their predictor variable levels and replicate measurements,●   

 indexes the unique combinations of predictor variable values,●   

 indexes the replicates within each combination of predictor variable values,●   

 is the sample standard deviation of the response variable at the ith combination of

predictor variable values,

●   

 is the number of replicate observations at the ith combination of predictor variable
values,

●   

 are the individual data points indexed by their predictor variable levels and replicate
measurements,

●   

 is the mean of the responses at the ith combination of predictor variable levels.●   

4.4.5.2. Accounting for Non-Constant Variation Across the Data

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd452.htm (7 of 14) [5/1/2006 10:22:20 AM]

http://www.itl.nist.gov/div898/handbook/pmd/section4/eqns/ybarieq.gif


Unfortunately, although this method is attractive, it rarely works well. This is because when the
weights are estimated this way, they are usually extremely variable. As a result, the estimated
weights do not correctly control how much each data point should influence the parameter
estimates. This method can work, but it requires a very large number of replicates at each
combination of predictor variables. In fact, if this method is used with too few replicate
measurements, the parameter estimates can actually be more variable than they would have been
if the unequal variation were ignored.

A Better Strategy for
Estimating the
Weights

A better strategy for estimating the weights is to find a function that relates the standard deviation
of the response at each combination of predictor variable values to the predictor variables
themselves. This means that if

(denoting the unknown parameters in the function  by ), then the weights can be set to

This approach to estimating the weights usually provides more precise estimates than direct
estimation because fewer quantities have to be estimated and there is more data to estimate each
one.

Estimating Weights
Without Replicates

If there are only very few or no replicate measurements for each combination of predictor
variable values, then approximate replicate groups can be formed so that weights can be
estimated. There are several possible approaches to forming the replicate groups.

One method is to manually form the groups based on plots of the response against the
predictor variables. Although this allows a lot of flexibility to account for the features of a
specific data set, it often impractical. However, this approach may be useful for relatively
small data sets in which the spacing of the predictor variable values is very uneven.

1.  

Another approach is to divide the data into equal-sized groups of observations after sorting
by the values of the response variable. It is important when using this approach not to make
the size of the replicate groups too large. If the groups are too large, the standard deviations
of the response in each group will be inflated because the approximate replicates will differ
from each other too much because of the deterministic variation in the data. Again, plots of
the response variable versus the predictor variables can be used as a check to confirm that
the approximate sets of replicate measurements look reasonable.

2.  

A third approach is to choose the replicate groups based on ranges of predictor variable
values. That is, instead of picking groups of a fixed size, the ranges of the predictor
variables are divided into equal size increments or bins and the responses in each bin are
treated as replicates. Because the sizes of the groups may vary, there is a tradeoff in this
case between defining the intervals for approximate replicates to be too narrow or too wide.
As always, plots of the response variable against the predictor variables can serve as a
guide.

3.  

Although the exact estimates of the weights will be somewhat dependent on the approach used to
define the replicate groups, the resulting weighted fit is typically not particularly sensitive to
small changes in the definition of the weights when the weights are based on a simple, smooth
function.
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Power Function
Model for the Weights

One particular function that often works well for modeling the variances is a power of the mean
at each combination of predictor variable values,

.

Iterative procedures for simultaneously fitting a weighted least squares model to the original data
and a power function model for the weights are discussed in Carroll and Ruppert (1988), and
Ryan (1997).

Fitting the Model for
Estimation of the
Weights

When fitting the model for the estimation of the weights,

,

it is important to note that the usual regression assumptions do not hold. In particular, the
variation of the random errors is not constant across the different sets of replicates and their
distribution is not normal. However, this can be often be accounted for by using transformations
(the ln transformation often stabilizes the variation), as described above.

Validating the Model
for Estimation of the
Weights

Of course, it is always a good idea to check the assumptions of the analysis, as in any
model-building effort, to make sure the model of the weights seems to fit the weight data
reasonably well. The fit of the weights model often does not need to meet all of the usual
standards to be effective, however.

Using Weighted
Residuals to Validate
WLS Models

Once the weights have been estimated and the model has been fit to the original data using
weighted least squares, the validation of the model follows as usual, with one exception. In a
weighted analysis, the distribution of the residuals can vary substantially with the different values
of the predictor variables. This necessitates the use of weighted residuals [Graybill and Iyer
(1994)] when carrying out a graphical residual analysis so that the plots can be interpreted as
usual. The weighted residuals are given by the formula

.

It is important to note that most statistical software packages do not compute and return weighted
residuals when a weighted fit is done, so the residuals will usually have to be weighted manually
in an additional step. If after computing a weighted least squares fit using carefully estimated
weights, the residual plots still show the same funnel-shaped pattern as they did for the initial
equally-weighted fit, it is likely that you may have forgotten to compute or plot the weighted
residuals.
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Example of WLS
Using the Power
Function Model

The power function model for the weights, mentioned above, is often especially convenient when
there is only one predictor variable. In this situation the general model given above can usually be
simplified to the power function

,

which does not require the use of iterative fitting methods. This model will be used with the
modified version of the Pressure/Temperature data, plotted below, to illustrate the steps needed to
carry out a weighted least squares fit.

Modified
Pressure/Temperature
Data

Defining Sets of
Approximate
Replicate
Measurements

From the data, plotted above, it is clear that there are not many true replicates in this data set. As
a result, sets of approximate replicate measurements need to be defined in order to use the power
function model to estimate the weights. In this case, this was done by rounding a multiple of the
temperature to the nearest degree and then converting the rounded data back to the original scale.

This is an easy way to identify sets of measurements that have temperatures that are relatively
close together. If this process had produced too few sets of replicates, a smaller factor than three
could have been used to spread the data out further before rounding. If fewer replicate sets were
needed, then a larger factor could have been used. The appropriate value to use is a matter of
judgment. An ideal value is one that doesn't combine values that are too different and that yields
sets of replicates that aren't too different in size. A table showing the original data, the rounded
temperatures that define the approximate replicates, and the replicate standard deviations is listed
below.
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Data with
Approximate
Replicates

               Rounded              Standard
Temperature  Temperature  Pressure  Deviation
---------------------------------------------
   21.602        21        91.423    0.192333
   21.448        21        91.695    0.192333
   23.323        24        98.883    1.102380
   22.971        24        97.324    1.102380
   25.854        27       107.620    0.852080
   25.609        27       108.112    0.852080
   25.838        27       109.279    0.852080
   29.242        30       119.933   11.046422
   31.489        30       135.555   11.046422
   34.101        33       139.684    0.454670
   33.901        33       139.041    0.454670
   37.481        36       150.165    0.031820
   35.451        36       150.210    0.031820
   39.506        39       164.155    2.884289
   40.285        39       168.234    2.884289
   43.004        42       180.802    4.845772
   41.449        42       172.646    4.845772
   42.989        42       169.884    4.845772
   41.976        42       171.617    4.845772
   44.692        45       180.564          NA
   48.599        48       191.243    5.985219
   47.901        48       199.386    5.985219
   49.127        48       202.913    5.985219
   49.542        51       196.225    9.074554
   51.144        51       207.458    9.074554
   50.995        51       205.375    9.074554
   50.917        51       218.322    9.074554
   54.749        54       225.607    2.040637
   53.226        54       223.994    2.040637
   54.467        54       229.040    2.040637
   55.350        54       227.416    2.040637
   54.673        54       223.958    2.040637
   54.936        54       224.790    2.040637
   57.549        57       230.715   10.098899
   56.982        57       216.433   10.098899
   58.775        60       224.124   23.120270
   61.204        60       256.821   23.120270
   68.297        69       276.594    6.721043
   68.476        69       267.296    6.721043
   68.774        69       280.352    6.721043
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Transformation of the
Weight Data

With the replicate groups defined, a plot of the ln of the replicate variances versus the ln of the
temperature shows the transformed data for estimating the weights does appear to follow the
power function model. This is because the ln-ln transformation linearizes the power function, as
well as stabilizing the variation of the random errors and making their distribution approximately
normal.

Transformed Data for
Weight Estimation
with Fitted Model

Specification of
Weight Function

The Splus output from the fit of the weight estimation model is shown below. Based on the output
and the associated residual plots, the model of the weights seems reasonable, and

should be an appropriate weight function for the modified Pressure/Temperature data. The weight
function is based only on the slope from the fit to the transformed weight data because the
weights only need to be proportional to the replicate variances. As a result, we can ignore the
estimate of  in the power function since it is only a proportionality constant (in original units of
the model). The exponent on the temperature in the weight function is usually rounded to the
nearest digit or single decimal place for convenience, since that small change in the weight
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function will not affect the results of the final fit significantly.

Output from Weight
Estimation Fit Residual Standard Error = 3.0245

Multiple R-Square = 0.3642

N = 14,  

F-statistic = 6.8744 on 1 and 12 df, p-value = 0.0223

                    coef std.err  t.stat p.value
Intercept       -20.5896  8.4994 -2.4225  0.0322
ln(Temperature)   6.0230  2.2972  2.6219  0.0223

Fit of the WLS Model
to the Pressure /
Temperature Data

With the weight function estimated, the fit of the model with weighted least squares produces the
residual plot below. This plot, which shows the weighted residuals from the fit versus
temperature, indicates that use of the estimated weight function has stabilized the increasing
variation in pressure observed with increasing temperature. The plot of the data with the
estimated regression function and additional residual plots using the weighted residuals confirm
that the model fits the data well.

Weighted Residuals
from WLS Fit of
Pressure /
Temperature Data
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Comparison of
Transformed and
Weighted Results

Having modeled the data using both transformed variables and weighted least squares to account
for the non-constant standard deviations observed in pressure, it is interesting to compare the two
resulting models. Logically, at least one of these two models cannot be correct (actually, probably
neither one is exactly correct). With the random error inherent in the data, however, there is no
way to tell which of the two models actually describes the relationship between pressure and
temperature better. The fact that the two models lie right on top of one another over almost the
entire range of the data tells us that. Even at the highest temperatures, where the models diverge
slightly, both models match the small amount of data that is available reasonably well. The only
way to differentiate between these models is to use additional scientific knowledge or collect a lot
more data. The good news, though, is that the models should work equally well for predictions or
calibrations based on these data, or for basic understanding of the relationship between
temperature and pressure.
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.5. If my current model does not fit the data well, how can I improve it?

4.4.5.3.Accounting for Errors with a Non-Normal
Distribution

Basic Approach:
Transformation

Unlike when correcting for non-constant variation in the random errors, there is really only one
basic approach to handling data with non-normal random errors for most regression methods.
This is because most methods rely on the assumption of normality and the use of linear estimation
methods (like least squares) to make probabilistic inferences to answer scientific or engineering
questions. For methods that rely on normality of the data, direct manipulation of the data to make
the random errors approximately normal is usually the best way to try to bring the data in line
with this assumption. The main alternative to transformation is to use a fitting criterion that
directly takes the distribution of the random errors into account when estimating the unknown
parameters. Using these types of fitting criteria, such as maximum likelihood, can provide very
good results. However, they are often much harder to use than the general fitting criteria used in
most process modeling methods.

Using
Transformations

The basic steps for using transformations to handle data with non-normally distributed random
errors are essentially the same as those used to handle non-constant variation of the random
errors.

Transform the response variable to make the distribution of the random errors
approximately normal.

1.  

Transform the predictor variables, if necessary, to attain or restore a simple functional form
for the regression function.

2.  

Fit and validate the model in the transformed variables.3.  

Transform the predicted values back into the original units using the inverse of the
transformation applied to the response variable.

4.  

The main difference between using transformations to account for non-constant variation and
non-normality of the random errors is that it is harder to directly see the effect of a transformation
on the distribution of the random errors. It is very often the case, however, that non-normality and
non-constant standard deviation of the random errors go together, and that the same
transformation will correct both problems at once. In practice, therefore, if you choose a
transformation to fix any non-constant variation in the data, you will often also improve the
normality of the random errors. If the data appear to have non-normally distributed random
errors, but do have a constant standard deviation, you can always fit models to several sets of
transformed data and then check to see which transformation appears to produce the most
normally distributed residuals.
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Typical
Transformations for
Meeting
Distributional
Assumptions

Not surprisingly, three transformations that are often effective for making the distribution of the
random errors approximately normal are:

,1.  

 (note: the base of the logarithm does not really matter), and2.  

.3.  

These are the same transformations often used for stabilizing the variation in the data. Other
appropriate transformations to improve the distributional properties of the random errors may be
suggested by scientific knowledge or selected using the data. However, these three
transformations are good ones to start with since they work well in so many situations.

Example To illustrate how to use transformations to change the distribution of the random errors, we will
look at a modified version of the Pressure/Temperature example in which the errors are uniformly
distributed. Comparing the results obtained from fitting the data in their original units and under
different transformations will directly illustrate the effects of the transformations on the
distribution of the random errors.

Modified
Pressure/Temperature
Data with Uniform
Random Errors
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Fit of Model to the
Untransformed Data

A four-plot of the residuals obtained after fitting a straight-line model to the
Pressure/Temperature data with uniformly distributed random errors is shown below. The
histogram and normal probability plot on the bottom row of the four-plot are the most useful plots
for assessing the distribution of the residuals. In this case the histogram suggests that the
distribution is more rectangular than bell-shaped, indicating the random errors a not likely to be
normally distributed. The curvature in the normal probability plot also suggests that the random
errors are not normally distributed. If the random errors were normally distributed the normal
probability plots should be a fairly straight line. Of course it wouldn't be perfectly straight, but
smooth curvature or several points lying far from the line are fairly strong indicators of
non-normality.

Residuals from
Straight-Line Model
of Untransformed
Data with Uniform
Random Errors

Selection of
Appropriate
Transformations

Going through a set of steps similar to those used to find transformations to stabilize the random
variation, different pairs of transformations of the response and predictor which have a simple
functional form and will potentially have more normally distributed residuals are chosen. In the
multiplots below, all of the possible combinations of basic transformations are applied to the
temperature and pressure to find the pairs which have simple functional forms. In this case, which
is typical, the the data with square root-square root, ln-ln, and inverse-inverse tranformations all
appear to follow a straight-line model. The next step will be to fit lines to each of these sets of
data and then to compare the residual plots to see whether any have random errors which appear
to be normally distributed.

4.4.5.3. Accounting for Errors with a Non-Normal Distribution

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd453.htm (3 of 7) [5/1/2006 10:22:21 AM]

http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mipt16_f.gif


sqrt(Pressure) vs
Different
Tranformations of
Temperature

log(Pressure) vs
Different
Tranformations of
Temperature
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1/Pressure vs
Different
Tranformations of
Temperature

Fit of Model to
Transformed
Variables

The normal probability plots and histograms below show the results of fitting straight-line models
to the three sets of transformed data. The results from the fit of the model to the data in its
original units are also shown for comparison. From the four normal probability plots it looks like
the model fit using the ln-ln transformations produces the most normally distributed random
errors. Because the normal probability plot for the ln-ln data is so straight, it seems safe to
conclude that taking the ln of the pressure makes the distribution of the random errors
approximately normal. The histograms seem to confirm this since the histogram of the ln-ln data
looks reasonably bell-shaped while the other histograms are not particularly bell-shaped.
Therefore, assuming the other residual plots also indicated that a straight line model fit this
transformed data, the use of ln-ln tranformations appears to be appropriate for analysis of this
data.

Residuals from the Fit
to the Transformed
Variables
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Residuals from the Fit
to the Transformed
Variables
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4. Process Modeling

4.5.Use and Interpretation of Process
Models

Overview of
Section 4.5

This section covers the interpretation and use of the models developed
from the collection and analysis of data using the procedures discussed
in Section 4.3 and Section 4.4. Three of the main uses of such models,
estimation, prediction and calibration, are discussed in detail.
Optimization, another important use of this type of model, is primarily
discussed in Chapter 5: Process Improvement.

Contents of
Section 4.5

What types of predictions can I make using the model?

How do I estimate the average response for a particular set
of predictor variable values?

1.  

How can I predict the value and and estimate the
uncertainty of a single response?

2.  

1.  

How can I use my process model for calibration?

Single-Use Calibration Intervals1.  

2.  

How can I optimize my process using the process model?3.  

4.5. Use and Interpretation of Process Models
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4. Process Modeling
4.5. Use and Interpretation of Process Models

4.5.1.What types of predictions can I make
using the model?

Detailed
Information
on
Prediction

This section details some of the different types of predictions that can be
made using the various process models whose development is discussed
in Section 4.1 through Section 4.4. Computational formulas or
algorithms are given for each different type of estimation or prediction,
along with simulation examples showing its probabilisitic interpretation.
An introduction to the different types of estimation and prediction can
be found in Section 4.1.3.1. A brief description of estimation and
prediction versus the other uses of process models is given in Section
4.1.3.

Different
Types of
Predictions

How do I estimate the average response for a particular set of
predictor variable values?

1.  

How can I predict the value and and estimate the uncertainty of a
single response?

2.  

4.5.1. What types of predictions can I make using the model?
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4. Process Modeling
4.5. Use and Interpretation of Process Models
4.5.1. What types of predictions can I make using the model?

4.5.1.1.How do I estimate the average response for a
particular set of predictor variable values?

Step 1: Plug
Predictors
Into
Estimated
Function

Once a model that gives a good description of the process has been developed, it can be used for
estimation or prediction. To estimate the average response of the process, or, equivalently, the
value of the regression function, for any particular combination of predictor variable values, the
values of the predictor variables are simply substituted in the estimated regression function itself.
These estimated function values are often called "predicted values" or "fitted values".

Pressure /
Temperature
Example

For example, in the Pressure/Temperature process, which is well described by a straight-line
model relating pressure ( ) to temperature ( ), the estimated regression function is found to be

by substituting the estimated parameter values into the functional part of the model. Then to
estimate the average pressure at a temperature of 65, the predictor value of interest is subsituted in
the estimated regression function, yielding an estimated pressure of 263.21.

This estimation process works analogously for nonlinear models, LOESS models, and all other
types of functional process models.

Polymer
Relaxation
Example

Based on the output from fitting the stretched exponential model in time ( ) and temperature (
), the estimated regression function for the polymer relaxation data is

.

Therefore, the estimated torque ( ) on a polymer sample after 60 minutes at a temperature of 40 is
5.26.

4.5.1.1. How do I estimate the average response for a particular set of predictor variable values?
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Uncertainty
Needed

Knowing that the estimated average pressure is 263.21 at a temperature of 65, or that the
estimated average torque on a polymer sample under particular conditions is 5.26, however, is not
enough information to make scientific or engineering decisions about the process. This is because
the pressure value of 263.21 is only an estimate of the average pressure at a temperature of 65.
Because of the random error in the data, there is also random error in the estimated regression
parameters, and in the values predicted using the model. To use the model correctly, therefore, the
uncertainty in the prediction must also be quantified. For example, if the safe operational pressure
of a particular type of gas tank that will be used at a temperature of 65 is 300, different
engineering conclusions would be drawn from knowing the average actual pressure in the tank is
likely to lie somewhere in the range  versus lying in the range .

Confidence
Intervals

In order to provide the necessary information with which to make engineering or scientific
decisions, predictions from process models are usually given as intervals of plausible values that
have a probabilistic interpretation. In particular, intervals that specify a range of values that will
contain the value of the regression function with a pre-specified probability are often used. These
intervals are called confidence intervals. The probability with which the interval will capture the
true value of the regression function is called the confidence level, and is most often set by the
user to be 0.95, or 95% in percentage terms. Any value between 0% and 100% could be specified,
though it would almost never make sense to consider values outside a range of about 80% to 99%.
The higher the confidence level is set, the more likely the true value of the regression function is
to be contained in the interval. The trade-off for high confidence, however, is wide intervals. As
the sample size is increased, however, the average width of the intervals typically decreases for
any fixed confidence level. The confidence level of an interval is usually denoted symbolically
using the notation , with  denoting a user-specified probability, called the significance
level, that the interval will not capture the true value of the regression function. The significance
level is most often set to be 5% so that the associated confidence level will be 95%.

Computing
Confidence
Intervals

Confidence intervals are computed using the estimated standard deviations of the estimated
regression function values and a coverage factor that controls the confidence level of the interval
and accounts for the variation in the estimate of the residual standard deviation.

The standard deviations of the predicted values of the estimated regression function depend on the
standard deviation of the random errors in the data, the experimental design used to collect the
data and fit the model, and the values of the predictor variables used to obtain the predicted
values. These standard deviations are not simple quantities that can be read off of the output
summarizing the fit of the model, but they can often be obtained from the software used to fit the
model. This is the best option, if available, because there are a variety of numerical issues that can
arise when the standard deviations are calculated directly using typical theoretical formulas.
Carefully written software should minimize the numerical problems encountered. If necessary,
however, matrix formulas that can be used to directly compute these values are given in texts such
as Neter, Wasserman, and Kutner.

4.5.1.1. How do I estimate the average response for a particular set of predictor variable values?
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The coverage factor used to control the confidence level of the intervals depends on the
distributional assumption about the errors and the amount of information available to estimate the
residual standard deviation of the fit. For procedures that depend on the assumption that the
random errors have a normal distribution, the coverage factor is typically a cut-off value from the
Student's t distribution at the user's pre-specified confidence level and with the same number of
degrees of freedom as used to estimate the residual standard deviation in the fit of the model.
Tables of the t distribution (or functions in software) may be indexed by the confidence level (

) or the significance level ( ). It is also important to note that since these are two-sided
intervals, half of the probability denoted by the significance level is usually assigned to each side
of the interval, so the proper entry in a t table or in a software function may also be labeled with
the value of , or , if the table or software is not exclusively designed for use with
two-sided tests.

 The estimated values of the regression function, their standard deviations, and the coverage factor
are combined using the formula

with  denoting the estimated value of the regression function,  is the coverage factor,

indexed by a function of the significance level and by its degrees of freedom, and  is the
standard deviation of . Some software may provide the total uncertainty for the confidence
interval given by the equation above, or may provide the lower and upper confidence bounds by
adding and subtracting the total uncertainty from the estimate of the average response. This can
save some computational effort when making predictions, if available. Since there are many types
of predictions that might be offered in a software package, however, it is a good idea to test the
software on an example for which confidence limits are already available to make sure that the
software is computing the expected type of intervals.

Confidence
Intervals for
the Example
Applications

Computing confidence intervals for the average pressure in the Pressure/Temperature example,
for temperatures of 25, 45, and 65, and for the average torque on specimens from the polymer
relaxation example at different times and temperatures gives the results listed in the tables below.
Note: the number of significant digits shown in the tables below is larger than would normally be
reported. However, as many significant digits as possible should be carried throughout all
calculations and results should only be rounded for final reporting. If reported numbers may be
used in further calculations, they should not be rounded even when finally reported. A useful rule
for rounding final results that will not be used for further computation is to round all of the

reported values to one or two significant digits in the total uncertainty, . This is the
convention for rounding that has been used in the tables below.

Pressure /
Temperature
Example

Lower 95%
Confidence

Bound

Upper 95%
Confidence

Bound

25 106.0025 1.1976162 2.024394 2.424447 103.6 108.4

45 184.6053 0.6803245 2.024394 1.377245 183.2 186.0

65 263.2081 1.2441620 2.024394 2.518674 260.7 265.7

4.5.1.1. How do I estimate the average response for a particular set of predictor variable values?
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Polymer
Relaxation
Example

Lower 95%
Confidence

Bound

Upper 95%
Confidence

Bound

20 25 5.586307 0.028402 2.000298 0.056812 5.529 5.643

80 25 4.998012 0.012171 2.000298 0.024346 4.974 5.022

20 50 6.960607 0.013711 2.000298 0.027427 6.933 6.988

80 50 5.342600 0.010077 2.000298 0.020158 5.322 5.363

20 75 7.521252 0.012054 2.000298 0.024112 7.497 7.545

80 75 6.220895 0.013307 2.000298 0.026618 6.194 6.248

Interpretation
of Confidence
Intervals

As mentioned above, confidence intervals capture the true value of the regression function with a
user-specified probability, the confidence level, using the estimated regression function and the
associated estimate of the error. Simulation of many sets of data from a process model provides a
good way to obtain a detailed understanding of the probabilistic nature of these intervals. The
advantage of using simulation is that the true model parameters are known, which is never the
case for a real process. This allows direct comparison of how confidence intervals constructed
from a limited amount of data relate to the true values that are being estimated.

The plot below shows 95% confidence intervals computed using 50 independently generated data
sets that follow the same model as the data in the Pressure/Temperature example. Random errors
from a normal distribution with a mean of zero and a known standard deviation are added to each
set of true temperatures and true pressures that lie on a perfect straight line to obtain the simulated
data. Then each data set is used to compute a confidence interval for the average pressure at a
temperature of 65. The dashed reference line marks the true value of the average pressure at a
temperature of 65.

Confidence
Intervals
Computed
from 50 Sets
of Simulated
Data

4.5.1.1. How do I estimate the average response for a particular set of predictor variable values?
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Confidence
Level
Specifies
Long-Run
Interval
Coverage

From the plot it is easy to see that not all of the intervals contain the true value of the average
pressure. Data sets 16, 26, and 39 all produced intervals that did not cover the true value of the
average pressure at a temperature of 65. Sometimes the interval may fail to cover the true value
because the estimated pressure is unusually high or low because of the random errors in the data
set. In other cases, the variability in the data may be underestimated, leading to an interval that is
too short to cover the true value. However, for 47 out of 50, or approximately 95% of the data
sets, the confidence intervals did cover the true average pressure. When the number of data sets
was increased to 5000, confidence intervals computed for 4723, or 94.46%, of the data sets
covered the true average pressure. Finally, when the number of data sets was increased to 10000,
95.12% of the confidence intervals computed covered the true average pressure. Thus, the
simulation shows that although any particular confidence interval might not cover its associated
true value, in repeated experiments this method of constructing intervals produces intervals that
cover the true value at the rate specified by the user as the confidence level. Unfortunately, when
dealing with real processes with unknown parameters, it is impossible to know whether or not a
particular confidence interval does contain the true value. It is nice to know that the error rate can
be controlled, however, and can be set so that it is far more likely than not that each interval
produced does contain the true value.

Interpretation
Summary

To summarize the interpretation of the probabilistic nature of confidence intervals in words: in
independent, repeated experiments,  of the intervals will cover the true values,
given that the assumptions needed for the construction of the intervals hold.

4.5.1.1. How do I estimate the average response for a particular set of predictor variable values?
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4. Process Modeling
4.5. Use and Interpretation of Process Models
4.5.1. What types of predictions can I make using the model?

4.5.1.2.How can I predict the value and and estimate the
uncertainty of a single response?

A Different
Type of
Prediction

In addition to estimating the average value of the response variable for a given combination of preditor
values, as discussed on the previous page, it is also possible to make predictions of the values of new
measurements or observations from a process. Unlike the true average response, a new measurement is
often actually observable in the future. However, there are a variety of different situations in which a
prediction of a measurement value may be more desirable than actually making an observation from
the process.

Example For example, suppose that a concrete supplier needs to supply concrete of a specified measured
strength for a particular contract, but knows that strength varies systematically with the ambient
temperature when the concrete is poured. In order to be sure that the concrete will meet the
specification, prior to pouring, samples from the batch of raw materials can be mixed, poured, and
measured in advance, and the relationship between temperature and strength can be modeled. Then
predictions of the strength across the range of possible field temperatures can be used to ensure the
product is likely to meet the specification. Later, after the concrete is poured (and the temperature is
recorded), the accuracy of the prediction can be verified.

The mechanics of predicting a new measurement value associated with a combination of predictor
variable values are similar to the steps used in the estimation of the average response value. In fact, the
actual estimate of the new measured value is obtained by evaluating the estimated regression function
at the relevant predictor variable values, exactly as is done for the average response. The estimates are
the same for these two quantities because, assuming the model fits the data, the only difference
between the average response and a particular measured response is a random error. Because the error
is random, and has a mean of zero, there is no additional information in the model that can be used to
predict the particular response beyond the information that is available when predicting the average
response.

Uncertainties
Do Differ

As when estimating the average response, a probabilistic interval is used when predicting a new
measurement to provide the information needed to make engineering or scientific conclusions.
However, even though the estimates of the average response and particular response values are the
same, the uncertainties of the two estimates do differ. This is because the uncertainty of the measured
response must include both the uncertainty of the estimated average response and the uncertainty of
the new measurement that could conceptually be observed. This uncertainty must be included if the
interval that will be used to summarize the prediction result is to contain the new measurement with
the specified confidence. To help distinguish the two types of predictions, the probabilistic intervals
for estimation of a new measurement value are called prediction intervals rather than confidence
intervals.

4.5.1.2. How can I predict the value and and estimate the uncertainty of a single response?
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Standard
Deviation of
Prediction

The estimate of the standard deviation of the predicted value, , is obtained as described earlier.

Because the residual standard deviation describes the random variation in each individual
measurement or observation from the process, , the estimate of the residual standard deviation
obtained when fitting the model to the data, is used to account for the extra uncertainty needed to
predict a measurement value. Since the new observation is independent of the data used to fit the
model, the estimates of the two standard deviations are then combined by "root-sum-of-squares" or "in
quadrature", according to standard formulas for computing variances, to obtain the standard deviation
of the prediction of the new measurement, . The formula for  is

.

Coverage
Factor and
Prediction
Interval
Formula

Because both  and  are mathematically nothing more than different scalings of , and coverage

factors from the t distribution only depend on the amount of data available for estimating , the
coverage factors are the same for confidence and prediction intervals. Combining the coverage factor
and the standard deviation of the prediction, the formula for constructing prediction intervals is given
by

.

As with the computation of confidence intervals, some software may provide the total uncertainty for
the prediction interval given the equation above, or may provide the lower and upper prediction
bounds. As suggested before, however, it is a good idea to test the software on an example for which
prediction limits are already available to make sure that the software is computing the expected type of
intervals.

Prediction
Intervals for
the Example
Applications

Computing prediction intervals for the measured pressure in the Pressure/Temperature example, at
temperatures of 25, 45, and 65, and for the measured torque on specimens from the polymer relaxation
example at different times and temperatures, gives the results listed in the tables below. Note: the
number of significant digits shown is larger than would normally be reported. However, as many
significant digits as possible should be carried throughout all calculations and results should only be
rounded for final reporting. If reported numbers may be used in further calculations, then they should
not be rounded even when finally reported. A useful rule for rounding final results that will not be
used for further computation is to round all of the reported values to one or two significant digits in the
total uncertainty, . This is the convention for rounding that has been used in the tables

below.

Pressure /
Temperature
Example

Lower 95%
Prediction

Bound

Upper 95%
Prediction

Bound

25 106.0025 4.299099 1.1976162 4.462795 2.024394 9.034455 97.0 115.0

45 184.6053 4.299099 0.6803245 4.352596 2.024394 8.811369 175.8 193.5

65 263.2081 4.299099 1.2441620 4.475510 2.024394 9.060197 254.1 272.3

4.5.1.2. How can I predict the value and and estimate the uncertainty of a single response?
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Polymer
Relaxation
Example

Lower
95%

Prediction
Bound

Upper
95%

Prediction
Bound

20 25 5.586307 0.04341221 0.02840153 0.05187742 2.000298 0.10377030 5.48 5.69

80 25 4.998012 0.04341221 0.01217109 0.04508609 2.000298 0.09018560 4.91 5.09

20 50 6.960607 0.04341221 0.01371149 0.04552609 2.000298 0.09106573 6.87 7.05

80 50 5.342600 0.04341221 0.01007761 0.04456656 2.000298 0.08914639 5.25 5.43

20 75 7.521252 0.04341221 0.01205401 0.04505462 2.000298 0.09012266 7.43 7.61

80 75 6.220895 0.04341221 0.01330727 0.04540598 2.000298 0.09082549 6.13 6.31

Interpretation
of Prediction
Intervals

Simulation of many sets of data from a process model provides a good way to obtain a detailed
understanding of the probabilistic nature of the prediction intervals. The main advantage of using
simulation is that it allows direct comparison of how prediction intervals constructed from a limited
amount of data relate to the measured values that are being estimated.

The plot below shows 95% prediction intervals computed from 50 independently generated data sets
that follow the same model as the data in the Pressure/Temperature example. Random errors from the
normal distribution with a mean of zero and a known standard deviation are added to each set of true
temperatures and true pressures that lie on a perfect straight line to produce the simulated data. Then
each data set is used to compute a prediction interval for a newly observed pressure at a temperature of
65. The newly observed measurements, observed after making the prediction, are noted with an "X"
for each data set.

Prediction
Intervals
Computed
from 50 Sets
of Simulated
Data

4.5.1.2. How can I predict the value and and estimate the uncertainty of a single response?
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Confidence
Level
Specifies
Long-Run
Interval
Coverage

From the plot it is easy to see that not all of the intervals contain the pressure values observed after the
prediction was made. Data set 4 produced an interval that did not capture the newly observed pressure
measurement at a temperature of 65. However, for 49 out of 50, or not much over 95% of the data sets,
the prediction intervals did capture the measured pressure. When the number of data sets was
increased to 5000, prediction intervals computed for 4734, or 94.68%, of the data sets covered the new
measured values. Finally, when the number of data sets was increased to 10000, 94.92% of the
confidence intervals computed covered the true average pressure. Thus, the simulation shows that
although any particular prediction interval might not cover its associated new measurement, in
repeated experiments this method produces intervals that contain the new measurements at the rate
specified by the user as the confidence level.

Comparison
with
Confidence
Intervals

It is also interesting to compare these results to the analogous results for confidence intervals. Clearly
the most striking difference between the two plots is in the sizes of the uncertainties. The uncertainties
for the prediction intervals are much larger because they must include the standard deviation of a
single new measurement, as well as the standard deviation of the estimated average response value.
The standard deviation of the estimated average response value is lower because a lot of the random
error that is in each measurement cancels out when the data are used to estimate the unknown
parameters in the model. In fact, if as the sample size increases, the limit on the width of a confidence
interval approaches zero while the limit on the width of the prediction interval as the sample size
increases approaches . Understanding the different types of intervals and the bounds on
interval width can be important when planning an experiment that requires a result to have no more
than a specified level of uncertainty to have engineering value.

Interpretation
Summary

To summarize the interpretation of the probabilistic nature of confidence intervals in words: in
independent, repeated experiments,  of the intervals will be expected cover their true
values, given that the assumptions needed for the construction of the intervals hold.

4.5.1.2. How can I predict the value and and estimate the uncertainty of a single response?
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4. Process Modeling
4.5. Use and Interpretation of Process Models

4.5.2.How can I use my process model for
calibration?

Detailed
Calibration
Information

This section details some of the different types of calibrations that can
be made using the various process models whose development was
discussed in previous sections. Computational formulas or algorithms
are given for each different type of calibration, along with simulation
examples showing its probabilistic interpretation. An introduction to
calibration can be found in Section 4.1.3.2. A brief comparison of
calibration versus the other uses of process models is given in Section
4.1.3. Additional information on calibration is available in Section 3 of
Chapter 2: Measurement Process Characterization.

Calibration
Procedures

Single-Use Calibration Intervals1.  

4.5.2. How can I use my process model for calibration?
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4. Process Modeling
4.5. Use and Interpretation of Process Models
4.5.2. How can I use my process model for calibration?

4.5.2.1.Single-Use Calibration Intervals

Calibration As mentioned in Section 1.3, the goal of calibration (also called inverse prediction by some
authors) is to quantitatively convert measurements made on one of two measurement scales to the
other measurement scale. Typically the two scales are not of equal importance, so the conversion
occurs in only one direction. The model fit to the data that relates the two measurement scales and
a new measurement made on the secondary scale provide the means for the conversion. The
results from the fit of the model also allow for computation of the associated uncertainty in the
estimate of the true value on the primary measurement scale. Just as for prediction, estimates of
both the value on the primary scale and its uncertainty are needed in order to make sound
engineering or scientific decisions or conclusions. Approximate confidence intervals for the true
value on the primary measurement scale are typically used to summarize the results
probabilistically. An example, which will help make the calibration process more concrete, is
given in Section 4.1.3.2. using thermocouple calibration data.

Calibration
Estimates

Like prediction estimates, calibration estimates can be computed relatively easily using the
regression equation. They are computed by setting a newly observed value of the response

variable, , which does not have an accompanying value of the predictor variable, equal to the
estimated regression function and solving for the unknown value of the predictor variable.
Depending on the complexity of the regression function, this may be done analytically, but
sometimes numerical methods are required. Fortunatel, the numerical methods needed are not
complicated, and once implemented are often easier to use than analytical methods, even for
simple regression functions.

Pressure /
Temperature
Example In the Pressure/Temperature example, pressure measurements could be used to measure the

temperature of the system by observing a new pressure value, setting it equal to the estimated
regression function,

and solving for the temperature. If a pressure of 178 were measured, the associated temperature
would be estimated to be about 43.

4.5.2.1. Single-Use Calibration Intervals
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Although this is a simple process for the straight-line model, note that even for this simple
regression function the estimate of the temperature is not linear in the parameters of the model.

Numerical
Approach

To set this up to be solved numerically, the equation simply has to be set up in the form

and then the function of temperature ( ) defined by the left-hand side of the equation can be used
as the argument in an arbitrary root-finding function. It is typically necessary to provide the
root-finding software with endpoints on opposite sides of the root. These can be obtained from a
plot of the calibration data and usually do not need to be very precise. In fact, it is often adequate
to simply set the endpoints equal to the range of the calibration data, since calibration functions
tend to be increasing or decreasing functions without local minima or maxima in the range of the
data. For the pressure/temperature data, the endpoints used in the root-finding software could
even be set to values like -5 and 100, broader than the range of the data. This choice of end points
would even allow for extrapolation if new pressure values outside the range of the original
calibration data were observed.

Thermocouple
Calibration
Example

For the more realistic thermocouple calibration example, which is well fit by a LOESS model that
does not require an explicit functional form, the numerical approach must be used to obtain
calibration estimates. The LOESS model is set up identically to the straight-line model for the
numerical solution, using the estimated regression function from the software used to fit the
model.

Again the function of temperature ( ) on the left-hand side of the equation would be used as the

main argument in an arbitrary root-finding function. If for some reason  were not

available in the software used to fit the model, it could always be created manually since LOESS
can ultimately be reduced to a series of weighted least squares fits. Based on the plot of the
thermocouple data, endpoints of 100 and 600 would probably work well for all calibration
estimates. Wider values for the endpoints are not useful here since extrapolations do not make
much sense for this type of local model.

Dataplot
Code

Since the verbal descriptions of these numerical techniques can be hard to follow, these ideas may
become clearer by looking at the actual Dataplot computer code for a quadratic calibration, which
can be found in the Load Cell Calibration case study. If you have downloaded Dataplot and
installed it, you can run the computations yourself.

4.5.2.1. Single-Use Calibration Intervals
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Calibration
Uncertainties

As in prediction, the data used to fit the process model can also be used to determine the
uncertainty of the calibration. Both the variation in the average response and in the new
observation of the response value need to be accounted for. This is similar to the uncertainty for
the prediction of a new measurement. In fact, approximate calibration confidence intervals are
actually computed by solving for the predictor variable value in the formulas for prediction
interval end points [Graybill (1976)]. Because , the standard deviation of the prediction of a

measured response, is a function of the predictor variable, like the regression function itself, the
inversion of the prediction interval endpoints is usually messy. However, like the inversion of the
regression function to obtain estimates of the predictor variable, it can be easily solved
numerically.

The equations to be solved to obtain approximate lower and upper calibration confidence limits,
are, respectively,

,

and

,

with  denoting the estimated standard deviation of the prediction of a new measurement.

 and  are both denoted as functions of the predictor variable, , here to make it clear

that those terms must be written as functions of the unknown value of the predictor variable. The
left-hand sides of the two equations above are used as arguments in the root-finding software, just

as the expression  is used when computing the estimate of the predictor variable.

Confidence
Intervals for
the Example
Applications

Confidence intervals for the true predictor variable values associated with the observed values of
pressure (178) and voltage (1522) are given in the table below for the Pressure/Temperature
example and the Thermocouple Calibration example, respectively. The approximate confidence
limits and estimated values of the predictor variables were obtained numerically in both cases.

Example

Lower 95%
Confidence

Bound

Estimated
Predictor
Variable

Value

Upper 95%
Confidence

Bound

Pressure/Temperature 178 41.07564 43.31925 45.56146

Thermocouple Calibration 1522 553.0026 553.0187 553.0349

4.5.2.1. Single-Use Calibration Intervals
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Interpretation
of Calibration
Intervals

Although calibration confidence intervals have some unique features, viewed as confidence
intervals, their interpretation is essentially analogous to that of confidence intervals for the true
average response. Namely, in repeated calibration experiments, when one calibration is made for
each set of data used to fit a calibration function and each single new observation of the response,

then approximately  of the intervals computed as described above will capture
the true value of the predictor variable, which is a measurement on the primary measurement
scale.

The plot below shows 95% confidence intervals computed using 50 independently generated data
sets that follow the same model as the data in the Thermocouple calibration example. Random
errors from a normal distribution with a mean of zero and a known standard deviation are added
to each set of true temperatures and true voltages that follow a model that can be
well-approximated using LOESS to produce the simulated data. Then each data set and a newly
observed voltage measurement are used to compute a confidence interval for the true temperature
that produced the observed voltage. The dashed reference line marks the true temperature under
which the thermocouple measurements were made. It is easy to see that most of the intervals do
contain the true value. In 47 out of 50 data sets, or approximately 95%, the confidence intervals
covered the true temperature. When the number of data sets was increased to 5000, the
confidence intervals computed for 4657, or 93.14%, of the data sets covered the true temperature.
Finally, when the number of data sets was increased to 10000, 93.53% of the confidence intervals
computed covered the true temperature. While these intervals do not exactly attain their stated
coverage, as the confidence intervals for the average response do, the coverage is reasonably
close to the specified level and is probably adequate from a practical point of view.

Confidence
Intervals
Computed
from 50 Sets
of Simulated
Data

4.5.2.1. Single-Use Calibration Intervals
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4. Process Modeling
4.5. Use and Interpretation of Process Models

4.5.3.How can I optimize my process using
the process model?

Detailed
Information
on Process
Optimization

Process optimization using models fit to data collected using response
surface designs is primarily covered in Section 5.5.3 of Chapter 5:
Process Improvement. In that section detailed information is given on
how to determine the correct process inputs to hit a target output value
or to maximize or minimize process output. Some background on the
use of process models for optimization can be found in Section 4.1.3.3
of this chapter, however, and information on the basic analysis of data
from optimization experiments is covered along with that of other types
of models in Section 4.1 through Section 4.4 of this chapter.

Contents of
Chapter 5
Section 5.5.3.

Optimizing a Process

Single response case

Path of steepest ascent1.  

Confidence region for search path2.  

Choosing the step length3.  

Optimization when there is adequate quadratic fit4.  

Effect of sampling error on optimal solution5.  

Optimization subject to experimental region
constraints

6.  

1.  

Multiple response case

Path of steepest ascent1.  

Desirability function approach2.  

Mathematical programming approach3.  

2.  

1.  

4.5.3. How can I optimize my process using the process model?
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4. Process Modeling

4.6.Case Studies in Process Modeling

Detailed,
Realistic
Examples

The general points of the first five sections are illustrated in this section
using data from physical science and engineering applications. Each
example is presented step-by-step in the text and is often cross-linked
with the relevant sections of the chapter describing the analysis in
general. Each analysis can also be repeated using a worksheet linked to
the appropriate Dataplot macros. The worksheet is also linked to the
step-by-step analysis presented in the text for easy reference.

Contents:
Section 6

Load Cell Calibration

Background & Data1.  

Selection of Initial Model2.  

Model Fitting - Initial Model3.  

Graphical Residual Analysis - Initial Model4.  

Interpretation of Numerical Output - Initial Model5.  

Model Refinement6.  

Model Fitting - Model #27.  

Graphical Residual Analysis - Model #28.  

Interpretation of Numerical Output - Model #29.  

Use of the Model for Calibration10.  

Work this Example Yourself11.  

1.  

Alaska Pipeline Ultrasonic Calibration

Background and Data1.  

Check for Batch Effect2.  

Initial Linear Fit3.  

Transformations to Improve Fit and Equalize Variances4.  

Weighting to Improve Fit5.  

Compare the Fits6.  

Work This Example Yourself7.  

2.  

4.6. Case Studies in Process Modeling
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Ultrasonic Reference Block Study

Background and Data1.  

Initial Non-Linear Fit2.  

Transformations to Improve Fit3.  

Weighting to Improve Fit4.  

Compare the Fits5.  

Work This Example Yourself6.  

3.  

Thermal Expansion of Copper Case Study

Background and Data1.  

Exact Rational Models2.  

Initial Plot of Data3.  

Fit Quadratic/Quadratic Model4.  

Fit Cubic/Cubic Model5.  

Work This Example Yourself6.  

4.  

4.6. Case Studies in Process Modeling
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4. Process Modeling
4.6. Case Studies in Process Modeling

4.6.1.Load Cell Calibration

Quadratic
Calibration

This example illustrates the construction of a linear regression model for
load cell data that relates a known load applied to a load cell to the
deflection of the cell. The model is then used to calibrate future cell
readings associated with loads of unknown magnitude.

Background & Data1.  

Selection of Initial Model2.  

Model Fitting - Initial Model3.  

Graphical Residual Analysis - Initial Model4.  

Interpretation of Numerical Output - Initial Model5.  

Model Refinement6.  

Model Fitting - Model #27.  

Graphical Residual Analysis - Model #28.  

Interpretation of Numerical Output - Model #29.  

Use of the Model for Calibration10.  

Work This Example Yourself11.  

4.6.1. Load Cell Calibration
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.1.Background & Data

Description
of Data
Collection

The data collected in the calibration experiment consisted of a known
load, applied to the load cell, and the corresponding deflection of the
cell from its nominal position. Forty measurements were made over a
range of loads from 150,000 to 3,000,000 units. The data were collected
in two sets in order of increasing load. The systematic run order makes
it difficult to determine whether or not there was any drift in the load
cell or measuring equipment over time. Assuming there is no drift,
however, the experiment should provide a good description of the
relationship between the load applied to the cell and its response.

Resulting
Data  Deflection       Load

-------------------------
 0.11019        150000
 0.21956        300000
 0.32949        450000
 0.43899        600000
 0.54803        750000
 0.65694        900000
 0.76562       1050000
 0.87487       1200000
 0.98292       1350000
 1.09146       1500000
 1.20001       1650000
 1.30822       1800000
 1.41599       1950000
 1.52399       2100000
 1.63194       2250000
 1.73947       2400000
 1.84646       2550000
 1.95392       2700000
 2.06128       2850000
 2.16844       3000000
 0.11052        150000

4.6.1.1. Background & Data
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 0.22018        300000
 0.32939        450000
 0.43886        600000
 0.54798        750000
 0.65739        900000
 0.76596       1050000
 0.87474       1200000
 0.98300       1350000
 1.09150       1500000
 1.20004       1650000
 1.30818       1800000
 1.41613       1950000
 1.52408       2100000
 1.63159       2250000
 1.73965       2400000
 1.84696       2550000
 1.95445       2700000
 2.06177       2850000
 2.16829       3000000

4.6.1.1. Background & Data
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.2.Selection of Initial Model

Start
Simple

The first step in analyzing the data is to select a candidate model. In the case of a measurement
system like this one, a fairly simple function should describe the relationship between the load
and the response of the load cell. One of the hallmarks of an effective measurement system is a
straightforward link between the instrumental response and the property being quantified.

Plot the
Data

Plotting the data indicates that the hypothesized, simple relationship between load and deflection
is reasonable. The plot below shows the data. It indicates that a straight-line model is likely to fit
the data. It does not indicate any other problems, such as presence of outliers or nonconstant
standard deviation of the response.

Initial
Model:
Straight
Line

4.6.1.2. Selection of Initial Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.3.Model Fitting - Initial Model

Least
Squares
Estimation

Using software for computing least squares parameter estimates, the straight-line
model,

is easily fit to the data. The computer output from this process is shown below.
Before trying to interpret all of the numerical output, however, it is critical to check
that the assumptions underlying the parameter estimation are met reasonably well.
The next two sections show how the underlying assumptions about the data and
model are checked using graphical and numerical methods.

Dataplot
Output LEAST SQUARES POLYNOMIAL FIT

SAMPLE SIZE N       =       40
DEGREE              =        1
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.2147264895D-03
REPLICATION DEGREES OF FREEDOM =          20
NUMBER OF DISTINCT SUBSETS     =          20

      PARAMETER ESTIMATES   (APPROX. ST. DEV.)   T VALUE
1 A0     0.614969E-02          (0.7132E-03)        8.6
2 A1     0.722103E-06          (0.3969E-09)      0.18E+04

RESIDUAL    STANDARD DEVIATION =         0.0021712694
RESIDUAL    DEGREES OF FREEDOM =          38
REPLICATION STANDARD DEVIATION =         0.0002147265
REPLICATION DEGREES OF FREEDOM =          20
LACK OF FIT F RATIO = 214.7464 = THE 100.0000% POINT OF
THE F DISTRIBUTION WITH 18 AND  20 DEGREES OF FREEDOM

4.6.1.3. Model Fitting - Initial Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.4.Graphical Residual Analysis - Initial Model

Potentially
Misleading
Plot

After fitting a straight line to the data, many people like to check the quality of the fit with a plot
of the data overlaid with the estimated regression function. The plot below shows this for the load
cell data. Based on this plot, there is no clear evidence of any deficiencies in the model.

Avoiding the
Trap

This type of overlaid plot is useful for showing the relationship between the data and the
predicted values from the regression function; however, it can obscure important detail about the
model. Plots of the residuals, on the other hand, show this detail well, and should be used to
check the quality of the fit. Graphical analysis of the residuals is the single most important
technique for determining the need for model refinement or for verifying that the underlying
assumptions of the analysis are met.

4.6.1.4. Graphical Residual Analysis - Initial Model
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 Residual plots of interest for this model include:

residuals versus the predictor variable1.  

residuals versus the regression function values2.  

residual run order plot3.  

residual lag plot4.  

histogram of the residuals5.  

normal probability plot6.  

 A plot of the residuals versus load is shown below.

Hidden
Structure
Revealed

Scale of Plot
Key

The structure in the relationship between the residuals and the load clearly indicates that the
functional part of the model is misspecified. The ability of the residual plot to clearly show this
problem, while the plot of the data did not show it, is due to the difference in scale between the
plots. The curvature in the response is much smaller than the linear trend. Therefore the curvature
is hidden when the plot is viewed in the scale of the data. When the linear trend is subtracted,
however, as it is in the residual plot, the curvature stands out.

The plot of the residuals versus the predicted deflection values shows essentially the same
structure as the last plot of the residuals versus load. For more complicated models, however, this
plot can reveal problems that are not clear from plots of the residuals versus the predictor
variables.

4.6.1.4. Graphical Residual Analysis - Initial Model
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Similar
Residual
Structure

Additional
Diagnostic
Plots

Further residual diagnostic plots are shown below. The plots include a run order plot, a lag plot, a
histogram, and a normal probability plot. Shown in a two-by-two array like this, these plots
comprise a 4-plot of the data that is very useful for checking the assumptions underlying the
model.

Dataplot
4plot

4.6.1.4. Graphical Residual Analysis - Initial Model
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Interpretation
of Plots

The structure evident in these residual plots also indicates potential problems with different
aspects of the model. Under ideal circumstances, the plots in the top row would not show any
systematic structure in the residuals. The histogram would have a symmetric, bell shape, and the
normal probability plot would be a straight line. Taken at face value, the structure seen here
indicates a time trend in the data, autocorrelation of the measurements, and a non-normal
distribution of the residuals.

 It is likely, however, that these plots will look fine once the function describing the systematic
relationship between load and deflection has been corrected. Problems with one aspect of a
regression model often show up in more than one type of residual plot. Thus there is currently no
clear evidence from the 4-plot that the distribution of the residuals from an appropriate model
would be non-normal, or that there would be autocorrelation in the process, etc. If the 4-plot still
indicates these problems after the functional part of the model has been fixed, however, the
possibility that the problems are real would need to be addressed.

4.6.1.4. Graphical Residual Analysis - Initial Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.5. Interpretation of Numerical Output - Initial
Model

Lack-of-Fit
Statistic
Interpretable

The fact that the residual plots clearly indicate a problem with the specification of
the function describing the systematic variation in the data means that there is little
point in looking at most of the numerical results from the fit. However, since there
are replicate measurements in the data, the lack-of-fit test can also be used as part of
the model validation. The numerical results of the fit from Dataplot are list below.

Dataplot
Output LEAST SQUARES POLYNOMIAL FIT

SAMPLE SIZE N       =       40
DEGREE              =        1
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.2147264895D-03
REPLICATION DEGREES OF FREEDOM =          20
NUMBER OF DISTINCT SUBSETS     =          20
  
  
       PARAMETER ESTIMATES (APPROX. ST. DEV.)    T VALUE
1  A0     0.614969E-02        (0.7132E-03)         8.6
2  A1     0.722103E-06        (0.3969E-09)       0.18E+04
  
RESIDUAL    STANDARD DEVIATION =         0.0021712694
RESIDUAL    DEGREES OF FREEDOM =          38
REPLICATION STANDARD DEVIATION =         0.0002147265
REPLICATION DEGREES OF FREEDOM =          20
LACK OF FIT F RATIO = 214.7464 = THE 100.0000% POINT OF
THE F DISTRIBUTION WITH 18 AND 20 DEGREES OF FREEDOM

Function
Incorrect

The lack-of-fit test statistic is 214.7534, which also clearly indicates that the
functional part of the model is not right. The 95% cut-off point for the test is 2.15.
Any value greater than that indicates that the hypothesis of a straight-line model for
this data should be rejected.

4.6.1.5. Interpretation of Numerical Output - Initial Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.6.Model Refinement

After ruling out the straight line model for these data, the next task is to decide what function
would better describe the systematic variation in the data.

Reviewing the plots of the residuals versus all potential predictor variables can offer insight into
selection of a new model, just as a plot of the data can aid in selection of an initial model.
Iterating through a series of models selected in this way will often lead to a function that
describes the data well.

Residual
Structure
Indicates
Quadratic

 The horseshoe-shaped structure in the plot of the residuals versus load suggests that a quadratic
polynomial might fit the data well. Since that is also the simplest polynomial model, after a
straight line, it is the next function to consider.

4.6.1.6. Model Refinement
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.7.Model Fitting - Model #2

New
Function

Based on the residual plots, the function used to describe the data should be the
quadratic polynomial:

 The computer output from this process is shown below. As for the straight-line
model, however, it is important to check that the assumptions underlying the
parameter estimation are met before trying to interpret the numerical output. The
steps used to complete the graphical residual analysis are essentially identical to
those used for the previous model.

Dataplot
Output
for
Quadratic
Fit

LEAST SQUARES POLYNOMIAL FIT
SAMPLE SIZE N       =       40
DEGREE              =        2
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.2147264895D-03
REPLICATION DEGREES OF FREEDOM =          20
NUMBER OF DISTINCT SUBSETS     =          20

       PARAMETER ESTIMATES  (APPROX. ST. DEV.)  T VALUE
1  A0     0.673618E-03         (0.1079E-03)       6.2
2  A1     0.732059E-06         (0.1578E-09)     0.46E+04
3  A2    -0.316081E-14         (0.4867E-16)       -65.

RESIDUAL    STANDARD DEVIATION =         0.0002051768
RESIDUAL    DEGREES OF FREEDOM =          37
REPLICATION STANDARD DEVIATION =         0.0002147265
REPLICATION DEGREES OF FREEDOM =          20
LACK OF FIT F RATIO = 0.8107 = THE 33.3818% POINT OF
THE F DISTRIBUTION WITH 17 AND 20 DEGREES OF FREEDOM

4.6.1.7. Model Fitting - Model #2
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.8.Graphical Residual Analysis - Model #2

The data with a quadratic estimated regression function and the residual plots are shown below.

Compare
to Initial
Model

 This plot is almost identical to the analogous plot for the straight-line model, again illustrating the
lack of detail in the plot due to the scale. In this case, however, the residual plots will show that
the model does fit well.

4.6.1.8. Graphical Residual Analysis - Model #2
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Plot
Indicates
Model
Fits Well

 The residuals randomly scattered around zero, indicate that the quadratic is a good function to
describe these data. There is also no indication of non-constant variability over the range of loads.

Plot Also
Indicates
Model
OK

4.6.1.8. Graphical Residual Analysis - Model #2
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This plot also looks good. There is no evidence of changes in variability across the range of
deflection.

No
Problems
Indicated

4.6.1.8. Graphical Residual Analysis - Model #2
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 All of these residual plots have become satisfactory by simply by changing the functional form of
the model. There is no evidence in the run order plot of any time dependence in the measurement
process, and the lag plot suggests that the errors are independent. The histogram and normal
probability plot suggest that the random errors affecting the measurement process are normally
distributed.

4.6.1.8. Graphical Residual Analysis - Model #2
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.9. Interpretation of Numerical Output -
Model #2

Quadratic
Confirmed

The numerical results from the fit are shown below. For the quadratic model, the
lack-of-fit test statistic is 0.8107. The fact that the test statistic is approximately one
indicates there is no evidence to support a claim that the functional part of the model
does not fit the data. The test statistic would have had to have been greater than 2.17
to reject the hypothesis that the quadratic model is correct.

Dataplot
Output

 
LEAST SQUARES POLYNOMIAL FIT
SAMPLE SIZE N       =       40
DEGREE              =        2
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.2147264895D-03
REPLICATION DEGREES OF FREEDOM =          20
NUMBER OF DISTINCT SUBSETS     =          20

       PARAMETER ESTIMATES  (APPROX. ST. DEV.)   T VALUE
1  A0     0.673618E-03         (0.1079E-03)        6.2
2  A1     0.732059E-06         (0.1578E-09)      0.46E+04
3  A2    -0.316081E-14         (0.4867E-16)        -65.

RESIDUAL    STANDARD DEVIATION =         0.0002051768
RESIDUAL    DEGREES OF FREEDOM =          37
REPLICATION STANDARD DEVIATION =         0.0002147265
REPLICATION DEGREES OF FREEDOM =          20
LACK OF FIT F RATIO = 0.8107 = THE 33.3818% POINT OF
THE F DISTRIBUTION WITH 17 AND 20 DEGREES OF FREEDOM

Regression
Function

From the numerical output, we can also find the regression function that will be used
for the calibration. The function, with its estimated parameters, is

4.6.1.9. Interpretation of Numerical Output - Model #2
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 All of the parameters are significantly different from zero, as indicated by the
associated t statistics. The 97.5% cut-off for the t distribution with 37 degrees of
freedom is 2.026. Since all of the t values are well above this cut-off, we can safely
conclude that none of the estimated parameters is equal to zero.

4.6.1.9. Interpretation of Numerical Output - Model #2
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.10.Use of the Model for Calibration

Using the
Model

Now that a good model has been found for these data, it can be used to estimate load values for
new measurements of deflection. For example, suppose a new deflection value of 1.239722 is
observed. The regression function can be solved for load to determine an estimated load value
without having to observe it directly. The plot below illustrates the calibration process
graphically.

Calibration

Finding
Bounds on
the Load

From the plot, it is clear that the load that produced the deflection of 1.239722 should be about
1,750,000, and would certainly lie between 1,500,000 and 2,000,000. This rough estimate of the
possible load range will be used to compute the load estimate numerically.

4.6.1.10. Use of the Model for Calibration
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Obtaining
a
Numerical
Calibration
Value

To solve for the numerical estimate of the load associated with the observed deflection, the
observed value substituting in the regression function and the equation is solved for load.
Typically this will be done using a root finding procedure in a statistical or mathematical
package. That is one reason why rough bounds on the value of the load to be estimated are
needed.

Solving the
Regression
Equation

Which
Solution?

Even though the rough estimate of the load associated with an observed deflection is not
necessary to solve the equation, the other reason is to determine which solution to the equation is
correct, if there are multiple solutions. The quadratic calibration equation, in fact, has two
solutions. As we saw from the plot on the previous page, however, there is really no confusion
over which root of the quadratic function is the correct load. Essentially, the load value must be
between 150,000 and 3,000,000 for this problem. The other root of the regression equation and
the new deflection value correspond to a load of over 229,899,600. Looking at the data at hand, it
is safe to assume that a load of 229,899,600 would yield a deflection much greater than 1.24.

+/- What? The final step in the calibration process, after determining the estimated load associated with the
observed deflection, is to compute an uncertainty or confidence interval for the load. A single-use
95% confidence interval for the load, is obtained by inverting the formulas for the upper and
lower bounds of a 95% prediction interval for a new deflection value. These inequalities, shown
below, are usually solved numerically, just as the calibration equation was, to find the end points
of the confidence interval. For some models, including this one, the solution could actually be
obtained algebraically, but it is easier to let the computer do the work using a generic algorithm.

The three terms on the right-hand side of each inequality are the regression function (  ), a
t-distribution multiplier, and the standard deviation of a new measurement from the process ( ).
Regression software often provides convenient methods for computing these quantities for
arbitrary values of the predictor variables, which can make computation of the confidence interval
end points easier. Although this interval is not symmetric mathematically, the asymmetry is very
small, so for all practical purposes, the interval can be written as

4.6.1.10. Use of the Model for Calibration
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if desired.

4.6.1.10. Use of the Model for Calibration
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.11.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this
case study yourself. Each step may use results from
previous steps, so please be patient. Wait until the
software verifies that the current step is complete
before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 2 columns of numbers 
    into Dataplot, variables Deflection 
    and Load.

2. Fit and validate initial model.

   1. Plot deflection vs. load.

   2. Fit a straight-line model 
      to the data.

   3. Plot the predicted values 

 1. Based on the plot, a straight-line 
    model should describe the data well.

 2. The straight-line fit was carried 
    out.  Before trying to interpret the
    numerical output, do a graphical 
    residual analysis.

 3. The superposition of the predicted 

4.6.1.11. Work This Example Yourself
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      from the model and the 
      data on the same plot.

   4. Plot the residuals vs.
      load.

   5. Plot the residuals vs. the
      predicted values.

   6. Make a 4-plot of the 
      residuals.

   7. Refer to the numerical output
      from the fit.

    and observed values suggests the 
    model is ok.

 4. The residuals are not random, 
    indicating that a straight line
    is not adequate.

 5. This plot echos the information in 
    the previous plot.

 6. All four plots indicate problems 
    with the model.

 7. The large lack-of-fit F statistic 
    (>214) confirms that the straight-
    line model is inadequate.

3. Fit and validate refined model.

   1. Refer to the plot of the 
      residuals vs. load.

   2. Fit a quadratic model to 
      the data.

   3. Plot the predicted values 
      from the model and the
      data on the same plot.

   4. Plot the residuals vs. load.

   5. Plot the residuals vs. the
      predicted values.

   6. Do a 4-plot of the 
      residuals.

   7. Refer to the numerical 
      output from the fit.

 1. The structure in the plot indicates 
    a quadratic model would better 
    describe the data.

 2. The quadratic fit was carried out.  
    Remember to do the graphical 
    residual analysis before trying to 
    interpret the numerical output.

 3. The superposition of the predicted 
    and observed values again suggests 
    the model is ok.

 4. The residuals appear random, 
    suggesting the quadratic model is ok.

 5. The plot of the residuals vs. the 
    predicted values also suggests the 
    quadratic model is ok.

 6. None of these plots indicates a 
    problem with the model.

 7. The small lack-of-fit F statistic 
    (<1) confirms that the quadratic 
    model fits the data.

4.6.1.11. Work This Example Yourself
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4. Use the model to make a calibrated
   measurement. 

   1. Observe a new deflection 
      value.

   2. Determine the associated 
      load.

   3. Compute the uncertainty of
      the load estimate.

 1. The new deflection is associated with
    an unobserved and unknown load.

 2. Solving the calibration equation 
    yields the load value without having
    to observe it.

 3. Computing a confidence interval for 
    the load value lets us judge the 
    range of plausible load values, 
    since we know measurement noise 
    affects the process.

4.6.1.11. Work This Example Yourself
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4. Process Modeling
4.6. Case Studies in Process Modeling

4.6.2.Alaska Pipeline

Non-Homogeneous
Variances

This example illustrates the construction of a linear regression
model for Alaska pipeline ultrasonic calibration data. This case
study demonstrates the use of transformations and weighted fits to
deal with the violation of the assumption of constant standard
deviations for the random errors. This assumption is also called
homogeneous variances for the errors.

Background and Data1.  

Check for a Batch Effect2.  

Fit Initial Model3.  

Transformations to Improve Fit and Equalize Variances4.  

Weighting to Improve Fit5.  

Compare the Fits6.  

Work This Example Yourself7.  

4.6.2. Alaska Pipeline
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.1.Background and Data

Description
of Data
Collection

The Alaska pipeline data consists of in-field ultrasonic measurements of
the depths of defects in the Alaska pipeline. The depth of the defects
were then re-measured in the laboratory. These measurements were
performed in six different batches.

The data were analyzed to calibrate the bias of the field measurements
relative to the laboratory measurements. In this analysis, the field
measurement is the response variable and the laboratory measurement is
the predictor variable.

These data were provided by Harry Berger, who was at the time a
scientist for the Office of the Director of the Institute of Materials
Research (now the Materials Science and Engineering Laboratory) of
NIST. These data were used for a study conducted for the Materials
Transportation Bureau of the U.S. Department of Transportation.

Resulting
Data   Field     Lab        

 Defect   Defect       
  Size     Size   Batch
-----------------------
   18      20.2     1
   38      56.0     1
   15      12.5     1
   20      21.2     1
   18      15.5     1
   36      39.0     1
   20      21.0     1
   43      38.2     1
   45      55.6     1
   65      81.9     1
   43      39.5     1
   38      56.4     1
   33      40.5     1

4.6.2.1. Background and Data
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   10      14.3     1
   50      81.5     1
   10      13.7     1
   50      81.5     1
   15      20.5     1
   53      56.0     1
   60      80.7     2
   18      20.0     2
   38      56.5     2
   15      12.1     2
   20      19.6     2
   18      15.5     2
   36      38.8     2
   20      19.5     2
   43      38.0     2
   45      55.0     2
   65      80.0     2
   43      38.5     2
   38      55.8     2
   33      38.8     2
   10      12.5     2
   50      80.4     2
   10      12.7     2
   50      80.9     2
   15      20.5     2
   53      55.0     2
   15      19.0     3
   37      55.5     3
   15      12.3     3
   18      18.4     3
   11      11.5     3
   35      38.0     3
   20      18.5     3
   40      38.0     3
   50      55.3     3
   36      38.7     3
   50      54.5     3
   38      38.0     3
   10      12.0     3
   75      81.7     3
   10      11.5     3
   85      80.0     3
   13      18.3     3
   50      55.3     3
   58      80.2     3
   58      80.7     3

4.6.2.1. Background and Data
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   48      55.8     4
   12      15.0     4
   63      81.0     4
   10      12.0     4
   63      81.4     4
   13      12.5     4
   28      38.2     4
   35      54.2     4
   63      79.3     4
   13      18.2     4
   45      55.5     4
    9      11.4     4
   20      19.5     4
   18      15.5     4
   35      37.5     4
   20      19.5     4
   38      37.5     4
   50      55.5     4
   70      80.0     4
   40      37.5     4
   21      15.5     5
   19      23.7     5
   10       9.8     5
   33      40.8     5
   16      17.5     5
    5       4.3     5
   32      36.5     5
   23      26.3     5
   30      30.4     5
   45      50.2     5
   33      30.1     5
   25      25.5     5
   12      13.8     5
   53      58.9     5
   36      40.0     5
    5       6.0     5
   63      72.5     5
   43      38.8     5
   25      19.4     5
   73      81.5     5
   45      77.4     5
   52      54.6     6
    9       6.8     6
   30      32.6     6
   22      19.8     6
   56      58.8     6

4.6.2.1. Background and Data
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   15      12.9     6
   45      49.0     6

4.6.2.1. Background and Data
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.2.Check for Batch Effect

Plot of Raw
Data

As with any regression problem, it is always a good idea to plot the raw data first. The following
is a scatter plot of the raw data.

This scatter plot shows that a straight line fit is a good initial candidate model for these data.

Plot by Batch These data were collected in six distinct batches. The first step in the analysis is to determine if
there is a batch effect.

In this case, the scientist was not inherently interested in the batch. That is, batch is a nuisance
factor and, if reasonable, we would like to analyze the data as if it came from a single batch.
However, we need to know that this is, in fact, a reasonable assumption to make.

4.6.2.2. Check for Batch Effect
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Conditional
Plot

We first generate a conditional plot where we condition on the batch.

This conditional plot shows a scatter plot for each of the six batches on a single page. Each of
these plots shows a similar pattern.

Linear
Correlation
and Related
Plots

We can follow up the conditional plot with a linear correlation plot, a linear intercept plot, a
linear slope plot, and a linear residual standard deviation plot. These four plots show the
correlation, the intercept and slope from a linear fit, and the residual standard deviation for linear
fits applied to each batch. These plots show how a linear fit performs across the six batches.

4.6.2.2. Check for Batch Effect
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The linear correlation plot (upper left), which shows the correlation between field and lab defect
sizes versus the batch, indicates that batch six has a somewhat stronger linear relationship
between the measurements than the other batches do. This is also reflected in the significantly
lower residual standard deviation for batch six shown in the residual standard deviation plot
(lower right), which shows the residual standard deviation versus batch. The slopes all lie within
a range of 0.6 to 0.9 in the linear slope plot (lower left) and the intercepts all lie between 2 and 8
in the linear intercept plot (upper right).

Treat BATCH
as
Homogeneous

These summary plots, in conjunction with the conditional plot above, show that treating the data
as a single batch is a reasonable assumption to make. None of the batches behaves badly
compared to the others and none of the batches requires a significantly different fit from the
others.

These two plots provide a good pair. The plot of the fit statistics allows quick and convenient
comparisons of the overall fits. However, the conditional plot can reveal details that may be
hidden in the summary plots. For example, we can more readily determine the existence of
clusters of points and outliers, curvature in the data, and other similar features.

Based on these plots we will ignore the BATCH variable for the remaining analysis.

4.6.2.2. Check for Batch Effect
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.3. Initial Linear Fit

Linear Fit Output Based on the initial plot of the data, we first fit a straight-line model to the data.

The following fit output was generated by Dataplot (it has been edited slightly for display).

  
 LEAST SQUARES MULTILINEAR FIT
 SAMPLE SIZE N       =      107
 NUMBER OF VARIABLES =        1
 REPLICATION CASE
 REPLICATION STANDARD DEVIATION =     0.6112687111D+01
 REPLICATION DEGREES OF FREEDOM =          29
 NUMBER OF DISTINCT SUBSETS     =          78
  
  
       PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
1  A0                   4.99368       ( 1.126    )         
4.4
2  A1       LAB        0.731111       (0.2455E-01)         
30.
  
RESIDUAL    STANDARD DEVIATION =         6.0809240341
RESIDUAL    DEGREES OF FREEDOM =         105
REPLICATION STANDARD DEVIATION =         6.1126871109
REPLICATION DEGREES OF FREEDOM =          29
LACK OF FIT F RATIO =       0.9857
  = THE  46.3056% POINT OF THE
F DISTRIBUTION WITH     76 AND     29 DEGREES OF FREEDOM

    

The intercept parameter is estimated to be 4.99 and the slope parameter is estimated to be 0.73.
Both parameters are statistically significant.

4.6.2.3. Initial Linear Fit
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6-Plot for Model
Validation

When there is a single independent variable, the 6-plot provides a convenient method for initial
model validation.

The basic assumptions for regression models are that the errors are random observations from a
normal distribution with mean of zero and constant standard deviation (or variance).

The plots on the first row show that the residuals have increasing variance as the value of the
independent variable (lab) increases in value. This indicates that the assumption of constant
standard deviation, or homogeneity of variances, is violated.

In order to see this more clearly, we will generate full- size plots of the predicted values with the
data and the residuals against the independent variable.

Plot of Predicted
Values with
Original Data

4.6.2.3. Initial Linear Fit
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This plot shows more clearly that the assumption of homogeneous variances for the errors may be
violated.

Plot of Residual
Values Against
Independent
Variable

4.6.2.3. Initial Linear Fit
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This plot also shows more clearly that the assumption of homogeneous variances is violated. This
assumption, along with the assumption of constant location, are typically easiest to see on this
plot.

Non-Homogeneous
Variances

Because the last plot shows that the variances may differ more that slightly, we will address this
issue by transforming the data or using weighted least squares.

4.6.2.3. Initial Linear Fit
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.4.Transformations to Improve Fit and Equalize
Variances

Transformations In regression modeling, we often apply transformations to achieve the following two goals:

to satisfy the homogeneity of variances assumption for the errors.1.  

to linearize the fit as much as possible.2.  

Some care and judgment is required in that these two goals can conflict. We generally try to
achieve homogeneous variances first and then address the issue of trying to linearize the fit.

Plot of Common
Transformations
to Obtain
Homogeneous
Variances

The first step is to try transforming the response variable to find a tranformation that will equalize
the variances. In practice, the square root, ln, and reciprocal transformations often work well for
this purpose. We will try these first.

In examining these plots, we are looking for the plot that shows the most constant variability
across the horizontal range of the plot.

4.6.2.4. Transformations to Improve Fit and Equalize Variances
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This plot indicates that the ln transformation is a good candidate model for achieving the most
homogeneous variances.

Plot of Common
Transformations
to Linearize the
Fit

One problem with applying the above transformation is that the plot indicates that a straight-line
fit will no longer be an adequate model for the data. We address this problem by attempting to
find a transformation of the predictor variable that will result in the most linear fit. In practice, the
square root, ln, and reciprocal transformations often work well for this purpose. We will try these
first.

This plot shows that the ln transformation of the predictor variable is a good candidate model.

Box-Cox
Linearity Plot

The previous step can be approached more formally by the use of the Box-Cox linearity plot. The
 value on the x axis corresponding to the maximum correlation value on the y axis indicates the

power transformation that yields the most linear fit.

4.6.2.4. Transformations to Improve Fit and Equalize Variances
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This plot indicates that a value of -0.1 achieves the most linear fit.

In practice, for ease of interpretation, we often prefer to use a common transformation, such as
the ln or square root, rather than the value that yields the mathematical maximum. However, the
Box-Cox linearity plot still indicates whether our choice is a reasonable one. That is, we might
sacrifice a small amount of linearity in the fit to have a simpler model.

In this case, a value of 0.0 would indicate a ln transformation. Although the optimal value from
the plot is -0.1, the plot indicates that any value between -0.2 and 0.2 will yield fairly similar
results. For that reason, we choose to stick with the common ln transformation.

ln-ln Fit Based on the above plots, we choose to fit a ln-ln model. Dataplot generated the following output
for this model (it is edited slightly for display).

  
LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N       =      107
NUMBER OF VARIABLES =        1
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.1369758099D+00
REPLICATION DEGREES OF FREEDOM =          29
NUMBER OF DISTINCT SUBSETS     =          78
  
  
       PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
1  A0                  0.281384       (0.8093E-01)         

4.6.2.4. Transformations to Improve Fit and Equalize Variances
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3.5
2  A1       XTEMP      0.885175       (0.2302E-01)         
38.
  
RESIDUAL    STANDARD DEVIATION =         0.1682604253
RESIDUAL    DEGREES OF FREEDOM =         105
REPLICATION STANDARD DEVIATION =         0.1369758099
REPLICATION DEGREES OF FREEDOM =          29
LACK OF FIT F RATIO =       1.7032 = THE  94.4923% POINT OF
THE
F DISTRIBUTION WITH     76 AND     29 DEGREES OF FREEDOM

    

Note that although the residual standard deviation is significantly lower than it was for the
original fit, we cannot compare them directly since the fits were performed on different scales.

Plot of
Predicted
Values

The plot of the predicted values with the transformed data indicates a good fit. In addition, the
variability of the data across the horizontal range of the plot seems relatively constant.

4.6.2.4. Transformations to Improve Fit and Equalize Variances
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6-Plot of Fit

Since we transformed the data, we need to check that all of the regression assumptions are now
valid.

The 6-plot of the residuals indicates that all of the regression assumptions are now satisfied.

Plot of
Residuals

4.6.2.4. Transformations to Improve Fit and Equalize Variances
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In order to see more detail, we generate a full-size plot of the residuals versus the predictor
variable, as shown above. This plot suggests that the assumption of homogeneous variances is
now met.

4.6.2.4. Transformations to Improve Fit and Equalize Variances
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.5.Weighting to Improve Fit

Weighting Another approach when the assumption of constant standard deviation of the errors (i.e.
homogeneous variances) is violated is to perform a weighted fit. In a weighted fit, we give less
weight to the less precise measurements and more weight to more precise measurements when
estimating the unknown parameters in the model.

Fit for
Estimating
Weights

For the pipeline data, we chose approximate replicate groups so that each group has four
observations (the last group only has three). This was done by first sorting the data by the
predictor variable and then taking four points in succession to form each replicate group.

Using the power function model with the data for estimating the weights, Dataplot generated the
following output for the fit of ln(variances) against ln(means) for the replicate groups. The output
has been edited slightly for display.

LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N       =       27
NUMBER OF VARIABLES =        1
NO REPLICATION CASE

PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
1  A0                  -3.18451       (0.8265    )        
-3.9
2  A1       XTEMP       1.69001       (0.2344    )         
7.2

RESIDUAL    STANDARD DEVIATION =         0.8561206460
RESIDUAL    DEGREES OF FREEDOM =          25

4.6.2.5. Weighting to Improve Fit
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The fit output and plot from the replicate variances against the replicate means shows that the a
linear fit provides a reasonable fit with an estimated slope of 1.69. Note that this data set has a
small number of replicates, so you may get a slightly different estimate for the slope. For
example, S-PLUS generated a slope estimate of 1.52. This is caused by the sorting of the
predictor variable (i.e., where we have actual replicates in the data, different sorting algorithms
may put some observations in different replicate groups). In practice, any value for the slope,
which will be used as the exponent in the weight function, in the range 1.5 to 2.0 is probably
reasonable and should produce comparable results for the weighted fit.

We used an estimate of 1.5 for the exponent in the weighting function.

Residual
Plot for
Weight
Function

4.6.2.5. Weighting to Improve Fit
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The residual plot from the fit to determine an appropriate weighting function reveals no obvious
problems.

Numerical
Output
from
Weighted
Fit

Dataplot generated the following output for the weighted fit of the model that relates the field
measurements to the lab measurements (edited slightly for display).

LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N       =      107
NUMBER OF VARIABLES =        1
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.6112687111D+01
REPLICATION DEGREES OF FREEDOM =          29
NUMBER OF DISTINCT SUBSETS     =          78

PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
1  A0                   2.35234       (0.5431    )         
4.3
2  A1       LAB        0.806363       (0.2265E-01)         
36.

RESIDUAL    STANDARD DEVIATION =         0.3645902574
RESIDUAL    DEGREES OF FREEDOM =         105
REPLICATION STANDARD DEVIATION =         6.1126871109

4.6.2.5. Weighting to Improve Fit
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REPLICATION DEGREES OF FREEDOM =          29

This output shows a slope of 0.81 and an intercept term of 2.35. This is compared to a slope of
0.73 and an intercept of 4.99 in the original model.

Plot of
Predicted
Values

The plot of the predicted values with the data indicates a good fit.

Diagnostic
Plots of
Weighted
Residuals

4.6.2.5. Weighting to Improve Fit
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We need to verify that the weighting did not result in the other regression assumptions being
violated. A 6-plot, after weighting the residuals, indicates that the regression assumptions are
satisfied.

Plot of
Weighted
Residuals
vs Lab
Defect
Size

4.6.2.5. Weighting to Improve Fit
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In order to check the assumption of homogeneous variances for the errors in more detail, we
generate a full sized plot of the weighted residuals versus the predictor variable. This plot
suggests that the errors now have homogeneous variances.

4.6.2.5. Weighting to Improve Fit
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.6.Compare the Fits

Three Fits
to
Compare

It is interesting to compare the results of the three fits:

Unweighted fit1.  

Transformed fit2.  

Weighted fit3.  

Plot of Fits
with Data

This plot shows that, compared to the original fit, the transformed and weighted fits generate
smaller predicted values for low values of lab defect size and larger predicted values for high
values of lab defect size. The three fits match fairly closely for intermediate values of lab defect
size. The transformed and weighted fit tend to agree for the low values of lab defect size.
However, for large values of lab defect size, the weighted fit tends to generate higher values for
the predicted values than does the transformed fit.

4.6.2.6. Compare the Fits
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Conclusion Although the original fit was not bad, it violated the assumption of homogeneous variances for
the error term. Both the fit of the transformed data and the weighted fit successfully address this
problem without violating the other regression assumptions.

4.6.2.6. Compare the Fits

http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd626.htm (2 of 2) [5/1/2006 10:22:41 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.7.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case
study yourself. Each step may use results from previous steps,
so please be patient. Wait until the software verifies that the
current step is complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 3 columns of numbers 
    into Dataplot, variables Field,
    Lab, and Batch.

2. Plot data and check for batch effect.

   1. Plot field versus lab.

   2. Condition plot on batch.

   3. Check batch effect with.
      linear fit plots by batch.

                              

 1. Initial plot indicates that a
    simple linear model is a good 
    initial model.

 2. Condition plot on batch indicates
    no significant batch effect.

 3. Plots of fit by batch indicate no
    significant batch effect.

4.6.2.7. Work This Example Yourself
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3. Fit and validate initial model.

   1. Linear fit of field versus lab.
      Plot predicted values with the
      data.

   2. Generate a 6-plot for model
      validation.

   3. Plot the residuals against
      the predictor variable.

 1. The linear fit was carried out.
    Although the initial fit looks good,
    the plot indicates that the residuals
    do not have homogeneous variances.

 2. The 6-plot does not indicate any 
    other problems with the model,
    beyond the evidence of 
    non-constant error variance.

 3. The detailed residual plot shows
    the inhomogeneity of the error
    variation more clearly.

4. Improve the fit with transformations.

   1. Plot several common transformations
      of the response variable (field)
      versus the predictor variable (lab).

   2. Plot ln(field) versus several 
      common transformations of the 
      predictor variable (lab).
     

   3. Box-Cox linearity plot.

   4. Linear fit of ln(field) versus 
      ln(lab).  Plot predicted values
      with the data.

   5. Generate a 6-plot for model
      validation.

   6. Plot the residuals against
      the predictor variable.

 1. The plots indicate that a ln
    transformation of the dependent
    variable (field) stabilizes
    the variation.

 2. The plots indicate that a ln
    transformation of the predictor
    variable (lab) linearizes the 
    model.

 3. The Box-Cox linearity plot
    indicates an optimum transform
    value of -0.1, although a ln
    transformation should work well.

 4. The plot of the predicted values
    with the data indicates that
    the errors should now have
    homogeneous variances.

 5. The 6-plot shows that the model
    assumptions are satisfied.

 6. The detailed residual plot shows
    more clearly that the assumption
    of homogeneous variances is now 
    satisfied.

4.6.2.7. Work This Example Yourself
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5. Improve the fit using weighting.

   1. Fit function to determine appropriate
      weight function.  Determine value for
      the exponent in the power model.

   2. Examine residuals from weight fit 
      to check adequacy of weight function.

   3. Weighted linear fit of field versus
      lab.  Plot predicted values with
      the data.

   4. Generate a 6-plot after weighting
      the residuals for model validation.

   5. Plot the weighted residuals 
      against the predictor variable.

 1. The fit to determine an appropriate
    weight function indicates that a
    an exponent between 1.5 and 2.0 
    should be reasonable.

 2. The residuals from this fit 
    indicate no major problems.

 3. The weighted fit was carried out.
    The plot of the predicted values
    with the data indicates that the
    fit of the model is improved.

 4. The 6-plot shows that the model
    assumptions are satisfied.

 5. The detailed residual plot shows
    the constant variability of the
    weighted residuals.

6. Compare the fits.

   1. Plot predicted values from each
      of the three models with the 
      data.

 1. The transformed and weighted fits
    generate lower predicted values for
    low values of defect size and larger
    predicted values for high values of
    defect size.
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4. Process Modeling
4.6. Case Studies in Process Modeling

4.6.3.Ultrasonic Reference Block Study

Non-Linear Fit
with
Non-Homogeneous
Variances

This example illustrates the construction of a non-linear
regression model for ultrasonic calibration data. This case study
demonstrates fitting a non-linear model and the use of
transformations and weighted fits to deal with the violation of the
assumption of constant standard deviations for the errors. This
assumption is also called homogeneous variances for the errors.

Background and Data1.  

Fit Initial Model2.  

Transformations to Improve Fit3.  

Weighting to Improve Fit4.  

Compare the Fits5.  

Work This Example Yourself6.  

4.6.3. Ultrasonic Reference Block Study
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.1.Background and Data

Description
of the Data

The ultrasonic reference block data consist of a response variable and a
predictor variable. The response variable is ultrasonic response and the
predictor variable is metal distance.

These data were provided by the NIST scientist Dan Chwirut.

Resulting
Data   Ultrasonic      Metal

    Response   Distance
-----------------------
     92.9000     0.5000
     78.7000     0.6250
     64.2000     0.7500
     64.9000     0.8750
     57.1000     1.0000
     43.3000     1.2500
     31.1000     1.7500
     23.6000     2.2500
     31.0500     1.7500
     23.7750     2.2500
     17.7375     2.7500
     13.8000     3.2500
     11.5875     3.7500
      9.4125     4.2500
      7.7250     4.7500
      7.3500     5.2500
      8.0250     5.7500
     90.6000     0.5000
     76.9000     0.6250
     71.6000     0.7500
     63.6000     0.8750
     54.0000     1.0000
     39.2000     1.2500
     29.3000     1.7500
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     21.4000     2.2500
     29.1750     1.7500
     22.1250     2.2500
     17.5125     2.7500
     14.2500     3.2500
      9.4500     3.7500
      9.1500     4.2500
      7.9125     4.7500
      8.4750     5.2500
      6.1125     5.7500
     80.0000     0.5000
     79.0000     0.6250
     63.8000     0.7500
     57.2000     0.8750
     53.2000     1.0000
     42.5000     1.2500
     26.8000     1.7500
     20.4000     2.2500
     26.8500     1.7500
     21.0000     2.2500
     16.4625     2.7500
     12.5250     3.2500
     10.5375     3.7500
      8.5875     4.2500
      7.1250     4.7500
      6.1125     5.2500
      5.9625     5.7500
     74.1000     0.5000
     67.3000     0.6250
     60.8000     0.7500
     55.5000     0.8750
     50.3000     1.0000
     41.0000     1.2500
     29.4000     1.7500
     20.4000     2.2500
     29.3625     1.7500
     21.1500     2.2500
     16.7625     2.7500
     13.2000     3.2500
     10.8750     3.7500
      8.1750     4.2500
      7.3500     4.7500
      5.9625     5.2500
      5.6250     5.7500
     81.5000     0.5000
     62.4000     0.7500
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     32.5000     1.5000
     12.4100     3.0000
     13.1200     3.0000
     15.5600     3.0000
      5.6300     6.0000
     78.0000     0.5000
     59.9000     0.7500
     33.2000     1.5000
     13.8400     3.0000
     12.7500     3.0000
     14.6200     3.0000
      3.9400     6.0000
     76.8000     0.5000
     61.0000     0.7500
     32.9000     1.5000
     13.8700     3.0000
     11.8100     3.0000
     13.3100     3.0000
      5.4400     6.0000
     78.0000     0.5000
     63.5000     0.7500
     33.8000     1.5000
     12.5600     3.0000
      5.6300     6.0000
     12.7500     3.0000
     13.1200     3.0000
      5.4400     6.0000
     76.8000     0.5000
     60.0000     0.7500
     47.8000     1.0000
     32.0000     1.5000
     22.2000     2.0000
     22.5700     2.0000
     18.8200     2.5000
     13.9500     3.0000
     11.2500     4.0000
      9.0000     5.0000
      6.6700     6.0000
     75.8000     0.5000
     62.0000     0.7500
     48.8000     1.0000
     35.2000     1.5000
     20.0000     2.0000
     20.3200     2.0000
     19.3100     2.5000
     12.7500     3.0000
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     10.4200     4.0000
      7.3100     5.0000
      7.4200     6.0000
     70.5000     0.5000
     59.5000     0.7500
     48.5000     1.0000
     35.8000     1.5000
     21.0000     2.0000
     21.6700     2.0000
     21.0000     2.5000
     15.6400     3.0000
      8.1700     4.0000
      8.5500     5.0000
     10.1200     6.0000
     78.0000     0.5000
     66.0000     0.6250
     62.0000     0.7500
     58.0000     0.8750
     47.7000     1.0000
     37.8000     1.2500
     20.2000     2.2500
     21.0700     2.2500
     13.8700     2.7500
      9.6700     3.2500
      7.7600     3.7500
      5.4400     4.2500
      4.8700     4.7500
      4.0100     5.2500
      3.7500     5.7500
     24.1900     3.0000
     25.7600     3.0000
     18.0700     3.0000
     11.8100     3.0000
     12.0700     3.0000
     16.1200     3.0000
     70.8000     0.5000
     54.7000     0.7500
     48.0000     1.0000
     39.8000     1.5000
     29.8000     2.0000
     23.7000     2.5000
     29.6200     2.0000
     23.8100     2.5000
     17.7000     3.0000
     11.5500     4.0000
     12.0700     5.0000
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      8.7400     6.0000
     80.7000     0.5000
     61.3000     0.7500
     47.5000     1.0000
     29.0000     1.5000
     24.0000     2.0000
     17.7000     2.5000
     24.5600     2.0000
     18.6700     2.5000
     16.2400     3.0000
      8.7400     4.0000
      7.8700     5.0000
      8.5100     6.0000
     66.7000     0.5000
     59.2000     0.7500
     40.8000     1.0000
     30.7000     1.5000
     25.7000     2.0000
     16.3000     2.5000
     25.9900     2.0000
     16.9500     2.5000
     13.3500     3.0000
      8.6200     4.0000
      7.2000     5.0000
      6.6400     6.0000
     13.6900     3.0000
     81.0000     0.5000
     64.5000     0.7500
     35.5000     1.5000
     13.3100     3.0000
      4.8700     6.0000
     12.9400     3.0000
      5.0600     6.0000
     15.1900     3.0000
     14.6200     3.0000
     15.6400     3.0000
     25.5000     1.7500
     25.9500     1.7500
     81.7000     0.5000
     61.6000     0.7500
     29.8000     1.7500
     29.8100     1.7500
     17.1700     2.7500
     10.3900     3.7500
     28.4000     1.7500
     28.6900     1.7500
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     81.3000     0.5000
     60.9000     0.7500
     16.6500     2.7500
     10.0500     3.7500
     28.9000     1.7500
     28.9500     1.7500
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.2. Initial Non-Linear Fit

Plot of Data The first step in fitting a nonlinear function is to simply plot the data.

This plot shows an exponentially decaying pattern in the data. This suggests that some type of
exponential function might be an appropriate model for the data.

Initial Model
Selection

There are two issues that need to be addressed in the initial model selection when fitting a
nonlinear model.

We need to determine an appropriate functional form for the model.1.  

We need to determine appropriate starting values for the estimation of the model
parameters.

2.  

4.6.3.2. Initial Non-Linear Fit
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Determining an
Appropriate
Functional Form
for the Model

Due to the large number of potential functions that can be used for a nonlinear model, the
determination of an appropriate model is not always obvious. Some guidelines for selecting an
appropriate model were given in the analysis chapter.

The plot of the data will often suggest a well-known function. In addition, we often use scientific
and engineering knowledge in determining an appropriate model. In scientific studies, we are
frequently interested in fitting a theoretical model to the data. We also often have historical
knowledge from previous studies (either our own data or from published studies) of functions that
have fit similar data well in the past. In the absence of a theoretical model or experience with
prior data sets, selecting an appropriate function will often require a certain amount of trial and
error.

Regardless of whether or not we are using scientific knowledge in selecting the model, model
validation is still critical in determining if our selected model is adequate.

Determining
Appropriate
Starting Values

Nonlinear models are fit with iterative methods that require starting values. In some cases,
inappropriate starting values can result in parameter estimates for the fit that converge to a local
minimum or maximum rather than the global minimum or maximum. Some models are relatively
insensitive to the choice of starting values while others are extremely sensitive.

If you have prior data sets that fit similar models, these can often be used as a guide for
determining good starting values. We can also sometimes make educated guesses from the
functional form of the model. For some models, there may be specific methods for determining
starting values. For example, sinusoidal models that are commonly used in time series are quite
sensitive to good starting values. The beam deflection case study shows an example of obtaining
starting values for a sinusoidal model.

In the case where you do not know what good starting values would be, one approach is to create
a grid of values for each of the parameters of the model and compute some measure of goodness
of fit, such as the residual standard deviation, at each point on the grid. The idea is to create a
broad grid that encloses reasonable values for the parameter. However, we typically want to keep
the number of grid points for each parameter relatively small to keep the computational burden
down (particularly as the number of parameters in the model increases). The idea is to get in the
right neighborhood, not to find the optimal fit. We would pick the grid point that corresponds to
the smallest residual standard deviation as the starting values.

Fitting Data to a
Theoretical Model

For this particular data set, the scientist was trying to fit the following theoretical model.

Since we have a theoretical model, we use this as the initial model.

Prefit to Obtain
Starting Values

We used the Dataplot PREFIT command to determine starting values based on a grid of the
parameter values. Here, our grid was 0.1 to 1.0 in increments of 0.1. The output has been edited
slightly for display.

  
LEAST SQUARES NON-LINEAR PRE-FIT
SAMPLE SIZE N =      214
MODEL--ULTRASON =(EXP(-B1*METAL)/(B2+B3*METAL))
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.3281762600D+01
REPLICATION DEGREES OF FREEDOM =         192
NUMBER OF DISTINCT SUBSETS     =          22

4.6.3.2. Initial Non-Linear Fit
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       NUMBER OF LATTICE POINTS    =        1000
  
   STEP                  RESIDUAL  *  PARAMETER
  NUMBER                 STANDARD  *  ESTIMATES
                         DEVIATION *
 ----------------------------------*-----------
     1--               0.35271E+02 * 0.10000E+00 0.10000E+00
0.10000E+00
  
        FINAL PARAMETER ESTIMATES
        1  B1                  0.100000
        2  B2                  0.100000
        3  B3                  0.100000
  
       RESIDUAL    STANDARD DEVIATION =        35.2706031799
       RESIDUAL    DEGREES OF FREEDOM =         211
       REPLICATION STANDARD DEVIATION =         3.2817625999
       REPLICATION DEGREES OF FREEDOM =         192

      

The best starting values based on this grid is to set all three parameters to 0.1.

Nonlinear Fit
Output

The following fit output was generated by Dataplot (it has been edited for display).

LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N =      214
MODEL--ULTRASON =EXP(-B1*METAL)/(B2+B3*METAL)
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.3281762600D+01
REPLICATION DEGREES OF FREEDOM =         192
NUMBER OF DISTINCT SUBSETS     =          22
  
  
         FINAL PARAMETER ESTIMATES           (APPROX. ST.
DEV.)    T VALUE
        1  B1                  0.190404       (0.2206E-01)         
8.6
        2  B2                  0.613300E-02   (0.3493E-03)         
18.
        3  B3                  0.105266E-01   (0.8027E-03)         
13.
  
       RESIDUAL    STANDARD DEVIATION =         3.3616721630
       RESIDUAL    DEGREES OF FREEDOM =         211
       REPLICATION STANDARD DEVIATION =         3.2817625999
       REPLICATION DEGREES OF FREEDOM =         192
       LACK OF FIT F RATIO =       1.5474 = THE  92.6461%
POINT OF THE
       F DISTRIBUTION WITH     19 AND    192 DEGREES OF
FREEDOM
    

4.6.3.2. Initial Non-Linear Fit
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Plot of Predicted
Values with
Original Data

This plot shows a reasonably good fit. It is difficult to detect any violations of the fit assumptions
from this plot. The estimated model is

6-Plot for Model
Validation

When there is a single independent variable, the 6-plot provides a convenient method for initial
model validation.

4.6.3.2. Initial Non-Linear Fit
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The basic assumptions for regression models are that the errors are random observations from a
normal distribution with zero mean and constant standard deviation (or variance).

These plots suggest that the variance of the errors is not constant.

In order to see this more clearly, we will generate full- sized a plot of the predicted values from
the model and overlay the data and plot the residuals against the independent variable, Metal
Distance.

Plot of Residual
Values Against
Independent
Variable

4.6.3.2. Initial Non-Linear Fit
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This plot suggests that the errors have greater variance for the values of metal distance less than
one than elsewhere. That is, the assumption of homogeneous variances seems to be violated.

Non-Homogeneous
Variances

Except when the Metal Distance is less than or equal to one, there is not strong evidence that the
error variances differ. Nevertheless, we will use transformations or weighted fits to see if we can
elminate this problem.

4.6.3.2. Initial Non-Linear Fit
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.3.Transformations to Improve Fit

Transformations One approach to the problem of non-homogeneous variances is to apply transformations to the
data.

Plot of Common
Transformations
to Obtain
Homogeneous
Variances

The first step is to try transformations of the response variable that will result in homogeneous
variances. In practice, the square root, ln, and reciprocal transformations often work well for this
purpose. We will try these first.

In examining these four plots, we are looking for the plot that shows the most constant variability
of the ultrasonic response across values of metal distance. Although the scales of these plots
differ widely, which would seem to make comparisons difficult, we are not comparing the
absolute levesl of variability between plots here. Instead we are comparing only how constant the
variation within each plot is for these four plots. The plot with the most constant variation will
indicate which transformation is best.

Based on constancy of the variation in the residuals, the square root transformation is probably
the best tranformation to use for this data.

4.6.3.3. Transformations to Improve Fit
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Plot of Common
Transformations
to Predictor
Variable

After transforming the response variable, it is often helpful to transform the predictor variable as
well. In practice, the square root, ln, and reciprocal transformations often work well for this
purpose. We will try these first.

This plot shows that none of the proposed transformations offers an improvement over using the
raw predictor variable.

Square Root Fit Based on the above plots, we choose to fit a model with a square root transformation for the
response variable and no transformation for the predictor variable. Dataplot generated the
following output for this model (it is edited slightly for display).

  
LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N =      214
MODEL--YTEMP =EXP(-B1*XTEMP)/(B2+B3*XTEMP)
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.2927381992D+00
REPLICATION DEGREES OF FREEDOM =         192
NUMBER OF DISTINCT SUBSETS     =          22
  
         FINAL PARAMETER ESTIMATES           (APPROX. ST.
DEV.)    T VALUE
        1  B1                 -0.154326E-01   (0.8593E-02)        
-1.8
        2  B2                  0.806714E-01   (0.1524E-02)         
53.

4.6.3.3. Transformations to Improve Fit
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        3  B3                  0.638590E-01   (0.2900E-02)         
22.
  
RESIDUAL    STANDARD DEVIATION =         0.2971503735
RESIDUAL    DEGREES OF FREEDOM =         211
REPLICATION STANDARD DEVIATION =         0.2927381992
REPLICATION DEGREES OF FREEDOM =         192
LACK OF FIT F RATIO =       1.3373 = THE  83.6085% POINT OF
THE
F DISTRIBUTION WITH     19 AND    192 DEGREES OF FREEDOM

    

Although the residual standard deviation is lower than it was for the original fit, we cannot
compare them directly since the fits were performed on different scales.

Plot of
Predicted
Values

The plot of the predicted values with the transformed data indicates a good fit. The fitted model is

4.6.3.3. Transformations to Improve Fit
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6-Plot of Fit

Since we transformed the data, we need to check that all of the regression assumptions are now
valid.

The 6-plot of the data using this model indicates no obvious violations of the assumptions.

Plot of
Residuals

4.6.3.3. Transformations to Improve Fit

http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd633.htm (4 of 5) [5/1/2006 10:22:49 AM]

http://www.itl.nist.gov/div898/handbook/pmd/section6/ultrason/plots/6plot2_f.gif


In order to see more detail, we generate a full size version of the residuals versus predictor
variable plot. This plot suggests that the errors now satisfy the assumption of homogeneous
variances.

4.6.3.3. Transformations to Improve Fit
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.4.Weighting to Improve Fit

Weighting Another approach when the assumption of constant variance of the errors is violated is to perform
a weighted fit. In a weighted fit, we give less weight to the less precise measurements and more
weight to more precise measurements when estimating the unknown parameters in the model.

Finding An
Appropriate
Weight
Function

Techniques for determining an appropriate weight function were discussed in detail in Section
4.4.5.2.

In this case, we have replication in the data, so we can fit the power model

to the variances from each set of replicates in the data and use  for the weights.

Fit for
Estimating
Weights

Dataplot generated the following output for the fit of ln(variances) against ln(means) for the
replicate groups. The output has been edited slightly for display.

LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N       =       22
NUMBER OF VARIABLES =        1

PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
1  A0                   2.46872       (0.2186    )         
11.
2  A1       XTEMP      -1.02871       (0.1983    )        
-5.2

RESIDUAL    STANDARD DEVIATION =         0.6945897937
RESIDUAL    DEGREES OF FREEDOM =          20

4.6.3.4. Weighting to Improve Fit
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The fit output and plot from the replicate variances against the replicate means shows that the
linear fit provides a reasonable fit, with an estimated slope of -1.03.

Based on this fit, we used an estimate of -1.0 for the exponent in the weighting function.

Residual
Plot for
Weight
Function

4.6.3.4. Weighting to Improve Fit
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The residual plot from the fit to determine an appropriate weighting function reveals no obvious
problems.

Numerical
Output
from
Weighted
Fit

Dataplot generated the following output for the weighted fit (edited slightly for display).

LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N =      214
MODEL--ULTRASON =EXP(-B1*METAL)/(B2+B3*METAL)
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.3281762600D+01
REPLICATION DEGREES OF FREEDOM =         192
NUMBER OF DISTINCT SUBSETS     =          22

FINAL PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
1  B1                  0.147046       (0.1512E-01)         
9.7
2  B2                  0.528104E-02   (0.4063E-03)         
13.
3  B3                  0.123853E-01   (0.7458E-03)         
17.

RESIDUAL    STANDARD DEVIATION =         4.1106567383

4.6.3.4. Weighting to Improve Fit
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RESIDUAL    DEGREES OF FREEDOM =         211
REPLICATION STANDARD DEVIATION =         3.2817625999
REPLICATION DEGREES OF FREEDOM =         192
LACK OF FIT F RATIO =       7.3183 = THE 100.0000% POINT OF
THE
F DISTRIBUTION WITH     19 AND    192 DEGREES OF FREEDOM

Plot of
Predicted
Values

To assess the quality of the weighted fit, we first generate a plot of the predicted line with the
original data.

The plot of the predicted values with the data indicates a good fit. The model for the weighted fit
is

4.6.3.4. Weighting to Improve Fit
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6-Plot of
Fit

We need to verify that the weighted fit does not violate the regression assumptions. The 6-plot
indicates that the regression assumptions are satisfied.

Plot of
Residuals

4.6.3.4. Weighting to Improve Fit
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In order to check the assumption of equal error variances in more detail, we generate a full-sized
version of the residuals versus the predictor variable. This plot suggests that the residuals now
have approximately equal variability.

4.6.3.4. Weighting to Improve Fit
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.5.Compare the Fits

Three Fits
to
Compare

It is interesting to compare the results of the three fits:

Unweighted fit1.  

Transformed fit2.  

Weighted fit3.  

Plot of Fits
with Data

The first step in comparing the fits is to plot all three sets of predicted values (in the original
units) on the same plot with the raw data.

This plot shows that all three fits generate comparable predicted values. We can also compare the
residual standard deviations (RESSD) from the fits. The RESSD for the transformed data is
calculated after translating the predicted values back to the original scale.

4.6.3.5. Compare the Fits
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RESSD From Unweighted Fit  = 3.361673
RESSD From Transformed Fit = 3.306732
RESSD From Weighted Fit    = 3.392797

    

In this case, the RESSD is quite close for all three fits (which is to be expected based on the plot).

Conclusion Given that transformed and weighted fits generate predicted values that are quite close to the
original fit, why would we want to make the extra effort to generate a transformed or weighted
fit? We do so to develop a model that satisfies the model assumptions for fitting a nonlinear
model. This gives us more confidence that conclusions and analyses based on the model are
justified and appropriate.

4.6.3.5. Compare the Fits
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.6.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 2 columns of numbers 
    into Dataplot, variables the
    ultrasonic response and metal
    distance

2. Plot data, pre-fit for starting values, and
   fit nonlinear model.

   1. Plot the ultrasonic response versus
      metal distance.

   2. Run PREFIT to generate good
      starting values.

   3. Nonlinear fit of the ultrasonic response

                              

 1. Initial plot indicates that a
    nonlinear model is required.
    Theory dictates an exponential
    over linear for the initial model.

 2. Pre-fit indicated starting
    values of 0.1 for all 3
    parameters.

 3. The nonlinear fit was carried out.

4.6.3.6. Work This Example Yourself
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      versus metal distance.  Plot predicted
      values and overlay the data.

   4. Generate a 6-plot for model
      validation.

   5. Plot the residuals against
      the predictor variable.

    Initial fit looks pretty good.

 4. The 6-plot shows that the model
    assumptions are satisfied except for
    the non-homogeneous variances.

 5. The detailed residual plot shows
    the non-homogeneous variances
    more clearly.

3. Improve the fit with transformations.

   1. Plot several common transformations
      of the dependent variable (ultrasonic
      response).

   2. Plot several common transformations
      of the predictor variable (metal).

   3. Nonlinear fit of transformed data.
      Plot predicted values with the
      data.

   4. Generate a 6-plot for model
      validation.

   5. Plot the residuals against
      the predictor variable.

 1. The plots indicate that a square
    root transformation on the dependent
    variable (ultrasonic response) is a
    good candidate model.

 2. The plots indicate that no
    transformation on the predictor
    variable (metal distance) is
    a good candidate model.

 3. Carry out the fit on the transformed
    data.  The plot of the predicted
    values overlaid with the data 
    indicates a good fit.

 4. The 6-plot suggests that the model
    assumptions, specifically homogeneous
    variances for the errors, are
    satisfied.

 5. The detailed residual plot shows
    more clearly that the homogeneous
    variances assumption is now
    satisfied.

4. Improve the fit using weighting.

   1. Fit function to determine appropriate
      weight function.  Determine value for
      the exponent in the power model.

   2. Plot residuals from fit to determine
      appropriate weight function.

 1. The fit to determine an appropriate
    weight function indicates that a
    value for the exponent in the range
    -1.0 to -1.1 should be reasonable.

 2. The residuals from this fit 
    indicate no major problems.

4.6.3.6. Work This Example Yourself
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   3. Weighted linear fit of field versus
      lab.  Plot predicted values with
      the data.

   4. Generate a 6-plot for model
      validation.

   5. Plot the residuals against
      the predictor variable.

 3. The weighted fit was carried out.
    The plot of the predicted values
    overlaid with the data suggests
    that the variances arehomogeneous.

 4. The 6-plot shows that the model
    assumptions are satisfied.

 5. The detailed residual plot suggests
    the homogeneous variances for the
    errors more clearly.

5. Compare the fits.

   1. Plot predicted values from each
      of the three models with the 
      data.

 1. The transformed and weighted fits
    generate only slightly different
    predicted values, but the model
    assumptions are not violated.

4.6.3.6. Work This Example Yourself
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4. Process Modeling
4.6. Case Studies in Process Modeling

4.6.4.Thermal Expansion of Copper Case
Study

Rational
Function
Models

This case study illustrates the use of a class of nonlinear models called
rational function models. The data set used is the thermal expansion of
copper related to temperature.

This data set was provided by the NIST scientist Thomas Hahn.

Contents Background and Data1.  

Rational Function Models2.  

Initial Plot of Data3.  

Fit Quadratic/Quadratic Model4.  

Fit Cubic/Cubic Model5.  

Work This Example Yourself6.  

4.6.4. Thermal Expansion of Copper Case Study
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.1.Background and Data

Description
of the Data

The response variable for this data set is the coefficient of thermal
expansion for copper. The predictor variable is temperature in degrees
kelvin. There were 236 data points collected.

These data were provided by the NIST scientist Thomas Hahn.

Resulting
Data  Coefficient               

  of Thermal    Temperature
   Expansion       (Degrees
   of Copper        Kelvin)
---------------------------
       0.591         24.41
       1.547         34.82
       2.902         44.09
       2.894         45.07
       4.703         54.98
       6.307         65.51
       7.030         70.53
       7.898         75.70
       9.470         89.57
       9.484         91.14
      10.072         96.40
      10.163         97.19
      11.615        114.26
      12.005        120.25
      12.478        127.08
      12.982        133.55
      12.970        133.61
      13.926        158.67
      14.452        172.74
      14.404        171.31
      15.190        202.14
      15.550        220.55

4.6.4.1. Background and Data
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      15.528        221.05
      15.499        221.39
      16.131        250.99
      16.438        268.99
      16.387        271.80
      16.549        271.97
      16.872        321.31
      16.830        321.69
      16.926        330.14
      16.907        333.03
      16.966        333.47
      17.060        340.77
      17.122        345.65
      17.311        373.11
      17.355        373.79
      17.668        411.82
      17.767        419.51
      17.803        421.59
      17.765        422.02
      17.768        422.47
      17.736        422.61
      17.858        441.75
      17.877        447.41
      17.912        448.70
      18.046        472.89
      18.085        476.69
      18.291        522.47
      18.357        522.62
      18.426        524.43
      18.584        546.75
      18.610        549.53
      18.870        575.29
      18.795        576.00
      19.111        625.55
       0.367         20.15
       0.796         28.78
       0.892         29.57
       1.903         37.41
       2.150         39.12
       3.697         50.24
       5.870         61.38
       6.421         66.25
       7.422         73.42
       9.944         95.52
      11.023        107.32
      11.870        122.04

4.6.4.1. Background and Data
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      12.786        134.03
      14.067        163.19
      13.974        163.48
      14.462        175.70
      14.464        179.86
      15.381        211.27
      15.483        217.78
      15.590        219.14
      16.075        262.52
      16.347        268.01
      16.181        268.62
      16.915        336.25
      17.003        337.23
      16.978        339.33
      17.756        427.38
      17.808        428.58
      17.868        432.68
      18.481        528.99
      18.486        531.08
      19.090        628.34
      16.062        253.24
      16.337        273.13
      16.345        273.66
      16.388        282.10
      17.159        346.62
      17.116        347.19
      17.164        348.78
      17.123        351.18
      17.979        450.10
      17.974        450.35
      18.007        451.92
      17.993        455.56
      18.523        552.22
      18.669        553.56
      18.617        555.74
      19.371        652.59
      19.330        656.20
       0.080         14.13
       0.248         20.41
       1.089         31.30
       1.418         33.84
       2.278         39.70
       3.624         48.83
       4.574         54.50
       5.556         60.41
       7.267         72.77

4.6.4.1. Background and Data
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       7.695         75.25
       9.136         86.84
       9.959         94.88
       9.957         96.40
      11.600        117.37
      13.138        139.08
      13.564        147.73
      13.871        158.63
      13.994        161.84
      14.947        192.11
      15.473        206.76
      15.379        209.07
      15.455        213.32
      15.908        226.44
      16.114        237.12
      17.071        330.90
      17.135        358.72
      17.282        370.77
      17.368        372.72
      17.483        396.24
      17.764        416.59
      18.185        484.02
      18.271        495.47
      18.236        514.78
      18.237        515.65
      18.523        519.47
      18.627        544.47
      18.665        560.11
      19.086        620.77
       0.214         18.97
       0.943         28.93
       1.429         33.91
       2.241         40.03
       2.951         44.66
       3.782         49.87
       4.757         55.16
       5.602         60.90
       7.169         72.08
       8.920         85.15
      10.055         97.06
      12.035        119.63
      12.861        133.27
      13.436        143.84
      14.167        161.91
      14.755        180.67
      15.168        198.44

4.6.4.1. Background and Data
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      15.651        226.86
      15.746        229.65
      16.216        258.27
      16.445        273.77
      16.965        339.15
      17.121        350.13
      17.206        362.75
      17.250        371.03
      17.339        393.32
      17.793        448.53
      18.123        473.78
      18.49         511.12
      18.566        524.70
      18.645        548.75
      18.706        551.64
      18.924        574.02
      19.100        623.86
       0.375         21.46
       0.471         24.33
       1.504         33.43
       2.204         39.22
       2.813         44.18
       4.765         55.02
       9.835         94.33
      10.040         96.44
      11.946        118.82
      12.596        128.48
      13.303        141.94
      13.922        156.92
      14.440        171.65
      14.951        190.00
      15.627        223.26
      15.639        223.88
      15.814        231.50
      16.315        265.05
      16.334        269.44
      16.430        271.78
      16.423        273.46
      17.024        334.61
      17.009        339.79
      17.165        349.52
      17.134        358.18
      17.349        377.98
      17.576        394.77
      17.848        429.66
      18.090        468.22

4.6.4.1. Background and Data
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      18.276        487.27
      18.404        519.54
      18.519        523.03
      19.133        612.99
      19.074        638.59
      19.239        641.36
      19.280        622.05
      19.101        631.50
      19.398        663.97
      19.252        646.90
      19.890        748.29
      20.007        749.21
      19.929        750.14
      19.268        647.04
      19.324        646.89
      20.049        746.90
      20.107        748.43
      20.062        747.35
      20.065        749.27
      19.286        647.61
      19.972        747.78
      20.088        750.51
      20.743        851.37
      20.830        845.97
      20.935        847.54
      21.035        849.93
      20.930        851.61
      21.074        849.75
      21.085        850.98
      20.935        848.23

4.6.4.1. Background and Data
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.2.Rational Function Models

Before proceeding with the case study, some explanation of rational
function models is required.

Polynomial
Functions

A polynomial function is one that has the form

with n denoting a non-negative integer that defines the degree of the
polynomial. A polynomial with a degree of 0 is simply a constant, with a
degree of 1 is a line, with a degree of 2 is a quadratic, with a degree of 3 is a
cubic, and so on.

Rational
Functions

A rational function is simply the ratio of two polynomial functions.

with n denoting a non-negative integer that defines the degree of the
numerator and m is a non-negative integer that defines the degree of the
denominator. For fitting rational function models, the constant term in the
denominator is usually set to 1.

Rational functions are typically identified by the degrees of the numerator
and denominator. For example, a quadratic for the numerator and a cubic for
the denominator is identified as a quadratic/cubic rational function. The
graphs of some common rational functions are shown in an appendix.

4.6.4.2. Rational Function Models
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Polynomial
Models

Historically, polynomial models are among the most frequently used
empirical models for fitting functions. These models are popular for the
following reasons.

Polynomial models have a simple form.1.  

Polynomial models have well known and understood properties.2.  

Polynomial models have moderate flexibility of shapes.3.  

Polynomial models are a closed family. Changes of location and scale
in the raw data result in a polynomial model being mapped to a
polynomial model. That is, polynomial models are not dependent on
the underlying metric.

4.  

Polynomial models are computationally easy to use.5.  

However, polynomial models also have the following limitations.

Polynomial models have poor interpolatory properties. High-degree
polynomials are notorious for oscillations between exact-fit values.

1.  

Polynomial models have poor extrapolatory properties. Polynomials
may provide good fits within the range of data, but they will
frequently deteriorate rapidly outside the range of the data.

2.  

Polynomial models have poor asymptotic properties. By their nature,
polynomials have a finite response for finite  values and have an
infinite response if and only if the  value is infinite. Thus
polynomials may not model asympototic phenomena very well.

3.  

Polynomial models have a shape/degree tradeoff. In order to model
data with a complicated structure, the degree of the model must be
high, indicating and the associated number of parameters to be
estimated will also be high. This can result in highly unstable models.

4.  

Rational
Function
Models

A rational function model is a generalization of the polynomial model.
Rational function models contain polynomial models as a subset (i.e., the
case when the denominator is a constant).

If modeling via polynomial models is inadequate due to any of the
limitations above, you should consider a rational function model.

4.6.4.2. Rational Function Models
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Advantages Rational function models have the following advantages.

Rational function models have a moderately simple form.1.  

Rational function models are a closed family. As with polynomial
models, this means that rational function models are not dependent on
the underlying metric.

2.  

Rational function models can take on an extremely wide range of
shapes, accommodating a much wider range of shapes than does the
polynomial family.

3.  

Rational function models have better interpolatory properties than
polynomial models. Rational functions are typically smoother and less
oscillatory than polynomial models.

4.  

Rational functions have excellent extrapolatory powers. Rational
functions can typically be tailored to model the function not only
within the domain of the data, but also so as to be in agreement with
theoretical/asymptotic behavior outside the domain of interest.

5.  

Rational function models have excellent asymptotic properties.
Rational functions can be either finite or infinite for finite values, or
finite or infinite for infinite  values. Thus, rational functions can
easily be incorporated into a rational function model.

6.  

Rational function models can often be used to model complicated
structure with a fairly low degree in both the numerator and
denominator. This in turn means that fewer coefficients will be
required compared to the polynomial model.

7.  

Rational function models are moderately easy to handle
computationally. Although they are nonlinear models, rational
function models are a particularly easy nonlinear models to fit.

8.  

Disadvantages Rational function models have the following disadvantages.

The properties of the rational function family are not as well known to
engineers and scientists as are those of the polynomial family. The
literature on the rational function family is also more limited. Because
the properties of the family are often not well understood, it can be
difficult to answer the following modeling question:

Given that data has a certain shape, what values should be
chosen for the degree of the numerator and the degree on the
denominator?

1.  

Unconstrained rational function fitting can, at times, result in
undesired nusiance asymptotes (vertically) due to roots in the
denominator polynomial. The range of  values affected by the
function "blowing up" may be quite narrow, but such asymptotes,
when they occur, are a nuisance for local interpolation in the

2.  

4.6.4.2. Rational Function Models
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neighborhood of the asymptote point. These asymptotes are easy to
detect by a simple plot of the fitted function over the range of the
data. Such asymptotes should not discourage you from considering
rational function models as a choice for empirical modeling. These
nuisance asymptotes occur occasionally and unpredictably, but the
gain in flexibility of shapes is well worth the chance that they may
occur.

Starting
Values for
Rational
Function
Models

One common difficulty in fitting nonlinear models is finding adequate
starting values. A major advantage of rational function models is the ability
to compute starting values using a linear least squares fit.

To do this, choose p points from the data set, with p denoting the number of
parameters in the rational model. For example, given the linear/quadratic
model

we need to select four representative points.

We then perform a linear fit on the model

Here, pn and pd are the degrees of the numerator and denominator,
respectively, and the  and  contain the subset of points, not the full data
set. The estimated coefficients from this linear fit are used as the starting
values for fitting the nonlinear model to the full data set.

Note:This type of fit, with the response variable appearing on both sides of
the function, should only be used to obtain starting values for the nonlinear
fit. The statistical properties of fits like this are not well understood.

The subset of points should be selected over the range of the data. It is not
critical which points are selected, although you should avoid points that are
obvious outliers.

4.6.4.2. Rational Function Models
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.3. Initial Plot of Data

Plot
of
Data

The first step in fitting a nonlinear function is to simply plot the data.

This plot initially shows a fairly steep slope that levels off to a more gradual slope. This type of
curve can often be modeled with a rational function model.

The plot also indicates that there do not appear to be any outliers in this data.

4.6.4.3. Initial Plot of Data
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.4.Quadratic/Quadratic Rational Function Model

Q/Q
Rational
Function
Model

We used Dataplot to fit the Q/Q rational function model. Dataplot first uses the EXACT
RATIONAL FIT command to generate the starting values and then the FIT command to generate
the nonlinear fit.

We used the following 5 points to generate the starting values.

 TEMP        THERMEXP
 ----        --------
  10             0
  50             5
 120            12
 200            15
 800            20
     

Exact
Rational
Fit Output

Dataplot generated the following output from the EXACT RATIONAL FIT command. The
output has been edited for display.

EXACT RATIONAL FUNCTION FIT
NUMBER OF POINTS IN FIRST SET    =        5
DEGREE OF NUMERATOR              =        2
DEGREE OF DENOMINATOR            =        2
  
NUMERATOR  --A0  A1  A2          =      -0.301E+01      
0.369E+00      -0.683E-02
DENOMINATOR--B0  B1  B2          =       0.100E+01     
-0.112E-01      -0.306E-03
 
APPLICATION OF EXACT-FIT COEFFICIENTS
TO SECOND PAIR OF VARIABLES--
  
NUMBER OF POINTS IN SECOND SET           =      236
NUMBER OF ESTIMATED COEFFICIENTS         =        5
RESIDUAL DEGREES OF FREEDOM              =      231

RESIDUAL STANDARD DEVIATION (DENOM=N-P)  =  0.17248161E+01
AVERAGE ABSOLUTE RESIDUAL   (DENOM=N)    =  0.82943726E+00
LARGEST (IN MAGNITUDE) POSITIVE RESIDUAL =  0.27050836E+01
LARGEST (IN MAGNITUDE) NEGATIVE RESIDUAL = -0.11428773E+02

4.6.4.4. Quadratic/Quadratic Rational Function Model
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LARGEST (IN MAGNITUDE) ABSOLUTE RESIDUAL =  0.11428773E+02
  
     

The important information in this output are the estimates for A0, A1, A2, B1, and B2 (B0 is
always set to 1). These values are used as the starting values for the fit in the next section.

Nonlinear
Fit Output

Dataplot generated the following output for the nonlinear fit. The output has been edited for
display.

LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N =      236
MODEL--THERMEXP
=(A0+A1*TEMP+A2*TEMP**2)/(1+B1*TEMP+B2*TEMP**2)
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.8131711930D-01
REPLICATION DEGREES OF FREEDOM =           1
NUMBER OF DISTINCT SUBSETS     =         235
  
FINAL PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
1  A0                  -8.12326       (0.3908    )        
-21.
2  A1                  0.513233       (0.5418E-01)         
9.5
3  A2                 -0.736978E-02   (0.1705E-02)        
-4.3
4  B1                 -0.689864E-02   (0.3960E-02)        
-1.7
5  B2                 -0.332089E-03   (0.7890E-04)        
-4.2

RESIDUAL    STANDARD DEVIATION =         0.5501883030
RESIDUAL    DEGREES OF FREEDOM =         231
REPLICATION STANDARD DEVIATION =         0.0813171193
REPLICATION DEGREES OF FREEDOM =           1
LACK OF FIT F RATIO =      45.9729 = THE  88.2878% POINT OF
THE
F DISTRIBUTION WITH    230 AND      1 DEGREES OF FREEDOM

     

The above output yields the following estimated model.

4.6.4.4. Quadratic/Quadratic Rational Function Model
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Plot of
Q/Q
Rational
Function
Fit

We generate a plot of the fitted rational function model with the raw data.

Looking at the fitted function with the raw data appears to show a reasonable fit.

6-Plot for
Model
Validation

Although the plot of the fitted function with the raw data appears to show a reasonable fit, we
need to validate the model assumptions. The 6-plot is an effective tool for this purpose.

4.6.4.4. Quadratic/Quadratic Rational Function Model
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The plot of the residuals versus the predictor variable temperature (row 1, column 2) and of the
residuals versus the predicted values (row 1, column 3) indicate a distinct pattern in the residuals.
This suggests that the assumption of random errors is badly violated.

Residual
Plot

We generate a full-sized residual plot in order to show more detail.

4.6.4.4. Quadratic/Quadratic Rational Function Model
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The full-sized residual plot clearly shows the distinct pattern in the residuals. When residuals
exhibit a clear pattern, the corresponding errors are probably not random.

4.6.4.4. Quadratic/Quadratic Rational Function Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.5.Cubic/Cubic Rational Function Model

C/C
Rational
Function
Model

Since the Q/Q model did not describe the data well, we next fit a cubic/cubic (C/C) rational
function model.

We used Dataplot to fit the C/C rational function model with the following 7 subset points to
generate the starting values.

 TEMP        THERMEXP
 ----        --------
  10             0
  30             2
  40             3
  50             5
 120            12
 200            15
 800            20
     

Exact
Rational
Fit Output

Dataplot generated the following output from the exact rational fit command. The output has been
edited for display.

EXACT RATIONAL FUNCTION FIT
NUMBER OF POINTS IN FIRST SET    =        7
DEGREE OF NUMERATOR              =        3
DEGREE OF DENOMINATOR            =        3
  
NUMERATOR  --A0  A1  A2  A3      =
   -0.2322993E+01  0.3528976E+00 -0.1382551E-01 
0.1765684E-03
DENOMINATOR--B0  B1  B2  B3      = 
    0.1000000E+01 -0.3394208E-01  0.1099545E-03 
0.7905308E-05
  
APPLICATION OF EXACT-FIT COEFFICIENTS
TO SECOND PAIR OF VARIABLES--
  
NUMBER OF POINTS IN SECOND SET           =      236
NUMBER OF ESTIMATED COEFFICIENTS         =        7
RESIDUAL DEGREES OF FREEDOM              =      229
  
RESIDUAL SUM OF SQUARES                  =  0.78246452E+02

4.6.4.5. Cubic/Cubic Rational Function Model
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RESIDUAL STANDARD DEVIATION (DENOM=N-P)  =  0.58454049E+00
AVERAGE ABSOLUTE RESIDUAL   (DENOM=N)    =  0.46998626E+00
LARGEST (IN MAGNITUDE) POSITIVE RESIDUAL =  0.95733070E+00
LARGEST (IN MAGNITUDE) NEGATIVE RESIDUAL = -0.13497944E+01
LARGEST (IN MAGNITUDE) ABSOLUTE RESIDUAL =  0.13497944E+01
  
  
     

The important information in this output are the estimates for A0, A1, A2, A3, B1, B2, and B3
(B0 is always set to 1). These values are used as the starting values for the fit in the next section.

Nonlinear
Fit Output

Dataplot generated the following output for the nonlinear fit. The output has been edited for
display.

LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N =      236
MODEL--THERMEXP =(A0+A1*TEMP+A2*TEMP**2+A3*TEMP**3)/
                 (1+B1*TEMP+B2*TEMP**2+B3*TEMP**3)
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.8131711930D-01
REPLICATION DEGREES OF FREEDOM =           1
NUMBER OF DISTINCT SUBSETS     =         235
  
FINAL PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T
VALUE
1  A0                   1.07913       (0.1710    )         
6.3
2  A1                 -0.122801       (0.1203E-01)        
-10.
3  A2                  0.408837E-02   (0.2252E-03)         
18.
4  A3                 -0.142848E-05   (0.2610E-06)        
-5.5
5  B1                 -0.576111E-02   (0.2468E-03)        
-23.
6  B2                  0.240629E-03   (0.1060E-04)         
23.
7  B3                 -0.123254E-06   (0.1217E-07)        
-10.

RESIDUAL    STANDARD DEVIATION =         0.0818038210
RESIDUAL    DEGREES OF FREEDOM =         229
REPLICATION STANDARD DEVIATION =         0.0813171193
REPLICATION DEGREES OF FREEDOM =           1
LACK OF FIT F RATIO =       1.0121 = THE  32.1265% POINT OF
THE
F DISTRIBUTION WITH    228 AND      1 DEGREES OF FREEDOM

     

The above output yields the following estimated model.

4.6.4.5. Cubic/Cubic Rational Function Model
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Plot of
C/C
Rational
Function
Fit

We generate a plot of the fitted rational function model with the raw data.

The fitted function with the raw data appears to show a reasonable fit.

6-Plot for
Model
Validation

Although the plot of the fitted function with the raw data appears to show a reasonable fit, we
need to validate the model assumptions. The 6-plot is an effective tool for this purpose.

4.6.4.5. Cubic/Cubic Rational Function Model
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The 6-plot indicates no significant violation of the model assumptions. That is, the errors appear
to have constant location and scale (from the residual plot in row 1, column 2), seem to be
random (from the lag plot in row 2, column 1), and approximated well by a normal distribution
(from the histogram and normal probability plots in row 2, columns 2 and 3).

Residual
Plot

We generate a full-sized residual plot in order to show more detail.

4.6.4.5. Cubic/Cubic Rational Function Model
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The full-sized residual plot suggests that the assumptions of constant location and scale for the
errors are valid. No distinguishing pattern is evident in the residuals.

Conclusion We conclude that the cubic/cubic rational function model does in fact provide a satisfactory
model for this data set.

4.6.4.5. Cubic/Cubic Rational Function Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.6.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case
study yourself. Each step may use results from previous
steps, so please be patient. Wait until the software verifies
that the current step is complete before clicking on the next
step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 2 columns of numbers 
    into Dataplot, variables thermexp
    and temp.

2. Plot the data.

   1. Plot thermexp versus temp.  1. Initial plot indicates that a
    nonlinear model is required.

4.6.4.6. Work This Example Yourself
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4. Fit a Q/Q rational function model.

   1. Perform the Q/Q fit and plot the
      predicted values with the raw data.

   2. Perform model validation by
      generating a 6-plot.

   3. Generate a full-sized plot of the
      residuals to show greater detail.

 1. The model parameters are estimated.
    The plot of the predicted values with
    the raw data seems to indicate a 
    reasonable fit.

 2. The 6-plot shows that the 
    residuals follow a distinct
    pattern and suggests that the 
    randomness assumption for the 
    errors is violated.

 3. The full-sized residual plot shows
    the non-random pattern more
    clearly.

3. Fit a C/C rational function model.

   1. Perform the C/C fit and plot the
      predicted values with the raw data.

   2. Perform model validation by
      generating a 6-plot.

   3. Generate a full-sized plot of the
      residuals to show greater detail.

 1. The model parameters are estimated.
    The plot of the predicted values with
    the raw data seems to indicate a 
    reasonable fit.

 2. The 6-plot does not indicate any
    notable violations of the
    assumptions.

 3. The full-sized residual plot shows
    no notable assumption violations.

4.6.4.6. Work This Example Yourself
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4. Process Modeling

4.8.Some Useful Functions for Process
Modeling

Overview of
Section 4.8

This section lists some functions commonly-used for process modeling.
Constructing an exhaustive list of useful functions is impossible, of
course, but the functions given here will often provide good starting
points when an empirical model must be developed to describe a
particular process.

Each function listed here is classified into a family of related functions,
if possible. Its statistical type, linear or nonlinear in the parameters, is
also given. Special features of each function, such as asymptotes, are
also listed along with the function's domain (the set of allowable input
values) and range (the set of possible output values). Plots of some of
the different shapes that each function can assume are also included.

Contents of
Section 4.8

Univariate Functions

Polynomials1.  

Rational Functions2.  

1.  

4.8. Some Useful Functions for Process Modeling
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling

4.8.1.Univariate Functions

Overview of
Section 8.1

Univariate functions are listed in this section. They are useful for
modeling in their own right and they can serve as the basic building
blocks for functions of higher dimension. Section 4.4.2.1 offers some
advice on the development of empirical models for higher-dimension
processes from univariate functions.

Contents of
Section 8.1

Polynomials1.  

Rational Functions2.  

4.8.1. Univariate Functions
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions

4.8.1.1.Polynomial Functions

Polynomial
Functions

A polynomial function is one that has the form

with n denoting a non-negative integer that defines the degree of the
polynomial. A polynomial with a degree of 0 is simply a constant, with a
degree of 1 is a line, with a degree of 2 is a quadratic, with a degree of 3 is a
cubic, and so on.

Polynomial
Models:
Advantages

Historically, polynomial models are among the most frequently used
empirical models for fitting functions. These models are popular for the
following reasons.

Polynomial models have a simple form.1.  

Polynomial models have well known and understood properties.2.  

Polynomial models have moderate flexibility of shapes.3.  

Polynomial models are a closed family. Changes of location and scale
in the raw data result in a polynomial model being mapped to a
polynomial model. That is, polynomial models are not dependent on
the underlying metric.

4.  

Polynomial models are computationally easy to use.5.  

4.8.1.1. Polynomial Functions
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Polynomial
Model:
Limitations

However, polynomial models also have the following limitations.

Polynomial models have poor interpolatory properties. High degree
polynomials are notorious for oscillations between exact-fit values.

1.  

Polynomial models have poor extrapolatory properties. Polynomials
may provide good fits within the range of data, but they will
frequently deteriorate rapidly outside the range of the data.

2.  

Polynomial models have poor asymptotic properties. By their nature,
polynomials have a finite response for finite  values and have an
infinite response if and only if the  value is infinite. Thus
polynomials may not model asympototic phenomena very well.

3.  

Polynomial models have a shape/degree tradeoff. In order to model
data with a complicated structure, the degree of the model must be
high, indicating and the associated number of parameters to be
estimated will also be high. This can result in highly unstable models.

4.  

Example The load cell calibration case study contains an example of fitting a
quadratic polynomial model.

Specific
Polynomial
Functions

Straight Line1.  

Quadratic Polynomial2.  

Cubic Polynomial3.  

4.8.1.1. Polynomial Functions
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.1. Polynomial Functions

4.8.1.1.1.Straight Line

Function:

Function
Family: Polynomial

4.8.1.1.1. Straight Line
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Statistical
Type: Linear

Domain:

Range:

Special
Features: None

Additional
Examples: None

4.8.1.1.1. Straight Line
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.1. Polynomial Functions

4.8.1.1.2.Quadratic Polynomial

Function:

Function
Family: Polynomial

4.8.1.1.2. Quadratic Polynomial
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Statistical
Type: Linear

Domain:

Range:

Special
Features: None

Additional
Examples:

4.8.1.1.2. Quadratic Polynomial
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4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.1. Polynomial Functions

4.8.1.1.3.Cubic Polynomial

Function:

Function
Family: Polynomial

4.8.1.1.3. Cubic Polynomial
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Statistical
Type: Linear

Domain:

Range:

Special
Features: None

Additional
Examples:
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions

4.8.1.2.Rational Functions

Rational
Functions

A rational function is simply the ratio of two polynomial functions

with n denoting a non-negative integer that defines the degree of the
numerator and m denoting a non-negative integer that defines the degree of
the denominator. When fitting rational function models, the constant term in
the denominator is usually set to 1.

Rational functions are typically identified by the degrees of the numerator
and denominator. For example, a quadratic for the numerator and a cubic for
the denominator is identified as a quadratic/cubic rational function.

Rational
Function
Models

A rational function model is a generalization of the polynomial model.
Rational function models contain polynomial models as a subset (i.e., the
case when the denominator is a constant).

If modeling via polynomial models is inadequate due to any of the
limitations above, you should consider a rational function model.

Note that fitting rational function models is also referred to as the Pade
approximation.

4.8.1.2. Rational Functions
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Advantages Rational function models have the following advantages.

Rational function models have a moderately simple form.1.  

Rational function models are a closed family. As with polynomial
models, this means that rational function models are not dependent on
the underlying metric.

2.  

Rational function models can take on an extremely wide range of
shapes, accommodating a much wider range of shapes than does the
polynomial family.

3.  

Rational function models have better interpolatory properties than
polynomial models. Rational functions are typically smoother and less
oscillatory than polynomial models.

4.  

Rational functions have excellent extrapolatory powers. Rational
functions can typically be tailored to model the function not only
within the domain of the data, but also so as to be in agreement with
theoretical/asymptotic behavior outside the domain of interest.

5.  

Rational function models have excellent asymptotic properties.
Rational functions can be either finite or infinite for finite values, or
finite or infinite for infinite  values. Thus, rational functions can
easily be incorporated into a rational function model.

6.  

Rational function models can often be used to model complicated
structure with a fairly low degree in both the numerator and
denominator. This in turn means that fewer coefficients will be
required compared to the polynomial model.

7.  

Rational function models are moderately easy to handle
computationally. Although they are nonlinear models, rational
function models are a particularly easy nonlinear models to fit.

8.  

Disadvantages Rational function models have the following disadvantages.

The properties of the rational function family are not as well known to
engineers and scientists as are those of the polynomial family. The
literature on the rational function family is also more limited. Because
the properties of the family are often not well understood, it can be
difficult to answer the following modeling question:

Given that data has a certain shape, what values should be
chosen for the degree of the numerator and the degree on the
denominator?

1.  

Unconstrained rational function fitting can, at times, result in
undesired nusiance asymptotes (vertically) due to roots in the
denominator polynomial. The range of  values affected by the
function "blowing up" may be quite narrow, but such asymptotes,
when they occur, are a nuisance for local interpolation in the
neighborhood of the asymptote point. These asymptotes are easy to

2.  

4.8.1.2. Rational Functions
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detect by a simple plot of the fitted function over the range of the
data. Such asymptotes should not discourage you from considering
rational function models as a choice for empirical modeling. These
nuisance asymptotes occur occasionally and unpredictably, but the
gain in flexibility of shapes is well worth the chance that they may
occur.

General
Properties of
Rational
Functions

The following are general properties of rational functions.

If the numerator and denominator are of the same degree (n=m), then
y = an/bm is a horizontal asymptote of the function.

●   

If the degree of the denominator is greater than the degree of the
numerator, then y = 0 is a horizontal asymptote.

●   

If the degree of the denominator is less than the degree of the
numerator, then there are no horizontal asymptotes.

●   

When x is equal to a root of the denominator polynomial, the
denominator is zero and there is a vertical asymptote. The exception
is the case when the root of the denominator is also a root of the
numerator. However, for this case we can cancel a factor from both
the numerator and denominator (and we effectively have a
lower-degree rational function).

●   

Starting
Values for
Rational
Function
Models

One common difficulty in fitting nonlinear models is finding adequate
starting values. A major advantage of rational function models is the ability
to compute starting values using a linear least squares fit.

To do this, choose p points from the data set, with p denoting the number of
parameters in the rational model. For example, given the linear/quadratic
model

we need to select four representative points.

We then perform a linear fit on the model

Here, pn and pd are the degrees of the numerator and denominator,
respectively, and the  and Y contain the subset of points, not the full data
set. The estimated coefficients from this fit made using the linear least
squares algorithm are used as the starting values for fitting the nonlinear
model to the full data set.

Note: This type of fit, with the response variable appearing on both sides of
the function, should only be used to obtain starting values for the nonlinear
fit. The statistical properties of models like this are not well understood.

4.8.1.2. Rational Functions
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The subset of points should be selected over the range of the data. It is not
critical which points are selected, although you should avoid points that are
obvious outliers.

Example The thermal expansion of copper case study contains an example of fitting a
rational function model.

Specific
Rational
Functions

Constant / Linear Rational Function1.  

Linear / Linear Rational Function2.  

Linear / Quadratic Rational Function3.  

Quadratic / Linear Rational Function4.  

Quadratic / Quadratic Rational Function5.  

Cubic / Linear Rational Function6.  

Cubic / Quadratic Rational Function7.  

Linear / Cubic Rational Function8.  

Quadratic / Cubic Rational Function9.  

Cubic / Cubic Rational Function10.  

Determining m and n for Rational Function Models11.  

4.8.1.2. Rational Functions
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.1.Constant / Linear Rational
Function

Function:

4.8.1.2.1. Constant / Linear Rational Function
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

Range:

Special
Features: Horizontal asymptote at:

and vertical asymptote at:

Additional
Examples:

4.8.1.2.1. Constant / Linear Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.2.Linear / Linear Rational Function

Function:

4.8.1.2.2. Linear / Linear Rational Function
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

Range:

Special
Features: Horizontal asymptote at:

and vertical asymptote at:

Additional
Examples:

4.8.1.2.2. Linear / Linear Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.3.Linear / Quadratic Rational
Function

Function:

4.8.1.2.3. Linear / Quadratic Rational Function
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Function
Family:

Rational

Statistical
Type:

Nonlinear

Domain:

with undefined points at

There will be 0, 1, or 2 real solutions to this equation, corresponding to whether

is negative, zero, or positive.

Range:

Special
Features:

Horizontal asymptote at:

and vertical asymptotes at:

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

is negative, zero, or positive.

Additional
Examples:

4.8.1.2.3. Linear / Quadratic Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.4.Quadratic / Linear Rational
Function

Function:

4.8.1.2.4. Quadratic / Linear Rational Function
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Function
Family:

Rational

Statistical
Type: Nonlinear

Domain:

Range:

with

and

Special
Features:

Vertical asymptote at:

Additional
Examples:

4.8.1.2.4. Quadratic / Linear Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.5.Quadratic / Quadratic Rational
Function

Function:

4.8.1.2.5. Quadratic / Quadratic Rational Function
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Function
Family:

Rational

Statistical
Type:

Nonlinear

Domain:

with undefined points at

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

is negative, zero, or positive.

Range: The range is complicated and depends on the specific values of 1, ..., 5.

Special
Features:

Horizontal asymptotes at:

and vertical asymptotes at:

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

is negative, zero, or positive.

Additional
Examples:

4.8.1.2.5. Quadratic / Quadratic Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.6.Cubic / Linear Rational Function

Function:

4.8.1.2.6. Cubic / Linear Rational Function
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

Range:

Special
Features: Vertical asymptote at:

Additional
Examples:

4.8.1.2.6. Cubic / Linear Rational Function
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

with undefined points at

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

is negative, zero, or positive.

Range:

Special
Features:

Vertical asymptotes at:

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

is negative, zero, or positive.

Additional
Examples:
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

with undefined points at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Range:

with the possible exception that zero may be excluded.

Special
Features:

Horizontal asymptote at:

and vertical asymptotes at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Additional
Examples:

4.8.1.2.8. Linear / Cubic Rational Function
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

with undefined points at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Range:

with the possible exception that zero may be excluded.

Special
Features:

Horizontal asymptote at:

and vertical asymptotes at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Additional
Examples:
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

with undefined points at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Range:

with the exception that y =  may be excluded.

Special
Features:

Horizontal asymptote at:

and vertical asymptotes at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Additional
Examples:

4.8.1.2.10. Cubic / Cubic Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.11.Determining m and n for Rational
Function Models

General
Question

A general question for rational function models is:

I have data to which I wish to fit a rational function to. What degrees n and m should I use
for the numerator and denominator, respectively?

Four
Questions

To answer the above broad question, the following four specific questions need to be answered.

What value should the function have at x = ? Specifically, is the value zero, a constant,
or plus or minus infinity?

1.  

What slope should the function have at x = ? Specifically, is the derivative of the
function zero, a constant, or plus or minus infinity?

2.  

How many times should the function equal zero (i.e., f (x) = 0) for finite x?3.  

How many times should the slope equal zero (i.e., f '(x) = 0) for finite x?4.  

These questions are answered by the analyst by inspection of the data and by theoretical
considerations of the phenomenon under study.

Each of these questions is addressed separately below.

Question 1:
What Value
Should the
Function
Have at x =

?

Given the rational function

or

then asymptotically

From this it follows that

if n < m, R( ) = 0●   

if n = m, R( ) = an/bm●   

if n > m, R( ) = ●   

Conversely, if the fitted function f(x) is such that
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f( ) = 0, this implies n < m●   

f( ) = constant, this implies n = m●   

f( ) = , this implies n > m●   

Question 2:
What Slope
Should the
Function
Have at x =

?

The slope is determined by the derivative of a function. The derivative of a rational function is

with

Asymptotically

From this it follows that

if n < m, R'( ) = 0●   

if n = m, R'( ) = 0●   

if n = m +1, R'( ) = an/bm●   

if n > m + 1, R'( ) = ●   

Conversely, if the fitted function f(x) is such that

f'( ) = 0, this implies n  m●   

f'( ) = constant, this implies n = m + 1●   

f'( ) = , this implies n > m + 1●   

Question 3:
How Many
Times Should
the Function
Equal Zero
for Finite ?

For fintite x, R(x) = 0 only when the numerator polynomial, Pn, equals zero.

The numerator polynomial, and thus R(x) as well, can have between zero and n real roots. Thus,
for a given n, the number of real roots of R(x) is less than or equal to n.

Conversely, if the fitted function f(x) is such that, for finite x, the number of times f(x) = 0 is k3,
then n is greater than or equal to k3.

4.8.1.2.11. Determining m and n for Rational Function Models
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Question 4:
How Many
Times Should
the Slope
Equal Zero
for Finite ?

The derivative function, R'(x), of the rational function will equal zero when the numerator
polynomial equals zero. The number of real roots of a polynomial is between zero and the degree
of the polynomial.

For n not equal to m, the numerator polynomial of R'(x) has order n+m-1. For n equal to m, the
numerator polynomial of R'(x) has order n+m-2.

From this it follows that

if n  m, the number of real roots of R'(x), k4,  n+m-1.●   

if n = m, the number of real roots of R'(x), k4, is  n+m-2.●   

Conversely, if the fitted function f(x) is such that, for finite x and n  m, the number of times f'(x)
= 0 is k4, then n+m-1 is  k4. Similarly, if the fitted function f(x) is such that, for finite x and n =
m, the number of times f'(x) = 0 is k4, then n+m-2  k4.

Tables for
Determining
Admissible
Combinations
of m and n

In summary, we can determine the admissible combinations of n and m by using the following
four tables to generate an n versus m graph. Choose the simplest (n,m) combination for the
degrees of the intial rational function model.

1. Desired value of f( ) Relation of n to m

0
constant

n < m
n = m
n > m

2. Desired value of f'( ) Relation of n to m

0
constant

n < m + 1
n = m +1
n > m + 1

3. For finite x, desired number, k3,
of times f(x) = 0

Relation of n to k3

k3 n  k3

4. For finite x, desired number, k4,
of times f'(x) = 0

Relation of n to k4 and m

k4 (n  m)
k4 (n = m)

n  (1 + k4) - m
n  (2 + k4) - m

4.8.1.2.11. Determining m and n for Rational Function Models
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Examples for
Determing m
and n

The goal is to go from a sample data set to a specific rational function. The graphs below
summarize some common shapes that rational functions can have and shows the admissible
values and the simplest case for n and m. We typically start with the simplest case. If the model
validation indicates an inadequate model, we then try other rational functions in the admissible
region.

Shape 1

Shape 2
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5.Process Improvement

1. Introduction

Definition of experimental design1.  

Uses2.  

Steps3.  

2. Assumptions

Measurement system capable1.  

Process stable2.  

Simple model3.  

Residuals well-behaved4.  

3. Choosing an Experimental Design

Set objectives1.  

Select process variables and levels2.  

Select experimental design

Completely randomized
designs

1.  

Randomized block designs2.  

Full factorial designs3.  

Fractional factorial designs4.  

Plackett-Burman designs5.  

Response surface designs6.  

Adding center point runs7.  

Improving fractional design
resolution

8.  

Three-level full factorial
designs

9.  

Three-level, mixed-level and
fractional factorial designs

10.  

3.  

4. Analysis of DOE Data

DOE analysis steps1.  

Plotting DOE data2.  

Modeling DOE data3.  

Testing and revising DOE models4.  

Interpreting DOE results5.  

Confirming DOE results6.  

DOE examples

Full factorial example1.  

Fractional factorial example 2.  

Response surface example3.  

7.  
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5. Advanced Topics

When classical designs don't work1.  

Computer-aided designs

D-Optimal designs1.  

Repairing a design2.  

2.  

Optimizing a process

Single response case1.  

Multiple response case2.  

3.  

Mixture designs

Mixture screening designs1.  

Simplex-lattice designs2.  

Simplex-centroid designs3.  

Constrained mixture designs4.  

Treating mixture and process
variables
together

5.  

4.  

Nested variation5.  

Taguchi designs6.  

John's 3/4 fractional factorial
designs

7.  

Small composite designs8.  

An EDA approach to experiment
design

9.  

6. Case Studies

Eddy current probe sensitivity study1.  

Sonoluminescent light intensity
study

2.  

7. A Glossary of DOE Terminology 8. References

Click here for a detailed table of contents
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Assumptions  [5.2.]
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5. Process Improvement

5.1. Introduction

This section
describes
the basic
concepts of
the Design
of
Experiments
(DOE or
DEX)

This section introduces the basic concepts, terminology, goals and
procedures underlying the proper statistical design of experiments.
Design of experiments is abbreviated as DOE throughout this chapter
(an alternate abbreviation, DEX, is used in DATAPLOT).

Topics covered are:

What is experimental design or DOE?●   

What are the goals or uses of DOE?●   

What are the steps in DOE?●   

5.1. Introduction
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5. Process Improvement
5.1. Introduction

5.1.1.What is experimental design?

Experimental
Design (or
DOE)
economically
maximizes
information

In an experiment, we deliberately change one or more process variables (or
factors) in order to observe the effect the changes have on one or more response
variables. The (statistical) design of experiments (DOE) is an efficient procedure
for planning experiments so that the data obtained can be analyzed to yield valid
and objective conclusions. 

DOE begins with determining the objectives of an experiment and selecting the
process factors for the study. An Experimental Design is the laying out of a
detailed experimental plan in advance of doing the experiment. Well chosen
experimental designs maximize the amount of "information" that can be obtained
for a given amount of experimental effort. 

The statistical theory underlying DOE generally begins with the concept of
process models.

Process Models for DOE

Black box
process
model

It is common to begin with a process model of the `black box' type, with several
discrete or continuous input factors that can be controlled--that is, varied at will
by the experimenter--and one or more measured output responses. The output
responses are assumed continuous. Experimental data are used to derive an
empirical (approximation) model linking the outputs and inputs. These empirical
models generally contain first and second-order terms.

Often the experiment has to account for a number of uncontrolled factors that
may be discrete, such as different machines or operators, and/or continuous such
as ambient temperature or humidity. Figure 1.1 illustrates this situation.

5.1.1. What is experimental design?
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Schematic
for a typical
process with
controlled
inputs,
outputs,
discrete
uncontrolled
factors and
continuous
uncontrolled
factors

FIGURE 1.1  A `Black Box' Process Model Schematic

Models for
DOE's

The most common empirical models fit to the experimental data take either a
linear form or quadratic form.

Linear model A linear model with two factors, X1 and X2, can be written as

Here, Y is the response for given levels of the main effects X1 and X2 and the
X1X2 term is included to account for a possible interaction effect between X1 and
X2. The constant 0 is the response of Y when both main effects are 0.

For a more complicated example, a linear model with three factors X1, X2, X3
and one response, Y, would look like (if all possible terms were included in the
model)

5.1.1. What is experimental design?
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The three terms with single "X's" are the main effects terms. There are k(k-1)/2 =
3*2/2 = 3 two-way interaction terms and 1 three-way interaction term (which is
often omitted, for simplicity). When the experimental data are analyzed, all the
unknown " " parameters are estimated and the coefficients of the "X" terms are
tested to see which ones are significantly different from 0.

Quadratic
model

A second-order (quadratic) model (typically used in response surface DOE's
with suspected curvature) does not include the three-way interaction term but
adds three more terms to the linear model, namely

.

Note: Clearly, a full model could include many cross-product (or interaction)
terms involving squared X's. However, in general these terms are not needed and
most DOE software defaults to leaving them out of the model.
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5. Process Improvement
5.1. Introduction

5.1.2.What are the uses of DOE?

DOE is a
multipurpose
tool that can
help in many
situations

Below are seven examples illustrating situations in which experimental design can be used
effectively:

Choosing Between Alternatives●   

Selecting the Key Factors Affecting a Response●   

Response Surface Modeling to:

Hit a Target❍   

Reduce Variability❍   

Maximize or Minimize a Response❍   

Make a Process Robust (i.e., the process gets the "right" results even though there
are uncontrollable "noise" factors)

❍   

Seek Multiple Goals❍   

●   

Regression Modeling●   

Choosing Between Alternatives (Comparative Experiment)

A common
use is
planning an
experiment
to gather
data to make
a decision
between two
or more
alternatives

Supplier A vs. supplier B? Which new additive is the most effective? Is catalyst `x' an
improvement over the existing catalyst? These and countless other choices between alternatives
can be presented to us in a never-ending parade. Often we have the choice made for us by outside
factors over which we have no control. But in many cases we are also asked to make the choice.
It helps if one has valid data to back up one's decision.

The preferred solution is to agree on a measurement by which competing choices can be
compared, generate a sample of data from each alternative, and compare average results. The
'best' average outcome will be our preference. We have performed a comparative experiment!

Types of
comparitive
studies

Sometimes this comparison is performed under one common set of conditions. This is a
comparative study with a narrow scope - which is suitable for some initial comparisons of
possible alternatives. Other comparison studies, intended to validate that one alternative is
perferred over a wide range of conditions, will purposely and systematically vary the background
conditions under which the primary comparison is made in order to reach a conclusion that will
be proven valid over a broad scope. We discuss experimental designs for each of these types of
comparisons in Sections 5.3.3.1 and 5.3.3.2.

Selecting the Key Factors Affecting a Response (Screening Experiments)
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Selecting the
few that
matter from
the many
possible
factors

Often there are many possible factors, some of which may be critical and others which may have
little or no effect on a response. It may be desirable, as a goal by itself, to reduce the number of
factors to a relatively small set (2-5) so that attention can be focussed on controlling those factors
with appropriate specifications, control charts, etc.

Screening experiments are an efficient way, with a minimal number of runs, of determining the
important factors. They may also be used as a first step when the ultimate goal is to model a
response with a response surface. We will discuss experimental designs for screening a large
number of factors in Sections 5.3.3.3, 5.3.3.4 and 5.3.3.5.

Response Surface Modeling a Process

Some
reasons to
model a
process

Once one knows the primary variables (factors) that affect the responses of interest, a number of
additional objectives may be pursued. These include:

Hitting a Target●   

Maximizing or Minimizing a Response●   

Reducing Variation●   

Making a Process Robust●   

Seeking Multiple Goals●   

What each of these purposes have in common is that experimentation is used to fit a model that
may permit a rough, local approximation to the actual surface. Given that the particular objective
can be met with such an approximate model, the experimental effort is kept to a minimum while
still achieving the immediate goal.

These response surface modeling objectives will now be briefly expanded upon.

Hitting a Target

Often we
want to "fine
tune" a
process to
consistently
hit a target

This is a frequently encountered goal for an experiment.

One might try out different settings until the desired target is `hit' consistently. For example, a
machine tool that has been recently overhauled may require some setup `tweaking' before it runs
on target. Such action is a small and common form of experimentation. However, rather than
experimenting in an ad hoc manner until we happen to find a setup that hits the target, one can fit
a model estimated from a small experiment and use this model to determine the necessary
adjustments to hit the target.

More complex forms of experimentation, such as the determination of the correct chemical mix
of a coating that will yield a desired refractive index for the dried coat (and simultaneously
achieve specifications for other attributes), may involve many ingredients and be very sensitive to
small changes in the percentages in the mix. Fitting suitable models, based on sequentially
planned experiments, may be the only way to efficiently achieve this goal of hitting targets for
multiple responses simultaneously.

Maximizing or Minimizing a Response
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Optimizing a
process
output is a
common
goal

Many processes are being run at sub-optimal settings, some of them for years, even though each
factor has been optimized individually over time. Finding settings that increase yield or decrease
the amount of scrap and rework represent opportunities for substantial financial gain. Often,
however, one must experiment with multiple inputs to achieve a better output. Section 5.3.3.6 on
second-order designs plus material in Section 5.5.3 will be useful for these applications.

FIGURE 1.1  Pathway up the process response surface to an `optimum'

Reducing Variation

Processes
that are on
target, on
the average,
may still
have too
much
variability

A process may be performing with unacceptable consistency, meaning its internal variation is too
high.

Excessive variation can result from many causes. Sometimes it is due to the lack of having or
following standard operating procedures. At other times, excessive variation is due to certain
hard-to-control inputs that affect the critical output characteristics of the process. When this latter
situation is the case, one may experiment with these hard-to-control factors, looking for a region
where the surface is flatter and the process is easier to manage. To take advantage of such flatness
in the surface, one must use designs - such as the second-order designs of Section 5.3.3.6 - that
permit identification of these features. Contour or surface plots are useful for elucidating the key
features of these fitted models. See also 5.5.3.1.4.

Graph of
data before
variation
reduced
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It might be possible to reduce the variation by altering the setpoints (recipe) of the process, so that
it runs in a more `stable' region.

Graph of
data after
process
variation
reduced
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Finding this new recipe could be the subject of an experiment, especially if there are many input
factors that could conceivably affect the output.

Making a Process Robust

The less a
process or
product is
affected by
external
conditions,
the better it
is - this is
called
"Robustness"

An item designed and made under controlled conditions will be later `field tested' in the hands of
the customer and may prove susceptible to failure modes not seen in the lab or thought of by
design. An example would be the starter motor of an automobile that is required to operate under
extremes of external temperature. A starter that performs under such a wide range is termed
`robust' to temperature.

Designing an item so that it is robust calls for a special experimental effort. It is possible to stress
the item in the design lab and so determine the critical components affecting its performance. A
different gauge of armature wire might be a solution to the starter motor, but so might be many
other alternatives. The correct combination of factors can be found only by experimentation.

Seeking Multiple Goals
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Sometimes
we have
multiple
outputs and
we have to
compromise
to achieve
desirable
outcomes -
DOE can
help here

A product or process seldom has just one desirable output characteristic. There are usually
several, and they are often interrelated so that improving one will cause a deterioration of another.
For example: rate vs. consistency; strength vs. expense; etc.

Any product is a trade-off between these various desirable final characteristics. Understanding the
boundaries of the trade-off allows one to make the correct choices. This is done by either
constructing some weighted objective function (`desirability function') and optimizing it, or
examining contour plots of responses generated by a computer program, as given below.

Sample
contour plot
of deposition
rate and
capability

FIGURE 1.4  Overlaid contour plot of Deposition Rate and Capability (Cp)

Regression Modeling

Regression
models
(Chapter 4)
are used to
fit more
precise
models

Sometimes we require more than a rough approximating model over a local region. In such cases,
the standard designs presented in this chapter for estimating first- or second-order polynomial
models may not suffice. Chapter 4 covers the topic of experimental design and analysis for fitting
general models for a single explanatory factor. If one has multiple factors, and either a nonlinear
model or some other special model, the computer-aided designs of Section 5.5.2 may be useful.
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5. Process Improvement
5.1. Introduction

5.1.3.What are the steps of DOE?

Key steps for
DOE

Obtaining good results from a DOE involves these seven steps:

Set objectives1.  

Select process variables2.  

Select an experimental design3.  

Execute the design4.  

Check that the data are consistent with the experimental
assumptions 

5.  

Analyze and interpret the results6.  

Use/present the results (may lead to further runs or DOE's).7.  

A checklist of
practical
considerations

Important practical considerations in planning and running
experiments are

Check performance of gauges/measurement devices first.●   

Keep the experiment as simple as possible.●   

Check that all planned runs are feasible.●   

Watch out for process drifts and shifts during the run.●   

Avoid unplanned changes (e.g., swap operators at halfway
point).

●   

Allow some time (and back-up material) for unexpected events.●   

Obtain buy-in from all parties involved.●   

Maintain effective ownership of each step in the experimental
plan.

●   

Preserve all the raw data--do not keep only summary averages!●   

Record everything that happens.●   

Reset equipment to its original state after the experiment.●   

The Sequential or Iterative Approach to DOE

5.1.3. What are the steps of DOE?
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Planning to
do a sequence
of small
experiments is
often better
than relying
on one big
experiment to
give you all
the answers

It is often a mistake to believe that `one big experiment will give the
answer.'

A more useful approach to experimental design is to recognize that
while one experiment might provide a useful result, it is more
common to perform two or three, or maybe more, experiments before
a complete answer is attained. In other words, an iterative approach is
best and, in the end, most economical. Putting all one's eggs in one
basket is not advisable.

Each stage
provides
insight for
next stage

The reason an iterative approach frequently works best is because it is
logical to move through stages of experimentation, each stage
providing insight as to how the next experiment should be run.

5.1.3. What are the steps of DOE?
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5. Process Improvement

5.2.Assumptions

We should
check the
engineering
and
model-building
assumptions
that are made
in most DOE's

In all model building we make assumptions, and we also require
certain conditions to be approximately met for purposes of estimation.
This section looks at some of the engineering and mathematical
assumptions we typically make. These are:

Are the measurement systems capable for all of your
responses?

●   

Is your process stable?●   

Are your responses likely to be approximated well by simple
polynomial models?

●   

Are the residuals (the difference between the model predictions
and the actual observations) well behaved?

●   

5.2. Assumptions
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5. Process Improvement
5.2. Assumptions

5.2.1. Is the measurement system capable?

Metrology
capabilities
are a key
factor in most
experiments

It is unhelpful to find, after you have finished all the experimental
runs, that the measurement devices you have at your disposal cannot
measure the changes you were hoping to see. Plan to check this out
before embarking on the experiment itself. Measurement process
characterization is covered in Chapter 2.

SPC check of
measurement
devices

In addition, it is advisable, especially if the experimental material is
planned to arrive for measurement over a protracted period, that an
SPC (i.e., quality control) check is kept on all measurement devices
from the start to the conclusion of the whole experimental project.
Strange experimental outcomes can often be traced to `hiccups' in the
metrology system.

5.2.1. Is the measurement system capable?
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5. Process Improvement
5.2. Assumptions

5.2.2. Is the process stable?

Plan to
examine
process
stability as
part of your
experiment

Experimental runs should have control runs that are made at the
`standard' process setpoints, or at least at some standard operating
recipe. The experiment should start and end with such runs. A plot of
the outcomes of these control runs will indicate if the underlying process
itself has drifted or shifted during the experiment.

It is desirable to experiment on a stable process. However, if this cannot
be achieved, then the process instability must be accounted for in the
analysis of the experiment. For example, if the mean is shifting with
time (or experimental trial run), then it will be necessary to include a
trend term in the experimental model (i.e., include a time variable or a
run number variable).

5.2.2. Is the process stable?
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5. Process Improvement
5.2. Assumptions

5.2.3. Is there a simple model?

Polynomial
approximation
models only
work for
smoothly
varying
outputs

In this chapter we restrict ourselves to the case for which the response
variable(s) are continuous outputs denoted as Y. Over the experimental
range, the outputs must not only be continuous, but also reasonably
smooth. A sharp falloff in Y values is likely to be missed by the
approximating polynomials that we use because these polynomials
assume a smoothly curving underlying response surface.

Piecewise
smoothness
requires
separate
experiments

If the surface under investigation is known to be only piecewise
smooth, then the experiments will have to be broken up into separate
experiments, each investigating the shape of the separate sections. A
surface that is known to be very jagged (i.e., non-smooth) will not be
successfully approximated by a smooth polynomial.

Examples of
piecewise
smooth and
jagged
responses

     Piecewise Smooth                                       Jagged
FIGURE 2.1  Examples of Piecewise

Smooth and Jagged Responses

5.2.3. Is there a simple model?
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5. Process Improvement
5.2. Assumptions

5.2.4.Are the model residuals well-behaved?

Residuals are
the
differences
between the
observed and
predicted
responses

Residuals are estimates of experimental error obtained by subtracting the observed responses
from the predicted responses.

The predicted response is calculated from the chosen model, after all the unknown model
parameters have been estimated from the experimental data.

Examining residuals is a key part of all statistical modeling, including DOE's. Carefully looking
at residuals can tell us whether our assumptions are reasonable and our choice of model is
appropriate.

Residuals are
elements of
variation
unexplained
by fitted
model

Residuals can be thought of as elements of variation unexplained by the fitted model. Since this is
a form of error, the same general assumptions apply to the group of residuals that we typically use
for errors in general: one expects them to be (roughly) normal and (approximately) independently
distributed with a mean of 0 and some constant variance.

Assumptions
for residuals

These are the assumptions behind ANOVA and classical regression analysis. This means that an
analyst should expect a regression model to err in predicting a response in a random fashion; the
model should predict values higher than actual and lower than actual with equal probability. In
addition, the level of the error should be independent of when the observation occurred in the
study, or the size of the observation being predicted, or even the factor settings involved in
making the prediction. The overall pattern of the residuals should be similar to the bell-shaped
pattern observed when plotting a histogram of normally distributed data.

We emphasize the use of graphical methods to examine residuals.

Departures
indicate
inadequate
model

Departures from these assumptions usually mean that the residuals contain structure that is not
accounted for in the model. Identifying that structure and adding term(s) representing it to the
original model leads to a better model.

Tests for Residual Normality

Plots for
examining
residuals

Any graph suitable for displaying the distribution of a set of data is suitable for judging the
normality of the distribution of a group of residuals.  The three most common types are:

histograms,1.  

normal probability plots, and2.  

dot plots.3.  

5.2.4. Are the model residuals well-behaved?
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Histogram

The histogram is a frequency plot obtained by placing the data in regularly spaced cells and
plotting each cell frequency versus the center of the cell. Figure 2.2 illustrates an approximately
normal distribution of residuals produced by a model for a calibration process. We have
superimposed a normal density function on the histogram.

Small sample
sizes

Sample sizes of residuals are generally small (<50) because experiments have limited treatment
combinations, so a histogram is not be the best choice for judging the distribution of residuals. A
more sensitive graph is the normal probability plot.

Normal
probability
plot

The steps in forming a normal probability plot are:

Sort the residuals into ascending order.●   

Calculate the cumulative probability of each residual using the formula:

P(i-th residual) = i/(N+1)

with P denoting the cumulative probability of a point, i is the order of the value in the list
and N is the number of entries in the list.

●   

Plot the calculated p-values versus the residual value on normal probability paper.●   

The normal probability plot should produce an approximately straight line if the points come
from a normal distribution.

5.2.4. Are the model residuals well-behaved?
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Sample
normal
probability
plot with
overlaid dot
plot

Figure 2.3 below illustrates the normal probability graph created from the same group of residuals
used for Figure 2.2.

This graph includes the addition of a dot plot. The dot plot is the collection of points along the left
y-axis. These are the values of the residuals. The purpose of the dot plot is to provide an
indication the distribution of the residuals.

"S" shaped
curves
indicate
bimodal
distribution

Small departures from the straight line in the normal probability plot are common, but a clearly
"S" shaped curve on this graph suggests a bimodal distribution of residuals. Breaks near the
middle of this graph are also indications of abnormalities in the residual distribution.

NOTE: Studentized residuals are residuals converted to a scale approximately representing the
standard deviation of an individual residual from the center of the residual distribution. The
technique used to convert residuals to this form produces a Student's t distribution of values.

Independence of Residuals Over Time

Run sequence
plot

If the order of the observations in a data table represents the order of execution of each treatment
combination, then a plot of the residuals of those observations versus the case order or time order
of the observations will test for any time dependency. These are referred to as run sequence plots.

5.2.4. Are the model residuals well-behaved?
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Sample run
sequence plot
that exhibits
a time trend

Sample run
sequence plot
that does not
exhibit a time
trend

5.2.4. Are the model residuals well-behaved?
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Interpretation
of the sample
run sequence
plots

The residuals in Figure 2.4 suggest a time trend, while those in Figure 2.5 do not. Figure 2.4
suggests that the system was drifting slowly to lower values as the investigation continued. In
extreme cases a drift of the equipment will produce models with very poor ability to account for
the variability in the data (low R2).

If the investigation includes centerpoints, then plotting them in time order may produce a more
clear indication of a time trend if one exists. Plotting the raw responses in time sequence can also
sometimes detect trend changes in a process that residual plots might not detect.

Plot of Residuals Versus Corresponding Predicted Values

Check for
increasing
residuals as
size of fitted
value
increases

Plotting residuals versus the value of a fitted response should produce a distribution of points
scattered randomly about 0, regardless of the size of the fitted value. Quite commonly, however,
residual values may increase as the size of the fitted value increases. When this happens, the
residual cloud becomes "funnel shaped" with the larger end toward larger fitted values; that is, the
residuals have larger and larger scatter as the value of the response increases. Plotting the
absolute values of the residuals instead of the signed values will produce a "wedge-shaped"
distribution; a smoothing function is added to each graph which helps to show the trend.

5.2.4. Are the model residuals well-behaved?
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Sample
residuals
versus fitted
values plot
showing
increasing
residuals

Sample
residuals
versus fitted
values plot
that does not
show
increasing
residuals

5.2.4. Are the model residuals well-behaved?
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Interpretation
of the
residuals
versus fitted
values plots

A residual distribution such as that in Figure 2.6 showing a trend to higher absolute residuals as
the value of the response increases suggests that one should transform the response, perhaps by
modeling its logarithm or square root, etc., (contractive transformations). Transforming a
response in this fashion often simplifies its relationship with a predictor variable and leads to
simpler models. Later sections discuss transformation in more detail. Figure 2.7 plots the
residuals after a transformation on the response variable was used to reduce the scatter. Notice the
difference in scales on the vertical axes.

Independence of Residuals from Factor Settings

Sample
residuals
versus factor
setting plot

5.2.4. Are the model residuals well-behaved?
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Sample
residuals
versus factor
setting plot
after adding
a quadratic
term

5.2.4. Are the model residuals well-behaved?
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Interpreation
of residuals
versus factor
setting plots

Figure 2.8 shows that the size of the residuals changed as a function of a predictor's settings. A
graph like this suggests that the model needs a higher-order term in that predictor or that one
should transform the predictor using a logarithm or square root, for example. Figure 2.9 shows
the residuals for the same response after adding a quadratic term. Notice the single point widely
separated from the other residuals in Figure 2.9. This point is an "outlier." That is, its position is
well within the range of values used for this predictor in the investigation, but its result was
somewhat lower than the model predicted. A signal that curvature is present is a trace resembling
a "frown" or a "smile" in these graphs.

Sample
residuals
versus factor
setting plot
lacking one
or more
higher-order
terms

5.2.4. Are the model residuals well-behaved?

http://www.itl.nist.gov/div898/handbook/pri/section2/pri24.htm (9 of 10) [5/1/2006 10:30:22 AM]



Interpretation
of plot

The example given in Figures 2.8 and 2.9 obviously involves five levels of the predictor. The
experiment utilized a response surface design. For the simple factorial design that includes center
points, if the response model being considered lacked one or more higher-order terms, the plot of
residuals versus factor settings might appear as in Figure 2.10.

Graph
indicates
prescence of
curvature

While the graph gives a definite signal that curvature is present, identifying the source of that
curvature is not possible due to the structure of the design. Graphs generated using the other
predictors in that situation would have very similar appearances.

Additional
discussion of
residual
analysis

Note: Residuals are an important subject discussed repeatedly in this Handbook. For example,
graphical residual plots using Dataplot are discussed in Chapter 1 and the general examination of
residuals as a part of model building is discussed in Chapter 4.

5.2.4. Are the model residuals well-behaved?
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5. Process Improvement

5.3.Choosing an experimental design

Contents of
Section 3

This section describes in detail the process of choosing an experimental
design to obtain the results you need. The basic designs an engineer
needs to know about are described in detail.

Note that
this section
describes
the basic
designs used
for most
engineering
and
scientific
applications

Set objectives1.  

Select process variables and levels2.  

Select experimental design

Completely randomized designs1.  

Randomized block designs

Latin squares1.  

Graeco-Latin squares2.  

Hyper-Graeco-Latin squares3.  

2.  

Full factorial designs

Two-level full factorial designs1.  

Full factorial example2.  

Blocking of full factorial designs3.  

3.  

Fractional factorial designs

A 23-1 half-fraction design1.  

How to construct a 23-1  design2.  

Confounding3.  

Design resolution4.  

Use of fractional factorial designs5.  

Screening designs6.  

Fractional factorial designs summary tables7.  

4.  

Plackett-Burman designs5.  

Response surface (second-order) designs

Central composite designs1.  

6.  

3.  

5.3. Choosing an experimental design
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Box-Behnken designs2.  

Response surface design comparisons3.  

Blocking a response surface design4.  

Adding center points7.  

Improving fractional design resolution

Mirror-image foldover designs1.  

Alternative foldover designs2.  

8.  

Three-level full factorial designs9.  

Three-level, mixed level and fractional factorial designs10.  

5.3. Choosing an experimental design
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5. Process Improvement
5.3. Choosing an experimental design

5.3.1.What are the objectives?

Planning an
experiment
begins with
carefully
considering
what the
objectives
(or goals)
are

The objectives for an experiment are best determined by a team
discussion. All of the objectives should be written down, even the
"unspoken" ones.

The group should discuss which objectives are the key ones, and which
ones are "nice but not really necessary". Prioritization of the objectives
helps you decide which direction to go with regard to the selection of
the factors, responses and the particular design. Sometimes prioritization
will force you to start over from scratch when you realize that the
experiment you decided to run does not meet one or more critical
objectives.

Types of
designs

Examples of goals were given earlier in Section 5.1.2, in which we
described four broad categories of experimental designs, with various
objectives for each. These were:

Comparative designs to:

choose between alternatives, with narrow scope, suitable
for an initial comparison (see Section 5.3.3.1)

❍   

choose between alternatives, with broad scope, suitable for
a confirmatory comparison (see Section 5.3.3.2)

❍   

●   

Screening designs to identify which factors/effects are important

when you have 2 - 4 factors and can perform a full factorial
(Section 5.3.3.3)

❍   

when you have more than 3 factors and want to begin with
as small a design as possible (Section 5.3.3.4 and 5.3.3.5)

❍   

when you have some qualitative factors, or you have some
quantitative factors that are known to have a
non-monotonic effect (Section 3.3.3.10)

❍   

Note that some authors prefer to restrict the term screening design
to the case where you are trying to extract the most important
factors from a large (say > 5) list of initial factors (usually a
fractional factorial design). We include the case with a smaller

●   

5.3.1. What are the objectives?
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number of factors, usually a full factorial design, since the basic
purpose and analysis is similar.

Response Surface modeling to achieve one or more of the
following objectives:

hit a target❍   

maximize or minimize a response❍   

reduce variation by locating a region where the process is
easier to manage

❍   

make a process robust (note: this objective may often be
accomplished with screening designs rather than with
response surface designs - see Section 5.5.6)

❍   

●   

Regression modeling
to estimate a precise model, quantifying the dependence of
response variable(s) on process inputs.

❍   

●   

Based on
objective,
where to go
next

After identifying the objective listed above that corresponds most
closely to your specific goal, you can

proceed to the next section in which we discuss selecting
experimental factors

●   

and then

select the appropriate design named in section 5.3.3 that suits
your objective (and follow the related links).

●   

5.3.1. What are the objectives?
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5. Process Improvement
5.3. Choosing an experimental design

5.3.2.How do you select and scale the process
variables?

Guidelines
to assist the
engineering
judgment
process of
selecting
process
variables
for a DOE

Process variables include both inputs and outputs - i.e., factors and responses. The
selection of these variables is best done as a team effort. The team should

Include all important factors (based on engineering judgment).●   

Be bold, but not foolish, in choosing the low and high factor levels.●   

Check the factor settings for impractical or impossible combinations - i.e.,
very low pressure and very high gas flows.

●   

Include all relevant responses.●   

Avoid using only responses that combine two or more measurements of the
process. For example, if interested in selectivity (the ratio of two etch
rates), measure both rates, not just the ratio.

●   

Be careful
when
choosing
the
allowable
range for
each factor

We have to choose the range of the settings for input factors, and it is wise to give
this some thought beforehand rather than just try extreme values. In some cases,
extreme values will give runs that are not feasible; in other cases, extreme ranges
might move one out of a smooth area of the response surface into some jagged
region, or close to an asymptote.

Two-level
designs
have just a 
"high" and
a "low"
setting for
each factor

The most popular experimental designs are two-level designs. Why only two
levels? There are a number of good reasons why two is the most common choice
amongst engineers: one reason is that it is ideal for screening designs, simple and
economical; it also gives most of the information required to go to a multilevel
response surface experiment if one is needed.

5.3.2. How do you select and scale the process variables?
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Consider
adding
some
center
points to
your
two-level
design

The term "two-level design" is something of a misnomer, however, as it is
recommended to include some center points during the experiment (center points
are located in the middle of the design `box').

Notation for 2-Level Designs

Matrix
notation for
describing
an
experiment

The standard layout for a 2-level design uses +1 and -1 notation to denote the
"high level" and the "low level" respectively, for each factor. For example, the
matrix below

 Factor 1 (X1) Factor 2 (X2)
Trial 1 -1 -1
Trial 2 +1 -1
Trial 3 -1 +1
Trial 4 +1 +1

describes an experiment in which 4 trials (or runs) were conducted with each
factor set to high or low during a run according to whether the matrix had a +1 or
-1 set for the factor during that trial. If the experiment had more than 2 factors,
there would be an additional column in the matrix for each additional factor.

Note: Some authors shorten the matrix notation for a two-level design by just
recording the plus and minus signs, leaving out the "1's".

Coding the
data

The use of +1 and -1 for the factor settings is called coding the data. This aids in
the interpretation of the coefficients fit to any experimental model. After factor
settings are coded, center points have the value "0". Coding is described in more
detail in the DOE glossary.

The Model or Analysis Matrix

5.3.2. How do you select and scale the process variables?
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Design
matrices

If we add an "I" column and an "X1*X2" column to the matrix of 4 trials for a
two-factor experiment described earlier, we obtain what is known as the model or
analysis matrix for this simple experiment, which is shown below. The model
matrix for a three-factor experiment is shown later in this section.

I X1 X2 X1*X2
+1 -1 -1 +1
+1 +1 -1 -1
+1 -1 +1 -1
+1 +1 +1 +1

Model for
the
experiment

The model for this experiment is

and the "I" column of the design matrix has all 1's to provide for the 0 term. The
X1*X2 column is formed by multiplying the "X1" and "X2" columns together,
row element by row element. This column gives interaction term for each trial.

Model in
matrix
notation

In matrix notation, we can summarize this experiment by

Y = X  + experimental error

for which Xis the 4 by 4 design matrix of 1's and -1's shown above,  is the vector

of unknown model coefficients  and Y is a vector consisting of
the four trial response observations.

Orthogonal Property of Scaling in a 2-Factor Experiment

Coding
produces
orthogonal
columns

Coding is sometime called "orthogonal coding" since all the columns of a coded
2-factor design matrix (except the "I" column) are typically orthogonal. That is,
the dot product for any pair of columns is zero. For example, for X1 and X2:
(-1)(-1) + (+1)(-1) + (-1)(+1) + (+1)(+1) = 0.

5.3.2. How do you select and scale the process variables?
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5. Process Improvement
5.3. Choosing an experimental design

5.3.3.How do you select an experimental
design?

A design is
selected
based on the
experimental
objective
and the
number of
factors

The choice of an experimental design depends on the objectives of the
experiment and the number of factors to be investigated.

Experimental Design Objectives

Types of
designs are
listed here
according to
the
experimental
objective
they meet

Types of designs are listed here according to the experimental objective
they meet.

Comparative objective: If you have one or several factors under
investigation, but the primary goal of your experiment is to make
a conclusion about one a-priori important factor, (in the presence
of, and/or in spite of the existence of the other factors), and the
question of interest is whether or not that factor is "significant",
(i.e., whether or not there is a significant change in the response
for different levels of that factor), then you have a comparative
problem and you need a comparative design solution.

●   

Screening objective: The primary purpose of the experiment is
to select or screen out the few important main effects from the
many less important ones. These screening designs are also
termed main effects designs.

●   

Response Surface (method) objective: The experiment is
designed to allow us to estimate interaction and even quadratic
effects, and therefore give us an idea of the (local) shape of the
response surface we are investigating. For this reason, they are
termed response surface method (RSM) designs. RSM designs are
used to:

Find improved or optimal process settings❍   

●   

5.3.3. How do you select an experimental design?
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Troubleshoot process problems and weak points❍   

Make a product or process more robust against external
and non-controllable influences. "Robust" means relatively
insensitive to these influences.

❍   

Optimizing responses when factors are proportions of a
mixture objective: If you have factors that are proportions of a
mixture and you want to know what the "best" proportions of the
factors are so as to maximize (or minimize) a response, then you
need a mixture design.

●   

Optimal fitting of a regression model objective: If you want to
model a response as a mathematical function (either known or
empirical) of a few continuous factors and you desire "good"
model parameter estimates (i.e., unbiased and minimum
variance), then you need a regression design.

●   

Mixture and
regression
designs

Mixture designs are discussed briefly in section 5 (Advanced Topics)
and regression designs for a single factor are discussed in chapter 4.
Selection of designs for the remaining 3 objectives is summarized in the
following table.

Summary
table for
choosing an
experimental
design for
comparative,
screening,
and
response
surface
designs

TABLE 3.1  Design Selection Guideline

Number
of Factors

Comparative
Objective

Screening
Objective

Response
Surface

Objective

1

1-factor
completely
randomized

design

_ _

2 - 4
Randomized
block design

Full or fractional
factorial

Central
composite or
Box-Behnken

5 or more
Randomized
block design

Fractional factorial
or Plackett-Burman

Screen first to
reduce number

of factors

Resources
and degree
of control
over wrong
decisions

Choice of a design from within these various types depends on the
amount of resources available and the degree of control over making
wrong decisions (Type I and Type II errors for testing hypotheses) that
the experimenter desires.

5.3.3. How do you select an experimental design?
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Save some
runs for
center points
and "redos"
that might
be needed

It is a good idea to choose a design that requires somewhat fewer runs
than the budget permits, so that center point runs can be added to check
for curvature in a 2-level screening design and backup resources are
available to redo runs that have processing mishaps.

5.3.3. How do you select an experimental design?
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.1.Completely randomized designs

These designs
are for studying
the effects of
one primary
factor without
the need to take
other nuisance
factors into
account

Here we consider completely randomized designs that have one
primary factor. The experiment compares the values of a response
variable based on the different levels of that primary factor.

For completely randomized designs, the levels of the primary factor
are randomly assigned to the experimental units. By randomization,
we mean that the run sequence of the experimental units is
determined randomly. For example, if there are 3 levels of the
primary factor with each level to be run 2 times, then there are 6
factorial possible run sequences (or 6! ways to order the
experimental trials). Because of the replication, the number of unique
orderings is 90 (since 90 = 6!/(2!*2!*2!)). An example of an
unrandomized design would be to always run 2 replications for the
first level, then 2 for the second level, and finally 2 for the third
level. To randomize the runs, one way would be to put 6 slips of
paper in a box with 2 having level 1, 2 having level 2, and 2 having
level 3. Before each run, one of the slips would be drawn blindly
from the box and the level selected would be used for the next run of
the experiment.

Randomization
typically
performed by
computer
software

In practice, the randomization is typically performed by a computer
program (in Dataplot, see the Generate Random Run Sequence menu
under the main DEX menu). However, the randomization can also be
generated from random number tables or by some physical
mechanism (e.g., drawing the slips of paper).

Three key
numbers

All completely randomized designs with one primary factor are
defined by 3 numbers:

k = number of factors (= 1 for these designs)
L = number of levels
n = number of replications

and the total sample size (number of runs) is N = k x L x n.

5.3.3.1. Completely randomized designs
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Balance Balance dictates that the number of replications be the same at each
level of the factor (this will maximize the sensitivity of subsequent
statistical t (or F) tests).

Typical
example of a
completely
randomized
design

A typical example of a completely randomized design is the
following:

k = 1 factor (X1)
L = 4 levels of that single factor (called "1", "2", "3", and "4")
n = 3 replications per level
N = 4 levels * 3 replications per level = 12 runs

A sample
randomized
sequence of
trials

The randomized sequence of trials might look like:

X1
3
1
4
2
2
1
3
4
1
2
4
3

Note that in this example there are 12!/(3!*3!*3!*3!) = 369,600 ways
to run the experiment, all equally likely to be picked by a
randomization procedure.

Model for a
completely
randomized
design

The model for the response is

Yi,j =  + Ti + random error

with

Yi,j being any observation for which X1 = i
 (or mu) is the general location parameter

Ti is the effect of having treatment level i

Estimates and Statistical Tests

5.3.3.1. Completely randomized designs
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Estimating and
testing model
factor levels

Estimate for  :      = the average of all the data

Estimate for Ti :      - 

with  = average of all Y for which X1 = i.

Statistical tests for levels of X1 are shown in the section on one-way
ANOVA in Chapter 7.
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.2.Randomized block designs

Blocking to
"remove" the
effect of
nuisance
factors

For randomized block designs, there is one factor or variable that is of
primary interest. However, there are also several other nuisance
factors.

Nuisance factors are those that may affect the measured result, but are
not of primary interest. For example, in applying a treatment, nuisance
factors might be the specific operator who prepared the treatment, the
time of day the experiment was run, and the room temperature. All
experiments have nuisance factors. The experimenter will typically
need to spend some time deciding which nuisance factors are
important enough to keep track of or control, if possible, during the
experiment.

Blocking used
for nuisance
factors that
can be
controlled

When we can control nuisance factors, an important technique known
as blocking can be used to reduce or eliminate the contribution to
experimental error contributed by nuisance factors. The basic concept
is to create homogeneous blocks in which the nuisance factors are held
constant and the factor of interest is allowed to vary. Within blocks, it
is possible to assess the effect of different levels of the factor of
interest without having to worry about variations due to changes of the
block factors, which are accounted for in the analysis.

Definition of
blocking
factors

A nuisance factor is used as a blocking factor if every level of the
primary factor occurs the same number of times with each level of the
nuisance factor. The analysis of the experiment will focus on the
effect of varying levels of the primary factor within each block of the
experiment.

Block for a
few of the
most
important
nuisance
factors

The general rule is:

"Block what you can, randomize what you cannot."

Blocking is used to remove the effects of a few of the most important
nuisance variables. Randomization is then used to reduce the
contaminating effects of the remaining nuisance variables.

5.3.3.2. Randomized block designs
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Table of
randomized
block designs

One useful way to look at a randomized block experiment is to
consider it as a collection of completely randomized experiments, each
run within one of the blocks of the total experiment.

Randomized Block Designs (RBD)
Name of
Design

Number of
Factors

k

Number of
Runs

n

2-factor RBD 2 L1 * L2

3-factor RBD 3 L1 * L2 * L3

4-factor RBD 4 L1 * L2 * L3 * L4

. . .
k-factor RBD k L1 * L2 * ... * Lk

with

L1 = number of levels (settings) of factor 1
L2 = number of levels (settings) of factor 2
L3 = number of levels (settings) of factor 3
L4 = number of levels (settings) of factor 4

   .
   .
   .
 

Lk = number of levels (settings) of factor k

Example of a Randomized Block Design

Example of a
randomized
block design

Suppose engineers at a semiconductor manufacturing facility want to
test whether different wafer implant material dosages have a
significant effect on resistivity measurements after a diffusion process
taking place in a furnace. They have four different dosages they want
to try and enough experimental wafers from the same lot to run three
wafers at each of the dosages.

Furnace run
is a nuisance
factor

The nuisance factor they are concerned with is "furnace run" since it is
known that each furnace run differs from the last and impacts many
process parameters.

5.3.3.2. Randomized block designs
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Ideal would
be to
eliminate
nuisance
furnace factor

An ideal way to run this experiment would be to run all the 4x3=12
wafers in the same furnace run. That would eliminate the nuisance
furnace factor completely. However, regular production wafers have
furnace priority, and only a few experimental wafers are allowed into
any furnace run at the same time.

Non-Blocked
method

A non-blocked way to run this experiment would be to run each of the
twelve experimental wafers, in random order, one per furnace run.
That would increase the experimental error of each resistivity
measurement by the run-to-run furnace variability and make it more
difficult to study the effects of the different dosages. The blocked way
to run this experiment, assuming you can convince manufacturing to
let you put four experimental wafers in a furnace run, would be to put
four wafers with different dosages in each of three furnace runs. The
only randomization would be choosing which of the three wafers with
dosage 1 would go into furnace run 1, and similarly for the wafers
with dosages 2, 3 and 4.

Description of
the
experiment

Let X1 be dosage "level" and X2 be the blocking factor furnace run.
Then the experiment can be described as follows:

k = 2 factors (1 primary factor X1 and 1 blocking factor X2)
L1 = 4 levels of factor X1
L2 = 3 levels of factor X2
n = 1 replication per cell
N =L1 * L2 = 4 * 3 = 12 runs

Design trial
before
randomization

Before randomization, the design trials look like:

X1 X2
1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3
4 1
4 2
4 3

5.3.3.2. Randomized block designs
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Matrix
representation

An alternate way of summarizing the design trials would be to use a
4x3 matrix whose 4 rows are the levels of the treatment X1 and whose
columns are the 3 levels of the blocking variable X2. The cells in the
matrix have indices that match the X1, X2 combinations above.

By extension, note that the trials for any K-factor randomized block
design are simply the cell indices of a K dimensional matrix.

Model for a Randomized Block Design

Model for a
randomized
block design

The model for a randomized block design with one nuisance variable
is

Yi,j =  + Ti + Bj + random error

where

Yi,j is any observation for which X1 = i and X2 = j
X1 is the primary factor
X2 is the blocking factor

 is the general location parameter (i.e., the mean)
Ti is the effect for being in treatment i (of factor X1)
Bj is the effect for being in block j (of factor X2)

Estimates for a Randomized Block Design

Estimating
factor effects
for a
randomized
block design

Estimate for  :      = the average of all the data

Estimate for Ti :      - 

with  = average of all Y for which X1 = i.

Estimate for Bj :      - 

with  = average of all Y for which X2 = j.

5.3.3.2. Randomized block designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.2. Randomized block designs

5.3.3.2.1.Latin square and related designs

Latin square
(and related)
designs are
efficient
designs to
block from 2
to 4 nuisance
factors

Latin square designs, and the related Graeco-Latin square and
Hyper-Graeco-Latin square designs, are a special type of comparative
design.

There is a single factor of primary interest, typically called the
treatment factor, and several nuisance factors. For Latin square designs
there are 2 nuisance factors, for Graeco-Latin square designs there are
3 nuisance factors, and for Hyper-Graeco-Latin square designs there
are 4 nuisance factors.

Nuisance
factors used
as blocking
variables

The nuisance factors are used as blocking variables.

For Latin square designs, the 2 nuisance factors are divided into
a tabular grid with the property that each row and each column
receive each treatment exactly once.

1.  

As with the Latin square design, a Graeco-Latin square design is
a kxk tabular grid in which k is the number of levels of the
treatment factor. However, it uses 3 blocking variables instead
of the 2 used by the standard Latin square design.

2.  

A Hyper-Graeco-Latin square design is also a kxk tabular grid
with k denoting the number of levels of the treatment factor.
However, it uses 4 blocking variables instead of the 2 used by
the standard Latin square design.

3.  

5.3.3.2.1. Latin square and related designs
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Advantages
and
disadvantages
of Latin
square
designs

The advantages of Latin square designs are:

They handle the case when we have several nuisance factors and
we either cannot combine them into a single factor or we wish to
keep them separate.

1.  

They allow experiments with a relatively small number of runs.2.  

The disadvantages are:

The number of levels of each blocking variable must equal the
number of levels of the treatment factor.

1.  

The Latin square model assumes that there are no interactions
between the blocking variables or between the treatment
variable and the blocking variable.

2.  

Note that Latin square designs are equivalent to specific fractional
factorial designs (e.g., the 4x4 Latin square design is equivalent to a
43-1fractional factorial design).

Summary of
designs

Several useful designs are described in the table below.

Some Useful Latin Square, Graeco-Latin Square and
Hyper-Graeco-Latin Square Designs

Name of
Design

Number of
Factors

k

Number of
Runs

N

3-by-3 Latin Square 3 9
4-by-4 Latin Square 3 16
5-by-5 Latin Square 3 25
   
3-by-3 Graeco-Latin Square 4 9
4-by-4 Graeco-Latin Square 4 16
5-by-5 Graeco-Latin Square 4 25
   
4-by-4 Hyper-Graeco-Latin Square 5 16
5-by-5 Hyper-Graeco-Latin Square 5 25

Model for Latin Square and Related Designs

5.3.3.2.1. Latin square and related designs

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3321.htm (2 of 6) [5/1/2006 10:30:24 AM]



Latin square
design model
and estimates
for effect
levels

The model for a response for a latin square design is

with

Yijk denoting any observation for which

X1 = i, X2 = j, X3 = k
X1 and X2 are blocking factors
X3 is the primary factor

      denoting the general location parameter
Ri     denoting the effect for block i
Cj     denoting the effect for block j
Tk     denoting the effect for treatment k

Models for Graeco-Latin and Hyper-Graeco-Latin squares are the
obvious extensions of the Latin square model, with additional blocking
variables added.

Estimates for Latin Square Designs

Estimates Estimate for :  = the average of all the data
Estimate for Ri:  - 

 = average of all Y for which X1 = i

Estimate for Cj:  - 

 = average of all Y for which X2 = j

Estimate for Tk:  - 

 = average of all Y for which X3 = k

Randomize as
much as
design allows

Designs for Latin squares with 3-, 4-, and 5-level factors are given
next. These designs show what the treatment combinations should be
for each run. When using any of these designs, be sure to randomize
the treatment units and trial order, as much as the design allows.

For example, one recommendation is that a Latin square design be
randomly selected from those available, then randomize the run order.

Latin Square Designs for 3-, 4-, and 5-Level Factors

5.3.3.2.1. Latin square and related designs
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Designs for
3-level
factors (and 2
nuisance or
blocking
factors)

3-Level Factors
X1 X2 X3
row

blocking
factor

column
blocking

factor

treatment
factor

1 1 1
1 2 2
1 3 3
2 1 3
2 2 1
2 3 2
3 1 2
3 2 3
3 3 1

with

k = 3 factors (2 blocking factors and 1 primary factor)
L1 = 3 levels of factor X1 (block)
L2 = 3 levels of factor X2 (block)
L3 = 3 levels of factor X3 (primary)
N = L1 * L2 = 9 runs

This can alternatively be represented as

A B C
C A B
B C A

Designs for
4-level
factors (and 2
nuisance or
blocking
factors)

4-Level Factors
X1 X2 X3
row

blocking
factor

column
blocking

factor

treatment
factor

1 1 1
1 2 2
1 3 4
1 4 3
2 1 4
2 2 3
2 3 1
2 4 2
3 1 2

5.3.3.2.1. Latin square and related designs
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3 2 4
3 3 3
3 4 1
4 1 3
4 2 1
4 3 2
4 4 4

with

k = 3 factors (2 blocking factors and 1 primary factor)
L1 = 4 levels of factor X1 (block)
L2 = 4 levels of factor X2 (block)
L3 = 4 levels of factor X3 (primary)
N = L1 * L2 = 16 runs

This can alternatively be represented as

A B D C
D C A B
B D C A
C A B D

Designs for
5-level
factors (and 2
nuisance or
blocking
factors)

5-Level Factors
X1 X2 X3
row

blocking
factor

column
blocking

factor

treatment
factor

1 1 1
1 2 2
1 3 3
1 4 4
1 5 5
2 1 3
2 2 4
2 3 5
2 4 1
2 5 2
3 1 5
3 2 1
3 3 2
3 4 3
3 5 4
4 1 2

5.3.3.2.1. Latin square and related designs
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4 2 3
4 3 4
4 4 5
4 5 1
5 1 4
5 2 5
5 3 1
5 4 2
5 5 3

with

k = 3 factors (2 blocking factors and 1 primary factor)
L1 = 5 levels of factor X1 (block)
L2 = 5 levels of factor X2 (block)
L3 = 5 levels of factor X3 (primary)
N = L1 * L2 = 25 runs

This can alternatively be represented as

A B C D E
C D E A B
E A B C D
B C D E A
D E A B C

Further
information

More details on Latin square designs can be found in Box, Hunter, and
Hunter (1978).

5.3.3.2.1. Latin square and related designs
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5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.2. Randomized block designs

5.3.3.2.2.Graeco-Latin square designs

These
designs
handle 3
nuisance
factors

Graeco-Latin squares, as described on the previous page, are efficient
designs to study the effect of one treatment factor in the presence of 3
nuisance factors. They are restricted, however, to the case in which all
the factors have the same number of levels.

Randomize
as much as
design
allows

Designs for 3-, 4-, and 5-level factors are given on this page. These
designs show what the treatment combinations would be for each run.
When using any of these designs, be sure to randomize the treatment
units and trial order, as much as the design allows.

For example, one recommendation is that a Graeco-Latin square design
be randomly selected from those available, then randomize the run
order.

Graeco-Latin Square Designs for 3-, 4-, and 5-Level Factors

Designs for
3-level
factors

3-Level Factors
X1 X2 X3 X4
row

blocking
factor

column
blocking

factor

blocking
factor

treatment
factor

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1

5.3.3.2.2. Graeco-Latin square designs
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with

k = 4 factors (3 blocking factors and 1 primary factor)
L1 = 3 levels of factor X1 (block)
L2 = 3 levels of factor X2 (block)
L3 = 3 levels of factor X3 (primary)
L4 = 3 levels of factor X4 (primary)
N = L1 * L2 = 9 runs

This can alternatively be represented as (A, B, and C represent the
treatment factor and 1, 2, and 3 represent the blocking factor):

A1 B2 C3
C2 A3 B1
B3 C1 A2

Designs for
4-level
factors

4-Level Factors
X1 X2 X3 X4
row

blocking
factor

column
blocking

factor

blocking
factor

treatment
factor

1 1 1 1
1 2 2 2
1 3 3 3
1 4 4 4
2 1 2 4
2 2 1 3
2 3 4 2
2 4 3 1
3 1 3 2
3 2 4 1
3 3 1 4
3 4 2 3
4 1 4 3
4 2 3 4
4 3 2 1
4 4 1 2

with

k = 4 factors (3 blocking factors and 1 primary factor)
L1 = 3 levels of factor X1 (block)
L2 = 3 levels of factor X2 (block)
L3 = 3 levels of factor X3 (primary)
L4 = 3 levels of factor X4 (primary)

5.3.3.2.2. Graeco-Latin square designs
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N = L1 * L2 = 16 runs

This can alternatively be represented as (A, B, C, and D represent the
treatment factor and 1, 2, 3, and 4 represent the blocking factor):

A1 B2 C3 D4
D2 C1 B4 A3
B3 A4 D1 C2
C4 D3 A2 B1

Designs for
5-level
factors

5-Level Factors
X1 X2 X3 X4
row

blocking
factor

column
blocking

factor

blocking
factor

treatment
factor

1 1 1 1
1 2 2 2
1 3 3 3
1 4 4 4
1 5 5 5
2 1 2 3
2 2 3 4
2 3 4 5
2 4 5 1
2 5 1 2
3 1 3 5
3 2 4 1
3 3 5 2
3 4 1 3
3 5 2 4
4 1 4 2
4 2 5 3
4 3 1 4
4 4 2 5
4 5 3 1
5 1 5 4
5 2 1 5
5 3 2 1
5 4 3 2
5 5 4 3

with

k = 4 factors (3 blocking factors and 1 primary factor)
L1 = 3 levels of factor X1 (block)

5.3.3.2.2. Graeco-Latin square designs
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L2 = 3 levels of factor X2 (block)
L3 = 3 levels of factor X3 (primary)
L4 = 3 levels of factor X4 (primary)
N = L1 * L2 = 25 runs

This can alternatively be represented as (A, B, C, D, and E represent the
treatment factor and 1, 2, 3, 4, and 5 represent the blocking factor):

A1 B2 C3 D4 E5
C2 D3 E4 A5 B1
E3 A4 B5 C1 D2
B4 C5 D1 E2 A3
D5 E1 A2 B3 C4

Further
information

More designs are given in Box, Hunter, and Hunter (1978).

5.3.3.2.2. Graeco-Latin square designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.2. Randomized block designs

5.3.3.2.3.Hyper-Graeco-Latin square
designs

These designs
handle 4
nuisance
factors

Hyper-Graeco-Latin squares, as described earlier, are efficient designs
to study the effect of one treatment factor in the presence of 4 nuisance
factors. They are restricted, however, to the case in which all the
factors have the same number of levels.

Randomize as
much as
design allows

Designs for 4- and 5-level factors are given on this page. These
designs show what the treatment combinations should be for each run.
When using any of these designs, be sure to randomize the treatment
units and trial order, as much as the design allows.

For example, one recommendation is that a hyper-Graeco-Latin square
design be randomly selected from those available, then randomize the
run order.

Hyper-Graeco-Latin Square Designs for 4- and 5-Level Factors

Designs for
4-level factors
(there are no
3-level factor
Hyper-Graeco
Latin square
designs)

4-Level Factors
X1 X2 X3 X4 X5
row

blocking
factor

column
blocking

factor

blocking
factor

blocking
factor

treatment
factor

1 1 1 1 1
1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
2 1 4 2 3
2 2 3 1 4
2 3 2 4 1
2 4 1 3 2
3 1 2 3 4

5.3.3.2.3. Hyper-Graeco-Latin square designs
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3 2 1 4 3
3 3 4 1 2
3 4 3 2 1
4 1 3 4 2
4 2 4 3 1
4 3 1 2 4
4 4 2 1 3

with

k = 5 factors (4 blocking factors and 1 primary factor)
L1 = 4 levels of factor X1 (block)
L2 = 4 levels of factor X2 (block)
L3 = 4 levels of factor X3 (primary)
L4 = 4 levels of factor X4 (primary)
L5 = 4 levels of factor X5 (primary)
N = L1 * L2 = 16 runs

This can alternatively be represented as (A, B, C, and D represent the
treatment factor and 1, 2, 3, and 4 represent the blocking factors):

A11 B22 C33 D44
C42 D31 A24 B13
D23 C14 B41 A32
B34 A43 D12 C21

Designs for
5-level factors

5-Level Factors
X1 X2 X3 X4 X5
row

blocking
factor

column
blocking

factor

blocking
factor

blocking
factor

treatment
factor

1 1 1 1 1
1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
1 5 5 5 5
2 1 2 3 4
2 2 3 4 5
2 3 4 5 1
2 4 5 1 2
2 5 1 2 3
3 1 3 5 2
3 2 4 1 3
3 3 5 2 4

5.3.3.2.3. Hyper-Graeco-Latin square designs
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3 4 1 3 5
3 5 2 4 1
4 1 4 2 5
4 2 5 3 1
4 3 1 4 2
4 4 2 5 3
4 5 3 1 4
5 1 5 4 3
5 2 1 5 4
5 3 2 1 5
5 4 3 2 1
5 5 4 3 2

with

k = 5 factors (4 blocking factors and 1 primary factor)
L1 = 5 levels of factor X1 (block)
L2 = 5 levels of factor X2 (block)
L3 = 5 levels of factor X3 (primary)
L4 = 5 levels of factor X4 (primary)
L5 = 5 levels of factor X5 (primary)
N = L1 * L2 = 25 runs

This can alternatively be represented as (A, B, C, D, and E represent
the treatment factor and 1, 2, 3, 4, and 5 represent the blocking
factors):

A11 B22 C33 D44 E55
D23 E34 A45 B51 C12
B35 C41 D52 E31 A24
E42 A53 B14 C25 D31
C54 D15 E21 A32 B43

Further
information

More designs are given in Box, Hunter, and Hunter (1978).

5.3.3.2.3. Hyper-Graeco-Latin square designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.3.Full factorial designs

Full factorial designs in two levels

A design in
which every
setting of
every factor
appears with
every setting
of every other
factor is a
full factorial
design

A common experimental design is one with all input factors set at two
levels each. These levels are called `high' and `low' or `+1' and `-1',
respectively. A design with all possible high/low combinations of all
the input factors is called a full factorial design in two levels.

If there are k factors, each at 2 levels, a full factorial design has 2k

runs.

TABLE 3.2  Number of Runs for a 2k Full Factorial

Number of Factors Number of Runs

2 4

3 8

4 16

5 32

6 64

7 128

Full factorial
designs not
recommended
for 5 or more
factors

As shown by the above table, when the number of factors is 5 or
greater, a full factorial design requires a large number of runs and is
not very efficient. As recommended in the Design Guideline Table, a
fractional factorial design or a Plackett-Burman design is a better
choice for 5 or more factors.

5.3.3.3. Full factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.3. Full factorial designs

5.3.3.3.1.Two-level full factorial designs

Description

Graphical
representation
of a two-level
design with 3
factors

Consider the two-level, full factorial design for three factors, namely
the 23 design. This implies eight runs (not counting replications or
center point runs). Graphically, we can represent the 23 design by the
cube shown in Figure 3.1. The arrows show the direction of increase of
the factors. The numbers `1' through `8' at the corners of the design
box reference the `Standard Order' of runs (see Figure 3.1).

FIGURE 3.1  A 23 two-level, full factorial design; factors X1, X2,
X3

5.3.3.3.1. Two-level full factorial designs
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The design
matrix

In tabular form, this design is given by:

TABLE 3.3  A 23 two-level, full factorial design
table showing runs in `Standard Order'
run X1 X2 X3

1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1

The left-most column of Table 3.3, numbers 1 through 8, specifies a
(non-randomized) run order called the `Standard Order.' These
numbers are also shown in Figure 3.1. For example, run 1 is made at
the `low' setting of all three factors.

Standard Order for a 2k Level Factorial Design

Rule for
writing a 2k

full factorial
in "standard
order"

We can readily generalize the 23 standard order matrix to a 2-level full
factorial with k factors. The first (X1) column starts with -1 and
alternates in sign for all 2k runs. The second (X2) column starts with -1
repeated twice, then alternates with 2 in a row of the opposite sign
until all 2k places are filled. The third (X3) column starts with -1
repeated 4 times, then 4 repeats of +1's and so on. In general, the i-th
column (Xi) starts with 2i-1 repeats of -1 folowed by 2i-1 repeats of +1.

Example of a 23 Experiment

5.3.3.3.1. Two-level full factorial designs
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Analysis
matrix for the
3-factor
complete
factorial

An engineering experiment called for running three factors; namely,
Pressure (factor X1), Table speed (factor X2) and Down force (factor
X3), each at a `high' and `low' setting, on a production tool to
determine which had the greatest effect on product uniformity. Two
replications were run at each setting. A (full factorial) 23 design with 2
replications calls for 8*2=16 runs.

TABLE 3.4 Model or Analysis Matrix for a 23 Experiment
Model Matrix Response

Variables

I X1 X2 X1*X2 X3 X1*X3 X2*X3 X1*X2*X3
Rep

1
Rep

2

+1 -1 -1 +1 -1 +1 +1 -1 -3 -1
+1 +1 -1 -1 -1 -1 +1 +1  0 -1
+1 -1 +1 -1 -1 +1 -1 +1 -1  0
+1 +1 +1 +1 -1 -1 -1 -1 +2 +3
+1 -1 -1 +1 +1 -1 -1 +1 -1  0
+1 +1 -1 -1 +1 +1 -1 -1 +2 +1
+1 -1 +1 -1 +1 -1 +1 -1 +1 +1
+1 +1 +1 +1 +1 +1 +1 +1 +6 +5

The block with the 1's and -1's is called the Model Matrix or the
Analysis Matrix. The table formed by the columns X1, X2 and X3 is
called the Design Table or Design Matrix.

Orthogonality Properties of Analysis Matrices for 2-Factor
Experiments

Eliminate
correlation
between
estimates of
main effects
and
interactions

When all factors have been coded so that the high value is "1" and the
low value is "-1", the design matrix for any full (or suitably chosen
fractional) factorial experiment has columns that are all pairwise
orthogonal and all the columns (except the "I" column) sum to 0.

The orthogonality property is important because it eliminates
correlation between the estimates of the main effects and interactions.

5.3.3.3.1. Two-level full factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.3. Full factorial designs

5.3.3.3.2.Full factorial example

A Full Factorial Design Example

An example of
a full factorial
design with 3
factors

The following is an example of a full factorial design with 3 factors that
also illustrates replication, randomization, and added center points.

Suppose that we wish to improve the yield of a polishing operation. The
three inputs (factors) that are considered important to the operation are
Speed (X1), Feed (X2), and Depth (X3). We want to ascertain the relative
importance of each of these factors on Yield (Y).

Speed, Feed and Depth can all be varied continuously along their
respective scales, from a low to a high setting. Yield is observed to vary
smoothly when progressive changes are made to the inputs. This leads us
to believe that the ultimate response surface for Y will be smooth.

Table of factor
level settings

TABLE 3.5  High (+1), Low (-1), and Standard (0)
Settings for a Polishing Operation

 Low (-1) Standard (0) High (+1) Units
Speed 16 20 24 rpm
Feed 0.001 0.003 0.005 cm/sec

Depth 0.01 0.015 0.02 cm/sec

Factor Combinations

5.3.3.3.2. Full factorial example
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Graphical
representation
of the factor
level settings

We want to try various combinations of these settings so as to establish
the best way to run the polisher. There are eight different ways of
combining high and low settings of Speed, Feed, and Depth. These eight
are shown at the corners of the following diagram.

FIGURE 3.2  A 23 Two-level, Full Factorial Design; Factors X1, X2,
X3. (The arrows show the direction of increase of the factors.)

23 implies 8
runs

Note that if we have k factors, each run at two levels, there will be 2k

different combinations of the levels. In the present case, k = 3 and 23 = 8.

Full Model Running the full complement of all possible factor combinations means
that we can estimate all the main and interaction effects. There are three
main effects, three two-factor interactions, and a three-factor interaction,
all of which appear in the full model as follows:

A full factorial design allows us to estimate all eight `beta' coefficients
.

Standard order

5.3.3.3.2. Full factorial example
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Coded
variables in
standard order

The numbering of the corners of the box in the last figure refers to a
standard way of writing down the settings of an experiment called
`standard order'. We see standard order displayed in the following tabular
representation of the eight-cornered box. Note that the factor settings have
been coded, replacing the low setting by -1 and the high setting by 1.

Factor settings
in tabular
form

TABLE 3.6  A 23 Two-level, Full Factorial Design
Table Showing Runs in `Standard Order'

 X1 X2 X3
1 -1 -1 -1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 -1
5 -1 -1 +1
6 +1 -1 +1
7 -1 +1 +1
8 +1 +1 +1

Replication

Replication
provides
information on
variability

Running the entire design more than once makes for easier data analysis
because, for each run (i.e., `corner of the design box') we obtain an
average value of the response as well as some idea about the dispersion
(variability, consistency) of the response at that setting.

Homogeneity
of variance

One of the usual analysis assumptions is that the response dispersion is
uniform across the experimental space. The technical term is
`homogeneity of variance'. Replication allows us to check this assumption
and possibly find the setting combinations that give inconsistent yields,
allowing us to avoid that area of the factor space.

5.3.3.3.2. Full factorial example
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Factor settings
in standard
order with
replication

We now have constructed a design table for a two-level full factorial in
three factors, replicated twice.

TABLE 3.7  The 23 Full Factorial Replicated
Twice and Presented in Standard Order

 Speed, X1 Feed, X2 Depth, X3
1 16, -1 .001, -1 .01, -1
2 24, +1 .001, -1 .01, -1
3 16, -1 .005, +1 .01, -1
4 24, +1 .005, +1 .01, -1
5 16, -1 .001, -1 .02, +1
6 24, +1 .001, -1 .02, +1
7 16, -1 .005, +1 .02, +1
8 24, +1 .005, +1 .02, +1
9 16, -1 .001, -1 .01, -1
10 24, +1 .001, -1 .01, -1
11 16, -1 .005, +1 .01, -1
12 24, +1 .005, +1 .01, -1
13 16, -1 .001, -1 .02, +1
14 24, +1 .001, -1 .02, +1
15 16, -1 .005, +1 .02, +1
16 24, +1 .005, +1 .02, +1

Randomization

No
randomization
and no center
points

If we now ran the design as is, in the order shown, we would have two
deficiencies, namely:

no randomization, and1.  

no center points.2.  

5.3.3.3.2. Full factorial example
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Randomization
provides
protection
against
extraneous
factors
affecting the
results

The more freely one can randomize experimental runs, the more insurance
one has against extraneous factors possibly affecting the results, and
hence perhaps wasting our experimental time and effort. For example,
consider the `Depth' column: the settings of Depth, in standard order,
follow a `four low, four high, four low, four high' pattern.

Suppose now that four settings are run in the day and four at night, and
that (unknown to the experimenter) ambient temperature in the polishing
shop affects Yield. We would run the experiment over two days and two
nights and conclude that Depth influenced Yield, when in fact ambient
temperature was the significant influence. So the moral is: Randomize
experimental runs as much as possible.

Table of factor
settings in
randomized
order

Here's the design matrix again with the rows randomized (using the
RAND function of EXCEL). The old standard order column is also shown
for comparison and for re-sorting, if desired, after the runs are in.

TABLE 3.8  The 23 Full Factorial Replicated
Twice with Random Run Order Indicated

Random
Order

Standard
Order X1 X2 X3

1 5 -1 -1 +1
2 15 -1 +1 +1
3 9 -1 -1 -1
4 7 -1 +1 +1
5 3 -1 +1 -1
6 12 +1 +1 -1
7 6 +1 -1 +1
8 4 +1 +1 -1
9 2 +1 -1 -1

10 13 -1 -1 +1
11 8 +1 +1 +1
12 16 +1 +1 +1
13 1 -1 -1 -1
14 14 +1 -1 +1
15 11 -1 +1 -1
16 10 +1 -1 -1

5.3.3.3.2. Full factorial example
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Table showing
design matrix
with
randomization
and center
points

This design would be improved by adding at least 3 centerpoint runs
placed at the beginning, middle and end of the experiment. The final
design matrix is shown below:

TABLE 3.9  The 23 Full Factorial Replicated
Twice with Random Run Order Indicated and

Center Point Runs Added

Random
Order

Standard
Order X1 X2 X3

1  0 0 0
2 5 -1 -1 +1
3 15 -1 +1 +1
4 9 -1 -1 -1
5 7 -1 +1 +1
6 3 -1 +1 -1
7 12 +1 +1 -1
8 6 +1 -1 +1
9  0 0 0

10 4 +1 +1 -1
11 2 +1 -1 -1
12 13 -1 -1 +1
13 8 +1 +1 +1
14 16 +1 +1 +1
15 1 -1 -1 -1
16 14 +1 -1 +1
17 11 -1 +1 -1
18 10 +1 -1 -1
19  0 0 0

5.3.3.3.2. Full factorial example
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.3. Full factorial designs

5.3.3.3.3.Blocking of full factorial designs

Eliminate the
influence of
extraneous
factors by
"blocking"

We often need to eliminate the influence of extraneous factors when
running an experiment. We do this by "blocking".

Previously, blocking was introduced when randomized block designs
were discussed. There we were concerned with one factor in the
presence of one of more nuisance factors. In this section we look at a
general approach that enables us to divide 2-level factorial
experiments into blocks.

For example, assume we anticipate predictable shifts will occur while
an experiment is being run. This might happen when one has to
change to a new batch of raw materials halfway through the
experiment. The effect of the change in raw materials is well known,
and we want to eliminate its influence on the subsequent data analysis.

Blocking in a
23 factorial
design

In this case, we need to divide our experiment into two halves (2
blocks), one with the first raw material batch and the other with the
new batch. The division has to balance out the effect of the materials
change in such a way as to eliminate its influence on the analysis, and
we do this by blocking.

Example Example: An eight-run 23 full factorial has to be blocked into two
groups of four runs each. Consider the design `box' for the 23 full
factorial. Blocking can be achieved by assigning the first block to the
dark-shaded corners and the second block to the open circle corners.

5.3.3.3.3. Blocking of full factorial designs
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Graphical
representation
of blocking
scheme

FIGURE 3.3 Blocking Scheme for a 23 Using Alternate Corners

Three-factor
interaction
confounded
with the block
effect

This works because we are in fact assigning the `estimation' of the
(unwanted) blocking effect to the three-factor interaction, and because
of the special property of two-level designs called orthogonality. That
is, the three-factor interaction is "confounded" with the block effect as
will be seen shortly.

Orthogonality Orthogonality guarantees that we can always estimate the effect of one
factor or interaction clear of any influence due to any other factor or
interaction. Orthogonality is a very desirable property in DOE and this
is a major reason why two-level factorials are so popular and
successful.

5.3.3.3.3. Blocking of full factorial designs
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Table
showing
blocking
scheme

Formally, consider the 23 design table with the three-factor interaction
column added.

TABLE 3.10 Two Blocks for a 23 Design

SPEED
X1

FEED
X2

DEPTH
X3 X1*X2*X3

BLOCK

-1 -1 -1 -1 I
+1 -1 -1 +1 II
-1 +1 -1 +1 II
+1 +1 -1 -1 I
-1 -1 +1 +1 II
+1 -1 +1 -1 I
-1 +1 +1 -1 I
+1 +1 +1 +1 II

Block by
assigning the
"Block effect"
to a
high-order
interaction

Rows that have a `-1' in the three-factor interaction column are
assigned to `Block I' (rows 1, 4, 6, 7), while the other rows are
assigned to `Block II' (rows 2, 3, 5, 8). Note that the Block I rows are
the open circle corners of the design `box' above; Block II are
dark-shaded corners.

Most DOE
software will
do blocking
for you

The general rule for blocking is: use one or a combination of
high-order interaction columns to construct blocks. This gives us a
formal way of blocking complex designs. Apart from simple cases in
which you can design your own blocks, your statistical/DOE software
will do the blocking if asked, but you do need to understand the
principle behind it.

Block effects
are
confounded
with higher-
order
interactions

The price you pay for blocking by using high-order interaction
columns is that you can no longer distinguish the high-order
interaction(s) from the blocking effect - they have been `confounded,'
or `aliased.' In fact, the blocking effect is now the sum of the blocking
effect and the high-order interaction effect. This is fine as long as our
assumption about negligible high-order interactions holds true, which
it usually does.

Center points
within a block

Within a block, center point runs are assigned as if the block were a
separate experiment - which in a sense it is. Randomization takes place
within a block as it would for any non-blocked DOE.

5.3.3.3.3. Blocking of full factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.4.Fractional factorial designs

Full factorial
experiments
can require
many runs

The ASQC (1983) Glossary & Tables for Statistical Quality Control
defines fractional factorial design in the following way: "A factorial
experiment in which only an adequately chosen fraction of the
treatment combinations required for the complete factorial experiment
is selected to be run."

A carefully
chosen
fraction of
the runs may
be all that is
necessary

Even if the number of factors, k, in a design is small, the 2k runs
specified for a full factorial can quickly become very large. For
example, 26 = 64 runs is for a two-level, full factorial design with six
factors. To this design we need to add a good number of centerpoint
runs and we can thus quickly run up a very large resource requirement
for runs with only a modest number of factors.

Later
sections will
show how to
choose the
"right"
fraction for
2-level
designs -
these are
both
balanced and
orthogonal

The solution to this problem is to use only a fraction of the runs
specified by the full factorial design. Which runs to make and which to
leave out is the subject of interest here. In general, we pick a fraction
such as ½, ¼, etc. of the runs called for by the full factorial. We use
various strategies that ensure an appropriate choice of runs. The
following sections will show you how to choose an appropriate fraction
of a full factorial design to suit your purpose at hand. Properly chosen
fractional factorial designs for 2-level experiments have the desirable
properties of being both balanced and orthogonal.

2-Level
fractional
factorial
designs
emphasized

Note: We will be emphasizing fractions of two-level designs only. This
is because two-level fractional designs are, in engineering at least, by
far the most popular fractional designs. Fractional factorials where
some factors have three levels will be covered briefly in Section
5.3.3.10.

5.3.3.4. Fractional factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.1.A 23-1 design (half of a 23)

We can run a
fraction of a
full factorial
experiment
and still be
able to
estimate main
effects

Consider the two-level, full factorial design for three factors, namely
the 23 design. This implies eight runs (not counting replications or
center points). Graphically, as shown earlier, we can represent the 23

design by the following cube:

FIGURE 3.4  A 23 Full Factorial Design;
Factors X1, X2, X3. (The arrows show the direction of increase of
the factors. Numbers `1' through `8' at the corners of the design

cube reference the `Standard Order' of runs)

5.3.3.4.1. A 23-1 design (half of a 23)
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Tabular
representation
of the design

In tabular form, this design (also showing eight observations `yj'
(j = 1,...,8) is given by

TABLE 3.11  A 23 Two-level, Full Factorial Design Table Showing
Runs in `Standard Order,' Plus Observations (yj)

 X1 X2 X3 Y
1 -1 -1 -1 y1 = 33

2 +1 -1 -1 y2 = 63

3 -1 +1 -1 y3 = 41

4 +1 +1 -1 Y4 = 57

5 -1 -1 +1 y5 = 57

6 +1 -1 +1 y6 = 51

7 -1 +1 +1 y7 = 59

8 +1 +1 +1 y8 = 53

Responses in
standard
order

The right-most column of the table lists `y1' through `y8' to indicate the
responses measured for the experimental runs when listed in standard
order. For example, `y1' is the response (i.e., output) observed when
the three factors were all run at their `low' setting. The numbers
entered in the "y" column will be used to illustrate calculations of
effects.

Computing X1
main effect

From the entries in the table we are able to compute all `effects' such
as main effects, first-order `interaction' effects, etc. For example, to
compute the main effect estimate `c1' of factor X1, we compute the
average response at all runs with X1 at the `high' setting, namely
(1/4)(y2 + y4 + y6 + y8), minus the average response of all runs with X1
set at `low,' namely (1/4)(y1 + y3 + y5 + y7). That is,

c1 = (1/4) (y2 + y4 + y6 + y8) - (1/4)(y1 + y3 + y5 + y7) or
c1 = (1/4)(63+57+51+53 ) - (1/4)(33+41+57+59) = 8.5

Can we
estimate X1
main effect
with four
runs?

Suppose, however, that we only have enough resources to do four
runs. Is it still possible to estimate the main effect for X1? Or any other
main effect? The answer is yes, and there are even different choices of
the four runs that will accomplish this.

5.3.3.4.1. A 23-1 design (half of a 23)
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Example of
computing the
main effects
using only
four runs

For example, suppose we select only the four light (unshaded) corners
of the design cube. Using these four runs (1, 4, 6 and 7), we can still
compute c1 as follows:

c1 = (1/2) (y4 + y6) - (1/2) (y1 + y7) or
c1 = (1/2) (57+51) - (1/2) (33+59) = 8.

Simarly, we would compute c2, the effect due to X2, as

c2 = (1/2) (y4 + y7) - (1/2) (y1 + y6) or
c2 = (1/2) (57+59) - (1/2) (33+51) = 16.

Finally, the computation of c3 for the effect due to X3 would be

c3 = (1/2) (y6 + y7) - (1/2) (y1 + y4) or
c3 = (1/2) (51+59) - (1/2) (33+57) = 10.

Alternative
runs for
computing
main effects

We could also have used the four dark (shaded) corners of the design
cube for our runs and obtained similiar, but slightly different,
estimates for the main effects. In either case, we would have used half
the number of runs that the full factorial requires. The half fraction we
used is a new design written as 23-1. Note that 23-1 = 23/2 = 22 = 4,
which is the number of runs in this half-fraction design. In the next
section, a general method for choosing fractions that "work" will be
discussed.

Example of
how
fractional
factorial
experiments
often arise in
industry

Example: An engineering experiment calls for running three factors,
namely Pressure, Table speed, and Down force, each at a `high' and a
`low' setting, on a production tool to determine which has the greatest
effect on product uniformity. Interaction effects are considered
negligible, but uniformity measurement error requires that at least two
separate runs (replications) be made at each process setting. In
addition, several `standard setting' runs (centerpoint runs) need to be
made at regular intervals during the experiment to monitor for process
drift. As experimental time and material are limited, no more than 15
runs can be planned.

A full factorial 23 design, replicated twice, calls for 8x2 = 16 runs,
even without centerpoint runs, so this is not an option. However a 23-1

design replicated twice requires only 4x2 = 8 runs, and then we would
have 15-8 = 7 spare runs: 3 to 5 of these spare runs can be used for
centerpoint runs and the rest saved for backup in case something goes
wrong with any run. As long as we are confident that the interactions
are negligbly small (compared to the main effects), and as long as
complete replication is required, then the above replicated 23-1

fractional factorial design (with center points) is a very reasonable

5.3.3.4.1. A 23-1 design (half of a 23)
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choice.

On the other hand, if interactions are potentially large (and if the
replication required could be set aside), then the usual 23 full factorial
design (with center points) would serve as a good design.

5.3.3.4.1. A 23-1 design (half of a 23)
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.2.Constructing the 23-1 half-fraction
design

Construction
of a 23-1 half
fraction
design by
staring with
a 22 full
factorial
design

First note that, mathematically, 23-1 = 22. This gives us the first step,
which is to start with a regular 22 full factorial design. That is, we start
with the following design table.

TABLE 3.12  A Standard Order
22 Full Factorial Design Table

 X1 X2
1 -1 -1
2 +1 -1
3 -1 +1
4 +1 +1

Assign the
third factor
to the
interaction
column of a
22 design

This design has four runs, the right number for a half-fraction of a 23,
but there is no column for factor X3. We need to add a third column to
take care of this, and we do it by adding the X1*X2 interaction column.
This column is, as you will recall from full factorial designs,
constructed by multiplying the row entry for X1 with that of X2 to
obtain the row entry for X1*X2.

TABLE 3.13  A 22 Design Table
Augmented with the X1*X2
Interaction Column `X1*X2'

 X1 X2 X1*X2
1 -1 -1 +1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 +1

5.3.3.4.2. Constructing the 23-1 half-fraction design
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Design table
with X3 set
to X1*X2

We may now substitute `X3' in place of `X1*X2' in this table.

TABLE 3.15  A 23-1 Design Table
with Column X3 set to X1*X2

 X1 X2 X3
1 -1 -1 +1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 +1

Design table
with X3 set
to -X1*X2

Note that the rows of Table 3.14 give the dark-shaded corners of the
design in Figure 3.4. If we had set X3 = -X1*X2 as the rule for
generating the third column of our 23-1 design, we would have obtained:

TABLE 3.15  A 23-1 Design Table
with Column X3 set to - X1*X2

 X1 X2 X3
1 -1 -1 -1
2 +1 -1 +1
3 -1 +1 +1
4 +1 +1 -1

Main effect
estimates
from
fractional
factorial not
as good as
full factorial

This design gives the light-shaded corners of the box of Figure 3.4. Both
23-1 designs that we have generated are equally good, and both save half
the number of runs over the original 23 full factorial design. If c1, c2,
and c3 are our estimates of the main effects for the factors X1, X2, X3
(i.e., the difference in the response due to going from "low" to "high"
for an effect), then the precision of the estimates c1, c2, and c3 are not
quite as good as for the full 8-run factorial because we only have four
observations to construct the averages instead of eight; this is one price
we have to pay for using fewer runs.

Example Example: For the `Pressure (P), Table speed (T), and Down force (D)'
design situation of the previous example, here's a replicated 23-1 in
randomized run order, with five centerpoint runs (`000') interspersed
among the runs. This design table was constructed using the technique
discussed above, with D = P*T.

5.3.3.4.2. Constructing the 23-1 half-fraction design
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Design table
for the
example

TABLE 3.16  A 23-1 Design Replicated Twice,
with Five Centerpoint Runs Added

 Pattern P T D
Center
Point

1 000 0 0 0 1
2 +-- +1 -1 -1 0
3 -+- -1 +1 -1 0
4 000 0 0 0 1
5 +++ +1 +1 +1 0
6 --+ -1 -1 +1 0
7 000 0 0 0 1
8 +-- +1 -1 -1 0
9 --+ -1 -1 +1 0
10 000 0 0 0 1
11 +++ +1 +1 +1 0
12 -+- -1 +1 -1 0
13 000 0 0 0 1

5.3.3.4.2. Constructing the 23-1 half-fraction design
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.3.Confounding (also called aliasing)

Confounding
means we
have lost the
ability to
estimate
some effects
and/or
interactions

One price we pay for using the design table column X1*X2 to obtain
column X3 in Table 3.14 is, clearly, our inability to obtain an estimate of
the interaction effect for X1*X2 (i.e., c12) that is separate from an estimate
of the main effect for X3. In other words, we have confounded the main
effect estimate for factor X3 (i.e., c3) with the estimate of the interaction
effect for X1 and X2 (i.e., with c12). The whole issue of confounding is
fundamental to the construction of fractional factorial designs, and we will
spend time discussing it below.

Sparsity of
effects
assumption

In using the 23-1 design, we also assume that c12 is small compared to c3;
this is called a `sparsity of effects' assumption. Our computation of c3 is in
fact a computation of c3 + c12. If the desired effects are only confounded
with non-significant interactions, then we are OK.

A Notation and Method for Generating Confounding or Aliasing

A short way
of writing
factor column
multiplication

A short way of writing `X3 = X1*X2' (understanding that we are talking
about multiplying columns of the design table together) is: `3 = 12'
(similarly 3 = -12 refers to X3 = -X1*X2). Note that `12' refers to column
multiplication of the kind we are using to construct the fractional design
and any column multiplied by itself gives the identity column of all 1's.

Next we multiply both sides of 3=12 by 3 and obtain 33=123, or I=123
since 33=I (or a column of all 1's). Playing around with this "algebra", we
see that 2I=2123, or 2=2123, or 2=1223, or 2=13 (since 2I=2, 22=I, and
1I3=13). Similarly, 1=23.

5.3.3.4.3. Confounding (also called aliasing)
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Definition of
"design
generator" or
"generating
relation" and
"defining
relation"

I=123 is called a design generator or a generating relation for this
23-1design (the dark-shaded corners of Figure 3.4). Since there is only one
design generator for this design, it is also the defining relation for the
design. Equally, I=-123 is the design generator (and defining relation) for
the light-shaded corners of Figure 3.4. We call I=123 the defining relation
for the 23-1 design because with it we can generate (by "multiplication") the
complete confounding pattern for the design. That is, given I=123, we can
generate the set of {1=23, 2=13, 3=12, I=123}, which is the complete set of
aliases, as they are called, for this 23-1 fractional factorial design. With
I=123, we can easily generate all the columns of the half-fraction design
23-1.

Principal
fraction

Note: We can replace any design generator by its negative counterpart and
have an equivalent, but different fractional design. The fraction generated
by positive design generators is sometimes called the principal fraction.

All main
effects of 23-1

design
confounded
with
two-factor
interactions

The confounding pattern described by 1=23, 2=13, and 3=12 tells us that
all the main effects of the 23-1 design are confounded with two-factor
interactions. That is the price we pay for using this fractional design. Other
fractional designs have different confounding patterns; for example, in the
typical quarter-fraction of a 26 design, i.e., in a 26-2 design, main effects are
confounded with three-factor interactions (e.g., 5=123) and so on. In the
case of 5=123, we can also readily see that 15=23 (etc.), which alerts us to
the fact that certain two-factor interactions of a 26-2 are confounded with
other two-factor interactions.

A useful
summary
diagram for a
fractional
factorial
design

Summary: A convenient summary diagram of the discussion so far about
the 23-1 design is as follows:

FIGURE 3.5  Essential Elements of a 23-1 Design

5.3.3.4.3. Confounding (also called aliasing)
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The next section will add one more item to the above box, and then we will
be able to select the right two-level fractional factorial design for a wide
range of experimental tasks.

5.3.3.4.3. Confounding (also called aliasing)

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3343.htm (3 of 3) [5/1/2006 10:30:36 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.4.Fractional factorial design
specifications and design
resolution

Generating
relation and
diagram for
the 28-3

fractional
factorial
design

We considered the 23-1 design in the previous section and saw that its
generator written in "I = ... " form is {I = +123}. Next we look at a
one-eighth fraction of a 28 design, namely the 28-3 fractional factorial
design. Using a diagram similar to Figure 3.5, we have the following:

FIGURE 3.6  Specifications for a 28-3 Design

28-3 design
has 32 runs

Figure 3.6 tells us that a 28-3 design has 32 runs, not including
centerpoint runs, and eight factors. There are three generators since this
is a 1/8 = 2-3 fraction (in general, a 2k-p fractional factorial needs p
generators which define the settings for p additional factor columns to
be added to the 2k-p full factorial design columns - see the following
detailed description for the 28-3 design).

5.3.3.4.4. Fractional factorial design specifications and design resolution
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How to Construct a Fractional Factorial Design From the
Specification

Rule for
constructing
a fractional
factorial
design

In order to construct the design, we do the following:

Write down a full factorial design in standard order for k-p
factors (8-3 = 5 factors for the example above). In the
specification above we start with a 25 full factorial design. Such a
design has 25 = 32 rows.

1.  

Add a sixth column to the design table for factor 6, using 6 = 345
(or 6 = -345) to manufacture it (i.e., create the new column by
multiplying the indicated old columns together).

2.  

Do likewise for factor 7 and for factor 8, using the appropriate
design generators given in Figure 3.6.

3.  

The resultant design matrix gives the 32 trial runs for an 8-factor
fractional factorial design. (When actually running the
experiment, we would of course randomize the run order.

4.  

Design
generators

We note further that the design generators, written in `I = ...' form, for
the principal 28-3 fractional factorial design are:

{ I = + 3456; I = + 12457; I = +12358 }.

These design generators result from multiplying the "6 = 345" generator
by "6" to obtain "I = 3456" and so on for the other two generqators.

"Defining
relation" for
a fractional
factorial
design

The total collection of design generators for a factorial design, including
all new generators that can be formed as products of these generators,
is called a defining relation. There are seven "words", or strings of
numbers, in the defining relation for the 28-3 design, starting with the
original three generators and adding all the new "words" that can be
formed by multiplying together any two or three of these original three
words. These seven turn out to be I = 3456 = 12457 = 12358 = 12367 =
12468 = 3478 = 5678. In general, there will be (2p -1) words in the
defining relation for a 2k-p fractional factorial.

Definition of
"Resolution"

The length of the shortest word in the defining relation is called the
resolution of the design. Resolution describes the degree to which
estimated main effects are aliased (or confounded) with estimated
2-level interactions, 3-level interactions, etc.

5.3.3.4.4. Fractional factorial design specifications and design resolution
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Notation for
resolution
(Roman
numerals)

The length of the shortest word in the defining relation for the 28-3

design is four. This is written in Roman numeral script, and subscripted
as . Note that the 23-1 design has only one word, "I = 123" (or "I =
-123"), in its defining relation since there is only one design generator,
and so this fractional factorial design has resolution three; that is, we
may write .

Diagram for
a 28-3 design
showing
resolution

Now Figure 3.6 may be completed by writing it as:

FIGURE 3.7  Specifications for a 28-3, Showing Resolution IV

Resolution
and
confounding

The design resolution tells us how badly the design is confounded.
Previously, in the 23-1 design, we saw that the main effects were
confounded with two-factor interactions. However, main effects were
not confounded with other main effects. So, at worst, we have 3=12, or
2=13, etc., but we do not have 1=2, etc. In fact, a resolution II design
would be pretty useless for any purpose whatsoever!

Similarly, in a resolution IV design, main effects are confounded with at
worst three-factor interactions. We can see, in Figure 3.7, that 6=345.
We also see that 36=45, 34=56, etc. (i.e., some two-factor interactions
are confounded with certain other two-factor interactions) etc.; but we
never see anything like 2=13, or 5=34, (i.e., main effects confounded
with two-factor interactions).

5.3.3.4.4. Fractional factorial design specifications and design resolution
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The
complete
first-order
interaction
confounding
for the given
28-3 design

The complete confounding pattern, for confounding of up to two-factor
interactions, arising from the design given in Figure 3.7 is

34 = 56 = 78
35 = 46
36 = 45
37 = 48
38 = 47
57 = 68
58 = 67

All of these relations can be easily verified by multiplying the indicated
two-factor interactions by the generators. For example, to verify that
38= 47, multiply both sides of 8=1235 by 3 to get 38=125. Then,
multiply 7=1245 by 4 to get 47=125. From that it follows that 38=47. 

One or two
factors
suspected of
possibly
having
significant
first-order
interactions
can be
assigned in
such a way
as to avoid
having them
aliased

For this  fractional factorial design, 15 two-factor interactions are
aliased (confounded) in pairs or in a group of three. The remaining 28 -
15 = 13 two-factor interactions are only aliased with higher-order
interactions (which are generally assumed to be negligible). This is
verified by noting that factors "1" and "2" never appear in a length-4
word in the defining relation. So, all 13 interactions involving "1" and
"2" are clear of aliasing with any other two factor interaction.

If one or two factors are suspected of possibly having significant
first-order interactions, they can be assigned in such a way as to avoid
having them aliased.

Higher
resoulution
designs have
less severe
confounding,
but require
more runs

A resolution IV design is "better" than a resolution III design because
we have less-severe confounding pattern in the `IV' than in the `III'
situation; higher-order interactions are less likely to be significant than
low-order interactions.

A higher-resolution design for the same number of factors will,
however, require more runs and so it is `worse' than a lower order
design in that sense.

5.3.3.4.4. Fractional factorial design specifications and design resolution
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Resolution V
designs for 8
factors

Similarly, with a resolution V design, main effects would be
confounded with four-factor (and possibly higher-order) interactions,
and two-factor interactions would be confounded with certain
three-factor interactions. To obtain a resolution V design for 8 factors
requires more runs than the 28-3 design. One option, if estimating all
main effects and two-factor interactions is a requirement, is a 
design. However, a 48-run alternative (John's 3/4 fractional factorial) is
also available.

There are
many
choices of
fractional
factorial
designs -
some may
have the
same
number of
runs and
resolution,
but different
aliasing
patterns.

Note: There are other  fractional designs that can be derived
starting with different choices of design generators for the "6", "7" and
"8" factor columns. However, they are either equivalent (in terms of the
number of words of length of length of four) to the fraction with
generators 6 = 345, 7 = 1245, 8 = 1235 (obtained by relabeling the
factors), or they are inferior to the fraction given because their defining
relation contains more words of length four (and therefore more
confounded two-factor interactions). For example, the  design with
generators 6 = 12345, 7 = 135, and 8 = 245 has five length-four words
in the defining relation (the defining relation is I = 123456 = 1357 =
2458 = 2467 = 1368 = 123478 = 5678). As a result, this design would
confound more two factor-interactions (23 out of 28 possible two-factor
interactions are confounded, leaving only "12", "14", "23", "27" and
"34" as estimable two-factor interactions).

Diagram of
an
alternative
way for
generating
the 28-3

design

As an example of an equivalent "best"  fractional factorial design,
obtained by "relabeling", consider the design specified in Figure 3.8.

FIGURE 3.8  Another Way of Generating the 28-3 Design

5.3.3.4.4. Fractional factorial design specifications and design resolution
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This design is equivalent to the design specified in Figure 3.7 after
relabeling the factors as follows: 1 becomes 5, 2 becomes 8, 3 becomes
1, 4 becomes 2, 5 becomes 3, 6 remains 6, 7 becomes 4 and 8 becomes
7.

Minimum
aberration

A table given later in this chapter gives a collection of useful fractional
factorial designs that, for a given k and p, maximize the possible
resolution and minimize the number of short words in the defining
relation (which minimizes two-factor aliasing). The term for this is
"minimum aberration".

Design Resolution Summary

Commonly
used design
Resolutions

The meaning of the most prevalent resolution levels is as follows:

Resolution III Designs

Main effects are confounded (aliased) with two-factor interactions.

Resolution IV Designs

No main effects are aliased with two-factor interactions, but two-factor
interactions are aliased with each other.

Resolution V Designs

No main effect or two-factor interaction is aliased with any other main
effect or two-factor interaction, but two-factor interactions are aliased
with three-factor interactions.

5.3.3.4.4. Fractional factorial design specifications and design resolution
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.5.Use of fractional factorial designs

Use
low-resolution
designs for
screening among
main effects and
use
higher-resolution
designs when
interaction effects
and response
surfaces need to
be investigated

The basic purpose of a fractional factorial design is to
economically investigate cause-and-effect relationships of
significance in a given experimental setting. This does not differ in
essence from the purpose of any experimental design. However,
because we are able to choose fractions of a full design, and hence
be more economical, we also have to be aware that different
factorial designs serve different purposes.

Broadly speaking, with designs of resolution three, and sometimes
four, we seek to screen out the few important main effects from the
many less important others. For this reason, these designs are often
termed main effects designs, or screening designs.

On the other hand, designs of resolution five, and higher, are used
for focusing on more than just main effects in an experimental
situation. These designs allow us to estimate interaction effects and
such designs are easily augmented to complete a second-order
design - a design that permits estimation of a full second-order
(quadratic) model.

Different
purposes for
screening/RSM
designs

Within the screening/RSM strategy of design, there are a number
of functional purposes for which designs are used. For example, an
experiment might be designed to determine how to make a product
better or a process more robust against the influence of external
and non-controllable influences such as the weather. Experiments
might be designed to troubleshoot a process, to determine
bottlenecks, or to specify which component(s) of a product are
most in need of improvement. Experiments might also be designed
to optimize yield, or to minimize defect levels, or to move a
process away from an unstable operating zone. All these aims and
purposes can be achieved using fractional factorial designs and
their appropriate design enhancements.

5.3.3.4.5. Use of fractional factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.6.Screening designs

Screening
designs are an
efficient way to
identify
significant main
effects

The term `Screening Design' refers to an experimental plan that is
intended to find the few significant factors from a list of many
potential ones. Alternatively, we refer to a design as a screening
design if its primary purpose is to identify significant main effects,
rather than interaction effects, the latter being assumed an order of
magnitude less important.

Use screening
designs when you
have many
factors to
consider

Even when the experimental goal is to eventually fit a response
surface model (an RSM analysis), the first experiment should be a
screening design when there are many factors to consider.

Screening
designs are
usually
resolution III or
IV

Screening designs are typically of resolution III. The reason is that
resolution III designs permit one to explore the effects of many
factors with an efficient number of runs.

Sometimes designs of resolution IV are also used for screening
designs. In these designs, main effects are confounded with, at
worst, three-factor interactions. This is better from the confounding
viewpoint, but the designs require more runs than a resolution III
design.

Plackett-Burman
designs

Another common family of screening designs is the
Plackett-Burman set of designs, so named after its inventors. These
designs are of resolution III and will be described later.

Economical
plans for
determing
significant main
effects

In short, screening designs are economical experimental plans that
focus on determining the relative significance of many main
effects.

5.3.3.4.6. Screening designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factorial designs

5.3.3.4.7.Summary tables of useful
fractional factorial designs

Useful
fractional
factorial
designs for
up to 10
factors are
summarized
here

There are very useful summaries of two-level fractional factorial designs
for up to 11 factors, originally published in the book Statistics for
Experimenters by G.E.P. Box, W.G. Hunter, and J.S. Hunter (New
York, John Wiley & Sons, 1978). and also given in the book Design and
Analysis of Experiments, 5th edition by Douglas C. Montgomery (New
York, John Wiley & Sons, 2000).

Generator
column
notation can
use either
numbers or
letters for
the factor
columns

They differ in the notation for the design generators. Box, Hunter, and
Hunter use numbers (as we did in our earlier discussion) and
Montgomery uses capital letters according to the following scheme:

Notice the absence of the letter I. This is usually reserved for the
intercept column that is identically 1. As an example of the letter
notation, note that the design generator "6 = 12345" is equivalent to "F =
ABCDE".

5.3.3.4.7. Summary tables of useful fractional factorial designs
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Details of
the design
generators,
the defining
relation, the
confounding
structure,
and the
design
matrix

TABLE 3.17 catalogs these useful fractional factorial designs using the
notation previously described in FIGURE 3.7.

Clicking on the  specification for a given design provides details

(courtesy of Dataplot files) of the design generators, the defining
relation, the confounding structure (as far as main effects and two-level
interactions are concerned), and the design matrix. The notation used
follows our previous labeling of factors with numbers, not letters.

Click on the
design
specification
in the table
below and a
text file with
details
about the
design can
be viewed or
saved

TABLE 3.17  Summary of Useful Fractional Factorial Designs

Number of Factors, k Design Specification Number of Runs  N
   

3 2III
3-1 4

4 2IV
4-1 8

5 2V
5-1 16

5 2III
5-2 8

6 2VI
6-1 32

6 2IV
6-2 16

6 2III
6-3 8

7 2VII
7-1 64

7 2IV
7-2 32

7 2IV
7-3 16

7 2III
7-4 8

8 2VIII
8-1 128

8 2V
8-2 64

8 2IV
8-3 32

8 2IV
8-4 16

9 2VI
9-2 128

9 2IV
9-3 64

9 2IV
9-4 32
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9 2III
9-5 16

10 2V
10-3 128

10 2IV
10-4 64

10 2IV
10-5 32

10 2III
10-6 16

11 2V
11-4 128

11 2IV
11-5 64

11 2IV
11-6 32

11 2III
11-7 16

15 2III
15-11 16

31 2III
31-26 32
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.5.Plackett-Burman designs

Plackett-
Burman
designs

In 1946, R.L. Plackett and J.P. Burman published their now famous paper "The Design
of Optimal Multifactorial Experiments" in Biometrika (vol. 33). This paper described
the construction of very economical designs with the run number a multiple of four
(rather than a power of 2). Plackett-Burman designs are very efficient screening designs
when only main effects are of interest.

These
designs
have run
numbers
that are a
multiple of
4

Plackett-Burman (PB) designs are used for screening experiments because, in a PB
design, main effects are, in general, heavily confounded with two-factor interactions.
The PB design in 12 runs, for example, may be used for an experiment containing up to
11 factors.

12-Run
Plackett-
Burnam
design

TABLE 3.18  Plackett-Burman Design in 12 Runs for up to 11 Factors

 Pattern X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
1 +++++++++++ +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
2 -+-+++---+- -1 +1 -1 +1 +1 +1 -1 -1 -1 +1 -1
3 --+-+++---+ -1 -1 +1 -1 +1 +1 +1 -1 -1 -1 +1
4 +--+-+++--- +1 -1 -1 +1 -1 +1 +1 +1 -1 -1 -1
5 -+--+-+++-- -1 +1 -1 -1 +1 -1 +1 +1 +1 -1 -1
6 --+--+-+++- -1 -1 +1 -1 -1 +1 -1 +1 +1 +1 -1
7 ---+--+-+++ -1 -1 -1 +1 -1 -1 +1 -1 +1 +1 +1
8 +---+--+-++ +1 -1 -1 -1 +1 -1 -1 +1 -1 +1 +1
9 ++---+--+-+ +1 +1 -1 -1 -1 +1 -1 -1 +1 -1 +1

10 +++---+--+- +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1
11 -+++---+--+ -1 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1
12 +-+++---+-- +1 -1 +1 +1 +1 -1 -1 -1 +1 -1 -1
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Saturated
Main Effect
designs

PB designs also exist for 20-run, 24-run, and 28-run (and higher) designs. With a 20-run
design you can run a screening experiment for up to 19 factors, up to 23 factors in a
24-run design, and up to 27 factors in a 28-run design. These Resolution III designs are
known as Saturated Main Effect designs because all degrees of freedom are utilized to
estimate main effects. The designs for 20 and 24 runs are shown below.

20-Run
Plackett-
Burnam
design

TABLE 3.19  A 20-Run Plackett-Burman Design

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19
1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
2 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1
3 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1
4 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1
5 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1
6 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1
7 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1
8 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1
9 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1

10 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1
11 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1
12 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1
13 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1
14 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1
15 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1
16 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1
17 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1
18 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1
19 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1
20 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1

24-Run
Plackett-
Burnam
design

TABLE 3.20 A 24-Run Plackett-Burman Design
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1

3 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1

4 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1

5 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1

6 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1

7 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1

8 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1

9 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1

10 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1

11 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1

12 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1

13 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1
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14 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1

15 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1

16 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1

17 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1

18 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1

19 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1

20 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1

21 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1

22 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1

23 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1

24 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1

No defining
relation

These designs do not have a defining relation since interactions are not identically equal

to main effects. With the  designs, a main effect column Xi is either orthogonal to

XiXj or identical to plus or minus XiXj. For Plackett-Burman designs, the two-factor
interaction column XiXj is correlated with every Xk (for k not equal to i or j).

Economical
for
detecting
large main
effects

However, these designs are very useful for economically detecting large main effects,
assuming all interactions are negligible when compared with the few important main
effects.

5.3.3.5. Plackett-Burman designs

http://www.itl.nist.gov/div898/handbook/pri/section3/pri335.htm (3 of 3) [5/1/2006 10:30:38 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.6.Response surface designs

Response
surface
models may
involve just
main effects
and
interactions
or they may
also have
quadratic
and possibly
cubic terms
to account
for curvature

Earlier, we described the response surface method (RSM) objective. Under
some circumstances, a model involving only main effects and interactions
may be appropriate to describe a response surface when

Analysis of the results revealed no evidence of "pure quadratic"
curvature in the response of interest (i.e., the response at the center
approximately equals the average of the responses at the factorial
runs).

1.  

The design matrix originally used included the limits of the factor
settings available to run the process.

2.  

Equations for
quadratic
and cubic
models

In other circumstances, a complete description of the process behavior might
require a quadratic or cubic model:

Quadratic

Cubic

These are the full models, with all possible terms, rarely would all of the
terms be needed in an application.

5.3.3.6. Response surface designs
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Quadratic
models
almost
always
sufficient for
industrial
applications

If the experimenter has defined factor limits appropriately and/or taken
advantage of all the tools available in multiple regression analysis
(transformations of responses and factors, for example), then finding an
industrial process that requires a third-order model is highly unusual.
Therefore, we will only focus on designs that are useful for fitting quadratic
models. As we will see, these designs often provide lack of fit detection that
will help determine when a higher-order model is needed.

General
quadratic
surface types

Figures 3.9 to 3.12 identify the general quadratic surface types that an
investigator might encounter 
 
 

FIGURE 3.9  A Response
Surface "Peak"

FIGURE 3.10   A Response
Surface "Hillside"

FIGURE 3.11   A Response
Surface "Rising Ridge"

FIGURE 3.12  A Response
Surface "Saddle"

Factor Levels for Higher-Order Designs

5.3.3.6. Response surface designs
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Possible
behaviors of
responses as
functions of
factor
settings

Figures 3.13 through 3.15 illustrate possible behaviors of responses as
functions of factor settings. In each case, assume the value of the response
increases from the bottom of the figure to the top and that the factor settings
increase from left to right.

FIGURE 3.13
Linear Function

FIGURE 3.14
Quadratic Function

FIGURE 3.15
Cubic Function

A two-level
experiment
with center
points can
detect, but
not fit,
quadratic
effects

If a response behaves as in Figure 3.13, the design matrix to quantify that
behavior need only contain factors with two levels -- low and high. This
model is a basic assumption of simple two-level factorial and fractional
factorial designs. If a response behaves as in Figure 3.14, the minimum
number of levels required for a factor to quantify that behavior is three. One
might logically assume that adding center points to a two-level design would
satisfy that requirement, but the arrangement of the treatments in such a
matrix confounds all quadratic effects with each other. While a two-level
design with center points cannot estimate individual pure quadratic effects, it
can detect them effectively.

Three-level
factorial
design

A solution to creating a design matrix that permits the estimation of simple
curvature as shown in Figure 3.14 would be to use a three-level factorial
design. Table 3.21 explores that possibility.

Four-level
factorial
design

Finally, in more complex cases such as illustrated in Figure 3.15, the design
matrix must contain at least four levels of each factor to characterize the
behavior of the response adequately.

5.3.3.6. Response surface designs
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3-level
factorial
designs can
fit quadratic
models but
they require
many runs
when there
are more
than 4 factors

TABLE 3.21 Three-level Factorial Designs

Number
of Factors

Treatment Combinations
3k Factorial

Number of Coefficients
Quadratic Empirical Model

2 9 6
3 27 10
4 81 15
5 243 21
6 729 28

Fractional
factorial
designs
created to
avoid such a
large number
of runs

Two-level factorial designs quickly become too large for practical application
as the number of factors investigated increases. This problem was the
motivation for creating `fractional factorial' designs. Table 3.21 shows that
the number of runs required for a 3k factorial becomes unacceptable even
more quickly than for 2k designs. The last column in Table 3.21 shows the
number of terms present in a quadratic model for each case.

Number of
runs large
even for
modest
number of
factors

With only a modest number of factors, the number of runs is very large, even
an order of magnitude greater than the number of parameters to be estimated
when k isn't small. For example, the absolute minimum number of runs
required to estimate all the terms present in a four-factor quadratic model is
15: the intercept term, 4 main effects, 6 two-factor interactions, and 4
quadratic terms.

The corresponding 3k design for k = 4 requires 81 runs.

Complex
alias
structure and
lack of
rotatability
for 3-level
fractional
factorial
designs

Considering a fractional factorial at three levels is a logical step, given the
success of fractional designs when applied to two-level designs.
Unfortunately, the alias structure for the three-level fractional factorial
designs is considerably more complex and harder to define than in the
two-level case.

Additionally, the three-level factorial designs suffer a major flaw in their lack
of `rotatability.'

Rotatability of Designs

5.3.3.6. Response surface designs
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"Rotatability"
is a desirable
property not
present in
3-level
factorial
designs

In a rotatable design, the variance of the predicted values of y is a function of
the distance of a point from the center of the design and is not a function of
the direction the point lies from the center. Before a study begins, little or no
knowledge may exist about the region that contains the optimum response.
Therefore, the experimental design matrix should not bias an investigation in
any direction.

Contours of
variance of
predicted
values are
concentric
circles

In a rotatable design, the contours associated with the variance of the
predicted values are concentric circles. Figures 3.16 and 3.17 (adapted from
Box and Draper, `Empirical Model Building and Response Surfaces,' page
485) illustrate a three-dimensional plot and contour plot, respectively, of the
`information function' associated with a 32 design.

Information
function

The information function is:

with V denoting the variance (of the predicted value ).

Each figure clearly shows that the information content of the design is not
only a function of the distance from the center of the design space, but also a
function of direction.

Graphs of the
information
function for a
rotatable
quadratic
design

Figures 3.18 and 3.19 are the corresponding graphs of the information
function for a rotatable quadratic design. In each of these figures, the value of
the information function depends only on the distance of a point from the
center of the space. 

5.3.3.6. Response surface designs
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FIGURE 3.16 
Three-Dimensional
Illustration for the

Information Function of a
32 Design

FIGURE 3.17 
Contour Map of the Information Function

for a 32 Design

FIGURE 3.18 
Three-Dimensional
Illustration of the

Information Function for a
Rotatable Quadratic Design

for Two Factors

FIGURE 3.19  Contour Map of the
Information Function for a Rotatable

Quadratic Design for Two Factors

Classical Quadratic Designs

Central
composite
and
Box-Behnken
designs

Introduced during the 1950's, classical quadratic designs fall into two broad
categories: Box-Wilson central composite designs and Box-Behnken designs.
The next sections describe these design classes and their properties.

5.3.3.6. Response surface designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.6. Response surface designs

5.3.3.6.1.Central Composite Designs (CCD)

Box-Wilson Central Composite Designs

CCD designs
start with a
factorial or
fractional
factorial
design (with
center points)
and add
"star" points
to estimate
curvature

A Box-Wilson Central Composite Design, commonly called `a central
composite design,' contains an imbedded factorial or fractional
factorial design with center points that is augmented with a group of
`star points' that allow estimation of curvature. If the distance from the
center of the design space to a factorial point is ±1 unit for each factor,
the distance from the center of the design space to a star point is ±
with | | > 1. The precise value of  depends on certain properties
desired for the design and on the number of factors involved.

Similarly, the number of centerpoint runs the design is to contain also
depends on certain properties required for the design.

Diagram of
central
composite
design
generation for
two factors

FIGURE 3.20  Generation of a Central Composite Design for Two
Factors

5.3.3.6.1. Central Composite Designs (CCD)
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A CCD design
with k factors
has 2k star
points

A central composite design always contains twice as many star points
as there are factors in the design. The star points represent new
extreme values (low and high) for each factor in the design. Table 3.22
summarizes the properties of the three varieties of central composite
designs. Figure 3.21 illustrates the relationships among these varieties.

Description of
3 types of
CCD designs,
which depend
on where the
star points
are placed

TABLE 3.22   Central Composite Designs

Central Composite
     Design Type Terminology Comments

Circumscribed CCC

CCC designs are the original
form of the central composite
design. The star points are at
some distance  from the center
based on the properties desired
for the design and the number of
factors in the design. The star
points establish new extremes for
the low and high settings for all
factors. Figure 5 illustrates a
CCC design. These designs have
circular, spherical, or
hyperspherical symmetry and
require 5 levels for each factor.
Augmenting an existing factorial
or resolution V fractional
factorial design with star points
can produce this design.

 Inscribed CCI

For those situations in which the
limits specified for factor settings
are truly limits, the CCI design
uses the factor settings as the star
points and creates a factorial or
fractional factorial design within
those limits (in other words, a
CCI design is a scaled down
CCC design with each factor
level of the CCC design divided
by  to generate the CCI design).
This design also requires 5 levels
of each factor.

5.3.3.6.1. Central Composite Designs (CCD)
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 Face Centered CCF

In this design the star points are
at the center of each face of the
factorial space, so  = ± 1. This
variety requires 3 levels of each
factor. Augmenting an existing
factorial or resolution V design
with appropriate star points can
also produce this design.

Pictorial
representation
of where the
star points
are placed for
the 3 types of
CCD designs

FIGURE 3.21  Comparison of the Three Types of Central
Composite Designs

5.3.3.6.1. Central Composite Designs (CCD)
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Comparison
of the 3
central
composite
designs

The diagrams in Figure 3.21 illustrate the three types of central
composite designs for two factors. Note that the CCC explores the
largest process space and the CCI explores the smallest process space.
Both the CCC and CCI are rotatable designs, but the CCF is not. In the
CCC design, the design points describe a circle circumscribed about
the factorial square. For three factors, the CCC design points describe
a sphere around the factorial cube.

Determining  in Central Composite Designs

The value of
 is chosen to

maintain
rotatability

To maintain rotatability, the value of  depends on the number of
experimental runs in the factorial portion of the central composite
design:

If the factorial is a full factorial, then

However, the factorial portion can also be a fractional factorial design
of resolution V.

Table 3.23 illustrates some typical values of  as a function of the
number of factors.

Values of 
depending on
the number of
factors in the
factorial part
of the design

TABLE 3.23  Determining  for Rotatability
Number of

Factors
Factorial
Portion

Scaled Value for 
Relative to ±1

2 22 22/4 = 1.414
3 23 23/4 = 1.682
4 24 24/4 = 2.000
5 25-1 24/4 = 2.000
5 25 25/4 = 2.378
6 26-1 25/4 = 2.378
6 26 26/4 = 2.828
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Orthogonal
blocking

The value of  also depends on whether or not the design is
orthogonally blocked. That is, the question is whether or not the
design is divided into blocks such that the block effects do not affect
the estimates of the coefficients in the 2nd order model.

Example of
both
rotatability
and
orthogonal
blocking for
two factors

Under some circumstances, the value of  allows simultaneous
rotatability and orthogonality. One such example for k = 2 is shown
below:

BLOCK X1 X2
   

1 -1 -1
1 1 -1
1 -1 1
1 1 1
1 0 0
1 0 0
2 -1.414 0
2 1.414 0
2 0 -1.414
2 0 1.414
2 0 0
2 0 0

Additional
central
composite
designs

Examples of other central composite designs will be given after
Box-Behnken designs are described.

5.3.3.6.1. Central Composite Designs (CCD)

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm (5 of 5) [5/1/2006 10:30:40 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


5. Process Improvement
5.3. Choosing an experimental design
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5.3.3.6. Response surface designs

5.3.3.6.2.Box-Behnken designs

An alternate
choice for
fitting
quadratic
models that
requires 3
levels of
each factor
and is
rotatable (or
"nearly"
rotatable)

The Box-Behnken design is an independent quadratic design in that it
does not contain an embedded factorial or fractional factorial design. In
this design the treatment combinations are at the midpoints of edges of
the process space and at the center. These designs are rotatable (or near
rotatable) and require 3 levels of each factor. The designs have limited
capability for orthogonal blocking compared to the central composite
designs.

Figure 3.22 illustrates a Box-Behnken design for three factors.

Box-Behnken
design for 3
factors

FIGURE 3.22  A Box-Behnken Design for Three Factors

5.3.3.6.2. Box-Behnken designs
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Geometry of
the design

The geometry of this design suggests a sphere within the process space
such that the surface of the sphere protrudes through each face with the
surface of the sphere tangential to the midpoint of each edge of the
space.

Examples of Box-Behnken designs are given on the next page.

5.3.3.6.2. Box-Behnken designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.6. Response surface designs

5.3.3.6.3.Comparisons of response surface
designs

Choosing a Response Surface Design

Various
CCD designs
and
Box-Behnken
designs are
compared
and their
properties
discussed

Table 3.24 contrasts the structures of four common quadratic designs one might
use when investigating three factors. The table combines CCC and CCI designs
because they are structurally identical.

For three factors, the Box-Behnken design offers some advantage in requiring a
fewer number of runs. For 4 or more factors, this advantage disappears.

Structural
comparisons
of CCC
(CCI), CCF,
and
Box-Behnken
designs for
three factors

TABLE 3.24  Structural Comparisons of CCC (CCI), CCF, and
Box-Behnken Designs for Three Factors

CCC (CCI) CCF Box-Behnken
Rep X1 X2 X3 Rep X1 X2 X3 Rep X1 X2 X3

1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
1 +1 -1 -1 1 +1 -1 -1 1 +1 -1 0
1 -1 +1 -1 1 -1 +1 -1 1 -1 +1 0
1 +1 +1 -1 1 +1 +1 -1 1 +1 +1 0
1 -1 -1 +1 1 -1 -1 +1 1 -1 0 -1
1 +1 -1 +1 1 +1 -1 +1 1 +1 0 -1
1 -1 +1 +1 1 -1 +1 +1 1 -1 0 +1
1 +1 +1 +1 1 +1 +1 +1 1 +1 0 +1
1 -1.682 0 0 1 -1 0 0 1 0 -1 -1
1 1.682 0 0 1 +1 0 0 1 0 +1 -1
1 0 -1.682 0 1 0 -1 0 1 0 -1 +1
1 0 1.682 0 1 0 +1 0 1 0 +1 +1
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1 0 0 -1.682 1 0 0 -1 3 0 0 0
1 0 0 1.682 1 0 0 +1     
6 0 0 0 6 0 0 0     

Total Runs = 20 Total Runs = 20 Total Runs = 15

Factor
settings for
CCC and
CCI three
factor
designs

Table 3.25 illustrates the factor settings required for a central composite
circumscribed (CCC) design and for a central composite inscribed (CCI) design
(standard order), assuming three factors, each with low and high settings of 10
and 20, respectively. Because the CCC design generates new extremes for all
factors, the investigator must inspect any worksheet generated for such a design
to make certain that the factor settings called for are reasonable.

In Table 3.25, treatments 1 to 8 in each case are the factorial points in the design;
treatments 9 to 14 are the star points; and 15 to 20 are the system-recommended
center points. Notice in the CCC design how the low and high values of each
factor have been extended to create the star points.  In the CCI design, the
specified low and high values become the star points, and the system computes
appropriate settings for the factorial part of the design inside those boundaries.

TABLE 3.25  Factor Settings for CCC and CCI Designs for Three
Factors

Central Composite
Circumscribed CCC

 Central Composite
Inscribed CCI

Sequence
Number X1 X2 X3  

Sequence
Number X1 X2 X3

1 10 10 10  1 12 12 12
2 20 10 10  2 18 12 12
3 10 20 10  3 12 18 12
4 20 20 10  4 18 18 12
5 10 10 20  5 12 12 18
6 20 10 20  6 18 12 18
7 10 20 20  7 12 12 18
8 20 20 20  8 18 18 18
9 6.6 15 15 * 9 10 15 15

10 23.4 15 15 * 10 20 15 15
11 15 6.6 15 * 11 15 10 15
12 15 23.4 15 * 12 15 20 15
13 15 15 6.6 * 13 15 15 10
14 15 15 23.4 * 14 15 15 20
15 15 15 15  15 15 15 15
16 15 15 15  16 15 15 15
17 15 15 15  17 15 15 15

5.3.3.6.3. Comparisons of response surface designs
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18 15 15 15  18 15 15 15
19 15 15 15  19 15 15 15
20 15 15 15  20 15 15 15

* are star points

Factor
settings for
CCF and
Box-Behnken
three factor
designs

Table 3.26 illustrates the factor settings for the corresponding central composite
face-centered (CCF) and Box-Behnken designs. Note that each of these designs
provides three levels for each factor and that the Box-Behnken design requires
fewer runs in the three-factor case.

TABLE 3.26  Factor Settings for CCF and Box-Behnken Designs for
Three Factors

Central Composite
Face-Centered CCC

 Box-Behnken

Sequence
Number X1 X2 X3  

Sequence
Number X1 X2 X3

1 10 10 10  1 10 10 10
2 20 10 10  2 20 10 15
3 10 20 10  3 10 20 15
4 20 20 10  4 20 20 15
5 10 10 20  5 10 15 10
6 20 10 20  6 20 15 10
7 10 20 20  7 10 15 20
8 20 20 20  8 20 15 20
9 10 15 15 * 9 15 10 10

10 20 15 15 * 10 15 20 10
11 15 10 15 * 11 15 10 20
12 15 20 15 * 12 15 20 20
13 15 15 10 * 13 15 15 15
14 15 15 20 * 14 15 15 15
15 15 15 15  15 15 15 15
16 15 15 15      
17 15 15 15      
18 15 15 15      
19 15 15 15      
20 15 15 15      

* are star points for the CCC

5.3.3.6.3. Comparisons of response surface designs
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Properties of
classical
response
surface
designs

Table 3.27 summarizes properties of the classical quadratic designs. Use this table
for broad guidelines when attempting to choose from among available designs.

TABLE 3.27  Summary of Properties of Classical Response Surface Designs

Design Type Comment

CCC

CCC designs provide high quality predictions over the entire
design space, but require factor settings outside the range of the
factors in the factorial part. Note: When the possibility of running
a CCC design is recognized before starting a factorial experiment,
factor spacings can be reduced to ensure that ±  for each coded
factor corresponds to feasible (reasonable) levels.

Requires 5 levels for each factor.

CCI

CCI designs use only points within the factor ranges originally
specified, but do not provide the same high quality prediction
over the entire space compared to the CCC.

Requires 5 levels of each factor.

CCF

CCF designs provide relatively high quality predictions over the
entire design space and do not require using points outside the
original factor range. However, they give poor precision for
estimating pure quadratic coefficients.

Requires 3 levels for each factor.

Box-Behnken

These designs require fewer treatment combinations than a
central composite design in cases involving 3 or 4 factors.

The Box-Behnken design is rotatable (or nearly so) but it contains
regions of poor prediction quality like the CCI. Its "missing
corners" may be useful when the experimenter should avoid
combined factor extremes. This property prevents a potential loss
of data in those cases.

Requires 3 levels for each factor.

5.3.3.6.3. Comparisons of response surface designs
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Number of
runs
required by
central
composite
and
Box-Behnken
designs

Table 3.28 compares the number of runs required for a given number of factors
for various Central Composite and Box-Behnken designs.

TABLE 3.28  Number of Runs Required by Central Composite and
Box-Behnken Designs

Number of Factors Central Composite Box-Behnken
2 13 (5 center points) -
3 20 (6 centerpoint runs) 15
4 30 (6 centerpoint runs) 27
5 33 (fractional factorial) or 52 (full factorial) 46
6 54 (fractional factorial) or 91 (full factorial) 54

Desirable Features for Response Surface Designs

A summary
of desirable
properties
for response
surface
designs

G. E. P. Box and N. R. Draper in "Empirical Model Building and Response
Surfaces," John Wiley and Sons, New York, 1987, page 477, identify desirable
properties for a response surface design:

Satisfactory distribution of information across the experimental region.

- rotatability

●   

Fitted values are as close as possible to observed values.

- minimize residuals or error of prediction

●   

Good lack of fit detection.●   

Internal estimate of error.●   

Constant variance check.●   

Transformations can be estimated.●   

Suitability for blocking.●   

Sequential construction of higher order designs from simpler designs●   

Minimum number of treatment combinations.●   

Good graphical analysis through simple data patterns.●   

Good behavior when errors in settings of input variables occur.●   

5.3.3.6.3. Comparisons of response surface designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.6. Response surface designs

5.3.3.6.4.Blocking a response surface design

How can we block a response surface design?

When
augmenting
a resolution
V design to
a CCC
design by
adding star
points, it
may be
desirable to
block the
design

If an investigator has run either a 2k full factorial or a 2k-p fractional factorial
design of at least resolution V, augmentation of that design to a central
composite design (either CCC of CCF) is easily accomplished by adding an
additional set (block) of star and centerpoint runs. If the factorial experiment
indicated (via the t test) curvature, this composite augmentation is the best
follow-up option (follow-up options for other situations will be discussed later).

An
orthogonal
blocked
response
surface
design has
advantages

An important point to take into account when choosing a response surface
design is the possibility of running the design in blocks. Blocked designs are
better designs if the design allows the estimation of individual and interaction
factor effects independently of the block effects. This condition is called
orthogonal blocking. Blocks are assumed to have no impact on the nature and
shape of the response surface.

CCF
designs
cannot be
orthogonally
blocked

The CCF design does not allow orthogonal blocking and the Box-Behnken
designs offer blocking only in limited circumstances, whereas the CCC does
permit orthogonal blocking. 

5.3.3.6.4. Blocking a response surface design
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Axial and
factorial
blocks

In general, when two blocks are required there should be an axial block and a
factorial block. For three blocks, the factorial block is divided into two blocks
and the axial block is not split. The blocking of the factorial design points
should result in orthogonality between blocks and individual factors and
between blocks and the two factor interactions.

The following Central Composite design in two factors is broken into two
blocks.

Table of
CCD design
with 2
factors and
2 blocks

TABLE 3.29  CCD: 2 Factors, 2 Blocks
Pattern Block X1 X2 Comment

-- 1 -1 -1 Full Factorial
-+ 1 -1 +1 Full Factorial
+- 1 +1 -1 Full Factorial
++ 1 +1 +1 Full Factorial
00 1  0  0 Center-Full Factorial
00 1  0  0 Center-Full Factorial
00 1  0  0 Center-Full Factorial
-0 2 -1.414214  0 Axial
+0 2 +1.414214  0 Axial
0- 2  0 -1.414214 Axial
0+ 2  0 +1.414214 Axial
00 2  0  0 Center-Axial
00 2  0  0 Center-Axial
00 2  0  0 Center-Axial

Note that the first block includes the full factorial points and three centerpoint
replicates. The second block includes the axial points and another three
centerpoint replicates. Naturally these two blocks should be run as two separate
random sequences.

Table of
CCD design
with 3
factors and
3 blocks

The following three examples show blocking structure for various designs.

TABLE 3.30  CCD: 3 Factors 3 Blocks, Sorted by Block
Pattern Block X1 X2 X3 Comment

--- 1 -1 -1 -1 Full Factorial
-++ 1 -1 +1 +1 Full Factorial
+-+ 1 +1 -1 +1 Full Factorial
++- 1 +1 +1 -1 Full Factorial
000 1  0  0  0 Center-Full Factorial
000 1  0  0  0 Center-Full Factorial
--+ 2 -1 -1 +1 Full Factorial

5.3.3.6.4. Blocking a response surface design
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-+- 2 -1 +1 -1 Full Factorial
+-- 2 +1 -1 -1 Full Factorial
+++ 2 +1 +1 +1 Full Factorial
000 2  0  0  0 Center-Full Factorial
000 2  0  0  0 Center-Full Factorial
-00 3 -1.63299  0  0 Axial
+00 3 +1.63299  0  0 Axial
0-0 3  0 -1.63299  0 Axial
0+0 3  0 +1.63299  0 Axial
00- 3  0  0 -1.63299 Axial
00+ 3  0  0 +1.63299 Axial
000 3  0  0  0 Axial
000 3  0  0  0 Axial

Table of
CCD design
with 4
factors and
3 blocks

TABLE 3.31  CCD: 4 Factors, 3 Blocks
Pattern Block X1 X2 X3 X4 Comment

---+ 1 -1 -1 -1 +1 Full Factorial
--+- 1 -1 -1 +1 -1 Full Factorial
-+-- 1 -1 +1 -1 -1 Full Factorial
-+++ 1 -1 +1 +1 +1 Full Factorial
+--- 1 +1 -1 -1 -1 Full Factorial
+-++ 1 +1 -1 +1 +1 Full Factorial
++-+ 1 +1 +1 -1 +1 Full Factorial
+++- 1 +1 +1 +1 -1 Full Factorial
0000 1  0  0  0  0 Center-Full Factorial
0000 1  0  0  0  0 Center-Full Factorial
---- 2 -1 -1 -1 -1 Full Factorial
--++ 2 -1 -1 +1 +1 Full Factorial
-+-+ 2 -1 +1 -1 +1 Full Factorial
-++- 2 -1 +1 +1 -1 Full Factorial
+--+ 2 +1 -1 -1 +1 Full Factorial
+-+- 2 +1 -1 +1 -1 Full Factorial
++-- 2 +1 +1 -1 -1 Full Factorial
++++ 2 +1 +1 +1 +1 Full Factorial
0000 2  0  0  0  0 Center-Full Factorial
0000 2  0  0  0  0 Center-Full Factorial
-000 3 -2  0  0  0 Axial
+000 3 +2  0  0  0 Axial
+000 3 +2  0  0  0 Axial
0-00 3  0 -2  0  0 Axial
0+00 3  0 +2  0  0 Axial
00-0 3  0  0 -2  0 Axial

5.3.3.6.4. Blocking a response surface design
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00+0 3  0  0 +2  0 Axial
000- 3  0  0  0 -2 Axial
000+ 3  0  0  0 +2 Axial
0000 3  0  0  0  0 Center-Axial

Table
of
CCD
design
with 5
factors
and 2
blocks

TABLE 3.32  CCD: 5 Factors, 2 Blocks
Pattern Block X1 X2 X3 X4 X5 Comment

----+ 1 -1 -1 -1 -1 +1 Fractional Factorial
---+- 1 -1 -1 -1 +1 -1 Fractional Factorial
--+-- 1 -1 -1 +1 -1 -1 Fractional Factorial
--+++ 1 -1 -1 +1 +1 +1 Fractional Factorial
-+--- 1 -1 +1 -1 -1 -1 Fractional Factorial
-+-++ 1 -1 +1 -1 +1 +1 Fractional Factorial
-++-+ 1 -1 +1 +1 -1 +1 Fractional Factorial
-+++- 1 -1 +1 +1 +1 -1 Fractional Factorial
+---- 1 +1 -1 -1 -1 -1 Fractional Factorial
+--++ 1 +1 -1 -1 +1 +1 Fractional Factorial
+-+-+ 1 +1 -1 +1 -1 +1 Fractional Factorial
+-++- 1 +1 -1 +1 +1 -1 Fractional Factorial
++--+ 1 +1 +1 -1 -1 +1 Fractional Factorial
++-+- 1 +1 +1 -1 +1 -1 Fractional Factorial
+++-- 1 +1 +1 +1 -1 -1 Fractional Factorial
+++++ 1 +1 +1 +1 +1 +1 Fractional Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
00000 1  0  0  0  0  0 Center-Fractional

Factorial
-0000 2 -2  0  0  0  0 Axial
+0000 2 +2  0  0  0  0 Axial
0-000 2  0 -2  0  0  0 Axial
0+000 2  0 +2  0  0  0 Axial
00-00 2  0  0 -2  0  0 Axial
00+00 2  0  0 +2  0  0 Axial
000-0 2  0  0  0 -2  0 Axial
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000+0 2  0  0  0 +2  0 Axial
0000- 2  0  0  0  0 -2 Axial
0000+ 2  0  0  0  0 +2 Axial
00000 2  0  0  0  0  0 Center-Axial

5.3.3.6.4. Blocking a response surface design
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.7.Adding centerpoints

Center point, or `Control' Runs

Centerpoint
runs provide
a check for
both process
stability and
possible
curvature

As mentioned earlier in this section, we add centerpoint runs
interspersed among the experimental setting runs for two purposes:

To provide a measure of process stability and
inherent variability

1.  

To check for curvature.2.  

Centerpoint
runs are not
randomized

Centerpoint runs should begin and end the experiment, and should be
dispersed as evenly as possible throughout the design matrix. The
centerpoint runs are not randomized! There would be no reason to
randomize them as they are there as guardians against process instability
and the best way to find instability is to sample the process on a regular
basis.

Rough rule
of thumb is
to add 3 to 5
center point
runs to your
design

With this in mind, we have to decide on how many centerpoint runs to
do. This is a tradeoff between the resources we have, the need for
enough runs to see if there is process instability, and the desire to get the
experiment over with as quickly as possible. As a rough guide, you
should generally add approximately 3 to 5 centerpoint runs to a full or
fractional factorial design.

5.3.3.7. Adding centerpoints
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Table of
randomized,
replicated
23 full
factorial
design with
centerpoints

In the following Table we have added three centerpoint runs to the
otherwise randomized design matrix, making a total of nineteen runs.

TABLE 3.32  Randomized, Replicated 23 Full Factorial Design
Matrix with Centerpoint Control Runs Added

 Random Order Standard Order SPEED FEED DEPTH
1 not applicable not applicable 0 0 0
2 1 5 -1 -1 1
3 2 15 -1 1 1
4 3 9 -1 -1 -1
5 4 7 -1 1 1
6 5 3 -1 1 -1
7 6 12 1 1 -1
8 7 6 1 -1 1
9 8 4 1 1 -1
10 not applicable not applicable 0 0 0
11 9 2 1 -1 -1
12 10 13 -1 -1 1
13 11 8 1 1 1
14 12 16 1 1 1
15 13 1 -1 -1 -1
16 14 14 1 -1 1
17 15 11 -1 1 -1
18 16 10 1 -1 -1
19 not applicable not applicable 0 0 0

Preparing a
worksheet
for operator
of
experiment

To prepare a worksheet for an operator to use when running the
experiment, delete the columns `RandOrd' and `Standard Order.' Add an
additional column for the output (Yield) on the right, and change all `-1',
`0', and `1' to original factor levels as follows.

5.3.3.7. Adding centerpoints
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Operator
worksheet

TABLE 3.33  DOE Worksheet Ready to Run

Sequence
Number Speed Feed Depth Yield

1 20 0.003 0.015  
2 16 0.001 0.02  
3 16 0.005 0.02  
4 16 0.001 0.01  
5 16 0.005 0.02  
6 16 0.005 0.01  
7 24 0.005 0.01  
8 24 0.001 0.02  
9 24 0.005 0.01  
10 20 0.003 0.015  
11 24 0.001 0.01  
12 16 0.001 0.02  
13 24 0.005 0.02  
14 24 0.005 0.02  
15 16 0.001 0.01  
16 24 0.001 0.02  
17 16 0.005 0.01  
18 24 0.001 0.01  
19 20 0.003 0.015  

Note that the control (centerpoint) runs appear at rows 1, 10, and 19.

This worksheet can be given to the person who is going to do the
runs/measurements and asked to proceed through it from first row to last
in that order, filling in the Yield values as they are obtained.

Pseudo Center points

Center
points for
discrete
factors

One often runs experiments in which some factors are nominal. For
example, Catalyst "A" might be the (-1) setting, catalyst "B" might be
coded (+1). The choice of which is "high" and which is "low" is
arbitrary, but one must have some way of deciding which catalyst
setting is the "standard" one.

These standard settings for the discrete input factors together with center
points for the continuous input factors, will be regarded as the "center
points" for purposes of design.

5.3.3.7. Adding centerpoints
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Center Points in Response Surface Designs

Uniform
precision

In an unblocked response surface design, the number of center points
controls other properties of the design matrix. The number of center
points can make the design orthogonal or have "uniform precision." We
will only focus on uniform precision here as classical quadratic designs
were set up to have this property.

Variance of
prediction

Uniform precision ensures that the variance of prediction is the same at
the center of the experimental space as it is at a unit distance away from
the center.

Protection
against bias

In a response surface context, to contrast the virtue of uniform precision
designs over replicated center-point orthogonal designs one should also
consider the following guidance from Montgomery ("Design and
Analysis of Experiments," Wiley, 1991, page 547), "A uniform precision
design offers more protection against bias in the regression coefficients
than does an orthogonal design because of the presence of third-order
and higher terms in the true surface.

Controlling
 and the

number of
center
points

Myers, Vining, et al, ["Variance Dispersion of Response Surface
Designs," Journal of Quality Technology, 24, pp. 1-11 (1992)] have
explored the options regarding the number of center points and the value
of  somewhat further: An investigator may control two parameters, 
and the number of center points (nc), given k factors. Either set  =

2(k/4) (for rotatability) or  -- an axial point on perimeter of design

region. Designs are similar in performance with  preferable as k
increases. Findings indicate that the best overall design performance
occurs with  and 2  nc  5.

5.3.3.7. Adding centerpoints
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.8. Improving fractional factorial
design resolution

Foldover
designs
increase
resolution

Earlier we saw how fractional factorial designs resulted in an alias
structure that confounded main effects with certain interactions. Often it
is useful to know how to run a few additional treatment combinations to
remove alias structures that might be masking significant effects or
interactions.

Partial
foldover
designs
break up
specific
alias
patterns

Two methods will be described for selecting these additional treatment
combinations:

Mirror-image foldover designs (to build a resolution
IV design from a resolution III design)

●   

Alternative foldover designs (to break up specific
alias patterns).

●   

5.3.3.8. Improving fractional factorial design resolution
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.8. Improving fractional factorial design resolution

5.3.3.8.1.Mirror-Image foldover designs

A foldover
design is
obtained
from a
fractional
factorial
design by
reversing the
signs of all
the columns

A mirror-image fold-over (or foldover, without the hyphen) design is
used to augment fractional factorial designs to increase the resolution

of  and Plackett-Burman designs. It is obtained by reversing the
signs of all the columns of the original design matrix. The original
design runs are combined with the mirror-image fold-over design runs,
and this combination can then be used to estimate all main effects clear
of any two-factor interaction. This is referred to as: breaking the alias
link between main effects and two-factor interactions.

Before we illustrate this concept with an example, we briefly review
the basic concepts involved.

Review of Fractional 2k-p Designs

A resolution
III design,
combined
with its
mirror-image
foldover,
becomes
resolution IV

In general, a design type that uses a specified fraction of the runs from
a full factorial and is balanced and orthogonal is called a fractional
factorial.

A 2-level fractional factorial is constructed as follows: Let the number
of runs be 2k-p. Start by constructing the full factorial for the k-p
variables. Next associate the extra factors with higher-order
interaction columns. The Table shown previously details how to do this
to achieve a minimal amount of confounding.

For example, consider the 25-2 design (a resolution III design). The full
factorial for k = 5 requires 25 = 32 runs. The fractional factorial can be
achieved in 25-2 = 8 runs, called a quarter (1/4) fractional design, by
setting X4 = X1*X2 and X5 = X1*X3.

5.3.3.8.1. Mirror-Image foldover designs
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Design
matrix for a
25-2

fractional
factorial

The design matrix for a 25-2 fractional factorial looks like:

TABLE 3.34  Design Matrix for a 25-2 Fractional Factorial

run X1 X2 X3 X4 = X1X2 X5 = X1X3
1 -1 -1 -1 +1 +1
2 +1 -1 -1 -1 -1
3 -1 +1 -1 -1 +1
4 +1 +1 -1 +1 -1
5 -1 -1 +1 +1 -1
6 +1 -1 +1 -1 +1
7 -1 +1 +1 -1 -1
8 +1 +1 +1 +1 +1

Design Generators, Defining Relation and the Mirror-Image
Foldover

Increase to
resolution IV
design by
augmenting
design matrix

In this design the X1X2 column was used to generate the X4 main
effect and the X1X3 column was used to generate the X5 main effect.
The design generators are: 4 = 12 and 5 = 13 and the defining relation
is I = 124 = 135 = 2345. Every main effect is confounded (aliased) with
at least one first-order interaction (see the confounding structure for
this design).

We can increase the resolution of this design to IV if we augment the 8
original runs, adding on the 8 runs from the mirror-image fold-over
design. These runs make up another 1/4 fraction design with design
generators 4 = -12 and 5 = -13 and defining relation I = -124 = -135 =
2345. The augmented runs are:

Augmented
runs for the
design matrix

run X1 X2 X3 X4 = -X1X2 X5 = -X1X3
9 +1 +1 +1 -1 -1
10 -1 +1 +1 +1 +1
11 +1 -1 +1 +1 -1
12 -1 -1 +1 -1 +1
13 +1 +1 -1 -1 +1
14 -1 +1 -1 +1 -1
15 +1 -1 -1 +1 +1
16 -1 -1 -1 -1 -1

5.3.3.8.1. Mirror-Image foldover designs
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Mirror-image
foldover
design
reverses all
signs in
original
design matrix

A mirror-image foldover design is the original design with all signs
reversed. It breaks the alias chains between every main factor and
two-factor interactionof a resolution III design. That is, we can
estimate all the main effects clear of any two-factor interaction.

A 1/16 Design Generator Example

27-3 example Now we consider a more complex example.

We would like to study the effects of 7 variables. A full 2-level
factorial, 27, would require 128 runs.

Assume economic reasons restrict us to 8 runs. We will build a 27-4 =
23 full factorial and assign certain products of columns to the X4, X5,
X6 and X7 variables. This will generate a resolution III design in which
all of the main effects are aliased with first-order and higher interaction
terms. The design matrix (see the previous Table for a complete
description of this fractional factorial design) is:

Design
matrix for
27-3

fractional
factorial

Design Matrix for a 27-3 Fractional Factorial

run X1 X2 X3
X4 =
X1X2

X5 =
X1X3

X6 =
X2X3

X7 =
X1X2X3

1 -1 -1 -1 +1 +1 +1 -1
2 +1 -1 -1 -1 -1 +1 +1
3 -1 +1 -1 -1 +1 -1 +1
4 +1 +1 -1 +1 -1 -1 -1
5 -1 -1 +1 +1 -1 -1 +1
6 +1 -1 +1 -1 +1 -1 -1
7 -1 +1 +1 -1 -1 +1 -1
8 +1 +1 +1 +1 +1 +1 +1

Design
generators
and defining
relation for
this example

The design generators for this 1/16 fractional factorial design are:

4 = 12, 5 = 13, 6 = 23 and 7 = 123

From these we obtain, by multiplication, the defining relation:

I = 124 = 135 = 236 = 347 = 257 = 167 = 456 = 1237 =
2345 = 1346 = 1256 = 1457 = 2467 = 3567 = 1234567.

5.3.3.8.1. Mirror-Image foldover designs
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Computing
alias
structure for
complete
design

Using this defining relation, we can easily compute the alias structure
for the complete design, as shown previously in the link to the
fractional design Table given earlier. For example, to figure out which
effects are aliased (confounded) with factor X1 we multiply the
defining relation by 1 to obtain:

1 = 24 = 35 = 1236 = 1347 = 1257 = 67 = 1456 = 237 = 12345 =
346 = 256 = 457 = 12467 = 13567 = 234567

In order to simplify matters, let us ignore all interactions with 3 or
more factors; we then have the following 2-factor alias pattern for X1:
1 = 24 = 35 = 67 or, using the full notation, X1 = X2*X4 = X3*X5 =
X6*X7.

The same procedure can be used to obtain all the other aliases for each
of the main effects, generating the following list:

1 = 24 = 35 = 67
2 = 14 = 36 = 57
3 = 15 = 26 = 47
4 = 12 = 37 = 56
5 = 13 = 27 = 46
6 = 17 = 23 = 45
7 = 16 = 25 = 34

Signs in
every column
of original
design matrix
reversed for
mirror-image
foldover
design

The chosen design used a set of generators with all positive signs. The
mirror-image foldover design uses generators with negative signs for
terms with an even number of factors or, 4 = -12, 5 = -13, 6 = -23 and 7
= 123. This generates a design matrix that is equal to the original
design matrix with every sign in every column reversed.

If we augment the initial 8 runs with the 8 mirror-image foldover
design runs (with all column signs reversed), we can de-alias all the
main effect estimates from the 2-way interactions. The additional runs
are:

5.3.3.8.1. Mirror-Image foldover designs
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Design
matrix for
mirror-image
foldover runs

Design Matrix for the Mirror-Image Foldover Runs of the
27-3 Fractional Factorial

run X1 X2 X3
X4 =
X1X2

X5 =
X1X3

X6 =
X2X3

X7 =
X1X2X3

1 +1 +1 +1 -1 -1 -1 +1
2 -1 +1 +1 +1 +1 -1 -1
3 +1 -1 +1 +1 -1 +1 -1
4 -1 -1 +1 -1 +1 +1 +1
5 +1 +1 -1 -1 +1 +1 -1
6 -1 +1 -1 +1 -1 +1 +1
7 +1 -1 -1 +1 +1 -1 +1
8 -1 -1 -1 -1 -1 -1 -1

Alias
structure for
augmented
runs

Following the same steps as before and making the same assumptions
about the omission of higher-order interactions in the alias structure,
we arrive at:

1 = -24 = -35 = -67
2 = -14 = -36 =- 57
3 = -15 = -26 = -47
4 = -12 = -37 = -56
5 = -13 = -27 = -46
6 = -17 = -23 = -45
7 = -16 = -25 = -34

With both sets of runs, we can now estimate all the main effects free
from two factor interactions.

Build a
resolution IV
design from a
resolution III
design

Note: In general, a mirror-image foldover design is a method to build
a resolution IV design from a resolution III design. It is never used to
follow-up a resolution IV design.

5.3.3.8.1. Mirror-Image foldover designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?
5.3.3.8. Improving fractional factorial design resolution

5.3.3.8.2.Alternative foldover designs

Alternative
foldover
designs can
be an
economical
way to break
up a selected
alias pattern

The mirror-image foldover (in which signs in all columns are reversed)
is only one of the possible follow-up fractions that can be run to
augment a fractional factorial design. It is the most common choice
when the original fraction is resolution III. However, alternative
foldover designs with fewer runs can often be utilized to break up
selected alias patterns. We illustrate this by looking at what happens
when the signs of a single factor column are reversed.

Example of
de-aliasing a
single factor

Previously, we described how we de-alias all the factors of a
27-4 experiment. Suppose that we only want to de-alias the X4 factor.
This can be accomplished by only changing the sign of X4 = X1X2 to
X4 = -X1X2. The resulting design is:

Table
showing
design
matrix of a
reverse X4
foldover
design

TABLE 3.36  A "Reverse X4" Foldover Design
run X1 X2 X3 X4 = -X1X2 X5 = -X1X3 X6 = X2X3 X7 = X1X2X3

1 -1 -1 -1 -1 +1 +1 -1
2 +1 -1 -1 +1 -1 +1 +1
3 -1 +1 -1 +1 +1 -1 +1
4 +1 +1 -1 -1 -1 -1 -1
5 -1 -1 +1 -1 -1 -1 +1
6 +1 -1 +1 +1 +1 -1 -1
7 -1 +1 +1 +1 -1 +1 -1
8 +1 +1 +1 -1 +1 +1 +1

5.3.3.8.2. Alternative foldover designs
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Alias
patterns and
effects that
can be
estimated in
the example
design

The two-factor alias patterns for X4 are: Original experiment: X4 =
X1X2 = X3X7 = X5X6; "Reverse X4" foldover experiment: X4 = -X1X2
= -X3X7 = -X5X6.

The following effects can be estimated by combining the original 
with the "Reverse X4" foldover fraction:

X1 + X3X5 + X6X7
X2 + X3X6 + X5X7
X3 + X1X5 + X2X6
X4
X5 + X1X3 + X2X7
X6 + X2X3 + X1X7
X7 + X2X5 + X1X6
X1X4
X2X4
X3X4
X4X5
X4X6
X4X7
X1X2 + X3X7 + X5X6

Note: The 16 runs allow estimating the above 14 effects, with one
degree of freedom left over for a possible block effect.

Advantage
and
disadvantage
of this
example
design

The advantage of this follow-up design is that it permits estimation of
the X4 effect and each of the six two-factor interaction terms involving
X4.

The disadvantage is that the combined fractions still yield a resolution
III design, with all main effects other than X4 aliased with two-factor
interactions.

Case when
purpose is
simply to
estimate all
two-factor
interactions
of a single
factor

Reversing a single factor column to obtain de-aliased two-factor
interactions for that one factor works for any resolution III or IV design.
When used to follow-up a resolution IV design, there are relatively few

new effects to be estimated (as compared to  designs). When the

original resolution IV fraction provides sufficient precision, and the
purpose of the follow-up runs is simply to estimate all two-factor
interactions for one factor, the semifolding option should be considered.

Semifolding

5.3.3.8.2. Alternative foldover designs
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Number of
runs can be
reduced for
resolution IV
designs

For resolution IV fractions, it is possible to economize on the number of
runs that are needed to break the alias chains for all two-factor
interactions of a single factor. In the above case we needed 8 additional
runs, which is the same number of runs that were used in the original
experiment. This can be improved upon.

Additional
information
on John's 3/4
designs

We can repeat only the points that were set at the high levels of the
factor of choice and then run them at their low settings in the next
experiment. For the given example, this means an additional 4 runs
instead 8. We mention this technique only in passing, more details may
be found in the references (or see John's 3/4 designs).

5.3.3.8.2. Alternative foldover designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.9.Three-level full factorial designs

Three-level
designs are
useful for
investigating
quadratic
effects

The three-level design is written as a 3k factorial design. It means that k factors
are considered, each at 3 levels. These are (usually) referred to as low,
intermediate and high levels. These levels are numerically expressed as 0, 1,
and 2. One could have considered the digits -1, 0, and +1, but this may be
confusing with respect to the 2-level designs since 0 is reserved for center
points. Therefore, we will use the 0, 1, 2 scheme. The reason that the three-level
designs were proposed is to model possible curvature in the response function
and to handle the case of nominal factors at 3 levels. A third level for a
continuous factor facilitates investigation of a quadratic relationship between
the response and each of the factors.

Three-level
design may
require
prohibitive
number of
runs

Unfortunately, the three-level design is prohibitive in terms of the number of
runs, and thus in terms of cost and effort. For example a two-level design with
center points is much less expensive while it still is a very good (and simple)
way to establish the presence or absence of curvature.

The 32 design

The simplest
3-level design
- with only 2
factors

This is the simplest three-level design. It has two factors, each at three levels.
The 9 treatment combinations for this type of design can be shown pictorially as
follows: 

FIGURE 3.23 A 32 Design Schematic

5.3.3.9. Three-level full factorial designs
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A notation such as "20" means that factor A is at its high level (2) and factor B
is at its low level (0).

The 33 design

The model
and treatment
runs for a 3
factor, 3-level
design

This is a design that consists of three factors, each at three levels. It can be
expressed as a 3 x 3 x 3 = 33 design. The model for such an experiment is

where each factor is included as a nominal factor rather than as a continuous
variable. In such cases, main effects have 2 degrees of freedom, two-factor
interactions have 22 = 4 degrees of freedom and k-factor interactions have 2k

degrees of freedom. The model contains 2 + 2 + 2 + 4 + 4 + 4 + 8 = 26 degrees
of freedom. Note that if there is no replication, the fit is exact and there is no
error term (the epsilon term) in the model. In this no replication case, if one
assumes that there are no three-factor interactions, then one can use these 8
degrees of freedom for error estimation.

In this model we see that i = 1, 2, 3, and similarly for j and k, making 27

5.3.3.9. Three-level full factorial designs
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treatments.

Table of
treatments for
the 33 design

These treatments may be displayed as follows:

TABLE 3.37  The 33 Design

 Factor A
Factor B Factor C 0 1 2

0 0 000 100 200
0 1 001 101 201
0 2 002 102 202

1 0 010 110 210
1 1 011 111 211
1 2 012 112 212

2 0 020 120 220
2 1 021 121 221
2 2 022 122 222

Pictorial
representation
of the 33

design

The design can be represented pictorially by

FIGURE 3.24  A 33 Design Schematic

5.3.3.9. Three-level full factorial designs
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Two types of
3k designs

Two types of fractions of 3k designs are employed:

Box-Behnken designs whose purpose is to estimate a second-order model
for quantitative factors (discussed earlier in section 5.3.3.6.2)

●   

3k-p orthogonal arrays.●   

5.3.3.9. Three-level full factorial designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.10.Three-level, mixed-level and
fractional factorial designs

Mixed level
designs have
some factors
with, say, 2
levels, and
some with 3
levels or 4
levels

The 2k and 3k experiments are special cases of factorial designs. In a
factorial design, one obtains data at every combination of the levels.
The importance of factorial designs, especially 2-level factorial designs,
was stated by Montgomery (1991): It is our belief that the two-level
factorial and fractional factorial designs should be the cornerstone of
industrial experimentation for product and process development and
improvement. He went on to say: There are, however, some situations in
which it is necessary to include a factor (or a few factors) that have
more than two levels.

This section will look at how to add three-level factors starting with
two-level designs, obtaining what is called a mixed-level design. We
will also look at how to add a four-level factor to a two-level design.
The section will conclude with a listing of some useful orthogonal
three-level and mixed-level designs (a few of the so-called Taguchi "L"
orthogonal array designs), and a brief discussion of their benefits and
disadvantages.

Generating a Mixed Three-Level and Two-Level Design

Montgomery
scheme for
generating a
mixed
design

Montgomery (1991) suggests how to derive a variable at three levels
from a 23 design, using a rather ingenious scheme. The objective is to
generate a design for one variable, A, at 2 levels and another, X, at three
levels. This will be formed by combining the -1 and 1 patterns for the B
and C factors to form the levels of the three-level factor X:

TABLE 3.38  Generating a Mixed Design

Two-Level Three-Level

B C X

-1 -1 x1

+1 -1 x2

-1 +1 x2

+1 +1 x3

Similar to the 3k case, we observe that X has 2 degrees of freedom,
which can be broken out into a linear and a quadratic component. To
illustrate how the 23 design leads to the design with one factor at two
levels and one factor at three levels, consider the following table, with
particular attention focused on the column labels.

5.3.3.10. Three-level, mixed-level and fractional factorial designs
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Table
illustrating
the
generation
of a design
with one
factor at 2
levels and
another at 3
levels from a
23 design

 A XL XL AXL AXL XQ AXQ TRT MNT

Run A B C AB AC BC ABC A X

1 -1 -1 -1 +1 +1 +1 -1 Low Low
2 +1 -1 -1 -1 -1 +1 +1 High Low
3 -1 +1 -1 -1 +1 -1 +1 Low Medium
4 +1 +1 -1 +1 -1 -1 -1 High Medium
5 -1 -1 +1 +1 -1 -1 +1 Low Medium
6 +1 -1 +1 -1 +1 -1 -1 High Medium
7 -1 +1 +1 -1 -1 +1 -1 Low High

If quadratic
effect
negligble,
we may
include a
second
two-level
factor

If we believe that the quadratic effect is negligible, we may include a
second two-level factor, D, with D = ABC. In fact, we can convert the
design to exclusively a main effect (resolution III) situation consisting
of four two-level factors and one three-level factor. This is
accomplished by equating the second two-level factor to AB, the third
to AC and the fourth to ABC. Column BC cannot be used in this
manner because it contains the quadratic effect of the three-level factor
X.

More than one three-level factor

3-Level
factors from
24 and 25

designs

We have seen that in order to create one three-level factor, the starting
design can be a 23 factorial. Without proof we state that a 24 can split
off 1, 2 or 3 three-level factors; a 25 is able to generate 3 three-level
factors and still maintain a full factorial structure. For more on this, see
Montgomery (1991).

Generating a Two- and Four-Level Mixed Design

Constructing
a design
with one
4-level
factor and
two 2-level
factors

We may use the same principles as for the three-level factor example in
creating a four-level factor. We will assume that the goal is to construct
a design with one four-level and two two-level factors.

Initially we wish to estimate all main effects and interactions. It has
been shown (see Montgomery, 1991) that this can be accomplished via
a 24 (16 runs) design, with columns A and B used to create the four
level factor X.

Table
showing
design with
4-level, two
2-level
factors in 16
runs

TABLE 3.39  A Single Four-level Factor and Two
Two-level Factors in 16 runs

Run (A B) = X C D

1 -1 -1 x1 -1 -1

2 +1 -1 x2 -1 -1

3 -1 +1 x3 -1 -1

4 +1 +1 x4 -1 -1

5 -1 -1 x1 +1 -1

6 +1 -1 x2 +1 -1

7 -1 +1 x3 +1 -1

8 +1 +1 x4 +1 -1

5.3.3.10. Three-level, mixed-level and fractional factorial designs
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9 -1 -1 x1 -1 +1

10 +1 -1 x2 -1 +1

11 -1 +1 x3 -1 +1

12 +1 +1 x4 -1 +1

13 -1 -1 x1 +1 +1

14 +1 -1 x2 +1 +1

15 -1 +1 x3 +1 +1

16 +1 +1 x4 +1 +1

Some Useful (Taguchi) Orthogonal "L" Array Designs

L9
design

L9 - A 34-2 Fractional Factorial Design 4 Factors
at Three Levels (9 runs)

Run X1 X2 X3 X4
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

L18
design

L18 - A 2 x 37-5 Fractional Factorial (Mixed-Level) Design
1 Factor at Two Levels and Seven Factors at 3 Levels (18 Runs)

Run X1 X2 X3 X4 X5 X6 X7 X8
1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2
3 1 1 3 3 3 3 3 3
4 1 2 1 1 2 2 3 3
5 1 2 2 2 3 3 1 1
6 1 2 3 3 1 1 2 2
7 1 3 1 2 1 3 2 3
8 1 3 2 3 2 1 3 1
9 1 3 3 1 3 2 1 2

10 2 1 1 3 3 2 2 1
11 2 1 2 1 1 3 3 2
12 2 1 3 2 2 1 1 3
13 2 2 1 2 3 1 3 2
14 2 2 2 3 1 2 1 3
15 2 2 3 1 2 3 2 1
16 2 3 1 3 2 3 1 2
17 2 3 2 1 3 1 2 3
18 2 3 3 2 1 2 3 1

5.3.3.10. Three-level, mixed-level and fractional factorial designs
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L27
design

L27 - A 313-10 Fractional Factorial Design
Thirteen Factors at Three Levels (27 Runs)

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 2 2 2 2 2 2 2 2 2 
3  1 1 1 1 3 3 3 3 3 3 3 3 3 
4 1 2 2 2 1 1 1 2 2 2 3 3 3 
5 1 2 2 2 2 2 2 3 3 3 1 1 1 
6 1 2 2 2 3 3 3 1 1 1 2 2 2 
7 1 3 3 3 1 1 1 3 3 3 2 2 2 
8 1 3 3 3 2 2 2 1 1 1 3 3 3 
9 1 3 3 3 3 3 3 2 2 2 1 1 1 

10 2 1 2 3 1 2 3 1 2 3 1 2 3 
11 2 1 2 3 2 3 1 2 3 1 2 3 1 
12 2 1 2 3 3 1 2 3 1 2 3 1 2 
13 2 2 3 1 1 2 3 2 3 1 3 1 2 
14 2 2 3 1 2 3 1 3 1 2 1 2 3 
15 2 2 3 1 3 1 2 1 2 3 2 3 1 
16 2 3 1 2 1 2 3 3 1 2 2 3 1 
17 2 3 1 2 2 3 1 1 2 3 3 1 2 
18 2 3 1 2 3 1 2 2 3 1 1 2 3 
19 3 1 3 2 1 3 2 1 3 2 1 3 2 
20 3 1 3 2 2 1 3 2 1 3 2 1 3 
21 3 1 3 2 3  2  1  3  2  1  3  2  1
22 3 2 1 3 1 3 2 2 1 3 3 2 1 
23 3 2 1 3 2 1 3 3 2 1 1 3 2 
24 3 2 1 3 3 2 1 1 3 2 2 1 3 
25 3 3 2 1 1 3 2 3 2 1 2 1 3 
26 3 3 2 1 2 1 3 1 3 2 3 2 1 
27 3 3 2 1 3 2 1 2 1 3 1 3 2 

L36
design

L36 - A Fractional Factorial (Mixed-Level) Design Eleven Factors at Two Levels and Twelve Factors at 3
Levels (36 Runs)

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3
4 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 3 3 3 3
5 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 1 1 1 1
6 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2
7 1 1 2 2 2 1 1 1 2 2 2 1 1 2 3 1 2 3 3 1 2 2 3
8 1 1 2 2 2 1 1 1 2 2 2 2 2 3 1 2 3 1 1 2 3 3 1
9 1 1 2 2 2 1 1 1 2 2 2 3 3 1 2 3 1 2 2 3 1 1 2

10 1 2 1 2 2 1 2 2 1 1 2 1 1 3 2 1 3 2 3 2 1 3 2
11 1 2 1 2 2 1 2 2 1 1 2 2 2 1 3 2 1 3 1 3 2 1 3
12 1 2 1 2 2 1 2 2 1 1 2 3 3 2 1 3 2 1 2 1 3 2 1

5.3.3.10. Three-level, mixed-level and fractional factorial designs
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13 1 2 2 1 2 2 1 2 1 2 1 1 2 3 1 3 2 1 3 3 2 1 2
14 1 2 2 1 2 2 1 2 1 2 1 2 3 1 2 1 3 2 1 1 3 2 3
15 1 2 2 1 2 2 1 2 1 2 1 3 1 2 3 2 1 3 2 2 1 3 1
16 1 2 2 2 1 2 2 1 2 1 1 1 2 3 2 1 1 3 2 3 3 2 1
17 1 2 2 2 1 2 2 1 2 1 1 2 3 1 3 2 2 1 3 1 1 3 2
18 1 2 2 2 1 2 2 1 2 1 1 3 1 2 1 3 3 2 1 2 2 1 3
19 2 1 2 2 1 1 2 2 1 2 1 1 2 1 3 3 3 1 2 2 1 2 3
20 2 1 2 2 1 1 2 2 1 2 1 2 3 2 1 1 1 2 3 3 2 3 1
21 2 1 2 2 1 1 2 2 1 2 1 3 1 3 2 2 2 3 1 1 3 1 2
22 2 1 2 1 2 2 2 1 1 1 2 1 2 2 3 3 1 2 1 1 3 3 2
23 2 1 2 1 2 2 2 1 1 1 2 2 3 3 1 1 2 3 2 2 1 1 3
24 2 1 2 1 2 2 2 1 1 1 2 3 1 1 2 2 3 1 3 3 2 2 1
25 2 1 1 2 2 2 1 2 2 1 1 1 3 2 1 2 3 3 1 3 1 2 2
26 2 1 1 2 2 2 1 2 2 1 1 2 1 3 2 3 1 1 2 1 2 3 3
27 2 1 1 2 2 2 1 2 2 1 1 3 2 1 3 1 2 2 3 2 3 1 1
28 2 2 2 1 1 1 1 2 2 1 2 1 3 2 2 2 1 1 3 2 3 1 3
29 2 2 2 1 1 1 1 2 2 1 2 2 1 3 3 3 2 2 1 3 1 2 1
30 2 2 2 1 1 1 1 2 2 1 2 3 2 1 1 1 3 3 2 1 2 3 2
31 2 2 1 2 1 2 1 1 1 2 2 1 3 3 3 2 3 2 2 1 2 1 1
32 2 2 1 2 1 2 1 1 1 2 2 2 1 1 1 3 1 3 3 2 3 2 2
33 2 2 1 2 1 2 1 1 1 2 2 3 2 2 1 2 1 1 3 1 1 3 3
34 2 2 1 1 2 1 2 1 2 2 1 1 3 1 2 3 2 3 1 2 2 3 1
35 2 2 1 1 2 1 2 1 2 2 1 2 1 2 3 1 3 1 2 3 3 1 2
36 2 2 1 1 2 1 2 1 2 2 1 3 2 3 1 2 1 2 3 1 1 2 3

Advantages and Disadvantages of Three-Level and Mixed-Level
"L" Designs

Advantages
and
disadvantages
of three-level
mixed-level
designs

The good features of these designs are:

They are orthogonal arrays. Some analysts believe this
simplifies the analysis and interpretation of results while other
analysts believe it does not.

●   

They obtain a lot of information about the main effects in a
relatively few number of runs.

●   

You can test whether non-linear terms are needed in the model,
at least as far as the three-level factors are concerned.

●   

On the other hand, there are several undesirable features of these
designs to consider:

They provide limited information about interactions.●   

They require more runs than a comparable 2k-pdesign, and a
two-level design will often suffice when the factors are
continuous and monotonic (many three-level designs are used
when two-level designs would have been adequate).

●   

5.3.3.10. Three-level, mixed-level and fractional factorial designs
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5. Process Improvement

5.4.Analysis of DOE data

Contents of
this section

Assuming you have a starting model that you want to fit to your
experimental data and the experiment was designed correctly for your
objective, most DOE software packages will analyze your DOE data.
This section will illustrate how to analyze DOE's by first going over the
generic basic steps and then showing software examples. The contents
of the section are:

DOE analysis steps●   

Plotting DOE data●   

Modeling DOE data●   

Testing and revising DOE models●   

Interpreting DOE results●   

Confirming DOE results●   

DOE examples

Full factorial example❍   

Fractional factorial example❍   

Response surface example❍   

●   

Prerequisite
statistical
tools and
concepts
needed for
DOE
analyses

The examples in this section assume the reader is familiar with the
concepts of

ANOVA tables (see Chapter 3 or Chapter 7)●   

p-values●   

Residual analysis●   

Model Lack of Fit tests●   

Data transformations for normality and linearity●   
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5. Process Improvement
5.4. Analysis of DOE data

5.4.1.What are the steps in a DOE analysis?

General
flowchart
for
analyzing
DOE data

Flowchart of DOE Analysis Steps

DOE Analysis Steps

Analysis
steps:
graphics,
theoretical
model,
actual
model,
validate
model, use
model

The following are the basic steps in a DOE analysis.

Look at the data. Examine it for outliers, typos and obvious problems. Construct as many
graphs as you can to get the big picture.

Response distributions (histograms, box plots, etc.)❍   

Responses versus time order scatter plot (a check for possible time effects)❍   

Responses versus factor levels (first look at magnitude of factor effects)❍   

Typical DOE plots (which assume standard models for effects and errors)

Main effects mean plots■   

Block plots■   

Normal or half-normal plots of the effects■   

❍   

1.  

5.4.1. What are the steps in a DOE analysis?
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Interaction plots■   

Sometimes the right graphs and plots of the data lead to obvious answers for your
experimental objective questions and you can skip to step 5. In most cases, however,
you will want to continue by fitting and validating a model that can be used to
answer your questions.

❍   

Create the theoretical model (the experiment should have been designed with this model in
mind!).

2.  

Create a model from the data. Simplify the model, if possible, using stepwise regression
methods and/or parameter p-value significance information.

3.  

Test the model assumptions using residual graphs.

If none of the model assumptions were violated, examine the ANOVA.

Simplify the model further, if appropriate. If reduction is appropriate, then
return to step 3 with a new model.

■   

❍   

If model assumptions were violated, try to find a cause.

Are necessary terms missing from the model?■   

Will a transformation of the response help? If a transformation is used, return
to step 3 with a new model.

■   

❍   

4.  

Use the results to answer the questions in your experimental objectives -- finding important
factors, finding optimum settings, etc.

5.  

Flowchart
is a
guideline,
not a
hard-and
-fast rule

Note: The above flowchart and sequence of steps should not be regarded as a "hard-and-fast rule"
for analyzing all DOE's. Different analysts may prefer a different sequence of steps and not all
types of experiments can be analyzed with one set procedure. There still remains some art in both
the design and the analysis of experiments, which can only be learned from experience. In
addition, the role of engineering judgment should not be underestimated.

5.4.1. What are the steps in a DOE analysis?
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5. Process Improvement
5.4. Analysis of DOE data

5.4.2.How to "look" at DOE data

The
importance
of looking at
the data with
a wide array
of plots or
visual
displays
cannot be
over-stressed

The right graphs, plots or visual displays of a dataset can uncover
anomalies or provide insights that go beyond what most quantitative
techniques are capable of discovering. Indeed, in many cases
quantitative techniques and models are tools used to confirm and extend
the conclusions an analyst has already formulated after carefully
"looking" at the data.

Most software packages have a selection of different kinds of plots for
displaying DOE data. Dataplot, in particular, has a wide range of
options for visualizing DOE (i.e., DEX) data. Some of these useful
ways of looking at data are mentioned below, with links to detailed
explanations in Chapter 1 (Exploratory Data Analysis or EDA) or to
other places where they are illustrated and explained. In addition,
examples and detailed explanations of visual (EDA) DOE techniques
can be found in section 5.5.9.

Plots for
viewing the
response
data

First "Look" at the Data
Histogram of responses●   

Run-sequence plot (pay special attention to results at center
points)

●   

Scatter plot (for pairs of response variables)●   

Lag plot●   

Normal probability plot●   

Autocorrelation plot●   

5.4.2. How to "look" at DOE data
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Plots for
viewing
main effects
and 2-factor
interactions,
explanation
of normal or
half-normal
plots to
detect
possible
important
effects

Subsequent Plots: Main Effects, Comparisons and 2-Way
Interactions

Quantile-quantile (q-q) plot●   

Block plot●   

Box plot●   

Bi-histogram●   

DEX scatter plot●   

DEX mean plot●   

DEX standard deviation plot●   

DEX interaction plots●   

Normal or half-normal probability plots for effects. Note: these
links show how to generate plots to test for normal (or
half-normal) data with points lining up along a straight line,
approximately, if the plotted points were from the assumed
normal (or half-normal) distribution. For two-level full factorial
and fractional factorial experiments, the points plotted are the
estimates of all the model effects, including possible interactions.
Those effects that are really negligible should have estimates that
resemble normally distributed noise, with mean zero and a
constant variance. Significant effects can be picked out as the
ones that do not line up along the straight line. Normal effect
plots use the effect estimates directly, while half-normal plots use
the absolute values of the effect estimates.

●   

Youden plots●   

Plots for
testing and
validating
models

Model testing and Validation
Response vs predictions●   

Residuals vs predictions●   

Residuals vs independent variables●   

Residuals lag plot●   

Residuals histogram●   

Normal probability plot of residuals●   

Plots for
model
prediction

Model Predictions
Contour plots●   

5.4.2. How to "look" at DOE data
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5. Process Improvement
5.4. Analysis of DOE data

5.4.3.How to model DOE data

DOE models
should be
consistent
with the
goal of the
experiment

In general, the trial model that will be fit to DOE data should be
consistent with the goal of the experiment and has been predetermined
by the goal of the experiment and the experimental design and data
collection methodology.

Comparative
designs

Models were given earlier for comparative designs (completely
randomized designs, randomized block designs and Latin square
designs).

Full
factorial
designs

For full factorial designs with k factors (2k runs, not counting any center
points or replication runs), the full model contains all the main effects
and all orders of interaction terms. Usually, higher-order (three or more
factors) interaction terms are included initially to construct the normal
(or half-normal) plot of effects, but later dropped when a simpler,
adequate model is fit. Depending on the software available or the
analyst's preferences, various techniques such as normal or half-normal
plots, Youden plots, p-value comparisons and stepwise regression
routines are used to reduce the model to the minimum number of needed
terms. A JMP example of model selection is shown later in this section
and a Dataplot example is given as a case study.

Fractional
factorial
designs

For fractional factorial screening designs, it is necessary to know the
alias structure in order to write an appropriate starting model  containing
only the interaction terms the experiment was designed to estimate
(assuming all terms confounded with these selected terms are
insignificant). This is illustrated by the JMP fractional factorial example
later in this section. The starting model is then possibly reduced by the
same techniques described above for full factorial models.

5.4.3. How to model DOE data
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Response
surface
designs

Response surface initial models include quadratic terms and may
occasionally also include cubic terms. These models were described in
section 3.

Model
validation

Of course, as in all cases of model fitting, residual analysis and other
tests of model fit are used to confirm or adjust models, as needed.

5.4.3. How to model DOE data
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5. Process Improvement
5.4. Analysis of DOE data

5.4.4.How to test and revise DOE models

Tools for
testing,
revising,
and
selecting
models

All the tools and procedures for testing, revising and selecting final
DOE models are covered in various sections of the Handbook. The
outline below gives many of the most common and useful techniques
and has links to detailed explanations.

Outline of Model Testing and Revising: Tools and Procedures

An outline
(with links)
covers most
of the useful
tools and
procedures
for testing
and revising
DOE models

Graphical Indicators for testing models (using residuals)

Response vs predictions❍   

Residuals vs predictions❍   

Residuals vs independent variables❍   

Residuals lag plot❍   

Residuals histogram❍   

Normal probability plot of residuals❍   

●   

Overall numerical indicators for testing models and model terms

R Squared and R Squared adjusted❍   

Model Lack of Fit tests❍   

ANOVA tables (see Chapter 3 or Chapter 7)❍   

p-values❍   

●   

Model selection tools or procedures

ANOVA tables (see Chapter 3 or Chapter 7)❍   

p-values❍   

Residual analysis❍   

Model Lack of Fit tests❍   

Data transformations for normality and linearity❍   

Stepwise regression procedures❍   

●   

5.4.4. How to test and revise DOE models
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Normal or half-normal plots of effects (primarily for
two-level full and fractional factorial experiments)

❍   

Youden plots❍   

Other methods❍   

5.4.4. How to test and revise DOE models
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5. Process Improvement
5.4. Analysis of DOE data

5.4.5.How to interpret DOE results

Final model
used to
make
conclusions
and
decisions

Assume that you have a final model that has passed all the relevant tests
(visual and quantitative) and you are ready to make conclusions and
decisions. These should be responses to the questions or outputs
dictated by the original experimental goals.

Checklist relating DOE conclusions or outputs to experimental
goals or experimental purpose:

A checklist
of how to
compare
DOE results
to the
experimental
goals

Do the responses differ significantly over the factor levels?
(comparative experiment goal)

●   

Which are the significant effects or terms in the final model?
(screening experiment goal)

●   

What is the model for estimating responses?

Full factorial case (main effects plus significant
interactions)

❍   

Fractional factorial case (main effects plus significant
interactions that are not confounded with other possibly
real effects)

❍   

RSM case (allowing for quadratic or possibly cubic
models, if needed)

❍   

●   

What responses are predicted and how can responses be
optimized? (RSM goal)

Contour plots❍   

JMP prediction profiler (or other software aids)❍   

Settings for confirmation runs and prediction intervals for
results

❍   

●   

5.4.5. How to interpret DOE results
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5. Process Improvement
5.4. Analysis of DOE data

5.4.6.How to confirm DOE results
(confirmatory runs)

Definition of
confirmation
runs

When the analysis of the experiment is complete, one must verify that
the predictions are good. These are called confirmation runs.

The interpretation and conclusions from an experiment may include a
"best" setting to use to meet the goals of the experiment. Even if this
"best" setting were included in the design, you should run it again as
part of the confirmation runs to make sure nothing has changed and
that the response values are close to their predicted values. would get.

At least 3
confirmation
runs should
be planned

In an industrial setting, it is very desirable to have a stable process.
Therefore, one should run more than one test at the "best" settings. A
minimum of 3 runs should be conducted (allowing an estimate of
variability at that setting).

If the time between actually running the experiment and conducting the
confirmation runs is more than a few hours, the experimenter must be
careful to ensure that nothing else has changed since the original data
collection.

Carefully
duplicate the
original
environment

The confirmation runs should be conducted in an environment as
similar as possible to the original experiment. For example, if the
experiment were conducted in the afternoon and the equipment has a
warm-up effect, the confirmation runs should be conducted in the
afternoon after the equipment has warmed up. Other extraneous factors
that may change or affect the results of the confirmation runs are:
person/operator on the equipment, temperature, humidity, machine
parameters, raw materials, etc.

5.4.6. How to confirm DOE results (confirmatory runs)
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Checks for
when
confirmation
runs give
surprises

What do you do if you don't obtain the results you expected? If the
confirmation runs don't produce the results you expected:

check to see that nothing has changed since the original data
collection

1.  

verify that you have the correct settings for the confirmation
runs

2.  

revisit the model to verify the "best" settings from the analysis3.  

verify that you had the correct predicted value for the
confirmation runs.

4.  

If you don't find the answer after checking the above 4 items, the
model may not predict very well in the region you decided was "best".
You still learned from the experiment and you should use the
information gained from this experiment to design another follow-up
experiment.

Even when
the
experimental
goals are not
met,
something
was learned
that can be
used in a
follow-up
experiment

Every well-designed experiment is a success in that you learn
something from it. However, every experiment will not necessarily
meet the goals established before experimentation. That is why it
makes sense to plan to experiment sequentially in order to meet the
goals.

5.4.6. How to confirm DOE results (confirmatory runs)
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5. Process Improvement
5.4. Analysis of DOE data

5.4.7.Examples of DOE's

Software
packages do
the
calculations
and plot the
graphs for a
DOE
analysis: the
analyst has
to know
what to
request and
how to
interpret the
results

Most DOE analyses of industrial experiments will be performed by
statistical software packages. Good statistical software enables the
analyst to view graphical displays and to build models and test
assumptions. Occasionally the goals of the experiment can be achieved
by simply examining appropriate graphical displays of the experimental
responses. In other cases, a satisfactory model has to be fit in order to
determine the most significant factors or the optimal contours of the
response surface. In any case, the software will perform the appropriate
calculations as long as the analyst knows what to request and how to
interpret the program outputs.

Three
detailed
DOE
analyses
will be given
using JMP
software

Perhaps one of the best ways to learn how to use DOE analysis software
to analyze the results of an experiment is to go through several detailed
examples, explaining each step in the analysis. This section will
illustrate the use of JMP 3.2.6 software to analyze three real
experiments. Analysis using other software packages would generally
proceed along similar paths.

The examples cover three basic types of DOE's:

A full factorial experiment1.  

A fractional factorial experiment2.  

A response surface experiment3.  

5.4.7. Examples of DOE's
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5. Process Improvement
5.4. Analysis of DOE data
5.4.7. Examples of DOE's

5.4.7.1.Full factorial example

Data Source

This example
uses data from
a NIST high
performance
ceramics
experiment

This data set was taken from an experiment that was performed a few years ago at NIST (by Said
Jahanmir of the Ceramics Division in the Material Science and Engineering Laboratory). The
original analysis was performed primarily by Lisa Gill of the Statistical Engineering Division.
The example shown here is an independent analysis of a modified portion of the original data set.

The original data set was part of a high performance ceramics experiment with the goal of
characterizing the effect of grinding parameters on sintered reaction-bonded silicon nitride,
reaction bonded silicone nitride, and sintered silicon nitride.

Only modified data from the first of the 3 ceramic types (sintered reaction-bonded silicon nitride)
will be discussed in this illustrative example of a full factorial data analysis.

The reader may want to download the data as a text file and try using other software packages to
analyze the data.

Description of Experiment: Response and Factors

Response and
factor
variables used
in the
experiment

Purpose: To determine the effect of machining factors on ceramic strength
Response variable = mean (over 15 repetitions) of the ceramic strength
Number of observations = 32 (a complete 25 factorial design)

Response Variable Y = Mean (over 15 reps) of Ceramic Strength
Factor 1 = Table Speed (2 levels: slow (.025 m/s) and fast (.125 m/s))
Factor 2 = Down Feed Rate (2 levels: slow (.05 mm) and fast (.125 mm))
Factor 3 = Wheel Grit (2 levels: 140/170 and 80/100)
Factor 4 = Direction (2 levels: longitudinal and transverse)
Factor 5 = Batch (2 levels: 1 and 2)

Since two factors were qualitative (direction and batch) and it was reasonable to expect monotone
effects from the quantitative factors, no centerpoint runs were included.

5.4.7.1. Full factorial example
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JMP
spreadsheet of
the data

The design matrix, with measured ceramic strength responses, appears below. The actual
randomized run order is given in the last column. (The interested reader may download the data
as a text file or as a JMP file.)

Analysis of the Experiment

Analysis
follows 5 basic
steps

The experimental data will be analyzed following the previously described 5 basic steps using
SAS JMP 3.2.6 software.

Step 1: Look at the data
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Plot the
response
variable

We start by plotting the response data several ways to see if any trends or anomalies appear that
would not be accounted for by the standard linear response models.

First we look at the distribution of all the responses irrespective of factor levels.

The following plots were generared:

The first plot is a normal probability plot of the response variable. The straight red line is
the fitted nornal distribution and the curved red lines form a simultaneous 95% confidence
region for the plotted points, based on the assumption of normality.

1.  

The second plot is a box plot of the response variable. The "diamond" is called (in JMP) a
"means diamond" and is centered around the sample mean, with endpoints spanning a 95%
normal confidence interval for the sample mean.

2.  

The third plot is a histogram of the response variable.3.  

Clearly there is "structure" that we hope to account for when we fit a response model. For
example, note the separation of the response into two roughly equal-sized clumps in the
histogram. The first clump is centered approximately around the value 450 while the second
clump is centered approximately around the value 650.
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Plot of
response
versus run
order

Next we look at the responses plotted versus run order to check whether there might be a time
sequence component affecting the response levels.

Plot of Response Vs. Run Order

As hoped for, this plot does not indicate that time order had much to do with the response levels.

Box plots of
response by
factor
variables

Next, we look at plots of the responses sorted by factor columns.
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Several factors, most notably "Direction" followed by "Batch" and possibly "Wheel Grit", appear
to change the average response level.

Step 2: Create the theoretical model

Theoretical
model: assume
all 4-factor and
higher
interaction
terms are not
significant

With a 25 full factorial experiment we can fit a model containing a mean term, all 5 main effect
terms, all 10 2-factor interaction terms, all 10 3-factor interaction terms, all 5 4-factor interaction
terms and the 5-factor interaction term (32 parameters). However, we start by assuming all three
factor and higher interaction terms are non-existent (it's very rare for such high-order interactions
to be significant, and they are very difficult to interpret from an engineering viewpoint). That
allows us to accumulate the sums of squares for these terms and use them to estimate an error
term. So we start out with a theoretical model with 26 unknown constants, hoping the data will
clarify which of these are the significant main effects and interactions we need for a final model.

Step 3: Create the actual model from the data

Output from
fitting up to
third-order
interaction
terms

After fitting the 26 parameter model, the following analysis table is displayed:

     Output after Fitting Third Order Model to Response Data
               Response:     Y: Strength

                   Summary of Fit
                RSquare         0.995127
                RSquare Adj     0.974821
          Root Mean Square Error     17.81632
           Mean of Response         546.8959
                   Observations  32

Effect Test
                                 Sum
Source                DF     of Squares  F Ratio     Prob>F
X1: Table Speed        1       894.33     2.8175     0.1442
X2: Feed Rate          1      3497.20    11.0175     0.0160
X1: Table Speed*       1      4872.57    15.3505     0.0078
    X2: Feed Rate
X3: Wheel Grit         1     12663.96    39.8964     0.0007
X1: Table Speed*       1      1838.76     5.7928     0.0528
    X3: Wheel Grit
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X2: Feed Rate*         1       307.46     0.9686     0.3630
    X3: Wheel Grit
X1:Table Speed*        1       357.05     1.1248     0.3297
   X2: Feed Rate*
   X3: Wheel Grit
X4: Direction          1    315132.65   992.7901     <.0001
X1: Table Speed*       1      1637.21     5.1578     0.0636
    X4: Direction
X2: Feed Rate*         1      1972.71     6.2148     0.0470
    X4: Direction
X1: Table Speed        1      5895.62    18.5735     0.0050
    X2: Feed Rate*
    X4: Direction
X3: Wheel Grit*        1      3158.34     9.9500     0.0197
    X4: Direction
X1: Table Speed*       1         2.12     0.0067     0.9376
    X3: Wheel Grit*
    X4: Direction
X2: Feed Rate*         1        44.49     0.1401     0.7210
    X3: Wheel Grit*
    X4: Direction
X5: Batch              1     33653.91   106.0229     <.0001
X1: Table Speed*       1       465.05     1.4651     0.2716
    X5: Batch
X2: Feed Rate*         1       199.15     0.6274     0.4585
    X5: Batch
X1: Table Speed*       1       144.71     0.4559     0.5247
    X2: Feed Rate*
    X5: Batch
X3: Wheel Grit*        1        29.36     0.0925     0.7713
    X5: Batch
X1: Table Speed*       1        30.36     0.0957     0.7676
    X3: Wheel Grit*
    X5: Batch
X2: Feed Rate*         1        25.58     0.0806     0.7860
    X3: Wheel Grit*
    X5: Batch
X4: Direction *        1      1328.83     4.1863     0.0867
    X5: Batch
X1: Table Speed*       1       544.58     1.7156     0.2382
    X4: Directio*
    X5: Batch
X2: Feed Rate*         1       167.31     0.5271     0.4952
    X4: Direction*
    X5: Batch
X3: Wheel Grit*        1        32.46     0.1023     0.7600
    X4: Direction*
    X5: Batch

This fit has a high R2 and adjusted R2, but the large number of high (>0.10) p-values (in the
"Prob>F" column) make it clear that the model has many unnecessary terms.
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JMP stepwise
regression

Starting with these 26 terms, we next use the JMP Stepwise Regression option to eliminate
unnecessary terms. By a combination of stepwise regression and the removal of remaining terms
with a p-value higher than 0.05, we quickly arrive at a model with an intercept and 12 significant
effect terms.

Output from
fitting the
12-term model      Output after Fitting the 12-Term Model to Response Data

               Response:    Y: Strength

                  Summary of Fit
               RSquare 0.989114
               RSquare Adj 0.982239
         Root Mean Square Error 14.96346
          Mean of Response 546.8959
         Observations (or Sum Wgts) 32

Effect Test

                                 Sum
Source                DF     of Squares  F Ratio     Prob>F
X1: Table Speed        1       894.33     3.9942     0.0602
X2: Feed Rate          1      3497.20    15.6191     0.0009
X1: Table Speed*       1      4872.57    21.7618     0.0002
    X2: Feed Rate
X3: Wheel Grit         1     12663.96    56.5595     <.0001
X1: Table Speed*       1      1838.76     8.2122     0.0099
    X3: Wheel Grit
X4: Direction          1    315132.65  1407.4390     <.0001
X1: Table Speed*       1      1637.21     7.3121     0.0141
    X4: Direction
X2: Feed Rate*         1      1972.71     8.8105     0.0079
    X4: Direction
X1: Table Speed*       1      5895.62    26.3309     <.0001
    X2: Feed Rate*
    X4:Direction
X3: Wheel Grit*        1      3158.34    14.1057     0.0013
    X4: Direction
X5: Batch              1     33653.91   150.3044     <.0001
X4: Direction*         1      1328.83     5.9348     0.0249
    X5: Batch
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Normal plot of
the effects

Non-significant effects should effectively follow an approximately normal distribution with the
same location and scale. Significant effects will vary from this normal distribution. Therefore,
another method of determining significant effects is to generate a normal plot of all 31 effects.
Those effects that are substantially away from the straight line fitted to the normal plot are
considered significant. Although this is a somewhat subjective criteria, it tends to work well in
practice. It is helpful to use both the numerical output from the fit and graphical techniques such
as the normal plot in deciding which terms to keep in the model.

The normal plot of the effects is shown below. We have labeled those effects that we consider to
be significant. In this case, we have arrived at the exact same 12 terms by looking at the normal
plot as we did from the stepwise regression.

Most of the effects cluster close to the center (zero) line and follow the fitted normal model
straight line. The effects that appear to be above or below the line by more than a small amount
are the same effects identified using the stepwise routine, with the exception of X1. Some analysts
prefer to include a main effect term when it has several significant interactions even if the main
effect term itself does not appear to be significant.
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Model appears
to account for
most of the
variability

At this stage, this model appears to account for most of the variability in the response, achieving
an adjusted R2 of 0.982. All the main effects are significant, as are 6 2-factor interactions and 1
3-factor interaction. The only interaction that makes little physical sense is the " X4:
Direction*X5: Batch" interaction - why would the response using one batch of material react
differently when the batch is cut in a different direction as compared to another batch of the same
formulation?

However, before accepting any model, residuals need to be examined.

Step 4: Test the model assumptions using residual graphs (adjust and simplify as needed)

Plot of
residuals
versus
predicted
responses

First we look at the residuals plotted versus the predicted responses.

The residuals appear to spread out more with larger values of predicted strength, which should
not happen when there is a common variance.

Next we examine the normality of the residuals with a normal quantile plot, a box plot and a
histogram.

5.4.7.1. Full factorial example
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None of these plots appear to show typical normal residuals and 4 of the 32 data points appear as
outliers in the box plot.

Step 4 continued: Transform the data and fit the model again

Box-Cox
Transformation

We next look at whether we can model a transformation of the response variable and obtain
residuals with the assumed properties. JMP calculates an optimum Box-Cox transformation by
finding the value of  that minimizes the model SSE. Note: the Box-Cox transformation used in
JMP is different from the transformation used in Dataplot, but roughly equivalent.

Box-Cox Transformation Graph

The optimum is found at  = 0.2. A new column Y: Strength X is calculated and added to the
JMP data spreadsheet. The properties of this column, showing the transformation equation, are
shown below.
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JMP data
transformation
menu

Data Transformation Column Properties

Fit model to
transformed
data

When the 12-effect model is fit to the transformed data, the "X4: Direction*X5: Batch"
interaction term is no longer significant. The 11-effect model fit is shown below, with parameter
estimates and p-values.

JMP output for
fitted model
after applying
Box-Cox
transformation

    Output after Fitting the 11-Effect Model to
             Tranformed Response Data

               Response:    Y: Strength X

                  Summary of Fit
               RSquare 0.99041
               RSquare Adj 0.985135
         Root Mean Square Error 13.81065
          Mean of Response 1917.115
         Observations (or Sum Wgts) 32

                       Parameter
Effect                  Estimate         p-value
Intercept               1917.115          <.0001
X1: Table Speed            5.777          0.0282
X2: Feed Rate             11.691          0.0001
X1: Table Speed*         -14.467          <.0001
    X2: Feed Rate
X3: Wheel Grit           -21.649          <.0001
X1: Table Speed*           7.339          0.007
    X3: Wheel Grit
X4: Direction            -99.272          <.0001
X1: Table Speed*          -7.188          0.0080
    X4: Direction
X2: Feed Rate*            -9.160          0.0013
    X4: Direction
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X1: Table Speed*          15.325          <.0001
    X2: Feed Rate*
    X4:Direction
X3: Wheel Grit*           12.965          <.0001
    X4: Direction
X5: Batch                -31.871          <.0001

Model has high
R2

This model has a very high R2 and adjusted R2. The residual plots (shown below) are quite a bit
better behaved than before, and pass the Wilk-Shapiro test for normality.

Residual plots
from model
with
transformed
response

The run sequence plot of the residuals does not indicate any time dependent patterns.
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The normal probability plot, box plot, and the histogram of the residuals do not indicate any
serious violations of the model assumptions.

Step 5. Answer the questions in your experimental objectives

Important main
effects and
interaction
effects

The magnitudes of the effect estimates show that "Direction" is by far the most important factor.
"Batch" plays the next most critical role, followed by "Wheel Grit". Then, there are several
important interactions followed by "Feed Rate". "Table Speed" plays a role in almost every
significant interaction term, but is the least important main effect on its own. Note that large
interactions can obscure main effects.

Plots of the
main effects
and significant
2-way
interactions

Plots of the main effects and the significant 2-way interactions are shown below.
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Prediction
profile

To determine the best setting to use for maximum ceramic strength, JMP has the "Prediction
Profile" option shown below.

Y: Strength X
Prediction Profile

The vertical lines indicate the optimal factor settings to maximize the (transformed) strength
response. Translating from -1 and +1 back to the actual factor settings, we have: Table speed at
"1" or .125m/s; Down Feed Rate at "1" or .125 mm; Wheel Grit at "-1" or 140/170 and Direction
at "-1" or longitudinal.

Unfortunately, "Batch" is also a very significant factor, with the first batch giving higher
strengths than the second. Unless it is possible to learn what worked well with this batch, and
how to repeat it, not much can be done about this factor.

Comments
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Analyses with
value of
Direction fixed
indicates
complex model
is needed only
for transverse
cut

One might ask what an analysis of just the 24 factorial with "Direction" kept at -1 (i.e.,
longitudinal) would yield. This analysis turns out to have a very simple model; only
"Wheel Grit" and "Batch" are significant main effects and no interactions are significant.

If, on the other hand, we do an analysis of the 24 factorial with "Direction" kept at +1 (i.e.,
transverse), then we obtain a 7-parameter model with all the main effects and interactions
we saw in the 25 analysis, except, of course, any terms involving "Direction".

So it appears that the complex model of the full analysis came from the physical properties
of a transverse cut, and these complexities are not present for longitudinal cuts.

1.  

Half fraction
design

If we had assumed that three-factor and higher interactions were negligible before
experimenting, a  half fraction design might have been chosen. In hindsight, we would
have obtained valid estimates for all main effects and two-factor interactions except for X3
and X5, which would have been aliased with X1*X2*X4 in that half fraction.

2.  

Natural log
transformation

Finally, we note that many analysts might prefer to adopt a natural logarithm
transformation (i.e., use ln Y) as the response instead of using a Box-Cox transformation
with an exponent of 0.2. The natural logarithm transformation corresponds to an exponent
of  = 0 in the Box-Cox graph.

3.  
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5. Process Improvement
5.4. Analysis of DOE data
5.4.7. Examples of DOE's

5.4.7.2.Fractional factorial example

A "Catapult" Fractional Factorial Experiment

A step-by-step
analysis of a
fractional
factorial
"catapult"
experiment

This experiment was conducted by a team of students on a catapult – a table-top wooden device
used to teach design of experiments and statistical process control. The catapult has several
controllable factors and a response easily measured in a classroom setting. It has been used for
over 10 years in hundreds of classes. Below is a small picture of a catapult that can be opened to
view a larger version.

Catapult

Description of Experiment: Response and Factors

The experiment
has five factors
that might
affect the
distance the
golf ball
travels

Purpose: To determine the significant factors that affect the distance the ball is thrown by the
catapult, and to determine the settings required to reach 3 different distances (30, 60 and 90
inches).

Response Variable: The distance in inches from the front of the catapult to the spot where the ball
lands. The ball is a plastic golf ball.

Number of observations: 20 (a 25-1 resolution V design with 4 center points).

Variables:

Response Variable Y = distance1.  

Factor 1 = band height (height of the pivot point for the rubber bands – levels were 2.25
and 4.75 inches with a centerpoint level of 3.5)

2.  

Factor 2 = start angle (location of the arm when the operator releases– starts the forward
motion of the arm – levels were 0 and 20 degrees with a centerpoint level of 10 degrees)

3.  

Factor 3 = rubber bands (number of rubber bands used on the catapult– levels were 1 and 2
bands)

4.  

Factor 4 = arm length (distance the arm is extended – levels were 0 and 4 inches with a
centerpoint level of 2 inches)

5.  

Factor 5 = stop angle (location of the arm where the forward motion of the arm is stopped
and the ball starts flying – levels were 45 and 80 degrees with a centerpoint level of 62
degrees)

6.  
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Design matrix
and responses
(in run order)

The design matrix appears below in (randomized) run order.

You can
download the
data in a
spreadsheet

Readers who want to analyze this experiment may download an Excel spreadsheet catapult.xls or
a JMP spreadsheet capapult.jmp.

One discrete
factor

Note that 4 of the factors are continuous, and one – number of rubber bands – is discrete. Due to
the presence of this discrete factor, we actually have two different centerpoints, each with two
runs. Runs 7 and 19 are with one rubber band, and the center of the other factors, while runs 2
and 13 are with two rubber bands and the center of the other factors.

5 confirmatory
runs

After analyzing the 20 runs and determining factor settings needed to achieve predicted distances
of 30, 60 and 90 inches, the team was asked to conduct 5 confirmatory runs at each of the derived
settings.

Analysis of the Experiment

Analyze with
JMP software

The experimental data will be analyzed using SAS JMP 3.2.6 software.

Step 1: Look at the data
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Histogram, box
plot, and
normal
probability
plot of the
response

We start by plotting the data several ways to see if any trends or anomalies appear that would not
be accounted for by the models.

The distribution of the response is given below:

We can see the large spread of the data and a pattern to the data that should be explained by the
analysis.

Plot of
response
versus run
order

Next we look at the responses versus the run order to see if there might be a time sequence
component. The four highlighted points are the center points in the design. Recall that runs 2 and
13 had 2 rubber bands and runs 7 and 19 had 1 rubber band. There may be a slight aging of the
rubber bands in that the second center point resulted in a distance that was a little shorter than the
first for each pair.
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Plots of
responses
versus factor
columns

Next look at the plots of responses sorted by factor columns.
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Several factors appear to change the average response level and most have a large spread at each
of the levels.

Step 2: Create the theoretical model

The resolution
V design can
estimate main
effects and all
2-factor
interactions

With a resolution V design we are able to estimate all the main effects and all two-factor
interactions cleanly – without worrying about confounding. Therefore, the initial model will have
16 terms – the intercept term, the 5 main effects, and the 10 two-factor interactions.

Step 3: Create the actual model from the data

Variable
coding

Note we have used the orthogonally coded columns for the analysis, and have abbreviated the
factor names as follows:

Bheight = band height
Start = start angle
Bands = number of rubber bands
Stop = stop angle
Arm = arm length.

JMP output
after fitting the
trial model (all
main factors
and 2-factor
interactions)

The following is the JMP output after fitting the trial model (all main factors and 2-factor
interactions).
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Use p-values to
help select
significant
effects, and
also use a
normal plot

The model has a good R2 value, but the fact that R2 adjusted is considerably smaller indicates that
we undoubtedly have some terms in our model that are not significant. Scanning the column of
p-values (labeled Prob>|t| in the JMP output) for small values shows 5 significant effects at the
0.05 level and another one at the 0.10 level.

The normal plot of effects is a useful graphical tool to determine significant effects. The graph
below shows that there are 9 terms in the model that can be assumed to be noise. That would
leave 6 terms to be included in the model. Whereas the output above shows a p-value of 0.0836
for the interaction of bands and arm, the normal plot suggests we treat this interaction as
significant.
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A refit using
just the effects
that appear to
matter

Remove the non-significant terms from the model and refit to produce the following output:

R2 is OK and
there is no
significant
model "lack of
fit"

The R2 and R2 adjusted values are acceptable. The ANOVA table shows us that the model is
significant, and the Lack of Fit table shows that there is no significant lack of fit.

The Parameter estimates table is below.

Step 4: Test the model assumptions using residual graphs (adjust and simplify as needed)
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Histogram of
the residuals to
test the model
assumptions

We should test that the residuals are approximately normally distributed, are independent, and
have equal variances. First we create a histogram of the residual values.

The residuals do appear to have, at least approximately, a normal distributed.

Plot of
residuals
versus
predicted
values

Next we plot the residuals versus the predicted values.

There does not appear to be a pattern to the residuals. One observation about the graph, from a
single point, is that the model performs poorly in predicting a short distance. In fact, run number
10 had a measured distance of 8 inches, but the model predicts -11 inches, giving a residual of 19.
The fact that the model predicts an impossible negative distance is an obvious shortcoming of the
model. We may not be successful at predicting the catapult settings required to hit a distance less
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than 25 inches. This is not surprising since there is only one data value less than 28 inches. Recall
that the objective is for distances of 30, 60, and 90 inches.

Plot of
residuals
versus run
order

Next we plot the residual values versus the run order of the design. The highlighted points are the
centerpoint values. Recall that run numbers 2 and 13 had two rubber bands while run numbers 7
and 19 had only one rubber band.

Plots of
residuals
versus the
factor
variables

Next we look at the residual values versus each of the factors.

5.4.7.2. Fractional factorial example
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The residual
graphs are not
ideal, although
the model
passes "lack of
fit"
quantitative
tests

Most of the residual graphs versus the factors appear to have a slight "frown" on the graph (higher
residuals in the center). This may indicate a lack of fit, or sign of curvature at the centerpoint
values. The Lack of Fit table, however, indicates that the lack of fit is not significant.
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Consider a
transformation
of the response
variable to see
if we can
obtain a better
model

At this point, since there are several unsatisfactory features of the model we have fit and the
resultant residuals, we should consider whether a simple transformation of the response variable
(Y = "Distance") might improve the situation.

There are at least two good reasons to suspect that using the logarithm of distance as the response
might lead to a better model.

A linear model fit to LN Y will always predict a positive distance when converted back to
the original scale for any possible combination of X factor values.

1.  

Physical considerations suggest that a realistic model for distance might require quadratic
terms since gravity plays a key role - taking logarithms often reduces the impact of
non-linear terms.

2.  

To see whether using LN Y as the response leads to a more satisfactory model, we return to step
3.

Step 3a: Fit the full model using LN Y as the response

First a main
effects and
2-factor
interaction
model is fit to
the log
distance
responses

Proceeding as before, using the coded columns of the matrix for the factor levels and Y = the
natural logarithm of distance as the response, we initially obtain:

5.4.7.2. Fractional factorial example
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A simpler
model with just
main effects
has a
satisfactory fit

Examining the p-values of the 16 model coefficients, only the intercept and the 5 main effect
terms appear significant. Refitting the model with just these terms yields the following results.

This is a simpler model than previously obtained in Step 3 (no interaction term). All the terms are
highly significant and there is no quantitative indication of "lack of fit".

We next look at the residuals for this new model fit.

Step 4a: Test the (new) model assumptions using residual graphs (adjust and simplify as
needed)

Normal
probability
plot, box plot,
and histogram
of the residuals

The following normal plot, box plot, and histogram of the residuals shows no problems.
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Plot of
residuals
versus
predicted LN Y
values

A plot of the residuals versus the predicted LN Y values looks reasonable, although there might
be a tendency for the model to overestimate slightly for high predicted values.

Plot of
residuals
versus run
order

Residuals plotted versus run order again show a possible slight decreasing trend (rubber band
fatigue?).
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Plot of
residuals
versus the
factor
variables

Next we look at the residual values versus each of the factors.
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The residuals
for the main
effects model
(fit to natural
log distance)
are reasonably
well behaved

These plots still appear to have a slight "frown" on the graph (higher residuals in the center).
However, the model is generally an improvement over the previous model and will be accepted as
possibly the best that can be done without conducting a new experiment designed to fit a
quadratic model.

Step 5: Use the results to answer the questions in your experimental objectives
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Final step:
quantify the
influence of all
the significant
effects and
predict what
settings should
be used to
obtain desired
distances

The software used for this analysis (JMP 3.2.6) has an option called the "Prediction Profiler" that
can be used to derive settings that will yield a desired predicted natural log distance value. The
top graph in the figure below shows the direction and strength of each of the main effects in the
model. Using natural log 30 = 3.401 as the target value, the Profiler allows us to set up a
"Desirability" function that gives 3.401 a maximum desirability value of 1 and values above or
below 3.401 have desirabilities that rapidly decrease to 0. This is shown by the desirability graph
on the right (see the figure below).

The next step is to set "bands" to either -1 or +1 (this is a discrete factor) and move the values of
the other factors interactively until a desirability as close as possible to 1 is obtained. In the figure
below, a desirability of .989218 was obtained, yielding a predicted natural log Y of 3.399351 (or a
distance of 29.94). The corresponding (coded) factor settings are: bheight = 0.17, start = -1, bands
= -1, arm = -1 and stop = 0.

Prediction
profile plots
for Y = 30

Prediction
profile plots
for Y = 60

Repeating the profiler search for a Y value of 60 (or LN Y = 4.094) yielded the figure below for
which a natural log distance value of 4.094121 is predicted (a distance of 59.99) for coded factor
settings of bheight = 1, start = 0, bands = -1, arm = .5 and stop = .5.
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Prediction
profile plots
for Y = 90

Finally, we set LN Y = LN 90 = 4.4998 and obtain (see the figure below) a predicted log distance
of 90.20 when bheight = -0.87, start = -0.52, bands = 1, arm = 1, and stop = 0.

"Confirmation"
runs were
successful

In the confirmatory runs that followed the experiment, the team was successful at hitting all 3
targets, but did not hit them all 5 times.

NOTE: The model discovery and fitting process, as illustrated in this analysis, is often an
iterative process.
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5. Process Improvement
5.4. Analysis of DOE data
5.4.7. Examples of DOE's

5.4.7.3.Response surface model example

Data Source

A CCD DOE
with two
responses

This example uses experimental data published in Czitrom and Spagon, (1997), Statistical Case
Studies for Industrial Process Improvement. This material is copyrighted by the American
Statistical Association and the Society for Industrial and Applied Mathematics, and used with
their permission. Specifically, Chapter 15, titled "Elimination of TiN Peeling During Exposure to
CVD Tungsten Deposition Process Using Designed Experiments", describes a semiconductor
wafer processing experiment (labeled Experiment 2).

Goal,
response
variables,
and factor
variables

The goal of this experiment was to fit response surface models to the two responses, deposition
layer Uniformity and deposition layer Stress, as a function of two particular controllable factors
of the chemical vapor deposition (CVD) reactor process. These factors were Pressure (measured
in torr) and the ratio of the gaseous reactants H2 and WF6 (called H2/WF6). The experiment also
included an important third (categorical) response - the presence or absence of titanium nitride
(TiN) peeling. That part of the experiment has been omitted in this example, in order to focus on
the response surface model aspects.

To summarize, the goal is to obtain a response surface model for each response where the
responses are: "Uniformity" and "Stress". The factors are: "Pressure" and "H2/WF6".

Experiment Description

The design is
a 13-run CCI
design with 3
centerpoint
runs

The maximum and minimum values chosen for pressure were 4 torr and 80 torr. The lower and
upper H2/WF6 ratios were chosen to be 2 and 10. Since response curvature, especially for
Uniformity, was a distinct possibility, an experimental design that allowed estimating a second
order (quadratic) model was needed. The experimenters decided to use a central composite
inscribed (CCI) design. For two factors, this design is typically recommended to have 13 runs
with 5 centerpoint runs. However, the experimenters, perhaps to conserve a limited supply of
wafer resources, chose to include only 3 centerpoint runs. The design is still rotatable, but the
uniform precision property has been sacrificed.
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Table
containing
the CCI
design and
experimental
responses

The table below shows the CCI design and experimental responses, in the order in which they
were run (presumably randomized). The last two columns show coded values of the factors.

Run Pressure H2/WF6 Uniformity Stress
Coded

Pressure
Coded

H2/WF6
1  80  6 4.6 8.04 1  0 
2 42 6 6.2 7.78 0 0
3      68.87       3.17 3.4 7.58       0.71     -0.71 
4      15.13       8.83 6.9 7.27     -0.71      0.71 
5   4 6 7.3  6.49 -1 0 
6 42 6  6.4  7.69  0 0 
7     15.13       3.17  8.6  6.66     -0.71     -0.71 
8  42  2  6.3  7.16  0 -1 
9       68.87       8.83  5.1  8.33       0.71       0.71 

10  42  10  5.4  8.19  0 1 
11  42  6  5.0  7.90  0 0 

Low values
of both
responses
are better
than high

Note: "Uniformity" is calculated from four-point probe sheet resistance measurements made at 49
different locations across a wafer. The value used in the table is the standard deviation of the 49
measurements divided by their mean, expressed as a percentage. So a smaller value of
"Uniformity" indicates a more uniform layer - hence, lower values are desirable. The "Stress"
calculation is based on an optical measurement of wafer bow, and again lower values are more
desirable.

Analysis of DOE Data Using JMP 4.02

Steps for
fitting a
response
surface
model using
JMP 4.02
(other
software
packages
generally
have similar
procedures)

The steps for fitting a response surface (second-order or quadratic) model using the JMP 4.02
software for this example are as follows:

Specify the model in the "Fit Model" screen by inputting a response variable and the model
effects (factors) and using the macro labeled "Response Surface".

1.  

Choose the "Stepwise" analysis option and select "Run Model".2.  

The stepwise regression procedure allows you to select probabilities (p-values) for adding
or deleting model terms. You can also choose to build up from the simplest models by
adding and testing higher-order terms (the "forward" direction), or starting with the full
second-order model and eliminating terms until the most parsimonious, adequate model is
obtained (the "backward" direction). In combining the two approaches, JMP tests for both
addition and deletion, stopping when no further changes to the model can be made. A
choice of p-values set at 0.10 generally works well, although sometimes the user has to
experiment here. Start the stepwise selection process by selecting "go".

3.  

"Stepwise" will generate a screen with recommended model terms checked and p-values
shown (these are called "Prob>F" in the output). Sometimes, based on p-values, you might
choose to drop, or uncheck, some of these terms. However, follow the hierarchy principle
and keep all main effects that are part of significant higher-order terms or interactions, even
if the main effect p-value is higher than you would like (note that not all analysts agree
with this principle).

4.  

Choose "make model" and "run model" to obtain the full range of JMP graphic and
analytical outputs for the selected model.

5.  

Examine the fitted model plot, normal plot of effects, interaction plots, residual plots, and
ANOVA statistics (R2, R2 adjusted, lack of fit test, etc.). By saving the residuals onto your
JMP worksheet you can generate residual distribution plots (histograms, box plots, normal
plots, etc.). Use all these plots and statistics to determine whether the model fit is
satisfactory.

6.  

5.4.7.3. Response surface model example

http://www.itl.nist.gov/div898/handbook/pri/section4/pri473.htm (2 of 16) [5/1/2006 10:30:56 AM]



Use the JMP contour profiler to generate response surface contours and explore the effect
of changing factor levels on the response.

7.  

Repeat all the above steps for the second response variable.8.  

Save prediction equations for each response onto your JMP worksheet (there is an option
that does this for you). After satisfactory models have been fit to both responses, you can
use "Graph" and "Profiler" to obtain overlaid surface contours for both responses.

9.  

"Profiler" also allows you to (graphically) input a desirability function and let JMP find
optimal factor settings.

10.  

The displays below are copies of JMP output screens based on following the above 10 steps for
the "Uniformity" and "Stress" responses. Brief margin comments accompany the screen shots.

Fitting a Model to the "Uniformity" Response, Simplifying the Model and Checking
Residuals

Model
specification
screen and
stepwise
regression
(starting
from a full
second-order
model)
output

We start with the model specification screen in which we input factors and responses and choose
the model we want to fit. We start with a full second-order model and select a "Stepwise Fit". We
set "prob" to 0.10 and direction to "Mixed" and then "Go".
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The stepwise routine finds the intercept and three other terms (the main effects and the interaction
term) to be significant.

JMP output
for analyzing
the model
selected by
the stepwise
regression
for the
Uniformity
response

The following is the JMP analysis using the model selected by the stepwise regression in the
previous step. The model is fit using coded factors, since the factor columns were given the
property "coded".
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Conclusions
from the
JMP output

From the above output, we make the following conclusions.

The R2 is reasonable for fitting "Uniformity" (well known to be a hard response to model).●   

The lack of fit test does not have a problem with the model (very small "Prob > F " would
question the model).

●   

The residual plot does not reveal any major violations of the underlying assumptions.●   

The normal plot of main effects and interaction effects provides a visual confirmation of
the significant model terms.

●   

The interaction plot shows why an interaction term is needed (parallel lines would suggest
no interaction).

●   

Plot of the
residuals
versus run
order

We next perform a residuals analysis to validate the model. We first generate a plot of the
residuals versus run order.

Normal plot,
box plot, and
histogram of
the residuals

Next we generate a normal plot, a box plot, and a histogram of the residuals.
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Viewing the above plots of the residuals does not show any reason to question the model.

Fitting a Model to the "Stress" Response, Simplifying the Model and Checking Residuals

Model
specification
screen and
stepwise
regression
(starting
from a full
second-order
model)
output

We start with the model specification screen in which we input factors and responses and choose
the model we want to fit. This time the "Stress" response will be modeled. We start with a full
second-order model and select a "Stepwise Fit". We set "prob" to 0.10 and direction to "Mixed"
and then "Go".
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http://www.itl.nist.gov/div898/handbook/pri/section4/pri473.htm (8 of 16) [5/1/2006 10:30:56 AM]



The stepwise routine finds the intercept, the main effects, and Pressure squared to be signficant
terms.
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JMP output
for analyzing
the model
selected by
the stepwise
regression
for the Stress
response

The following is the JMP analysis using the model selected by the stepwise regression, which
contains four significant terms, in the previous step. The model is fit using coded factors, since
the factor columns were given the property "coded".
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Conclusions
from the
JMP output

From the above output, we make the following conclusions.

The R2 is very good for fitting "Stress".●   

The lack of fit test does not have a problem with the model (very small "Prob > F " would
question the model).

●   

The residual plot does not reveal any major violations of the underlying assumptions.●   

The interaction plot shows why an interaction term is needed (parallel lines would suggest
no interaction).

●   

Plot of the
residuals
versus run
order

We next perform a residuals analysis to validate the model. We first generate a plot of the
residuals versus run order.

Normal plot,
box plot, and
histogram of
the residuals

Next we generate a normal plot, a box plot, and a histogram of the residuals.
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Viewing the above plots of the residuals does not show any reason to question the model.

Response Surface Contours for Both Responses

"Contour
Profiler" and
"Prediction
Profiler"

JMP has a "Contour Profiler" and "Prediction Profiler" that visually and interactively show how
the responses vary as a function of the input factors. These plots are shown here for both the
Uniformity and the Stress response.
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Prediction Profiles Desirability Functions for Both Responses

Desirability
function:
Pressure
should be as
high as
possible and
H2/WF6 as
low as
possible

You can graphically construct a desirability function and let JMP find the factor settings that
maximize it - here it suggests that Pressure should be as high as possible and H2/WF6 as low as
possible.
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Summary

Final
response
surface
models

The response surface models fit to (coded) "Uniformity" and "Stress" were:

Uniformity = 5.93 - 1.91*Pressure - 0.22*H2/WF6 + 1.70*Pressure*H2/WF6

Stress = 7.73 + 0.74*Pressure + 0.50*H2/WF6 - 0.49*Pressure2

Trade-offs
are often
needed for
multiple
responses

These models and the corresponding profiler plots show that trade-offs have to be made when
trying to achieve low values for both "Uniformity" and "Stress" since a high value of "Pressure"
is good for "Uniformity" while a low value of "Pressure" is good for "Stress". While low values
of H2/WF6 are good for both responses, the situation is further complicated by the fact that the
"Peeling" response (not considered in this analysis) was unacceptable for values of H2/WF6
below approximately 5.

"Uniformity"
was chosen
as more
important

In this case, the experimenters chose to focus on optimizing "Uniformity" while keeping H2/WF6
at 5. That meant setting "Pressure" at 80 torr.
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Confirmation
runs
validated the
model
projections

A set of 16 verification runs at the chosen conditions confirmed that all goals, except those for the
"Stress" response, were met by this set of process settings.
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5. Process Improvement

5.5.Advanced topics

Contents of
"Advanced
Topics"
section

This section builds on the basics of DOE described in the preceding
sections by adding brief or survey descriptions of a selection of useful
techniques. Subjects covered are:

When classical designs don't work1.  

Computer-aided designs

D-Optimal designs1.  

Repairing a design2.  

2.  

Optimizing a Process

Single response case

Path of steepest ascent1.  

Confidence region for search path2.  

Choosing the step length3.  

Optimization when there is adequate quadratic fit4.  

Effect of sampling error on optimal solution5.  

Optimization subject to experimental region
constraints

6.  

1.  

Multiple response case

Path of steepest ascent1.  

Desirability function approach2.  

Mathematical programming approach3.  

2.  

3.  

Mixture designs

Mixture screening designs1.  

Simplex-lattice designs2.  

Simplex-Centroid designs3.  

Constrained mixture designs4.  

Treating mixture and process variables together5.  

4.  

Nested variation5.  
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Taguchi designs6.  

John's 3/4 fractional factorial designs7.  

Small composite designs8.  

An EDA approach to experimental design

Ordered data plot1.  

Dex scatter plot2.  

Dex mean plot3.  

Interaction effects matrix plot4.  

Block plot5.  

DEX Youden plot6.  

|Effects| plot7.  

Half-normal probability plot8.  

Cumulative residual standard deviation plot9.  

DEX contour plot10.  

9.  
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5. Process Improvement
5.5. Advanced topics

5.5.1.What if classical designs don't work?

Reasons
designs
don't work

Most experimental situations call for standard designs that can be
constructed with many statistical software packages. Standard designs
have assured degrees of precision, orthogonality, and other optimal
properties that are important for the exploratory nature of most
experiments. In some situations, however, standard designs are not
appropriate or are impractical. These may include situations where

The required blocking structure or blocking size of the
experimental situation does not fit into a standard blocked design

1.  

Not all combinations of the factor settings are feasible, or for
some other reason the region of experimentation is constrained or
irregularly shaped.

2.  

A classical design needs to be 'repaired'. This can happen due to
improper planning with the original design treatment
combinations containing forbidden or unreachable combinations
that were not considered before the design was generated.

3.  

A nonlinear model is appropriate.4.  

A quadratic or response surface design is required in the presence
of qualitative factors.

5.  

The factors in the experiment include both components of a
mixture and other process variables.

6.  

There are multiple sources of variation leading to nested or
hierarchical data structures and restrictions on what can be
randomized.

7.  

A standard fractional factorial design requires too many treatment
combinations for the given amount of time and/or resources.

8.  

Computer-
aided
designs

When situations such as the above exist, computer-aided designs are a
useful option. In some situations, computer-aided designs are the only
option an experimenter has.
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5. Process Improvement
5.5. Advanced topics

5.5.2.What is a computer-aided design?

Computer-aided
designs are
generated by a
computer
algorithm and
constructed to be
optimal for
certain models
according to one
of many types of
optimality
criteria

Designs generated from a computer algorithm are referred to as
computer-aided designs. Computer-aided designs are experimental
designs that are generated based on a particular optimality criterion
and are generally 'optimal' only for a specified model. As a result,
they are sometimes referred to as optimal designs and generally do
not satisfy the desirable properties such as independence among
the estimators that standard classical designs do. The design
treatment runs that are generated by the algorithms are chosen
from an overall candidate set of possible treatment combinations.
The candidate set consists of all the possible treatment
combinations that one wishes to consider in an experiment.

Optimality
critieria

There are various forms of optimality criteria that are used to select
the points for a design.

D-Optimality One popular criterion is D-optimality, which seeks to maximize
|X'X|, the determinant of the information matrix X'X of the design.
This criterion results in minimizing the generalized variance of the
parameter estimates based on a pre-specified model.

A-Optimality Another criterion is A-optimality, which seeks to minimize the
trace of the inverse of the information matrix. This criterion results
in minimizing the average variance of the parameter estimates
based on a pre-specified model.

G-Optimality A third criterion is G-optimality, which seeks to minimize the
maximum prediction variance, i.e., minimize max. [d=x'(X'X)-1x],
over a specified set of design points.

V-Optimality A fourth criterion is V-optimality, which seeks to minimize the
average prediction variance over a specified set of design points.

5.5.2. What is a computer-aided design?
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Optimality of a
given design is
model dependent

Since the optimality criterion of most computer-aided designs is
based on some function of the information matrix, the 'optimality'
of a given design is model dependent. That is, the experimenter
must specify a model for the design and the final number of design
points desired before the 'optimal' design' can be generated. The
design generated by the computer algorithm is 'optimal' only for
that model.

5.5.2. What is a computer-aided design?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri52.htm (2 of 2) [5/1/2006 10:31:02 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


5. Process Improvement
5.5. Advanced topics
5.5.2. What is a computer-aided design?

5.5.2.1.D-Optimal designs

D-optimal
designs are
often used
when
classical
designs do
not apply or
work

D-optimal designs are one form of design provided by a computer
algorithm. These types of computer-aided designs are particularly
useful when classical designs do not apply.

Unlike standard classical designs such as factorials and fractional
factorials, D-optimal design matrices are usually not orthogonal and
effect estimates are correlated.

These designs
are always
an option
regardless of
model or
resolution
desired

These types of designs are always an option regardless of the type of
model the experimenter wishes to fit (for example, first order, first
order plus some interactions, full quadratic, cubic, etc.) or the objective
specified for the experiment (for example, screening, response surface,
etc.). D-optimal designs are straight optimizations based on a chosen
optimality criterion and the model that will be fit. The optimality
criterion used in generating D-optimal designs is one of maximizing
|X'X|, the determinant of the information matrix X'X.

You start
with a
candidate set
of runs and
the algorithm
chooses a
D-optimal set
of design
runs

This optimality criterion results in minimizing the generalized variance
of the parameter estimates for a pre-specified model. As a result, the
'optimality' of a given D-optimal design is model dependent. That is,
the experimenter must specify a model for the design before a
computer can generate the specific treatment combinations. Given the
total number of treatment runs for an experiment and a specified
model, the computer algorithm chooses the optimal set of design runs
from a candidate set of possible design treatment runs. This candidate
set of treatment runs usually consists of all possible combinations of
various factor levels that one wishes to use in the experiment.

In other words, the candidate set is a collection of treatment
combinations from which the D-optimal algorithm chooses the
treatment combinations to include in the design. The computer
algorithm generally uses a stepping and exchanging process to select

5.5.2.1. D-Optimal designs
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the set of treatment runs.

No guarantee Note: There is no guarantee that the design the computer generates is
actually D-optimal.

D-optimal
designs are
particularly
useful when
resources are
limited or
there are
constraints
on factor
settings

The reasons for using D-optimal designs instead of standard classical
designs generally fall into two categories:

standard factorial or fractional factorial designs require too many
runs for the amount of resources or time allowed for the
experiment

1.  

the design space is constrained (the process space contains factor
settings that are not feasible or are impossible to run).

2.  

Industrial
example
demostrated
with JMP
software

Industrial examples of these two situations are given below and the
process flow of how to generate and analyze these types of designs is
also given. The software package used to demonstrate this is JMP
version 3.2. The flow presented below in generating the design is the
flow that is specified in the JMP Help screens under its D-optimal
platform.

Example of
D-optimal
design:
problem
setup

Suppose there are 3 design variables (k = 3) and engineering judgment
specifies the following model as appropriate for the process under
investigation

The levels being considered by the researcher are (coded)

X1: 5 levels (-1, -0.5, 0, 0.5, 1)
X2: 2 levels (-1, 1)
X3: 2 levels (-1, 1)

One design objective, due to resource limitations, is to use n = 12
design points.

5.5.2.1. D-Optimal designs
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Create the
candidate set

Given the above experimental specifications, the first thing to do
toward generating the design is to create the candidate set. The
candidate set is a data table with a row for each point (run) you want
considered for your design. This is often a full factorial. You can create
a candidate set in JMP by using the Full Factorial design given by the
Design Experiment command in the Tables menu. The candidate set
for this example is shown below. Since the candidate set is a full
factorial in all factors, the candidate set contains (5)*(2)*(2) = 20
possible design runs.

Table
containing
the candidate
set

TABLE 5.1  Candidate Set for Variables X1, X2, X3
X1 X2 X3
-1 -1 -1
-1 -1 +1
-1 +1 -1
-1 +1 +1

-0.5 -1 -1
-0.5 -1 +1
-0.5 +1 -1
-0.5 +1 +1

0 -1 -1
0 -1 +1
0 +1 -1
0 +1 +1

0.5 -1 -1
0.5 -1 +1
0.5 +1 -1
0.5 +1 +1
+1 -1 -1
+1 -1 +1
+1 +1 -1
+1 +1 +1

5.5.2.1. D-Optimal designs
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Specify (and
run) the
model in the
Fit Model
dialog

Once the candidate set has been created, specify the model you want in
the Fit Model dialog. Do not give a response term for the model! Select
D-Optimal as the fitting personality in the pop-up menu at the bottom
of the dialog. Click Run Model and use the control panel that appears.
Enter the number of runs you want in your design (N=12 in this
example). You can also edit other options available in the control
panel. This control panel and the editable options are shown in the
table below. These other options refer to the number of points chosen
at random at the start of an excursion or trip (N Random), the number
of worst points at each K-exchange step or iteration (K-value), and the
number of times to repeat the search (Trips). Click Go.

For this example, the table below shows how these options were set
and the reported efficiency values are relative to the best design found.

Table
showing JMP
D-optimal
control panel
and efficiency
report

D-Optimal Control Panel
Optimal Design Controls

N Desired 12
N Random 3
K Value 2
Trips 3
  
Best Design  
  
D-efficiency 68.2558
A-efficiency 45.4545
G-efficiency 100
AvgPredSE 0.6233
N 12.0000

The
algorithm
computes
efficiency
numbers to
zero in on a
D-optimal
design

The four line efficiency report given after each search shows the best
design over all the excursions (trips). D-efficiency is the objective,
which is a volume criterion on the generalized variance of the
estimates. The efficiency of the standard fractional factorial is 100%,
but this is not possible when pure quadratic terms such as (X1)2 are
included in the model.

The efficiency values are a function of the number of points in the
design, the number of independent variables in the model, and the
maximum standard error for prediction over the design points. The best
design is the one with the highest D-efficiency. The A-efficiencies and
G-efficiencies help choose an optimal design when multiple excursions
produce alternatives with similar D-efficiency.

5.5.2.1. D-Optimal designs
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Using several
excursions
(or trips)
recommended

The search for a D-optimal design should be made using several
excursions or trips. In each trip, JMP 3.2 chooses a different set of
random seed points, which can possibly lead to different designs. The
Save button saves the best design found. The standard error of
prediction is also saved under the variable OptStdPred in the table.

The selected
design should
be
randomized

The D-optimal design using 12 runs that JMP 3.2 created is listed
below in standard order. The design runs should be randomized before
the treatment combinations are executed.

Table
showing the
D-optimal
design
selected by
the JMP
software

TABLE 5.2  Final D-optimal Design
X1 X2 X3 OptStdPred

-1 -1 -1 0.645497
-1 -1 +1 0.645497
-1 +1 -1 0.645497
-1 +1 +1 0.645497
 0 -1 -1 0.645497
 0 -1 +1 0.645497
 0 +1 -1 0.645497
 0 +1 +1 0.645497
+1 -1 -1 0.645497
+1 -1 +1 0.645497
+1 +1 -1 0.645497
+1 +1 +1 0.645497

Parameter
estimates are
usually
correlated

To see the correlations of the parameter estimates for the best design
found, you can click on the Correlations button in the D-optimal
Search Control Panel. In most D-optimal designs, the correlations
among the estimates are non-zero. However, in this particular example,
the correlations are zero.

Other
software may
generate a
different
D-optimal
design

Note: Other software packages (or even other releases of JMP) may
have different procedures for generating D-optimal designs - the above
example is a highly software dependent illustration of how to generate
a D-optimal design.

5.5.2.1. D-Optimal designs
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5. Process Improvement
5.5. Advanced topics
5.5.2. What is a computer-aided design?

5.5.2.2.Repairing a design

Repair or
augment
classical
designs

Computer-aided designs are helpful in either repairing or augmenting a
current experimental design. They can be used to repair a 'broken'
standard classical design.

Original
design
matrix may
contain runs
that were
lost or
impossible
to acieve

There may be situations in which, due to improper planning or other
issues, the original design matrix contains forbidden or unreachable
combinations of the factor settings. A computer-aided design (for
example a D-optimal design) can be used to 'replace' those runs from the
original design that were unattainable. The runs from the original design
that are attainable are labeled as 'inclusion' runs and will be included in
the final computer-aided design.

Computer-
aided design
can
generate
additional
attainable
runs

Given a pre-specified model, the computer-aided design can generate
the additional attainable runs that are necessary in order to estimate the
model of interest. As a result, the computer-aided design is just
replacing those runs in the original design that were unattainable with a
new set of runs that are attainable, and which still allows the
experimenter to obtain information regarding the factors from the
experiment.

Properties
of this final
design may
not compare
with those of
the original
design

The properties of this final design will probably not compare with those
of the original design and there may exist some correlation among the
estimates. However, instead of not being able to use any of the data for
analysis, generating the replacement runs from a computer-aided design,
a D-optimal design for example, allows one to analyze the data.
Furthermore, computer-aided designs can be used to augment a classical
design with treatment combinations that will break alias chains among
the terms in the model or permit the estimation of curvilinear effects.

5.5.2.2. Repairing a design
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5. Process Improvement
5.5. Advanced topics

5.5.3.How do you optimize a process?

How do you determine the optimal region to run a
process?

Often the
primary
DOE goal is
to find the
operating
conditions
that
maximize (or
minimize)
the system
responses

The optimal region to run a process is usually determined after a
sequence of experiments has been conducted and a series of empirical
models obtained. In many engineering and science applications,
experiments are conducted and empirical models are developed with the
objective of improving the responses of interest. From a mathematical
point of view, the objective is to find the operating conditions (or factor
levels) X1, X2, ..., Xk that maximize or minimize the r system response
variables Y1, Y2, ..., Yr. In experimental optimization, different
optimization techniques are applied to the fitted response equations

. Provided that the fitted equations approximate

adequately the true (unknown) system responses, the optimal operating
conditions of the model will be "close" to the optimal operating
conditions of the true system.

The DOE
approach to
optimization

The experimental optimization of response surface models differs from
classical optimization techniques in at least three ways:

Find
approximate
(good)
models and
iteratively
search for
(near)
optimal
operating
conditions

Experimental optimization is an iterative process; that is,
experiments conducted in one set of experiments result in fitted
models that indicate where to search for improved operating
conditions in the next set of experiments. Thus, the coefficients in
the fitted equations (or the form of the fitted equations) may
change during the optimization process. This is in contrast to
classical optimization in which the functions to optimize are
supposed to be fixed and given.

1.  

5.5.3. How do you optimize a process?
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Randomness
(sampling
variability)
affects the
final
answers and
should be
taken into
account

The response models are fit from experimental data that usually
contain random variability due to uncontrollable or unknown
causes. This implies that an experiment, if repeated, will result in
a different fitted response surface model that might lead to
different optimal operating conditions. Therefore, sampling
variability should be considered in experimental optimization.

In contrast, in classical optimization techniques the functions are
deterministic and given.

2.  

Optimization
process
requires
input of the
experimenter

The fitted responses are local approximations, implying that the
optimization process requires the input of the experimenter (a
person familiar with the process). This is in contrast with
classical optimization which is always automated in the form of
some computer algorithm.

3.  

5.5.3. How do you optimize a process?
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?

5.5.3.1.Single response case

Optimizing
of a single
response
usually
starts with
line
searches in
the direction
of maximum
improvement

The experimental optimization of a single response is usually conducted in two phases or steps,
following the advice of Box and Wilson. The first phase consists of a sequence of line searches in
the direction of maximum improvement. Each search in the sequence is continued until there is
evidence that the direction chosen does not result in further improvements. The sequence of line
searches is performed as long as there is no evidence of lack of fit for a simple first-order model
of the form

If there is
lack of fit for
linear
models,
quadratic
models are
tried next

The second phase is performed when there is lack of linear fit in Phase I, and instead, a
second-order or quadratic polynomial regression model of the general form

is fit. Not all responses will require quadratic fit, and in such cases Phase I is stopped when the
response of interest cannot be improved any further. Each phase is explained and illustrated in the
next few sections.

"Flowchart"
for two
phases of
experimental
optimization

The following is a flow chart showing the two phases of experimental optimization.

FIGURE 5.1: The Two Phases of Experimental Optimization

5.5.3.1. Single response case
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.1.Single response: Path of steepest ascent

Starting at
the current
operating
conditions, fit
a linear
model

If experimentation is initially performed in a new, poorly understood production process,
chances are that the initial operating conditions X1, X2, ...,Xk are located far from the region
where the factors achieve a maximum or minimum for the response of interest, Y. A first-order
model will serve as a good local approximation in a small region close to the initial operating
conditions and far from where the process exhibits curvature. Therefore, it makes sense to fit a
simple first-order (or linear polynomial) model of the form:

Experimental strategies for fitting this type of model were discussed earlier. Usually, a 2k-p

fractional factorial experiment is conducted with repeated runs at the current operating
conditions (which serve as the origin of coordinates in orthogonally coded factors).

Determine the
directions of
steepest
ascent and
continue
experimenting
until no
further
improvement
occurs - then
iterate the
process

The idea behind "Phase I" is to keep experimenting along the direction of steepest ascent (or
descent, as required) until there is no further improvement in the response. At that point, a new
fractional factorial experiment with center runs is conducted to determine a new search

direction. This process is repeated until at some point significant curvature in  is detected.
This implies that the operating conditions X1, X2, ...,Xk are close to where the maximum (or
minimum, as required) of Y occurs. When significant curvature, or lack of fit, is detected, the
experimenter should proceed with "Phase II". Figure 5.2 illustrates a sequence of line searches
when seeking a region where curvature exists in a problem with 2 factors (i.e., k=2).

FIGURE 5.2: A Sequence of Line Searches for a 2-Factor Optimization Problem

5.5.3.1.1. Single response: Path of steepest ascent
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Two main
decisions:
search
direction and
length of step

There are two main decisions an engineer must make in Phase I:

determine the search direction;1.  

determine the length of the step to move from the current operating conditions.2.  

Figure 5.3 shows a flow diagram of the different iterative tasks required in Phase I. This
diagram is intended as a guideline and should not be automated in such a way that the
experimenter has no input in the optimization process.

Flow chart of
iterative
search
process

FIGURE 5.3: Flow Chart for the First Phase of the Experimental Optimization
Procedure

5.5.3.1.1. Single response: Path of steepest ascent
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Procedure for Finding the Direction of Maximum Improvement

The direction
of steepest
ascent is
determined by
the gradient
of the fitted
model

Suppose a first-order model (like above) has been fit and provides a useful approximation. As
long as lack of fit (due to pure quadratic curvature and interactions) is very small compared to
the main effects, steepest ascent can be attempted. To determine the direction of maximum
improvement we use

the estimated direction of steepest ascent, given by the gradient of , if the objective is
to maximize Y;

1.  

the estimated direction of steepest descent, given by the negative of the gradient of , if
the objective is to minimize Y.

2.  

The direction
of steepest
ascent
depends on
the scaling
convention -
equal
variance
scaling is
recommended

The direction of the gradient, g, is given by the values of the parameter estimates, that is, g' =
(b1, b2, ..., bk). Since the parameter estimates b1, b2, ..., bk depend on the scaling convention for
the factors, the steepest ascent (descent) direction is also scale dependent. That is, two
experimenters using different scaling conventions will follow different paths for process
improvement. This does not diminish the general validity of the method since the region of the
search, as given by the signs of the parameter estimates, does not change with scale. An equal
variance scaling convention, however, is recommended. The coded factors xi, in terms of the
factors in the original units of measurement, Xi, are obtained from the relation

This coding convention is recommended since it provides parameter estimates that are scale
independent, generally leading to a more reliable search direction. The coordinates of the factor
settings in the direction of steepest ascent, positioned a distance  from the origin, are given

by:

Solution is a
simple
equation

This problem can be solved with the aid of an optimization solver (e.g., like the solver option
of a spreadsheet). However, in this case this is not really needed, as the solution is a simple
equation that yields the coordinates

Equation can
be computed
for increasing
values of 

An engineer can compute this equation for different increasing values of  and obtain different

factor settings, all on the steepest ascent direction.

To see the details that explain this equation, see Technical Appendix 5A.

Example: Optimization of a Chemical Process

5.5.3.1.1. Single response: Path of steepest ascent
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Optimization
by search
example

It has been concluded (perhaps after a factor screening experiment) that the yield (Y, in %) of a
chemical process is mainly affected by the temperature (X1, in C) and by the reaction time
(X2, in minutes). Due to safety reasons, the region of operation is limited to

Factor levels The process is currently run at a temperature of 200 C and a reaction time of 200 minutes. A
process engineer decides to run a 22 full factorial experiment with factor levels at

factor low center high

X1 170 200 230

X2 150 200 250

Orthogonally
coded factors

Five repeated runs at the center levels are conducted to assess lack of fit. The orthogonally
coded factors are

Experimental
results

The experimental results were:

x1 x2 X1 X2 Y (= yield)

-1 -1 170 150 32.79
+1 -1 230 150 24.07
-1 +1 170 250 48.94
+1 +1 230 250 52.49
  0   0 200 200 38.89
  0   0 200 200 48.29
  0   0 200 200 29.68
  0   0 200 200 46.50
  0   0 200 200 44.15

ANOVA table The corresponding ANOVA table for a first-order polynomial model, obtained using the
DESIGN EASE statistical software, is

                 SUM OF        MEAN    F
SOURCE          SQUARES   DF  SQUARE  VALUE  PROB>F

MODEL          503.3035   2  251.6517 4.810  0.0684
CURVATURE        8.1536   1    8.1536 0.1558 0.7093
RESIDUAL       261.5935   5   52.3187
  LACK OF FIT   37.6382   1   37.6382 0.6722 0.4583
  PURE ERROR   223.9553   4   55.9888

COR TOTAL      773.0506   8

5.5.3.1.1. Single response: Path of steepest ascent
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Resulting
model

It can be seen from the ANOVA table that there is no significant lack of linear fit due to an
interaction term and there is no evidence of curvature. Furthermore, there is evidence that the
first-order model is significant. Using the DESIGN EXPERT statistical software, we obtain the
resulting model (in the coded variables) as

Diagnostic
checks

The usual diagnostic checks show conformance to the regression assumptions, although the R2

value is not very high: R2 = 0.6580.

Determine
level of
factors for
next run
using
direction of
steepest
ascent

To maximize , we use the direction of steepest ascent. The engineer selects  = 1 since a

point on the steepest ascent direction one unit (in the coded units) from the origin is desired.
Then from the equation above for the predicted Y response, the coordinates of the factor levels
for the next run are given by:

and

This means that to improve the process, for every (-0.1152)(30) = -3.456 C that temperature is
varied (decreased), the reaction time should be varied by (0.9933(50) = 49.66 minutes.

===========================================================

Technical Appendix 5A: finding the factor settings on the steepest ascent direction a
specified distance from the origin

Details of
how to
determine the
path of
steepest
ascent

The problem of finding the factor settings on the steepest ascent/descent direction that are
located a distance  from the origin is given by the optimization problem,

5.5.3.1.1. Single response: Path of steepest ascent
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Solve using a
Lagrange
multiplier
approach

To solve it, use a Lagrange multiplier approach. First, add a penalty  for solutions not
satisfying the constraint (since we want a direction of steepest ascent, we maximize, and
therefore the penalty is negative). For steepest descent we minimize and the penalty term is
added instead.

Compute the partials and equate them to zero

Solve two
equations in
two unknowns

These two equations have two unknowns (the vector x and the scalar ) and thus can be solved
yielding the desired solution:

or, in non-vector notation:

Multiples of
the direction
of the
gradient

From this equation we can see that any multiple  of the direction of the gradient (given by

) will lead to points on the steepest ascent direction. For steepest descent, use instead

-bi in the numerator of the equation above.

5.5.3.1.1. Single response: Path of steepest ascent
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.2.Single response: Confidence region for search
path

"Randomness"
means that the
steepest
ascent
direction is
just an
estimate and it
is possible to
construct a
confidence
"cone' around
this direction
estimate

The direction given by the gradient g' = (b0, b2, ... , bk) constitutes only a single (point) estimate
based on a sample of N runs. If a different set of N runs were conducted, these would provide
different parameter estimates, which in turn would give a different gradient. To account for this
sampling variability, Box and Draper gave a formula for constructing a "cone" around the
direction of steepest ascent that with certain probability contains the true (unknown) system

gradient given by . The width of the confidence cone is useful to assess how

reliable an estimated search direction is.

Figure 5.4 shows such a cone for the steepest ascent direction in an experiment with two factors.
If the cone is so wide that almost every possible direction is inside the cone, an experimenter
should be very careful in moving too far from the current operating conditions along the path of
steepest ascent or descent. Usually this will happen when the linear fit is quite poor (i.e., when the
R2 value is low). Thus, plotting the confidence cone is not so important as computing its width.

If you are interested in the details on how to compute such a cone (and its width), see Technical
Appendix 5B.

Graph of a
confidence
cone for the
steepest
ascent
direction
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FIGURE 5.4: A Confidence Cone for the Steepest Ascent Direction in an Experiment with 2
Factors

=============================================================

Technical Appendix 5B: Computing a Confidence Cone on the Direction of Steepest Ascent

Details of how
to construct a
confidence
cone for the
direction of
steepest
ascent

Suppose the response of interest is adequately described by a first-order polynomial model.
Consider the inequality

with

Cjj is the j-th diagonal element of the matrix (X'X)-1 (for j = 1, ..., k these values are all equal if

the experimental design is a 2k-p factorial of at least Resolution III), and X is the model matrix of
the experiment (including columns for the intercept and second-order terms, if any). Any
operating condition with coordinates x' = (x1, x2, ..., xk) that satisfies this inequality generates a
direction that lies within the 100(1- )% confidence cone of steepest ascent if

5.5.3.1.2. Single response: Confidence region for search path
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or inside the 100(1- )% confidence cone of steepest descent if&

Inequality
defines a cone

The inequality defines a cone with the apex at the origin and center line located along the gradient

of .

A measure of
goodnes of fit:

A measure of "goodness" of a search direction is given by the fraction of directions excluded by
the 100(1- )% confidence cone around the steepest ascent/descent direction (see Box and
Draper, 1987) which is given by:

with Tk-1() denoting the complement of the Student's-t distribution function with k-1 degrees of
freedom (that is, Tk-1(x) = P(tk-1  x)) and F , k-1, n-p denotes an  percentage point of the F
distribution with k-1 and n-p degrees of freedom, with n-p denoting the error degrees of freedom.
The value of  represents the fraction of directions included by the confidence cone. The

smaller  is, the wider the cone is, with . Note that the inequality equation and the

"goodness measure" equation are valid when operating conditions are given in coded units.

Example: Computing 

Compute 
from ANOVA
table and Cjj

From the ANOVA table in the chemical experiment discussed earlier

 = (52.3187)(1/4) = 13.0796

since Cjj = 1/4 (j=2,3) for a 22 factorial. The fraction of directions excluded by a 95% confidence
cone in the direction of steepest ascent is:

Compute 

Conclusions
for this
example

since F0.05,1,6 = 5.99. Thus 71.05% of the possible directions from the current operating point are
excluded with 95% confidence. This is useful information that can be used to select a step length.
The smaller  is, the shorter the step should be, as the steepest ascent direction is less reliable. In

this example, with high confidence, the true steepest ascent direction is within this cone of 29%
of possible directions. For k=2, 29% of 360o = 104.4o, so we are 95% confident that our estimated
steepest ascent path is within plus or minus 52.2o of the true steepest path. In this case, we should
not use a large step along the estimated steepest ascent path.
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.3.Single response: Choosing the step
length

A procedure
for choosing
how far
along the
direction of
steepest
ascent to go
for the next
trial run

Once the search direction is determined, the second decision needed in Phase I
relates to how far in that direction the process should be "moved". The most
common procedure for selecting a step length is based on choosing a step size in
one factor and then computing step lengths in the other factors proportional to their
parameter estimates. This provides a point on the direction of maximum
improvement. The procedure is given below. A similar approach is obtained by
choosing increasing values of  in

.

However, the procedure below considers the original units of measurement which
are easier to deal with than the coded "distance" .

Procedure: selection of step length

Procedure
for selecting
the step
length

The following is the procedure for selecting the step length.

Choose a step length Xj (in natural units of measurement) for some factor
j. Usually, factor j is chosen to be the one engineers feel more comfortable
varying, or the one with the largest |bj|. The value of Xj can be based on
the width of the confidence cone around the steepest ascent/descent
direction. Very wide cones indicate that the estimated steepest ascent/descent
direction is not reliable, and thus Xj should be small. This usually occurs

when the R2 value is low. In such a case, additional experiments can be
conducted in the current experimental region to obtain a better model fit and
a better search direction.

1.  

Transform to coded units:2.  

5.5.3.1.3. Single response: Choosing the step length
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with sj denoting the scale factor used for factor j (e.g., sj = rangej/2).

Set  for all other factors i.3.  

Transform all the xi's to natural units: Xi = ( xi)(si).4.  

Example: Step Length Selection.

An example
of step
length
selection

The following is an example of the step length selection procedure.

For the chemical process experiment described previously, the process
engineer selected X2 = 50 minutes. This was based on process engineering
considerations. It was also felt that X2 = 50 does not move the process too
far away from the current region of experimentation. This was desired since
the R2 value of 0.6580 for the fitted model is quite low, providing a not very
reliable steepest ascent direction (and a wide confidence cone, see Technical
Appendix 5B).

●   

.●   

.●   

X2 = (-0.1160)(30) = -3.48oC.●   

Thus the step size is X' = (-3.48oC, 50 minutes).

Procedure: Conducting Experiments Along the Direction of Maximum
Improvement

Procedure
for
conducting
experiments
along the
direction of
maximum
improvement

The following is the procedure for conducting experiments along the direction of
maximum improvement.

Given current operating conditions  = (X1, X2, ..., Xk) and a step size X'
= ( X1, X2, ..., Xk), perform experiments at factor levels X0 + X, X0
+ 2 X, X0 + 3 X, ... as long as improvement in the response Y (decrease or
increase, as desired) is observed.

1.  

Once a point has been reached where there is no further improvement, a new
first-order experiment (e.g., a 2k-p fractional factorial) should be performed
with repeated center runs to assess lack of fit. If there is no significant
evidence of lack of fit, the new first-order model will provide a new search
direction, and another iteration is performed as indicated in Figure 5.3.
Otherwise (there is evidence of lack of fit), the experimental design is
augmented and a second-order model should be fitted. That is, the
experimenter should proceed to "Phase II".

2.  

5.5.3.1.3. Single response: Choosing the step length
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Example: Experimenting Along the Direction of Maximum Improvement

Step 1:
increase
factor levels
by 

Step 1:

Given X0 = (200oC, 200 minutes) and X = (-3.48oC, 50 minutes), the next
experiments were performed as follows (the step size in temperature was rounded
to -3.5oC for practical reasons):

 X1 X2 x1 x2 Y (= yield)

X0 200 200 0 0  

X0 + X 196.5 250 -0.1160 1 56.2

X0 + 2 X 193.0 300 -0.2320 2 71.49

X0 + 3 X 189.5 350 -0.3480 3 75.63

X0 + 4 X 186.0 400 -0.4640 4 72.31

X0 + 5 X 182.5 450 -0.5800 5 72.10

Since the goal is to maximize Y, the point of maximum observed response is X1 =

189.5oC, X2 = 350 minutes. Notice that the search was stopped after 2 consecutive
drops in response, to assure that we have passed by the "peak" of the "hill".

Step 2: new
factorial
experiment

Step 2:

A new 22 factorial experiment is performed with X' = (189.5, 350) as the origin.
Using the same scaling factors as before, the new scaled controllable factors are:

Five center runs (at X1 = 189.5, X2 = 350) were repeated to assess lack of fit. The
experimental results were:

x1 x2 X1 X2 Y (= yield)

-1 -1 159.5 300 64.33
+1 -1 219.5 300 51.78
-1 +1 159.5 400 77.30
+1 +1 219.5 400 45.37
0 0 189.5 350 62.08
0 0 189.5 350 79.36
0 0 189.5 350 75.29
0 0 189.5 350 73.81
0 0 189.5 350 69.45

The corresponding ANOVA table for a linear model, obtained using the

5.5.3.1.3. Single response: Choosing the step length
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DESIGN-EASE statistical software, is

                SUM OF            MEAN     F
SOURCE         SQUARES    DF     SQUARE  VALUE  PROB > F

MODEL          505.300     2    252.650  4.731   0.0703
CURVATURE      336.309     1    336.309  6.297   0.0539
RESIDUAL       267.036     5     53.407
  LACK OF FIT   93.857     1     93.857  2.168   0.2149
  PURE ERROR   173.179     4     43.295

COR TOTAL     1108.646     8

From the table, the linear effects (model) is significant and there is no evidence of
lack of fit. However, there is a significant curvature effect (at the 5.4% significance
level), which implies that the optimization should proceed with Phase II; that is, the
fit and optimization of a second-order model.
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.4.Single response: Optimization when there is
adequate quadratic fit

Regions
where
quadratic
models or
even cubic
models are
needed occur
in many
instances in
industry

After a few steepest ascent (or descent) searches, a first-order model will eventually lead to no
further improvement or it will exhibit lack of fit. The latter case typically occurs when operating
conditions have been changed to a region where there are quadratic (second-order) effects present
in the response. A second-order polynomial can be used as a local approximation of the response
in a small region where, hopefully, optimal operating conditions exist. However, while a
quadratic fit is appropriate in most of the cases in industry, there will be a few times when a
quadratic fit will not be sufficiently flexible to explain a given response. In such cases, the analyst
generally does one of the following:

Uses a transformation of Y or the Xi's to improve the fit.1.  

Limits use of the model to a smaller region in which the model does fit.2.  

Adds other terms to the model.3.  

Procedure: obtaining the estimated optimal operating conditions

Second-
order
polynomial
model

Once a linear model exhibits lack of fit or when significant curvature is detected, the experimental
design used in Phase I (recall that a 2k-p factorial experiment might be used) should be augmented
with axial runs on each factor to form what is called a central composite design. This
experimental design allows estimation of a second-order polynomial of the form

Steps to find
optimal
operating
conditions

If the corresponding analysis of variance table indicates no lack of fit for this model, the engineer
can proceed to determine the estimated optimal operating conditions.

Using some graphics software, obtain a contour plot of the fitted response. If the number of
factors (k) is greater than 2, then plot contours in all planes corresponding to all the
possible pairs of factors. For k greater than, say, 5, this could be too cumbersome (unless
the graphic software plots all pairs automatically). In such a case, a "canonical analysis" of
the surface is recommended (see Technical Appendix 5D).

1.  

Use an optimization solver to maximize or minimize (as desired) the estimated response .2.  

Perform a confirmation experiment at the estimated optimal operating conditions given by
the solver in step 2.

3.  

5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit
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Illustrate with
DESIGN-
EXPERT
software

We illustrate these steps with the DESIGN-EXPERT software and our chemical experiment
discussed before. For a technical description of a formula that provides the coordinates of the
stationary point of the surface, see Technical Appendix 5C.

Example: Second Phase Optimization of Chemical Process

Experimental
results for
axial runs

Recall that in the chemical experiment, the ANOVA table, obtained from using an experiment run
around the coordinates X1 = 189.5, X2 = 350, indicated significant curvature effects. Augmenting

the 22 factorial experiment with axial runs at  to achieve a rotatable central

composite experimental design, the following experimental results were obtained:

x1 x2 X1 X2 Y (= yield)

-1.414 0 147.08 350 72.58
+1.414 0 231.92 350 37.42

0 -1.414 189.5 279.3 54.63
0 +1.414 189.5 420.7 54.18

ANOVA table The corresponding ANOVA table for the different effects, based on the sequential sum of squares
procedure of the DESIGN-EXPERT software, is

               SUM OF            MEAN      F
SOURCE        SQUARES   DF      SQUARE   VALUE  PROB > F

MEAN          51418.2    1     51418.2
Linear         1113.7    2       556.8    5.56    0.024
Quadratic       768.1    3       256.0    7.69    0.013
Cubic             9.9    2         5.0    0.11    0.897

RESIDUAL        223.1    5        44.6
TOTAL         53533.0   13

Lack of fit
tests and
auxillary
diagnostic
statistics

From the table, the linear and quadratic effects are significant. The lack of fit tests and auxiliary
diagnostic statistics are:

              SUM OF             MEAN      F
MODEL        SQUARES      DF    SQUARE   VALUE  PROB > F

Linear         827.9       6     138.0    3.19    0.141
Quadratic       59.9       3      20.0    0.46    0.725
Cubic           49.9       1      49.9     1.15   0.343

PURE ERROR     173.2       4      43.3

              ROOT                ADJ       PRED
SOURCE        MSE      R-SQR     R-SQR      R-SQR    PRESS

Linear       10.01    0.5266    0.4319     0.2425    1602.02
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Quadratic     5.77    0.8898    0.8111     0.6708     696.25
Cubic         6.68    0.8945    0.7468    -0.6393    3466.71

The quadratic model has a larger p-value for the lack of fit test, higher adjusted R2, and a lower
PRESS statistic; thus it should provide a reliable model. The fitted quadratic equation, in coded
units, is

Step 1:

Contour plot
of the fitted
response
function

A contour plot of this function (Figure 5.5) shows that it appears to have a single optimum point
in the region of the experiment (this optimum is calculated below to be (-.9285,.3472), in coded
x1, x2 units, with a predicted response value of 77.59).

FIGURE 5.5: Contour Plot of the Fitted Response in the Example
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3D plot of the
fitted
response
function

Since there are only two factors in this example, we can also obtain a 3D plot of the fitted
response against the two factors (Figure 5.6).

FIGURE 5.6: 3D Plot of the Fitted Response in the Example

Step 2:

Optimization
point

The optimization routine in DESIGN-EXPERT was invoked for maximizing . The results are
 = 161.64oC,  = 367.32 minutes. The estimated yield at the optimal point is (X*) =

77.59%.

Step 3:

Confirmation
experiment

A confirmation experiment was conducted by the process engineer at settings X1 = 161.64, X2 =

367.32. The observed response was (X*) = 76.5%, which is satisfactorily close to the estimated
optimum.

==================================================================

Technical Appendix 5C: Finding the Factor Settings for the Stationary Point of a Quadratic
Response
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Details of
how to find
the maximum
or minimum
point for a
quadratic
response

Rewrite the fitted equation using matrix notation as

with b' = (b1, b2, ..., bk) denoting a vector of first-order parameter estimates,

is a matrix of second-order parameter estimates and x' = (x1, x2, ..., xk) is the vector of
controllable factors. Notice that the off-diagonal elements of B are equal to half the
two-factor interaction coefficients.

1.  

Equating the partial derivatives of  with respect to x to zeroes and solving the resulting
system of equations, the coordinates of the stationary point of the response are given by

2.  

Nature of the
stationary
point is
determined by
B

The nature of the stationary point (whether it is a point of maximum response, minimum
response, or a saddle point) is determined by the matrix B. The two-factor interactions do not, in
general, let us "see" what type of point x* is. One thing that can be said is that if the diagonal
elements of B (the bii have mixed signs, x* is a saddle point. Otherwise, it is necessary to look at

the characteristic roots or eigenvalues of B to see whether B is "positive definite" (so x* is a point
of minimum response) or "negative definite" (the case in which x* is a point of maximum
response). This task is easier if the two-factor interactions are "eliminated" from the fitted
equation as is described in Technical Appendix 5D.

Example: computing the stationary point, Chemical Process experiment

Example of
computing the
stationary
point

The fitted quadratic equation in the chemical experiment discussed in Section 5.5.3.1.1 is, in
coded units,

from which we obtain b' = (-11.78, 0.74),

and

Transforming back to the original units of measurement, the coordinates of the stationary point
are
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.

Notice this is the same solution as was obtained by using the optimization routine of
DESIGN-EXPERT (see section 5.5.3.1.1). The predicted response at the stationary point is (X*)
= 77.59%.

Technical Appendix 5D: "Canonical Analysis" of Quadratic Responses

Case for a
single
controllable
response

Whether the stationary point X* represents a point of maximum or minimum response, or is just a
saddle point, is determined by the matrix of second-order coefficients, B. In the simpler case of
just a single controllable factor (k=1), B is a scalar proportional to the second derivative of (x)
with respect to x. If d2 /dx2 is positive, recall from calculus that the function (x) is convex
("bowl shaped") and x* is a point of minimum response.

Case for
multiple
controllable
responses not
so easy

Unfortunately, the multiple factor case (k>1) is not so easy since the two-factor interactions (the
off-diagonal elements of B) obscure the picture of what is going on. A recommended procedure
for analyzing whether B is "positive definite" (we have a minimum) or "negative definite" (we
have a maximum) is to rotate the axes x1, x2, ..., xk so that the two-factor interactions disappear. It
is also customary (Box and Draper, 1987; Khuri and Cornell, 1987; Myers and Montgomery,
1995) to translate the origin of coordinates to the stationary point so that the intercept term is
eliminated from the equation of (x). This procedure is called the canonical analysis of (x).

Procedure: Canonical Analysis

Steps for
performing
the canonical
analysis

Define a new axis z = x - x* (translation step). The fitted equation becomes

.

1.  

Define a new axis w = E'z, with E'BE = D and D a diagonal matrix to be defined (rotation
step). The fitted equation becomes

.

This is the so-called canonical form of the model. The elements on the diagonal of D, i (i
= 1, 2, ..., k) are the eigenvalues of B. The columns of E', ei, are the orthonormal

eigenvectors of B, which means that the ei satisfy (B - i)ei = 0,  = 0 for i  j, and

 = 1.0.

2.  

If all the i are negative, x* is a point of maximum response. If all the i are positive, x* is
a point of minimum response. Finally, if the i are of mixed signs, the response is a saddle

function and x* is the saddle point.

3.  
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Eigenvalues
that are
approximately
zero

If some i  0, the fitted ellipsoid

is elongated (i.e., it is flat) along the direction of the wi axis. Points along the wi axis will have an
estimated response close to optimal; thus the process engineer has flexibility in choosing "good"
operating conditions. If two eigenvalues (say i and j) are close to zero, a plane in the (wi, wj)
coordinates will have close to optimal operating conditions, etc.

Canonical
analysis
typically
performed by
software

It is nice to know that the JMP or SAS software (PROC RSREG) computes the eigenvalues i
and the orthonormal eigenvectors ei; thus there is no need to do a canonical analysis by hand.

Example: Canonical Analysis of Yield Response in Chemical Experiment using SAS

B matrix for
this example

Let us return to the chemical experiment example. This illustrate the method, but keep in mind
that when the number of factors is small (e.g., k=2 as in this example) canonical analysis is not
recommended in practice since simple contour plotting will provide sufficient information. The
fitted equation of the model yields

Compute the
eigenvalues
and find the
orthonormal
eigenvectors

To compute the eigenvalues i, we have to find all roots of the expression that results from
equating the determinant of B - iI to zero. Since B is symmetric and has real coefficients, there
will be k real roots i, i = 1, 2, ..., k. To find the orthonormal eigenvectors, solve the simultaneous

equations (B - iI)ei = 0 and  = 1.

SAS code for
performing
the canonical
analysis

This is the hard way, of course. These computations are easily performed using the SAS software
PROC RSREG. The SAS program applied to our example is:

data;
input x1 x2 y;
cards;
-1    -1     64.33
 1    -1     51.78
-1     1     77.30
 1     1     45.37
 0     0     62.08
 0     0     79.36
 0     0     75.29
 0     0     73.81
 0     0     69.45
-1.414 0     72.58
 1.414 0     37.42
 0    -1.414 54.63
 0     1.414 54.18

5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit
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;
proc rsreg;
model y=x1 x2 /nocode/lackfit;
run;

The "nocode" option was used since the factors had been input in coded form.

SAS output
from the
canonical
analysis

The corresponding output from the SAS canonical analysis is as follows:

               Canonical Analysis of Response Surface

                                       Critical
                      Factor            Value
                        X1             -0.922
                        X2              0.346800

           Predicted value at stationary point     77.589146

                                     Eigenvectors
              Eigenvalues         X1               X2

                -4.973187        0.728460       -0.685089
                -9.827317        0.685089        0.728460
                    Stationary point is a maximum.

Interpretation
of the SAS
output

Notice that the eigenvalues are the two roots of

det(B - I) = (-7.25 ) (-7.55 - ) - (-2.425(-2.245)) = 0.

As mentioned previously, the stationary point is (x*)' = (-0.9278, 0.3468), which corresponds to
X*' = (161.64, 367.36). Since both eigenvalues are negative, x* is a point of maximum response.
To obtain the directions of the axis of the fitted ellipsoid, compute

w1 = 0.7285(x1 + 0.9278) - 0.6851(x2 - 0.3468) = 0.9143 + 0.7285x1 - 0.6851x2

and

w2 = 0.6851(x1 + 0.9278) - 0.7285(x2 - 0.3468) = 0.8830 + 0.6851x1 + 0.7285x2

Since | 1| < | 2|, there is somewhat more elongation in the wi direction. However, since both
eigenvalues are quite far from zero, there is not much flexibility in choosing operating conditions.
It can be seen from Figure 5.5 that the fitted ellipses do not have a great elongation in the w1
direction, the direction of the major axis. It is important to emphasize that confirmation
experiments at x* should be performed to check the validity of the estimated optimal solution.

5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.5.Single response: Effect of
sampling error on optimal
solution

Experimental
error means
all derived
optimal
operating
conditions are
just estimates -
confidence
regions that
are likely to
contain the
optimal points
can be derived

Process engineers should be aware that the estimated optimal
operating conditions x* represent a single estimate of the true
(unknown) system optimal point. That is, due to sampling
(experimental) error, if the experiment is repeated, a different
quadratic function will be fitted which will yield a different stationary
point x*. Some authors (Box and Hunter, 1954; Myers and
Montgomery, 1995) provide a procedure that allows one to compute a
region in the factor space that, with a specified probability, contains
the system stationary point. This region is useful information for a
process engineer in that it provides a measure of how "good" the point
estimate x* is. In general, the larger this region is, the less reliable the
point estimate x* is. When the number of factors, k, is greater than 3,
these confidence regions are difficult to visualize.

Confirmation
runs are very
important

Awareness of experimental error should make a process engineer
realize the importance of performing confirmation runs at x*, the
estimated optimal operating conditions.

5.5.3.1.5. Single response: Effect of sampling error on optimal solution
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.1. Single response case

5.5.3.1.6.Single response: Optimization
subject to experimental region
constraints

Optimal
operating
conditions may
fall outside
region where
experiment
conducted

Sometimes the optimal operating conditions x* simply fall outside
the region where the experiment was conducted. In these cases,
constrained optimization techniques can be used to find the solution

x* that optimizes  without leaving the region in the factor

space where the experiment took place.

Ridge analysis
is a method for
finding optimal
factor settings
that satisfy
certain
constraints

"Ridge Analysis", as developed by Hoerl (1959), Hoerl (1964) and
Draper (1963), is an optimization technique that finds factor settings
x* such that they

optimize     (x) = b0 + b'x + x'Bx

subject to:     x'x = 2

The solution x* to this problem provides operating conditions that
yield an estimated absolute maximum or minimum response on a
sphere of radius . Different solutions can be obtained by trying

different values of .

Solve with
non-linear
programming
software

The original formulation of Ridge Analysis was based on the
eigenvalues of a stationarity system. With the wide availability of
non-linear programming codes, Ridge Analysis problems can be
solved without recourse to eigenvalue analysis.

5.5.3.1.6. Single response: Optimization subject to experimental region constraints
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?

5.5.3.2.Multiple response case

When there
are multiple
responses, it is
often
impossible to
simultaneously
optimize each
one -
trade-offs
must be made

In the multiple response case, finding process operating conditions
that simultaneously maximize (or minimize, as desired) all the
responses is quite difficult, and often impossible. Almost inevitably,
the process engineer must make some trade-offs in order to find
process operating conditions that are satisfactory for most (and
hopefully all) the responses. In this subsection, we examine some
effective ways to make these trade-offs.

Path of steepest ascent●   

The desirability function approach●   

The mathematical programming approach

Dual response systems❍   

More than 2 responses❍   

●   

5.5.3.2. Multiple response case
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.2. Multiple response case

5.5.3.2.1.Multiple responses: Path of steepest
ascent

Objective:
consider and
balance the
individual
paths of
maximum
improvement

When the responses exhibit adequate linear fit (i.e., the response models are all
linear), the objective is to find a direction or path that simultaneously considers the
individual paths of maximum improvement and balances them in some way. This
case is addressed next.

When there is a mix of linear and higher-order responses, or when all empirical
response models are of higher-order, see sections 5.5.3.2.2 and 5.5.3.2.3. The
desirability method (section 5.5.3.2.2) can also be used when all response models
are linear.

Procedure: Path of Steepest Ascent, Multiple Responses.

A weighted
priority
strategy is
described
using the
path of
steepest
ascent for
each
response

The following is a weighted priority strategy using the path of steepest ascent for
each response.

Compute the gradients gi (i = 1, 2, . . ., k) of all responses as explained in
section 5.5.3.1.1. If one of the responses is clearly of primary interest
compared to the others, use only the gradient of this response and follow the
procedure of section 5.5.3.1.1. Otherwise, continue with step 2.

1.  

Determine relative priorities  for each of the k responses. Then, the

weighted gradient for the search direction is given by

and the weighted direction is

2.  

5.5.3.2.1. Multiple responses: Path of steepest ascent
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Weighting
factors
based on R2

The confidence cone for the direction of maximum improvement explained in
section 5.5.3.1.2 can be used to weight down "poor" response models that provide
very wide cones and unreliable directions. Since the width of the cone is
proportional to (1 - R2), we can use

Single
response
steepest
ascent
procedure

Given a weighted direction of maximum improvement, we can follow the single
response steepest ascent procedure as in section 5.5.3.1.1 by selecting points with
coordinates x* = di, i = 1, 2, ..., k. These and related issues are explained more
fully in Del Castillo (1996).

Example: Path of Steepest Ascent, Multiple Response Case

An example
using the
weighted
priority
method

Suppose the response model:

with  = 0.8968 represents the average yield of a production process obtained
from a replicated factorial experiment in the two controllable factors (in coded
units). From the same experiment, a second response model for the process standard
deviation of the yield is obtained and given by

with  = 0.5977. We wish to maximize the mean yield while minimizing the
standard deviation of the yield.

Step 1: compute the gradients:

Compute the
gradients

We compute the gradients as follows.

(recall we wish to minimize y2).

Step 2: find relative priorities:

5.5.3.2.1. Multiple responses: Path of steepest ascent
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Find relative
priorities

Since there are no clear priorities, we use the quality of fit as the priority:

Then, the weighted gradient is

g' = (0.6(0.3124) + 0.4(-0.7088), 0.6(0.95) + 0.4(-0.7054)) = (-0.096, 0.2878)
which, after scaling it (by dividing each coordinate by

), gives the weighted direction d' = (-.03164, 0.9486).

Therefore, if we want to move  = 1 coded units along the path of maximum
improvement, we will set x1 = (1)(-0.3164) = -0.3164, x2 = (1)(0.9486) = 0.9486 in
the next run or experiment.

5.5.3.2.1. Multiple responses: Path of steepest ascent
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.2. Multiple response case

5.5.3.2.2.Multiple responses: The desirability approach

The
desirability
approach is a
popular
method that
assigns a
"score" to a
set of
responses and
chooses factor
settings that
maximize that
score

The desirability function approach is one of the most widely used methods in industry for the
optimization of multiple response processes. It is based on the idea that the "quality" of a product
or process that has multiple quality characteristics, with one of them outside of some "desired"
limits, is completely unacceptable. The method finds operating conditions x that provide the
"most desirable" response values.

For each response Yi(x), a desirability function di(Yi) assigns numbers between 0 and 1 to the
possible values of Yi, with di(Yi) = 0 representing a completely undesirable value of Yi and di(Yi)
= 1 representing a completely desirable or ideal response value. The individual desirabilities are
then combined using the geometric mean, which gives the overall desirability D:

with k denoting the number of responses. Notice that if any response Yi is completely undesirable

(di(Yi) = 0), then the overall desirability is zero. In practice, fitted response values i are used in
place of the Yi.

Desirability
functions of
Derringer and
Suich

Depending on whether a particular response Yi is to be maximized, minimized, or assigned a
target value, different desirability functions di(Yi) can be used. A useful class of desirability
functions was proposed by Derringer and Suich (1980). Let Li, Ui and Ti be the lower, upper, and
target values, respectively, that are desired for response Yi, with Li  Ti  Ui.

Desirability
function for
"target is
best"

If a response is of the "target is best" kind, then its individual desirability function is

with the exponents s and t determining how important it is to hit the target value. For s = t = 1, the
desirability function increases linearly towards Ti; for s < 1, t < 1, the function is convex, and for
s > 1, t > 1, the function is concave (see the example below for an illustration).

5.5.3.2.2. Multiple responses: The desirability approach

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5322.htm (1 of 5) [5/1/2006 10:31:15 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Desirability
function for
maximizing a
response

If a response is to be maximized instead, the individual desirability is defined as

with Ti in this case interpreted as a large enough value for the response.

Desirability
function for
minimizing a
response

Finally, if we want to minimize a response, we could use

with Ti denoting a small enough value for the response.

Desirability
approach
steps

The desirability approach consists of the following steps:

Conduct experiments and fit response models for all k responses;1.  

Define individual desirability functions for each response;2.  

Maximize the overall desirability D with respect to the controllable factors.3.  

Example:

An example
using the
desirability
approach

Derringer and Suich (1980) present the following multiple response experiment arising in the
development of a tire tread compound. The controllable factors are: x1, hydrated silica level, x2,
silane coupling agent level, and x3, sulfur level. The four responses to be optimized and their
desired ranges are:

Factor and
response
variables

Source Desired range

PICO Abrasion index, Y1 120 < Y1

200% modulus, Y2 1000 < Y2

Elongation at break, Y3 400 < Y3 < 600

Hardness, Y4 60 < Y4 < 75

The first two responses are to be maximized, and the value s=1 was chosen for their desirability
functions. The last two responses are "target is best" with T3 = 500 and T4 = 67.5. The values
s=t=1 were chosen in both cases.

5.5.3.2.2. Multiple responses: The desirability approach
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Experimental
runs from a
central
composite
design

The following experiments were conducted using a central composite design.

Run
Number x1 x2 x3 Y1 Y2 Y3 Y4

1 -1.00 -1.00 -1.00 102 900 470 67.5
2 +1.00 -1.00 -1.00 120 860 410 65.0
3 -1.00 +1.00 -1.00 117 800 570 77.5
4 +1.00 +1.00 -1.00 198 2294 240 74.5
5 -1.00 -1.00 +1.00 103 490 640 62.5
6 +1.00 -1.00 +1.00 132 1289 270 67.0
7 -1.00 +1.00 +1.00 132 1270 410 78.0
8 +1.00 +1.00 +1.00 139 1090 380 70.0
9 -1.63 0.00 0.00 102 770 590 76.0
10 +1.63 0.00 0.00 154 1690 260 70.0
11 0.00 -1.63 0.00 96 700 520 63.0
12 0.00 +1.63 0.00 163 1540 380 75.0
13 0.00 0.00 -1.63 116 2184 520 65.0
14 0.00 0.00 +1.63 153 1784 290 71.0
15 0.00 0.00 0.00 133 1300 380 70.0
16 0.00 0.00 0.00 133 1300 380 68.5
17 0.00 0.00 0.00 140 1145 430 68.0
18 0.00 0.00 0.00 142 1090 430 68.0
19 0.00 0.00 0.00 145 1260 390 69.0
20 0.00 0.00 0.00 142 1344 390 70.0

Fitted
response

Using ordinary least squares and standard diagnostics, the fitted responses are:

(R2 = 0.8369 and adjusted R2 = 0.6903);

(R2 = 0.7137 and adjusted R2 = 0.4562);

(R2 = 0.682 and adjusted R2 = 0.6224);

(R2 = 0.8667 and adjusted R2 = 0.7466).

Note that no interactions were significant for response 3 and that the fit for response 2 is quite
poor. 

5.5.3.2.2. Multiple responses: The desirability approach
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Optimization
performed by
Design-Expert
software

Optimization of D with respect to x was carried out using the Design-Expert software. Figure 5.7

shows the individual desirability functions di( i) for each of the four responses. The functions
are linear since the values of s and t were set equal to one. A dot indicates the best solution found
by the Design-Expert solver.

Diagram of
desirability
functions and
optimal
solutions

FIGURE 5.7  Desirability Functions and Optimal Solution for Example Problem

Best Solution The best solution is (x*)' = (-0.10, 0.15, -1.0) and results in:

d1( 1) = 0.34    ( 1(x*) = 136.4)

d2( 2) = 1.0    ( 2(x*) = 157.1)

d3( 3) = 0.49    ( 3(x*) = 450.56)

d4( 4) = 0.76    ( 4(x*) = 69.26)

The overall desirability for this solution is 0.596. All responses are predicted to be within the
desired limits.

5.5.3.2.2. Multiple responses: The desirability approach
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3D plot of the
overall
desirability
function

Figure 5.8 shows a 3D plot of the overall desirability function D(x) for the (x2, x3) plane when x1
is fixed at -0.10. The function D(x) is quite "flat" in the vicinity of the optimal solution, indicating
that small variations around x* are predicted to not change the overall desirability drastically.
However, the importance of performing confirmatory runs at the estimated optimal operating
conditions should be emphasized. This is particularly true in this example given the poor fit of the

response models (e.g., 2).

FIGURE 5.8  Overall Desirability Function for Example Problem

5.5.3.2.2. Multiple responses: The desirability approach
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5. Process Improvement
5.5. Advanced topics
5.5.3. How do you optimize a process?
5.5.3.2. Multiple response case

5.5.3.2.3.Multiple responses: The mathematical
programming approach

The
mathematical
programming
approach
maximizes or
minimizes a
primary
response,
subject to
appropriate
constraints
on all other
responses

The analysis of multiple response systems usually involves some type of
optimization problem. When one response can be chosen as the "primary", or
most important response, and bounds or targets can be defined on all other
responses, a mathematical programming approach can be taken. If this is not
possible, the desirability approach should be used instead.

In the mathematical programming approach, the primary response is maximized
or minimized, as desired, subject to appropriate constraints on all other
responses. The case of two responses ("dual" responses) has been studied in
detail by some authors and is presented first. Then, the case of more than 2
responses is illustrated.

Dual response systems●   

More than 2 responses●   

Dual response systems

Optimization
of dual
response
systems

The optimization of dual response systems (DRS) consists of finding operating
conditions x that

with T denoting the target value for the secondary response, p the number of
primary responses (i.e., responses to be optimized), s the number of secondary
responses (i.e., responses to be constrained), and  is the radius of a spherical

constraint that limits the region in the controllable factor space where the search
should be undertaken. The value of  should be chosen with the purpose of

avoiding solutions that extrapolate too far outside the region where the

5.5.3.2.3. Multiple responses: The mathematical programming approach
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experimental data were obtained. For example, if the experimental design is a
central composite design, choosing  (axial distance) is a logical choice.

Bounds of the form L  xi  U can be used instead if a cubical experimental
region were used (e.g., when using a factorial experiment). Note that a Ridge
Analysis problem is related to a DRS problem when the secondary constraint is
absent. Thus, any algorithm or solver for DRS's will also work for the Ridge
Analysis of single response systems.

Nonlinear
programming
software
required for
DRS

In a DRS, the response models  and  can be linear, quadratic or even cubic

polynomials. A nonlinear programming algorithm has to be used for the
optimization of a DRS. For the particular case of quadratic responses, an
equality constraint for the secondary response, and a spherical region of
experimentation, specialized optimization algorithms exist that guarantee global
optimal solutions. In such a case, the algorithm DRSALG can be used
(download from
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.stat.cmu.edu/jqt/29-3),
but a Fortran compiler is necessary.

More general
case

In the more general case of inequality constraints or a cubical region of
experimentation, a general purpose nonlinear solver must be used and several
starting points should be tried to avoid local optima. This is illustrated in the
next section.

Example for more than 2 responses

Example:
problem
setup

The values of three components (x1, x2, x3) of a propellant need to be selected
to maximize a primary response, burning rate (Y1), subject to satisfactory levels
of two secondary reponses; namely, the variance of the burning rate (Y2) and the
cost (Y3). The three components must add to 100% of the mixture. The fitted
models are:

5.5.3.2.3. Multiple responses: The mathematical programming approach
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The
optimization
problem

The optimization problem is therefore:

maximize 1(x)

subject to: 2(x)  -4.5

 3(x)  20

 x1 + x2 + x3 = 1.0

 0  x1  1

 0  x2  1

 0  x3  1

Solve using
Excel solver
function

We can use Microsoft Excel's "solver" to solve this problem. The table below
shows an Excel spreadsheet that has been set up with the problem above. Cells
B2:B4 contain the decision variables (cells to be changed), cell E2 is to be
maximized, and all the constraints need to be entered appropriately. The figure
shows the spreadsheet after the solver completes the optimization. The solution

is (x*)' = (0.212, 0.343, 0.443) which provides 1 = 106.62, 2 = 4.17, and 3
= 18.23. Therefore, both secondary responses are below the specified upper
bounds. The solver should be run from a variety of starting points (i.e., try
different initial values in cells B1:B3 prior to starting the solver) to avoid local
optima. Once again, confirmatory experiments should be conducted at the
estimated optimal operating conditions.

Excel
spreadsheet

 A B C D E
1 Factors   Responses  
2 x1 0.21233  Y1(x) 106.6217
3 x2 0.343725  Y2(x) 4.176743
4 x3 0.443946  Y3(x) 18.23221
5 Additional constraint    
6 x1 + x2 + x3 1.000001    

5.5.3.2.3. Multiple responses: The mathematical programming approach
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5. Process Improvement
5.5. Advanced topics

5.5.4.What is a mixture design?

When the
factors are
proportions
of a blend,
you need to
use a
mixture
design

In a mixture experiment, the independent factors are proportions of
different components of a blend. For example, if you want to optimize
the tensile strength of stainless steel, the factors of interest might be the
proportions of iron, copper, nickel, and chromium in the alloy. The fact
that the proportions of the different factors must sum to 100%
complicates the design as well as the analysis of mixture experiments.

Standard
mixture
designs and
constrained
mixture
designs

When the mixture components are subject to the constraint that they
must sum to one, there are standard mixture designs for fitting standard
models, such as Simplex-Lattice designs and Simplex-Centroid designs.
When mixture components are subject to additional constraints, such as
a maximum and/or minimum value for each component, designs other
than the standard mixture designs, referred to as constrained mixture
designs or Extreme-Vertices designs, are appropriate.

Measured
response
assumed to
depend only
on relative
proportions

In mixture experiments, the measured response is assumed to depend
only on the relative proportions of the ingredients or components in the
mixture and not on the amount of the mixture. The amount of the
mixture could also be studied as an additional factor in the experiment;
however, this would be an example of mixture and process variables
being treated together.

Proportions
of each
variable
must sum to
1

The main distinction between mixture experiments and independent
variable experiments is that with the former, the input variables or
components are non-negative proportionate amounts of the mixture, and
if expressed as fractions of the mixture, they must sum to one. If for
some reason, the sum of the component proportions is less than one, the
variable proportions can be rewritten as scaled fractions so that the
scaled fractions sum to one.

5.5.4. What is a mixture design?
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Purpose of a
mixture
design

In mixture problems, the purpose of the experiment is to model the
blending surface with some form of mathematical equation so that:

Predictions of the response for any mixture or combination of the
ingredients can be made empirically, or

1.  

Some measure of the influence on the response of each
component singly and in combination with other components can
be obtained.

2.  

Assumptions
for mixture
experiments

The usual assumptions made for factorial experiments are also made for
mixture experiments. In particular, it is assumed that the errors are
independent and identically distributed with zero mean and common
variance. Another assumption that is made, as with factorial designs, is
that the true underlying response surface is continuous over the region
being studied.

Steps in
planning a
mixture
experiment

Planning a mixture experiment typically involves the following steps
(Cornell and Piepel, 1994):

Define the objectives of the experiment.1.  

Select the mixture components and any other factors to be
studied. Other factors may include process variables or the total
amount of the mixture.

2.  

Identify any constraints on the mixture components or other
factors in order to specify the experimental region.

3.  

Identify the response variable(s) to be measured.4.  

Propose an appropriate model for modeling the response data as
functions of the mixture components and other factors selected
for the experiment.

5.  

Select an experimental design that is sufficient not only to fit the
proposed model, but which allows a test of model adequacy as
well.

6.  

5.5.4. What is a mixture design?
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5. Process Improvement
5.5. Advanced topics
5.5.4. What is a mixture design?

5.5.4.1.Mixture screening designs

Screening
experiments
can be used
to identify
the
important
mixture
factors

In some areas of mixture experiments, for example, certain chemical
industries, there is often a large number, q, of potentially important
components that can be considered candidates in an experiment. The
objective of these types of experiments is to screen the components to
identify the ones that are most important. In this type of situation, the
experimenter should consider a screening experiment to reduce the
number of possible components.

A first order
mixture
model

The construction of screening designs and their corresponding models
often begins with the first-order or first-degree mixture model

for which the beta coefficients are non-negative and sum to one.

Choices of
types of
screening
designs
depend on
constraints

If the experimental region is a simplex, it is generally a good idea to
make the ranges of the components as similar as possible. Then the
relative effects of the components can be assessed by ranking the ratios
of the parameter estimates (i.e., the estimates of the i), relative to their
standard errors. Simplex screening designs are recommended when it is
possible to experiment over the total simplex region. Constrained
mixture designs are suggested when the proportions of some or all of the
components are restricted by upper and lower bounds. If these designs
are not feasible in this situation, then D-optimal designs for a linear
model are always an option.

5.5.4.1. Mixture screening designs
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5. Process Improvement
5.5. Advanced topics
5.5.4. What is a mixture design?

5.5.4.2.Simplex-lattice designs

Definition of
simplex-
lattice points

A {q, m} simplex-lattice design for q components consists of points
defined by the following coordinate settings: the proportions assumed by
each component take the m+1 equally spaced values from 0 to 1,

xi = 0, 1/m, 2/m, ... , 1 for i = 1, 2, ... , q

and all possible combinations (mixtures) of the proportions from this
equation are used.

Except for the
center, all
design points
are on the
simplex
boundaries

Note that the standard Simplex-Lattice and the Simplex-Centroid designs
(described later) are boundary-point designs; that is, with the exception of
the overall centroid, all the design points are on the boundaries of the
simplex. When one is interested in prediction in the interior, it is highly
desirable to augment the simplex-type designs with interior design points.

Example of a
three-
component
simplex
lattice design

Consider a three-component mixture for which the number of equally
spaced levels for each component is four (i.e., xi = 0, 0.333, 0.667, 1). In
this example q = 3 and m = 3. If one uses all possible blends of the three
components with these proportions, the {3, 3} simplex-lattice then
contains the 10 blending coordinates listed in the table below. The
experimental region and the distribution of design runs over the simplex
region are shown in the figure below. There are 10 design runs for the {3,
3} simplex-lattice design.

5.5.4.2. Simplex-lattice designs
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Design table TABLE 5.3  Simplex Lattice
Design

X1 X2 X3

0 0 1
0 0.667 0.333
0 1 0

0.333 0 0.667
0.333 0.333 0.333
0.333 0.6667 0
0.667 0 0.333
0.667 0.333 0

1 0 0

Diagram
showing
configuration
of design
runs

FIGURE 5.9  Configuration of Design Runs for a {3,3}
Simplex-Lattice Design

The number of design points in the simplex-lattice is (q+m-1)!/(m!(q-1)!).

5.5.4.2. Simplex-lattice designs
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Definition of
canonical
polynomial
model used in
mixture
experiments

Now consider the form of the polynomial model that one might fit to the
data from a mixture experiment. Due to the restriction x1 + x2 + ... + xq =
1, the form of the regression function that is fit to the data from a mixture
experiment is somewhat different from the traditional polynomial fit and is
often referred to as the canonical polynomial. Its form is derived using the
general form of the regression function that can be fit to data collected at
the points of a {q, m} simplex-lattice design and substituting into this
function the dependence relationship among the xi terms. The number of
terms in the {q, m} polynomial is (q+m-1)!/(m!(q-1)!), as stated
previously. This is equal to the number of points that make up the
associated {q, m} simplex-lattice design.

Example for
a {q, m=1}
simplex-
lattice design

For example, the equation that can be fit to the points from a {q, m=1}
simplex-lattice design is

Multiplying 0 by (x1 + x2 + ... + xq = 1), the resulting equation is

with  = 0 + i for all i = 1, ..., q.

First-
order
canonical
form

This is called the canonical form of the first-order mixture model. In
general, the canonical forms of the mixture models (with the asterisks
removed from the parameters) are as follows:

Summary of
canonical
mixture
models

Linear

Quadratic

Cubic

Special
Cubic

5.5.4.2. Simplex-lattice designs
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Linear
blending
portion

The terms in the canonical mixture polynomials have simple
interpretations. Geometrically, the parameter i in the above equations
represents the expected response to the pure mixture xi=1, xj=0, i  j, and
is the height of the mixture surface at the vertex xi=1. The portion of each
of the above polynomials given by

is called the linear blending portion. When blending is strictly additive,
then the linear model form above is an appropriate model.

Three-
component
mixture
example

The following example is from Cornell (1990) and consists of a
three-component mixture problem. The three components are
Polyethylene (X1), polystyrene (X2), and polypropylene (X3), which are
blended together to form fiber that will be spun into yarn. The product
developers are only interested in the pure and binary blends of these three
materials. The response variable of interest is yarn elongation in kilograms
of force applied. A {3,2} simplex-lattice design is used to study the
blending process. The simplex region and the six design runs are shown in
the figure below. The figure was generated in JMP version 3.2. The design
and the observed responses are listed in the table below. There were two
replicate observations run at each of the pure blends. There were three
replicate observations run at the binary blends. There are o15 observations
with six unique design runs.

Diagram
showing the
designs runs
for this
example

5.5.4.2. Simplex-lattice designs
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FIGURE 5.10  Design Runs for the {3,2} Simplex-Lattice Yarn
Elongation Problem

Table
showing the
simplex-
lattice design
and observed
responses

TABLE 5.4  Simplex-Lattice Design for Yarn
Elongation Problem

X1 X2 X3
Observed
Elongation Values

0.0 0.0 1.0 16.8, 16.0
0.0 0.5 0.5 10.0, 9.7, 11.8
0.0 1.0 0.0 8.8, 10.0
0.5 0.0 0.5 17.7, 16.4, 16.6
0.5 0.5 0.0 15.0, 14.8, 16.1
1.0 0.0 0.0 11.0, 12.4

Fit a
quadratic
mixture
model using
JMP software

The design runs listed in the above table are in standard order. The actual
order of the 15 treatment runs was completely randomized. JMP 3.2 will
be used to analyze the results. Since there are three levels of each of the
three mixture components, a quadratic mixture model can be fit to the
data. The output from the model fit is shown below. Note that there was
no intercept in the model. To analyze the data in JMP, create a new table
with one column corresponding to the observed elongation values. Select
Fit Model and create the quadratic mixture model (this will look like the
'traditional' interactions regression model obtained from standard classical
designs). Check the No Intercept box on the Fit Model screen. Click on
Run Model. The output is shown below.

5.5.4.2. Simplex-lattice designs
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JMP analysis
for the
mixture
model
example

JMP Output for {3,2} Simplex-Lattice Design
Screening Fit

Summary of Fit

RSquare                        0.951356
RSquare Adj                    0.924331
Root Mean Square Error         0.85375
Mean of Response              13.54
Observations (or Sum Wgts)    15

                 Analysis of Variance

Source   DF  Sum of Squares  Mean Square  F Ratio
Model     5     128.29600      25.6592    35.2032
Error     9       6.56000       0.7289
C Total  14     134.85600

Prob > F  < .0001 
Tested against reduced model: Y=mean

                 Parameter Estimates

Term    Estimate  Std Error   t Ratio  Prob>|t|
X1        11.7     0.603692    19.38   <.0001
X2         9.4     0.603692    15.57   <.0001
X3        16.4     0.603692    27.17   <.0001
X2*X1     19       2.608249     7.28   <.0001
X3*X1     11.4     2.608249     4.37   0.0018
X3*X2     -9.6     2.608249    -3.68   0.0051

Interpretation
of the JMP
output

Under the parameter estimates section of the output are the individual
t-tests for each of the parameters in the model. The three cross product
terms are significant (X1*X2, X3*X1, X3*X2), indicating a significant
quadratic fit.

The fitted
quadratic
model

The fitted quadratic mixture model is

5.5.4.2. Simplex-lattice designs
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Conclusions
from the
fitted
quadratic
model

Since b3 > b1 > b2, one can conclude that component 3 (polypropylene)
produces yarn with the highest elongation. Additionally, since b12 and b13
are positive, blending components 1 and 2 or components 1 and 3
produces higher elongation values than would be expected just by
averaging the elongations of the pure blends. This is an example of
'synergistic' blending effects. Components 2 and 3 have antagonistic
blending effects because b23 is negative.

Contour plot
of the
predicted
elongation
values

The figure below is the contour plot of the elongation values. From the
plot it can be seen that if maximum elongation is desired, a blend of
components 1 and 3 should be chosen consisting of about 75% - 80%
component 3 and 20% - 25% component 1.

FIGURE 5.11  Contour Plot of Predicted Elongation Values from
{3,2} Simplex-Lattice Design

5.5.4.2. Simplex-lattice designs

http://www.itl.nist.gov/div898/handbook/pri/section5/pri542.htm (7 of 7) [5/1/2006 10:31:17 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


5. Process Improvement
5.5. Advanced topics
5.5.4. What is a mixture design?

5.5.4.3.Simplex-centroid designs

Definition
of simplex-
centroid
designs

A second type of mixture design is the simplex-centroid design. In the
q-component simplex-centroid design, the number of distinct points is 2q - 1.
These points correspond to q permutations of (1, 0, 0, ..., 0) or q single

component blends, the  permutations of (.5, .5, 0, ..., 0) or all binary

mixtures, the  permutations of (1/3, 1/3, 1/3, 0, ..., 0), ..., and so on, with

finally the overall centroid point (1/q, 1/q, ..., 1/q) or q-nary mixture.

The design points in the Simplex-Centroid design will support the polynomial

Model
supported
by simplex-
centroid
designs

which is the qth-order mixture polynomial. For q = 2, this is the quadratic
model. For q = 3, this is the special cubic model.

Example of
runs for
three and
four
components

For example, the fifteen runs for a four component (q = 4) simplex-centroid
design are:

(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (.5,.5,0,0), (.5,0,.5,0) ...,
(0,0,.5,.5), (1/3,1/3,1/3,0), ...,(0,1/3,1/3,1/3), (1/4,1/4,1/4,1/4).

The runs for a three component simplex-centroid design of degree 2 are

(1,0,0), (0,1,0), (0,0,1), (.5,.5,0), (.5,0,.5), (0,.5,.5), (1/3, 1/3, 1/3).

However, in order to fit a first-order model with q =4, only the five runs with a
"1" and all "1/4's" would be needed. To fit a second-order model, add the six
runs with a ".5" (this also fits a saturated third-order model, with no degrees of
freedom left for error).

5.5.4.3. Simplex-centroid designs
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5. Process Improvement
5.5. Advanced topics
5.5.4. What is a mixture design?

5.5.4.4.Constrained mixture designs

Upper and/or
lower bound
constraints may
be present

In mixture designs when there are constraints on the component
proportions, these are often upper and/or lower bound constraints of
the form Li  xi  Ui, i = 1, 2,..., q, where Li is the lower bound for
the i-th component and Ui the upper bound for the i-th component.
The general form of the constrained mixture problem is

Typical
additional
constraints

x1 + x2 + ... + xq = 1

Li  xi  Ui,   for i = 1, 2,..., q

with Li  0 and Ui  1.

Example using
only lower
bounds

Consider the following case in which only the lower bounds in the
above equation are imposed, so that the constrained mixture
problem becomes

x1 + x2 + ... + xq = 1

Li  xi  1,   for i = 1, 2,..., q

Assume we have a three-component mixture problem with
constraints

0.3  x1     0.4  x2     0.1  x3

Feasible mixture
region

The feasible mixture space is shown in the figure below. Note that
the existence of lower bounds does not affect the shape of the
mixture region, it is still a simplex region. In general, this will
always be the case if only lower bounds are imposed on any of the
component proportions.

5.5.4.4. Constrained mixture designs
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Diagram
showing the
feasible mixture
space

FIGURE 5.12  The Feasible Mixture Space (Shaded Region) for
Three Components with Lower Bounds

A simple
transformation
helps in design
construction and
analysis

Since the new region of the experiment is still a simplex, it is
possible to define a new set of components that take on the values
from 0 to 1 over the feasible region. This will make the design
construction and the model fitting easier over the constrained region
of interest. These new components ( ) are called pseudo
components and are defined using the following formula

Formula for
pseudo
components

with

denoting the sum of all the lower bounds.

Computation of
the pseudo
components for
the example

In the three component example above, the pseudo components are

5.5.4.4. Constrained mixture designs
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Constructing the
design in the
pseudo
components

Constructing a design in the pseudo components is accomplished by
specifying the design points in terms of the  and then converting
them to the original component settings using

xi = Li + (1 - L)

Select
appropriate
design

In terms of the pseudo components, the experimenter has the choice
of selecting a Simplex-Lattice or a Simplex-Centroid design,
depending on the objectives of the experiment.

Simplex-centroid
design example
(after
transformation)

Suppose, we decided to use a Simplex-centroid design for the
three-component experiment. The table below shows the design
points in the pseudo components, along with the corresponding
setting for the original components.

Table showing
the design points
in both the
pseudo
components and
the original
components

TABLE 5.5  Pseudo Component Settings and
Original Component Settings, Three-Component

Simplex-Centroid Design
Pseudo Components  Original Components
X1 X2 X3  

1 0 0  0.5 0.4 0.1
0 1 0  0.3 0.6 0.1
0 0 1  0.3 0.4 0.3

0.5 0.5 0  0.4 0.5 0.1
0.5 0 0.5  0.4 0.4 0.2
0 0.5 0.5  0.3 0.5 0.2

0.3333 0.3333 0.3333  0.3667 0.4667 0.1666

Use of pseudo
components
(after
transformation)
is recommended

It is recommended that the pseudo components be used to fit the
mixture model. This is due to the fact that the constrained design
space will usually have relatively high levels of multicollinearity
among the predictors. Once the final predictive model for the
pseudo components has been determined, the equation in terms of
the original components can be determined by substituting the
relationship between xi and .

5.5.4.4. Constrained mixture designs
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D-optimal
designs can also
be used

Computer-aided designs (D-optimal, for example) can be used to
select points for a mixture design in a constrained region. See Myers
and Montgomery (1995) for more details on using D-optimal
designs in mixture experiments.

Extreme vertice
designs anre
another option

Note: There are other mixture designs that cover only a sub-portion
or smaller space within the simplex. These types of mixture designs
(not covered here) are referred to as extreme vertices designs. (See
chapter 11 of Myers and Montgomery (1995) or Cornell (1990).

5.5.4.4. Constrained mixture designs
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5. Process Improvement
5.5. Advanced topics
5.5.4. What is a mixture design?

5.5.4.5.Treating mixture and process
variables together

Options for
setting up
experiments
for
processes
that have
both
standard
process
variables
and mixture
variables

Consider a mixture experiment consisting of q mixture components and
k process variables. First consider the case in which each of the process
variables to be studied has only two levels. Orthogonally scaled factor
settings for the process variables will be used (i.e., -1 is the low level, 1
is the high level, and 0 is the center point). Also assume that each of the
components xi can range from 0 to 1. The region of interest then for the
process variables is a k-dimensional hypercube.

The region of interest for the mixture components is the
(q-1)-dimensional simplex. The combined region of interest for both the
process variables and the mixture components is of dimensionality q - 1
+ k.

Example of
three
mixture
components
and three
process
variables

For example, consider three mixture components (x1, x2, x3) with three
process variables (z1, z2, z3). The dimensionality of the region is 5. The
combined region of interest for the three mixture components and three
process variables is shown in the two figures below. The complete space
of the design can be viewed in either of two ways. The first diagram
shows the idea of a full factorial at each vertex of the three-component
simplex region. The second diagram shows the idea of a
three-component simplex region at each point in the full factorial. In
either case, the same overall process space is being investigated.

5.5.4.5. Treating mixture and process variables together
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Diagram
showing
simplex
region of a
3-component
mixture with
a 2^3 full
factorial at
each pure
mixture run

FIGURE 5.13  Simplex Region of a Three Component Mixture with
a 23 Full Factorial at Each Pure Mixture Run

Diagram
showing
process
space of a 23

full factorial
with the
3-component
simplex
region at
each point
of the full
factorial

FIGURE 5.14  Process Space of a 23 Full Factorial with the Three
Component Simplex Region at Each Point of the Full Factorial

5.5.4.5. Treating mixture and process variables together
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Additional
options
available

As can be seen from the above diagrams, setting up the design
configurations in the process variables and mixture components
involves setting up either a mixture design at each point of a
configuration in the process variables, or similarly, creating a factorial
arrangement in the process variables at each point of composition in the
mixture components. For the example depicted in the above two
diagrams, this is not the only design available for this number of
mixture components with the specified number of process variables.
Another option might be to run a fractional factorial design at each
vertex or point of the mixture design, with the same fraction run at each
mixture design point. Still another option might be to run a fractional
factorial design at each vertex or point of the mixture design, with a
different fraction run at each mixture design point.
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5. Process Improvement
5.5. Advanced topics

5.5.5.How can I account for nested
variation (restricted randomization)?

Nested data
structures are
common and
lead to many
sources of
variability

Many processes have more than one source of variation in them. In
order to reduce variation in processes, these multiple sources must be
understood, and that often leads to the concept of nested or hierarchical
data structures. For example, in the semiconductor industry, a batch
process may operate on several wafers at a time (wafers are said to be
nested within batch). Understanding the input variables that control
variation among those wafers, as well as understanding the variation
across each wafer in a run, is an important part of the strategy for
minimizing the total variation in the system.

Example of
nested data

Figure 5.15 below represents a batch process that uses 7 monitor
wafers in each run. The plan further calls for measuring response on
each wafer at each of 9 sites. The organization of the sampling plan
has a hierarchical or nested structure: the batch run is the topmost
level, the second level is an individual wafer, and the third level is the
site on the wafer.

The total amount of data generated per batch run will be 7*9 = 63 data
points. One approach to analyzing these data would be to compute the
mean of all these points as well as their standard deviation and use
those results as responses for each run.
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Diagram
illustrating
the example

FIGURE 5.15  Hierarchical Data Structure Example

Sites nested
within wafers
and wafers
are nested
within runs

Analyzing the data as suggested above is not absolutely incorrect, but
doing so loses information that one might otherwise obtain. For
example, site 1 on wafer 1 is physically different from site 1 on wafer
2 or on any other wafer. The same is true for any of the sites on any of
the wafers. Similarly, wafer 1 in run 1 is physically different from
wafer 1 in run 2, and so on. To describe this situation one says that
sites are nested within wafers while wafers are nested within runs.

Nesting
places
restrictions on
the
randomization

As a consequence of this nesting, there are restrictions on the
randomization that can occur in the experiment. This kind of restricted
randomization always produces nested sources of variation. Examples
of nested variation or restricted randomization discussed on this page
are split-plot and strip-plot designs.

Wafer-to-
wafer and
site-to-site
variations are
often "noise
factors" in an
experiment

The objective of an experiment with the type of sampling plan
described in Figure 5.15 is generally to reduce the variability due to
sites on the wafers and wafers within runs (or batches) in the process.
The sites on the wafers and the wafers within a batch become sources
of unwanted variation and an investigator seeks to make the system
robust to those sources -- in other words, one could treat wafers and
sites as noise factors in such an experiment.

5.5.5. How can I account for nested variation (restricted randomization)?
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Treating
wafers and
sites as
random
effects allows
calculation of
variance
estimates

Because the wafers and the sites represent unwanted sources of
variation and because one of the objectives is to reduce the process
sensitivity to these sources of variation, treating wafers and sites as
random effects in the analysis of the data is a reasonable approach. In
other words, nested variation is often another way of saying nested
random effects or nested sources of noise. If the factors "wafers" and
"sites", are treated as random effects, then it is possible to estimate a
variance component due to each source of variation through analysis of
variance techniques. Once estimates of the variance components have
been obtained, an investigator is then able to determine the largest
source of variation in the process under experimentation, and also
determine the magnitudes of the other sources of variation in relation
to the largest source.

Nested
random
effects same
as nested
variation

If an experiment or process has nested variation, the experiment or
process has multiple sources of random error that affect its output.
Having nested random effects in a model is the same thing as having
nested variation in a model.

Split-Plot Designs

Split-plot
designs often
arise when
some factors
are "hard to
vary" or when
batch
processes are
run

Split-plot designs result when a particular type of restricted
randomization has occurred during the experiment. A simple factorial
experiment can result in a split-plot type of design because of the way
the experiment was actually executed.

In many industrial experiments, three situations often occur:

some of the factors of interest may be 'hard to vary' while the
remaining factors are easy to vary. As a result, the order in
which the treatment combinations for the experiment are run is
determined by the ordering of these 'hard-to-vary' factors

1.  

experimental units are processed together as a batch for one or
more of the factors in a particular treatment combination

2.  

experimental units are processed individually, one right after the
other, for the same treatment combination without resetting the
factor settings for that treatment combination.

3.  
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A split-plot
experiment
example

An experiment run under one of the above three situations usually
results in a split-plot type of design. Consider an experiment to
examine electroplating of aluminum (non-aqueous) on copper strips.
The three factors of interest are: current (A); solution temperature (T);
and the solution concentration of the plating agent (S). Plating rate is
the measured response. There are a total of 16 copper strips available
for the experiment. The treatment combinations to be run
(orthogonally scaled) are listed below in standard order (i.e., they have
not been randomized):

Table
showing the
design matrix

TABLE 5.6  Orthogonally Scaled Treatment
Combinations from a 23 Full Factorial

Current Temperature Concentration

-1 -1 -1
-1 -1 +1
-1 +1 -1
-1 +1 +1
+1 -1 -1
+1 -1 +1
+1 +1 -1
+1 +1 +1

Concentration
is hard to
vary, so
minimize the
number of
times it is
changed

Consider running the experiment under the first condition listed above,
with the factor solution concentration of the plating agent (S) being
hard to vary. Since this factor is hard to vary, the experimenter would
like to randomize the treatment combinations so that the solution
concentration factor has a minimal number of changes. In other words,
the randomization of the treatment runs is restricted somewhat by the
level of the solution concentration factor.

Randomize so
that all runs
for one level
of
concentration
are run first

As a result, the treatment combinations might be randomized such that
those treatment runs corresponding to one level of the concentration
(-1) are run first. Each copper strip is individually plated, meaning
only one strip at a time is placed in the solution for a given treatment
combination. Once the four runs at the low level of solution
concentration have been completed, the solution is changed to the high
level of concentration (1), and the remaining four runs of the
experiment are performed (where again, each strip is individually
plated).

5.5.5. How can I account for nested variation (restricted randomization)?
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Performing
replications

Once one complete replicate of the experiment has been completed, a
second replicate is performed with a set of four copper strips processed
for a given level of solution concentration before changing the
concentration and processing the remaining four strips. Note that the
levels for the remaining two factors can still be randomized. In
addition, the level of concentration that is run first in the replication
runs can also be randomized.

Whole plot
and subplot
factors

Running the experiment in this way results in a split-plot design.
Solution concentration is known as the whole plot factor and the
subplot factors are the current and the solution temperature.

Definition of
experimental
units and
whole plot
and subplot
factors for
this
experiment

A split-plot design has more than one size experimental unit. In this
experiment, one size experimental unit is an individual copper strip.
The treatments or factors that were applied to the individual strips are
solution temperature and current (these factors were changed each time
a new strip was placed in the solution). The other or larger size
experimental unit is a set of four copper strips. The treatment or factor
that was applied to a set of four strips is solution concentration (this
factor was changed after four strips were processed). The smaller size
experimental unit is referred to as the subplot experimental unit, while
the larger experimental unit is referred to as the whole plot unit.

Each size of
experimental
unit leads to
an error term
in the model
for the
experiment

There are 16 subplot experimental units for this experiment. Solution
temperature and current are the subplot factors in this experiment.
There are four whole-plot experimental units in this experiment.
Solution concentration is the whole-plot factor in this experiment.
Since there are two sizes of experimental units, there are two error
terms in the model, one that corresponds to the whole-plot error or
whole-plot experimental unit and one that corresponds to the subplot
error or subplot experimental unit.

5.5.5. How can I account for nested variation (restricted randomization)?
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Partial
ANOVA table

The ANOVA table for this experiment would look, in part, as follows:

Source                                   DF

Replication                               1
Concentration                             1
Error (Whole plot) = Rep*Conc             1
Temperature                               1
Rep*Temp                                  1
Current                                   1
Rep*Current                               1
Temp*Conc                                 1
Rep*Temp*Conc                             1
Temp*Current                              1
Rep*Temp*Current                          1
Current*Conc                              1
Rep*Current*Conc                          1
Temp*Current*Conc                         1
Error (Subplot) =Rep*Temp*Current*Conc    1

The first three sources are from the whole-plot level, while the next 12
are from the subplot portion. A normal probability plot of the 12
subplot term estimates could be used to look for significant terms.

A batch
process leads
to a different
experiment -
also a
strip-plot

Consider running the experiment under the second condition listed
above (i.e., a batch process) for which four copper strips are placed in
the solution at one time. A specified level of current can be applied to
an individual strip within the solution. The same 16 treatment
combinations (a replicated 23 factorial) are run as were run under the
first scenario. However, the way in which the experiment is performed
would be different. There are four treatment combinations of solution
temperature and solution concentration: (-1, -1), (-1, 1), (1, -1), (1, 1).
The experimenter randomly chooses one of these four treatments to set
up first. Four copper strips are placed in the solution. Two of the four
strips are randomly assigned to the low current level. The remaining
two strips are assigned to the high current level. The plating is
performed and the response is measured. A second treatment
combination of temperature and concentration is chosen and the same
procedure is followed. This is done for all four temperature /
concentration combinations.

This also a
split-plot
design

Running the experiment in this way also results in a split-plot design in
which the whole-plot factors are now solution concentration and
solution temperature, and the subplot factor is current.

5.5.5. How can I account for nested variation (restricted randomization)?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri55.htm (6 of 12) [5/1/2006 10:31:19 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm


Defining
experimental
units

In this experiment, one size experimental unit is again an individual
copper strip. The treatment or factor that was applied to the individual
strips is current (this factor was changed each time for a different strip
within the solution). The other or larger size experimental unit is again
a set of four copper strips. The treatments or factors that were applied
to a set of four strips are solution concentration and solution
temperature (these factors were changed after four strips were
processed).

Subplot
experimental
unit

The smaller size experimental unit is again referred to as the subplot
experimental unit. There are 16 subplot experimental units for this
experiment. Current is the subplot factor in this experiment.

Whole-plot
experimental
unit

The larger-size experimental unit is the whole-plot experimental unit.
There are four whole plot experimental units in this experiment and
solution concentration and solution temperature are the whole plot
factors in this experiment.

Two error
terms in the
model

There are two sizes of experimental units and there are two error terms
in the model: one that corresponds to the whole-plot error or
whole-plot experimental unit, and one that corresponds to the subplot
error or subplot experimental unit.

Partial
ANOVA table

The ANOVA for this experiment looks, in part, as follows:

Source                             DF

Concentration                       1
Temperature                         1
Error (Whole plot) = Conc*Temp      1

Current                             1
Conc*Current                        1
Temp*Current                        1
Conc*Temp*Current                   1
Error (Subplot)                     8 

The first three sources come from the whole-plot level and the next 5
come from the subplot level. Since there are 8 degrees of freedom for
the subplot error term, this MSE can be used to test each effect that
involves current.

5.5.5. How can I account for nested variation (restricted randomization)?
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Running the
experiment
under the
third scenario

Consider running the experiment under the third scenario listed above.
There is only one copper strip in the solution at one time. However,
two strips, one at the low current and one at the high current, are
processed one right after the other under the same temperature and
concentration setting. Once two strips have been processed, the
concentration is changed and the temperature is reset to another
combination. Two strips are again processed, one after the other, under
this temperature and concentration setting. This process is continued
until all 16 copper strips have been processed.

This also a
split-plot
design

Running the experiment in this way also results in a split-plot design in
which the whole-plot factors are again solution concentration and
solution temperature and the subplot factor is current. In this
experiment, one size experimental unit is an individual copper strip.
The treatment or factor that was applied to the individual strips is
current (this factor was changed each time for a different strip within
the solution). The other or larger-size experimental unit is a set of two
copper strips. The treatments or factors that were applied to a pair of
two strips are solution concentration and solution temperature (these
factors were changed after two strips were processed). The smaller size
experimental unit is referred to as the subplot experimental unit.

Current is the
subplot factor
and
temperature
and
concentration
are the whole
plot factors

There are 16 subplot experimental units for this experiment. Current is
the subplot factor in the experiment. There are eight whole-plot
experimental units in this experiment. Solution concentration and
solution temperature are the whole plot factors. There are two error
terms in the model, one that corresponds to the whole-plot error or
whole-plot experimental unit, and one that corresponds to the subplot
error or subplot experimental unit.

Partial
ANOVA table

The ANOVA for this (third) approach is, in part, as follows:

Source                          DF

Concentration                  1
Temperature                    1
Conc*Temp                      1
Error (Whole plot)             4

Current                        1
Conc*Current                   1
Temp*Current                   1
Conc*Temp*Current              1

5.5.5. How can I account for nested variation (restricted randomization)?
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Error (Subplot)                4

The first four terms come from the whole-plot analysis and the next 5
terms come from the subplot analysis. Note that we have separate error
terms for both the whole plot and the subplot effects, each based on 4
degrees of freedom.

Primary
distinction of
split-plot
designs is that
they have
more than one
experimental
unit size (and
therefore
more than one
error term)

As can be seen from these three scenarios, one of the major differences
in split-plot designs versus simple factorial designs is the number of
different sizes of experimental units in the experiment. Split-plot
designs have more than one size experimental unit, i.e., more than one
error term. Since these designs involve different sizes of experimental
units and different variances, the standard errors of the various mean
comparisons involve one or more of the variances. Specifying the
appropriate model for a split-plot design involves being able to identify
each size of experimental unit. The way an experimental unit is
defined relative to the design structure (for example, a completely
randomized design versus a randomized complete block design) and
the treatment structure (for example, a full 23 factorial, a resolution V
half fraction, a two-way treatment structure with a control group, etc.).
As a result of having greater than one size experimental unit, the
appropriate model used to analyze split-plot designs is a mixed model.

Using wrong
model can
lead to invalid
conclusions

If the data from an experiment are analyzed with only one error term
used in the model, misleading and invalid conclusions can be drawn
from the results. For a more detailed discussion of these designs and
the appropriate analysis procedures, see Milliken, Analysis of Messy
Data, Vol. 1.

Strip-Plot Designs

Strip-plot
desgins often
result from
experiments
that are
conducted
over two or
more process
steps

Similar to a split-plot design, a strip-plot design can result when some
type of restricted randomization has occurred during the experiment. A
simple factorial design can result in a strip-plot design depending on
how the experiment was conducted. Strip-plot designs often result
from experiments that are conducted over two or more process steps in
which each process step is a batch process, i.e., completing each
treatment combination of the experiment requires more than one
processing step with experimental units processed together at each
process step. As in the split-plot design, strip-plot designs result when
the randomization in the experiment has been restricted in some way.
As a result of the restricted randomization that occurs in strip-plot
designs, there are multiple sizes of experimental units. Therefore, there
are different error terms or different error variances that are used to test
the factors of interest in the design. A traditional strip-plot design has
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three sizes of experimental units.

Example with
two steps and
three factor
variables

Consider the following example from the semiconductor industry. An
experiment requires an implant step and an anneal step. At both the
anneal and the implant steps there are three factors to test. The implant
process accommodates 12 wafers in a batch, and implanting a single
wafer under a specified set of conditions is not practical nor does doing
so represent economical use of the implanter. The anneal furnace can
handle up to 100 wafers.

Explanation
of the
diagram that
illustrates the
design
structure of
the example

The figure below shows the design structure for how the experiment
was run. The rectangles at the top of the diagram represent the settings
for a two-level factorial design for the three factors in the implant step
(A, B, C). Similarly, the rectangles at the lower left of the diagram
represent a two-level factorial design for the three factors in the anneal
step (D, E, F).

The arrows connecting each set of rectangles to the grid in the center
of the diagram represent a randomization of trials in the experiment.
The horizontal elements in the grid represent the experimental units for
the anneal factors. The vertical elements in the grid represent the
experimental units for the implant factors. The intersection of the
vertical and horizontal elements represents the experimental units for
the interaction effects between the implant factors and the anneal
factors. Therefore, this experiment contains three sizes of experimental
units, each of which has a unique error term for estimating the
significance of effects.

Diagram of
the split-plot
design
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FIGURE 5.16  Diagram of a strip-plot design involving two
process steps with three factors in each step

Physical
meaning of
the
experimental
units

To put actual physical meaning to each of the experimental units in the
above example, consider each cell in the grid as an individual wafer. A
batch of eight wafers goes through the implant step first. According to
the figure, treatment combination #3 in factors A, B, and C is the first
implant treatment run. This implant treatment is applied to all eight
wafers at once. Once the first implant treatment is finished, another set
of eight wafers is implanted with treatment combination #5 of factors
A, B, and C. This continues until the last batch of eight wafers is
implanted with treatment combination #6 of factors A, B, and C. Once
all of the eight treatment combinations of the implant factors have
been run, the anneal step starts. The first anneal treatment combination
to be run is treatment combination #5 of factors D, E, and F. This
anneal treatment combination is applied to a set of eight wafers, with
each of these eight wafers coming from one of the eight implant
treatment combinations. After this first batch of wafers has been
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annealed, the second anneal treatment is applied to a second batch of
eight wafers, with these eight wafers coming from one each of the
eight implant treatment combinations. This is continued until the last
batch of eight wafers has been implanted with a particular combination
of factors D, E, and F.

Three sizes of
experimental
units

Running the experiment in this way results in a strip-plot design with
three sizes of experimental units. A set of eight wafers that are
implanted together is the experimental unit for the implant factors A,
B, and C and for all of their interactions. There are eight experimental
units for the implant factors. A different set of eight wafers are
annealed together. This different set of eight wafers is the second size
experimental unit and is the experimental unit for the anneal factors D,
E, and F and for all of their interactions. The third size experimental
unit is a single wafer. This is the experimental unit for all of the
interaction effects between the implant factors and the anneal factors.

Replication Actually, the above figure of the strip-plot design represents one block
or one replicate of this experiment. If the experiment contains no
replication and the model for the implant contains only the main
effects and two-factor interactions, the three-factor interaction term
A*B*C (1 degree of freedom) provides the error term for the
estimation of effects within the implant experimental unit. Invoking a
similar model for the anneal experimental unit produces the
three-factor interaction term D*E*F for the error term (1 degree of
freedom) for effects within the anneal experimental unit.

Further
information

For more details about strip-plot designs, see Milliken and Johnson
(1987) or Miller (1997).
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5. Process Improvement
5.5. Advanced topics

5.5.6.What are Taguchi designs?

Taguchi
designs are
related to
fractional
factorial
designs -
many of which
are large
screening
designs

Genichi Taguchi, a Japanese engineer, proposed several approaches to experimental
designs that are sometimes called "Taguchi Methods." These methods utilize two-,
three-, and mixed-level fractional factorial designs. Large screening designs seem to
be particularly favored by Taguchi adherents.

Taguchi refers to experimental design as "off-line quality control" because it is a
method of ensuring good performance in the design stage of products or processes.
Some experimental designs, however, such as when used in evolutionary operation,
can be used on-line while the process is running. He has also published a booklet of
design nomograms ("Orthogonal Arrays and Linear Graphs," 1987, American
Supplier Institute) which may be used as a design guide, similar to the table of
fractional factorial designs given previously in Section 5.3. Some of the well-known
Taguchi orthogonal arrays (L9, L18, L27 and L36) were given earlier when
three-level, mixed-level and fractional factorial designs were discussed.

If these were the only aspects of "Taguchi Designs," there would be little additional
reason to consider them over and above our previous discussion on factorials.
"Taguchi" designs are similar to our familiar fractional factorial designs. However,
Taguchi has introduced several noteworthy new ways of conceptualizing an
experiment that are very valuable, especially in product development and industrial
engineering, and we will look at two of his main ideas, namely Parameter Design
and Tolerance Design.

Parameter Design

Taguchi
advocated
using inner
and outer
array designs
to take into
account noise
factors (outer)
and design
factors (inner)

The aim here is to make a product or process less variable (more robust) in the face
of variation over which we have little or no control. A simple fictitious example
might be that of the starter motor of an automobile that has to perform reliably in
the face of variation in ambient temperature and varying states of battery weakness.
The engineer has control over, say, number of armature turns, gauge of armature
wire, and ferric content of magnet alloy.

Conventionally, one can view this as an experiment in five factors. Taguchi has
pointed out the usefulness of viewing it as a set-up of three inner array factors
(turns, gauge, ferric %) over which we have design control, plus an outer array of
factors over which we have control only in the laboratory (temperature, battery
voltage).

5.5.6. What are Taguchi designs?
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Pictorial
representation
of Taguchi
designs

Pictorially, we can view this design as being a conventional design in the inner
array factors (compare Figure 3.1) with the addition of a "small" outer array
factorial design at each corner of the "inner array" box.

Let I1 = "turns," I2 = "gauge," I3 = "ferric %," E1 = "temperature," and E2 =
"voltage." Then we construct a 23 design "box" for the I's, and at each of the eight
corners so constructed, we place a 22 design "box" for the E's, as is shown in Figure
5.17.

FIGURE 5.17  Inner 23 and outer 22 arrays for robust design
with `I' the inner array, `E' the outer array.

An example of
an inner and
outer array
designed
experiment

We now have a total of 8x4 = 32 experimental settings, or runs. These are set out in
Table 5.7, in which the 23 design in the I's is given in standard order on the left of
the table and the 22 design in the E's is written out sideways along the top. Note that
the experiment would not be run in the standard order but should, as always, have
its runs randomized. The output measured is the percent of (theoretical) maximum
torque.
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Table showing
the Taguchi
design and the
responses
from the
experiment

TABLE 5.7  Design table, in standard order(s) for the parameter
design of Figure 5.9

Run
Number  1 2 3 4

  

 I1 I2 I3
E1
E2

-1
-1

+1
-1

-1
+1

+1
+1

Output
MEAN

Output
STD. DEV

  
1 -1 -1 -1  75 86 67 98 81.5 13.5
2 +1 -1 -1  87 78 56 91 78.0 15.6
3 -1 +1 -1  77 89 78  8 63.0 37.1
4 +1 +1 -1  95 65 77 95 83.0 14.7
5 -1 -1 +1  78 78 59 94 77.3 14.3
6 +1 -1 +1  56 79 67 94 74.0 16.3
7 -1 +1 +1  79 80 66 85 77.5  8.1
8 +1 +1 +1  71 80 73 95 79.8 10.9

Interpretation
of the table

Note that there are four outputs measured on each row. These correspond to the four
`outer array' design points at each corner of the `outer array' box. As there are eight
corners of the outer array box, there are eight rows in all.

Each row yields a mean and standard deviation % of maximum torque. Ideally there
would be one row that had both the highest average torque and the lowest standard
deviation (variability). Row 4 has the highest torque and row 7 has the lowest
variability, so we are forced to compromise. We can't simply `pick the winner.'

Use contour
plots to see
inside the box

One might also observe that all the outcomes occur at the corners of the design
`box', which means that we cannot see `inside' the box. An optimum point might
occur within the box, and we can search for such a point using contour plots.
Contour plots were illustrated in the example of response surface design analysis
given in Section 4.

Fractional
factorials

Note that we could have used fractional factorials for either the inner or outer array
designs, or for both.

Tolerance Design
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Taguchi also
advocated
tolerance
studies to
determine,
based on a
loss or cost
function,
which
variables have
critical
tolerances
that need to
be tightened

This section deals with the problem of how, and when, to specify tightened
tolerances for a product or a process so that quality and performance/productivity
are enhanced. Every product or process has a number—perhaps a large number—of
components. We explain here how to identify the critical components to target
when tolerances have to be tightened.

It is a natural impulse to believe that the quality and performance of any item can
easily be improved by merely tightening up on some or all of its tolerance
requirements. By this we mean that if the old version of the item specified, say,
machining to ± 1 micron, we naturally believe that we can obtain better
performance by specifying machining to ± ½ micron.

This can become expensive, however, and is often not a guarantee of much better
performance. One has merely to witness the high initial and maintenance costs of
such tight-tolerance-level items as space vehicles, expensive automobiles, etc. to
realize that tolerance design—the selection of critical tolerances and the
re-specification of those critical tolerances—is not a task to be undertaken without
careful thought. In fact, it is recommended that only after extensive parameter
design studies have been completed should tolerance design be performed as a last
resort to improve quality and productivity.

Example

Example:
measurement
of electronic
component
made up of
two
components

Customers for an electronic component complained to their supplier that the
measurement reported by the supplier on the as-delivered items appeared to be
imprecise. The supplier undertook to investigate the matter.

The supplier's engineers reported that the measurement in question was made up of
two components, which we label x and y, and the final measurement M was reported
according to the standard formula

M = K x/y

with `K' a known physical constant. Components x and y were measured separately
in the laboratory using two different techniques, and the results combined by
software to produce M. Buying new measurement devices for both components
would be prohibitively expensive, and it was not even known by how much the x or
y component tolerances should be improved to produce the desired improvement in
the precision of M.
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Taylor series
expansion

Assume that in a measurement of a standard item the `true' value of x is xo and for y
it is yo. Let f(x, y) = M; then the Taylor Series expansion for f(x, y) is

with all the partial derivatives, `df/dx', etc., evaluated at (xo, yo).

Apply formula
to M

Applying this formula to M(x, y) = Kx/y, we obtain

It is assumed known from experience that the measurements of x show a
distribution with an average value xo, and with a standard deviation x = 0.003
x-units.

Assume
distribution of
x is normal

In addition, we assume that the distribution of x is normal. Since 99.74% of a
normal distribution's range is covered by 6 , we take 3 x = 0.009 x-units to be the
existing tolerance Tx for measurements on x. That is, Tx = ± 0.009 x-units is the
`play' around xo that we expect from the existing measurement system.

Assume
distribution of
y is normal

It is also assumed known that the y measurements show a normal distribution
around yo, with standard deviation y = 0.004 y-units. Thus Ty = ± 3 y = ±0.012.

Worst case
values

Now ±Tx and ±Ty may be thought of as `worst case' values for (x-xo) and (y-yo).
Substituting Tx for (x-xo) and Ty for (y-yo) in the expanded formula for M(x, y), we
have

Drop some
terms

The  and TxTy terms, and all terms of higher order, are going to be at least an

order of magnitude smaller than terms in Tx and in Ty, and for this reason we drop
them, so that

5.5.6. What are Taguchi designs?
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Worst case
Euclidean
distance

Thus, a `worst case' Euclidean distance  of M(x, y) from its ideal value Kxo/yo is
(approximately)

This shows the relative contributions of the components to the variation in the
measurement.

Economic
decision

As yo is a known quantity and reduction in Tx and in Ty each carries its own price
tag, it becomes an economic decision whether one should spend resources to reduce
Tx or Ty, or both.

Simulation an
alternative to
Taylor series
approximation

In this example, we have used a Taylor series approximation to obtain a simple
expression that highlights the benefit of Tx and Ty. Alternatively, one might
simulate values of M = K*x/y, given a specified (Tx,Ty) and (x0,y0), and then
summarize the results with a model for the variability of M as a function of (Tx,Ty).

Functional
form may not
be available

In other applications, no functional form is available and one must use
experimentation to empirically determine the optimal tolerance design. See
Bisgaard and Steinberg (1997).
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5. Process Improvement
5.5. Advanced topics

5.5.7.What are John's 3/4 fractional
factorial designs?

John's
designs
require only
3/4 of the
number of
runs a full
2n factorial
would
require

Three-quarter (¾) designs are two-level factorial designs that require
only three-quarters of the number of runs of the `original' design. For
example, instead of making all of the sixteen runs required for a 24

fractional factorial design, we need only run 12 of them. Such designs
were invented by Professor Peter John of the University of Texas, and
are sometimes called`John's ¾ designs.'

Three-quarter fractional factorial designs can be used to save on
resources in two different contexts. In one scenario, we may wish to
perform additional runs after having completed a fractional factorial, so
as to de-alias certain specific interaction patterns. Second , we may wish
to use a ¾ design to begin with and thus save on 25% of the run
requirement of a regular design.

Semifolding Example

Four
experimental
factors

We have four experimental factors to investigate, namely X1, X2, X3,
and X4, and we have designed and run a 24-1 fractional factorial design.
Such a design has eight runs, or rows, if we don't count center point
runs (or replications).

Resolution
IV design

The 24-1 design is of resolution IV, which means that main effects are
confounded with, at worst, three-factor interactions, and two-factor
interactions are confounded with other two factor interactions.

5.5.7. What are John's 3/4 fractional factorial designs?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri57.htm (1 of 6) [5/1/2006 10:31:21 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Design
matrix

The design matrix, in standard order, is shown in Table 5.8 along with
all the two-factor interaction columns. Note that the column for X4 is
constructed by multiplying columns for X1, X2, and X3 together (i.e.,
4=123).

Table 5.8  The 24-1 design plus 2-factor interaction columns shown
in standard order. Note that 4=123.

Run   Two-Factor Interaction Columns
Number X1 X2 X3 X4  X1*X2 X1*X3 X1*X4 X2*X3 X2*X4 X3*X4

  
1 -1 -1 -1 -1  +1 +1 +1 +1 +1 +1
2 +1 -1 -1 +1  -1 -1 +1 +1 -1 -1
3 -1 +1 -1 +1  -1 +1 -1 -1 +1 -1
4 +1 +1 -1 -1  +1 -1 -1 -1 -1 +1
5 -1 -1 +1 +1  +1 -1 -1 -1 -1 +1
6 +1 -1 +1 -1  -1 +1 -1 -1 +1 -1
7 -1 +1 +1 -1  -1 -1 +1 +1 -1 -1
8 +1 +1 +1 +1  +1 +1 +1 +1 +1 +1

Confounding
of two-factor
interactions

Note also that 12=34, 13=24, and 14=23. These follow from the
generating relationship 4=123 and tells us that we cannot estimate any
two-factor interaction that is free of some other two-factor alias.

Estimating
two-factor
interactions
free of
confounding

Suppose that we became interested in estimating some or all of the
two-factor interactions that involved factor X1; that is, we want to
estimate one or more of the interactions 12, 13, and 14 free of
two-factor confounding.

One way of doing this is to run the `other half' of the design—an
additional eight rows formed from the relationship 4 = -123. Putting
these two `halves' together—the original one and the new one, we'd
obtain a 24 design in sixteen runs. Eight of these runs would already
have been run, so all we'd need to do is run the remaining half.

Alternative
method
requiring
fewer runs

There is a way, however, to obtain what we want while adding only four
more runs. These runs are selected in the following manner: take the
four rows of Table 5.8 that have `-1' in the `X1' column and switch the
`-' sign under X1 to `+' to obtain the four-row table of Table 5.9. This is
called a foldover on X1, choosing the subset of runs with X1 = -1. Note
that this choice of 4 runs is not unique, and that if the initial design
suggested that X1 = -1 were a desirable level, we would have chosen to
experiment at the other four treatment combinations that were omitted
from the initial design.
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Table of the
additional
design
points

TABLE 5.9  Foldover on `X1' of the 24-1

design of Table 5.5

Run
Number X1 X2 X3 X4

 9 +1 -1 -1 -1
10 +1 +1 -1 +1
11 +1 -1 +1 +1
12 +1 +1 +1 -1

Table with
new design
points added
to the
original
design
points

Add this new block of rows to the bottom of Table 5.8 to obtain a
design in twelve rows. We show this in Table 5.10 and also add in the
two-factor interactions as well for illustration (not needed when we do
the runs).

TABLE 5.10  A twelve-run design based on the 24-1 also showing all
two-factor interaction columns

Run   Two-Factor Interaction Columns
Number X1 X2 X3 X4  X1*X2 X1*X3 X1*X4 X2*X3 X2*X4 X3*X4

  
1 -1 -1 -1 -1  +1 +1 +1 +1 +1 +1
2 +1 -1 -1 +1  -1 -1 +1 +1 -1 -1
3 -1 +1 -1 +1  -1 +1 -1 -1 +1 -1
4 +1 +1 -1 -1  +1 -1 -1 -1 -1 +1
5 -1 -1 +1 +1  +1 -1 -1 -1 -1 +1
6 +1 -1 +1 -1  -1 +1 -1 -1 +1 -1
7 -1 +1 +1 -1  -1 -1 +1 +1 -1 -1
8 +1 +1 +1 +1  +1 +1 +1 +1 +1 +1
1 +1 -1 -1 -1  -1 -1 -1 +1 +1 +1

10 +1 +1 -1 +1  +1 -1 +1 -1 +1 -1
11 +1 -1 +1 +1  -1 +1 +1 -1 -1 +1
12 +1 +1 +1 -1  +1 +1 -1 +1 -1 -1

Design is
resolution V

Examine the two-factor interaction columns and convince yourself that
no two are alike. This means that no two-factor interaction involving X1
is aliased with any other two-factor interaction. Thus, the design is
resolution V, which is not always the case when constructing these
types of ¾ foldover designs.
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Estimating
X1
two-factor
interactions

What we now have is a design with 12 runs, with which we can estimate
all the two-factor interactions involving X1 free of aliasing with any
other two-factor interaction. It is called a ¾ design because it has ¾ the
number of rows of the next regular factorial design (a 24).

Standard
errors of
effect
estimates

If one fits a model with an intercept, a block effect, the four main effects
and the six two-factor interactions, then each coefficient has a standard
error of /81/2 - instead of /121/2 - because the design is not
orthogonal and each estimate is correlated with two other estimates.
Note that no degrees of freedom exists for estimating . Instead, one
should plot the 10 effect estimates using a normal (or half-normal)
effects plot to judge which effects to declare significant.

Further
information

For more details on ¾ fractions obtained by adding a follow-up design
that is half the size of the original design, see Mee and Peralta (2000).

Next we consider an example in which a ¾ fraction arises when the (¾)
2k-p design is planned from the start because it is an efficient design that
allows estimation of a sufficient number of effects.

A 48-Run 3/4 Design Example

Estimate all
main effects
and
two-factor
interactions
for 8 factors

Suppose we wish to run an experiment for k=8 factors, with which we
want to estimate all main effects and two-factor interactions. We could
use the  design described in the summary table of fractional
factorial designs, but this would require a 64-run experiment to estimate
the 1 + 8 + 28 = 37 desired coefficients. In this context, and especially
for larger resolution V designs, ¾ of the design points will generally
suffice.

Construction
of the 48-run
design

The 48 run-design is constructed as follows: start by creating the full
 design using the generators 7 = 1234 and 8 = 1256. The defining

relation is I = 12347 = 12568 = 345678 (see the summary table details
for this design).

Next, arrange these 64 treatment combinations into four blocks of size
16, blocking on the interactions 135 and 246 (i.e., block 1 has 135 = 246
= -1 runs, block 2 has 135 = -1, 246 = +1, block 3 has 135 = +1, 246 =
-1 and block 4 has 135 = 246 = +1). If we exclude the first block in
which 135 = 246 = -1, we have the desired ¾ design reproduced below
(the reader can verify that these are the runs described in the summary
table, excluding the runs numbered 1, 6, 11, 16, 18, 21, 28, 31, 35, 40,
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41,46, 52, 55, 58 and 61).

Table
containing
the design
matrix

X1 X2 X3 X4 X5 X6 X7 X8
+1 -1 -1 -1 -1 -1 -1 -1
-1 +1 -1 -1 -1 -1 -1 -1
+1 +1 -1 -1 -1 -1 +1 +1
-1 -1 +1 -1 -1 -1 -1 +1
-1 +1 +1 -1 -1 -1 +1 -1
+1 +1 +1 -1 -1 -1 -1 +1
-1 -1 -1 +1 -1 -1 -1 +1
+1 -1 -1 +1 -1 -1 +1 -1
+1 +1 -1 +1 -1 -1 -1 +1
-1 -1 +1 +1 -1 -1 +1 +1
+1 -1 +1 +1 -1 -1 -1 -1
-1 +1 +1 +1 -1 -1 -1 -1
-1 -1 -1 -1 +1 -1 +1 -1
-1 +1 -1 -1 +1 -1 -1 +1
+1 +1 -1 -1 +1 -1 +1 -1
+1 -1 +1 -1 +1 -1 +1 +1
-1 +1 +1 -1 +1 -1 +1 +1
+1 +1 +1 -1 +1 -1 -1 -1
-1 -1 -1 +1 +1 -1 -1 -1
+1 -1 -1 +1 +1 -1 +1 +1
-1 +1 -1 +1 +1 -1 +1 +1
-1 -1 +1 +1 +1 -1 +1 -1
+1 -1 +1 +1 +1 -1 -1 +1
+1 +1 +1 +1 +1 -1 +1 -1
-1 -1 -1 -1 -1 +1 +1 -1
+1 -1 -1 -1 -1 +1 -1 +1
+1 +1 -1 -1 -1 +1 +1 -1
-1 -1 +1 -1 -1 +1 -1 -1
+1 -1 +1 -1 -1 +1 +1 +1
-1 +1 +1 -1 -1 +1 +1 +1
+1 -1 -1 +1 -1 +1 +1 +1
-1 +1 -1 +1 -1 +1 +1 +1
+1 +1 -1 +1 -1 +1 -1 -1
-1 -1 +1 +1 -1 +1 +1 -1
-1 +1 +1 +1 -1 +1 -1 +1
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+1 +1 +1 +1 -1 +1 +1 -1
-1 -1 -1 -1 +1 +1 +1 +1
+1 -1 -1 -1 +1 +1 -1 -1
-1 +1 -1 -1 +1 +1 -1 -1
-1 -1 +1 -1 +1 +1 -1 +1
+1 -1 +1 -1 +1 +1 +1 -1
+1 +1 +1 -1 +1 +1 -1 +1
-1 -1 -1 +1 +1 +1 -1 +1
-1 +1 -1 +1 +1 +1 +1 -1
+1 +1 -1 +1 +1 +1 -1 +1
+1 -1 +1 +1 +1 +1 -1 -1
-1 +1 +1 +1 +1 +1 -1 -1
+1 +1 +1 +1 +1 +1 +1 +1

Good
precision for
coefficient
estimates

This design provides 11 degrees of freedom for error and also provides
good precision for coefficient estimates (some of the coefficients have a
standard error of  and some have a standard error of

).

Further
information

More about John's ¾ designs can be found in John (1971) or Diamond
(1989).
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5. Process Improvement
5.5. Advanced topics

5.5.8.What are small composite designs?

Small
composite
designs save
runs,
compared to
Resolution V
response
surface
designs, by
adding star
points to a
Resolution
III design

Response surface designs (RSD) were described earlier. A typical RSD
requires about 13 runs for 2 factors, 20 runs for 3 factors, 31 runs for 4
factors, and 32 runs for 5 factors. It is obvious that, once you have four
or more factors you wish to include in a RSD, you will need more than
one lot (i.e., batch) of experimental units for your basic design. This is
what most statistical software today will give you, including RS/1,
JMP, and SAS. However, there is a way to cut down on the number of
runs, as suggested by H.O. Hartley in his paper 'Smallest Composite
Designs for Quadratic Response Surfaces', published in Biometrics,
December 1959.

This method addresses the theory that using a Resolution V design as
the smallest fractional design to create a RSD is unnecessary. The
method adds star points to designs of Resolution III and uses the star
points to clear the main effects of aliasing with the two-factor
interactions. The resulting design allows estimation of the higher-order
interactions. It also provides poor interaction coefficient estimates and
should not be used unless the error variability is negligible compared to
the systematic effects of the factors.

Useful for 4
or 5 factors

This could be particularly useful when you have a design containing
four or five factors and you wish to only use the experimental units
from one lot (i.e., batch).

Table
containing
design
matrix for
four factors

The following is a design for four factors. You would want to
randomize these runs before implementing them; -1 and +1 represent
the low and high settings, respectively, of each factor.
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TABLE 5.11 Four factors: Factorial design section is
based on a generator of I = X1*X2*X3, Resolution III; -
and +  are the star points, calculated beyond the factorial

range; 0 represents the midpoint of the factor range.
Row X1 X2 X3 X4

1 +1 -1 -1 -1
2 -1 +1 -1 -1
3 -1 -1 +1 -1
4 +1 +1 +1 -1
5 +1 -1 -1 +1
6 -1 +1 -1 +1
7 -1 -1 +1 +1
8 +1 +1 +1 +1
9 - 0 0 0

10 0 0 0
11 0 - 0 0
12 0 0 0
13 0 0 - 0
14 0 0 0
15 0 0 0 -
16 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0

Determining  in Small Composite Designs

 based on
number of
treatment
combinations
in the
factorial
portion

To maintain rotatability for usual CCD's, the value of  is determined
by the number of treatment combinations in the factorial portion of the
central composite design:

Small
composite
designs not
rotatable

However, small composite designs are not rotatable, regardless of the
choice of . For small composite designs,  should not be smaller than
[number of factorial runs]1/4 nor larger than k1/2.
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5. Process Improvement
5.5. Advanced topics

5.5.9.An EDA approach to experimental
design

Introduction This section presents an exploratory data analysis (EDA) approach to
analyzing the data from a designed experiment. This material is meant to
complement, not replace, the more model-based approach for analyzing
experiment designs given in section 4 of this chapter.

Choosing an appropriate design is discussed in detail in section 3 of this
chapter.

Starting point

Problem
category

The problem category we will address is the screening problem. Two
characteristics of screening problems are:

There are many factors to consider.1.  

Each of these factors may be either continuous or discrete.2.  

Desired
output

The desired output from the analysis of a screening problem is:

A ranked list (by order of importance) of factors.●   

The best settings for each of the factors.●   

A good model.●   

Insight.●   

Problem
essentials

The essentials of the screening problem are:

There are k factors with n observations.●   

The generic model is:

Y = f(X1, X2, ..., Xk)

●   
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Design type In particular, the EDA approach is applied to 2k full factorial and 2k-p

fractional factorial designs.

An EDA approach is particularly applicable to screening designs because we
are in the preliminary stages of understanding our process.

EDA
philosophy

EDA is not a single technique. It is an approach to analyzing data.

EDA is data-driven. That is, we do not assume an initial model. Rather,
we attempt to let the data speak for themselves.

●   

EDA is question-based. That is, we select a technique to answer one or
more questions.

●   

EDA utilizes multiple techniques rather than depending on a single
technique. Different plots have a different basis, focus, and
sensitivities, and therefore may bring out different aspects of the data.
When multiple techniques give us a redundancy of conclusions, this
increases our confidence that our conclusions are valid. When they
give conflicting conclusions, this may be giving us a clue as to the
nature of our data.

●   

EDA tools are often graphical. The primary objective is to provide
insight into the data, which graphical techniques often provide more
readily than quantitative techniques.

●   

10-Step
process

The following is a 10-step EDA process for analyzing the data from 2k full
factorial and 2k-p fractional factorial designs.

Ordered data plot1.  

Dex scatter plot2.  

Dex mean plot3.  

Interaction effects matrix plot4.  

Block plot5.  

DEX Youden plot6.  

|Effects| plot7.  

Half-normal probability plot8.  

Cumulative residual standard deviation plot9.  

DEX contour plot10.  

Each of these plots will be presented with the following format:

Purpose of the plot●   

Output of the plot●   

Definition of the plot●   

5.5.9. An EDA approach to experimental design
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Motivation for the plot●   

An example of the plot using the defective springs data●   

A discussion of how to interpret the plot●   

Conclusions we can draw from the plot for the defective springs data●   

Data set

Defective
springs data

The plots presented in this section are demonstrated with a data set from Box
and Bisgaard (1987).

These data are from a 23 full factorial data set that contains the following
variables:

Response variable Y = percentage of springs without cracks1.  

Factor 1 = oven temperature (2 levels: 1450 and 1600 F)2.  

Factor 2 = carbon concentration (2 levels: .5% and .7%)3.  

Factor 3 = quench temperature (2 levels: 70 and 120 F)4.  

     Y         X1              X2            X3
  Percent     Oven           Carbon        Quench
Acceptable  Temperature  Concentration   Temperature
----------------------------------------------------
    67         -1              -1            -1
    79         +1              -1            -1
    61         -1              +1            -1
    75         +1              +1            -1
    59         -1              -1            +1
    90         +1              -1            +1
    52         -1              +1            +1
    87         +1              +1            +1

You can read this file into Dataplot with the following commands:

SKIP 25
READ BOXSPRIN.DAT Y X1 X2 X3

5.5.9. An EDA approach to experimental design
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.1.Ordered data plot

Purpose The ordered data plot answers the following two questions:

What is the best setting (based on the data) for each of the k factors?1.  

What is the most important factor?2.  

In the above two questions, the terms "best" and "important" need more precise definitions.

Settings may be declared as "best" in three different ways:

"best" with respect to the data;1.  

"best" on average;2.  

"best" with respect to predicted values from an adequate model.3.  

In the worst case, each of the above three criteria may yield different "best settings". If that
occurs, then the three answers must be consolidated at the end of the 10-step process.

The ordered data plot will yield best settings based on the first criteria (data). That is, this
technique yields those settings that correspond to the best response value, with the best value
dependent upon the project goals:

maximization of the response;1.  

minimization of the response;2.  

hitting a target for the response.3.  

This, in turn, trivially yields the best response value:

maximization: the observed maximum data point;1.  

minimization: the observed minimum data point;2.  

target: the observed data value closest to the specified target.3.  

With respect to the most "important" factor, this by default refers to the single factor which
causes the greatest change in the value of the response variable as we proceed from the "-" setting
to the "+" setting of the factor. In practice, if a factor has one setting for the best and near-best
response values and the opposite setting for the worst and near-worst response values, then that
factor is usually the most important factor.

Output The output from the ordered data plot is:

Primary: Best setting for each of the k factors.1.  

Secondary: The name of the most important factor.2.  

5.5.9.1. Ordered data plot
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Definition An ordered data plot is formed by:

Vertical Axis: The ordered (smallest to largest) raw response value for each of the n runs in
the experiment.

●   

Horizontal Axis: The corresponding dummy run index (1 to n) with (at each run) a
designation of the corresponding settings (- or +) for each of the k factors.

●   

In essence, the ordered data plot may be viewed as a scatter plot of the ordered data versus a
single n-treatment consolidation factor.

Motivation To determine the best setting, an obvious place to start is the best response value. What
constitutes "best"? Are we trying to maximize the response, minimize the response, or hit a
specific target value? This non-statistical question must be addressed and answered by the
analyst. For example, if the project goal is ultimately to achieve a large response, then the desired
experimental goal is maximization. In such a case, the analyst would note from the plot the
largest response value and the corresponding combination of the k-factor settings that yielded that
best response.

Plot for
defective
springs
data

Applying the ordered response plot for the defective springs data set yields the following plot.

5.5.9.1. Ordered data plot
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How to
interpret

From the ordered data plot, we look for the following:

best settings;1.  

most important factor.2.  

Best Settings (Based on the Data):

At the best (highest or lowest or target) response value, what are the corresponding settings for
each of the k factors? This defines the best setting based on the raw data.

Most Important Factor:

For the best response point and for the nearby neighborhood of near-best response points, which
(if any) of the k factors has consistent settings? That is, for the subset of response values that is
best or near-best, do all of these values emanate from an identical level of some factor?

Alternatively, for the best half of the data, does this half happen to result from some factor with a
common setting? If yes, then the factor that displays such consistency is an excellent candidate
for being declared the "most important factor". For a balanced experimental design, when all of
the best/near-best response values come from one setting, it follows that all of the
worst/near-worst response values will come from the other setting of that factor. Hence that factor
becomes "most important".

At the bottom of the plot, step though each of the k factors and determine which factor, if any,
exhibits such behavior. This defines the "most important" factor.

Conclusions
for the
defective
springs
data

The application of the ordered data plot to the defective springs data set results in the following
conclusions:

Best Settings (Based on the Data):

(X1,X2,X3) = (+,-,+) = (+1,-1,+1) is the best setting since

the project goal is maximization of the percent acceptable springs;1.  

Y = 90 is the largest observed response value; and2.  

(X1,X2,X3) = (+,-,+) at Y = 90.3.  

1.  

Most important factor:

X1 is the most important factor since the four largest response values (90, 87, 79, and 75)
have factor X1 at +1, and the four smallest response values (52, 59, 61, and 67) have factor
X1 at -1.

2.  

5.5.9.1. Ordered data plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.2.Dex scatter plot

Purpose The dex (design of experiments) scatter plot answers the following three questions:

What are the most important factors?1.  

What is the best setting for each of these important factors?2.  

What data points are outliers?3.  

In the above questions, the terms "important", "best", and "outliers" need clarification and
specificity:

Important

A factor can be "important" if it leads to a significant shift in either the location or the variation of
the response variable as we go from the "-" setting to the "+" setting of the factor. Both
definitions are relevant and acceptable. The default definition of "important" in
engineering/scientific applications is a shift in location. Unless specified otherwise, when a factor
is claimed to be important, the implication is that the factor caused a large location shift in the
response.

Best

A factor setting is "best" if it results in a typical response that is closest, in location, to the desired
project goal (maximization, minimization, target). This desired project goal is an engineering, not
a statistical, question, and so the desired optimization goal must be specified by the engineer.

Outlier

A data point is an "outlier" if it comes from a different probability distribution or from a different
deterministic model than the remainder of the data. A single outlier in a data set can affect all
effect estimates and so in turn can potentially invalidate the factor rankings in terms of
importance.

Given the above definitions, the dex scatter plot is a useful early-step tool for determining the
important factors, best settings, and outliers. An alternate name for the dex scatter plot is "main
effects plot".

Output The output for the dex scatter plot is:

Primary: Identification of the important factors.1.  

Secondary: Best setting for these factors and identification of outliers.2.  

Definition The dex scatter plot is formed by

Vertical Axis: The response (= the raw data) for a given setting (- or +) of a factor for each
of the k factors.

●   

Horizontal Axis: The k factors, and the two settings (- and +) within each factor.●   

5.5.9.2. Dex scatter plot
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Motivation The scatter plot is the primary data analysis tool for determining if and how a response relates to
another factor. Determining if such a relationship exists is a necessary first step in converting
statistical association to possible engineering cause-and-effect. Looking at how the raw data
change as a function of the different levels of a factor is a fundamental step which, it may be
argued, should never be skipped in any data analysis.

From such a foundational plot, the analyst invariably extracts information dealing with location
shifts, variation shifts, and outliers. Such information may easily be washed out by other "more
advanced" quantitative or graphical procedures (even computing and plotting means!). Hence
there is motivation for the dex scatter plot.

If we were interested in assessing the importance of a single factor, and since "important" by
default means shift in location, then the simple scatter plot is an ideal tool. A large shift (with
little data overlap) in the body of the data from the "-" setting to the "+" setting of a given factor
would imply that the factor is important. A small shift (with much overlap) would imply the
factor is not important.

The dex scatter plot is actually a sequence of k such scatter plots with one scatter plot for each
factor.

Plot for
defective
springs
data

The dex scatter plot for the defective springs data set is as follows.

5.5.9.2. Dex scatter plot
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How to
interpret

As discussed previously, the dex scatter plot is used to look for the following:

Most Important Factors;1.  

Best Settings of the Most Important Factors;2.  

Outliers.3.  

Each of these will be discussed in turn.

Most Important Factors:

For each of the k factors, as we go from the "-" setting to the "+" setting within the factor, is there
a location shift in the body of the data? If yes, then

Which factor has the biggest such data location shift (that is, has least data overlap)? This
defines the "most important factor".

1.  

Which factor has the next biggest shift (that is, has next least data overlap)? This defines
the "second most important factor".

2.  

Continue for the remaining factors.3.  

In practice, the dex scatter plot will typically only be able to discriminate the most important
factor (largest shift) and perhaps the second most important factor (next largest shift). The degree
of overlap in remaining factors is frequently too large to ascertain with certainty the ranking for
other factors.

Best Settings for the Most Important Factors:

For each of the most important factors, which setting ("-" or "+") yields the "best" response?

In order to answer this question, the engineer must first define "best". This is done with respect to
the overall project goal in conjunction with the specific response variable under study. For some
experiments (e.g., maximizing the speed of a chip), "best" means we are trying to maximize the
response (speed). For other experiments (e.g., semiconductor chip scrap), "best" means we are
trying to minimize the response (scrap). For yet other experiments (e.g., designing a resistor)
"best" means we are trying to hit a specific target (the specified resistance). Thus the definition of
"best" is an engineering precursor to the determination of best settings.

Suppose the analyst is attempting to maximize the response. In such a case, the analyst would
proceed as follows:

For factor 1, for what setting (- or +) is the body of the data higher?1.  

For factor 2, for what setting (- or +) is the body of the data higher?2.  

Continue for the remaining factors.3.  

The resulting k-vector of best settings:

(x1best, x2best, ..., xkbest)

is thus theoretically obtained by looking at each factor individually in the dex scatter plot and
choosing the setting (- or +) that has the body of data closest to the desired optimal (maximal,
minimal, target) response.

As indicated earlier, the dex scatter plot will typically be able to estimate best settings for only the
first few important factors. Again, the degree of data overlap precludes ascertaining best settings
for the remaining factors. Other tools, such as the dex mean plot, will do a better job of
determining such settings.

Outliers:

Do any data points stand apart from the bulk of the data? If so, then such values are candidates for

5.5.9.2. Dex scatter plot
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further investigation as outliers. For multiple outliers, it is of interest to note if all such anomalous
data cluster at the same setting for any of the various factors. If so, then such settings become
candidates for avoidance or inclusion, depending on the nature (bad or good), of the outliers.

Conclusions
for the
defective
springs
data

The application of the dex scatter plot to the defective springs data set results in the following
conclusions:

Most Important Factors:

X1 (most important);1.  

X2 (of lesser importance);2.  

X3 (of least importance).3.  

that is,

factor 1 definitely looks important;❍   

factor 2 is a distant second;❍   

factor 3 has too much overlap to be important with respect to location, but is flagged
for further investigation due to potential differences in variation.

❍   

1.  

Best Settings:

(X1,X2,X3) = (+,-,- = (+1,-1,-1)

2.  

Outliers: None detected.3.  

5.5.9.2. Dex scatter plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.3.Dex mean plot

Purpose The dex (design of experiments) mean plot answers the following two questions:

What is the ranked list of factors (not including the interactions)? The ranking is from the
most important factor to least important factor.

1.  

What is the best setting for each of the k factors?2.  

In the above two questions, the terms "important" and "best" need clarification and specificity.

A factor can be important if it leads to a significant shift in the location of the response variable
as we go from the "-" setting of the factor to the "+" setting of the factor. Alternatively, a factor
can be important if it leads to a significant change in variation (spread) as we go from the "-" to
the "+" settings. Both definitions are relevant and acceptable. The default definition of
"important" in engineering/scientific applications is the former (shift in location). Unless
specified to the contrary, when a factor is claimed to be important, the implication is that the
factor caused a large location shift in the response.

In this context, a factor setting is best if it results in a typical response that is closest (in location)
to the desired project goal (that is, a maximization, minimization, or hitting a target). This desired
project goal is an engineering, not a statistical, question, and so the desired optimization goal
must be overtly specified by the engineer.

Given the above two definitions of important and best, the dex mean plot is a useful tool for
determining the important factors and for determining the best settings.

An alternate name for the dex mean plot is the "main effects plot".

Output The output from the dex mean plot is:

Primary: A ranked list of the factors (not including interactions) from most important to
least important.

1.  

Secondary: The best setting for each of the k factors.2.  

Definition The dex mean plot is formed by:

Vertical Axis: The mean response for a given setting ("-" or "+") of a factor, for each of the
k factors.

●   

Horizontal Axis: The k factors and the two settings ("-" and "+") within each factor.●   

5.5.9.3. Dex mean plot
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Motivation If we were interested in assessing the importance of a single factor, and since important, by
default, means shift in location, and the average is the simplest location estimator, a reasonable
graphics tool to assess a single factor's importance would be a simple mean plot. The vertical axis
of such a plot would be the mean response for each setting of the factor and the horizontal axis is
the two settings of the factor: "-" and "+" (-1 and +1). A large difference in the two means would
imply the factor is important while a small difference would imply the factor is not important.

The dex mean plot is actually a sequence of k such plots, with one mean plot for each factor. To
assist in comparability and relative importance, all of the mean plots are on the same scale.

Plot for
defective
springs
data

Applying the dex mean plot to the defective springs data yields the following plot.

5.5.9.3. Dex mean plot
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How to
interpret

From the dex mean plot, we look for the following:

A ranked list of factors from most important to least important.1.  

The best settings for each factor (on average).2.  

Ranked List of Factors--Most Important to Least Important:

For each of the k factors, as we go from the "-" setting to the "+" setting for the factor, is there a
shift in location of the average response?

If yes, we would like to identify the factor with the biggest shift (the "most important factor"), the
next biggest shift (the "second most important factor"), and so on until all factors are accounted
for.

Since we are only plotting the means and each factor has identical (-,+) = (-1,+1) coded factor
settings, the above simplifies to

What factor has the steepest line? This is the most important factor.1.  

The next steepest line? This is the second most important factor.2.  

Continue for the remaining factors.3.  

This ranking of factors based on local means is the most important step in building the definitive
ranked list of factors as required in screening experiments.

Best Settings (on Average):

For each of the k factors, which setting (- or +) yields the "best" response?

In order to answer this, the engineer must first define "best". This is done with respect to the
overall project goal in conjunction with the specific response variable under study. For some
experiments, "best" means we are trying to maximize the response (e.g., maximizing the speed of
a chip). For other experiments, "best" means we are trying to minimize the response (e.g.,
semiconductor chip scrap). For yet other experiments, "best" means we are trying to hit a specific
target (e.g., designing a resistor to match a specified resistance). Thus the definition of "best" is a
precursor to the determination of best settings.

For example, suppose the analyst is attempting to maximize the response. In that case, the analyst
would proceed as follows:

For factor 1, what setting (- or +) has the largest average response?1.  

For factor 2, what setting (- or +) has the largest average response?2.  

Continue for the remaining factors.3.  

The resulting k-vector of best settings:

(x1best, x2best, ..., xkbest)

is in general obtained by looking at each factor individually in the dex mean plot and choosing
that setting (- or +) that has an average response closest to the desired optimal (maximal, minimal,
target) response.

This candidate for best settings is based on the averages. This k-vector of best settings should be
similar to that obtained from the dex scatter plot, though the dex mean plot is easier to interpret.

5.5.9.3. Dex mean plot
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Conclusions
for the
defective
springs
data

The application of the dex mean plot to the defective springs data set results in the following
conclusions:

Ranked list of factors (excluding interactions):

X1 (most important). Qualitatively, this factor looks definitely important.1.  

X2 (of lesser importantance). Qualitatively, this factor is a distant second to X1.2.  

X3 (unimportant). Qualitatively, this factor appears to be unimportant.3.  

1.  

Best settings (on average):

(X1,X2,X3) = (+,-,+) = (+1,-1,+1)

2.  

5.5.9.3. Dex mean plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.4. Interaction effects matrix plot

Purpose The interaction effects matrix plot is an extension of the dex mean plot to include both main
effects and 2-factor interactions (the dex mean plot focuses on main effects only). The interaction
effects matrix plot answers the following two questions:

What is the ranked list of factors (including 2-factor interactions), ranked from most
important to least important; and

1.  

What is the best setting for each of the k factors?2.  

For a k-factor experiment, the effect on the response could be due to main effects and various
interactions all the way up to k-term interactions. As the number of factors, k, increases, the total
number of interactions increases exponentially. The total number of possible interactions of all
orders = 2k - 1 - k. Thus for k = 3, the total number of possible interactions = 4, but for k = 7 the
total number of possible interactions = 120.

In practice, the most important interactions are likely to be 2-factor interactions. The total number
of possible 2-factor interactions is

Thus for k = 3, the number of 2-factor interactions = 3, while for k = 7, the number of 2-factor
interactions = 21.

It is important to distinguish between the number of interactions that are active in a given
experiment versus the number of interactions that the analyst is capable of making definitive
conclusions about. The former depends only on the physics and engineering of the problem. The
latter depends on the number of factors, k, the choice of the k factors, the constraints on the
number of runs, n, and ultimately on the experimental design that the analyst chooses to use. In
short, the number of possible interactions is not necessarily identical to the number of
interactions that we can detect.

Note that

with full factorial designs, we can uniquely estimate interactions of all orders;1.  

with fractional factorial designs, we can uniquely estimate only some (or at times no)
interactions; the more fractionated the design, the fewer interactions that we can estimate.

2.  

Output The output for the interaction effects matrix plot is

Primary: Ranked list of the factors (including 2-factor interactions) with the factors are
ranked from important to unimportant.

1.  

Secondary: Best setting for each of the k factors.2.  

5.5.9.4. Interaction effects matrix plot
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Definition The interaction effects matrix plot is an upper right-triangular matrix of mean plots consisting of
k main effects plots on the diagonal and k*(k-1)/2 2-factor interaction effects plots on the
off-diagonal.

In general, interactions are not the same as the usual (multiplicative) cross-products. However,
for the special case of 2-level designs coded as (-,+) = (-1 +1), the interactions are identical to
cross-products. By way of contrast, if the 2-level designs are coded otherwise (e.g., the (1,2)
notation espoused by Taguchi and others), then this equivalance is not true. Mathematically,

{-1,+1} x {-1,+1} => {-1,+1}

but

{1,2} x {1,2} => {1,2,4}

Thus, coding does make a difference. We recommend the use of the (-,+) coding.

It is remarkable that with the - and + coding, the 2-factor interactions are dealt with, interpreted,
and compared in the same way that the k main effects are handled. It is thus natural to include
both 2-factor interactions and main effects within the same matrix plot for ease of comparison.

For the off-diagonal terms, the first construction step is to form the horizontal axis values, which
will be the derived values (also - and +) of the cross-product. For example, the settings for the
X1*X2 interaction are derived by simple multiplication from the data as shown below.

X1 X2 X1*X2
- - +
+ - -
- + -
+ + +

Thus X1, X2, and X1*X2 all form a closed (-, +) system. The advantage of the closed system is
that graphically interactions can be interpreted in the exact same fashion as the k main effects.

After the entire X1*X2 vector of settings has been formed in this way, the vertical axis of the
X1*X2 interaction plot is formed:

the plot point above X1*X2 = "-" is simply the mean of all response values for which
X1*X2 = "-"

1.  

the plot point above X1*X2 = "+" is simply the mean of all response values for which
X1*X2 = "+".

2.  

We form the plots for the remaining 2-factor interactions in a similar fashion.

All the mean plots, for both main effects and 2-factor interactions, have a common scale to
facilitate comparisons. Each mean plot has

Vertical Axis: The mean response for a given setting (- or +) of a given factor or a given
2-factor interaction.

1.  

Horizontal Axis: The 2 settings (- and +) within each factor, or within each 2-factor
interaction.

2.  

Legend:

A tag (1, 2, ..., k, 12, 13, etc.), with 1 = X1, 2 = X2, ..., k = Xk, 12 = X1*X2, 13 =
X1*X3, 35 = X3*X5, 123 = X1*X2*X3, etc.) which identifies the particular mean
plot; and

1.  

The least squares estimate of the factor (or 2-factor interaction) effect. These effect
estimates are large in magnitude for important factors and near-zero in magnitude for
unimportant factors.

2.  

3.  

5.5.9.4. Interaction effects matrix plot
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In a later section, we discuss in detail the models associated with full and fraction factorial 2-level
designs. One such model representation is

Written in this form (with the leading 0.5), it turns out that the . are identically the effect due to
factor X. Further, the least squares estimate turns out to be, due to orthogonality, the simple
difference of means at the + setting and the - setting. This is true for the k main factors. It is also
true for all 2-factor and multi-factor interactions.

Thus, visually, the difference in the mean values on the plot is identically the least squares
estimate for the effect. Large differences (steep lines) imply important factors while small
differences (flat lines) imply unimportant factors.

In earlier sections, a somewhat different form of the model is used (without the leading 0.5). In
this case, the plotted effects are not necessarily equivalent to the least squares estimates. When
using a given software program, you need to be aware what convention for the model the
software uses. In either case, the effects matrix plot is still useful. However, the estimates of the
coefficients in the model are equal to the effect estimates only if the above convention for the
model is used.

Motivation As discussed in detail above, the next logical step beyond main effects is displaying 2-factor
interactions, and this plot matrix provides a convenient graphical tool for examining the relative
importance of main effects and 2-factor interactions in concert. To do so, we make use of the
striking aspect that in the context of 2-level designs, the 2-factor interactions are identical to
cross-products and the 2-factor interaction effects can be interpreted and compared the same way
as main effects.

Plot for
defective
springs
data

Constructing the interaction effects matrix plot for the defective springs data set yields the
following plot.

5.5.9.4. Interaction effects matrix plot
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How to
interpret

From the interaction effects matrix, we can draw three important conclusions:

Important Factors (including 2-factor interactions);1.  

Best Settings;2.  

Confounding Structure (for fractional factorial designs).3.  

We discuss each of these in turn.

Important factors (including 2-factor interactions):

Jointly compare the k main factors and the k*(k-1)/2 2-factor interactions. For each of these
subplots, as we go from the "-" setting to the "+" setting within a subplot, is there a shift in
location of the average data (yes/no)? Since all subplots have a common (-1, +1) horizontal
axis, questions involving shifts in location translate into questions involving steepness of
the mean lines (large shifts imply steep mean lines while no shifts imply flat mean lines).

Identify the factor or 2-factor interaction that has the largest shift (based on
averages). This defines the "most important factor". The largest shift is determined
by the steepest line.

1.  

Identify the factor or 2-factor interaction that has the next largest shift (based on
averages). This defines the "second most important factor". This shift is determined
by the next steepest line.

2.  

Continue for the remaining factors.3.  

This ranking of factors and 2-factor interactions based on local means is a major step in
building the definitive list of ranked factors as required for screening experiments.

1.  

Best settings:2.  

5.5.9.4. Interaction effects matrix plot
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For each factor (of the k main factors along the diagonal), which setting (- or +) yields the
"best" (highest/lowest) average response?

Note that the experimenter has the ability to change settings for only the k main factors, not
for any 2-factor interactions. Although a setting of some 2-factor interaction may yield a
better average response than the alternative setting for that same 2-factor interaction, the
experimenter is unable to set a 2-factor interaction setting in practice. That is to say, there
is no "knob" on the machine that controls 2-factor interactions; the "knobs" only control the
settings of the k main factors.

How then does this matrix of subplots serve as an improvement over the k best settings that
one would obtain from the dex mean plot? There are two common possibilities:

Steep Line:

For those main factors along the diagonal that have steep lines (that is, are
important), choose the best setting directly from the subplot. This will be the same as
the best setting derived from the dex mean plot.

1.  

Flat line:

For those main factors along the diagonal that have flat lines (that is, are
unimportant), the naive conclusion to use either setting, perhaps giving preference to
the cheaper setting or the easier-to-implement setting, may be unwittingly incorrect.
In such a case, the use of the off-diagonal 2-factor interaction information from the
interaction effects matrix is critical for deducing the better setting for this nominally
"unimportant" factor.

To illustrate this, consider the following example:

Suppose the factor X1 subplot is steep (important) with the best setting for X1
at "+".

■   

Suppose the factor X2 subplot is flat (unimportant) with both settings yielding
about the same mean response.

■   

Then what setting should be used for X2? To answer this, consider the following two
cases:

Case 1. If the X1*X2 interaction plot happens also to be flat (unimportant),
then choose either setting for X2 based on cost or ease.

1.  

Case 2. On the other hand, if the X1*X2 interaction plot is steep (important),
then this dictates a prefered setting for X2 not based on cost or ease.

2.  

To be specific for case 2, if X1*X2 is important, with X1*X2 = "+" being the better
setting, and if X1 is important, with X1 = "+" being the better setting, then this
implies that the best setting for X2 must be "+" (to assure that X1*X2 (= +*+) will
also be "+"). The reason for this is that since we are already locked into X1 = "+",
and since X1*X2 = "+" is better, then the only way we can obtain X1*X2 = "+" with
X1 = "+" is for X2 to be "+" (if X2 were "-", then X1*X2 with X1 = "+" would yield
X1*X2 = "-").

In general, if X1 is important, X1*X2 is important, and X2 is not important, then
there are 4 distinct cases for deciding what the best setting is for X2:

X1 X1*X2 => X2
+ + +
+ - -
- + -

2.  

5.5.9.4. Interaction effects matrix plot
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- - +

By similar reasoning, examining each factor and pair of factors, we thus arrive at a
resulting vector of the k best settings:

(x1best, x2best, ..., xkbest)

This average-based k-vector should be compared with best settings k-vectors
obtained from previous steps (in particular, from step 1 in which the best settings
were drawn from the best data value).

When the average-based best settings and the data-based best settings agree, we
benefit from the increased confidence given our conclusions.

When the average-based best settings and the data-based best settings disagree, then
what settings should the analyst finally choose? Note that in general the
average-based settings and the data-based settings will invariably be identical for all
"important" factors. Factors that do differ are virtually always "unimportant". Given
such disagreement, the analyst has three options:

Use the average-based settings for minor factors. This has the advantage of a
broader (average) base of support.

1.  

Use the data-based settings for minor factors. This has the advantage of
demonstrated local optimality.

2.  

Use the cheaper or more convenient settings for the local factor. This has the
advantage of practicality.

3.  

Thus the interaction effects matrix yields important information not only about the ranked
list of factors, but also about the best settings for each of the k main factors. This matrix of
subplots is one of the most important tools for the experimenter in the analysis of 2-level
screening designs.

Confounding Structure (for Fractional Factorial Designs)

When the interaction effects matrix is used to analyze 2-level fractional (as opposed to full)
factorial designs, important additional information can be extracted from the matrix
regarding confounding structure.

It is well-known that all fractional factorial designs have confounding, a property whereby
every estimated main effect is confounded/contaminated/biased by some high-order
interactions. The practical effect of this is that the analyst is unsure of how much of the
estimated main effect is due to the main factor itself and how much is due to some
confounding interaction. Such contamination is the price that is paid by examining k
factors with a sample size n that is less than a full factorial n = 2k runs.

It is a "fundamental theorem" of the discipline of experimental design that for a given
number of factors k and a given number of runs n, some fractional factorial designs are
better than others. "Better" in this case means that the intrinsic confounding that must exist
in all fractional factorial designs has been minimized by the choice of design. This
minimization is done by constructing the design so that the main effect confounding is
pushed to as high an order interaction as possible.

The rationale behind this is that in physical science and engineering systems it has been
found that the "likelihood" of high-order interactions being significant is small (compared
to the likelihood of main effects and 2-factor interactions being significant). Given this, we
would prefer that such inescapable main effect confounding be with the highest order
interaction possible, and hence the bias to the estimated main effect be as small as possible.

3.  

5.5.9.4. Interaction effects matrix plot

http://www.itl.nist.gov/div898/handbook/pri/section5/pri594.htm (6 of 9) [5/1/2006 10:31:30 AM]



The worst designs are those in which the main effect confounding is with 2-factor
interactions. This may be dangerous because in physical/engineering systems, it is quite
common for Nature to have some real (and large) 2-factor interactions. In such a case, the
2-factor interaction effect will be inseparably entangled with some estimated main effect,
and so the experiment will be flawed in that

ambiguous estimated main effects and1.  

an ambiguous list of ranked factors2.  

will result.

If the number of factors, k, is large and the number of runs, n, is constrained to be small,
then confounding of main effects with 2-factor interactions is unavoidable. For example, if
we have k = 7 factors and can afford only n = 8 runs, then the corresponding 2-level
fractional factorial design is a 27-4 which necessarily will have main effects confounded
with (3) 2-factor interactions. This cannot be avoided.

On the other hand, situations arise in which 2-factor interaction confounding with main
effects results not from constraints on k or n, but on poor design construction. For example,
if we have k = 7 factors and can afford n = 16 runs, a poorly constructed design might have
main effects counfounded with 2-factor interactions, but a well-constructed design with the
same k = 7, n = 16 would have main effects confounded with 3-factor interactions but no
2-factor interactions. Clearly, this latter design is preferable in terms of minimizing main
effect confounding/contamination/bias.

For those cases in which we do have main effects confounded with 2-factor interactions, an
important question arises:

For a particular main effect of interest, how do we know which 2-factor
interaction(s) confound/contaminate that main effect?

The usual answer to this question is by means of generator theory, confounding tables, or
alias charts. An alternate complementary approach is given by the interaction effects
matrix. In particular, if we are examining a 2-level fractional factorial design and

if we are not sure that the design has main effects confounded with 2-factor
interactions, or

1.  

if we are sure that we have such 2-factor interaction confounding but are not sure
what effects are confounded,

2.  

then how can the interaction effects matrix be of assistance? The answer to this question is
that the confounding structure can be read directly from the interaction effects matrix.

For example, for a 7-factor experiment, if, say, the factor X3 is confounded with the
2-factor interaction X2*X5, then

the appearance of the factor X3 subplot and the appearance of the 2-factor interaction
X2*X5 subplot will necessarily be identical, and

1.  

the value of the estimated main effect for X3 (as given in the legend of the main
effect subplot) and the value of the estimated 2-factor interaction effect for X2*X5
(as given in the legend of the 2-factor interaction subplot) will also necessarily be
identical.

2.  

The above conditions are necessary, but not sufficient for the effects to be confounded.

Hence, in the abscence of tabular descriptions (from your statistical software program) of
the confounding structure, the interaction effect matrix offers the following graphical
alternative for deducing confounding structure in fractional factorial designs:

5.5.9.4. Interaction effects matrix plot
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scan the main factors along the diagonal subplots and choose the subset of factors
that are "important".

1.  

For each of the "important" factors, scan all of the 2-factor interactions and compare
the main factor subplot and estimated effect with each 2-factor interaction subplot
and estimated effect.

2.  

If there is no match, this implies that the main effect is not confounded with any
2-factor interaction.

3.  

If there is a match, this implies that the main effect may be confounded with that
2-factor interaction.

4.  

If none of the main effects are confounded with any 2-factor interactions, we can
have high confidence in the integrity (non-contamination) of our estimated main
effects.

5.  

In practice, for highly-fractionated designs, each main effect may be confounded
with several 2-factor interactions. For example, for a 27-4 fractional factorial design,
each main effect will be confounded with three 2-factor interactions. These 1 + 3 = 4
identical subplots will be blatantly obvious in the interaction effects matrix.

6.  

Finally, what happens in the case in which the design the main effects are not confounded
with 2-factor interactions (no diagonal subplot matches any off-diagonal subplot). In such a
case, does the interaction effects matrix offer any useful further insight and information?

The answer to this question is yes because even though such designs have main effects
unconfounded with 2-factor interactions, it is fairly common for such designs to have
2-factor interactions confounded with one another, and on occasion it may be of interest to
the analyst to understand that confounding. A specific example of such a design is a 24-1

design formed with X4 settings = X1*X2*X3. In this case, the 2-factor-interaction
confounding structure may be deduced by comparing all of the 2-factor interaction subplots
(and effect estimates) with one another. Identical subplots and effect estimates hint strongly
that the two 2-factor interactions are confounded. As before, such comparisons provide
necessary (but not sufficient) conditions for confounding. Most statistical software for
analyzing fractional factorial experiments will explicitly list the confounding structure.

Conclusions
for the
defective
springs
data

The application of the interaction effects matrix plot to the defective springs data set results in the
following conclusions:

Ranked list of factors (including 2-factor interactions):

X1 (estimated effect = 23.0)1.  

X1*X3 (estimated effect = 10.0)2.  

X2 (estimated effect = -5.0)3.  

X3 (estimated effect = 1.5)4.  

X1*X2 (estimated effect = 1.5)5.  

X2*X3 (estimated effect = 0.0)6.  

Factor 1 definitely looks important. The X1*X3 interaction looks important. Factor 2 is of
lesser importance. All other factors and 2-factor interactions appear to be unimportant.

1.  

Best Settings (on the average):

(X1,X2,X3) = (+,-,+) = (+1,-1,+1)

2.  

5.5.9.4. Interaction effects matrix plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.5.Block plot

Purpose The block plot answers the following two general questions:

What are the important factors (including interactions)?1.  

What are the best settings for these important factors?2.  

The basic (single) block plot is a multifactor EDA technique to determine if a factor is important
and to ascertain if that importance is unconditional (robust) over all settings of all other factors in
the system. In an experimental design context, the block plot is actually a sequence of block plots
with one plot for each of the k factors.

Due to the ability of the block plot to determine whether a factor is important over all settings of
all other factors, the block plot is also referred to as a dex robustness plot.

Output The block plot provides specific information on

Important factors (of the k factors and the  2-factor interactions); and1.  

Best settings of the important factors.2.  

Definition The block plot is a series of k basic block plots with each basic block plot for a main effect. Each
basic block plot asks the question as to whether that particular factor is important:

The first block plot asks the question: "Is factor X1 important?1.  

The second block plot asks the question: "Is factor X2 important?2.  

Continue for the remaining factors.3.  

The i-th basic block plot, which targets factor i and asks whether factor Xi is important, is formed
by:

Vertical Axis: Response●   

Horizontal Axis: All 2k-1 possible combinations of the (k-1) non-target factors (that is,
"robustness" factors). For example, for the block plot focusing on factor X1 from a 23 full
factorial experiment, the horizontal axis will consist of all 23-1 = 4 distinct combinations of
factors X2 and X3. We create this robustness factors axis because we are interested in
determining if X1 is important robustly. That is, we are interested in whether X1 is
important not only in a general/summary kind of way, but also whether the importance of X
is universally and consistently valid over each of the 23-1 = 4 combinations of factors X2
and X3. These 4 combinations are (X2,X3) = (+,+), (+,-), (-,+), and (-,-). The robustness
factors on the horizontal axis change from one block plot to the next. For example, for the k
= 3 factor case:

the block plot targeting X1 will have robustness factors X2 and X3;1.  

the block plot targeting X2 will have robustness factors X1 and X3;2.  

●   

5.5.9.5. Block plot

http://www.itl.nist.gov/div898/handbook/pri/section5/pri595.htm (1 of 5) [5/1/2006 10:31:30 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


the block plot targeting X3 will have robustness factors X1 and X2.3.  

Plot Character: The setting (- or +) for the target factor Xi. Each point in a block plot has an
associated setting for the target factor Xi. If Xi = "-", the corresponding plot point will be
"-"; if Xi = "+", the corresponding plot point will be "+".

●   

For a particular combination of robustness factor settings (horizontally), there will be two points
plotted above it (vertically):

one plot point for Xi = "-"; and1.  

the other plot point for Xi = "+".2.  

In a block plot, these two plot points are surrounded by a box (a block) to focus the eye on the
internal within-block differences as opposed to the distraction of the external block-to-block
differences. Internal block differences reflect on the importance of the target factor (as desired).
External block-to-block differences reflect on the importance of various robustness factors, which
is not of primary interest.

Large within-block differences (that is, tall blocks) indicate a large local effect on the response
which, since all robustness factors are fixed for a given block, can only be attributed to the target
factor. This identifies an "important" target factor. Small within-block differences (small blocks)
indicate that the target factor Xi is unimportant.

For a given block plot, the specific question of interest is thus

Is the target factor Xi important? That is, as we move within a block from the target factor
setting of "-" to the target factor setting of "+", does the response variable value change by
a large amount?

The height of the block reflects the "local" (that is, for that particular combination of robustness
factor settings) effect on the response due to a change in the target factor settings. The "localized"
estimate for the target factor effect for Xi is in fact identical to the difference in the response
between the target factor Xi at the "+" setting and at the "-" setting. Each block height of a
robustness plot is thus a localized estimate of the target factor effect.

In summary, important factors will have both

consistently large block heights; and1.  

consistent +/- sign arrangements2.  

where the "consistency" is over all settings of robustness factors. Less important factors will have
only one of these two properties. Unimportant factors will have neither property.

Plot for
defective
springs
data

Applying the ordered response plot to the defective springs data set yields the following plot.

5.5.9.5. Block plot

http://www.itl.nist.gov/div898/handbook/pri/section5/pri595.htm (2 of 5) [5/1/2006 10:31:30 AM]



How to
interpret

From the block plot, we are looking for the following:

Important factors (including 2-factor interactions);1.  

Best settings for these factors.2.  

We will discuss each of these in turn.

Important factors (including 2-factor interactions):

Look at each of the k block plots. Within a given block plot,

Are the corresponding block heights consistently large as we scan across the within-plot
robustness factor settings--yes/no; and are the within-block sign patterns (+ above -, or -
above +) consistent across all robustness factors settings--yes/no?

To facilitate intercomparisons, all block plots have the same vertical axis scale. Across such block
plots,

Which plot has the consistently largest block heights, along with consistent arrangement of
within-block +'s and -'s? This defines the "most important factor".

1.  

Which plot has the consistently next-largest block heights, along with consistent
arrangement of within-block +'s and -'s? This defines the "second most important factor".

2.  

Continue for the remaining factors.3.  

This scanning and comparing of the k block plots easily leads to the identification of the most
important factors. This identification has the additional virtue over previous steps in that it is
robust. For a given important factor, the consistency of block heights and sign arrangement across
robustness factors gives additional credence to the robust importance of that factor. The factor is
important (the change in the response will be large) irrespective of what settings the robustness

5.5.9.5. Block plot
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factors have. Having such information is both important and comforting.

Important Special Case; Large but Inconsistent:

What happens if the block heights are large but not consistent? Suppose, for example, a 23

factorial experiment is being analyzed and the block plot focusing on factor X1 is being examined
and interpreted so as to address the usual question of whether factor X1 is important.

Let us consider in some detail how such a block plot might appear. This X1 block plot will have
23-1 = 4 combinations of the robustness factors X2 and X3 along the horizontal axis in the
following order:

(X2,X3) = (+,+); (X2,X3) = (+,-); (X2,X3) = (-,+); (X2,X3) = (-,-).

If the block heights are consistently large (with "+" above "-" in each block) over the 4
combinations of settings for X2 and X3, as in

(X2,X3) block height (= local X1 effect)
(+,+) 30
(+,-) 29
(-,+) 29
(-,-) 31

then from binomial considerations there is one chance in 24-1 = 1/8  12.5% of the the 4 local X1
effects having the same sign (i.e., all positive or all negative). The usual statistical cutoff of 5%
has not been achieved here, but the 12.5% is suggestive. Further, the consistency of the 4 X1
effects (all near 30) is evidence of a robustness of the X effect over the settings of the other two
factors. In summary, the above suggests:

Factor 1 is probably important (the issue of how large the effect has to be in order to be
considered important will be discussed in more detail in a later section); and

1.  

The estimated factor 1 effect is about 30 units.2.  

On the other hand, suppose the 4 block heights for factor 1 vary in the following cyclic way:

(X2,X3) block height (= local X1 effect)
(+,+) 30
(+,-) 20
(-,+) 30
(-,-) 20

then how is this to be interpreted?

The key here to such interpretation is that the block plot is telling us that the estimated X1 effect
is in fact at least 20 units, but not consistent. The effect is changing, but it is changing in a
structured way. The "trick" is to scan the X2 and X3 settings and deduce what that substructure is.
Doing so from the above table, we see that the estimated X1 effect is 30

for point 1 (X2,X3) = (+,+) and●   

for point 3 (X2,X3) = (-,+)●   

and then the estimated X1 effect drops 10 units to 20

for point 2 (X2,X3) = (+,-) and●   

for point 4 (X2,X3) = (-,-)●   

We thus deduce that the estimated X1 effect is

30 whenever X3 = "+"1.  

5.5.9.5. Block plot
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20 whenever X3 = "-"2.  

When the factor X1 effect is not consistent, but in fact changes depending on the setting of factor
X3, then definitionally that is said to be an "X1*X3 interaction". That is precisely the case here,
and so our conclusions would be:

factor X1 is probably important;1.  

the estimated factor X1 effect is 25 (= average of 30,20,30,and 20);2.  

the X1*X3 interaction is probably important;3.  

the estimated X1*X3 interaction is about 10 (= the change in the factor X1 effect as X3
changes = 30 - 20 = 10);

4.  

hence the X1*X3 interaction is less important than the X1 effect.5.  

Note that we are using the term important in a qualitative sense here. More precise determinations
of importance in terms of statistical or engineering significance are discussed in later sections.

The block plot gives us the structure and the detail to allow such conclusions to be drawn and to
be understood. It is a valuable adjunct to the previous analysis steps.

Best settings:

After identifying important factors, it is also of use to determine the best settings for these factors.
As usual, best settings are determined for main effects only (since main effects are all that the
engineer can control). Best settings for interactions are not done because the engineer has no
direct way of controlling them.

In the block plot context, this determination of best factor settings is done simply by noting which
factor setting (+ or -) within each block is closest to that which the engineer is ultimately trying to
achieve. In the defective springs case, since the response variable is % acceptable springs, we are
clearly trying to maximize (as opposed to minimize, or hit a target) the response and the ideal
optimum point is 100%. Given this, we would look at the block plot of a given important factor
and note within each block which factor setting (+ or -) yields a data value closest to 100% and
then select that setting as the best for that factor.

From the defective springs block plots, we would thus conclude that

the best setting for factor 1 is +;1.  

the best setting for factor 2 is -;2.  

the best setting for factor 3 cannot be easily determined.3.  

Conclusions
for the
defective
springs
data

In summary, applying the block plot to the defective springs data set results in the following
conclusions:

Unranked list of important factors (including interactions):

X1 is important;❍   

X2 is important;❍   

X1*X3 is important.❍   

1.  

Best Settings:

(X1,X2,X3) = (+,-,?) = (+1,-1,?)

2.  

5.5.9.5. Block plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.6.Dex Youden plot

Purpose The dex (design of experiments) Youden plot answers the following question:

What are the important factors (including interactions)?

In its original interlab rendition, the Youden plot was a graphical technique developed in the
1960's by Jack Youden of NIST for assessing between-lab biases and within-lab variation
problems in the context of interlab experimentation. In particular, it was appropriate for the
analysis of round-robin data when exactly two materials, batches, etc. were used in the design.

In a design of experiments context, we borrow this duality emphasis and apply it to 2-level
designs. The 2-component emphasis of the Youden plot makes it a natural to be applied to such
designs.

Output The dex Youden plot provides specific information on

Ranked list of factors (including interactions); and1.  

Separation of factors into two categories: important and unimportant.2.  

The primary output from a dex Youden plot is the ranked list of factors (out of the k factors and
interactions). For full factorial designs, interactions include the full complement of interactions at
all orders; for fractional factorial designs, interactions include only some, and occasionally none,
of the actual interactions. Further, the dex Youden plot yields information identifying which
factors/interactions are important and which are unimportant.

Definition The dex Youden plot consists of the following:

Vertical Axis: Mean response at the "+" setting for each factor and each interaction. For a
given factor or interaction, n/2 response values will go into computing the "+" mean.

●   

Horizontal Axis: Mean response at the "-" setting for each factor and each interaction. For a
given factor or interaction, n/2 response values will go into computing the "-" mean.

●   

Plot Character: Factor/interaction identification for which

1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction
etc.

●   

In essence, the dex Youden plot is a scatter plot of the "+" average responses versus the "-"
average responses. The plot will consist of n - 1 points with one point for each factor and one
point for each (available) interaction. Each point on the plot is annotated to identify which factor
or interaction is being represented.

5.5.9.6. Dex Youden plot
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Motivation Definitionally, if a factor is unimportant, the "+" average will be approximately the same as
the "-" average, and if a factor is important, the "+" average will be considerably different
from the "-" average. Hence a plot that compares the "+" averages with the "-" averages
directly seems potentially informative.

From the definition above, the dex Youden plot is a scatter plot with the "+" averages on
the vertical axis and the "-" averages on the horizontal axis. Thus, unimportant factors will
tend to cluster in the middle of the plot and important factors will tend to be far removed
from the middle.

Because of an arithmetic identity which requires that the average of any corresponding "+"
and "-" means must equal the grand mean, all points on a dex Youden plot will lie on a -45
degree diagonal line. Or to put it another way, for each factor

average (+) + average (-) = constant (with constant = grand mean)
So

average (+) = constant - average (-)
Therefore, the slope of the line is -1 and all points lie on the line. Important factors will plot
well-removed from the center because average (+) = average (-) at the center.

Plot for
defective
springs
data

Applying the dex Youden plot for the defective springs data set yields the following plot.

5.5.9.6. Dex Youden plot
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How to
interpret

In the dex Youden plot, we look for the following:

A ranked list of factors (including interactions). The intersecting dotted lines at the center
of the plot are the value of the grand mean on both the vertical and horizontal axes. Scan
the points along the negative-slope diagonal line and note as to whether such points are
clustered around the grand mean or are displaced up or down the diagonal line.

Which point is farthest away from the center? This defines the "most important"
factor.

1.  

Which point is next farthest away from the center? This defines the "second most
important" factor.

2.  

Continue in a similar manner for the remaining points. The points closest to the
center define the "least important" factors.

3.  

1.  

Separation of factors into important/unimportant categories. Interpretationally, if a factor is
unimportant, the "+" average will be about the same as the "-" average, so the plot of "+"
vertically and "-" horizontally will be near the grand mean of all n - 1 data points.

Conversely, if a factor is important, the "+" average will differ greatly from the "-" average,
and so the plot of "+" vertically and "-" horizontally will be considerably displaced up into
the top left quadrant or down into the bottom right quadrant.

The separation of factors into important/unimportant categories is thus done by answering
the question:

Which points visually form a cluster around the center? (these define the
"unimportant factors"--all remaining factors are "important").

2.  

This ranked list of important factors derived from the dex Youden plot is to be compared with the
ranked lists obtained from previous steps. Invariably, there will be a large degree of consistency
exhibited across all/most of the techniques.

Conclusions
for the
defective
springs
data

The application of the dex Youden plot to the defective springs data set results in the following
conclusions:

Ranked list of factors (including interactions):

X1 (most important)1.  

X1*X3 (next most important)2.  

X23.  

other factors are of lesser importance4.  

1.  

Separation of factors into important/unimportant categories:

"Important": X1, X1*X3, and X2❍   

"Unimportant": the remainder❍   

2.  

5.5.9.6. Dex Youden plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.7. |Effects| plot

Purpose The |effects| plot answers the question:

What are the important factors (including interactions)?

Quantitatively, the question as to what is the estimated effect of a given factor or interaction and
what is its rank relative to other factors and interactions is answered via the least squares
estimation criterion (that is, forming effect estimates that minimize the sum of the squared
differences between the raw data and the fitted values from such estimates). Based on such an
estimation criterion, one could then construct a tabular list of the factors and interactions ordered
by the effect magnitude.

The |effects| plot provides a graphical representation of these ordered estimates, Pareto-style from
largest to smallest.

The |effects| plot, as presented here, yields both of the above: the plot itself, and the ranked list
table. Further, the plot also presents auxiliary confounding information, which is necessary in
forming valid conclusions for fractional factorial designs.

Output The output of the |effects| plot is:

Primary: A ranked list of important effects (and interactions). For full factorial designs,
interactions include the full complement of interactions at all orders; for fractional factorial
designs, interactions include only some, and occasionally none, of the actual interactions.

1.  

Secondary: Grouping of factors (and interactions) into two categories: important and
unimportant.

2.  

Definition The |effects| plot is formed by:

Vertical Axis: Ordered (largest to smallest) absolute value of the estimated effects for the
main factors and for (available) interactions. For n data points (no replication), typically
(n-1) effects will be estimated and the (n-1) |effects| will be plotted.

●   

Horizontal Axis : Factor/interaction identification:

1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction,
etc.

●   

Far right margin : Factor/interaction identification (built-in redundancy):

1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction

●   

5.5.9.7. |Effects| plot
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123 indicates the 3-factor X1*X2*X3 interaction,
etc.

If the design is a fractional factorial,the confounding structure is provided for main factors
and 2-factor interactions.

Upper right table: Ranked (largest to smallest by magnitude) list of the least squares
estimates for the main effects and for (available) interactions.

As before, if the design is a fractional factorial, the confounding structure is provided for
main factors and 2-factor interactions.

●   

The estimated effects that form the basis for the vertical axis are optimal in the least squares
sense. No other estimators exist that will yield a smaller sum of squared deviations between the
raw data and the fitted values based on these estimates.

For both the 2k full factorial designs and 2k-p fractional factorial designs, the form for the least
squares estimate of the factor i effect, the 2-factor interaction effect, and the multi-factor
interaction effect has the following simple form:

factor i effect = (+) - (-)

2-factor interaction effect = (+) - (-)

multi-factor interaction effect = (+) - (-)

with (+) denoting the average of all response values for which factor i (or the 2-factor or

multi-factor interaction) takes on a "+" value, and (-) denoting the average of all response
values for which factor i (or the 2-factor or multi-factor interaction) takes on a "-" value.

The essence of the above simplification is that the 2-level full and fractional factorial designs are
all orthogonal in nature, and so all off-diagonal terms in the least squares X'X matrix vanish.

Motivation Because of the difference-of-means definition of the least squares estimates, and because of the
fact that all factors (and interactions) are standardized by taking on values of -1 and +1
(simplified to - and +), the resulting estimates are all on the same scale. Therefore, comparing and
ranking the estimates based on magnitude makes eminently good sense.

Moreover, since the sign of each estimate is completely arbitrary and will reverse depending on
how the initial assignments were made (e.g., we could assign "-" to treatment A and "+" to
treatment B or just as easily assign "+" to treatment A and "-" to treatment B), forming a ranking
based on magnitudes (as opposed to signed effects) is preferred.

Given that, the ultimate and definitive ranking of factor and interaction effects will be made based
on the ranked (magnitude) list of such least squares estimates. Such rankings are given
graphically, Pareto-style, within the plot; the rankings are given quantitatively by the tableau in
the upper right region of the plot. For the case when we have fractional (versus full) factorial
designs, the upper right tableau also gives the confounding structure for whatever design was
used.

If a factor is important, the "+" average will be considerably different from the "-" average, and so
the absolute value of the difference will be large. Conversely, unimportant factors have small
differences in the averages, and so the absolute value will be small.

We choose to form a Pareto chart of such |effects|. In the Pareto chart, the largest effects (= most
important factors) will be presented first (to the left) and then progress down to the smallest
effects (= least important) factors) to the right.

5.5.9.7. |Effects| plot
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Plot for
defective
springs
data

Applying the |effects| plot to the defective springs data yields the following plot.

How to
interpret

From the |effects| plot, we look for the following:

The ranked list of factors (including interactions) is given by the left-to-right order of the
spikes. These spikes should be of decreasing height as we move from left to right. Note the
factor identifier associated with each of these bars.

1.  

Identify the important factors. Forming the ranked list of factors is important, but is only
half of the analysis. The second part of the analysis is to take the ranking and "draw the
(horizontal) line" in the list and on the graph so that factors above the line are deemed
"important while factors below the line are deemed unimportant.

Since factor effects are frequently a continuum ranging from the very large through the
moderate and down to the very small, the separation of all such factors into two groups
(important and unimportant) may seem arbitrary and severe. However, in practice, from
both a research funding and a modeling point of view, such a bifurcation is both common
and necessary.

From an engineering research-funding point of view, one must frequently focus on a subset
of factors for future research, attention, and money, and thereby necessarily set aside other
factors from any further consideration. From a model-building point of view, a final model
either has a term in it or it does not--there is no middle ground. Parsimonious models
require in-or-out decisions. It goes without saying that as soon as we have identified the
important factors, these are the factors that will comprise our (parsimonious) good model,
and those that are declared as unimportant will not be in the model.

2.  

5.5.9.7. |Effects| plot

http://www.itl.nist.gov/div898/handbook/pri/section5/pri597.htm (3 of 4) [5/1/2006 10:31:31 AM]

http://www.itl.nist.gov/div898/handbook/pri/section5/gifs/effects.gif


Given that, where does such a bifurcation line go?

There are four ways, each discussed in turn, to draw such a line:

Statistical significance;1.  

Engineering significance;2.  

Numerical significance; and3.  

Pattern significance.4.  

The ranked list and segregation of factors derived from the |effects| plot are to be compared with
the ranked list of factors obtained in previous steps. Invariably, there will be a considerable
degree of consistency exhibited across all of the techniques.

Conclusions
for the
defective
springs
data

The application of the |effects| plot to the defective springs data set results in the following
conclusions:

Ranked list of factors (including interactions):

X1 (most important)1.  

X1*X3 (next most important)2.  

X23.  

other factors are of lesser importance4.  

1.  

Separation of factors into important/unimportant categories:

Important: X1, X1*X3, and X2❍   

Unimportant: the remainder❍   

2.  

5.5.9.7. |Effects| plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.7. |Effects| plot

5.5.9.7.1.Statistical significance

Formal
statistical
methods

Formal statistical methods to answer the question of statistical
significance commonly involve the use of

ANOVA (analysis of variance); and●   

t-based confidence intervals for the effects.●   

ANOVA The virtue of ANOVA is that it is a powerful, flexible tool with many
applications. The drawback of ANOVA is that

it is heavily quantitative and non-intuitive;●   

it must have an assumed underlying model; and●   

its validity depends on assumptions of a constant error variance
and normality of the errors.

●   

t confidence
intervals

T confidence intervals for the effects, using the t-distribution, are also
heavily used for determining factor significance. As part of the t
approach, one first needs to determine sd(effect), the standard
deviation of an effect. For 2-level full and fractional factorial designs,
such a standard deviation is related to , the standard deviation of an
observation under fixed conditions, via the formula:

which in turn leads to forming 95% confidence intervals for an effect
via

c * sd(effect)

for an appropriate multiple c (from the t distribution). Thus in the
context of the |effects| plot, "drawing the line" at c * sd(effect) would
serve to separate, as desired, the list of effects into 2 domains:

significant (that is, important); and●   

not significant (that is, unimportant).●   

5.5.9.7.1. Statistical significance
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Estimating
sd(effect)

The key in the above approach is to determine an estimate for
sd(effect). Three statistical approaches are common:

Prior knowledge about :

If  is known, we can compute sd(effect) from the above
expression and make use of a conservative (normal-based) 95%
confidence interval by drawing the line at

This method is rarely used in practice because  is rarely
known.

1.  

Replication in the experimental design:

Replication will allow  to be estimated from the data without
depending on the correctness of a deterministic model. This is a
real benefit. On the other hand, the downside of such replication
is that it increases the number of runs, time, and expense of the
experiment. If replication can be afforded, this method should
be used. In such a case, the analyst separates important from
unimportant terms by drawing the line at

with t denoting the 97.5 percent point from the appropriate
Student's-t distribution.

2.  

Assume 3-factor interactions and higher are zero:

This approach "assumes away" all 3-factor interactions and
higher and uses the data pertaining to these interactions to
estimate . Specifically,

with h denoting the number of 3-factor interactions and higher,
and SSQ is the sum of squares for these higher-order effects.
The analyst separates important from unimportant effects by
drawing the line at

with t denoting the 97.5 percent point from the appropriate

3.  

5.5.9.7.1. Statistical significance
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(with h degrees of freedom) Student's-t distribution.

This method warrants caution:

it involves an untestable assumption (that such
interactions = 0);

❍   

it can result in an estimate for sd(effect) based on few
terms (even a single term); and

❍   

it is virtually unusable for highly-fractionated designs
(since high-order interactions are not directly estimable).

❍   

Non-statistical
considerations

The above statistical methods can and should be used. Additionally,
the non-statistical considerations discussed in the next few sections are
frequently insightful in practice and have their place in the EDA
approach as advocated here.

5.5.9.7.1. Statistical significance
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.7. |Effects| plot

5.5.9.7.2.Engineering significance

Engineering
cutoff

Draw the horizontal line on the chart at that value which you as an
engineer have declared beforehand as the engineering cutoff. Any
effect larger than this cutoff will be considered as significant from an
engineering point of view.

Specifying a
cutoff value
requires
non-statistical
thinking, but is
frequently
useful

This approach requires preliminary, data-free thinking on the part of
the analyst as to how big (= what number?) an effect (any effect) must
be before the analyst would "care" as an engineer/scientist? In other
words, in the units of the response variable, how much would the
response variable have to change consistently before the analyst
would say "that's a big enough change for me from an engineering
point of view"? An engineering number, a cutoff value, is needed
here. This value is non-statistical; thie value must emanate from the
engineer's head.

If upon reflection the analyst does not have such a value in mind, this
"engineering significance" approach would be set aside. From
experience, it has been found that the engineering soul-searching that
goes into evoking such a cutoff value is frequently useful and should
be part of the decision process, independent of statistical
considerations, of separating the effects into important/unimportant
categories.

A rough
engineering
cutoff

In the absence of a known engineering cutoff, a rough cutoff value is
commonly 5% or 10% of the average (or current) production
response for the system. Thus, if a chemical reaction production
process is yielding a reaction rate of about 70, then 5% of 70 = 3. The
engineer may declare any future effect that causes an average change
of 3 or more units in the response (that is, any estimated effect whose
magnitude exceeds 3) to be "engineering significant". In the context
of the |effects| plot, the engineer would draw the line at a height of 3
on the plot, and all effects that are above the line are delared as
significant and all below the line are declared not significant.

5.5.9.7.2. Engineering significance
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.7. |Effects| plot

5.5.9.7.3.Numerical significance

10% of the
largest
effect

Note the height of the largest bar (= the magnitude of the largest effect).
Declare as "significant" any effect that exceeds 10% of the largest
effect. The 10% is arbitrary and has no statistical (or engineering) basis,
but it does have a "numeric" basis in that it results in keeping the largest
effect and any effects that are within 90% of the largest effect.

Apply with
caution

As with any rule-of-thumb, some caution should be used in applying
this critierion. Specifically, if the largest effect is in fact not very large,
this rule-of-thumb may not be useful.

5.5.9.7.3. Numerical significance
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.7. |Effects| plot

5.5.9.7.4.Pattern significance

Look for
L-shaped
pattern

The |effects| plot has a characteristic horizontally-elongated L-shaped
pattern. The vertical arm of the L consists of important factors. The
horizontal arm is comprised of unimportant factors. If a factor is
important, the bar height will be large and succeeding bar heights may
drop off considerably (perhaps by 50%)--such factors make up the left
arm of the L. On the other hand, if a factor is not important, its bar
height will tend to be small and near-zero--such factors make up the
bottom arm of the L. It is of interest to note where the kink is in the L.
Factors to the left of that kink are arguably declared important while
factors at the kink point and to the right of it are declared unimportant.

Factor
labels

As a consequence of this "kinking", note the labels on the far right
margin of the plot. Factors to the left and above the kink point tend to
have far-right labels distinct and isolated. Factors at, to the right, and
below the kink point tend to have far right labels that are overstruck and
hard to read. A (rough) rule-of-thumb would then be to declare as
important those factors/interactions whose far-right labels are easy to
distinguish, and to declare as unimportant those factors/interactions
whose far-right labels are overwritten and hard to distinguish.

5.5.9.7.4. Pattern significance
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.8.Half-normal probability plot

Purpose The half-normal probability plot answers the question:

What are the important factors (including interactions)?

Quantitatively, the estimated effect of a given main effect or interaction and its rank relative to
other main effects and interactions is given via least squares estimation (that is, forming effect
estimates that minimize the sum of the squared differences between raw data and the fitted values
from such estimates). Having such estimates in hand, one could then construct a list of the main
effects and interactions ordered by the effect magnitude.

The half-normal probability plot is a graphical tool that uses these ordered estimated effects to
help assess which factors are important and which are unimportant.

A half-normal distribution is the distribution of the |X| with X having a normal distribution.

Output The outputs from the half-normal probablity plot are

Primary: Grouping of factors and interactions into two categories: important and
unimportant. For full factorial designs, interactions include the full complement of
interactions of all orders; for fractional factorial designs, interactions include only some,
and occasionally none, of the actual interactions (when they aren't estimable).

1.  

Secondary: Ranked list of factors and interactions from most important down to least
important.

2.  

Definition A half-normal probability plot is formed by

Vertical Axis: Ordered (largest to smallest) absolute value of the estimated effects for the
main factors and available interactions. If n data points (no replication) have been
collected, then typically (n-1) effects will be estimated and the (n-1) |effects| will be
plotted.

●   

Horizontal Axis: (n-1) theoretical order statistic medians from a half-normal distribution.
These (n-1) values are not data-dependent. They depend only on the half-normal
distribution and the number of items plotted (= n-1). The theoretical medians represent an
"ideal" typical ordered data set that would have been obtained from a random drawing of
(n-1) samples from a half-normal distribution.

●   

Far right margin : Factor/interaction identification:

1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction,
etc.

●   

5.5.9.8. Half-normal probability plot
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If the design is a fractional factorial, the confounding structure is provided for main effects
and 2-factor interactions.

Motivation To provide a rationale for the half-normal probability plot, we first dicuss the motivation for the
normal probability plot (which also finds frequent use in these 2-level designs).

The basis for the normal probability plot is the mathematical form for each (and all) of the
estimated effects. As discussed for the |effects| plot, the estimated effects are the optimal least
squares estimates. Because of the orthogonality of the 2k full factorial and the 2k-p fractional
factorial designs, all least squares estimators for main effects and interactions simplify to the
form:

estimated effect = (+) - (-)

with (+) the average of all response values for which the factor or interaction takes on a "+"

value, and where (-) is the average of all response values for which the factor or interaction
takes on a "-" value.

Under rather general conditions, the Central Limit Thereom allows that the difference-of-sums
form for the estimated effects tends to follow a normal distribution (for a large enough sample
size n) a normal distribution.

The question arises as to what normal distribution; that is, a normal distribution with what mean
and what standard deviation? Since all estimators have an identical form (a difference of
averages), the standard deviations, though unknown, will in fact be the same under the
assumption of constant . This is good in that it simplifies the normality analysis.

As for the means, however, there will be differences from one effect to the next, and these
differences depend on whether a factor is unimportant or important. Unimportant factors are
those that have near-zero effects and important factors are those whose effects are considerably
removed from zero. Thus, unimportant effects tend to have a normal distribution centered
near zero while important effects tend to have a normal distribution centered at their
respective true large (but unknown) effect values.

In the simplest experimental case, if the experiment were such that no factors were
important (that is, all effects were near zero), the (n-1) estimated effects would behave like
random drawings from a normal distribution centered at zero. We can test for such
normality (and hence test for a null-effect experiment) by using the normal probability plot.
Normal probability plots are easy to interpret. In simplest terms:

if linear, then normal
If the normal probability plot of the (n-1) estimated effects is linear, this implies that all of
the true (unknown) effects are zero or near-zero. That is, no factor is important.

On the other hand, if the truth behind the experiment is that there is exactly one factor that
was important (that is, significantly non-zero), and all remaining factors are unimportant
(that is, near-zero), then the normal probability plot of all (n-1) effects is near-linear for the
(n-2) unimportant factors and the remaining single important factor would stand well off
the line.

Similarly, if the experiment were such that some subset of factors were important and all
remaining factors were unimportant, then the normal probability plot of all (n-1) effects
would be near-linear for all unimportant factors with the remaining important factors all
well off the line.

In real life, with the number of important factors unknown, this suggests that one could
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form a normal probability plot of the (n-1) estimated effects and draw a line through those
(unimportant) effects in the vicinity of zero. This identifies and extracts all remaining effects
off the line and declares them as important.

The above rationale and methodology works well in practice, with the net effect that the
normal probability plot of the effects is an important, commonly used and successfully
employed tool for identifying important factors in 2-level full and factorial experiments.
Following the lead of Cuthbert Daniel (1976), we augment the methodology and arrive at a
further improvement. Specifically, the sign of each estimate is completely arbitrary and will
reverse depending on how the initial assignments were made (e.g., we could assign "-" to
treatment A and "+" to treatment B or just as easily assign "+" to treatment A and "-" to
treatment B).

This arbitrariness is addressed by dealing with the effect magnitudes rather than the signed
effects. If the signed effects follow a normal distribution, the absolute values of the effects
follow a half-normal distribution.

In this new context, one tests for important versus unimportant factors by generating a
half-normal probability plot of the absolute value of the effects. As before, linearity implies
half-normality, which in turn implies all factors are unimportant. More typically, however,
the half-normal probability plot will be only partially linear. Unimportant (that is,
near-zero) effects manifest themselves as being near zero and on a line while important
(that is, large) effects manifest themselves by being off the line and well-displaced from zero.

Plot for
defective
springs
data

The half-normal probability plot of the effects for the defectice springs data set is as follows.

5.5.9.8. Half-normal probability plot
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How to
interpret

From the half-normal probability plot, we look for the following:

Identifying Important Factors:

Determining the subset of important factors is the most important task of the half-normal
probability plot of |effects|. As discussed above, the estimated |effect| of an unimportant
factor will typically be on or close to a near-zero line, while the estimated |effect| of an
important factor will typically be displaced well off the line.

The separation of factors into important/unimportant categories is thus done by answering
the question:

Which points on the half-normal probability plot of |effects| are large and well-off
the linear collection of points drawn in the vicinity of the origin?

This line of unimportant factors typically encompasses the majority of the points on the
plot. The procedure consists, therefore, of the following:

identifying this line of near-zero (unimportant) factors; then1.  

declaring the remaining off-line factors as important.2.  

Note that the half-normal probability plot of |effects| and the |effects| plot have the same
vertical axis; namely, the ordered |effects|, so the following discussion about right-margin
factor identifiers is relevant to both plots. As a consequence of the natural on-line/off-line
segregation of the |effects| in half-normal probability plots, factors off-line tend to have
far-right labels that are distinct and isolated while factors near the line tend to have
far-right labels that are overstruck and hard to read. The rough rule-of-thumb would then
be to declare as important those factors/interactions whose far-right labels are easy to
distinguish and to declare as unimportant those factors/interactions whose far-right labels
are overwritten and hard to distinguish.

1.  

Ranked List of Factors (including interactions):

This is a minor objective of the half-normal probability plot (it is better done via the
|effects| plot). To determine the ranked list of factors from a half-normal probability plot,
simply scan the vertical axis |effects|

Which |effect| is largest? Note the factor identifier associated with this largest |effect|
(this is the "most important factor").

1.  

Which |effect| is next in size? Note the factor identifier associated with this next
largest |effect| (this is the "second most important factor").

2.  

Continue for the remaining factors. In practice, the bottom end of the ranked list (the
unimportant factors) will be hard to extract because of overstriking, but the top end
of the ranked list (the important factors) will be easy to determine.

3.  

2.  

In summary, it should be noted that since the signs of the estimated effects are arbitrary, we
recommend the use of the half-normal probability plot of |effects| technique over the normal
probability plot of the |effects|. These probability plots are among the most commonly-employed
EDA procedure for identification of important factors in 2-level full and factorial designs. The
half-normal probability plot enjoys widespread usage across both "classical" and Taguchi camps.
It deservedly plays an important role in our recommended 10-step graphical procedure for the
analysis of 2-level designed experiments.

5.5.9.8. Half-normal probability plot
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Conclusions
for the
defective
springs
data

The application of the half-normal probability plot to the defective springs data set results in the
following conclusions:

Ranked list of factors (including interactions):

X1 (most important)1.  

X1*X3 (next most important)2.  

X23.  

other factors are of lesser importance4.  

1.  

Separation of factors into important/unimportant categories:

Important: X1, X1*X3, and X2
Unimportant: the remainder

2.  

5.5.9.8. Half-normal probability plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.9.Cumulative residual standard deviation plot

Purpose The cumulative residual sd (standard deviation) plot answers the question:

What is a good model for the data?

The prior 8 steps in this analysis sequence addressed the two important goals:

Factors: determining the most important factors that affect the response, and1.  

Settings: determining the best settings for these factors.2.  

In addition to the above, a third goal is of interest:

Model: determining a model (that is, a prediction equation) that functionally relates the
observed response Y with the various main effects and interactions.

3.  

Such a function makes particular sense when all of the individual factors are continuous and
ordinal (such as temperature, pressure, humidity, concentration, etc.) as opposed to any of the
factors being discrete and non-ordinal (such as plant, operator, catalyst, supplier).

In the continuous-factor case, the analyst could use such a function for the following purposes.

Reproduction/Smoothing: predict the response at the observed design points.1.  

Interpolation: predict what the response would be at (unobserved) regions between the
design points.

2.  

Extrapolation: predict what the response would be at (unobserved) regions beyond the
design points.

3.  

For the discrete-factor case, the methods developed below to arrive at such a function still apply,
and so the resulting model may be used for reproduction. However, the interpolation and
extrapolation aspects do not apply.

In modeling, we seek a function f in the k factors X1, X2, ..., Xk such that the predicted values

are "close" to the observed raw data values Y. To this end, two tasks exist:

Determine a good functional form f;1.  

Determine good estimates for the coefficients in that function f.2.  

For example, if we had two factors X1 and X2, our goal would be to

determine some function Y = f(X1,X2); and1.  

estimate the parameters in f2.  

such that the resulting model would yield predicted values  that are as close as possible to the
observed response values Y. If the form f has been wisely chosen, a good model will result and

that model will have the characteristic that the differences ("residuals" = Y - ) will be uniformly
near zero. On the other hand, a poor model (from a poor choice of the form f) will have the
characteristic that some or all of the residuals will be "large".

5.5.9.9. Cumulative residual standard deviation plot
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For a given model, a statistic that summarizes the quality of the fit via the typical size of the n
residuals is the residual standard deviation:

with p denoting the number of terms in the model (including the constant term) and r denoting the
ith residual. We are also assuming that the mean of the residuals is zero, which will be the case
for models with a constant term that are fit using least squares.

If we have a good-fitting model, sres will be small. If we have a poor-fitting model, sres will be
large.

For a given data set, each proposed model has its own quality of fit, and hence its own residual
standard deviation. Clearly, the residual standard deviation is more of a model-descriptor than a
data-descriptor. Whereas "nature" creates the data, the analyst creates the models. Theoretically,
for the same data set, it is possible for the analyst to propose an indefinitely large number of
models.

In practice, however, an analyst usually forwards only a small, finite number of plausible models
for consideration. Each model will have its own residual standard deviation. The cumulative
residual standard deviation plot is simply a graphical representation of this collection of residual
standard deviations for various models. The plot is beneficial in that

good models are distinguished from bad models;1.  

simple good models are distinguished from complicated good models.2.  

In summary, then, the cumulative residual standard deviation plot is a graphical tool to help
assess

which models are poor (least desirable); and1.  

which models are good but complex (more desirable); and2.  

which models are good and simple (most desirable).3.  

Output The outputs from the cumulative residual standard deviation plot are

Primary: A good-fitting prediction equation consisting of an additive constant plus the
most important main effects and interactions.

1.  

Secondary: The residual standard deviation for this good-fitting model.2.  

Definition A cumulative residual sd plot is formed by

Vertical Axis: Ordered (largest to smallest) residual standard deviations of a sequence of
progressively more complicated fitted models.

1.  

Horizontal Axis: Factor/interaction identification of the last term included into the linear
model:

1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction
etc.

2.  

Far right margin: Factor/interaction identification (built-in redundancy):

1 indicates factor X1;

3.  

5.5.9.9. Cumulative residual standard deviation plot
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2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction
etc.

If the design is a fractional factorial, the confounding structure is provided for main effects
and 2-factor interactions.

The cumulative residual standard deviations plot is thus a Pareto-style, largest to smallest,
graphical summary of residual standard deviations for a selected series of progressively more
complicated linear models.

The plot shows, from left to right, a model with only a constant and the model then augmented by
including, one at a time, remaining factors and interactions. Each factor and interaction is
incorporated into the model in an additive (rather than in a multiplicative or logarithmic or power,
etc. fashion). At any stage, the ordering of the next term to be added to the model is such that it
will result in the maximal decrease in the resulting residual standard deviation.

Motivation This section addresses the following questions:

What is a model?1.  

How do we select a goodness-of-fit metric for a model?2.  

How do we construct a good model?3.  

How do we know when to stop adding terms?4.  

What is the final form for the model?5.  

Why is the 1/2 in the model?6.  

What are the advantages of the linear model?7.  

How do we use the model to generate predicted values?8.  

How do we use the model beyond the data domain?9.  

What is the best confirmation point for interpolation?10.  

How do we use the model for interpolation?11.  

How do we use the model for extrapolation?12.  

Plot for
defective
springs
data

Applying the cumulative residual standard deviation plot to the defective springs data set yields
the following plot.

5.5.9.9. Cumulative residual standard deviation plot
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How to
interpret As discussed in detail under question 4 in the Motivation section, the cumulative residual

standard deviation "curve" will characteristically decrease left to right as we add more terms to
the model. The incremental improvement (decrease) tends to be large at the beginning when
important factors are being added, but then the decrease tends to be marginal at the end as
unimportant factors are being added.

Including all terms would yield a perfect fit (residual standard deviation = 0) but would also result
in an unwieldy model. Including only the first term (the average) would yield a simple model
(only one term!) but typically will fit poorly. Although a formal quantitative stopping rule can be
developed based on statistical theory, a less-rigorous (but good) alternative stopping rule that is
graphical, easy to use, and highly effective in practice is as follows:

Keep adding terms to the model until the curve's "elbow" is encountered. The "elbow
point" is that value in which there is a consistent, noticeably shallower slope (decrease) in
the curve. Include all terms up to (and including) the elbow point (after all, each of these
included terms decreased the residual standard deviation by a large amount). Exclude any
terms after the elbow point since all such successive terms decreased the residual standard
deviation so slowly that the terms were "not worth the complication of keeping".

From the residual standard deviation plot for the defective springs data, we note the following:

The residual standard deviation (rsd) for the "baseline" model

is sres = 13.7.

1.  

5.5.9.9. Cumulative residual standard deviation plot
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As we add the next term, X1, the rsd drops nearly 7 units (from 13.7 to 6.6).2.  

If we add the term X1*X3, the rsd drops another 3 units (from 6.6 to 3.4).3.  

If we add the term X2, the rsd drops another 2 units (from 3.4 to 1.5).4.  

When the term X3 is added, the reduction in the rsd (from about 1.5 to 1.3) is negligible.5.  

Thereafter to the end, the total reduction in the rsd is from only 1.3 to 0.6.  

In step 5, note that when we have effects of equal magnitude (the X3 effect is equal to the X1*X2
interaction effect), we prefer including a main effect before an interaction effect and a
lower-order interaction effect before a higher-order interaction effect.

In this case, the "kink" in the residual standard deviation curve is at the X2 term. Prior to that, all
added terms (including X2) reduced the rsd by a large amount (7, then 3, then 2). After the
addition of X2, the reduction in the rsd was small (all less than 1): .2, then .8, then .5, then 0.

The final recommended model in this case thus involves p = 4 terms:

the average (= 71.25)1.  

factor X12.  

the X1*X33.  

factor X24.  

The fitted model thus takes on the form

The motivation for using the 0.5 term was given in an earlier section.

The least squares estimates for the coefficients in this model are

average = 71.25
B1 = 23
B13 = 10
B2 = -5

The B1 = 23, B13 = 10, and B2 = -5 least squares values are, of course, identical to the estimated

effects E1 = 23, E13 = 10, and E2 = -5 (= (+1) - (-1)) values as previously derived in step 7 of
this recommended 10-step DEX analysis procedure.

The final fitted model is thus

Applying this prediction equation to the 8 design points yields: predicted values  that are close

to the data Y, and residuals (Res = Y - ) that are close to zero:

X1 X2 X3 Y Res
- - - 67 67.25 -0.25
+ - - 79 80.25 -1.25
- + - 61 62.25 -1.25
+ + - 75 75.25 -0.25
- - + 59 57.25 +1.75
+ - + 90 90.25 -0.25
- + + 52 52.25 -0.25
+ + + 87 85.25 +1.75

Computing the residual standard deviation:

5.5.9.9. Cumulative residual standard deviation plot
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with n = number of data points = 8, and p = 4 = number of estimated coefficients (including the
average) yields

sres = 1.54 (= 1.5 if rounded to 1 decimal place)

This detailed res = 1.54 calculation brings us full circle for 1.54 is the value given above the X3
term on the cumulative residual standard deviation plot.

Conclusions
for the
defective
springs
data

The application of the Cumulative Residual Standard Deviation Plot to the defective springs data
set results in the following conclusions:

Good-fitting Parsimonious (constant + 3 terms) Model:1.  

Residual Standard Deviation for this Model (as a measure of the goodness-of-fit for the
model):

sres = 1.54

2.  

5.5.9.9. Cumulative residual standard deviation plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.9. Cumulative residual standard deviation plot

5.5.9.9.1.Motivation: What is a Model?

Mathematical
models:
functional
form and
coefficients

A model is a mathematical function that relates the response Y to the
factors X1 to Xk. A model has a

functional form; and1.  

coefficients.2.  

An excellent and easy-to-use functional form that we find particularly
useful is a linear combination of the main effects and the interactions
(the selected model is a subset of the full model and almost always a
proper subset). The coefficients in this linear model are easy to obtain
via application of the least squares estimation criterion (regression). A
given functional form with estimated coefficients is referred to as a
"fitted model" or a "prediction equation".

Predicted
values and
residuals

For given settings of the factors X1 to Xk, a fitted model will yield
predicted values. For each (and every) setting of the Xi's, a
"perfect-fit" model is one in which the predicted values are identical
to the observed responses Y at these Xi's. In other words, a perfect-fit
model would yield a vector of predicted values identical to the
observed vector of response values. For these same Xi's, a
"good-fitting" model is one that yields predicted values "acceptably
near", but not necessarily identical to, the observed responses Y.

The residuals (= deviations = error) of a model are the vector of

differences (Y - ) between the responses and the predicted values
from the model. For a perfect-fit model, the vector of residuals would
be all zeros. For a good-fitting model, the vector of residuals will be
acceptably (from an engineering point of view) close to zero.

5.5.9.9.1. Motivation: What is a Model?
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.9. Cumulative residual standard deviation plot

5.5.9.9.2.Motivation: How do we Construct
a Goodness-of-fit Metric for a
Model?

Motivation This question deals with the issue of how to construct a metric, a
statistic, that may be used to ascertain the quality of the fitted model.
The statistic should be such that for one range of values, the implication
is that the model is good, whereas for another range of values, the
implication is that the model gives a poor fit.

Sum of
absolute
residuals

Since a model's adequacy is inversely related to the size of its residuals,
one obvious statistic is the sum of the absolute residuals.

Clearly, for a fixed n,the smaller this sum is, the smaller are the
residuals, which implies the closer the predicted values are to the raw
data Y, and hence the better the fitted model. The primary disadvantage
of this statistic is that it may grow larger simply as the sample size n
grows larger.

Average
absolute
residual

A better metric that does not change (much) with increasing sample size
is the average absolute residual:

with n denoting the number of response values. Again, small values for
this statistic imply better-fitting models.

5.5.9.9.2. Motivation: How do we Construct a Goodness-of-fit Metric for a Model?
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Square root
of the
average
squared
residual

An alternative, but similar, metric that has better statistical properties is
the square root of the average squared residual.

As with the previous statistic, the smaller this statistic, the better the
model.

Residual
standard
deviation

Our final metric, which is used directly in inferential statistics, is the
residual standard deviation

with p denoting the number of fitted coefficients in the model. This
statistic is the standard deviation of the residuals from a given model.
The smaller is this residual standard deviation, the better fitting is the
model. We shall use the residual standard deviation as our metric of
choice for evaluating and comparing various proposed models.

5.5.9.9.2. Motivation: How do we Construct a Goodness-of-fit Metric for a Model?
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.9. Cumulative residual standard deviation plot

5.5.9.9.3.Motivation: How do we Construct
a Good Model?

Models for
2k and 2k-p

designs

Given that we have a statistic to measure the quality of a model, any
model, we move to the question of how to construct reasonable models
for fitting data from 2k and 2k-p designs.

Initial
simple
model

The simplest such proposed model is

that is, the response Y = a constant + random error. This trivial model
says that all of the factors (and interactions) are in fact worthless for
prediction and so the best-fit model is one that consists of a simple
horizontal straight line through the body of the data. The least squares

estimate for this constant c in the above model is the sample mean .
The prediction equation for this model is thus

The predicted values  for this fitted trivial model are thus given by a

vector consisting of the same value (namely ) throughout. The
residual vector for this model will thus simplify to simple deviations
from the mean:

Since the number of fitted coefficients in this model is 1 (namely the
constant c), the residual standard deviation is the following:

which is of course the familiar, commonly employed sample standard
deviation. If the residual standard deviation for this trivial model were
"small enough", then we could terminate the model-building process
right there with no further inclusion of terms. In practice, however, this
trivial model does not yield a residual standard deviation that is small

5.5.9.9.3. Motivation: How do we Construct a Good Model?
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enough (because the common value  will not be close enough to some
of the raw responses Y) and so the model must be augmented--but how?

Next-step
model

The logical next-step proposed model will consist of the above additive
constant plus some term that will improve the predicted values the most.
This will equivalently reduce the residuals the most and thus reduce the
residual standard deviation the most.

Using the
most
important
effects

As it turns out, it is a mathematical fact that the factor or interaction that
has the largest estimated effect

will necessarily, after being included in the model, yield the "biggest
bang for the buck" in terms of improving the predicted values toward
the response values Y. Hence at this point the model-building process
and the effect estimation process merge.

In the previous steps in our analysis, we developed a ranked list of
factors and interactions. We thus have a ready-made ordering of the
terms that could be added, one at a time, to the model. This ranked list
of effects is precisely what we need to cumulatively build more
complicated, but better fitting, models.

Step through
the ranked
list of
factors

Our procedure will thus be to step through, one by one, the ranked list of
effects, cumulatively augmenting our current model by the next term in
the list, and then compute (for all n design points) the predicted values,
residuals, and residual standard deviation. We continue this
one-term-at-a-time augmentation until the predicted values are
acceptably close to the observed responses Y (and hence the residuals
and residual standard deviation become acceptably close to zero).

Starting with the simple average, each cumulative model in this iteration
process will have its own associated residual standard deviation. In
practice, the iteration continues until the residual standard deviations
become sufficiently small.

5.5.9.9.3. Motivation: How do we Construct a Good Model?
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Cumulative
residual
standard
deviation
plot

The cumulative residual standard deviation plot is a graphical summary
of the above model-building process. On the horizontal axis is a series
of terms (starting with the average, and continuing on with various main
effects and interactions). After the average, the ordering of terms on the
horizontal axis is identical to the ordering of terms based on the
half-normal probability plot ranking based on effect magnitude.

On the vertical axis is the corresponding residual standard deviation that
results when the cumulative model has its coefficients fitted via least
squares, and then has its predicted values, residuals, and residual
standard deviations computed. The first residual standard deviation (on
the far left of the cumulative residual standard deviation plot) is that
which results from the model consisting of

the average.1.  

The second residual standard deviation plotted is from the model
consisting of

the average, plus1.  

the term with the largest |effect|.2.  

The third residual standard deviation plotted is from the model
consisting of

the average, plus1.  

the term with the largest |effect|, plus2.  

the term with the second largest |effect|.3.  

and so forth.
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5.5.9.9.4.Motivation: How do we Know
When to Stop Adding Terms?

Cumulative
residual
standard
deviation
plot typically
has a hockey
stick
appearance

Proceeding left to right, as we add more terms to the model, the
cumulative residual standard deviation "curve" will typically decrease.
At the beginning (on the left), as we add large-effect terms, the
decrease from one residual standard deviation to the next residual
standard deviation will be large. The incremental improvement
(decrease) then tends to drop off slightly. At some point the incremental
improvement will typically slacken off considerably. Appearance-wise,
it is thus very typical for such a curve to have a "hockey stick"
appearance:

starting with a series of large decrements between successive
residual standard deviations; then

1.  

hitting an elbow; then2.  

having a series of gradual decrements thereafter.3.  

Stopping rule The cumulative residual standard deviation plot provides a visual
answer to the question:

What is a good model?

by answering the related question:

When do we stop adding terms to the cumulative model?

Graphically, the most common stopping rule for adding terms is to
cease immediately upon encountering the "elbow". We include all
terms up to and including the elbow point since each of these terms
decreased the residual standard deviation by a large amount. However,
we exclude any terms afterward since these terms do not decrease the
residual standard deviation fast enough to warrant inclusion in the
model.

5.5.9.9.4. Motivation: How do we Know When to Stop Adding Terms?
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5.5.9.9.5. Motivation: What is the Form of the
Model?

Models for
various
values of k

From the above discussion, we thus note and recommend a form of the model that
consists of an additive constant plus a linear combination of main effects and
interactions. What then is the specific form for the linear combination?

The following are the full models for various values of k. The selected final model will
be a subset of the full model.

For the trivial k = 1 factor case:●   

For the k = 2 factor case:●   

For the k = 3 factor case:●   

and for the general k case:

Y = f(X1, X2, ..., Xk) =
c + (1/2)*(linear combination of all main effects and all interactions of all orders)
+ 

●   

Note that the above equations include a (1/2) term. Our reason for using this term is
discussed in some detail in the next section. Other sources typically do not use this
convention.
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Ordered
linear
combination

The listing above has the terms ordered with the main effects, then the 2-factor
interactions, then the 3-factor interactions, etc. In practice, it is recommended that the
terms be ordered by importance (whether they be main effects or interactions). Aside
from providing a functional representation of the response, models should help reinforce
what is driving the response, which such a re-ordering does. Thus for k = 2, if factor 2 is
most important, the 2-factor interaction is next in importance, and factor 1 is least
important, then it is recommended that the above ordering of

be rewritten as
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5.5.9.9.6. Motivation: Why is the 1/2 in the
Model?

Presence of
1/2 term does
not affect
predictive
quality of
model

The leading 1/2 is a multiplicative constant that we have chosen to
include in our expression of the linear model. Some authors and
software prefer to "simplify" the model by omitting this leading 1/2. It
is our preference to include the 1/2. This follows a hint given on page
334 of Box, Hunter, and Hunter (1978) where they note that the
coefficients that appear in the equations are half the estimated effects.

The presence or absence of the arbitrary 1/2 term does not affect the
predictive quality of the model after least squares fitting. Clearly, if we
choose to exclude the 1/2, then the least squares fitting process will
simply yield estimated values of the coefficients that are twice the size
of the coefficients that would result if we included the 1/2.

Included so
least squares
coefficient
estimate
equal to
estimated
effect

We recommend the inclusion of the 1/2 because of an additional
property that we would like to impose on the model; namely, we desire
that:

the value of the least squares estimated coefficient B for a given
factor (or interaction) be visually identical to the estimated effect
E for that factor (or interaction).

For a given factor, say X2, the estimated least squares coefficient B2
and the estimated effect E2 are not in general identical in either value
or concept.

5.5.9.9.6. Motivation: Why is the 1/2 in the Model?
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Effect For factor X2, the effect E2 is defined as the change in the mean
response as we proceed from the "-" setting of the factor to the "+"
setting of the factor. Symbolically:

Note that the estimated effect E2 value does not involve a model per
se, and is definitionally invariant to any other factors and interactions
that may affect the response. We examined and derived the factor
effects E in the previous steps of the general DEX analysis procedure.

On the other hand, the estimated coefficient B2 in a model is defined
as the value that results when we place the model into the least squares
fitting process (regression). The value that returns for B2 depends, in
general, on the form of the model, on what other terms are included in
the model, and on the experimental design that was run. The least
squares estimate for B2 is mildly complicated since it involves a
behind-the-scenes design matrix multiplication and inversion. The
coefficient values B that result are generally obscured by the
mathematics to make the coefficients have the collective property that
the fitted model as a whole yield a minimum sum of squared deviations
("least squares").

Orthogonality Rather remarkably, these two concepts and values:

factor and interaction effect estimates E, and1.  

least squares coefficient estimates B2.  

merge for the class of experimental designs for which this 10-step
procedure was developed, namely, 2-level full and fractional designs
that are orthogonal. Orthogonality has been promoted and chosen
because of its desirable design properties. That is, every factor is
balanced (every level of a factor occurs an equal number of times) and
every 2-factor cross-product is balanced. But to boot, orthogonality has
2 extraordinary properties on the data analysis side:

For the above linear models, the usual matrix solution for the
least squares estimates for the coefficients B reduce to a
computationally trivial and familiar form, namely,

1.  

The usual general modeling property that the least squares
estimate for a factor coefficient changes depending on what
other factors have been included in or excluded from the model
is now moot. With orthogonal designs, the coefficient estimates
are invariant in the sense that the estimate (e.g., B2) for a given
factor (e.g., X2) will not change as other factors and interactions
are included in or excluded from the model. That is, the estimate

2.  

5.5.9.9.6. Motivation: Why is the 1/2 in the Model?
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of the factor 2 effect (B2) remains the same regardless of what
other factors are included in the model.

The net effect of the above two properties is that a factor effect can be
computed once, and that value will hold for any linear model involving
that term regardless of how simple or complicated the model is,
provided that the design is orthogonal. This process greatly simplifies
the model-building process because the need to recalculate all of the
model coefficients for each new model is eliminated.

Why is 1/2
the
appropriate
multiplicative
term in these
orthogonal
models?

Given the computational simplicity of orthogonal designs, why then is
1/2 the appropriate multiplicative constant? Why not 1/3, 1/4, etc.? To
answer this, we revisit our specified desire that

when we view the final fitted model and look at the coefficient
associated with X2, say, we want the value of the coefficient B2
to reflect identically the expected total change Y in the
response Y as we proceed from the "-" setting of X2 to the "+"
setting of X2 (that is, we would like the estimated coefficient B2
to be identical to the estimated effect E2 for factor X2).

Thus in glancing at the final model with this form, the coefficients B of
the model will immediately reflect not only the relative importance of
the coefficients, but will also reflect (absolutely) the effect of the
associated term (main effect or interaction) on the response.

In general, the least squares estimate of a coefficient in a linear model
will yield a coefficient that is essentially a slope:

 = (change in response)/(change in factor levels)

associated with a given factor X. Thus in order to achieve the desired
interpretation of the coefficients B as being the raw change in the Y (

Y), we must account for and remove the change in X ( X).

What is the X? In our design descriptions, we have chosen the
notation of Box, Hunter and Hunter (1978) and set each (coded) factor
to levels of "-" and "+". This "-" and "+" is a shorthand notation for -1
and +1. The advantage of this notation is that 2-factor interactions (and
any higher-order interactions) also uniformly take on the closed values
of -1 and +1, since

   -1*-1 = +1
   -1*+1 = -1
   +1*-1 = -1
   +1*+1 = +1

and hence the set of values that the 2-factor interactions (and all
interactions) take on are in the closed set {-1,+1}. This -1 and +1
notation is superior in its consistency to the (1,2) notation of Taguchi

5.5.9.9.6. Motivation: Why is the 1/2 in the Model?
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in which the interaction, say X1*X2, would take on the values

   1*1 = 1
   1*2 = 2
   2*1 = 2
   2*2 = 4

which yields the set {1,2,4}. To circumvent this, we would need to
replace multiplication with modular multiplication (see page 440 of
Ryan (2000)). Hence, with the -1,+1 values for the main factors, we
also have -1,+1 values for all interactions which in turn yields (for all
terms) a consistent X of

X = (+1) - (-1) = +2

In summary then,

   B = ( )

     = ( Y) / 2
     = (1/2) * ( Y)

and so to achieve our goal of having the final coefficients reflect  Y
only, we simply gather up all of the 2's in the denominator and create a
leading multiplicative constant of 1 with denominator 2, that is, 1/2.

Example for k
= 1 case

For example, for the trivial k = 1 case, the obvious model

Y = intercept + slope*X1
Y = c + ( )*X1

becomes

Y = c + (1/ X) * ( Y)*X1

or simply

Y = c + (1/2) * ( Y)*X1
Y = c + (1/2)*(factor 1 effect)*X1
Y = c + (1/2)*(B*)*X1, with B* = 2B = E

This k = 1 factor result is easily seen to extend to the general k-factor
case.
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5.5.9.9.7.Motivation: What are the
Advantages of the
LinearCombinatoric Model?

Advantages:
perfect fit and
comparable
coefficients

The linear model consisting of main effects and all interactions has
two advantages:

Perfect Fit: If we choose to include in the model all of the
main effects and all interactions (of all orders), then the
resulting least squares fitted model will have the property that
the predicted values will be identical to the raw response
values Y. We will illustrate this in the next section.

1.  

Comparable Coefficients: Since the model fit has been carried
out in the coded factor (-1,+1) units rather than the units of the
original factor (temperature, time, pressure, catalyst
concentration, etc.), the factor coefficients immediately
become comparable to one another, which serves as an
immediate mechanism for the scale-free ranking of the
relative importance of the factors.

2.  

Example To illustrate in detail the above latter point, suppose the (-1,+1)
factor X1 is really a coding of temperature T with the original
temperature ranging from 300 to 350 degrees and the (-1,+1) factor
X2 is really a coding of time t with the original time ranging from 20
to 30 minutes. Given that, a linear model in the original temperature
T and time t would yield coefficients whose magnitude depends on
the magnitude of T (300 to 350) and t (20 to 30), and whose value
would change if we decided to change the units of T (e.g., from
Fahrenheit degrees to Celsius degrees) and t (e.g., from minutes to
seconds). All of this is avoided by carrying out the fit not in the
original units for T (300,350) and t (20,30), but in the coded units of
X1 (-1,+1) and X2 (-1,+1). The resulting coefficients are
unit-invariant, and thus the coefficient magnitudes reflect the true
contribution of the factors and interactions without regard to the unit
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of measurement.

Coding does not
lead to loss of
generality

Such coding leads to no loss of generality since the coded factor may
be expressed as a simple linear relation of the original factor (X1 to
T, X2 to t). The unit-invariant coded coefficients may be easily
transformed to unit-sensitive original coefficients if so desired.
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5.5.9.9.8.Motivation: How do we use the Model to
Generate Predicted Values?

Design matrix
with response
for 2 factors

To illustrate the details as to how a model may be used for prediction, let us consider
a simple case and generalize from it. Consider the simple Yates-order 22 full factorial
design in X1 and X2, augmented with a response vector Y:

X1 X2 Y
- - 2
+ - 4
- + 6
+ + 8

Geometric
representation

This can be represented geometrically
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Determining
the prediction
equation

For this case, we might consider the model

From the above diagram, we may deduce that the estimated factor effects are:

c =
=

the average response = 
(2 + 4 + 6 + 8) / 4 = 5

B1 =
=

average change in Y as X>1 goes from -1 to +1
((4-2) + (8-6)) / 2 = (2 + 2) / 2 = 2

Note: the (4-2) is the change in Y (due to X1) on the lower axis; the
(8-6) is the change in Y (due to X1) on the upper axis.

B2 =
=

average change in Y as X2 goes from -1 to +1
((6-2) + (8-4)) / 2 = (4 + 4) / 2 = 4

B12 =

=

interaction = (the less obvious) average change in Y as X1*X2 goes from
-1 to +1
((2-4) + (8-6)) / 2 = (-2 + 2) / 2 = 0

and so the fitted model (that is, the prediction equation) is

or with the terms rearranged in descending order of importance

Table of fitted
values

Substituting the values for the four design points into this equation yields the
following fitted values

X1 X2 Y
- - 2 2
+ - 4 4
- + 6 6
+ + 8 8

Perfect fit This is a perfect-fit model. Such perfect-fit models will result anytime (in this
orthogonal 2-level design family) we include all main effects and all interactions.
Remarkably, this is true not only for k = 2 factors, but for general k.

Residuals For a given model (any model), the difference between the response value Y and the

predicted value  is referred to as the "residual":

residual = Y - 

The perfect-fit full-blown (all main factors and all interactions of all orders) models
will have all residuals identically zero.

The perfect fit is a mathematical property that comes if we choose to use the linear
model with all possible terms.
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Price for
perfect fit

What price is paid for this perfect fit? One price is that the variance of  is increased
unnecessarily. In addition, we have a non-parsimonious model. We must compute
and carry the average and the coefficients of all main effects and all interactions.
Including the average, there will in general be 2k coefficients to fully describe the
fitting of the n = 2k points. This is very much akin to the Y = f(X) polynomial fitting
of n distinct points. It is well known that this may be done "perfectly" by fitting a
polynomial of degree n-1. It is comforting to know that such perfection is
mathematically attainable, but in practice do we want to do this all the time or even
anytime? The answer is generally "no" for two reasons:

Noise: It is very common that the response data Y has noise (= error) in it. Do
we want to go out of our way to fit such noise? Or do we want our model to
filter out the noise and just fit the "signal"? For the latter, fewer coefficients
may be in order, in the same spirit that we may forego a perfect-fitting (but
jagged) 11-th degree polynomial to 12 data points, and opt out instead for an
imperfect (but smoother) 3rd degree polynomial fit to the 12 points.

1.  

Parsimony: For full factorial designs, to fit the n = 2k points we would need to
compute 2k coefficients. We gain information by noting the magnitude and
sign of such coefficients, but numerically we have n data values Y as input and
n coefficients B as output, and so no numerical reduction has been achieved.
We have simply used one set of n numbers (the data) to obtain another set of n
numbers (the coefficients). Not all of these coefficients will be equally
important. At times that importance becomes clouded by the sheer volume of
the n = 2k coefficients. Parsimony suggests that our result should be simpler
and more focused than our n starting points. Hence fewer retained coefficients
are called for.

2.  

The net result is that in practice we almost always give up the perfect, but unwieldy,
model for an imperfect, but parsimonious, model.

Imperfect fit The above calculations illustrated the computation of predicted values for the full
model. On the other hand, as discussed above, it will generally be convenient for
signal or parsimony purposes to deliberately omit some unimportant factors. When
the analyst chooses such a model, we note that the methodology for computing

predicted values  is precisely the same. In such a case, however, the resulting
predicted values will in general not be identical to the original response values Y; that
is, we no longer obtain a perfect fit. Thus, linear models that omit some terms will
have virtually all non-zero residuals.
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5.5.9.9.9.Motivation: How do we Use the
Model Beyond the Data Domain?

Interpolation
and
extrapolation

The previous section illustrated how to compute predicted values at the
points included in the design. One of the virtues of modeling is that the
resulting prediction equation is not restricted to the design data points.
From the prediction equation, predicted values can be computed
elsewhere and anywhere:

within the domain of the data (interpolation);1.  

outside of the domain of the data (extrapolation).2.  

In the hands of an expert scientist/engineer/analyst, the ability to
predict elsewhere is extremely valuable. Based on the fitted model, we
have the ability to compute predicted values for the response at a large
number of internal and external points. Thus the analyst can go beyond
the handful of factor combinations at hand and can get a feel (typically
via subsequent contour plotting) as to what the nature of the entire
response surface is.

This added insight into the nature of the response is "free" and is an
incredibly important benefit of the entire model-building exercise.

Predict with
caution

Can we be fooled and misled by such a mathematical and
computational exercise? After all, is not the only thing that is "real" the
data, and everything else artificial? The answer is "yes", and so such
interpolation/extrapolation is a double-edged sword that must be
wielded with care. The best attitude, and especially for extrapolation, is
that the derived conclusions must be viewed with extra caution.

By construction, the recommended fitted models should be good at the
design points. If the full-blown model were used, the fit will be perfect.
If the full-blown model is reduced just a bit, then the fit will still
typically be quite good. By continuity, one would expect
perfection/goodness at the design points would lead to goodness in the
immediate vicinity of the design points. However, such local goodness
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does not guarantee that the derived model will be good at some
distance from the design points.

Do
confirmation
runs

Modeling and prediction allow us to go beyond the data to gain
additional insights, but they must be done with great caution.
Interpolation is generally safer than extrapolation, but mis-prediction,
error, and misinterpretation are liable to occur in either case.

The analyst should definitely perform the model-building process and
enjoy the ability to predict elsewhere, but the analyst must always be
prepared to validate the interpolated and extrapolated predictions by
collection of additional real, confirmatory data. The general empirical
model that we recommend knows "nothing" about the engineering,
physics, or chemistry surrounding your particular measurement
problem, and although the model is the best generic model available, it
must nonetheless be confirmed by additional data. Such additional data
can be obtained pre-experimentally or post-experimentally. If done
pre-experimentally, a recommended procedure for checking the validity
of the fitted model is to augment the usual 2k or 2k-p designs with
additional points at the center of the design. This is discussed in the
next section.

Applies only
for
continuous
factors

Of course, all such discussion of interpolation and extrapolation makes
sense only in the context of continuous ordinal factors such as
temperature, time, pressure, size, etc. Interpolation and extrapolation
make no sense for discrete non-ordinal factors such as supplier,
operators, design types, etc.

5.5.9.9.9. Motivation: How do we Use the Model Beyond the Data Domain?
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.9. Cumulative residual standard deviation plot

5.5.9.9.10.Motivation: What is the Best
Confirmation Point for
Interpolation?

Augment via
center point

For the usual continuous factor case, the best (most efficient and highest
leverage) additional model-validation point that may be added to a 2k or
2k-p design is at the center point. This center point augmentation "costs"
the experimentalist only one additional run.

Example For example, for the k = 2 factor (Temperature (300 to 350), and time
(20 to 30)) experiment discussed in the previous sections, the usual
4-run 22 full factorial design may be replaced by the following 5-run 22

full factorial design with a center point.

X1 X2 Y
- - 2
+ - 4
- + 6
+ + 8
0 0  

Predicted
value for the
center point

Since "-" stands for -1 and "+" stands for +1, it is natural to code the
center point as (0,0). Using the recommended model

we can substitute 0 for X1 and X2 to generate the predicted value of 5
for the confirmatory run.

5.5.9.9.10. Motivation: What is the Best Confirmation Point for Interpolation?
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Importance
of the
confirmatory
run

The importance of the confirmatory run cannot be overstated. If the
confirmatory run at the center point yields a data value of, say, Y = 5.1,
since the predicted value at the center is 5 and we know the model is
perfect at the corner points, that would give the analyst a greater
confidence that the quality of the fitted model may extend over the
entire interior (interpolation) domain. On the other hand, if the
confirmatory run yielded a center point data value quite different (e.g., Y
= 7.5) from the center point predicted value of 5, then that would
prompt the analyst to not trust the fitted model even for interpolation
purposes. Hence when our factors are continuous, a single confirmatory
run at the center point helps immensely in assessing the range of trust
for our model.

Replicated
center points

In practice, this center point value frequently has two, or even three or
more, replications. This not only provides a reference point for
assessing the interpolative power of the model at the center, but it also
allows us to compute model-free estimates of the natural error in the
data. This in turn allows us a more rigorous method for computing the
uncertainty for individual coefficients in the model and for rigorously
carrying out a lack-of-fit test for assessing general model adequacy.

5.5.9.9.10. Motivation: What is the Best Confirmation Point for Interpolation?
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.9. Cumulative residual standard deviation plot

5.5.9.9.11.Motivation: How do we Use the
Model for Interpolation?

Design table
in original
data units

As for the mechanics of interpolation itself, consider a continuation of
the prior k = 2 factor experiment. Suppose temperature T ranges from
300 to 350 and time t ranges from 20 to 30, and the analyst can afford
n = 4 runs. A 22 full factorial design is run. Forming the coded
temperature as X1 and the coded time as X2, we have the usual:

Temperature Time X1 X2 Y
300 20 - - 2
350 20 + - 4
300 30 - + 6
350 30 + + 8

Graphical
representation

Graphically the design and data are as follows:

5.5.9.9.11. Motivation: How do we Use the Model for Interpolation?
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Typical
interpolation
question

As before, from the data, the "perfect-fit" prediction equation is

We now pose the following typical interpolation question:

From the model, what is the predicted response at, say,
temperature = 310 and time = 26?

In short:

(T = 310, t = 26) = ?

To solve this problem, we first view the k = 2 design and data
graphically, and note (via an "X") as to where the desired (T = 310, t =
26) interpolation point is:

Predicting the
response for
the
interpolated
point

The important next step is to convert the raw (in units of the original
factors T and t) interpolation point into a coded (in units of X1 and X2)
interpolation point. From the graph or otherwise, we note that a linear
translation between T and X1, and between t and X2 yields

T = 300 => X1 = -1
T = 350 => X1 = +1

thus

X1 = 0 is at T = 325

        |-------------|-------------|
       -1     ?       0            +1
       300   310     325           350
 

which in turn implies that

T = 310 => X1 = -0.6

Similarly,

5.5.9.9.11. Motivation: How do we Use the Model for Interpolation?
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t = 20 => X2 = -1
t = 30 => X2 = +1

therefore,

X2 = 0 is at t = 25

        |-------------|-------------|
       -1             0   ?        +1
       20             25 26        30
 

thus

t = 26 => X2 = +0.2

Substituting X1 = -0.6 and X2 = +0.2 into the prediction equation

yields a predicted value of 4.8.

Graphical
representation
of response
value for
interpolated
data point

Thus

5.5.9.9.11. Motivation: How do we Use the Model for Interpolation?
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.9. Cumulative residual standard deviation plot

5.5.9.9.12.Motivation: How do we Use the
Model for Extrapolation?

Graphical
representation
of
extrapolation

Extrapolation is performed similarly to interpolation. For example, the
predicted value at temperature T = 375 and time t = 28 is indicated by
the "X":

and is computed by substituting the values X1 = +2.0 (T=375) and X2
= +0.8 (t=28) into the prediction equation

yielding a predicted value of 8.6. Thus we have

5.5.9.9.12. Motivation: How do we Use the Model for Extrapolation?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri599c.htm (1 of 2) [5/1/2006 10:31:38 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Pseudo-data The predicted value from the modeling effort may be viewed as
pseudo-data, data obtained without the experimental effort. Such
"free" data can add tremendously to the insight via the application of
graphical techniques (in particular, the contour plots and can add
significant insight and understanding as to the nature of the response
surface relating Y to the X's.

But, again, a final word of caution: the "pseudo data" that results from
the modeling process is exactly that, pseudo-data. It is not real data,
and so the model and the model's predicted values must be validated
by additional confirmatory (real) data points. A more balanced
approach is that:

Models may be trusted as "real" [that is, to generate predicted
values and contour curves], but must always be verified [that is,
by the addition of confirmatory data points].

The rule of thumb is thus to take advantage of the available and
recommended model-building mechanics for these 2-level designs, but
do treat the resulting derived model with an equal dose of both
optimism and caution.

Summary In summary, the motivation for model building is that it gives us
insight into the nature of the response surface along with the ability to
do interpolation and extrapolation; further, the motivation for the use
of the cumulative residual standard deviation plot is that it serves as an
easy-to-interpret tool for determining a good and parsimonious model.

5.5.9.9.12. Motivation: How do we Use the Model for Extrapolation?
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design

5.5.9.10.DEX contour plot

Purpose The dex contour plot answers the question:

Where else could we have run the experiment to optimize the response?

Prior steps in this analysis have suggested the best setting for each of the k factors. These best
settings may have been derived from

Data: which of the n design points yielded the best response, and what were the settings of
that design point, or from

1.  

Averages: what setting of each factor yielded the best response "on the average".2.  

This 10th (and last) step in the analysis sequence goes beyond the limitations of the n data points
already chosen in the design and replaces the data-limited question

"From among the n data points, what was the best setting?"

to a region-related question:

"In general, what should the settings have been to optimize the response?"

Output The outputs from the dex contour plot are

Primary: Best setting (X10, X20, ..., Xk0) for each of the k factors. This derived setting
should yield an optimal response.

1.  

Secondary: Insight into the nature of the response surface and the importance/unimportance
of interactions.

2.  

Definition A dex contour plot is formed by

Vertical Axis: The second most important factor in the experiment.●   

Horizontal Axis: The most important factor in the experiment.●   

More specifically, the dex contour plot is constructed and utilized via the following 7 steps:

Axes1.  

Contour Curves2.  

Optimal Response Value3.  

Best Corner4.  

Steepest Ascent/Descent5.  

Optimal Curve6.  

Optimal Setting7.  

with

Axes: Choose the two most important factors in the experiment as the two axes on the plot.1.  

Contour Curves: Based on the fitted model and the best data settings for all of the
remaining factors, draw contour curves involving the two dominant factors. This yields a

2.  

5.5.9.10. DEX contour plot
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graphical representation of the response surface. The details for constructing linear contour
curves are given in a later section.

Optimal Value: Identify the theoretical value of the response that constitutes "best." In
particular, what value would we like to have seen for the response?

3.  

Best "Corner": The contour plot will have four "corners" for the two most important factors
Xi and Xj: (Xi,Xj) = (-,-), (-,+), (+,-), and (+,+). From the data, identify which of these four

corners yields the highest average response .

4.  

Steepest Ascent/Descent: From this optimum corner point, and based on the nature of the
contour lines near that corner, step out in the direction of steepest ascent (if maximizing) or
steepest descent (if minimizing).

5.  

Optimal Curve: Identify the curve on the contour plot that corresponds to the ideal optimal
value.

6.  

Optimal Setting: Determine where the steepest ascent/descent line intersects the optimum
contour curve. This point represents our "best guess" as to where we could have run our
experiment so as to obtain the desired optimal response.

7.  

Motivation In addition to increasing insight, most experiments have a goal of optimizing the response. That
is, of determining a setting (X10, X20, ..., Xk0) for which the response is optimized.

The tool of choice to address this goal is the dex contour plot. For a pair of factors Xi and Xj, the
dex contour plot is a 2-dimensional representation of the 3-dimensional Y = f(Xi,Xj) response
surface. The position and spacing of the isocurves on the dex contour plot are an easily
interpreted reflection of the nature of the surface.

In terms of the construction of the dex contour plot, there are three aspects of note:

Pairs of Factors: A dex contour plot necessarily has two axes (only); hence only two out of
the k factors can be represented on this plot. All other factors must be set at a fixed value
(their optimum settings as determined by the ordered data plot, the dex mean plot, and the
interaction effects matrix plot).

1.  

Most Important Factor Pair: Many dex contour plots are possible. For an experiment with k

factors, there are  possible contour plots. For

example, for k = 4 factors there are 6 possible contour plots: X1 and X2, X1 and X3, X1 and
X4, X2 and X3, X2 and X4, and X3 and X4. In practice, we usually generate only one contour
plot involving the two most important factors.

2.  

Main Effects Only: The contour plot axes involve main effects only, not interactions. The
rationale for this is that the "deliverable" for this step is k settings, a best setting for each of
the k factors. These k factors are real and can be controlled, and so optimal settings can be
used in production. Interactions are of a different nature as there is no "knob on the
machine" by which an interaction may be set to -, or to +. Hence the candidates for the axes
on contour plots are main effects only--no interactions.

3.  

In summary, the motivation for the dex contour plot is that it is an easy-to-use graphic that
provides insight as to the nature of the response surface, and provides a specific answer to the
question "Where (else) should we have collected the data so to have optimized the response?".

5.5.9.10. DEX contour plot
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Plot for
defective
springs
data

Applying the dex contour plot for the defective springs data set yields the following plot.

How to
interpret

From the dex contour plot for the defective springs data, we note the following regarding the 7
framework issues:

Axes●   

Contour curves●   

Optimal response value●   

Optimal response curve●   

Best corner●   

Steepest Ascent/Descent●   

Optimal setting●   

5.5.9.10. DEX contour plot
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Conclusions
for the
defective
springs
data

The application of the dex contour plot to the defective springs data set results in the following
conclusions:

Optimal settings for the "next" run:

Coded : (X1,X2,X3) = (+1.5,+1.0,+1.3)
Uncoded: (OT,CC,QT) = (1637.5,0.7,127.5)

1.  

Nature of the response surface:

The X1*X3 interaction is important, hence the effect of factor X1 will change depending on
the setting of factor X3.

2.  

5.5.9.10. DEX contour plot
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.1.How to Interpret: Axes

What factors
go on the 2
axes?

For this first item, we choose the two most important factors in the
experiment as the plot axes.

These are determined from the ranked list of important factors as
discussed in the previous steps. In particular, the |effects| plot includes
a ranked factor table. For the defective springs data, that ranked list
consists of

Factor/Interaction Effect Estimate
X1 23
X1*X3 10
X2 -5
X3 1.5
X1*X2 1.5
X1*X2*X3 0.5
X2*X3 0

Possible
choices

In general, the two axes of the contour plot could consist of

X1 and X2,●   

X1 and X3, or●   

X2 and X3.●   

In this case, since X1 is the top item in the ranked list, with an
estimated effect of 23, X1 is the most important factor and so will
occupy the horizontal axis of the contour plot. The admissible list thus
reduces to

X1 and X2, or●   

X1 and X3.●   

To decide between these two pairs, we look to the second item in the
ranked list. This is the interaction term X1*X3, with an estimated effect
of 10. Since interactions are not allowed as contour plot axes, X1*X3
must be set aside. On the other hand, the components of this interaction

5.5.9.10.1. How to Interpret: Axes
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(X1 and X3) are not to be set aside. Since X1 has already been
identified as one axis in the contour plot, this suggests that the other
component (X3) be used as the second axis. We do so. Note that X3
itself does not need to be important (in fact, it is noted that X3 is
ranked fourth in the listed table with a value of 1.5).

In summary then, for this example the contour plot axes are:

Horizontal Axis: X1
Vertical Axis: X3

Four cases
for
recommended
choice of
axes

Other cases can be more complicated. In general, the recommended
rule for selecting the two plot axes is that they be drawn from the first
two items in the ranked list of factors. The following four cases cover
most situations in practice:

Case 1:

Item 1 is a main effect (e.g., X3)1.  

Item 2 is another main effect (e.g., X5)2.  

Recommended choice:

Horizontal axis: item 1 (e.g., X3);1.  

Vertical axis: item 2 (e.g., X5).2.  

●   

Case 2:

Item 1 is a main effect (e.g., X3)1.  

Item 2 is a (common-element) interaction (e.g., X3*X4)2.  

Recommended choice:

Horizontal axis: item 1 (e.g., X3);1.  

Vertical axis: the remaining component in item 2 (e.g.,
X4).

2.  

●   

Case 3:

Item 1 is a main effect (e.g., X3)1.  

Item 2 is a (non-common-element) interaction (e.g.,
X2*X4)

2.  

Recommended choice:

Horizontal axis: item 1 (e.g., X3);1.  

Vertical axis: either component in item 2 (e.g., X2, or X4),
but preferably the one with the largest individual effect
(thus scan the rest of the ranked factors and if the X2
|effect| > X4 |effect|, choose X2; otherwise choose X4).

2.  

●   

Case 4:

Item 1 is a (2-factor) interaction (e.g., X2*X4)1.  

●   

5.5.9.10.1. How to Interpret: Axes
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Item 2 is anything2.  

Recommended choice:

Horizontal axis: component 1 from the item 1 interaction
e.g., X2);

1.  

Horizontal axis: component 2 from the item 1 interaction
(e.g., X4).

2.  

5.5.9.10.1. How to Interpret: Axes
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.2.How to Interpret: Contour Curves

Non-linear
appearance
of contour
curves
implies
strong
interaction

Based on the fitted model (cumulative residual standard deviation plot) and the
best data settings for all of the remaining factors, we draw contour curves
involving the two dominant factors. This yields a graphical representation of the
response surface.

Before delving into the details as to how the contour lines were generated, let us
first note as to what insight can be gained regarding the general nature of the
response surface. For the defective springs data, the dominant characteristic of the
contour plot is the non-linear (fan-shaped, in this case) appearance. Such
non-linearity implies a strong X1*X3 interaction effect. If the X1*X3 interaction
were small, the contour plot would consist of a series of near-parallel lines. Such is
decidedly not the case here.

Constructing
the contour
curves

As for the details of the construction of the contour plot, we draw on the
model-fitting results that were achieved in the cumulative residual standard
deviation plot. In that step, we derived the following good-fitting prediction
equation:

The contour plot has axes of X1 and X3. X2 is not included and so a fixed value of
X2 must be assigned. The response variable is the percentage of acceptable
springs, so we are attempting to maximize the response. From the ordered data
plot, the main effects plot, and the interaction effects matrix plot of the general
analysis sequence, we saw that the best setting for factor X2 was "-". The best
observed response data value (Y = 90) was achieved with the run (X1,X2,X3) =
(+,-,+), which has X2 = "-". Also, the average response for X2 = "-" was 73 while
the average response for X2 = "+" was 68. We thus set X2 = -1 in the prediction
equation to obtain

This equation involves only X1 and X3 and is immediately usable for the X1 and
X3 contour plot. The raw response values in the data ranged from 52 to 90. The

5.5.9.10.2. How to Interpret: Contour Curves
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response implies that the theoretical worst is Y = 0 and the theoretical best is Y =
100.

To generate the contour curve for, say, Y = 70, we solve

by rearranging the equation in X3 (the vertical axis) as a function of X1 (the
horizontal axis). By substituting various values of X1 into the rearranged equation,
the above equation generates the desired response curve for Y = 70. We do so
similarly for contour curves for any desired response value Y.

Values for
X1

For these X3 = g(X1) equations, what values should be used for X1? Since X1 is
coded in the range -1 to +1, we recommend expanding the horizontal axis to -2 to
+2 to allow extrapolation. In practice, for the dex contour plot generated
previously, we chose to generate X1 values from -2, at increments of .05, up to +2.
For most data sets, this gives a smooth enough curve for proper interpretation.

Values for Y What values should be used for Y? Since the total theoretical range for the
response Y (= percent acceptable springs) is 0% to 100%, we chose to generate
contour curves starting with 0, at increments of 5, and ending with 100. We thus
generated 21 contour curves. Many of these curves did not appear since they were
beyond the -2 to +2 plot range for the X1 and X3 factors.

Summary In summary, the contour plot curves are generated by making use of the
(rearranged) previously derived prediction equation. For the defective springs data,
the appearance of the contour plot implied a strong X1*X3 interaction.

5.5.9.10.2. How to Interpret: Contour Curves
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5.5.9.10. DEX contour plot

5.5.9.10.3.How to Interpret: Optimal
Response Value

Need to
define
"best"

We need to identify the theoretical value of the response that would
constitute "best". What value would we like to have seen for the
response?

For example, if the response variable in a chemical experiment is
percent reacted, then the ideal theoretical optimum would be 100%. If
the response variable in a manufacturing experiment is amount of waste,
then the ideal theoretical optimum would be zero. If the response
variable in a flow experiment is the fuel flow rate in an engine, then the
ideal theoretical optimum (as dictated by engine specifications) may be
a specific value (e.g., 175 cc/sec). In any event, for the experiment at
hand, select a number that represents the ideal response value.

Optimal
value for
this example

For the defective springs data, the response (percentage of acceptable
springs) ranged from Y = 52 to 90. The theoretically worst value would
be 0 (= no springs are acceptable), and the theoretically best value
would be 100 (= 100% of the springs are acceptable). Since we are
trying to maximize the response, the selected optimal value is 100.

5.5.9.10.3. How to Interpret: Optimal Response Value
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.4.How to Interpret: Best Corner

Four
corners
representing
2 levels for
2 factors

The contour plot will have four "corners" (two factors times two settings
per factor) for the two most important factors Xi and Xj: (Xi,Xj) = (-,-),
(-,+), (+,-), or (+,+). Which of these four corners yields the highest

average response ? That is, what is the "best corner"?

Use the raw
data

This is done by using the raw data, extracting out the two "axes factors",
computing the average response at each of the four corners, then
choosing the corner with the best average.

For the defective springs data, the raw data were

X1 X2 X3 Y
- - - 67
+ - - 79
- + - 61
+ + - 75
- - + 59
+ - + 90
- + + 52
+ + + 87

The two plot axes are X1 and X3 and so the relevant raw data collapses
to

X1 X3 Y
- - 67
+ - 79
- - 61
+ - 75
- + 59
+ + 90
- + 52
+ + 87

5.5.9.10.4. How to Interpret: Best Corner
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Averages which yields averages

X1 X3 Y
- - (67 + 61)/2 = 64
+ - (79 + 75)/2 = 77
- + (59 + 52)/2 = 55.5
+ + (90 + 87)/2 = 88.5

These four average values for the corners are annotated on the plot. The
best (highest) of these values is 88.5. This comes from the (+,+) upper
right corner. We conclude that for the defective springs data the best
corner is (+,+).

5.5.9.10.4. How to Interpret: Best Corner
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.5.How to Interpret: Steepest
Ascent/Descent

Start at
optimum
corner point

From the optimum corner point, based on the nature of the contour
surface at that corner, step out in the direction of steepest ascent (if
maximizing) or steepest descent (if minimizing).

Defective
springs
example

Since our goal for the defective springs problem is to maximize the
response, we seek the path of steepest ascent. Our starting point is the
best corner (the upper right corner (+,+)), which has an average
response value of 88.5. The contour lines for this plot have
increments of 5 units. As we move from left to right across the
contour plot, the contour lines go from low to high response values.
In the plot, we have drawn the maximum contour level, 105, as a
thick line. For easier identification, we have also drawn the contour
level of 90 as thick line. This contour level of 90 is immediately to
the right of the best corner

Conclusions on
steepest ascent
for defective
springs
example

The nature of the contour curves in the vicinity of (+,+) suggests a
path of steepest ascent

in the "northeast" direction1.  

about 30 degrees above the horizontal.2.  

5.5.9.10.5. How to Interpret: Steepest Ascent/Descent
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.6.How to Interpret: Optimal Curve

Corresponds
to ideal
optimum value

The optimal curve is the curve on the contour plot that corresponds to
the ideal optimum value.

Defective
springs
example

For the defective springs data, we search for the Y = 100 contour
curve. As determined in the steepest ascent/descent section, the Y =
90 curve is immediately outside the (+,+) point. The next curve to the
right is the Y = 95 curve, and the next curve beyond that is the Y =
100 curve. This is the optimal response curve.

5.5.9.10.6. How to Interpret: Optimal Curve
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5. Process Improvement
5.5. Advanced topics
5.5.9. An EDA approach to experimental design
5.5.9.10. DEX contour plot

5.5.9.10.7.How to Interpret: Optimal Setting

Optimal
setting

The "near-point" optimality setting is the intersection of the steepest-ascent line
with the optimal setting curve.

Theoretically, any (X1,X3) setting along the optimal curve would generate the
desired response of Y = 100. In practice, however, this is true only if our
estimated contour surface is identical to "nature's" response surface. In reality, the
plotted contour curves are truth estimates based on the available (and "noisy") n =
8 data values. We are confident of the contour curves in the vicinity of the data
points (the four corner points on the chart), but as we move away from the corner
points, our confidence in the contour curves decreases. Thus the point on the Y =
100 optimal response curve that is "most likely" to be valid is the one that is
closest to a corner point. Our objective then is to locate that "near-point".

Defective
springs
example

In terms of the defective springs contour plot, we draw a line from the best corner,
(+,+), outward and perpendicular to the Y = 90, Y = 95, and Y = 100 contour
curves. The Y = 100 intersection yields the "nearest point" on the optimal
response curve.

Having done so, it is of interest to note the coordinates of that optimal setting. In
this case, from the graph, that setting is (in coded units) approximately at

(X1 = 1.5, X3 = 1.3)

5.5.9.10.7. How to Interpret: Optimal Setting
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Table of
coded and
uncoded
factors

With the determination of this setting, we have thus, in theory, formally
completed our original task. In practice, however, more needs to be done. We
need to know "What is this optimal setting, not just in the coded units, but also in
the original (uncoded) units"? That is, what does (X1=1.5, X3=1.3) correspond to
in the units of the original data?

To deduce his, we need to refer back to the original (uncoded) factors in this
problem. They were:

Coded
Factor

Uncoded Factor

X1 OT: Oven Temperature
X2 CC: Carbon Concentration
X3 QT: Quench Temperature

Uncoded
and coded
factor
settings

These factors had settings-- what were the settings of the coded and uncoded
factors? From the original description of the problem, the uncoded factor settings
were:

Oven Temperature (1450 and 1600 degrees)1.  

Carbon Concentration (.5% and .7%)2.  

Quench Temperature (70 and 120 degrees)3.  

with the usual settings for the corresponding coded factors:

X1 (-1,+1)1.  

X2 (-1,+1)2.  

X3 (-1,+1)3.  

Diagram To determine the corresponding setting for (X1=1.5, X3=1.3), we thus refer to the
following diagram, which mimics a scatter plot of response averages--oven
temperature (OT) on the horizontal axis and quench temperature (QT) on the
vertical axis:

5.5.9.10.7. How to Interpret: Optimal Setting
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The "X" on the chart represents the "near point" setting on the optimal curve.

Optimal
setting for
X1 (oven
temperature)

To determine what "X" is in uncoded units, we note (from the graph) that a linear
transformation between OT and X1 as defined by

OT = 1450 => X1 = -1
OT = 1600 => X1 = +1

yields

X1 = 0 being at OT = (1450 + 1600) / 2 = 1525

thus

           |-------------|-------------|
X1:       -1             0            +1
OT:      1450          1525          1600

and so X1 = +2, say, would be at oven temperature OT = 1675:

           |-------------|-------------|-------------|
X1:       -1             0            +1            +2
OT:      1450          1525          1600          1675

and hence the optimal X1 setting of 1.5 must be at

OT = 1600 + 0.5*(1675-1600) = 1637.5

5.5.9.10.7. How to Interpret: Optimal Setting
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Optimal
setting for
X3 (quench
temperature)

Similarly, from the graph we note that a linear transformation between quench
temperature QT and coded factor X3 as specified by

QT = 70 => X3 = -1
QT = 120 => X3 = +1

yields

X3 = 0 being at QT = (70 + 120) / 2 = 95

as in

        |-------------|-------------|
X3:    -1             0            +1
QT:    70            95           120

and so X3 = +2, say, would be quench temperature = 145:

        |-------------|-------------|-------------|
X3:    -1             0            +1            +2
QT:    70            95           120           145

Hence, the optimal X3 setting of 1.3 must be at

QT = 120 + .3*(145-120)
QT = 127.5

Summary of
optimal
settings

In summary, the optimal setting is

coded : (X1 = +1.5, X3 = +1.3)
uncoded: (OT = 1637.5 degrees, QT = 127.5 degrees)

and finally, including the best setting of the fixed X2 factor (carbon concentration
CC) of X2 = -1 (CC = .5%), we thus have the final, complete recommended
optimal settings for all three factors:

coded : (X1 = +1.5, X2 = -1.0, X3 = +1.3)
uncoded: (OT = 1637.5, CC = .7%, QT = 127.5)

If we were to run another experiment, this is the point (based on the data) that we
would set oven temperature, carbon concentration, and quench temperature with
the hope/goal of achieving 100% acceptable springs.

5.5.9.10.7. How to Interpret: Optimal Setting
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Options for
next step

In practice, we could either

collect a single data point (if money and time are an issue) at this
recommended setting and see how close to 100% we achieve, or

1.  

collect two, or preferably three, (if money and time are less of an issue)
replicates at the center point (recommended setting).

2.  

if money and time are not an issue, run a 22 full factorial design with center
point. The design is centered on the optimal setting (X1 = +1,5, X3 = +1.3)
with one overlapping new corner point at (X1 = +1, X3 = +1) and with new
corner points at (X1,X3) = (+1,+1), (+2,+1), (+1,+1.6), (+2,+1.6). Of these
four new corner points, the point (+1,+1) has the advantage that it overlaps
with a corner point of the original design.

3.  

5.5.9.10.7. How to Interpret: Optimal Setting
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5. Process Improvement

5.6.Case Studies

Contents The purpose of this section is to illustrate the analysis of designed
experiments with data collected from experiments run at the National
Institute of Standards and Technology and SEMATECH. A secondary
goal is to give the reader an opportunity to run the analyses in real-time
using the Dataplot software package. 

Eddy current probe sensitivity study1.  

Sonoluminescent light intensity study2.  

5.6. Case Studies
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5. Process Improvement
5.6. Case Studies

5.6.1.Eddy Current Probe Sensitivity Case
Study

Analysis of
a 23 Full
Factorial
Design

This case study demonstrates the analysis of a 23 full factorial design.

The analysis for this case study is based on the EDA approach discussed
in an earlier section.

Contents The case study is divided into the following sections:

Background and data1.  

Initial plots/main effects2.  

Interaction effects3.  

Main and interaction effects: block plots4.  

Estimate main and interaction effects5.  

Modeling and prediction equations6.  

Intermediate conclusions7.  

Important factors and parsimonious prediction8.  

Validate the fitted model9.  

Using the model10.  

Conclusions and next step11.  

Work this example yourself12.  

5.6.1. Eddy Current Probe Sensitivity Case Study

http://www.itl.nist.gov/div898/handbook/pri/section6/pri61.htm [5/1/2006 10:31:46 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.1.Background and Data

Background The data for this case study is a subset of a study performed by
Capobianco, Splett, and Iyer. Capobianco was a member of the NIST
Electromagnetics Division and Splett and Iyer were members of the
NIST Statistical Engineering Division at the time of this study.

The goal of this project is to develop a nondestructive portable device for
detecting cracks and fractures in metals. A primary application would be
the detection of defects in airplane wings. The internal mechanism of the
detector would be for sensing crack-induced changes in the detector's
electromagnetic field, which would in turn result in changes in the
impedance level of the detector. This change of impedance is termed
"sensitivity" and it is a sub-goal of this experiment to maximize such
sensitivity as the detector is moved from an unflawed region to a flawed
region on the metal.

Statistical
Goals

The case study illustrates the analysis of a 23 full factorial experimental
design. The specific statistical goals of the experiment are:

Determine the important factors that affect sensitivity.1.  

Determine the settings that maximize sensitivity.2.  

Determine a predicition equation that functionally relates
sensitivity to various factors.

3.  

5.6.1.1. Background and Data
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Data Used
in the
Analysis

There were three detector wiring component factors under consideration:

X1 = Number of wire turns1.  

X2 = Wire winding distance2.  

X3 = Wire guage3.  

Since the maximum number of runs that could be afforded timewise and
costwise in this experiment was n = 10, a 23 full factoral experiment
(involving n = 8 runs) was chosen. With an eye to the usual monotonicity
assumption for 2-level factorial designs, the selected settings for the
three factors were as follows:

X1 = Number of wire turns : -1 = 90, +1 = 1801.  

X2 = Wire winding distance: -1 = 0.38, +1 = 1.142.  

X3 = Wire guage : -1 = 40, +1 = 483.  

The experiment was run with the 8 settings executed in random order.
The following data resulted.

    Y          X1        X2        X3
  Probe      Number   Winding     Wire     Run
Impedance   of Turns  Distance    Guage  Sequence
-------------------------------------------------
  1.70         -1        -1        -1           2
  4.57         +1        -1        -1           8
  0.55         -1        +1        -1           3
  3.39         +1        +1        -1           6
  1.51         -1        -1        +1           7
  4.59         +1        -1        +1           1
  0.67         -1        +1        +1           4
  4.29         +1        +1        +1           5

Note that the independent variables are coded as +1 and -1. These
represent the low and high settings for the levels of each variable.
Factorial designs often have 2 levels for each factor (independent
variable) with the levels being coded as -1 and +1. This is a scaling of
the data that can simplify the analysis. If desired, these scaled values can
be converted back to the original units of the data for presentation.

5.6.1.1. Background and Data
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.2. Initial Plots/Main Effects

Plot the
Data:
Ordered
Data Plot

The first step in the analysis is to generate an ordered data plot.

Conclusions
from the
Ordered
Data Plot

We can make the following conclusions based on the ordered data plot.

Important Factors: The 4 highest response values have X1 = + while the 4 lowest response
values have X1 = -. This implies factor 1 is the most important factor. When X1 = -, the -
values of X2 are higher than the + values of X2. Similarly, when X1 = +, the - values of X2
are higher than the + values of X2. This implies X2 is important, but less so than X1. There
is no clear pattern for X3.

1.  

Best Settings: In this experiment, we are using the device as a detector, and so high
sensitivities are desirable. Given this, our first pass at best settings yields (X1 = +1, X2 =
-1, X3 = either).

2.  

5.6.1.2. Initial Plots/Main Effects
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Plot the
Data: Dex
Scatter Plot

The next step in the analysis is to generate a dex scatter plot.

Conclusions
from the
DEX
Scatter Plot

We can make the following conclusions based on the dex scatter plot.

Important Factors: Factor 1 (Number of Turns) is clearly important. When X1 = -1, all 4
senstivities are low, and when X1 = +1, all 4 sensitivities are high. Factor 2 (Winding
Distance) is less important. The 4 sensitivities for X2 = -1 are slightly higher, as a group,
than the 4 sensitivities for X2 = +1. Factor 3 (Wire Gage) does not appear to be important
at all. The sensitivity is about the same (on the average) regardless of the settings for X3.

1.  

Best Settings: In this experiment, we are using the device as a detector, so high sensitivities
are desirable. Given this, our first pass at best settings yields (X1 = +1, X2 = -1, X3 =
either).

2.  

There does not appear to be any significant outliers.3.  

5.6.1.2. Initial Plots/Main Effects
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Check for
Main
Effects: Dex
Mean Plot

One of the primary questions is: what are the most important factors? The ordered data plot and
the dex scatter plot provide useful summary plots of the data. Both of these plots indicated that
factor X1 is clearly important, X2 is somewhat important, and X3 is probably not important.

The dex mean plot shows the main effects. This provides probably the easiest to interpert
indication of the important factors.

Conclusions
from the
DEX Mean
Plot

The dex mean plot (or main effects plot) reaffirms the ordering of the dex scatter plot, but
additional information is gleaned because the eyeball distance between the mean values gives an
approximation to the least squares estimate of the factor effects.

We can make the following conclusions from the dex mean plot.

Important Factors:
X1 (effect = large: about 3 ohms)
X2 (effect = moderate: about -1 ohm)
X3 (effect = small: about 1/4 ohm)

1.  

Best Settings: As before, choose the factor settings that (on the average) maximize the
sensitivity:

(X1,X2,X3) = (+,-,+)

2.  

5.6.1.2. Initial Plots/Main Effects
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Comparison
of Plots

All of these plots are used primarily to detect the most important factors. Because it plots a
summary statistic rather than the raw data, the dex mean plot shows the main effects most clearly.
However, it is still recommended to generate either the ordered data plot or the dex scatter plot
(or both). Since these plot the raw data, they can sometimes reveal features of the data that might
be masked by the dex mean plot.

5.6.1.2. Initial Plots/Main Effects
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.3. Interaction Effects

Check for
Interaction
Effects: Dex
Interaction
Plot

In addition to the main effects, it is also important to check for interaction effects, especially
2-factor interaction effects. The dex interaction effects plot is an effective tool for this.

5.6.1.3. Interaction Effects
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Conclusions
from the
DEX
Interaction
Effects Plot

We can make the following conclusions from the dex interaction effects plot.

Important Factors: Looking for the plots that have the steepest lines (that is, largest
effects), we note that:

X1 (number of turns) is the most important effect: estimated effect = -3.1025;❍   

X2 (winding distance) is next most important: estimated effect = -.8675;❍   

X3 (wire gage) is relatively unimportant;❍   

All three 2-factor interactions are relatively unimporant.❍   

1.  

Best Settings: As with the main effects plot, the best settings to maximize the sensitivity
are

(X1,X2,X3) = (+1,-1,+1)

but with the X3 setting of +1 mattering little.

2.  

5.6.1.3. Interaction Effects
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.4.Main and Interaction Effects: Block Plots

Block Plots Block plots are a useful adjunct to the dex mean plot and the dex interaction effects plot to
confirm the importance of factors, to establish the robustness of main effect conclusions, and to
determine the existence of interactions. Specifically,

The first plot below answers the question: Is factor 1 important? If factor 1 is important, is
this importance robust over all 4 settings of X2 and X3?

1.  

The second plot below answers the question: Is factor 2 important? If factor 2 is important,
is this importance robust over all 4 settings of X1 and X3?

2.  

The third plot below answers the question: Is factor 3 important? If factor 3 is important, is
this importance robust over all 4 settings of X1 and X2?

3.  

For block plots, it is the height of the bars that is important, not the relative positioning of each
bar. Hence we focus on the size and internals of the blocks, not "where" the blocks are one
relative to another.

5.6.1.4. Main and Interaction Effects: Block Plots
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Conclusions
from the
Block Plots

It is recalled that the block plot will access factor importance by the degree of consistency
(robustness) of the factor effect over a variety of conditions. In this light, we can make the
following conclusions from the block plots.

Relative Importance of Factors: All of the bar heights in plot 1 (turns) are greater than the
bar heights in plots 2 and 3. Hence, factor 1 is more important than factors 2 and 3.

1.  

Statistical Significance: In plot 1, looking at the levels within each bar, we note that the
response for level 2 is higher than level 1 in each of the 4 bars. By chance, this happens
with probability 1/(24) = 1/16 = 6.25%. Hence, factor 1 is near-statistically significant at
the 5% level. Similarly, for plot 2, level 1 is greater than level 2 for all 4 bars. Hence,
factor 2 is near-statistically significant. For factor 3, there is not consistent ordering within
all 4 bars and hence factor 3 is not statistically significant. Rigorously speaking then,
factors 1 and 2 are not statistically significant (since 6.25% is not < 5%); on the other hand
such near-significance is suggestive to the analyst that such factors may in fact be
important, and hence warrant further attention.

Note that the usual method for determining statistical significance is to perform an analysis
of variance (ANOVA). ANOVA is based on normality assumptions. If these normality
assumptions are in fact valid, then ANOVA methods are the most powerful method for
determining statistical signficance. The advantage of the block plot method is that it is
based on less rigorous assumptions than ANOVA. At an exploratory stage, it is useful to
know that our conclusions regarding important factors are valid under a wide range of
assumptions.

2.  

Interactions: For factor 1, the 4 bars do not change height in any systematic way and hence
there is no evidence of X1 interacting with either X2 or X3. Similarly, there is no evidence
of interactions for factor 2.

3.  

5.6.1.4. Main and Interaction Effects: Block Plots
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.5.Estimate Main and Interaction Effects

Effects
Estimation

Although the effect estimates were given on the dex interaction plot on a previous
page, they can also be estimated quantitatively.

The full model for the 23 factorial design is

Data from factorial designs with two levels can be analyzed using the Yates technique,
which is described in Box, Hunter, and Hunter. The Yates technique utilizes the
special structure of these designs to simplify the computation and presentation of the
fit.

Dataplot
Output

Dataplot generated the following output for the Yates analysis.

  
(NOTE--DATA MUST BE IN STANDARD ORDER)
NUMBER OF OBSERVATIONS           =        8
NUMBER OF FACTORS                =        3
NO REPLICATION CASE
  
PSEUDO-REPLICATION STAND. DEV.   =    0.20152531564E+00
PSEUDO-DEGREES OF FREEDOM        =        1
(THE PSEUDO-REP. STAND. DEV. ASSUMES ALL
3, 4, 5, ...-TERM INTERACTIONS ARE NOT REAL,
BUT MANIFESTATIONS OF RANDOM ERROR)
  
STANDARD DEVIATION OF A COEF.    =    0.14249992371E+00
(BASED ON PSEUDO-REP. ST. DEV.)
  
GRAND MEAN                       =    0.26587500572E+01
GRAND STANDARD DEVIATION         =    0.17410624027E+01
  
99% CONFIDENCE LIMITS (+-)       =    0.90710897446E+01
95% CONFIDENCE LIMITS (+-)       =    0.18106349707E+01

5.6.1.5. Estimate Main and Interaction Effects
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99.5% POINT OF T DISTRIBUTION    =    0.63656803131E+02
97.5% POINT OF T DISTRIBUTION    =    0.12706216812E+02
  
IDENTIFIER    EFFECT        T VALUE      RESSD:     RESSD:
                                         MEAN +     MEAN +
                                         TERM    CUM TERMS
----------------------------------------------------------
   MEAN       2.65875                   1.74106    1.74106
      1       3.10250         21.8*     0.57272    0.57272
      2      -0.86750         -6.1      1.81264    0.30429
     23       0.29750          2.1      1.87270    0.26737
     13       0.24750          1.7      1.87513    0.23341
      3       0.21250          1.5      1.87656    0.19121
    123       0.14250          1.0      1.87876    0.18031
     12       0.12750          0.9      1.87912    0.00000

Description
of Yates
Output

In fitting 2-level factorial designs, Dataplot takes advantage of the special structure of
these designs in computing the fit and printing the results. Specifically, the main
effects and interaction effects are printed in sorted order from most significant to least
significant. It also prints the t-value for the term and the residual standard deviation
obtained by fitting the model with that term and the mean (the column labeled RESSD
MEAN + TERM), and for the model with that term, the mean, and all other terms that
are more statistically significant (the column labeled RESSD MEAN + CUM
TERMS).

Of the five columns of output, the most important are the first (which is the identifier),
the second (the least squares estimated effect = the difference of means), and the last
(the residuals standard deviation for the cumulative model, which will be discussed in
more detail in the next section).

Conclusions In summary, the Yates analysis provides us with the following ranked list of important
factors.

X1 (Number of Turns):1.  effect estimate = 3.1025 ohms
X2 (Winding Distance):2.  effect estimate = -0.8675 ohms
X2*X3 (Winding Distance with
Wire Guage):

3.  effect estimate = 0.2975 ohms

X1*X3 (Number of Turns with Wire
Guage):

4.  effect estimate = 0.2475 ohms

X3 (Wire Guage):5.  effect estimate = 0.2125 ohms
X1*X2*X3 (Number of Turns with
Winding Distance with Wire
Guage):

6.  effect estimate = 0.1425 ohms

X1*X2 (Number of Turns with
Winding Distance):

7.  effect estimate = 0.1275 ohms

5.6.1.5. Estimate Main and Interaction Effects
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.6.Modeling and Prediction Equations

Parameter
Estimates
Don't
Change as
Additional
Terms
Added

In most cases of least squares fitting, the model coefficient estimates for previously
added terms change depending on what was successively added. For example, the
estimate for the X1 coefficient might change depending on whether or not an X2 term
was included in the model. This is not the case when the design is orthogonal, as is this
23 full factorial design. In such a case, the estimates for the previously included terms
do not change as additional terms are added. This means the ranked list of effect
estimates in the Yates table simultaneously serves as the least squares coefficient
estimates for progressively more complicated models.

The last column of the Yates table gave the residual standard deviation for 8 possible
models, each one progressively more complicated.

Default
Model:
Grand
Mean

At the top of the Yates table, if none of the factors are important, the prediction
equation defaults to the mean of all the response values (the overall or grand mean).
That is,

From the last column of the Yates table, it can be seen that this simplest of all models
has a residual standard deviation (a measure of goodness of fit) of 1.74106 ohms.
Finding a good-fitting model was not one of the stated goals of this experiment, but the
determination of a good-fitting model is "free" along with the rest of the analysis, and
so it is included.

Conclusions From the last column of the Yates table, we can summarize the following prediction
equations:

has a residual standard deviation of 1.74106 ohms.

●   

has a residual standard deviation of 0.57272 ohms.

●   

has a residual standard deviation of 0.30429 ohms.

●   

●   

5.6.1.6. Modeling and Prediction Equations
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has a residual standard deviation of 0.29750 ohms.

The remaining models can be listed in a similar fashion. Note that the full model
provides a perfect fit to the data.

●   

5.6.1.6. Modeling and Prediction Equations
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.7. Intermediate Conclusions

Important
Factors

Taking stock from all of the graphical and quantitative analyses of the
previous sections, we conclude that X1 (= number of turns) is the most
important engineering factor affecting sensitivity, followed by X2 (=
wire distance) as next in importance, followed then by some less
important interactions and X3 (= wire guage).

Best Settings Also, from the various analyses, we conclude that the best design
settings (on the average) for a high-sensitivity detector are

(X1,X2,X3) = (+,-,+)

that is

number of turns = 180,
winding distance = 0.38, and
wire guage = 48.

Can We
Extract
More From
the Data?

Thus, in a very real sense, the analysis is complete. We have achieved
the two most important stated goals of the experiment:

gaining insight into the most important factors, and1.  

ascertaining the optimal production settings.2.  

On the other hand, more information can be squeezed from the data, and
that is what this section and the remaining sections address.

First of all, we focus on the problem of taking the ranked list of
factors and objectively ascertaining which factors are "important"
versus "unimportant".

1.  

In a parallel fashion, we use the subset of important factors
derived above to form a "final" prediction equation that is good
(that is, having a sufficiently small residual standard deviation)
while being parsimonious (having a small number of terms),
compared to the full model, which is perfect (having a residual
standard deviation = 0, that is, the predicted values = the raw
data), but is unduly complicated (consisting of a constant + 7
terms).

2.  

5.6.1.7. Intermediate Conclusions
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.8. Important Factors and Parsimonious Prediction

Identify
Important
Factors

The two problems discussed in the previous section (important factors and a parsimonious model)
will be handled in parallel since determination of one yields the other. In regard to the "important
factors", our immediate goal is to take the full subset of 7 main effects and interactions and
extract a subset that we will declare as "important", with the complementary subset being
"unimportant". Seven criteria are discussed in detail under the Yates analysis in the EDA Chapter
(Chapter 1). The relevant criteria will be applied here. These criteria are not all equally important,
nor will they yield identical subsets, in which case a consensus subset or a weighted consensus
subset must be extracted.

Criteria for
Including
Terms in
the Model

The criteria that we can use in determining whether to keep a factor in the model can be
summarized as follows.

Effects: Engineering Significance1.  

Effects: 90% Numerical Significance2.  

Effects: Statistical Significance3.  

Effects: Half-normal Probability Plots4.  

Averages: Youden Plot5.  

The first four criteria focus on effect estimates with three numerical criteria and one graphical
criterion. The fifth criterion focuses on averages. We discuss each of these criteria in detail in the
following sections.

The last section summarizes the conclusions based on all of the criteria.

Effects:
Engineering
Significance

The minimum engineering significant difference is defined as

where  is the absolute value of the parameter estimate (i.e., the effect) and  is the minimum
engineering significant difference. That is, declare a factor as "important" if the effect is greater
than some a priori declared engineering difference. We use a rough rule-of-thumb of keeping
only those factors whose effect is greater than 10% of the current production average. In this case,
let's say that the average detector has a sensitivity of 2.5 ohms. This suggests that we would
declare all factors whose effect is greater than 10% of 2.5 ohms = 0.25 ohm to be significant from
an engineering point of view.

Based on this minimum engineering-significant-difference criterion, we conclude to keep two
terms: X1 (3.10250) and X2 (-.86750).

5.6.1.8. Important Factors and Parsimonious Prediction
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Effects:
90%
Numerical
Significance

The 90% numerical significance criterion is defined as

That is, declare a factor as important if it exceeds 10% of the largest effect. For the current case
study, the largest effect is from factor 1 (3.10250 ohms), and so 10% of that is 0.31 ohms. This
suggests keeping all factors whose effects exceed 0.31 ohms.

Based on the 90% numerical criterion, we thus conclude to keep two terms: X1 (3.10250) and X2
(-.86750). The X2*X3 term, (0.29750), is just under the cutoff.

Effects:
Statistical
Significance

Statistical significance is defined as

That is, declare a factor as "important" if its effect is more than 2 standard deviations away from 0
(0, by definition, meaning "no effect"). The difficulty with this is that in order to invoke this we
need the  = the standard deviation of an observation.

For the current case study, ignoring 3-factor interactions and higher-order interactions leads to an
estimate of  based on omitting only a single term: the X1*X2*X3 interaction.

Thus for this current case study, if one assumes that the 3-factor interaction is nil and hence
represents a single drawing from a population centered at zero, an estimate of the standard
deviation of an effect is simply the estimate of the interaction effect (0.1425). Two such effect
standard deviations is 0.2850. This rule becomes to keep all  > 0.2850. This results in keeping
three terms: X1 (3.10250), X2 (-.86750), and X1*X2 (.29750).

Effects:
Probability
Plots

The half-normal probability plot can be used to identify important factors.

The following plot shows the half-normal probability plot of the absolute value of the effects.

5.6.1.8. Important Factors and Parsimonious Prediction

http://www.itl.nist.gov/div898/handbook/pri/section6/pri618.htm (2 of 4) [5/1/2006 10:31:49 AM]



The half-normal probablity plot clearly shows two factors displaced off the line, and we see that
those two factors are factor 1 and factor 2. In conclusion, keep two factors: X1 (3.10250) and X2
(-.86750).

Effects:
Youden Plot

A dex Youden plot can be used in the following way. Keep a factor as "important" if it is
displaced away from the central-tendency bunch in a Youden plot of high and low averages.

5.6.1.8. Important Factors and Parsimonious Prediction
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For the case study at hand, the Youden plot clearly shows a cluster of points near the grand
average (2.65875) with two displaced points above (factor 1) and below (factor 2). Based on the
Youden plot, we thus conclude to keep two factors: X1 (3.10250) and X2 (-.86750).

Conclusions In summary, the criterion for specifying "important" factors yielded the following:

Effects, Engineering Significant:1.  X1 X2
Effects, Numerically Significant:2.  X1 X2 (X2*X3 is borderline)
Effects, Statistically Significant:3.  X1 X2 X2*X3
Effects, Half-Normal Probability Plot:4.  X1 X2
Averages, Youden Plot:5.  X1 X2

All the criteria select X1 and X2. One also includes the X2*X3 interaction term (and it is
borderline for another criteria).

We thus declare the following consensus:

Important Factors: X1 and X21.  

Parsimonious Prediction Equation:

(with a residual standard deviation of .30429 ohms)

2.  

5.6.1.8. Important Factors and Parsimonious Prediction
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.9.Validate the Fitted Model

Model
Validation

In the Important Factors and Parsimonious Prediction section, we came to the following model

The residual standard deviation for this model is 0.30429.

The next step is to validate the model. The primary method of model validation is graphical
residual analysis; that is, through an assortment of plots of the differences between the observed

data Y and the predicted value  from the model. For example, the design point (-1,-1,-1) has an
observed data point (from the Background and data section) of Y = 1.70, while the predicted
value from the above fitted model for this design point is

which leads to the residual 0.15875.

Table of
Residuals

If the model fits well,  should be near Y for all 8 design points. Hence the 8 residuals should all
be near zero. The 8 predicted values and residuals for the model with these data are:

   X1   X2   X3  Observed Predicted  Residual
----------------------------------------------
   -1   -1   -1    1.70    1.54125    0.15875
   +1   -1   -1    4.57    4.64375   -0.07375
   -1   +1   -1    0.55    0.67375   -0.12375
   +1   +1   -1    3.39    3.77625   -0.38625
   -1   -1   +1    1.51    1.54125   -0.03125
   +1   -1   +1    4.59    4.64375   -0.05375
   -1   +1   +1    0.67    0.67375   -0.00375
   +1   +1   +1    4.29    3.77625    0.51375

Residual
Standard
Deviation

What is the magnitude of the typical residual? There are several ways to compute this, but the
statistically optimal measure is the residual standard deviation:

with ri denoting the ith residual, N = 8 is the number of observations, and P = 3 is the number of
fitted parameters. From the Yates table, the residual standard deviation is 0.30429.

5.6.1.9. Validate the Fitted Model
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How Should
Residuals
Behave?

If the prediction equation is adequate, the residuals from that equation should behave like random
drawings (typically from an approximately normal distribution), and should, since presumably
random, have no structural relationship with any factor. This includes any and all potential terms
(X1, X2, X3, X1*X2, X1*X3, X2*X3, X1*X2*X3).

Further, if the model is adequate and complete, the residuals should have no structural
relationship with any other variables that may have been recorded. In particular, this includes the
run sequence (time), which is really serving as a surrogate for any physical or environmental
variable correlated with time. Ideally, all such residual scatter plots should appear structureless.
Any scatter plot that exhibits structure suggests that the factor should have been formally
included as part of the prediction equation.

Validating the prediction equation thus means that we do a final check as to whether any other
variables may have been inadvertently left out of the prediction equation, including variables
drifting with time.

The graphical residual analysis thus consists of scatter plots of the residuals versus all 3 factors
and 4 interactions (all such plots should be structureless), a scatter plot of the residuals versus run
sequence (which also should be structureless), and a normal probability plot of the residuals
(which should be near linear). We present such plots below.

Residual
Plots

The first plot is a normal probability plot of the residuals. The second plot is a run sequence plot
of the residuals. The remaining plots are plots of the residuals against each of the factors and each
of the interaction terms.

5.6.1.9. Validate the Fitted Model
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Conclusions We make the following conclusions based on the above plots.

Main Effects and Interactions: The X1 and X2 scatter plots are "flat" (as they must be since
X1 and X2 were explicitly included in the model). The X3 plot shows some structure as
does the X1*X3, the X2*X3, and the X1*X2*X3 plots. The X1*X2 plot shows little
structure. The net effect is that the relative ordering of these scatter plots is very much in
agreement (again, as it must be) with the relative ordering of the "unimportant" factors
given on lines 3-7 of the Yates table. From the Yates table and the X2*X3 plot, it is seen
that the next most influential term to be added to the model would be X2*X3. In effect,
these plots offer a higher-resolution confirmation of the ordering that was in the Yates
table. On the other hand, none of these other factors "passed" the criteria given in the
previous section, and so these factors, suggestively influential as they might be, are still not
influential enough to be added to the model.

1.  

Time Drift: The run sequence scatter plot is random. Hence there does not appear to be a
drift either from time, or from any factor (e.g., temperature, humidity, pressure, etc.)
possibly correlated with time.

2.  

Normality: The normal probability plot of the 8 residuals has some curvature, which
suggests that additional terms might be added. On the other hand, the correlation
coefficient of the 8 ordered residuals and the 8 theoretical normal N(0,1) order statistic
medians (which define the two axes of the plot) has the value 0.934, which is well within
acceptable (5%) limits of the normal probability plot correlation coefficient test for
normality. Thus, the plot is not so non-linear as to reject normality.

3.  

In summary, therefore, we accept the model

as a parsimonious, but good, representation of the sensitivity phenomenon under study.

5.6.1.9. Validate the Fitted Model
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.10.Using the Fitted Model

Model
Provides
Additional
Insight

Although deriving the fitted model was not the primary purpose of the study, it does have two
benefits in terms of additional insight:

Global prediction1.  

Global determination of best settings2.  

Global
Prediction

How does one predict the response at points other than those used in the experiment? The
prediction equation yields good results at the 8 combinations of coded -1 and +1 values for the
three factors:

X1 = Number of turns = 90 and 1801.  

X2 = Winding distance = .38 and 1.142.  

X3 = Wire gauge = 40 and 483.  

What, however, would one expect the detector to yield at target settings of, say,

Number of turns = 1501.  

Winding distance = .502.  

Wire guage = 463.  

Based on the fitted equation, we first translate the target values into coded target values as
follows:

coded target = -1 + 2*(target-low)/(high-low)

Hence the coded target values are

X1 = -1 + 2*(150-90)/(180-90) = 0.3333331.  

X2 = -1 + 2*(.50-.38)/(1.14-.38) = -0.6842112.  

X3 = -1 + 2*(46-40)/(48-40) = 0.50003.  

Thus the raw data

(Number of turns,Winding distance,Wire guage) = (150,0.50,46)

translates into the coded

(X1,X2,X3) = (0.333333,-0.684211,0.50000)

on the -1 to +1 scale.

Inserting these coded values into the fitted equation yields, as desired, a predicted value of

 = 2.65875 + 0.5(3.10250*(.333333) - 0.86750*(-.684211)) = 3.47261

The above procedure can be carried out for any values of turns, distance, and gauge. This is
subject to the usual cautions that equations that are good near the data point vertices may not
necessarily be good everywhere in the factor space. Interpolation is a bit safer than extrapolation,
but it is not guaranteed to provide good results, of course. One would feel more comfortable
about interpolation (as in our example) if additional data had been collected at the center point
and the center point data turned out to be in good agreement with predicted values at the center

5.6.1.10. Using the Fitted Model
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point based on the fitted model. In our case, we had no such data and so the sobering truth is that
the user of the equation is assuming something in which the data set as given is not capable of
suggesting one way or the other. Given that assumption, we have demonstrated how one may
cautiously but insightfully generate predicted values that go well beyond our limited original data
set of 8 points.

Global
Determination
of Best
Settings

In order to determine the best settings for the factors, we can use a dex contour plot. The dex
contour plot is generated for the two most significant factors and shows the value of the response
variable at the vertices (i.e, the -1 and +1 settings for the factor variables) and indicates the
direction that maximizes (or minimizes) the response variable. If you have more than two
significant factors, you can generate a series of dex contour plots with each one using two of the
important factors.

DEX Contour
Plot

The following is the dex contour plot of the number of turns and the winding distance.

The maximum value of the response variable (eddy current) corresponds to X1 (number of turns)
equal to -1 and X2 (winding distance) equal to +1. The thickened line in the contour plot
corresponds to the direction that maximizes the response variable. This information can be used
in planning the next phase of the experiment.

5.6.1.10. Using the Fitted Model
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.11.Conclusions and Next Step

Conclusions The goals of this case study were:

Determine the most important factors.1.  

Determine the best settings for the factors.2.  

Determine a good prediction equation for the data.3.  

The various plots and Yates analysis showed that the number of turns
(X1) and the winding distance (X2) were the most important factors and
a good prediction equation for the data is:

The dex contour plot gave us the best settings for the factors (X1 = -1
and X2 = 1).

Next Step Full and fractional designs are typically used to identify the most
important factors. In some applications, this is sufficient and no further
experimentation is performed. In other applications, it is desired to
maximize (or minimize) the response variable. This typically involves
the use of response surface designs. The dex contour plot can provide
guidance on the settings to use for the factor variables in this next phase
of the experiment.

This is a common sequence for designed experiments in engineering and
scientific applications. Note the iterative nature of this approach. That is,
you typically do not design one large experiment to answer all your
questions. Rather, you run a series of smaller experiments. The initial
experiment or experiments are used to identify the important factors.
Once these factors are identified, follow-up experiments can be run to
fine tune the optimal settings (in terms of maximizing/minimizing the
response variable) for these most important factors.

For this particular case study, a response surface design was not used.

5.6.1.11. Conclusions and Next Step
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5. Process Improvement
5.6. Case Studies
5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.12.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot. It is required that you
have already downloaded and installed Dataplot and configured your
browser to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the Data Sheet window. Across the top of the main
windows are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

   1. Read in the data.  1. You have read 4 columns of numbers 
    into Dataplot: variables Y, X1, X2,
    and X3.

2. Plot the main effects.

   1. Ordered data plot.

   2. Dex scatter plot.

   3. Dex mean plot.

 1. Ordered data plot shows factor 1
    clearly important, factor 2 
    somewhat important.

 2. Dex scatter plot shows significant
    differences for factors 1 and 2.

 3. Dex mean plot shows significant
    differences in means for factors
    1 and 2.

5.6.1.12. Work This Example Yourself
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3. Plots for interaction effects

   1. Generate a dex interaction
      effects matrix plot.

 1. The dex interaction effects matrix
    plot does not show any major
    interaction effects.

4. Block plots for main and interaction effects

   1. Generate block plots.  1. The block plots show that the
    factor 1 and factor 2 effects
    are consistent over all
    combinations of the other
    factors.

5. Estimate main and interaction effects

   1. Perform a Yates fit to estimate the
      main effects and interaction effects.

 1. The Yates analysis shows that the
    factor 1 and factor 2 main effects
    are significant, and the interaction
    for factors 2 and 3 is at the
    boundary of statistical significance.

6. Model selection

   1. Generate half-normal
      probability plots of the effects.

   2. Generate a Youden plot of the
      effects.

 1. The probability plot indicates
    that the model should include
    main effects for factors 1 and 2.

 2. The Youden plot indicates
    that the model should include
    main effects for factors 1 and 2.

7. Model validation

   1. Compute residuals and predicted values
      from the partial model suggested by
      the Yates analysis.

   2. Generate residual plots to validate
      the model.

 1. Check the link for the
    values of the residual and
    predicted values.

 2. The residual plots do not
    indicate any major problems
    with the model using main
    effects for factors 1 and 2.

5.6.1.12. Work This Example Yourself
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8. Dex contour plot

   1. Generate a dex contour plot using
      factors 1 and 2.

 1. The dex contour plot shows
    X1 = -1 and X2 = +1 to be the
    best settings.

5.6.1.12. Work This Example Yourself
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5. Process Improvement
5.6. Case Studies

5.6.2.Sonoluminescent Light Intensity
Case Study

Analysis of a
27-3

Fractional
Factorial
Design

This case study demonstrates the analysis of a 27-3 fractional factorial
design.

This case study is a Dataplot analysis of the optimization of
sonoluminescent light intensity.

The case study is based on the EDA approach to experimental design
discussed in an earlier section.

Contents The case study is divided into the following sections:

Background and data1.  

Initial plots/main effects2.  

Interaction effects3.  

Main and interaction effects: block plots4.  

Important Factors: Youden plot5.  

Important Factors: |effects| plot6.  

Important Factors: half-normal probability plot7.  

Cumulative Residual SD plot8.  

Next step: dex contour plot9.  

Summary of conclusions10.  

Work this example yourself11.  

5.6.2. Sonoluminescent Light Intensity Case Study
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5. Process Improvement
5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.1.Background and Data

Background
and
Motivation

Sonoluminescence is the process of turning sound energy into light. An
ultrasonic horn is used to resonate a bubble of air in a medium, usually
water. The bubble is ultrasonically compressed and then collapses to
light-emitting plasma.

In the general physics community, sonoluminescence studies are being
carried out to characterize it, to understand it, and to uncover its
practical uses. An unanswered question in the community is whether
sonoluminescence may be used for cold fusion.

NIST's motive for sonoluminescent investigations is to assess its
suitability for the dissolution of physical samples, which is needed in
the production of homogeneous Standard Reference Materials (SRMs).
It is believed that maximal dissolution coincides with maximal energy
and maximal light intensity. The ultimate motivation for striving for
maximal dissolution is that this allows improved determination of
alpha-and beta-emitting radionuclides in such samples.

The objectives of the NIST experiment were to determine the important
factors that affect sonoluminescent light intensity and to ascertain
optimal settings of such factors that will predictably achieve high
intensities. An original list of 49 factors was reduced, based on physics
reasons, to the following seven factors: molarity (amount of solute),
solute type, pH, gas type in the water, water depth, horn depth, and flask
clamping.

Time restrictions caused the experiment to be about one month, which
in turn translated into an upper limit of roughly 20 runs. A 7-factor,
2-level fractional factorial design (Resolution IV) was constructed and
run. The factor level settings are given below.

Eva Wilcox and Ken Inn of the NIST Physics Laboratory conducted this
experiment during 1999. Jim Filliben of the NIST Statistical
Engineering Division performed the analysis of the experimental data.

5.6.2.1. Background and Data
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Response
Variable,
Factor
Variables,
and Factor-
Level
Settings

This experiment utilizes the following response and factor variables.

Response Variable (Y) = The sonoluminescent light intensity.1.  

Factor 1 (X1) = Molarity (amount of Solute). The coding is -1 for
0.10 mol and +1 for 0.33 mol.

2.  

Factor 2 (X2) = Solute type. The coding is -1 for sugar and +1 for
glycerol.

3.  

Factor 3 (X3) = pH. The coding is -1 for 3 and +1 for 11.4.  

Factor 4 (X4) = Gas type in water. The coding is -1 for helium
and +1 for air.

5.  

Factor 5 (X5) = Water depth. The coding is -1 for half and +1 for
full.

6.  

Factor 6 (X6) = Horn depth. The coding is -1 for 5 mm and +1 for
10 mm.

7.  

Factor 7 (X7) = Flask clamping. The coding is -1 for unclamped
and +1 for clamped.

8.  

This data set has 16 observations. It is a 27-3 design with no center
points.

Goal of the
Experiment

This case study demonstrates the analysis of a 27-3 fractional factorial
experimental design. The goals of this case study are:

Determine the important factors that affect the sonoluminescent
light intensity. Specifically, we are trying to maximize this
intensity.

1.  

Determine the best settings of the seven factors so as to maximize
the sonoluminescent light intensity.

2.  

Data
Used in
the
Analysis

The following are the data used for this analysis. This data set is given in Yates order.

  Y           X1      X2      X3      X4      X5      X6     
X7
Light             Solute             Gas   Water    Horn   
Flask
Intensity Molarity  type     pH     Type   Depth   Depth 
Clamping
------------------------------------------------------------------
 80.6       -1.0    -1.0    -1.0    -1.0    -1.0    -1.0   
-1.0
 66.1        1.0    -1.0    -1.0    -1.0    -1.0     1.0    
1.0
 59.1       -1.0     1.0    -1.0    -1.0     1.0    -1.0    
1.0
 68.9        1.0     1.0    -1.0    -1.0     1.0     1.0   
-1.0

5.6.2.1. Background and Data
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 75.1       -1.0    -1.0     1.0    -1.0     1.0     1.0    
1.0
373.8        1.0    -1.0     1.0    -1.0     1.0    -1.0   
-1.0
 66.8       -1.0     1.0     1.0    -1.0    -1.0     1.0   
-1.0
 79.6        1.0     1.0     1.0    -1.0    -1.0    -1.0    
1.0
114.3       -1.0    -1.0    -1.0     1.0     1.0     1.0   
-1.0
 84.1        1.0    -1.0    -1.0     1.0     1.0    -1.0    
1.0
 68.4       -1.0     1.0    -1.0     1.0    -1.0     1.0    
1.0
 88.1        1.0     1.0    -1.0     1.0    -1.0    -1.0   
-1.0
 78.1       -1.0    -1.0     1.0     1.0    -1.0    -1.0    
1.0
327.2        1.0    -1.0     1.0     1.0    -1.0     1.0   
-1.0
 77.6       -1.0     1.0     1.0     1.0     1.0    -1.0   
-1.0
 61.9        1.0     1.0     1.0     1.0     1.0     1.0    
1.0

Reading
Data into
Dataplot

These data can be read into Dataplot with the following commands

SKIP 25
READ INN.DAT Y X1 TO X7

5.6.2.1. Background and Data
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5. Process Improvement
5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.2. Initial Plots/Main Effects

Plot the
Data:
Ordered
Data Plot

The first step in the analysis is to generate an ordered data plot.

Conclusions
from the
Ordered
Data Plot

We can make the following conclusions based on the ordered data plot.

Two points clearly stand out. The first 13 points lie in the 50 to 100 range, the next point is
greater than 100, and the last two points are greater than 300.

1.  

Important Factors: For these two highest points, factors X1, X2, X3, and X7 have the same
value (namely, +, -, +, -, respectively) while X4, X5, and X6 have differing values. We
conclude that X1, X2, X3, and X7 are potentially important factors, while X4, X5, and X6
are not.

2.  

Best Settings: Our first pass makes use of the settings at the observed maximum (Y =
373.8). The settings for this maximum are (+, -, +, -, +, -, -).

3.  

5.6.2.2. Initial Plots/Main Effects
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Plot the
Data: Dex
Scatter Plot

The next step in the analysis is to generate a dex scatter plot.

Conclusions
from the
DEX
Scatter Plot

We can make the following conclusions based on the dex scatter plot.

Important Factors: Again, two points dominate the plot. For X1, X2, X3, and X7, these two
points emanate from the same setting, (+, -, +, -), while for X4, X5, and X6 they emanate
from different settings. We conclude that X1, X2, X3, and X7 are potentially important,
while X4, X5, and X6 are probably not important.

1.  

Best Settings: Our first pass at best settings yields (X1 = +, X2 = -, X3 = +, X4 = either, X5
= either, X6 = either, X7 = -).

2.  

Check for
Main
Effects: Dex
Mean Plot

The dex mean plot is generated to more clearly show the main effects:

5.6.2.2. Initial Plots/Main Effects
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Conclusions
from the
DEX Mean
Plot

We can make the following conclusions from the dex mean plot.

Important Factors:
X2 (effect = large: about -80)
X7 (effect = large: about -80)
X1 (effect = large: about 70)
X3 (effect = large: about 65)
X6 (effect = small: about -10)
X5 (effect = small: between 5 and 10)
X4 (effect = small: less than 5)

1.  

Best Settings: Here we step through each factor, one by one, and choose the setting that
yields the highest average for the sonoluminescent light intensity:

(X1,X2,X3,X4,X5,X6,X7) = (+,-,+,+,+,-,-)

2.  

5.6.2.2. Initial Plots/Main Effects
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Comparison
of Plots

All of the above three plots are used primarily to determine the most important factors. Because it
plots a summary statistic rather than the raw data, the dex mean plot shows the ordering of the
main effects most clearly. However, it is still recommended to generate either the ordered data
plot or the dex scatter plot (or both). Since these plot the raw data, they can sometimes reveal
features of the data that might be masked by the dex mean plot.

In this case, the ordered data plot and the dex scatter plot clearly show two dominant points. This
feature would not be obvious if we had generated only the dex mean plot.

Interpretation-wise, the most important factor X2 (solute) will, on the average, change the light
intensity by about 80 units regardless of the settings of the other factors. The other factors are
interpreted similarly.

In terms of the best settings, note that the ordered data plot, based on the maximum response
value, yielded

+, -, +, -, +, -, -

Note that a consensus best value, with "." indicating a setting for which the three plots disagree,
would be

+, -, +, ., +, -, -

Note that the factor for which the settings disagree, X4, invariably defines itself as an
"unimportant" factor.

5.6.2.2. Initial Plots/Main Effects
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5.6.2.3. Interaction Effects

Check for
Interaction
Effects: Dex
Interaction
Plot

In addition to the main effects, it is also important to check for interaction effects, especially
2-factor interaction effects. The dex interaction effects plot is an effective tool for this.

5.6.2.3. Interaction Effects
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Conclusions
from the
DEX
Interaction
Effects Plot

We make the following conclusions from the dex interaction effects plot.

Important Factors: Looking for the plots that have the steepest lines (that is, the largest
effects), and noting that the legends on each subplot give the estimated effect, we have that

The diagonal plots are the main effects. The important factors are: X2, X7, X1, and
X3. These four factors have |effect| > 60. The remaining three factors have |effect| <
10.

❍   

The off-diagonal plots are the 2-factor interaction effects. Of the 21 2-factor
interactions, 9 are nominally important, but they fall into three groups of three:

X1*X3, X4*X6, X2*X7 (effect = 70)■   

X2*X3, X4*X5, X1*X7 (effect approximately 63.5)■   

X1*X2, X5*X6, X3*X7 (effect = -59.6)■   

All remaining 2-factor interactions are small having an |effect| < 20. A virtue of the
interaction effects matrix plot is that the confounding structure of this Resolution IV
design can be read off the plot. In this case, the fact that X1*X3, X4*X6, and X2*X7
all have effect estimates identical to 70 is not a mathematical coincidence. It is a
reflection of the fact that for this design, the three 2-factor interactions are
confounded. This is also true for the other two sets of three (X2*X3, X4*X5, X1*X7,
and X1*X2, X5*X6, X3*X7).

❍   

1.  

Best Settings: Reading down the diagonal plots, we select, as before, the best settings "on
the average":

(X1,X2,X3,X4,X5,X6,X7) = (+,-,+,+,+,-,-)

For the more important factors (X1, X2, X3, X7), we note that the best settings (+, -, +, -)
are consistent with the best settings for the 2-factor interactions (cross-products):

X1: +, X2: - with X1*X2: -
X1: +, X3: + with X1*X3: +
X1: +, X7: - with X1*X7: -
X2: -, X3: + with X2*X3: -
X2: -, X7: - with X2*X7: +
X3: +, X7: - with X3*X7: -

2.  

5.6.2.3. Interaction Effects
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5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.4.Main and Interaction Effects: Block Plots

Block Plots Block plots are a useful adjunct to the dex mean plot and the dex interaction effects plot to
confirm the importance of factors, to establish the robustness of main effect conclusions, and to
determine the existence of interactions.

For block plots, it is the height of the bars that is important, not the relative positioning of each
bar. Hence we focus on the size and internal signs of the blocks, not "where" the blocks are
relative to each other.

We note in passing that for a fractional factorial design, we cannot display all combinations of the
six remaining factors. We have arbitrarily chosen two robustness factors, which yields four
blocks for comparison.

5.6.2.4. Main and Interaction Effects: Block Plots
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Conclusions
from the
Block Plots

We can make the following conclusions from the block plots.

Relative Importance of Factors: Because of the expanded vertical axis, due to the two
"outliers", the block plot is not particularly revealing. Block plots based on alternatively
scaled data (e.g., LOG(Y)) would be more informative.

1.  

5.6.2.4. Main and Interaction Effects: Block Plots
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5.6.2.5. Important Factors: Youden Plot

Purpose The dex Youden plot is used to distinguish between important and unimportant factors.

Sample
Youden Plot

5.6.2.5. Important Factors: Youden Plot
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Conclusions
from the
Youden plot

We can make the following conclusions from the Youden plot.

In the upper left corner are the interaction term X1*X3 and the main effects X1 and X3.1.  

In the lower right corner are the main effects X2 and X7 and the interaction terms X2*X3
and X1*X2.

2.  

The remaining terms are clustered in the center, which indicates that such effects have
averages that are similar (and hence the effects are near zero), and so such effects are
relatively unimportant.

3.  

On the far right of the plot, the confounding structure is given (e.g., 13: 13+27+46), which
suggests that the information on X1*X3 (on the plot) must be tempered with the fact that
X1*X3 is confounded with X2*X7 and X4*X6.

4.  

5.6.2.5. Important Factors: Youden Plot
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5.6.2.6. Important Factors: |Effects| Plot

Purpose The |effects| plot displays the results of a Yates analysis in both a tabular and a graphical format.
It is used to distinguish between important and unimportant effects.

Sample
|Effects|
Plot

5.6.2.6. Important Factors: |Effects| Plot
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Conclusions
from the
|effects| plot

We can make the following conclusions from the |effects| plot.

A ranked list of main effects and interaction terms is:

X2
X7
X1*X3 (confounded with X2*X7 and X4*X6)
X1
X3
X2*X3 (confounded with X4*X5 and X1*X7)
X1*X2 (confounded with X3*X7 and X5*X6)
X3*X4 (confounded with X1*X6 and X2*X5)
X1*X4 (confounded with X3*X6 and X5*X7)
X6
X5
X1*X2*X4 (confounded with other 3-factor interactions)
X4
X2*X4 (confounded with X3*X5 and X6*X7)
X1*X5 (confounded with X2*X6 and X4*X7)

1.  

From the graph, there is a clear dividing line between the first seven effects (all |effect| >
50) and the last eight effects (all |effect| < 20). This suggests we retain the first seven terms
as "important" and discard the remaining as "unimportant".

2.  

Again, the confounding structure on the right reminds us that, for example, the nominal
effect size of 70.0125 for X1*X3 (molarity*pH) can come from an X1*X3 interaction, an
X2*X7 (solute*clamping) interaction, an X4*X6 (gas*horn depth) interaction, or any
mixture of the three interactions.

3.  

5.6.2.6. Important Factors: |Effects| Plot
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5.6.2.7. Important Factors: Half-Normal Probability Plot

Purpose The half-normal probability plot is used to distinguish between important and unimportant
effects.

Sample
Half-Normal
Probability
Plot

5.6.2.7. Important Factors: Half-Normal Probability Plot
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Conclusions
from the
Half-Normal
Probability
Plot

We can make the following conclusions from the half-normal probability plot.

The points in the plot divide into two clear clusters:

An upper cluster (|effect| > 60).❍   

A lower cluster (|effect| < 20).❍   

1.  

The upper cluster contains the effects:

X2, X7, X1*X3 (and confounding), X1, X3, X2*X3 (and confounding), X1*X2 (and
confounding)

These effects should definitely be considered important.

2.  

The remaining effects lie on a line and form a lower cluster. These effects are declared
relatively unimportant.

3.  

The effect id's and the confounding structure are given on the far right (e.g., 13:13+27+46).4.  

5.6.2.7. Important Factors: Half-Normal Probability Plot

http://www.itl.nist.gov/div898/handbook/pri/section6/pri627.htm (2 of 2) [5/1/2006 10:31:54 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


5. Process Improvement
5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.8.Cumulative Residual Standard Deviation Plot

Purpose The cumulative residual standard deviation plot is used to identify the best (parsimonious) model.

Sample
Cumulative
Residual
Standard
Deviation
Plot

5.6.2.8. Cumulative Residual Standard Deviation Plot
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Conclusions
from the
Cumulative
Residual
SD Plot

We can make the following conclusions from the cumulative residual standard deviation plot.

The baseline model consisting only of the average ( ) = 110.6063) has a high residual
standard deviation (95).

1.  

The cumulative residual standard deviation shows a significant and steady decrease as the
following terms are added to the average: X2, X7, X1*X3, X1, X3, X2*X3, and X1*X2.
Including these terms reduces the cumulative residual standard deviation from
approximately 95 to approximately 17.

2.  

Exclude from the model any term after X1*X2 as the decrease in the residual standard
deviation becomes relatively small.

3.  

From the |effects| plot, we see that the average is 110.6063, the estimated X2 effect is
-78.6126, and so on. We use this to from the following prediction equation:

Note that X1*X3 is confounded with X2*X7 and X4*X6, X1*X5 is confounded with X2*X6
and X4*X7, and X1*X2 is confounded with X3*X7 and X5*X6.

From the above graph, we see that the residual standard deviation for this model is
approximately 17.

4.  

5.6.2.8. Cumulative Residual Standard Deviation Plot
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5.6.2.9.Next Step: Dex Contour Plot

Purpose The dex contour plot is used to determine the best factor settings for the two most important
factors in the next iteration of the experiment.

From the previous plots, we identified X2 (solute) and X7 (horn depth) as the two most important
factors.

Sample Dex
Contour
Plot

5.6.2.9. Next Step: Dex Contour Plot
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Conclusions
from the
Dex
Contour
Plot

We can make the following conclusions from the dex contour plot.

The best (high light intensity) setting for X2 is "-" and the best setting for X7 is "-". This
combination yields an average response of approximately 224. The next highest average
response from any other combination of these factors is only 76.

1.  

The non-linear nature of the contour lines implies that the X2*X7 interaction is important.2.  

On the left side of the plot from top to bottom, the contour lines start at 0, increment by 50
and stop at 400. On the bottom of the plot from right to left, the contour lines start at 0,
increment by 50 and stop at 400.

To achieve a light intensity of, say 400, this suggests an extrapolated best setting of (X2,
X7) = (-2,-2).

3.  

Such extrapolation only makes sense if X2 and X7 are continuous factors. Such is not the
case here. In this example, X2 is solute (-1 = sugar and +1 = glycerol) and X7 is flask
clamping (-1 is unclamped and +1 is clamped). Both factors are discrete, and so
extrapolated settings are not possible.

4.  

5.6.2.9. Next Step: Dex Contour Plot
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5.6.2.10.Summary of Conclusions

Most
Important
Factors

The primary goal of this experiment was to identify the most important
factors in maximizing the sonoluminescent light intensity.

Based on the preceding graphical analysis, we make the following
conclusions.

Four factors and three groups of 2-factor interactions are
important. A rank-order listing of factors is:

X2: Solute (effect = -78.6)1.  

X7: Clamping (effect = -78.1)2.  

X1*X3 (Molarity*pH) or
X2*X7 (Solute*Clamping)
(effect = 70.0)

3.  

X1: Molarity (effect = 66.2)4.  

X3: pH (effect = 63.5)5.  

X2*X3 (Solute*pH) or
X4*X5 (Gas*Water Depth)
X1*X7 (Molarity*Clamping)
(effect = -63.5)

6.  

X1*X2 (Molarity*Solute) or
X3*X7 (Ph*Clamping)
(effect = -59.6)

7.  

●   

Thus, of the seven factors and 21 2-factor interactions, it was
found that four factors and at most seven 2-factor interactions
seem important, with the remaining three factors and 14
interactions apparently being unimportant.

●   

5.6.2.10. Summary of Conclusions
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Best Settings The best settings to maximize sonoluminescent light intensity are

X1 (Molarity) + (0.33 mol)●   

X2 (Solute) - (sugar)●   

X3 (pH) + (11)●   

X4 (Gas) . (either)●   

X5 (Water Depth) + (full)●   

X6 (Horn Depth) - (5 mm)●   

X7 (Clamping) - (unclamped)●   

with the X1, X2, X3, and X7 settings especially important.

5.6.2.10. Summary of Conclusions
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5.6.2.11.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window, and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more
detailed information about each analysis step from the
case study description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 8 columns of numbers 
    into Dataplot: variables Y, X1, X2,
    X3, X4, X5, X6, and X7.

2. Plot the main effects.

   1. Ordered data plot.

   2. Dex scatter plot.

   3. Dex mean plot.

 1. Ordered data plot shows 2 points
    that stand out.  Potential
    important factors are X1, X2, X3,
    and X7.

 2. Dex scatter plot identifies X1, X2,
    X3, and X7 as important factors.

 3. Dex mean plot identifies X1, X2,
    X3, and X7 as important factors.

5.6.2.11. Work This Example Yourself
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3. Plots for interaction effects

   1. Generate a dex interaction
      effects plot.

 1. The dex interaction effects
    plot shows several important
    interaction effects.

4. Block plots for main and interaction effects

   1. Generate block plots.  1. The block plots are not
    particularly helpful in
    this case.

5. Youden plot to identify important factors

   1. Generate a Youden plot.  1. The Youden plot identifies
    X1, X2, X3, and X7 as important
    factors.  It also identifies a
    number of important interactions
    (X1*X3, X1*X2, X2*X3).

6. |Effects| plot to identify important factors

   1. Generate |effects| plot.  1. The |effects| plot identifies
    X2, X7, X1*X3, X1, X3, X2*X3,
    and X1*X2 as important factors
    and interactions.

7. Half-normal probability plot to
   identify important factors

   1. Generate half-normal probability
      plot.

 1. The half-normal probability plot
    identifies X2, X7, X1*X3, X1, X3,
    X2*X3, and X1*X2 as important
    factors and interactions.

5.6.2.11. Work This Example Yourself
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8. Cumulative residual standard
   deviation plot

   1. Generate a cumulative residual
      standard deviation plot.

 1. The cumulative residual standard
    deviation plot results in a model
    with 4 main effects and 3 2-factor
    interactions.

9. Dex contour plot

   1. Generate a dex contour plot using
      factors 2 and 7.

 1. The dex contour plot shows
    X2 = -1 and X7 = -1 to be the
    best settings.
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5. Process Improvement

5.7.A Glossary of DOE Terminology

Definitions
for key DOE
terms

This page gives definitions and information for many of the basic terms
used in DOE. 

●   Alias: When the estimate of an effect also includes the
influence of one or more other effects (usually high order
interactions) the effects are said to be aliased (see
confounding). For example, if the estimate of effect D in a
four factor experiment actually estimates (D + ABC), then
the main effect D is aliased with the 3-way interaction
ABC. Note: This causes no difficulty when the higher order
interaction is either non-existent or insignificant.

●   Analysis of Variance (ANOVA): A mathematical
process for separating the variability of a group of
observations into assignable causes and setting up various
significance tests.

●   Balanced Design: An experimental design where all
cells (i.e. treatment combinations) have the same number of
observations.

●   Blocking: A schedule for conducting treatment
combinations in an experimental study such that any effects
on the experimental results due to a known change in raw
materials, operators, machines, etc., become concentrated
in the levels of the blocking variable. Note: the reason for
blocking is to isolate a systematic effect and prevent it from
obscuring the main effects. Blocking is achieved by
restricting randomization.

●   Center Points: Points at the center value of all factor
ranges.
Coding Factor Levels: Transforming the scale of
measurement for a factor so that the high value becomes +1
and the low value becomes -1 (see scaling). After coding
all factors in a 2-level full factorial experiment, the design
matrix has all orthogonal columns. 
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Coding  is a simple linear transformation of the original
measurement scale. If the "high" value is Xh and the "low"
value is XL (in the original scale), then the scaling
transformation takes any original X value and converts it to
(X - a)/b, where
a = (Xh + XL)/2 and b = ( Xh -X L)/2.
To go back to the original measurement scale, just take the
coded value and multiply it by "b" and add "a" or, X =
b(coded value) + a.

As an example, if the factor is temperature and the high
setting is 65oC and the low setting is 55oC, then a = (65 +
55)/2 = 60 and b = (65 - 55)/2 = 5. The center point (where
the coded value is 0) has a temperature of 5(0) + 60 = 
60oC.     

●   Comparative Designs: A design aimed at making
conclusions about one a priori important factor, possibly in
the presence of one or more other "nuisance" factors.

●   Confounding:  A confounding design is one where some
treatment effects (main or interactions) are estimated by the
same linear combination of the experimental observations
as some blocking effects. In this case, the treatment effect
and the blocking effect are said to be confounded.
Confounding is also used as a general term to indicate that
the value of a main effect estimate comes from both the
main effect itself and also contamination or bias from
higher order interactions. Note: Confounding designs
naturally arise when full factorial designs have to be run in
blocks and the block size is smaller than the number of
different treatment combinations. They also occur
whenever a fractional factorial design is chosen instead of a
full factorial design. 

●   Crossed Factors: See factors below.

●   Design: A set of experimental runs which allows you to
fit a particular model and estimate your desired effects.

●   Design Matrix: A matrix description of an experiment
that is useful for constructing and analyzing experiments.

●   Effect: How changing the settings of a factor changes
the response. The effect of a single factor is also called
a main effect. Note: For a factor A with two levels, scaled
so that low = -1 and high = +1, the effect of A is estimated
by subtracting the average response when A is -1 from the
average response when A = +1 and dividing the result by 2
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(division by 2 is needed because the -1 level is 2 scaled
units away from the +1 level).

●   Error: Unexplained variation in a collection of
observations. Note: DOE's typically require understanding
of both random error and lack of fit error. 

●   Experimental Unit: The entity to which a specific
treatment combination is applied. Note: an experimental
unit can be a

PC board●   

silicon wafer●   

tray of components simultaneously treated●   

individual agricultural plants●   

plot of land●   

automotive transmissions●   

etc.●   

●   Factors: Process inputs an investigator manipulates to
cause a change in the output. Some factors cannot be
controlled by the experimenter but may effect the
responses. If their effect is significant, these uncontrolled
factors should be measured and used in the data analysis.
Note: The inputs can be discrete or continuous.

Crossed Factors: Two factors are crossed if every
level of one occurs with every level of the other in
the experiment. 

●   

Nested Factors: A factor "A" is nested within
another factor "B" if the levels or values of "A" are
different for every level or value of "B". Note:
Nested factors or effects have a hierarchical
relationship.

●   

●   Fixed Effect: An effect associated with an input variable
that has a limited number of levels or in which only a
limited number of levels are of interest to the experimenter.

●   Interactions: Occurs when the effect of one factor on a
response depends on the level of another factor(s). 

●   Lack of Fit Error: Error that occurs when the analysis
omits one or more important terms or factors from the
process model. Note: Including replication in a DOE
allows separation of experimental error into its
components: lack of fit and random (pure) error.

●   Model: Mathematical relationship which relates changes
in a given response to changes in one or more factors. 
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●   Nested Factors: See factors above.

●   Orthogonality: Two vectors of the same length are
orthogonal if the sum of the products of their corresponding
elements is 0. Note: An experimental design is orthogonal
if the effects of any factor balance out (sum to zero) across
the effects of the other factors.

●   Random Effect: An effect associated with input
variables chosen at random from a population having a
large or infinite number of possible values. 

●   Random error: Error that occurs due to natural variation
in the process. Note: Random error is typically assumed to
be normally distributed with zero mean and a constant
variance. Note: Random error is also called experimental
error.

●   Randomization: A schedule for allocating treatment
material and for conducting treatment combinations in a
DOE such that the conditions in one run neither depend on
the conditions of the previous run nor predict the conditions
in the subsequent runs. Note: The importance of
randomization cannot be over stressed. Randomization is
necessary for conclusions drawn from the experiment to be
correct, unambiguous and defensible. 

●   Replication: Performing the same treatment combination
more than once. Note: Including replication allows an
estimate of the random error independent of any lack of fit
error. 

●   Resolution: A term which describes the degree to which
estimated main effects are aliased (or confounded) with
estimated 2-level interactions, 3-level interactions, etc. In
general, the resolution of a design is one more than the
smallest order interaction that some main effect is
confounded (aliased) with. If some main effects are
confounded with some 2-level interactions, the resolution is
3. Note: Full factorial designs have no confounding and are
said to have resolution "infinity". For most practical
purposes, a resolution 5 design is excellent and a resolution
4 design may be adequate. Resolution 3 designs are useful
as economical screening designs. 

●   Responses: The output(s) of a process. Sometimes called
dependent variable(s).

●   Response Surface Designs: A DOE that fully explores
the process window and models the responses. Note: These
designs are most effective when there are less than 5
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factors. Quadratic models are used for response surface
designs and at least three levels of every factor are needed
in the design.

●   Rotatability: A design is rotatable if the variance of the
predicted response at any point x depends only on the
distance of x from the design center point. A design with
this property can be rotated around its center point without
changing the prediction variance at x. Note: Rotatability is
a desirable property for response surface designs (i.e.
quadratic model designs).

●   Scaling Factor Levels: Transforming factor levels so
that the high value becomes +1 and the low value becomes
-1. 

●   Screening Designs: A DOE that identifies which of
many factors have a significant effect on the response.
Note: Typically screening designs have more than 5
factors.

●   Treatment: A treatment is a specific combination of
factor levels whose effect is to be compared with other
treatments.

●   Treatment Combination: The combination of the
settings of several factors in a given experimental trial.
Also known as a run.

●   Variance Components: Partitioning of the overall
variation into assignable components.
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Software to
design and
analyze
experiments

In addition to the extensive design and analysis documentation and
routines in Dataplot, there are many other good commercial DOE
packages. This Chapter showed examples using "JMP" (by the SAS
Institute, 100 SAS CampusDrive, Cary, North Carolina 27513-9905),
as an illustration of a good commercial package.
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6.Process or Product Monitoring and
Control

This chapter presents techniques for monitoring and controlling processes and signaling
when corrective actions are necessary.

1. Introduction

History1.  

Process Control Techniques2.  

Process Control3.  

"Out of Control"4.  

"In Control" but Unacceptable5.  

Process Capability6.  

2. Test Product for Acceptability

Acceptance Sampling 1.  

Kinds of Sampling Plans2.  

Choosing a Single Sampling Plan3.  

Double Sampling Plans4.  

Multiple Sampling Plans5.  

Sequential Sampling Plans6.  

Skip Lot Sampling Plans7.  

3. Univariate and Multivariate Control
Charts

Control Charts1.  

Variables Control Charts2.  

Attributes Control Charts3.  

Multivariate Control charts4.  

4. Time Series Models

Definitions, Applications and
Techniques

1.  

Moving Average or Smoothing
Techniques

2.  

Exponential Smoothing3.  

Univariate Time Series Models 4.  

Multivariate Time Series Models 5.  

5. Tutorials

What do we mean by "Normal"
data?

1.  

What to do when data are
non-normal

2.  

Elements of Matrix Algebra3.  

Elements of Multivariate Analysis4.  

Principal Components5.  

6. Case Study

Lithography Process Data1.  

Box-Jenkins Modeling Example2.  
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6.   Process or Product Monitoring and Control -
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6. Process or Product Monitoring and Control

6.1. Introduction

Contents of
Section 

This section discusses the basic concepts of statistical process control,
quality control and process capability.
 

How did Statistical Quality Control Begin?1.  

What are Process Control Techniques? 2.  

What is Process Control?3.  

What to do if the process is "Out of Control"?4.  

What to do if "In Control" but Unacceptable?5.  

What is Process Capability?
 

6.  

6.1. Introduction
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.1.How did Statistical Quality Control
Begin?

Historical
perspective

Quality Control has been with us for a long time. How long? It is safe
to say that when manufacturing began and competition accompanied
manufacturing, consumers would compare and choose the most
attractive product (barring a monopoly of course). If manufacturer A
discovered that manufacturer B's profits soared, the former tried to
improve his/her offerings, probably by improving the quality of the
output, and/or lowering the price. Improvement of quality did not
necessarily stop with the product - but also included the process used
for making the product.

The process was held in high esteem, as manifested by the medieval
guilds of the Middle Ages. These guilds mandated long periods of
training for apprentices, and those who were aiming to become master
craftsmen had to demonstrate evidence of their ability. Such
procedures were, in general, aimed at the maintenance and
improvement of the quality of the process.

In modern times we have professional societies, governmental
regulatory bodies such as the Food and Drug Administration, factory
inspection, etc., aimed at assuring the quality of products sold to
consumers. Quality Control has thus had a long history. 

Science of
statistics is
fairly recent

On the other hand, statistical quality control is comparatively new.
The science of statistics itself goes back only two to three centuries.
And its greatest developments have taken place during the 20th
century. The earlier applications were made in astronomy and physics
and in the biological and social sciences. It was not until the 1920s
that statistical theory began to be applied effectively to quality control
as a result of the development of sampling theory.

6.1.1. How did Statistical Quality Control Begin?
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The concept of
quality control
in
manufacturing
was first
advanced by
Walter
Shewhart

The first to apply the newly discovered statistical methods to the
problem of quality control was Walter A. Shewhart of the Bell
Telephone Laboratories. He issued a memorandum on May 16, 1924
that featured a sketch of a modern control chart. 

Shewhart kept improving and working on this scheme, and in 1931 he
published a book on statistical quality control, "Economic Control of
Quality of Manufactured Product", published by Van Nostrand in
New York. This book set the tone for subsequent applications of
statistical methods to process control.

Contributions
of Dodge and
Romig to
sampling
inspection

Two other Bell Labs statisticians, H.F. Dodge and H.G. Romig
spearheaded efforts in applying statistical theory to sampling
inspection. The work of these three pioneers constitutes much of what
nowadays comprises the theory of statistical quality and control.
There is much more to say about the history of statistical quality
control and the interested reader is invited to peruse one or more of
the references. A very good summary of the historical background of
SQC is found in chapter 1 of "Quality Control and Industrial
Statistics", by Acheson J. Duncan. See also Juran (1997).
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.2.What are Process Control
Techniques?

Statistical Process Control (SPC)

Typical
process
control
techniques

There are many ways to implement process control. Key monitoring and
investigating tools include:

Histograms●   

Check Sheets●   

Pareto Charts●   

Cause and Effect Diagrams●   

Defect Concentration Diagrams●   

Scatter Diagrams●   

Control Charts●   

All these are described in Montgomery (2000). This chapter will focus
(Section 3) on control chart methods, specifically:

Classical Shewhart Control charts,●   

Cumulative Sum (CUSUM) charts●   

Exponentially Weighted Moving Average (EWMA) charts●   

Multivariate control charts●   

6.1.2. What are Process Control Techniques?
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Underlying
concepts

The underlying concept of statistical process control is based on a
comparison of what is happening today with what happened previously.
We take a snapshot of how the process typically performs or build a
model of how we think the process will perform and calculate control
limits for the expected measurements of the output of the process. Then
we collect data from the process and compare the data to the control
limits. The majority of measurements should fall within the control
limits. Measurements that fall outside the control limits are examined to
see if they belong to the same population as our initial snapshot or
model. Stated differently, we use historical data to compute the initial
control limits. Then the data are compared against these initial limits.
Points that fall outside of the limits are investigated and, perhaps, some
will later be discarded. If so, the limits would be recomputed and the
process repeated. This is referred to as Phase I. Real-time process
monitoring, using the limits from the end of Phase I, is Phase II.

Statistical Quality Control (SQC)

Tools of
statistical
quality
control

Several techniques can be used to investigate the product for defects or
defective pieces after all processing is complete. Typical tools of SQC
(described in section 2) are:

Lot Acceptance sampling plans●   

Skip lot sampling plans●   

Military (MIL) Standard sampling plans●   

Underlying
concepts of
statistical
quality
control

The purpose of statistical quality control is to ensure, in a cost efficient
manner, that the product shipped to customers meets their specifications.
Inspecting every product is costly and inefficient, but the consequences
of shipping non conforming product can be significant in terms of
customer dissatisfaction. Statistical Quality Control is the process of
inspecting enough product from given lots to probabilistically ensure a
specified quality level.

6.1.2. What are Process Control Techniques?
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.3.What is Process Control?

Two types of
intervention
are possible
-- one is
based on
engineering
judgment
and the
other is
automated

Process Control is the active changing of the process based on the
results of process monitoring. Once the process monitoring tools have
detected an out-of-control situation, the person responsible for the
process makes a change to bring the process back into control.

Out-of-control Action Plans (OCAPS) detail the action to be
taken once an out-of-control situation is detected. A specific
flowchart, that leads the process engineer through the corrective
procedure, may be provided for each unique process.

1.  

Advanced Process Control Loops are automated changes to the
process that are programmed to correct for the size of the
out-of-control measurement.

2.  

6.1.3. What is Process Control?
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.4.What to do if the process is "Out of
Control"?

Reactions to
out-of-control
conditions

If the process is out-of-control, the process engineer looks for an
assignable cause by following the out-of-control action plan (OCAP)
associated with the control chart. Out-of-control refers to rejecting the
assumption that the current data are from the same population as the
data used to create the initial control chart limits. 

For classical Shewhart charts, a set of rules called the Western Electric
Rules (WECO Rules) and a set of trend rules often are used to
determine out-of-control.

6.1.4. What to do if the process is "Out of Control"?
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.5.What to do if "In Control" but
Unacceptable?

In control
means process
is predictable

"In Control" only means that the process is predictable in a statistical
sense. What do you do if the process is “in control” but the average
level is too high or too low or the variability is unacceptable?

Process
improvement
techniques

Process improvement techniques such as

experiments●   

calibration●   

re-analysis of historical database●   

can be initiated to put the process on target or reduce the variability.

Process must
be stable

Note that the process must be stable before it can be centered at a
target value or its overall variation can be reduced.

6.1.5. What to do if "In Control" but Unacceptable?
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.6.What is Process Capability?

Process capability compares the output of an in-control process to the specification
limits by using capability indices. The comparison is made by forming the ratio of the
spread between the process specifications (the specification "width") to the spread of
the process values, as measured by 6 process standard deviation units (the process
"width").

Process Capability Indices

A process
capability
index uses
both the
process
variability
and the
process
specifications
to determine
whether the
process is
"capable"

We are often required to compare the output of a stable process with the process
specifications and make a statement about how well the process meets specification.  To
do this we compare the natural variability of a stable process with the process
specification limits. 

A capable process is one where almost all the measurements fall inside the specification
limits. This can be represented pictorially by the plot below:

There are several statistics that can be used to measure the capability of a process:  Cp,
Cpk, Cpm.

6.1.6. What is Process Capability?
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Most capability indices estimates are valid only if the sample size used is 'large enough'.
Large enough is generally thought to be about 50 independent data values. 

The Cp, Cpk, and Cpm statistics assume that the population of data values is normally
distributed. Assuming a two-sided specification, if  and  are the mean and standard
deviation, respectively, of the normal data and USL, LSL, and T are the upper and
lower specification limits and the target value, respectively, then the population
capability indices are defined as follows:

Definitions of
various
process
capability
indices

Sample
estimates of
capability
indices

Sample estimators for these indices are given below. (Estimators are indicated with a
"hat" over them).

The estimator for Cpk can also be expressed as Cpk = Cp(1-k), where k is a scaled
distance between the midpoint of the specification range, m, and the process mean, .

Denote the midpoint of the specification range by m = (USL+LSL)/2. The distance
between the process mean, , and the optimum, which is m, is  - m, where

. The scaled distance is

(the absolute sign takes care of the case when ). To determine the
estimated value, , we estimate  by . Note that .

The estimator for the Cp index, adjusted by the k factor, is

6.1.6. What is Process Capability?
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Since , it follows that .

Plot showing
Cp for varying
process
widths

To get an idea of the value of the Cp statistic for varying process widths, consider the
following plot

This can be expressed numerically by the table below:

Translating
capability into
"rejects"

USL - LSL 6 8 10 12

Cp 1.00 1.33 1.66 2.00

Rejects .27% 64 ppm .6 ppm 2 ppb

% of spec used 100 75 60 50

where ppm = parts per million and ppb = parts per billion. Note that the reject figures
are based on the assumption that the distribution is centered at .

We have discussed the situation with two spec. limits, the USL and LSL. This is known
as the bilateral or two-sided case. There are many cases where only the lower or upper
specifications are used. Using one spec limit is called unilateral or one-sided. The
corresponding capability indices are

6.1.6. What is Process Capability?
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One-sided
specifications
and the
corresponding
capability
indices

and

where  and  are the process mean and standard deviation, respectively.

Estimators of Cpu and Cpl are obtained by replacing  and  by  and s, respectively.
The following relationship holds

Cp = (Cpu + Cpl) /2.

This can be represented pictorially by

Note that we also can write:

Cpk = min {Cpl, Cpu}.

Confidence Limits For Capability Indices

6.1.6. What is Process Capability?
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Confidence
intervals for
indices

Assuming normally distributed process data, the distribution of the sample  follows

from a Chi-square distribution and  and  have distributions related to the
non-central t distribution. Fortunately, approximate confidence limits related to the
normal distribution have been derived. Various approximations to the distribution of

 have been proposed, including those given by Bissell (1990), and we will use a
normal approximation.

The resulting formulas for confidence limits are given below:

100(1- )% Confidence Limits for Cp

where

             

 = degrees of freedom

Confidence
Intervals for
Cpu and Cpl

Approximate 100(1- )% confidence limits for Cpu with sample size n are:

with z denoting the percent point function of the standard normal distribution. If  is
not known, set it to .

Limits for Cpl are obtained by replacing  by .

6.1.6. What is Process Capability?
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Confidence
Interval for
Cpk

Zhang et al. (1990) derived the exact variance for the estimator of Cpk as well as an
approximation for large n. The reference paper is Zhang, Stenback and Wardrop (1990),
"Interval Estimation of the process capability index", Communications in Statistics:
Theory and Methods, 19(21), 4455-4470.

The variance is obtained as follows:

Let

Then

Their approximation is given by:

where

The following approximation is commonly used in practice

It is important to note that the sample size should be at least 25 before these
approximations are valid. In general, however, we need n  100 for capability studies.
Another point to observe is that variations are not negligible due to the randomness of
capability indices.

Capability Index Example

6.1.6. What is Process Capability?
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An example For a certain process the USL = 20 and the LSL = 8. The observed process average, 
= 16, and the standard deviation, s = 2. From this we obtain

This means that the process is capable as long as it is located at the midpoint, m = (USL
+ LSL)/2 = 14.

But it doesn't, since  = 16. The  factor is found by

and

We would like to have  at least 1.0, so this is not a good process. If possible,

reduce the variability or/and center the process. We can compute the  and 

From this we see that the , which is the smallest of the above indices, is 0.6667.

Note that the formula  is the algebraic equivalent of the min{

, } definition.

What happens if the process is not approximately normally distributed?

What you can
do with
non-normal
data

The indices that we considered thus far are based on normality of the process
distribution. This poses a problem when the process distribution is not normal. Without
going into the specifics, we can list some remedies.

Transform the data so that they become approximately normal. A popular
transformation is the Box-Cox transformation

1.  

Use or develop another set of indices, that apply to nonnormal distributions. One
statistic is called Cnpk (for non-parametric Cpk). Its estimator is calculated by

2.  

6.1.6. What is Process Capability?
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where p(0.995) is the 99.5th percentile of the data and p(.005) is the 0.5th
percentile of the data.

For additional information on nonnormal distributions, see Johnson and Kotz
(1993).

There is, of course, much more that can be said about the case of nonnormal data.
However, if a Box-Cox transformation can be successfully performed, one is
encouraged to use it.

6.1.6. What is Process Capability?
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6. Process or Product Monitoring and Control

6.2.Test Product for Acceptability: Lot
Acceptance Sampling

This section describes how to make decisions on a lot-by-lot basis
whether to accept a lot as likely to meet requirements or reject the lot as
likely to have too many defective units.

Contents of
section 2

This section consists of the following topics.

What is Acceptance Sampling?1.  

What kinds of Lot Acceptance Sampling Plans (LASPs) are
there?

2.  

How do you Choose a Single Sampling Plan?

Choosing a Sampling Plan: MIL Standard 105D1.  

Choosing a Sampling Plan with a given OC Curve2.  

3.  

What is Double Sampling? 4.  

What is Multiple Sampling?5.  

What is a Sequential Sampling Plan?6.  

What is Skip Lot Sampling?7.  

6.2. Test Product for Acceptability: Lot Acceptance Sampling
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.1.What is Acceptance Sampling?

Contributions
of Dodge and
Romig to
acceptance
sampling

Acceptance sampling is an important field of statistical quality control
that was popularized by Dodge and Romig and originally applied by
the U.S. military to the testing of bullets during World War II. If every
bullet was tested in advance, no bullets would be left to ship. If, on the
other hand, none were tested, malfunctions might occur in the field of
battle, with potentially disastrous results.

Definintion of
Lot
Acceptance
Sampling

Dodge reasoned that a sample should be picked at random from the
lot, and on the basis of information that was yielded by the sample, a
decision should be made regarding the disposition of the lot. In
general, the decision is either to accept or reject the lot. This process is
called Lot Acceptance Sampling or just Acceptance Sampling.

"Attributes"
(i.e., defect
counting) will
be assumed

Acceptance sampling is "the middle of the road" approach between no
inspection and 100% inspection. There are two major classifications of
acceptance plans: by attributes ("go, no-go") and by variables. The
attribute case is the most common for acceptance sampling, and will
be assumed for the rest of this section.

Important
point

A point to remember is that the main purpose of acceptance sampling
is to decide whether or not the lot is likely to be acceptable, not to
estimate the quality of the lot.

Scenarios
leading to
acceptance
sampling

Acceptance sampling is employed when one or several of the
following hold: 

Testing is destructive●   

The cost of 100% inspection is very high●   

100% inspection takes too long●   

6.2.1. What is Acceptance Sampling?
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Acceptance
Quality
Control and
Acceptance
Sampling

It was pointed out by Harold Dodge in 1969 that Acceptance Quality
Control is not the same as Acceptance Sampling. The latter depends
on specific sampling plans, which when implemented indicate the
conditions for acceptance or rejection of the immediate lot that is
being inspected. The former may be implemented in the form of an
Acceptance Control Chart. The control limits for the Acceptance
Control Chart are computed using the specification limits and the
standard deviation of what is being monitored (see Ryan, 2000 for
details).

An
observation
by Harold
Dodge

In 1942, Dodge stated:

"....basically the "acceptance quality control" system that was
developed encompasses the concept of protecting the consumer from
getting unacceptable defective product, and encouraging the producer
in the use of process quality control by: varying the quantity and
severity of acceptance inspections in direct relation to the importance
of the characteristics inspected, and in the inverse relation to the
goodness of the quality level as indication by those inspections."

To reiterate the difference in these two approaches: acceptance
sampling plans are one-shot deals, which essentially test short-run
effects. Quality control is of the long-run variety, and is part of a
well-designed system for lot acceptance.

An
observation
by Ed
Schilling

Schilling (1989) said:

"An individual sampling plan has much the effect of a lone sniper,
while the sampling plan scheme can provide a fusillade in the battle
for quality improvement."

Control of
product
quality using
acceptance
control charts

According to the ISO standard on acceptance control charts (ISO
7966, 1993), an acceptance control chart combines consideration of
control implications with elements of acceptance sampling. It is an
appropriate tool for helping to make decisions with respect to process
acceptance. The difference between acceptance sampling approaches
and acceptance control charts is the emphasis on process acceptability
rather than on product disposition decisions.

6.2.1. What is Acceptance Sampling?
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.2.What kinds of Lot Acceptance
Sampling Plans (LASPs) are there?

LASP is a
sampling
scheme and
a set of rules

A lot acceptance sampling plan (LASP) is a sampling scheme and a set
of rules for making decisions. The decision, based on counting the
number of defectives in a sample, can be to accept the lot, reject the lot,
or even, for multiple or sequential sampling schemes, to take another
sample and then repeat the decision process.

Types of
acceptance
plans to
choose from

LASPs fall into the following categories:

Single sampling plans:. One sample of items is selected at
random from a lot and the disposition of the lot is determined
from the resulting information. These plans are usually denoted as
(n,c) plans for a sample size n, where the lot is rejected if there
are more than c defectives. These are the most common (and
easiest) plans to use although not the most efficient in terms of
average number of samples needed.

●   

Double sampling plans: After the first sample is tested, there are
three possibilities:

Accept the lot1.  

Reject the lot2.  

No decision3.  

If the outcome is (3), and a second sample is taken, the procedure
is to combine the results of both samples and make a final
decision based on that information.

●   

Multiple sampling plans: This is an extension of the double
sampling plans where more than two samples are needed to reach
a conclusion. The advantage of multiple sampling is smaller
sample sizes.

●   

Sequential sampling plans: . This is the ultimate extension of
multiple sampling where items are selected from a lot one at a
time and after inspection of each item a decision is made to accept
or reject the lot or select another unit.

●   

Skip lot sampling plans:. Skip lot sampling means that only a●   
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fraction of the submitted lots are inspected.

Definitions
of basic
Acceptance
Sampling
terms

Deriving a plan, within one of the categories listed above, is discussed
in the pages that follow. All derivations depend on the properties you
want the plan to have. These are described using the following terms:

Acceptable Quality Level (AQL): The AQL is a percent defective
that is the base line requirement for the quality of the producer's
product. The producer would like to design a sampling plan such
that there is a high probability of accepting a lot that has a defect
level less than or equal to the AQL.

●   

Lot Tolerance Percent Defective (LTPD): The LTPD is a
designated high defect level that would be unacceptable to the
consumer. The consumer would like the sampling plan to have a
low probability of accepting a lot with a defect level as high as
the LTPD.

●   

Type I Error (Producer's Risk): This is the probability, for a
given (n,c) sampling plan, of rejecting a lot that has a defect level
equal to the AQL. The producer suffers when this occurs, because
a lot with acceptable quality was rejected. The symbol  is
commonly used for the Type I error and typical values for 
range from 0.2 to 0.01.

●   

Type II Error (Consumer's Risk): This is the probability, for a
given (n,c) sampling plan, of accepting a lot with a defect level
equal to the LTPD. The consumer suffers when this occurs,
because a lot with unacceptable quality was accepted. The symbol

 is commonly used for the Type II error and typical values range

from 0.2 to 0.01.

●   

Operating Characteristic (OC) Curve: This curve plots the
probability of accepting the lot (Y-axis) versus the lot fraction or
percent defectives (X-axis). The OC curve is the primary tool for
displaying and investigating the properties of a LASP.

●   

Average Outgoing Quality (AOQ): A common procedure, when
sampling and testing is non-destructive, is to 100% inspect
rejected lots and replace all defectives with good units. In this
case, all rejected lots are made perfect and the only defects left
are those in lots that were accepted. AOQ's refer to the long term
defect level for this combined LASP and 100% inspection of
rejected lots process. If all lots come in with a defect level of
exactly p, and the OC curve for the chosen (n,c) LASP indicates a
probability pa of accepting such a lot, over the long run the AOQ
can easily be shown to be:

●   
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where N is the lot size.

Average Outgoing Quality Level (AOQL): A plot of the AOQ
(Y-axis) versus the incoming lot p (X-axis) will start at 0 for p =
0, and return to 0 for p = 1 (where every lot is 100% inspected
and rectified). In between, it will rise to a maximum. This
maximum, which is the worst possible long term AOQ, is called
the AOQL.

●   

Average Total Inspection (ATI): When rejected lots are 100%
inspected, it is easy to calculate the ATI if lots come consistently
with a defect level of p. For a LASP (n,c) with a probability pa of
accepting a lot with defect level p, we have

ATI = n + (1 - pa) (N - n)

where N is the lot size.

●   

Average Sample Number (ASN): For a single sampling LASP
(n,c) we know each and every lot has a sample of size n taken and
inspected or tested. For double, multiple and sequential LASP's,
the amount of sampling varies depending on the the number of
defects observed. For any given double, multiple or sequential
plan, a long term ASN can be calculated assuming all lots come in
with a defect level of p. A plot of the ASN, versus the incoming
defect level p, describes the sampling efficiency of a given LASP
scheme.

●   

The final
choice is a
tradeoff
decision

Making a final choice between single or multiple sampling plans that
have acceptable properties is a matter of deciding whether the average
sampling savings gained by the various multiple sampling plans justifies
the additional complexity of these plans and the uncertainty of not
knowing how much sampling and inspection will be done on a
day-by-day basis.
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.3.How do you Choose a Single
Sampling Plan?

Two
methods for
choosing a
single
sample
acceptance
plan

A single sampling plan, as previously defined, is specified by the pair of
numbers (n,c). The sample size is n, and the lot is rejected if there are
more than c defectives in the sample; otherwise the lot is accepted.

There are two widely used ways of picking (n,c):

Use tables (such as MIL STD 105D) that focus on either the AQL
or the LTPD desired.

1.  

Specify 2 desired points on the OC curve and solve for the (n,c)
that uniquely determines an OC curve going through these points.

2.  

The next two pages describe these methods in detail.
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling
6.2.3. How do you Choose a Single Sampling Plan?

6.2.3.1. Choosing a Sampling Plan: MIL
Standard 105D

The AQL or
Acceptable
Quality
Level is the
baseline
requirement

Sampling plans are typically set up with reference to an acceptable
quality level, or AQL . The AQL is the base line requirement for the
quality of the producer's product. The producer would like to design a
sampling plan such that the OC curve yields a high probability of
acceptance at the AQL. On the other side of the OC curve, the consumer
wishes to be protected from accepting poor quality from the producer.
So the consumer establishes a criterion, the lot tolerance percent
defective or LTPD . Here the idea is to only accept poor quality product
with a very low probability. Mil. Std. plans have been used for over 50
years to achieve these goals.

The U.S. Department of Defense Military Standard 105E

Military
Standard
105E
sampling
plan

Standard military sampling procedures for inspection by attributes were
developed during World War II. Army Ordnance tables and procedures
were generated in the early 1940's and these grew into the Army Service
Forces tables. At the end of the war, the Navy also worked on a set of
tables. In the meanwhile, the Statistical Research Group at Columbia
University performed research and outputted many outstanding results
on attribute sampling plans.

These three streams combined in 1950 into a standard called Mil. Std.
105A. It has since been modified from time to time and issued as 105B,
195C and 105D. Mil. Std. 105D was issued by the U.S. government in
1963. It was adopted in 1971 by the American National Standards
Institute as ANSI Standard Z1.4 and in 1974 it was adopted (with minor
changes) by the International Organization for Standardization as ISO
Std. 2859. The latest revision is Mil. Std 105E and was issued in 1989.

These three similar standards are continuously being updated and
revised, but the basic tables remain the same. Thus the discussion that
follows of the germane aspects of Mil. Std. 105E also applies to the
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other two standards.

Description of Mil. Std. 105D

Military
Standard
105D
sampling
plan

This document is essentially a set of individual plans, organized in a
system of sampling schemes. A sampling scheme consists of a
combination of a normal sampling plan, a tightened sampling plan, and
a reduced sampling plan plus rules for switching from one to the other.

AQL is
foundation
of standard

The foundation of the Standard is the acceptable quality level or AQL. In
the following scenario, a certain military agency, called the Consumer
from here on, wants to purchase a particular product from a supplier,
called the Producer from here on.

In applying the Mil. Std. 105D it is expected that there is perfect
agreement between Producer and Consumer regarding what the AQL is
for a given product characteristic. It is understood by both parties that
the Producer will be submitting for inspection a number of lots whose
quality level is typically as good as specified by the Consumer.
Continued quality is assured by the acceptance or rejection of lots
following a particular sampling plan and also by providing for a shift to
another, tighter sampling plan, when there is evidence that the
Producer's product does not meet the agreed-upon AQL.

Standard
offers 3
types of
sampling
plans

Mil. Std. 105E offers three types of sampling plans: single, double and
multiple plans. The choice is, in general, up to the inspectors.

Because of the three possible selections, the standard does not give a
sample size, but rather a sample code letter. This, together with the
decision of the type of plan yields the specific sampling plan to be used.

Inspection
level

In addition to an initial decision on an AQL it is also necessary to decide
on an "inspection level". This determines the relationship between the
lot size and the sample size. The standard offers three general and four
special levels.

6.2.3.1. Choosing a Sampling Plan: MIL Standard 105D

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc231.htm (2 of 3) [5/1/2006 10:34:46 AM]



Steps in the
standard

The steps in the use of the standard can be summarized as follows:

Decide on the AQL.1.  

Decide on the inspection level.2.  

Determine the lot size.3.  

Enter the table to find sample size code letter.4.  

Decide on type of sampling to be used.5.  

Enter proper table to find the plan to be used.6.  

Begin with normal inspection, follow the switching rules and the
rule for stopping the inspection (if needed).

7.  

Additional
information

There is much more that can be said about Mil. Std. 105E, (and 105D).
The interested reader is referred to references such as (Montgomery
(2000), Schilling, tables 11-2 to 11-17, and Duncan, pages 214 - 248).

There is also (currently) a web site developed by Galit Shmueli that will
develop sampling plans interactively with the user, according to Military
Standard 105E (ANSI/ASQC Z1.4, ISO 2859) Tables.
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling
6.2.3. How do you Choose a Single Sampling Plan?

6.2.3.2.Choosing a Sampling Plan with a
given OC Curve

Sample
OC
curve

We start by looking at a typical OC curve. The OC curve for a (52 ,3) sampling
plan is shown below.

6.2.3.2. Choosing a Sampling Plan with a given OC Curve
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Number of
defectives is
approximately
binomial

It is instructive to show how the points on this curve are obtained, once
we have a sampling plan (n,c) - later we will demonstrate how a
sampling plan (n,c) is obtained.

We assume that the lot size N is very large, as compared to the sample
size n, so that removing the sample doesn't significantly change the
remainder of the lot, no matter how many defects are in the sample.
Then the distribution of the number of defectives, d, in a random
sample of n items is approximately binomial with parameters n and p,
where p is the fraction of defectives per lot.

The probability of observing exactly d defectives is given by

The binomial
distribution

The probability of acceptance is the probability that d, the number of
defectives, is less than or equal to c, the accept number. This means
that

Sample table
for Pa, Pd
using the
binomial
distribution

Using this formula with n = 52 and c=3 and p = .01, .02, ...,.12 we find

Pa Pd

.998 .01

.980 .02

.930 .03

.845 .04

.739 .05

.620 .06

.502 .07

.394 .08

.300 .09

.223 .10

.162 .11

.115 .12

Solving for (n,c)

6.2.3.2. Choosing a Sampling Plan with a given OC Curve
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Equations for
calculating a
sampling plan
with a given
OC curve

In order to design a sampling plan with a specified OC curve one
needs two designated points. Let us design a sampling plan such that
the probability of acceptance is 1-  for lots with fraction defective p1

and the probability of acceptance is  for lots with fraction defective
p2. Typical choices for these points are: p1 is the AQL, p2 is the LTPD

and ,  are the Producer's Risk (Type I error) and Consumer's Risk
(Type II error), respectively.

If we are willing to assume that binomial sampling is valid, then the
sample size n, and the acceptance number c are the solution to

These two simultaneous equations are nonlinear so there is no simple,
direct solution. There are however a number of iterative techniques
available that give approximate solutions so that composition of a
computer program poses few problems.

Average Outgoing Quality (AOQ)

Calculating
AOQ's

We can also calculate the AOQ for a (n,c) sampling plan, provided
rejected lots are 100% inspected and defectives are replaced with good
parts.

Assume all lots come in with exactly a p0 proportion of defectives.
After screening a rejected lot, the final fraction defectives will be zero
for that lot. However, accepted lots have fraction defectivep0.
Therefore, the outgoing lots from the inspection stations are a mixture
of lots with fractions defective p0 and 0. Assuming the lot size is N, we
have.

For example, let N = 10000, n = 52, c = 3, and p, the quality of
incoming lots, = 0.03. Now at p = 0.03, we glean from the OC curve
table that pa = 0.930 and

AOQ = (.930)(.03)(10000-52) / 10000 = 0.02775.

6.2.3.2. Choosing a Sampling Plan with a given OC Curve
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Sample table
of AOQ
versus p

Setting p = .01, .02, ..., .12, we can generate the following table

AOQ p
.0010 .01
.0196 .02
.0278 .03
.0338 .04
.0369 .05
.0372 .06
.0351 .07
.0315 .08
.0270 .09
.0223 .10
.0178 .11
.0138 .12

Sample plot
of AOQ
versus p

A plot of the AOQ versus p is given below.
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Interpretation
of AOQ plot

From examining this curve we observe that when the incoming quality
is very good (very small fraction of defectives coming in), then the
outgoing quality is also very good (very small fraction of defectives
going out). When the incoming lot quality is very bad, most of the lots
are rejected and then inspected. The "duds" are eliminated or replaced
by good ones, so that the quality of the outgoing lots, the AOQ,
becomes very good. In between these extremes, the AOQ rises, reaches
a maximum, and then drops.

The maximum ordinate on the AOQ curve represents the worst
possible quality that results from the rectifying inspection program. It
is called the average outgoing quality limit, (AOQL ).

From the table we see that the AOQL = 0.0372 at p = .06 for the above
example.

One final remark: if N >> n, then the AOQ ~ pa p .

The Average Total Inspection (ATI)

Calculating
the Average
Total
Inspection

What is the total amount of inspection when rejected lots are screened?

If all lots contain zero defectives, no lot will be rejected.

If all items are defective, all  lots will be inspected, and the amount to
be inspected is N.

Finally, if the lot quality is 0 < p < 1, the average amount of inspection
per lot will vary between the sample size n, and the lot size N.

Let the quality of the lot be p and the probability of lot acceptance be
pa, then the ATI per lot is

ATI = n + (1 - pa) (N - n)

For example, let N = 10000, n = 52, c = 3, and p = .03  We know from
the OC table that pa = 0.930. Then ATI = 52 + (1-.930) (10000 - 52) =
753. (Note that while 0.930 was rounded to three decimal places, 753
was obtained using more decimal places.)

6.2.3.2. Choosing a Sampling Plan with a given OC Curve
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Sample table
of ATI versus
p

Setting p= .01, .02, ....14 generates the following table

ATI P
70 .01
253 .02
753 .03
1584 .04
2655 .05
3836 .06
5007 .07
6083 .08
7012 .09
7779 .10
8388 .11
8854 .12
9201 .13
9453 .14

Plot of ATI
versus p

A plot of ATI versus p, the Incoming Lot Quality (ILQ) is given below.
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.4.What is Double Sampling?

Double Sampling Plans

How double
sampling
plans work

Double and multiple sampling plans were invented to give a questionable lot
another chance. For example, if in double sampling the results of the first
sample are not conclusive with regard to accepting or rejecting, a second
sample is taken. Application of double sampling requires that a first sample of
size n1 is taken at random from the (large) lot. The number of defectives is then
counted and compared to the first sample's acceptance number a1 and rejection
number r1. Denote the number of defectives in sample 1 by d1 and in sample 2
by d2, then:

If d1  a1, the lot is accepted.
If d1  r1, the lot is rejected.
If a1 < d1 < r1, a second sample is taken.

If a second sample of size n2 is taken, the number of defectives, d2, is counted.
The total number of defectives is D2 = d1 + d2. Now this is compared to the
acceptance number a2 and the rejection number r2 of sample 2. In double
sampling, r2 = a2 + 1 to ensure a decision on the sample.

If D2  a2, the lot is accepted.
If D2  r2, the lot is rejected.

Design of a Double Sampling Plan

6.2.4. What is Double Sampling?
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Design of a
double
sampling
plan

The parameters required to construct the OC curve are similar to the single
sample case. The two points of interest are (p1, 1- ) and (p2, , where p1 is the
lot fraction defective for plan 1 and p2 is the lot fraction defective for plan 2. As
far as the respective sample sizes are concerned, the second sample size must
be equal to, or an even multiple of, the first sample size.

There exist a variety of tables that assist the user in constructing double and
multiple sampling plans. The index to these tables is the p2/p1 ratio, where p2 >
p1. One set of tables, taken from the Army Chemical Corps Engineering

Agency for  = .05 and  = .10, is given below:

Tables for n1 = n2

 accept  approximation values
R = numbers  of pn1 for

p2/p1 c1 c2 P = .95 P = .10

11.90 0 1 0.21 2.50
7.54 1 2 0.52 3.92
6.79 0 2 0.43 2.96
5.39 1 3 0.76 4.11
4.65 2 4 1.16 5.39
4.25 1 4 1.04 4.42
3.88 2 5 1.43 5.55
3.63 3 6 1.87 6.78
3.38 2 6 1.72 5.82
3.21 3 7 2.15 6.91
3.09 4 8 2.62 8.10
2.85 4 9 2.90 8.26
2.60 5 11 3.68 9.56
2.44 5 12 4.00 9.77
2.32 5 13 4.35 10.08
2.22 5 14 4.70 10.45
2.12 5 16 5.39 11.41

Tables for n2 = 2n1

 accept  approximation values
R = numbers  of pn1 for

p2/p1 c1 c2 P = .95 P = .10

14.50 0 1 0.16 2.32
8.07 0 2 0.30 2.42
6.48 1 3 0.60 3.89

6.2.4. What is Double Sampling?

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc24.htm (2 of 5) [5/1/2006 10:34:47 AM]



5.39 0 3 0.49 2.64
5.09 0 4 0.77 3.92
4.31 1 4 0.68 2.93
4.19 0 5 0.96 4.02
3.60 1 6 1.16 4.17
3.26 1 8 1.68 5.47
2.96 2 10 2.27 6.72
2.77 3 11 2.46 6.82
2.62 4 13 3.07 8.05
2.46 4 14 3.29 8.11
2.21 3 15 3.41 7.55
1.97 4 20 4.75 9.35
1.74 6 30 7.45 12.96

Example

Example of
a double
sampling
plan

We wish to construct a double sampling plan according to

p1 = 0.01      = 0.05     p2 = 0.05      = 0.10     and n1 = n2

The plans in the corresponding table are indexed on the ratio

R = p2/p1 = 5

We find the row whose R is closet to 5. This is the 5th row (R = 4.65). This
gives c1 = 2 and c2 = 4. The value of n1 is determined from either of the two
columns labeled pn1.

The left holds  constant at 0.05 (P = 0.95 = 1 - ) and the right holds 
constant at 0.10. (P = 0.10). Then holding  constant we find pn1 = 1.16 so n1

= 1.16/p1 = 116. And, holding  constant we find pn1 = 5.39, so n1 = 5.39/p2 =
108. Thus the desired sampling plan is

n1 = 108     c1 = 2     n2 = 108     c2 = 4

If we opt for n2 = 2n1, and follow the same procedure using the appropriate
table, the plan is:

n1 = 77     c1 = 1     n2 = 154     c2 = 4

The first plan needs less samples if the number of defectives in sample 1 is
greater than 2, while the second plan needs less samples if the number of
defectives in sample 1 is less than 2.

ASN Curve for a Double Sampling Plan

6.2.4. What is Double Sampling?

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc24.htm (3 of 5) [5/1/2006 10:34:47 AM]



Construction
of the ASN
curve

Since when using a double sampling plan the sample size depends on whether
or not a second sample is required, an important consideration for this kind of
sampling is the Average Sample Number (ASN) curve. This curve plots the
ASN versus p', the true fraction defective in an incoming lot.

We will illustrate how to calculate the ASN curve with an example. Consider a
double-sampling plan n1 = 50, c1= 2, n2 = 100, c2 = 6, where n1 is the sample
size for plan 1, with accept number c1, and n2, c2, are the sample size and
accept number, respectively, for plan 2.

Let p' = .06. Then the probability of acceptance on the first sample, which is the
chance of getting two or less defectives, is .416 (using binomial tables). The
probability of rejection on the second sample, which is the chance of getting
more than six defectives, is (1-.971) = .029. The probability of making a
decision on the first sample is .445, equal to the sum of .416 and .029. With
complete inspection of the second sample, the average size sample is equal to
the size of the first sample times the probability that there will be only one
sample plus the size of the combined samples times the probability that a
second sample will be necessary. For the sampling plan under consideration,
the ASN with complete inspection of the second sample for a p' of .06 is

50(.445) + 150(.555) = 106

The general formula for an average sample number curve of a double-sampling
plan with complete inspection of the second sample is

ASN = n1P1 + (n1 + n2)(1 - P1) = n1 + n2(1 - P1)

where P1 is the probability of a decision on the first sample. The graph below
shows a plot of the ASN versus p'.

The ASN
curve for a
double
sampling
plan

6.2.4. What is Double Sampling?
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.5.What is Multiple Sampling?

Multiple
Sampling is
an extension
of the
double
sampling
concept

Multiple sampling is an extension of double sampling. It involves
inspection of 1 to k successive samples as required to reach an ultimate
decision.

Mil-Std 105D suggests k = 7 is a good number. Multiple sampling plans
are usually presented in tabular form:

Procedure
for multiple
sampling

The procedure commences with taking a random sample of size n1from
a large lot of size N and counting the number of defectives, d1.

if d1  a1 the lot is accepted.
if d1  r1 the lot is rejected.
if a1 < d1 < r1, another sample is taken.

If subsequent samples are required, the first sample procedure is
repeated sample by sample. For each sample, the total number of
defectives found at any stage, say stage i, is

This is compared with the acceptance number ai and the rejection
number ri for that stage until a decision is made. Sometimes acceptance
is not allowed at the early stages of multiple sampling; however,
rejection can occur at any stage.

Efficiency
measured by
the ASN

Efficiency for a multiple sampling scheme is measured by the average
sample number (ASN) required for a given Type I and Type II set of
errors. The number of samples needed when following a multiple
sampling scheme may vary from trial to trial, and the ASN represents the
average of what might happen over many trials with a fixed incoming
defect level.

6.2.5. What is Multiple Sampling?
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.6.What is a Sequential Sampling Plan?

Sequential
Sampling

Sequential sampling is different from single, double or multiple
sampling. Here one takes a sequence of samples from a lot. How many
total samples looked at is a function of the results of the sampling
process.

Item-by-item
and group
sequential
sampling

The sequence can be one sample at a time, and then the sampling
process is usually called item-by-item sequential sampling. One can also
select sample sizes greater than one, in which case the process is
referred to as group sequential sampling. Item-by-item is more popular
so we concentrate on it. The operation of such a plan is illustrated
below:

Diagram of
item-by-item
sampling

6.2.6. What is a Sequential Sampling Plan?
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Description
of
sequentail
sampling
graph

The cumulative observed number of defectives is plotted on the graph.
For each point, the x-axis is the total number of items thus far selected,
and the y-axis is the total number of observed defectives. If the plotted
point falls within the parallel lines the process continues by drawing
another sample. As soon as a point falls on or above the upper line, the
lot is rejected. And when a point falls on or below the lower line, the lot
is accepted. The process can theoretically last until the lot is 100%
inspected. However, as a rule of thumb, sequential-sampling plans are
truncated after the number inspected reaches three times the number that
would have been inspected using a corresponding single sampling plan.

Equations
for the limit
lines

The equations for the two limit lines are functions of the parameters p1,
, p2, and .

where

Instead of using the graph to determine the fate of the lot, one can resort
to generating tables (with the help of a computer program).

Example of
a sequential
sampling
plan

As an example, let p1 = .01, p2 = .10,  = .05,  = .10. The resulting
equations are

Both acceptance numbers and rejection numbers must be integers. The
acceptance number is the next integer less than or equal to xa and the
rejection number is the next integer greater than or equal to xr. Thus for
n = 1, the acceptance number = -1, which is impossible, and the
rejection number = 2, which is also impossible. For n = 24, the
acceptance number is 0 and the rejection number = 3.

The results for n =1, 2, 3... 26 are tabulated below.

6.2.6. What is a Sequential Sampling Plan?
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n
inspect

n
accept

n
reject

n
inspect

n
accept

n
reject

1 x x 14 x 2
2 x 2 15 x 2
3 x 2 16 x 3
4 x 2 17 x 3
5 x 2 18 x 3
6 x 2 19 x 3
7 x 2 20 x 3
8 x 2 21 x 3
9 x 2 22 x 3

10 x 2 23 x 3
11 x 2 24 0 3
12 x 2 25 0 3
13 x 2 26 0 3

So, for n = 24 the acceptance number is 0 and the rejection number is 3.
The "x" means that acceptance or rejection is not possible.

Other sequential plans are given below.

n
inspect

n
accept

n
reject

49 1 3
58 1 4
74 2 4
83 2 5
100 3 5
109 3 6

The corresponding single sampling plan is (52,2) and double sampling
plan is (21,0), (21,1).

Efficiency
measured by
ASN

Efficiency for a sequential sampling scheme is measured by the average
sample number (ASN) required for a given Type I and Type II set of
errors. The number of samples needed when following a sequential
sampling scheme may vary from trial to trial, and the ASN represents the
average of what might happen over many trials with a fixed incoming
defect level. Good software for designing sequential sampling schemes
will calculate the ASN curve as a function of the incoming defect level.
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.7.What is Skip Lot Sampling?

Skip Lot
Sampling

Skip Lot sampling means that only a fraction of the submitted lots are
inspected. This mode of sampling is of the cost-saving variety in terms of time
and effort. However skip-lot sampling should only be used when it has been
demonstrated that the quality of the submitted product is very good.

Implementation
of skip-lot
sampling plan

A skip-lot sampling plan is implemented as follows:

Design a single sampling plan by specifying the alpha and beta risks and
the consumer/producer's risks. This plan is called "the reference sampling
plan".

1.  

Start with normal lot-by-lot inspection, using the reference plan.2.  

When a pre-specified number, i, of consecutive lots are accepted, switch
to inspecting only a fraction f of the lots. The selection of the members of
that fraction is done at random.

3.  

When a lot is rejected return to normal inspection.4.  

The f and i
parameters

The parameters f and i are essential to calculating the probability of acceptance
for a skip-lot sampling plan. In this scheme, i, called the clearance number, is a
positive integer and the sampling fraction f is such that 0 < f < 1. Hence, when f
= 1 there is no longer skip-lot sampling. The calculation of the acceptance
probability for the skip-lot sampling plan is performed via the following
formula

where P is the probability of accepting a lot with a given proportion of
incoming defectives p, from the OC curve of the single sampling plan.

The following relationships hold:

for a given i, the smaller is f, the greater is Pa
for a given f, the smaller is i, the greater is Pa

6.2.7. What is Skip Lot Sampling?
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Illustration of
a skip lot
sampling plan

An illustration of a a skip-lot sampling plan is given below.

ASN of skip-lot
sampling plan

An important property of skip-lot sampling plans is the average sample number
(ASN ). The ASN of a skip-lot sampling plan is

ASNskip-lot = (F)(ASNreference)

where F is defined by

Therefore, since 0 < F < 1, it follows that the ASN of skip-lot sampling is
smaller than the ASN of the reference sampling plan.

In summary, skip-lot sampling is preferred when the quality of the submitted
lots is excellent and the supplier can demonstrate a proven track record.

6.2.7. What is Skip Lot Sampling?
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6. Process or Product Monitoring and Control

6.3.Univariate and Multivariate Control
Charts

Contents of
section 3

Control charts in this section are classified and described according to
three general types: variables, attributes and multivariate. 

What are Control Charts? 1.  

What are Variables Control Charts? 

Shewhart X bar and R and S Control Charts 1.  

Individuals Control Charts 2.  

Cusum Control Charts 

Cusum Average Run Length 1.  

3.  

EWMA Control Charts 4.  

2.  

What are Attributes Control Charts? 

Counts Control Charts 1.  

Proportions Control Charts 2.  

3.  

What are Multivariate Control Charts? 

Hotelling Control Charts 1.  

Principal Components Control Charts2.  

Multivariate EWMA Charts
  

3.  

4.  

6.3. Univariate and Multivariate Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts

6.3.1.What are Control Charts?

Comparison of
univariate and
multivariate
control data

Control charts are used to routinely monitor quality. Depending on the
number of process characteristics to be monitored, there are two basic
types of control charts. The first, referred to as a univariate control
chart, is a graphical display (chart) of one quality characteristic. The
second, referred to as a multivariate control chart, is a graphical
display of a statistic that summarizes or represents more than one
quality characteristic.

Characteristics
of control
charts

If a single quality characteristic has been measured or computed from
a sample, the control chart shows the value of the quality characteristic
versus the sample number or versus time. In general, the chart contains
a center line that represents the mean value for the in-control process.
Two other horizontal lines, called the upper control limit (UCL) and
the lower control limit (LCL), are also shown on the chart. These
control limits are chosen so that almost all of the data points will fall
within these limits as long as the process remains in-control. The
figure below illustrates this.

Chart
demonstrating
basis of
control chart

6.3.1. What are Control Charts?
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Why control
charts "work"

The control limits as pictured in the graph might be .001 probability
limits. If so, and if chance causes alone were present, the probability of
a point falling above the upper limit would be one out of a thousand,
and similarly, a point falling below the lower limit would be one out of
a thousand. We would be searching for an assignable cause if a point
would fall outside these limits. Where we put these limits will
determine the risk of undertaking such a search when in reality there is
no assignable cause for variation.

Since two out of a thousand is a very small risk, the 0.001 limits may
be said to give practical assurances that, if a point falls outside these
limits, the variation was caused be an assignable cause. It must be
noted that two out of one thousand is a purely arbitrary number. There
is no reason why it could have been set to one out a hundred or even
larger. The decision would depend on the amount of risk the
management of the quality control program is willing to take. In
general (in the world of quality control) it is customary to use limits
that approximate the 0.002 standard.

Letting X denote the value of a process characteristic, if the system of
chance causes generates a variation in X that follows the normal
distribution, the 0.001 probability limits will be very close to the 3
limits. From normal tables we glean that the 3  in one direction is
0.00135, or in both directions 0.0027. For normal distributions,
therefore, the 3  limits are the practical equivalent of 0.001
probability limits.

6.3.1. What are Control Charts?
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Plus or minus
"3 sigma"
limits are
typical

In the U.S., whether X is normally distributed or not, it is an acceptable
practice to base the control limits upon a multiple of the standard
deviation. Usually this multiple is 3 and thus the limits are called
3-sigma limits. This term is used whether the standard deviation is the
universe or population parameter, or some estimate thereof, or simply
a "standard value" for control chart purposes. It should be inferred
from the context what standard deviation is involved. (Note that in the
U.K., statisticians generally prefer to adhere to probability limits.)

If the underlying distribution is skewed, say in the positive direction,
the 3-sigma limit will fall short of the upper 0.001 limit, while the
lower 3-sigma limit will fall below the 0.001 limit. This situation
means that the risk of looking for assignable causes of positive
variation when none exists will be greater than one out of a thousand.
But the risk of searching for an assignable cause of negative variation,
when none exists, will be reduced. The net result, however, will be an
increase in the risk of a chance variation beyond the control limits.
How much this risk will be increased will depend on the degree of
skewness.

If variation in quality follows a Poisson distribution, for example, for
which np = .8, the risk of exceeding the upper limit by chance would
be raised by the use of 3-sigma limits from 0.001 to 0.009 and the
lower limit reduces from 0.001 to 0. For a Poisson distribution the
mean and variance both equal np. Hence the upper 3-sigma limit is 0.8
+ 3 sqrt(.8) = 3.48 and the lower limit = 0 (here sqrt denotes "square
root"). For np = .8 the probability of getting more than 3 successes =
0.009.

Strategies for
dealing with
out-of-control
findings

If a data point falls outside the control limits, we assume that the
process is probably out of control and that an investigation is
warranted to find and eliminate the cause or causes.

Does this mean that when all points fall within the limits, the process is
in control? Not necessarily. If the plot looks non-random, that is, if the
points exhibit some form of systematic behavior, there is still
something wrong. For example, if the first 25 of 30 points fall above
the center line and the last 5 fall below the center line, we would wish
to know why this is so. Statistical methods to detect sequences or
nonrandom patterns can be applied to the interpretation of control
charts. To be sure, "in control" implies that all points are between the
control limits and they form a random pattern.

6.3.1. What are Control Charts?
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts

6.3.2.What are Variables Control Charts?

During the 1920's, Dr. Walter A. Shewhart proposed a general model
for control charts as follows:

Shewhart
Control
Charts for
variables

Let w be a sample statistic that measures some continuously varying
quality characteristic of interest (e.g., thickness), and suppose that the
mean of w is w, with a standard deviation of w. Then the center line,
the UCL and the LCL are

UCL = w   + k w
Center Line = w
LCL = w   - k w

where k is the distance of the control limits from the center line,
expressed in terms of standard deviation units. When k is set to 3, we
speak of 3-sigma control charts.

Historically, k = 3 has become an accepted standard in industry.

The centerline is the process mean, which in general is unknown. We
replace it with a target or the average of all the data. The quantity that

we plot is the sample average, . The chart is called the  chart.

We also have to deal with the fact that  is, in general, unknown. Here
we replace w with a given standard value, or we estimate it by a
function of the average standard deviation. This is obtained by
averaging the individual standard deviations that we calculated from
each of m preliminary (or present) samples, each of size n. This
function will be discussed shortly.

It is equally important to examine the standard deviations in
ascertaining whether the process is in control. There is, unfortunately, a
slight problem involved when we work with the usual estimator of .
The following discussion will illustrate this.

6.3.2. What are Variables Control Charts?
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Sample
Variance

If 2 is the unknown variance of a probability distribution, then an
unbiased estimator of 2 is the sample variance

However, s, the sample standard deviation is not an unbiased estimator
of . If the underlying distribution is normal, then s actually estimates
c4 , where c4 is a constant that depends on the sample size n. This
constant is tabulated in most text books on statistical quality control
and may be calculated using

C4 factor

To compute this we need a non-integer factorial, which is defined for
n/2 as follows:

Fractional
Factorials

With this definition the reader should have no problem verifying that
the c4 factor for n = 10 is .9727.

6.3.2. What are Variables Control Charts?
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Mean and
standard
deviation of
the
estimators

So the mean or expected value of the sample standard deviation is c4 .

The standard deviation of the sample standard deviation is

What are the differences between control limits and specification
limits ?

Control
limits vs.
specifications

Control Limits are used to determine if the process is in a state of
statistical control (i.e., is producing consistent output).

Specification Limits are used to determine if the product will function
in the intended fashion.

How many data points are needed to set up a control chart?

How many
samples are
needed?

Shewhart gave the following rule of thumb:

"It has also been observed that a person would seldom if
ever be justified in concluding that a state of statistical
control of a given repetitive operation or production
process has been reached until he had obtained, under
presumably the same essential conditions, a sequence of
not less than twenty five samples of size four that are in
control."

It is important to note that control chart properties, such as false alarm
probabilities, are generally given under the assumption that the
parameters, such as  and , are known. When the control limits are
not computed from a large amount of data, the actual properties might
be quite different from what is assumed (see, e.g., Quesenberry, 1993).

When do we recalculate control limits?

6.3.2. What are Variables Control Charts?
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When do we
recalculate
control
limits?

Since a control chart "compares" the current performance of the
process characteristic to the past performance of this characteristic,
changing the control limits frequently would negate any usefulness.

So, only change your control limits if you have a valid, compelling
reason for doing so. Some examples of reasons:

When you have at least 30 more data points to add to the chart
and there have been no known changes to the process

- you get a better estimate of the variability

●   

If a major process change occurs and affects the way your
process runs.

●   

If a known, preventable act changes the way the tool or process
would behave (power goes out, consumable is corrupted or bad
quality, etc.)

●   

What are the WECO rules for signaling "Out of Control"?

General
rules for
detecting out
of control or
non-random
situaltions

WECO stands for Western Electric Company Rules
 

       Any Point Above +3 Sigma 
 ---------------------------------------------    +3  LIMIT
       2 Out of the Last 3 Points Above +2 Sigma 
 ---------------------------------------------    +2  LIMIT
       4 Out of the Last 5 Points Above +1 Sigma 
 ---------------------------------------------    +1  LIMIT
       8 Consecutive Points on This Side of Control Line 
===================================   CENTER LINE 
       8 Consecutive Points on This Side of Control Line 
 ---------------------------------------------    -1  LIMIT
       4 Out of the Last 5 Points Below - 1 Sigma 
----------------------------------------------   -2  LIMIT
       2 Out of the Last 3 Points Below -2 Sigma 
 ---------------------------------------------    -3  LIMIT
       Any Point Below -3 Sigma 

Trend Rules: 6 in a row trending up or down. 14 in a row alternating
up and down

6.3.2. What are Variables Control Charts?
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WECO rules
based on
probabilities

The WECO rules are based on probability. We know that, for a normal
distribution, the probability of encountering a point outside ± 3  is
0.3%. This is a rare event. Therefore, if we observe a point outside the
control limits, we conclude the process has shifted and is unstable.
Similarly, we can identify other events that are equally rare and use
them as flags for instability. The probability of observing two points
out of three in a row between 2  and 3  and the probability of
observing four points out of five in a row between 1  and 2  are also
about 0.3%.

WECO rules
increase
false alarms

Note: While the WECO rules increase a Shewhart chart's sensitivity to
trends or drifts in the mean, there is a severe downside to adding the
WECO rules to an ordinary Shewhart control chart that the user should
understand. When following the standard Shewhart "out of control"
rule (i.e., signal if and only if you see a point beyond the plus or minus
3 sigma control limits) you will have "false alarms" every 371 points
on the average (see the description of Average Run Length or ARL on
the next page). Adding the WECO rules increases the frequency of
false alarms to about once in every 91.75 points, on the average (see
Champ and Woodall, 1987). The user has to decide whether this price
is worth paying (some users add the WECO rules, but take them "less
seriously" in terms of the effort put into troubleshooting activities when
out of control signals occur).

With this background, the next page will describe how to construct
Shewhart variables control charts.

6.3.2. What are Variables Control Charts?
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.2. What are Variables Control Charts?

6.3.2.1.Shewhart X-bar and R and S
Control Charts

 and S Charts

 and S
Shewhart
Control
Charts

We begin with  and s charts. We should use the s chart first to
determine if the distribution for the process characteristic is stable.

Let us consider the case where we have to estimate  by analyzing past
data. Suppose we have m preliminary samples at our disposition, each of
size n, and let si be the standard deviation of the ith sample. Then the
average of the m standard deviations is

Control
Limits for

 and S
Control
Charts

We make use of the factor c4 described on the previous page.

The statistic  is an unbiased estimator of . Therefore, the
parameters of the S chart would be

Similarly, the parameters of the  chart would be

6.3.2.1. Shewhart X-bar and R and S Control Charts
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, the "grand" mean is the average of all the observations.

It is often convenient to plot the  and s charts on one page.

 and R Control Charts

 and R
control
charts

If the sample size is relatively small (say equal to or less than 10), we
can use the range instead of the standard deviation of a sample to

construct control charts on  and the range, R. The range of a sample is
simply the difference between the largest and smallest observation.

There is a statistical relationship (Patnaik, 1946) between the mean
range for data from a normal distribution and , the standard deviation
of that distribution. This relationship depends only on the sample size, n.
The mean of R is d2 , where the value of d2 is also a function of n. An
estimator of  is therefore R /d2.

Armed with this background we can now develop the  and R control
chart.

Let R1, R2, ..., Rk, be the range of k samples. The average range is

Then an estimate of  can be computed as

6.3.2.1. Shewhart X-bar and R and S Control Charts

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc321.htm (2 of 5) [5/1/2006 10:34:52 AM]



 control
charts

So, if we use  (or a given target) as an estimator of  and  /d2 as an

estimator of , then the parameters of the  chart are

The simplest way to describe the limits is to define the factor
 and the construction of the  becomes

The factor A2 depends only on n, and is tabled below.

The R chart

R control
charts

This chart controls the process variability since the sample range is
related to the process standard deviation. The center line of the R chart
is the average range.

To compute the control limits we need an estimate of the true, but
unknown standard deviation W = R/ . This can be found from the
distribution of W = R/  (assuming that the items that we measure
follow a normal distribution). The standard deviation of W is d3, and is a
known function of the sample size, n. It is tabulated in many textbooks
on statistical quality control.

Therefore since R = W , the standard deviation of R is  R = d3 . But
since the true  is unknown, we may estimate  R by

As a result, the parameters of the R chart with the customary 3-sigma
control limits are

6.3.2.1. Shewhart X-bar and R and S Control Charts
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As was the case with the control chart parameters for the subgroup
averages, defining another set of factors will ease the computations,
namely:

D3 = 1 - 3 d3 / d2 and D4 = 1 + 3 d3 / d2. These yield

The factors D3 and D4 depend only on n, and are tabled below.

Factors for Calculating Limits for  and R Charts

n A2 D3 D4

2 1.880 0 3.267
3 1.023 0 2.575
4 0.729 0 2.282
5 0.577 0 2.115
6 0.483 0 2.004
7 0.419 0.076 1.924
8 0.373 0.136 1.864
9 0.337 0.184 1.816
10 0.308 0.223 1.777

In general, the range approach is quite satisfactory for sample sizes up to
around 10. For larger sample sizes, using subgroup standard deviations
is preferable. For small sample sizes, the relative efficiency of using the
range approach as opposed to using standard deviations is shown in the
following table.

6.3.2.1. Shewhart X-bar and R and S Control Charts
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Efficiency of
R versus S

n Relative
Efficiency

2 1.000
3 0.992
4 0.975
5 0.955
6 0.930
10 0.850

A typical sample size is 4 or 5, so not much is lost by using the range for
such sample sizes.

Time To Detection or Average Run Length (ARL)

Waiting time
to signal
"out of
control"

Two important questions when dealing with control charts are:

How often will there be false alarms where we look for an
assignable cause but nothing has changed?

1.  

How quickly will we detect certain kinds of systematic changes,
such as mean shifts?

2.  

The ARL tells us, for a given situation, how long on the average we will
plot successive control charts points before we detect a point beyond the
control limits.

For an  chart, with no change in the process, we wait on the average
1/p points before a false alarm takes place, with p denoting the
probability of an observation plotting outside the control limits. For a
normal distribution, p = .0027 and the ARL is approximately 371.

A table comparing Shewhart  chart ARL's to Cumulative Sum
(CUSUM) ARL's for various mean shifts is given later in this section.

There is also (currently) a web site developed by Galit Shmueli that will
do ARL calculations interactively with the user, for Shewhart charts
with or without additional (Western Electric) rules added.

6.3.2.1. Shewhart X-bar and R and S Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.2. What are Variables Control Charts?

6.3.2.2. Individuals Control Charts

Samples are Individual Measurements

Moving
range used
to derive
upper and
lower limits

Control charts for individual measurements, e.g., the sample size = 1, use the
moving range of two successive observations to measure the process
variability.

The moving range is defined as

which is the absolute value of the first difference (e.g., the difference between
two consecutive data points) of the data. Analogous to the Shewhart control
chart, one can plot both the data (which are the individuals) and the moving
range.

Individuals
control
limits for an
observation

For the control chart for individual measurements, the lines plotted are:

where  is the average of all the individuals and  is the average of all
the moving ranges of two observations. Keep in mind that either or both
averages may be replaced by a standard or target, if available. (Note that
1.128 is the value of d2 for n = 2).

6.3.2.2. Individuals Control Charts
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Example of
moving
range

The following example illustrates the control chart for individual
observations. A new process was studied in order to monitor flow rate. The
first 10 batches resulted in

Batch
Number

Flowrate
x

Moving Range
MR

1 49.6  
2 47.6 2.0
3 49.9 2.3
4 51.3 14
5 47.8 3.5
6 51.2 3.4
7 52.6 1.4
8 52.4 0.2
9 53.6 1.2
10 52.1 1.5
  = 50.81  = 1.8778

Limits for
the moving
range chart

This yields the parameters below.

Example of
individuals
chart

The control chart is given below

6.3.2.2. Individuals Control Charts
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The process is in control, since none of the plotted points fall outside either
the UCL or LCL.

Alternative
for
constructing
individuals
control
chart

Note: Another way to construct the individuals chart is by using the standard
deviation. Then we can obtain the chart from

It is preferable to have the limits computed this way for the start of Phase 2.

6.3.2.2. Individuals Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.2. What are Variables Control Charts?

6.3.2.3.Cusum Control Charts

CUSUM is
an efficient
alternative
to Shewhart
procedures

CUSUM charts, while not as intuitive and simple to operate as Shewhart
charts, have been shown to be more efficient in detecting small shifts in
the mean of a process. In particular, analyzing ARL's for CUSUM
control charts shows that they are better than Shewhart control charts
when it is desired to detect shifts in the mean that are 2 sigma or less.

CUSUM works as follows: Let us collect k samples, each of size n, and
compute the mean of each sample. Then the cumulative sum (CUSUM)
control chart is formed by plotting one of the following quantities:

Definition of
cumulative
sum

against the sample number m, where  is the estimate of the
in-control mean and  is the known (or estimated) standard deviation
of the sample means. The choice of which of these two quantities is
plotted is usually determined by the statistical software package. In

either case, as long as the process remains in control centered at , the
cusum plot will show variation in a random pattern centered about zero.
If the process mean shifts upward, the charted cusum points will
eventually drift upwards, and vice versa if the process mean decreases.

V-Mask
used to
determine if
process is
out of
control

A visual procedure proposed by Barnard in 1959, known as the V-Mask,
is sometimes used to determine whether a process is out of control.
More often, the tabular form of the V-Mask is preferred. The tabular
form is illustrated later in this section.

A V-Mask is an overlay shape in the form of a V on its side that is
superimposed on the graph of the cumulative sums. The origin point of
the V-Mask (see diagram below) is placed on top of the latest
cumulative sum point and past points are examined to see if any fall
above or below the sides of the V. As long as all the previous points lie
between the sides of the V, the process is in control. Otherwise (even if
one point lies outside) the process is suspected of being out of control.

6.3.2.3. Cusum Control Charts
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Sample
V-Mask
demonstrating
an out of
control
process

Interpretation
of the V-Mask
on the plot

In the diagram above, the V-Mask shows an out of control situation
because of the point that lies above the upper arm. By sliding the
V-Mask backwards so that the origin point covers other cumulative
sum data points, we can determine the first point that signaled an
out-of-control situation. This is useful for diagnosing what might have
caused the process to go out of control.

From the diagram it is clear that the behavior of the V-Mask is
determined by the distance k (which is the slope of the lower arm) and
the rise distance h. These are the design parameters of the V-Mask.
Note that we could also specify d and the vertex angle (or, as is more
common in the literature,  = 1/2 the vertex angle) as the design
parameters, and we would end up with the same V-Mask.

In practice, designing and manually constructing a V-Mask is a
complicated procedure. A cusum spreadsheet style procedure shown
below is more practical, unless you have statistical software that
automates the V-Mask methodology. Before describing the spreadsheet
approach, we will look briefly at an example of a software V-Mask.

6.3.2.3. Cusum Control Charts
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JMP example
of V-Mask

An example will be used to illustrate how to construct and apply a
V-Mask procedure using JMP. The 20 data points

324.925, 324.675, 324.725, 324.350, 325.350, 325.225, 324.125,
324.525, 325.225, 324.600, 324.625, 325.150, 328.325, 327.250,
327.825, 328.500, 326.675, 327.775, 326.875, 328.350

are each the average of samples of size 4 taken from a process that has
an estimated mean of 325. Based on process data, the process standard
deviation is 1.27 and therefore the sample means used in the cusum
procedure have a standard deviation of 1.27/41/2  = 0.635.

After inputting the 20 sample means and selecting "control charts"
from the pull down "Graph" menu, JMP displays a "Control Charts"
screen and a "CUSUM Charts" screen. Since each sample mean is a
separate "data point", we choose a constant sample size of 1. We also
choose the option for a two sided Cusum plot shown in terms of the
original data.

JMP allows us a choice of either designing via the method using h and
k or using an alpha and beta design approach. For the latter approach
we must specify

, the probability of a false alarm, i.e., concluding that a shift in
the process has occurred, while in fact it did not

●   

, the the probability of not detecting that a shift in the process

mean has, in fact, occurred

●   

 (delta), the amount of shift in the process mean that we wish to
detect, expressed as a multiple of the standard deviation of the
data points (which are the sample means).

●   

Note: Technically, alpha and beta are calculated in terms of one
sequential trial where we monitor Sm until we have either an
out-of-control signal or Sm returns to the starting point (and the
monitoring begins, in effect, all over again).

JMP menus
for inputting
options to
the cusum
procedure

In our example we choose an  of 0.0027 (equivalent to the plus or
minus 3 sigma criteria used in a standard Shewhart chart), and a  of
0.01. Finally, we decide we want to quickly detect a shift as large as 1
sigma, which sets delta = 1. The screen below shows all the inputs.

6.3.2.3. Cusum Control Charts
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JMP output
from
CUSUM
procedure

When we click on chart we see the V-Mask placed over the last data
point. The mask clearly indicates an out of control situation.

6.3.2.3. Cusum Control Charts
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We next "grab" the V-Mask and move it back to the first point that
indicated the process was out of control. This is point number 14, as
shown below.

JMP
CUSUM
chart after
moving
V-Mask to
first out of
control
point

6.3.2.3. Cusum Control Charts
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Rule of
thumb for
choosing h
and k

Note: A general rule of thumb (Montgomery) if one chooses to design
with the h and k approach, instead of the alpha and beta method
illustrated above, is to choose k to be half the delta shift (.5 in our
example) and h to be around 4 or 5.

For more information on cusum chart design, see Woodall and Adams
(1993).

Tabular or Spreadsheet Form of the V-Mask

A
spreadsheet
approach to
cusum
monitoring

Most users of cusum procedures prefer tabular charts over the V-Mask.
The V-Mask is actually a carry-over of the pre-computer era. The
tabular method can be quickly implemented by standard spreadsheet
software.

To generate the tabular form we use the h and k parameters expressed in
the original data units. It is also possible to use sigma units.

The following quantities are calculated:

Shi(i) = max(0, Shi(i-1) + xi -  - k)

Slo(i) = max(0, Slo(i-1) +  - k - xi) )

where Shi(0) and Slo(0) are 0. When either Shi(i) or Slo(i) exceeds h, the
process is out of control.

Example of
spreadsheet
calculations

We will construct a cusum tabular chart for the example described
above. For this example, the JMP parameter table gave h = 4.1959 and k
= .3175. Using these design values, the tabular form of the example is

h k

325 4.1959 0.3175
   Increase in

mean
 Decrease in

mean
  

Group x x-325 x-325-k Shi 325-k-x Slo Cusum

1 324.93 -0.07 -0.39 0.00 -0.24 0.00 -0.007
2 324.68 -0.32 -0.64 0.00 0.01 0.01 -0.40
3 324.73 -0.27 -0.59 0.00 -0.04 0.00 -0.67
4 324.35 -0.65 -0.97 0.00 0.33 0.33 -1.32
5 325.35 0.35 0.03 0.03 -0.67 0.00 -0.97
6 325.23 0.23 -0.09 0.00 -0.54 0.00 -0.75
7 324.13 -0.88 -1.19 0.00 0.56 0.56 -1.62
8 324.53 -0.48 -0.79 0.00 0.16 0.72 -2.10
9 325.23 0.23 -0.09 0.00 0.54 0.17 -1.87
10 324.60 -0.40 -0.72 0.00 0.08 0.25 -2.27
11 324.63 -0.38 -0.69 0.00 0.06 0.31 -2.65
12 325.15 0.15 -0.17 0.00 0.47 0.00 -2.50
13 328.33 3.32 3.01 3.01 -3.64 0.00 0.83
14 327.25 2.25 1.93 4.94* -0.57 0.00 3.08

6.3.2.3. Cusum Control Charts
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15 327.83 2.82 2.51 7.45* -3.14 0.00 5.90
16 328.50 3.50 3.18 10.63* -3.82 0.00 9.40
17 326.68 1.68 1.36 11.99* -1.99 0.00 11.08
18 327.78 2.77 2.46 14.44* -3.09 0.00 13.85
19 326.88 1.88 1.56 16.00* -2.19 0.00 15.73
20 328.35 3.35 3.03 19.04* -3.67 0.00 19.08

* = out of control signal

6.3.2.3. Cusum Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.2. What are Variables Control Charts?
6.3.2.3. Cusum Control Charts

6.3.2.3.1.Cusum Average Run Length

The Average Run Length of Cumulative Sum Control
Charts

The ARL of
CUSUM

The operation of obtaining samples to use with a cumulative sum (CUSUM)
control chart consists of taking samples of size n and plotting the cumulative
sums

versus the sample number r, where  is the sample mean and k is a
reference value.

In practice, k might be set equal to ( + 1)/2, where  is the estimated
in-control mean, which is sometimes known as the acceptable quality level,
and 1 is referred to as the rejectable quality level.

If the distance between a plotted point and the lowest previous point is equal
to or greater than h, one concludes that the process mean has shifted
(increased).

h is decision
limit

Hence, h is referred to as the decision limit. Thus the sample size n,
reference value k, and decision limit h are the parameters required for
operating a one-sided CUSUM chart. If one has to control both positive and
negative deviations, as is usually the case, two one-sided charts are used,
with respective values k1, k2, (k1 > k2) and respective decision limits h and
-h.

6.3.2.3.1. Cusum Average Run Length
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Standardizing
shift in mean
and decision
limit

The shift in the mean can be expressed as  - k. If we are dealing with
normally distributed measurements, we can standardize this shift by

Similarly, the decision limit can be standardized by

Determination
of the ARL,
given h and k

The average run length (ARL) at a given quality level is the average number
of samples (subgroups) taken before an action signal is given. The
standardized parameters ks and hs together with the sample size n are usually
selected to yield approximate ARL's L0 and L1 at acceptable and rejectable
quality levels 0 and 1 respectively. We would like to see a high ARL, L0,
when the process is on target, (i.e. in control), and a low ARL, L1, when the
process mean shifts to an unsatisfactory level.

In order to determine the parameters of a CUSUM chart, the acceptable and
rejectable quality levels along with the desired respective ARL ' s are usually
specified. The design parameters can then be obtained by a number of ways.
Unfortunately, the calculations of the ARL for CUSUM charts are quite
involved.

There are several nomographs available from different sources that can be
utilized to find the ARL's when the standardized h and k are given. Some of
the nomographs solve the unpleasant integral equations that form the basis
of the exact solutions, using an approximation of Systems of Linear
Algebraic Equations (SLAE). This Handbook used a computer program that
furnished the required ARL's given the standardized h and k. An example is
given below:

6.3.2.3.1. Cusum Average Run Length
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Example of
finding ARL's
given the
standardized
h and k

mean shift Shewart

(k = .5) 4 5

0 336 930 371.00
.25 74.2 140 281.14
.5 26.6 30.0 155.22
.75 13.3 17.0 81.22
1.00 8.38 10.4 44.0
1.50 4.75 5.75 14.97
2.00 3.34 4.01 6.30
2.50 2.62 3.11 3.24
3.00 2.19 2.57 2.00
4.00 1.71 2.01 1.19

Using the
table

If k = .5, then the shift of the mean (in multiples of the standard deviation of
the mean) is obtained by adding .5 to the first column. For example to detect
a mean shift of 1 sigma at h = 4, the ARL = 8.38. (at first column entry of
.5).

The last column of the table contains the ARL's for a Shewhart control chart
at selected mean shifts. The ARL for Shewhart = 1/p, where p is the
probability for a point to fall outside established control limits. Thus, for
3-sigma control limits and assuming normality, the probability to exceed the
upper control limit = .00135 and to fall below the lower control limit is also
.00135 and their sum = .0027. (These numbers come from standard normal
distribution tables or computer programs, setting z = 3). Then the ARL =
1/.0027 = 370.37. This says that when a process is in control one expects an
out-of-control signal (false alarm) each 371 runs.

ARL if a 1
sigma shift
has occurred

When the means shifts up by 1 sigma, then the distance between the upper
control limit and the shifted mean is 2 sigma (instead of 3 ). Entering
normal distribution tables with z = 2 yields a probability of p = .02275 to
exceed this value. The distance between the shifted mean and the lower limit
is now 4 sigma and the probability of  < -4  is only .000032 and can be
ignored. The ARL is 1 / .02275 = 43.96 .

6.3.2.3.1. Cusum Average Run Length
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Shewhart is
better for
detecting
large shifts,
CUSUM is
faster for
small shifts

The conclusion can be drawn that the Shewhart chart is superior for
detecting large shifts and the CUSUM scheme is faster for small shifts. The
break-even point is a function of h, as the table shows.

6.3.2.3.1. Cusum Average Run Length
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.2. What are Variables Control Charts?

6.3.2.4.EWMA Control Charts

EWMA
statistic

The Exponentially Weighted Moving Average (EWMA) is a statistic for
monitoring the process that averages the data in a way that gives less
and less weight to data as they are further removed in time.

Comparison
of Shewhart
control
chart and
EWMA
control
chart
techniques

For the Shewhart chart control technique, the decision regarding the
state of control of the process at any time, t, depends solely on the most
recent measurement from the process and, of course, the degree of
'trueness' of the estimates of the control limits from historical data. For
the EWMA control technique, the decision depends on the EWMA
statistic, which is an exponentially weighted average of all prior data,
including the most recent measurement.

By the choice of weighting factor, , the EWMA control procedure can
be made sensitive to a small or gradual drift in the process, whereas the
Shewhart control procedure can only react when the last data point is
outside a control limit.

Definition of
EWMA

The statistic that is calculated is:

EWMAt =  Yt + ( 1- ) EWMAt-1    for t = 1, 2, ..., n.

where

EWMA0 is the mean of historical data (target)●   

Yt is the observation at time t●   

n is the number of observations to be monitored including
EWMA0

●   

0 <   1 is a constant that determines the depth of memory of
the EWMA.

●   

The equation is due to Roberts (1959).

6.3.2.4. EWMA Control Charts
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Choice of
weighting
factor

The parameter  determines the rate at which 'older' data enter into the
calculation of the EWMA statistic. A value of  = 1 implies that only
the most recent measurement influences the EWMA (degrades to
Shewhart chart). Thus, a large value of  = 1 gives more weight to
recent data and less weight to older data; a small value of  gives more
weight to older data. The value of  is usually set between 0.2 and 0.3
(Hunter) although this choice is somewhat arbitrary. Lucas and Saccucci
(1990) give tables that help the user select .

Variance of
EWMA
statistic

The estimated variance of the EWMA statistic is approximately

s2
ewma = ( /(2- )) s2

when t is not small, where s is the standard deviation calculated from the
historical data.

Definition of
control
limits for
EWMA

The center line for the control chart is the target value or EWMA0. The
control limits are:

UCL = EWMA0 + ksewma
LCL = EWMA0 - ksewma

where the factor k is either set equal 3 or chosen using the Lucas and
Saccucci (1990) tables. The data are assumed to be independent and
these tables also assume a normal population.

As with all control procedures, the EWMA procedure depends on a
database of measurements that are truly representative of the process.
Once the mean value and standard deviation have been calculated from
this database, the process can enter the monitoring stage, provided the
process was in control when the data were collected. If not, then the
usual Phase 1 work would have to be completed first.

Example of
calculation
of
parameters
for an
EWMA
control
chart

To illustrate the construction of an EWMA control chart, consider a
process with the following parameters calculated from historical data:

EWMA0 = 50
s = 2.0539

with  chosen to be 0.3 so that  / (2- ) = .3 / 1.7 = 0.1765 and the
square root = 0.4201. The control limits are given by

UCL = 50 + 3 (0.4201)(2.0539) = 52.5884
LCL = 50 - 3 (0.4201) (2.0539) = 47.4115

6.3.2.4. EWMA Control Charts
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Sample data Consider the following data consisting of 20 points where 1 - 10 are on
the top row from left to right and 11-20 are on the bottom row from left
to right:

  52.0 47.0 53.0 49.3 50.1 47.0
  51.0 50.1 51.2 50.5 49.6 47.6
  49.9 51.3 47.8 51.2 52.6 52.4
  53.6 52.1

EWMA
statistics for
sample data

These data represent control measurements from the process which is to
be monitored using the EWMA control chart technique. The
corresponding EWMA statistics that are computed from this data set
are:

  50.00 50.60 49.52 50.56 50.18
  50.16 49.12 49.75 49.85 50.26
  50.33 50.11 49.36 49.52 50.05
  49.34 49.92 50.73 51.23 51.94

Sample
EWMA
plot

The control chart is given below.

6.3.2.4. EWMA Control Charts
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Interpretation
of EWMA
control chart

The red dots are the raw data; the jagged line is the EWMA statistic
over time. The chart tells us that the process is in control because all
EWMAt lie between the control limits. However, there seems to be a
trend upwards for the last 5 periods.

6.3.2.4. EWMA Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts

6.3.3.What are Attributes Control Charts?

Attributes
data arise
when
classifying
or counting
observations

The Shewhart control chart plots quality characteristics that can be
measured and expressed numerically. We measure weight, height,
position, thickness, etc. If we cannot represent a particular quality
characteristic numerically, or if it is impractical to do so, we then often
resort to using a quality characteristic to sort or classify an item that is
inspected into one of two "buckets".

An example of a common quality characteristic classification would be
designating units as "conforming units" or "nonconforming units".
Another quality characteristic criteria would be sorting units into "non
defective" and "defective" categories. Quality characteristics of that
type are called attributes.

Note that there is a difference between "nonconforming to an
engineering specification" and "defective" -- a nonconforming unit may
function just fine and be, in fact, not defective at all, while a part can be
"in spec" and not fucntion as desired (i.e., be defective).

Examples of quality characteristics that are attributes are the number of
failures in a production run, the proportion of malfunctioning wafers in
a lot, the number of people eating in the cafeteria on a given day, etc.

Types of
attribute
control
charts

Control charts dealing with the number of defects or nonconformities
are called c charts (for count).

Control charts dealing with the proportion or fraction of defective
product are called  p charts (for proportion).

There is another chart which handles defects per unit, called the u chart
(for unit). This applies when we wish to work with the average number
of nonconformities per unit of product.

For additional references, see Woodall (1997) which reviews papers
showing examples of attribute control charting, including examples
from semiconductor manufacturing such as those examining the spatial
depencence of defects.

6.3.3. What are Attributes Control Charts?
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.3. What are Attributes Control Charts?

6.3.3.1.Counts Control Charts

Defective
items vs
individual
defects

The literature differentiates between defect and defective, which is the
same as differentiating between nonconformity and nonconforming
units. This may sound like splitting hairs, but in the interest of clarity
let's try to unravel this man-made mystery.

Consider a wafer with a number of chips on it. The wafer is referred to
as an "item of a product". The chip may be referred to as "a specific
point". There exist certain specifications for the wafers. When a
particular wafer (e.g., the item of the product) does not meet at least
one of the specifications, it is classified as a nonconforming item.
Furthermore, each chip, (e.g., the specific point) at which a
specification is not met becomes a defect or nonconformity.

So, a nonconforming or defective item contains at least one defect or
nonconformity. It should be pointed out that a wafer can contain
several defects but still be classified as conforming. For example, the
defects may be located at noncritical positions on the wafer. If, on the
other hand, the number of the so-called "unimportant" defects
becomes alarmingly large, an investigation of the production of these
wafers is warranted.

Control charts involving counts can be either for the total number of
nonconformities (defects) for the sample of inspected units, or for the
average number of defects per inspection unit.

6.3.3.1. Counts Control Charts
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Poisson
approximation
for numbers
or counts of
defects

Let us consider an assembled product such as a microcomputer. The
opportunity for the occurrence of any given defect may be quite large.
However, the probability of occurrence of a defect in any one
arbitrarily chosen spot is likely to be very small. In such a case, the
incidence of defects might be modeled by a Poisson distribution.
Actually, the Poisson distribution is an approximation of the binomial
distribution and applies well in this capacity according to the
following rule of thumb:

The sample size n should be equal to or larger than 20
and the probability of a single success, p, should be
smaller than or equal to .05. If n  100, the
approximation is excellent if np is also  10.

Illustrate
Poisson
approximation
to binomial

To illustrate the use of the Poisson distribution as an approximation of
a binomial distribution, consider the following comparison: Let p, the
probability of a single success in n = 200 trials, be .025.

Find the probability of exactly 3 successes. If we assume that p
remains constant then the solution follows the binomial distribution
rules, that is:

By the Poisson approximation we have

and

6.3.3.1. Counts Control Charts
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The inspection
unit

Before the control chart parameters are defined there is one more
definition: the inspection unit. We shall count the number of defects
that occur in a so-called inspection unit. More often than not, an
inspection unit is a single unit or item of product; for example, a
wafer. However, sometimes the inspection unit could consist of five
wafers, or ten wafers and so on. The size of the inspection units may
depend on the recording facility, measuring equipment, operators, etc.

Suppose that defects occur in a given inspection unit according to the
Poisson distribution, with parameter c (often denoted by np or the
Greek letter ). In other words

Control charts
for counts,
using the
Poisson
distribution

where x is the number of defects and c > 0 is the parameter of the
Poisson distribution. It is known that both the mean and the variance
of this distribution are equal to c. Then the k-sigma control chart is

If the LCL comes out negative, then there is no lower control limit.
This control scheme assumes that a standard value for c is available. If
this is not the case then c may be estimated as the average of the
number of defects in a preliminary sample of inspection units, call it

. Usually k is set to 3 by many practioners.

Control chart
example using
counts

An example may help to illustrate the construction of control limits for
counts data. We are inspecting 25 successive wafers, each containing
100 chips. Here the wafer is the inspection unit. The observed number
of defects are

Wafer Number Wafer Number
Number of Defects Number of Defects

1 16 14 16
2 14 15 15
3 28 16 13
4 16 17 14
5 12 18 16
6 20 19 11
7 10 20 20

6.3.3.1. Counts Control Charts
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8 12 21 11
9 10 22 19

10 17 23 16
11 19 24 31
12 17 25 13
13 14   

From this table we have

Sample
counts
control
chart

Control Chart for Counts

Transforming Poisson Data

6.3.3.1. Counts Control Charts
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Normal
approximation
to Poisson is
adequate
when the
mean of the
Poisson is at
least 5

We have seen that the 3-sigma limits for a c chart, where c represents
the number of nonconformities, are given by

where it is assumed that the normal approximation to the Poisson
distribution holds, hence the symmetry of the control limits. It is
shown in the literature that the normal approximation to the Poisson is
adequate when the mean of the Poisson is at least 5. When applied to
the c chart this implies that the mean of the defects should be at least
5. This requirement will often be met in practice, but still, when the
mean is smaller than 9 (solving the above equation) there will be no
lower control limit.

Let the mean be 10. Then the lower control limit = 0.513. However,
P(c = 0) = .000045, using the Poisson formula. This is only 1/30 of the
assumed area of .00135. So one has to raise the lower limit so as to get
as close as possible to .00135. From Poisson tables or computer
software we find that P(1) = .0005 and P(2) = .0027, so the lower limit
should actually be 2 or 3.

Transforming
count data
into
approximately
normal data

To avoid this type of problem, we may resort to a transformation that
makes the transformed data match the normal distribution better. One
such transformation described by Ryan (2000) is

which is, for a large sample, approximately normally distributed with
mean = 2  and variace = 1, where  is the mean of the Poisson
distribution.

Similar transformations have been proposed by Anscombe (1948) and
Freeman and Tukey (1950). When applied to a c chart these are

The repspective control limits are

While using transformations may result in meaningful control limits,
one has to bear in mind that the user is now working with data on a
different scale than the original measurements. There is another way
to remedy the problem of symmetric limits applied to non symmetric
cases, and that is to use probability limits. These can be obtained from
tables given by Molina (1973). This allows the user to work with data

6.3.3.1. Counts Control Charts
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on the original scale, but they require special tables to obtain the
limits. Of course, software might be used instead.

Warning for
highly skewed
distributions

Note: In general, it is not a good idea to use 3-sigma limits for
distributions that are highly skewed (see Ryan and Schwertman (1997)
for more about the possibly extreme consequences of doing this).

6.3.3.1. Counts Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.3. What are Attributes Control Charts?

6.3.3.2.Proportions Control Charts

p is the
fraction
defective in
a lot or
population

The proportion or fraction nonconforming (defective) in a population is
defined as the ratio of the number of nonconforming items in the
population to the total number of items in that population. The item
under consideration may have one or more quality characteristics that
are inspected simultaneously. If at least one of the characteristics does
not conform to standard, the item is classified as nonconforming.

The fraction or proportion can be expressed as a decimal, or, when
multiplied by 100, as a percent. The underlying statistical principles for
a control chart for proportion nonconforming are based on the binomial
distribution.

Let us suppose that the production process operates in a stable manner,
such that the probability that a given unit will not conform to
specifications is p. Furthermore, we assume that successive units
produced are independent. Under these conditions, each unit that is
produced is a realization of a Bernoulli random variable with parameter
p. If a random sample of n units of product is selected and if D is the
number of units that are nonconforming, the D follows a binomial
distribution with parameters n and p

The
binomial
distribution
model for
number of
defectives in
a sample

The mean of D is np and the variance is np(1-p). The sample proportion
nonconforming is the ratio of the number of nonconforming units in the
sample, D, to the sample size n,

6.3.3.2. Proportions Control Charts
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The mean and variance of this estimator are

and

This background is sufficient to develop the control chart for proportion
or fraction nonconforming. The chart is called the p-chart.

p control
charts for
lot
proportion
defective

If the true fraction conforming p is known (or a standard value is given),
then the center line and control limits of the fraction nonconforming
control chart is

When the process fraction (proportion) p is not known, it must be
estimated from the available data. This is accomplished by selecting m
preliminary samples, each of size n. If there are Di defectives in sample
i, the fraction nonconforming in sample i is

and the average of these individuals sample fractions is

The  is used instead of p in the control chart setup.

6.3.3.2. Proportions Control Charts
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Example of
a p-chart

A numerical example will now be given to illustrate the above
mentioned principles. The location of chips on a wafer is measured on
30 wafers.

On each wafer 50 chips are measured and a defective is defined
whenever a misregistration, in terms of horizontal and/or vertical
distances from the center, is recorded. The results are

Sample Fraction Sample Fraction Sample Fraction
Number Defectives Number Defectives Number Defectives

1 .24 11 .10 21 .40
2 .30 12 .12 22 .36
3 .16 13 .34 23 .48
4 .20 14 .24 24 .30
5 .08 15 .44 25 .18
6 .14 16 .16 26 .24
7 .32 17 .20 27 .14
8 .18 18 .10 28 .26
9 .28 19 .26 29 .18

10 .20 20 .22 30 .12

Sample
proportions
control
chart

The corresponding control chart is given below:

6.3.3.2. Proportions Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts

6.3.4.What are Multivariate Control Charts?

Multivariate
control
charts and
Hotelling's
T 2 statistic

It is a fact of life that most data are naturally multivariate. Hotelling in
1947 introduced a statistic which uniquely lends itself to plotting
multivariate observations. This statistic, appropriately named Hotelling's
T 2, is a scalar that combines information from the dispersion and mean of
several variables. Due to the fact that computations are laborious and
fairly complex and require some knowledge of matrix algebra, acceptance
of multivariate control charts by industry was slow and hesitant.

Multivariate
control
charts now
more
accessible

Nowadays, modern computers in general and the PC in particular have
made complex calculations accessible and during the last decade,
multivariate control charts were given more attention. In fact, the
multivariate charts which display the Hotelling T 2 statistic became so
popular that they sometimes are called Shewhart charts as well (e.g.,
Crosier, 1988), although Shewhart had nothing to do with them.

Hotelling
charts for
both means
and
dispersion

As in the univariate case, when data are grouped, the T 2 chart can be
paired with a chart that displays a measure of variability within the

subgroups for all the analyzed characteristics. The combined T 2 and 

(dispersion) charts are thus a multivariate counterpart of the univariate 

and S (or  and R) charts.

6.3.4. What are Multivariate Control Charts?
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Hotelling
mean and
dispersion
control
charts

An example of a Hotelling T 2 and  pair of charts is given below:

Interpretation
of sample
Hotelling
control
charts

Each chart represents 14 consecutive measurements on the means of four
variables. The T 2 chart for means indicates an out-of-control state for
groups 1,2 and 9-11. The T 2

d chart for dispersions indicate that groups
10, 13 and 14 are also out of control. The interpretation is that the
multivariate system is suspect. To find an assignable cause, one has to
resort to the individual univariate control charts or some other univariate
procedure that should accompany this multivariate chart.

Additional
discussion

For more details and examples see the next page and also Tutorials,
section 5, subsections 4.3, 4.3.1 and 4.3.2. An introduction to Elements of
multivariate analysis is also given in the Tutorials.

6.3.4. What are Multivariate Control Charts?
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.4. What are Multivariate Control Charts?

6.3.4.1.Hotelling Control Charts

Definition of
Hotelling's
T 2

"distance"
statistic

The Hotelling T 2 distance is a measure that accounts for the covariance
structure of a multivariate normal distribution. It was proposed by
Harold Hotelling in 1947 and is called Hotelling T 2. It may be thought
of as the multivariate counterpart of the Student's-t statistic.

The T 2 distance is a constant multiplied by a quadratic form. This
quadratic form is obtained by multiplying the following three quantities:

The vector of deviations between the observations
and the mean m, which is expressed by (X-m)',

1.  

The inverse of the covariance matrix, S-1,2.  

The vector of deviations, (X-m).3.  

It should be mentioned that for independent variables, the covariance
matrix is a diagonal matrix and T 2 becomes proportional to the sum of
squared standardized variables.

In general, the higher the T 2 value, the more distant is the observation
from the mean. The formula for computing the T 2 is:

The constant c is the sample size from which the covariance matrix was
estimated.

T 2 readily
graphable

The T 2 distances lend themselves readily to graphical displays and as a
result the T 2-chart is the most popular among the multivariate control
charts.

Estimation of the Mean and Covariance Matrix

6.3.4.1. Hotelling Control Charts
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Mean and
Covariance
matrices

Let X1,...Xn be n p-dimensional vectors of observations that are sampled
independently from Np(m, ) with p < n-1, with  the covariance

matrix of X. The observed mean vector  and the sample dispersion
matrix

are the unbiased estimators of m and , respectively.

Additional
discussion

See Tutorials (section 5), subsections 4.3, 4.3.1 and 4.3.2 for more
details and examples. An introduction to Elements of multivariate
analysis is also given in the Tutorials.

6.3.4.1. Hotelling Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.4. What are Multivariate Control Charts?

6.3.4.2.Principal Components Control
Charts

Problems
with T 2

charts

Although the T 2 chart is the most popular, easiest to use and interpret
method for handling multivariate process data, and is beginning to be
widely accepted by quality engineers and operators, it is not a panacea.
First, unlike the univariate case, the scale of the values displayed on the
chart is not related to the scales of any of the monitored variables.
Secondly, when the T 2 statistic exceeds the upper control limit (UCL),
the user does not know which particular variable(s) caused the
out-of-control signal.

Run
univariate
charts along
with the
multivariate
ones

With respect to scaling, we strongly advise to run individual univariate
charts in tandem with the multivariate chart. This will also help in
honing in on the culprit(s) that might have caused the signal. However,
individual univariate charts cannot explain situations that are a result of
some problems in the covariance or correlation between the variables.
This is why a dispersion chart must also be used.

Another way
to monitor
multivariate
data:
Principal
Components
control
charts

Another way to analyze the data is to use principal components. For
each multivariate measurement (or observation), the principal
components are linear combinations of the standardized p variables (to
standardize subtract their respective targets and divide by their
standard deviations). The principal components have two important
advantages:

the new variables are uncorrelated (or almost)1.  

very often, a few (sometimes 1 or 2) principal components may
capture most of the variability in the data so that we do not have
to use all of the p principal components for control.

2.  

6.3.4.2. Principal Components Control Charts
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Eigenvalues Unfortunately, there is one big disadvantage: The identity of the
original variables is lost! However, in some cases the specific linear
combinations corresponding to the principal components with the
largest eigenvalues may yield meaningful measurement units. What is
being used in control charts are the principal factors.

A principal factor is the principal component divided by the square
root of its eigenvalue.

Additional
discussion

More details and examples are given in the Tutorials (section 5).

6.3.4.2. Principal Components Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.4. What are Multivariate Control Charts?

6.3.4.3.Multivariate EWMA Charts

Multivariate EWMA Control Chart

Univariate
EWMA model

The model for a univariate EWMA chart is given by:

where Zi is the ith EWMA, Xi is the the ith observation, Z0 is the
average from the historical data, and 0 <   1.

Multivariate
EWMA model

In the multivariate case, one can extend this formula to

where Zi is the ith EWMA vector, Xi is the the ith observation vector i
= 1, 2, ..., n, Z0 is the vector of variable values from the historical data,

 is the diag( 1, 2, ... , p) which is a diagonal matrix with 1, 2,
... , p on the main diagonal, and p is the number of variables; that is
the number of elements in each vector.

Illustration of
multivariate
EWMA

The following illustration may clarify this. There are p variables and
each variable contains n observations. The input data matrix looks like:

The quantity to be plotted on the control chart is

6.3.4.3. Multivariate EWMA Charts
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Simplification It has been shown (Lowry et al., 1992) that the (k,l)th element of the
covariance matrix of the ith EWMA, , is

where  is the (k,l)th element of , the covariance matrix of the X's.

If 1 = 2 = ... = p = , then the above expression simplifies to

where  is the covariance matrix of the input data.

Further
simplification

There is a further simplification. When i becomes large, the covariance
matrix may be expressed as:

The question is "What is large?". When we examine the formula with
the 2i in it, we observe that when 2i becomes sufficiently large such
that (1 - ) 2i becomes almost zero, then we can use the simplified
formula.

6.3.4.3. Multivariate EWMA Charts
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Table for
selected
values of 
and i

The following table gives the values of (1- ) 2i for selected values of 
and i.

 2i
1 - 4 6 8 10 12 20 30 40 50

.9 .656 .531 .430 .349 .282 .122 .042 .015 .005

.8 .410 .262 .168 .107 .069 .012 .001 .000 .000

.7 .240 .118 .058 .028 .014 .001 .000 .000 .000

.6 .130 .047 .017 .006 .002 .000 .000 .000 .000

.5 .063 .016 .004 .001 .000 .000 .000 .000 .000

.4 .026 .004 .001 .000 .000 .000 .000 .000 .000

.3 .008 .001 .000 .000 .000 .000 .000 .000 .000

.2 .002 .000 .000 .000 .000 .000 .000 .000 .000

.1 .000 .000 .000 .000 .000 .000 .000 .000 .000

Simplified
formuala not
required

It should be pointed out that a well-meaning computer program does
not have to adhere to the simplified formula, and potential inaccuracies
for low values for  and i can thus be avoided.

MEWMA
computer
output
for the
Lowry
data

Here is an example of the application of an MEWMA control chart. To
faciltate comparison with existing literature, we used data from Lowry et al.
The data were simulated from a bivariate normal distribution with unit
variances and a correlation coefficient of 0.5. The value for  = .10 and the
values for  were obtained by the equation given above. The covariance of
the MEWMA vectors was obtained by using the non-simplified equation. That
means that for each MEWMA control statistic, the computer computed a
covariance matrix, where i = 1, 2, ...10. The results of the computer routine
are:

*****************************************************
*      Multi-Variate EWMA Control Chart             *
*****************************************************

DATA SERIES            MEWMA Vector          MEWMA
   1          2          1         2       STATISTIC
-1.190     0.590     -0.119     0.059        2.1886
 0.120     0.900     -0.095     0.143        2.0697
-1.690     0.400     -0.255     0.169        4.8365
 0.300     0.460     -0.199     0.198        3.4158
 0.890    -0.750     -0.090     0.103        0.7089
 0.820     0.980      0.001     0.191        0.9268

6.3.4.3. Multivariate EWMA Charts
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-0.300     2.280     -0.029     0.400        4.0018
 0.630     1.750      0.037     0.535        6.1657
 1.560     1.580      0.189     0.639        7.8554
 1.460     3.050      0.316     0.880       14.4158

VEC    XBAR      MSE      Lamda
 1     .260     1.200     0.100
 2    1.124     1.774     0.100

The UCL = 5.938 for  = .05. Smaller choices of  are also used.

Sample
MEWMA
plot

The following is the plot of the above MEWMA.

6.3.4.3. Multivariate EWMA Charts
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6. Process or Product Monitoring and Control

6.4. Introduction to Time Series Analysis

Time series
methods
take into
account
possible
internal
structure in
the data

Time series data often arise when monitoring industrial processes or
tracking corporate business metrics. The essential difference between
modeling data via time series methods or using the process monitoring
methods discussed earlier in this chapter is the following:

Time series analysis accounts for the fact that data points
taken over time may have an internal structure (such as
autocorrelation, trend or seasonal variation) that should be
accounted for.

This section will give a brief overview of some of the more widely used
techniques in the rich and rapidly growing field of time series modeling
and analysis.

Contents for
this section

Areas covered are:

Definitions, Applications and Techniques1.  

What are Moving Average or Smoothing
Techniques?

Single Moving Average1.  

Centered Moving Average2.  

2.  

What is Exponential Smoothing?

Single Exponential Smoothing1.  

Forecasting with Single Exponential  
Smoothing

2.  

Double Exponential Smoothing3.  

Forecasting with Double Exponential
Smoothing

4.  

Triple Exponential Smoothing5.  

Example of Triple Exponential Smoothing6.  

Exponential Smoothing Summary7.  

3.  

Univariate Time Series Models4.  

6.4. Introduction to Time Series Analysis

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm (1 of 2) [5/1/2006 10:35:06 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Sample Data Sets1.  

Stationarity2.  

Seasonality3.  

Common Approaches4.  

Box-Jenkins Approach5.  

Box-Jenkins Model Identification6.  

Box-Jenkins Model Estimation7.  

Box-Jenkins Model Validation8.  

SEMPLOT Sample Output for a Box-Jenkins
Model Analysis

9.  

SEMPLOT Sample Output for a Box-Jenkins
Model Analysis with Seasonality

10.  

Multivariate Time Series Models

Example of Multivariate Time Series Analysis1.  

5.  

6.4. Introduction to Time Series Analysis
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.1.Definitions, Applications and
Techniques

Definition Definition of Time Series: An ordered sequence of values of a variable
at equally spaced time intervals.

Time series
occur
frequently
when
looking at
industrial
data

Applications: The usage of time series models is twofold:

Obtain an understanding of the underlying forces and structure
that produced the observed data

●   

Fit a model and proceed to forecasting, monitoring or even
feedback and feedforward control.

●   

Time Series Analysis is used for many applications such as:

Economic Forecasting●   

Sales Forecasting●   

Budgetary Analysis●   

Stock Market Analysis●   

Yield Projections●   

Process and Quality Control●   

Inventory Studies●   

Workload Projections●   

Utility Studies●   

Census Analysis●   

and many, many more...

6.4.1. Definitions, Applications and Techniques
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There are
many
methods
used to
model and
forecast
time series

Techniques: The fitting of time series models can be an ambitious
undertaking. There are many methods of model fitting including the
following:

Box-Jenkins ARIMA models●   

Box-Jenkins Multivariate Models●   

Holt-Winters Exponential Smoothing (single, double, triple)●   

The user's application and preference will decide the selection of the
appropriate technique. It is beyond the realm and intention of the
authors of this handbook to cover all these methods. The overview
presented here will start by looking at some basic smoothing techniques:

Averaging Methods●   

Exponential Smoothing Techniques.●   

Later in this section we will discuss the Box-Jenkins modeling methods
and Multivariate Time Series.

6.4.1. Definitions, Applications and Techniques
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.2.What are Moving Average or
Smoothing Techniques?

Smoothing
data
removes
random
variation
and shows
trends and
cyclic
components

Inherent in the collection of data taken over time is some form of
random variation. There exist methods for reducing of canceling the
effect due to random variation. An often-used technique in industry is
"smoothing". This technique, when properly applied, reveals more
clearly the underlying trend, seasonal and cyclic components.

There are two distinct groups of smoothing methods 

Averaging Methods●   

Exponential Smoothing Methods●   

Taking
averages is
the simplest
way to
smooth data

We will first investigate some averaging methods, such as the "simple"
average of all past data.

A manager of a warehouse wants to know how much a typical supplier
delivers in 1000 dollar units. He/she takes a sample of 12 suppliers, at
random, obtaining the following results:

Supplier Amount Supplier Amount

1 9 7 11
2 8 8 7
3 9 9 13
4 12 10 9
5 9 11 11
6 12 12 10

The computed mean or average of the data = 10. The manager decides
to use this as the estimate for expenditure of a typical supplier.

Is this a good or bad estimate? 

6.4.2. What are Moving Average or Smoothing Techniques?
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Mean
squared
error is a
way to judge
how good a
model is

We shall compute the "mean squared error":

The "error" = true amount spent minus the estimated amount.●   

The "error squared" is the error above, squared.●   

The "SSE" is the sum of the squared errors.●   

The "MSE" is the mean of the squared errors.●   

MSE results
for example

The results are:

Error and Squared Errors

The estimate = 10

Supplier $ Error
Error

Squared

1 9 -1 1
2 8 -2 4
3 9 -1 1
4 12 2 4
5 9 -1 1
6 12 2 4
7 11 1 1
8 7 -3 9
9 13 3 9

10 9 -1 1
11 11 1 1
12 10 0 0

The SSE = 36 and the MSE = 36/12 = 3.

Table of
MSE results
for example
using
different
estimates

So how good was the estimator for the amount spent for each supplier?
Let us compare the estimate (10) with the following estimates: 7, 9, and
12. That is, we estimate that each supplier will spend $7, or $9 or $12.

Performing the same calculations we arrive at:

Estimator 7 9 10 12

SSE 144 48 36 84
MSE 12 4 3 7

The estimator with the smallest MSE is the best. It can be shown
mathematically that the estimator that minimizes the MSE for a set of
random data is the mean.

6.4.2. What are Moving Average or Smoothing Techniques?
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Table
showing
squared
error for the
mean for
sample data

Next we will examine the mean to see how well it predicts net income
over time.

The next table gives the income before taxes of a PC manufacturer
between 1985 and 1994.

Year $ (millions) Mean Error
Squared

Error

1985 46.163 48.776 -2.613 6.828
1986 46.998 48.776 -1.778 3.161
1987 47.816 48.776 -0.960 0.922
1988 48.311 48.776 -0.465 0.216
1989 48.758 48.776 -0.018 0.000
1990 49.164 48.776 0.388 0.151
1991 49.548 48.776 0.772 0.596
1992 48.915 48.776 1.139 1.297
1993 50.315 48.776 1.539 2.369
1994 50.768 48.776 1.992 3.968

The MSE = 1.9508.

The mean is
not a good
estimator
when there
are trends

The question arises: can we use the mean to forecast income if we
suspect a trend? A look at the graph below shows clearly that we should
not do this.

6.4.2. What are Moving Average or Smoothing Techniques?
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Average
weighs all
past
observations
equally

In summary, we state that

The "simple" average or mean of all past observations is only a
useful estimate for forecasting when there are no trends. If there
are trends, use different estimates that take the trend into account.

1.  

The average "weighs" all past observations equally. For example,
the average of the values 3, 4, 5 is 4. We know, of course, that an
average is computed by adding all the values and dividing the
sum by the number of values. Another way of computing the
average is by adding each value divided by the number of values,
or

3/3 + 4/3 + 5/3 = 1 + 1.3333 + 1.6667 = 4.

The multiplier 1/3 is called the weight. In general:

The  are the weights and of course they sum to 1.

2.  

6.4.2. What are Moving Average or Smoothing Techniques?
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.2. What are Moving Average or Smoothing Techniques?

6.4.2.1.Single Moving Average

Taking a
moving
average is a
smoothing
process

An alternative way to summarize the past data is to compute the mean of
successive smaller sets of numbers of past data as follows:

Recall the set of numbers 9, 8, 9, 12, 9, 12, 11, 7, 13, 9, 11,
10 which were the dollar amount of 12 suppliers selected at
random. Let us set M, the size of the "smaller set" equal to
3. Then the average of the first 3 numbers is:  (9 + 8 + 9) /
3 = 8.667.

This is called "smoothing" (i.e., some form of averaging). This
smoothing process is continued by advancing one period and calculating
the next average of three numbers, dropping the first number.

Moving
average
example

The next table summarizes the process, which is referred to as Moving
Averaging. The general expression for the moving average is

Mt = [ Xt + Xt-1 + ... + Xt-N+1] / N

Results of Moving Average
Supplier $ MA Error Error squared

1 9    
2 8    
3 9 8.667 0.333 0.111
4 12 9.667 2.333 5.444
5 9 10.000 -1.000 1.000
6 12 11.000 1.000 1.000
7 11 10.667 0.333 0.111
8 7 10.000 -3.000 9.000
9 13 10.333 2.667 7.111
10 9 9.667 -0.667 0.444
11 11 11.000 0 0
12 10 10.000 0 0

The MSE = 2.018 as compared to 3 in the previous case.

6.4.2.1. Single Moving Average
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.2. What are Moving Average or Smoothing Techniques?

6.4.2.2.Centered Moving Average

When
computing a
running
moving
average,
placing the
average in
the middle
time period
makes sense

In the previous example we computed the average of the first 3 time
periods and placed it next to period 3. We could have placed the average
in the middle of the time interval of three periods, that is, next to period
2. This works well with odd time periods, but not so good for even time
periods. So where would we place the first moving average when M =
4?

Technically, the Moving Average would fall at t = 2.5, 3.5, ...

To avoid this problem we smooth the MA's using M = 2. Thus we
smooth the smoothed values!

If we
average an
even number
of terms, we
need to
smooth the
smoothed
values

The following table shows the results using M = 4.

Interim Steps
Period Value MA Centered

1 9   
1.5    
2 8   

2.5  9.5  
3 9  9.5

3.5  9.5  
4 12  10.0

4.5  10.5  
5 9  10.750

5.5  11.0  
6 12   

6.5    
7 9   

6.4.2.2. Centered Moving Average

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc422.htm (1 of 2) [5/1/2006 10:35:08 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Final table This is the final table:

Period Value Centered MA

1 9  
2 8  
3 9 9.5
4 12 10.0
5 9 10.75
6 12  
7 11  

Double Moving Averages for a Linear Trend Process

Moving
averages
are still not
able to
handle
significant
trends when
forecasting

Unfortunately, neither the mean of all data nor the moving average of
the most recent M values, when used as forecasts for the next period, are
able to cope with a significant trend.

There exists a variation on the MA procedure that often does a better job
of handling trend. It is called Double Moving Averages for a  Linear
Trend Process. It calculates a second moving average from the original
moving average, using the same value for M. As soon as both single and
double moving averages are available, a computer routine uses these
averages to compute a slope and intercept, and then forecasts one or
more periods ahead.

6.4.2.2. Centered Moving Average
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.3.What is Exponential Smoothing?

Exponential
smoothing
schemes weight
past
observations
using
exponentially
decreasing
weights

This is a very popular scheme to produce a smoothed Time Series.
Whereas in Single Moving Averages the past observations are
weighted equally, Exponential Smoothing assigns exponentially
decreasing weights as the observation get older.

In other words, recent observations are given relatively more weight
in forecasting than the older observations.

In the case of moving averages, the weights assigned to the
observations are the same and are equal to 1/N. In exponential
smoothing, however, there are one or more smoothing parameters to
be determined (or estimated) and these choices determine the weights
assigned to the observations.

Single, double and triple Exponential Smoothing will be described in
this section.

6.4.3. What is Exponential Smoothing?
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.1.Single Exponential Smoothing

Exponential
smoothing
weights past
observations
with
exponentially
decreasing
weights to
forecast
future values

This smoothing scheme begins by setting S2 to y1, where Si stands for
smoothed observation or EWMA, and y stands for the original
observation. The subscripts refer to the time periods, 1, 2, ..., n. For the
third period, S3 =  y2 + (1- ) S2; and so on. There is no S1; the
smoothed series starts with the smoothed version of the second
observation.

For any time period t, the smoothed value St is found by computing

This is the basic equation of exponential smoothing and the constant or
parameter  is called the smoothing constant.

Note: There is an alternative approach to exponential smoothing that
replaces yt-1 in the basic equation with yt, the current observation. That
formulation, due to Roberts (1959), is described in the section on
EWMA control charts. The formulation here follows Hunter (1986).

Setting the first EWMA

6.4.3.1. Single Exponential Smoothing
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The first
forecast is
very
important

The initial EWMA plays an important role in computing all the
subsequent EWMA's. Setting S2 to y1 is one method of initialization.
Another way is to set it to the target of the process.

Still another possibility would be to average the first four or five
observations.

It can also be shown that the smaller the value of , the more important
is the selection of the initial EWMA. The user would be wise to try a
few methods, (assuming that the software has them available) before
finalizing the settings.

Why is it called "Exponential"?

Expand
basic
equation

Let us expand the basic equation by first substituting for St-1 in the
basic equation to obtain

St =  yt-1 + (1- ) [  yt-2 + (1- ) St-2 ]

   =  yt-1 +  (1- ) yt-2 + (1- )2 St-2

Summation
formula for
basic
equation

By substituting for St-2, then for St-3, and so forth, until we reach S2
(which is just y1), it can be shown that the expanding equation can be
written as:

Expanded
equation for
S5

For example, the expanded equation for the smoothed value S5 is:

6.4.3.1. Single Exponential Smoothing

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm (2 of 5) [5/1/2006 10:35:10 AM]



Illustrates
exponential
behavior

This illustrates the exponential behavior. The weights,  (1- ) t
decrease geometrically, and their sum is unity as shown below, using a
property of geometric series:

From the last formula we can see that the summation term shows that
the contribution to the smoothed value St becomes less at each
consecutive time period.

Example for
 = .3

Let  = .3. Observe that the weights  (1- ) t  decrease exponentially
(geometrically) with time.

 Value weight

last y1 .2100

 y2 .1470

 y3 .1029

 y4 .0720

What is the "best" value for ?

How do you
choose the
weight
parameter?

The speed at which the older responses are dampened (smoothed) is a
function of the value of . When  is close to 1, dampening is quick
and when  is close to 0, dampening is slow. This is illustrated in the
table below:

---------------> towards past observations

(1- ) (1- ) 2 (1- ) 3 (1- ) 4

.9 .1 .01 .001 .0001

.5 .5 .25 .125 .0625

.1 .9 .81 .729 .6561

We choose the best value for  so the value which results in the
smallest MSE.

6.4.3.1. Single Exponential Smoothing
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Example Let us illustrate this principle with an example. Consider the following
data set consisting of 12 observations taken over time:

Time yt S ( =.1) Error
Error

squared

1 71    
2 70 71 -1.00 1.00
3 69 70.9 -1.90 3.61
4 68 70.71 -2.71 7.34
5 64 70.44 -6.44 41.47
6 65 69.80 -4.80 23.04
7 72 69.32 2.68 7.18
8 78 69.58 8.42 70.90
9 75 70.43 4.57 20.88
10 75 70.88 4.12 16.97
11 75 71.29 3.71 13.76
12 70 71.67 -1.67 2.79

The sum of the squared errors (SSE) = 208.94. The mean of the squared
errors (MSE) is the SSE /11 = 19.0.

Calculate
for different
values of 

The MSE was again calculated for  = .5 and turned out to be 16.29, so
in this case we would prefer an  of .5. Can we do better? We could
apply the proven trial-and-error method. This is an iterative procedure
beginning with a range of  between .1 and .9. We determine the best
initial choice for  and then search between  -  and  + . We
could repeat this perhaps one more time to find the best  to 3 decimal
places.

Nonlinear
optimizers
can be used

But there are better search methods, such as the Marquardt procedure.
This is a nonlinear optimizer that minimizes the sum of squares of
residuals. In general, most well designed statistical software programs
should be able to find the value of  that minimizes the MSE.

6.4.3.1. Single Exponential Smoothing
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Sample plot
showing
smoothed
data for 2
values of 

6.4.3.1. Single Exponential Smoothing
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.2.Forecasting with Single Exponential
Smoothing

Forecasting Formula

Forecasting
the next point

The forecasting formula is the basic equation

New forecast
is previous
forecast plus
an error
adjustment

This can be written as:

where  t is the forecast error (actual - forecast) for period t.

In other words, the new forecast is the old one plus an adjustment for
the error that occurred in the last forecast.

Bootstrapping of Forecasts

Bootstrapping
forecasts

What happens if you wish to forecast from some origin, usually the
last data point, and no actual observations are available? In this
situation we have to modify the formula to become:

where yorigin remains constant. This technique is known as
bootstrapping.

6.4.3.2. Forecasting with Single Exponential Smoothing
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Example of Bootstrapping

Example The last data point in the previous example was 70 and its forecast
(smoothed value S) was 71.7. Since we do have the data point and the
forecast available, we can calculate the next forecast using the regular
formula

= .1(70) + .9(71.7) = 71.5      (  = .1)

But for the next forecast we have no data point (observation). So now
we compute:

St+2 =. 1(70) + .9(71.5 )= 71.35

Comparison between bootstrap and regular forecasting

Table
comparing
two methods

The following table displays the comparison between the two methods:

Period Bootstrap
forecast

Data Single Smoothing
Forecast

13 71.50 75 71.5
14 71.35 75 71.9
15 71.21 74 72.2
16 71.09 78 72.4
17 70.98 86 73.0

Single Exponential Smoothing with Trend

Single Smoothing (short for single exponential smoothing) is not very
good when there is a trend. The single coefficient  is not enough.

6.4.3.2. Forecasting with Single Exponential Smoothing
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Sample data
set with trend

Let us demonstrate this with the following data set smoothed with an
 of 0.3:

Data Fit

6.4  
5.6 6.4
7.8 6.2
8.8 6.7
11.0 7.3
11.6 8.4
16.7 9.4
15.3 11.6
21.6 12.7
22.4 15.4

Plot
demonstrating
inadequacy of
single
exponential
smoothing
when there is
trend

The resulting graph looks like:

6.4.3.2. Forecasting with Single Exponential Smoothing
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.3.Double Exponential Smoothing

Double
exponential
smoothing
uses two
constants
and is better
at handling
trends

As was previously observed, Single Smoothing does not excel in
following the data when there is a trend. This situation can be improved
by the introduction of a second equation with a second constant, ,
which must be chosen in conjunction with .

Here are the two equations associated with Double Exponential
Smoothing:

Note that the current value of the series is used to calculate its smoothed
value replacement in double exponential smoothing.

Initial Values

Several
methods to
choose the
initial
values

As in the case for single smoothing, there are a variety of schemes to set
initial values for St and bt in double smoothing.

S1 is in general set to y1. Here are three suggestions for b1:

b1 = y2 - y1

b1 = [(y2 - y1) + (y3 - y2) + (y4 - y3)]/3

b1 = (yn - y1)/(n - 1)

Comments

6.4.3.3. Double Exponential Smoothing
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Meaning of
the
smoothing
equations

The first smoothing equation adjusts St directly for the trend of the
previous period, bt-1, by adding it to the last smoothed value, St-1. This
helps to eliminate the lag and brings St to the appropriate base of the
current value.

The second smoothing equation then updates the trend, which is
expressed as the difference between the last two values. The equation is
similar to the basic form of single smoothing, but here applied to the
updating of the trend.

Non-linear
optimization
techniques
can be used

The values for  and  can be obtained via non-linear optimization
techniques, such as the Marquardt Algorithm.

6.4.3.3. Double Exponential Smoothing
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.4.Forecasting with Double
Exponential Smoothing(LASP)

Forecasting
formula

The one-period-ahead forecast is given by:

Ft+1 = St + bt

The m-periods-ahead forecast is given by:

Ft+m = St + mbt

Example

Example Consider once more the data set:

6.4,  5.6,  7.8,  8.8,  11,  11.6,  16.7,  15.3,  21.6,  22.4.

Now we will fit a double smoothing model with  = .3623 and  = 1.0.
These are the estimates that result in the lowest possible MSE when
comparing the orignal series to one step ahead at a time forecasts (since
this version of double exponential smoothing uses the current series
value to calculate a smoothed value, the smoothed series cannot be used
to determine an  with minimum MSE). The chosen starting values are
S1 = y1 = 6.4 and b1 = ((y2 - y1) + (y3 - y2) + (y4 - y3))/3 = 0.8.

For comparison's sake we also fit a single smoothing model with  =
0.977 (this results in the lowest MSE for single exponential smoothing).

The MSE for double smoothing is 3.7024.
The MSE for single smoothing is 8.8867.

6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)
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Forecasting
results for
the example

The smoothed results for the example are:

Data Double Single

6.4 6.4  
5.6 6.6 (Forecast = 7.2) 6.4
7.8 7.2 (Forecast = 6.8) 5.6
8.8 8.1 (Forecast = 7.8) 7.8
11.0 9.8 (Forecast = 9.1) 8.8
11.6 11.5 (Forecast = 11.4) 10.9
16.7 14.5 (Forecast = 13.2) 11.6
15.3 16.7 (Forecast = 17.4) 16.6
21.6 19.9 (Forecast = 18.9) 15.3
22.4 22.8 (Forecast = 23.1) 21.5

Comparison of Forecasts

Table
showing
single and
double
exponential
smoothing
forecasts

To see how each method predicts the future, we computed the first five
forecasts from the last observation as follows:

Period Single Double

11 22.4 25.8
12 22.4 28.7
13 22.4 31.7
14 22.4 34.6
15 22.4 37.6

Plot
comparing
single and
double
exponential
smoothing
forecasts

A plot of these results (using the forecasted double smoothing values) is
very enlightening.

6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)
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This graph indicates that double smoothing follows the data much closer
than single smoothing. Furthermore, for forecasting single smoothing
cannot do better than projecting a straight horizontal line, which is not
very likely to occur in reality. So in this case double smoothing is
preferred.

Plot
comparing
double
exponential
smoothing
and
regression
forecasts

Finally, let us compare double smoothing with linear regression:

This is an interesting picture. Both techniques follow the data in similar
fashion, but the regression line is more conservative. That is, there is a
slower increase with the regression line than with double smoothing.

6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)
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Selection of
technique
depends on
the
forecaster

The selection of the technique depends on the forecaster. If it is desired
to portray the growth process in a more aggressive manner, then one
selects double smoothing. Otherwise, regression may be preferable. It
should be noted that in linear regression "time" functions as the
independent variable. Chapter 4 discusses the basics of linear regression,
and the details of regression estimation.

6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.5.Triple Exponential Smoothing

What happens if the data show trend and seasonality?

To handle
seasonality,
we have to
add a third
parameter

In this case double smoothing will not work. We now introduce a third
equation to take care of seasonality (sometimes called periodicity). The
resulting set of equations is called the "Holt-Winters" (HW) method after
the names of the inventors.

The basic equations for their method are given by:

where

y is the observation●   

S is the smoothed observation●   

b is the trend factor●   

I is the seasonal index●   

F is the forecast at m periods ahead●   

t is an index denoting a time period●   

and , , and  are constants that must be estimated in such a way that the
MSE of the error is minimized. This is best left to a good software package.

6.4.3.5. Triple Exponential Smoothing
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Complete
season
needed

To initialize the HW method we need at least one complete season's data to
determine initial estimates of the seasonal indices I t-L.

L periods
in a season

A complete season's data consists of L periods. And we need to estimate the
trend factor from one period to the next. To accomplish this, it is advisable
to use two complete seasons; that is, 2L periods.

Initial values for the trend factor

How to get
initial
estimates
for trend
and
seasonality
parameters

The general formula to estimate the initial trend is given by

Initial values for the Seasonal Indices

As we will see in the example, we work with data that consist of 6 years
with 4 periods (that is, 4 quarters) per year. Then

Step 1:
compute
yearly
averages

Step 1: Compute the averages of each of the 6 years

Step 2:
divide by
yearly
averages

Step 2: Divide the observations by the appropriate yearly mean

1 2 3 4 5 6

y1/A1 y5/A2 y9/A3 y13/A4 y17/A5 y21/A6

y2/A1 y6/A2 y10/A3 y14/A4 y18/A5 y22/A6

y3/A1 y7/A2 y11/A3 y15/A4 y19/A5 y23/A6

y4/A1 y8/A2 y12/A3 y16/A4 y20/A5 y24/A6

6.4.3.5. Triple Exponential Smoothing
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Step 3:
form
seasonal
indices

Step 3: Now the seasonal indices are formed by computing the average of
each row. Thus the initial seasonal indices (symbolically) are:

I1 = ( y1/A1 + y5/A2 + y9/A3 + y13/A4 + y17/A5 + y21/A6)/6
I2 = ( y2/A1 + y6/A2 + y10/A3 + y14/A4 + y18/A5 + y22/A6)/6
I3 = ( y3/A1 + y7/A2 + y11/A3 + y15/A4 + y19/A5 + y22/A6)/6
I4 = ( y4/A1 + y8/A2 + y12/A3 + y16/A4 + y20/A5 + y24/A6)/6

We now know the algebra behind the computation of the initial estimates.

The next page contains an example of triple exponential smoothing.

The case of the Zero Coefficients

Zero
coefficients
for trend
and
seasonality
parameters

Sometimes it happens that a computer program for triple exponential
smoothing outputs a final coefficient for trend ( ) or for seasonality ( ) of
zero. Or worse, both are outputted as zero!

Does this indicate that there is no trend and/or no seasonality?

Of course not! It only means that the initial values for trend and/or
seasonality were right on the money. No updating was necessary in order to
arrive at the lowest possible MSE. We should inspect the updating formulas
to verify this.

6.4.3.5. Triple Exponential Smoothing
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.6.Example of Triple Exponential
Smoothing

Example
comparing
single,
double,
triple
exponential
smoothing

This example shows comparison of single, double and triple exponential
smoothing for a data set.

The following data set represents 24 observations. These are six years of
quarterly data (each year = 4 quarters).

Table
showing the
data for the
example

 Quarter Period Sales   Quarter Period Sales

90 1 1 362  93 1 13 544
 2 2 385   2 14 582
 3 3 432   3 15 681
 4 4 341   4 16 557

91 1 5 382  94 1 17 628
 2 6 409   2 18 707
 3 7 498   3 19 773
 4 8 387   4 20 592

92 1 9 473  95 1 21 627
 2 10 513   2 22 725
 3 11 582   3 23 854
 4 12 474   4 24 661

6.4.3.6. Example of Triple Exponential Smoothing
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Plot of raw
data with
single,
double, and
triple
exponential
forecasts

Plot of raw
data with
triple
exponential
forecasts

Actual Time Series with forecasts

6.4.3.6. Example of Triple Exponential Smoothing
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Comparison
of MSE's

Comparison of MSE's

MSE demand trend seasonality

6906 .4694   
5054 .1086 1.000  
936 1.000  1.000
520 .7556 0.000 .9837

The updating coefficients were chosen by a computer program such that
the MSE for each of the methods was minimized.

Example of the computation of the Initial Trend

Computation
of initial
trend

The data set consists of quarterly sales data. The season is 1 year and
since there are 4 quarters per year, L = 4. Using the formula we obtain:

Example of the computation of the Initial Seasonal Indices

Table of
initial
seasonal
indices

 1 2 3 4 5 6

1 362 382 473 544 628 627
2 385 409 513 582 707 725
3 432 498 582 681 773 854
4 341 387 474 557 592 661

380 419 510.5 591 675 716.75

In this example we used the full 6 years of data. Other schemes may use
only 3, or some other number of years. There are also a number of ways
to compute initial estimates.

6.4.3.6. Example of Triple Exponential Smoothing
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.7.Exponential Smoothing Summary

Summary

Exponential
smoothing has
proven to be a
useful
technique

Exponential smoothing has proven through the years to be very useful
in many forecasting situations. It was first suggested by C.C. Holt in
1957 and was meant to be used for non-seasonal time series showing
no trend. He later offered a procedure (1958) that does handle trends.
Winters(1965) generalized the method to include seasonality, hence
the name "Holt-Winters Method".

Holt-Winters
has 3 updating
equations

The Holt-Winters Method has 3 updating equations, each with a
constant that ranges from 0 to 1. The equations are intended to give
more weight to recent observations and less weights to observations
further in the past.

These weights are geometrically decreasing by a constant ratio.

The HW procedure can be made fully automatic by user-friendly
software.

6.4.3.7. Exponential Smoothing Summary
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.4.Univariate Time Series Models

Univariate
Time Series

The term "univariate time series" refers to a time series that consists of
single (scalar) observations recorded sequentially over equal time
increments. Some examples are monthly CO2 concentrations and

southern oscillations to predict el nino effects.

Although a univariate time series data set is usually given as a single
column of numbers, time is in fact an implicit variable in the time series.
If the data are equi-spaced, the time variable, or index, does not need to
be explicitly given. The time variable may sometimes be explicitly used
for plotting the series. However, it is not used in the time series model
itself.

The analysis of time series where the data are not collected in equal time
increments is beyond the scope of this handbook. 

Contents Sample Data Sets 1.  

Stationarity 2.  

Seasonality 3.  

Common Approaches 4.  

Box-Jenkins Approach 5.  

Box-Jenkins Model Identification 6.  

Box-Jenkins Model Estimation 7.  

Box-Jenkins Model Validation 8.  

SEMPLOT Sample Output for a Box-Jenkins Analysis 9.  

SEMPLOT Sample Output for a Box-Jenkins Analysis with
Seasonality

10.  

6.4.4. Univariate Time Series Models
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.1.Sample Data Sets

Sample
Data Sets

The following two data sets are used as examples in the text for this
section.

Monthly mean CO2 concentrations.1.  

Southern oscillations.2.  

6.4.4.1. Sample Data Sets
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.1. Sample Data Sets

6.4.4.1.1.Data Set of Monthly CO2
Concentrations

Source and
Background

This data set contains selected monthly mean CO2 concentrations at the
Mauna Loa Observatory from 1974 to 1987. The CO2 concentrations were
measured by the continuous infrared analyser of the Geophysical
Monitoring for Climatic Change division of NOAA's Air Resources
Laboratory. The selection has been for an approximation of 'background
conditions'. See Thoning et al., "Atmospheric Carbon Dioxide at Mauna
Loa Observatory: II Analysis of the NOAA/GMCC Data 1974-1985",
Journal of Geophysical Research (submitted) for details.

This dataset was received from Jim Elkins of NOAA in 1988.

Data Each line contains the CO2 concentration (mixing ratio in dry air,
expressed in the WMO X85 mole fraction scale, maintained by the Scripps
Institution of Oceanography). In addition, it contains the year, month, and
a numeric value for the combined month and year. This combined date is
useful for plotting purposes.

    CO2        Year&Month      Year        Month
--------------------------------------------------
  333.13        1974.38        1974          5
  332.09        1974.46        1974          6
  331.10        1974.54        1974          7
  329.14        1974.63        1974          8
  327.36        1974.71        1974          9
  327.29        1974.79        1974         10
  328.23        1974.88        1974         11
  329.55        1974.96        1974         12
 
  330.62        1975.04        1975          1
  331.40        1975.13        1975          2
  331.87        1975.21        1975          3

6.4.4.1.1. Data Set of Monthly CO2 Concentrations
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  333.18        1975.29        1975          4
  333.92        1975.38        1975          5
  333.43        1975.46        1975          6
  331.85        1975.54        1975          7
  330.01        1975.63        1975          8
  328.51        1975.71        1975          9
  328.41        1975.79        1975         10
  329.25        1975.88        1975         11
  330.97        1975.96        1975         12
 
  331.60        1976.04        1976          1
  332.60        1976.13        1976          2
  333.57        1976.21        1976          3
  334.72        1976.29        1976          4
  334.68        1976.38        1976          5
  334.17        1976.46        1976          6
  332.96        1976.54        1976          7
  330.80        1976.63        1976          8
  328.98        1976.71        1976          9
  328.57        1976.79        1976         10
  330.20        1976.88        1976         11
  331.58        1976.96        1976         12
 
  332.67        1977.04        1977          1
  333.17        1977.13        1977          2
  334.86        1977.21        1977          3
  336.07        1977.29        1977          4
  336.82        1977.38        1977          5
  336.12        1977.46        1977          6
  334.81        1977.54        1977          7
  332.56        1977.63        1977          8
  331.30        1977.71        1977          9
  331.22        1977.79        1977         10
  332.37        1977.88        1977         11
  333.49        1977.96        1977         12
 
  334.71        1978.04        1978          1
  335.23        1978.13        1978          2
  336.54        1978.21        1978          3
  337.79        1978.29        1978          4
  337.95        1978.38        1978          5
  338.00        1978.46        1978          6
  336.37        1978.54        1978          7
  334.47        1978.63        1978          8
  332.46        1978.71        1978          9
  332.29        1978.79        1978         10
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  333.76        1978.88        1978         11
  334.80        1978.96        1978         12
 
  336.00        1979.04        1979          1
  336.63        1979.13        1979          2
  337.93        1979.21        1979          3
  338.95        1979.29        1979          4
  339.05        1979.38        1979          5
  339.27        1979.46        1979          6
  337.64        1979.54        1979          7
  335.68        1979.63        1979          8
  333.77        1979.71        1979          9
  334.09        1979.79        1979         10
  335.29        1979.88        1979         11
  336.76        1979.96        1979         12
 
  337.77        1980.04        1980          1
  338.26        1980.13        1980          2
  340.10        1980.21        1980          3
  340.88        1980.29        1980          4
  341.47        1980.38        1980          5
  341.31        1980.46        1980          6
  339.41        1980.54        1980          7
  337.74        1980.63        1980          8
  336.07        1980.71        1980          9
  336.07        1980.79        1980         10
  337.22        1980.88        1980         11
  338.38        1980.96        1980         12
 
  339.32        1981.04        1981          1
  340.41        1981.13        1981          2
  341.69        1981.21        1981          3
  342.51        1981.29        1981          4
  343.02        1981.38        1981          5
  342.54        1981.46        1981          6
  340.88        1981.54        1981          7
  338.75        1981.63        1981          8
  337.05        1981.71        1981          9
  337.13        1981.79        1981         10
  338.45        1981.88        1981         11
  339.85        1981.96        1981         12
 
  340.90        1982.04        1982          1
  341.70        1982.13        1982          2
  342.70        1982.21        1982          3
  343.65        1982.29        1982          4
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  344.28        1982.38        1982          5
  343.42        1982.46        1982          6
  342.02        1982.54        1982          7
  339.97        1982.63        1982          8
  337.84        1982.71        1982          9
  338.00        1982.79        1982         10
  339.20        1982.88        1982         11
  340.63        1982.96        1982         12
 
  341.41        1983.04        1983          1
  342.68        1983.13        1983          2
  343.04        1983.21        1983          3
  345.27        1983.29        1983          4
  345.92        1983.38        1983          5
  345.40        1983.46        1983          6
  344.16        1983.54        1983          7
  342.11        1983.63        1983          8
  340.11        1983.71        1983          9
  340.15        1983.79        1983         10
  341.38        1983.88        1983         11
  343.02        1983.96        1983         12
 
  343.87        1984.04        1984          1
  344.59        1984.13        1984          2
  345.11        1984.21        1984          3
  347.07        1984.29        1984          4
  347.38        1984.38        1984          5
  346.78        1984.46        1984          6
  344.96        1984.54        1984          7
  342.71        1984.63        1984          8
  340.86        1984.71        1984          9
  341.13        1984.79        1984         10
  342.84        1984.88        1984         11
  344.32        1984.96        1984         12
 
  344.88        1985.04        1985          1
  345.62        1985.13        1985          2
  347.23        1985.21        1985          3
  347.62        1985.29        1985          4
  348.53        1985.38        1985          5
  347.87        1985.46        1985          6
  346.00        1985.54        1985          7
  343.86        1985.63        1985          8
  342.55        1985.71        1985          9
  342.57        1985.79        1985         10
  344.11        1985.88        1985         11
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  345.49        1985.96        1985         12
 
  346.04        1986.04        1986          1
  346.70        1986.13        1986          2
  347.38        1986.21        1986          3
  349.38        1986.29        1986          4
  349.93        1986.38        1986          5
  349.26        1986.46        1986          6
  347.44        1986.54        1986          7
  345.55        1986.63        1986          8
  344.21        1986.71        1986          9
  343.67        1986.79        1986         10
  345.09        1986.88        1986         11
  346.27        1986.96        1986         12
 
  347.33        1987.04        1987          1
  347.82        1987.13        1987          2
  349.29        1987.21        1987          3
  350.91        1987.29        1987          4
  351.71        1987.38        1987          5
  350.94        1987.46        1987          6
  349.10        1987.54        1987          7
  346.77        1987.63        1987          8
  345.73        1987.71        1987          9
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.1. Sample Data Sets

6.4.4.1.2.Data Set of Southern Oscillations

Source and
Background

The southern oscillation is defined as the barametric pressure difference
between Tahiti and the Darwin Islands at sea level. The southern
oscillation is a predictor of el nino which in turn is thought to be a driver
of world-wide weather. Specifically, repeated southern oscillation
values less than -1 typically defines an el nino. Note: the decimal values
in the second column of the data given below are obtained as (month
number - 0.5)/12.

Data
 Southern

Oscillation  Year + fraction  Year       Month
----------------------------------------------

  -0.7         1955.04        1955         1
   1.3         1955.13        1955         2
   0.1         1955.21        1955         3
  -0.9         1955.29        1955         4
   0.8         1955.38        1955         5
   1.6         1955.46        1955         6
   1.7         1955.54        1955         7
   1.4         1955.63        1955         8
   1.4         1955.71        1955         9
   1.5         1955.79        1955        10
   1.4         1955.88        1955        11
   0.9         1955.96        1955        12
 
   1.2         1956.04        1956         1
   1.1         1956.13        1956         2
   0.9         1956.21        1956         3
   1.1         1956.29        1956         4
   1.4         1956.38        1956         5
   1.2         1956.46        1956         6
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   1.1         1956.54        1956         7
   1.0         1956.63        1956         8
   0.0         1956.71        1956         9
   1.9         1956.79        1956        10
   0.1         1956.88        1956        11
   0.9         1956.96        1956        12
 
   0.4         1957.04        1957         1
  -0.4         1957.13        1957         2
  -0.4         1957.21        1957         3
   0.0         1957.29        1957         4
  -1.1         1957.38        1957         5
  -0.4         1957.46        1957         6
   0.1         1957.54        1957         7
  -1.1         1957.63        1957         8
  -1.0         1957.71        1957         9
  -0.1         1957.79        1957        10
  -1.2         1957.88        1957        11
  -0.5         1957.96        1957        12
 
  -1.9         1958.04        1958         1
  -0.7         1958.13        1958         2
  -0.3         1958.21        1958         3
   0.1         1958.29        1958         4
  -1.3         1958.38        1958         5
  -0.3         1958.46        1958         6
   0.3         1958.54        1958         7
   0.7         1958.63        1958         8
  -0.4         1958.71        1958         9
  -0.4         1958.79        1958        10
  -0.6         1958.88        1958        11
  -0.8         1958.96        1958        12
 
  -0.9         1959.04        1959         1
  -1.5         1959.13        1959         2
   0.8         1959.21        1959         3
   0.2         1959.29        1959         4
   0.2         1959.38        1959         5
  -0.9         1959.46        1959         6
  -0.5         1959.54        1959         7
  -0.6         1959.63        1959         8
   0.0         1959.71        1959         9
   0.3         1959.79        1959        10
   0.9         1959.88        1959        11
   0.8         1959.96        1959        12
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   0.0         1960.04        1960         1
  -0.2         1960.13        1960         2
   0.5         1960.21        1960         3
   0.9         1960.29        1960         4
   0.2         1960.38        1960         5
  -0.5         1960.46        1960         6
   0.4         1960.54        1960         7
   0.5         1960.63        1960         8
   0.7         1960.71        1960         9
  -0.1         1960.79        1960        10
   0.6         1960.88        1960        11
   0.7         1960.96        1960        12
 
  -0.4         1961.04        1961         1
   0.5         1961.13        1961         2
  -2.6         1961.21        1961         3
   1.1         1961.29        1961         4
   0.2         1961.38        1961         5
  -0.4         1961.46        1961         6
   0.1         1961.54        1961         7
  -0.3         1961.63        1961         8
   0.0         1961.71        1961         9
  -0.8         1961.79        1961        10
   0.7         1961.88        1961        11
   1.4         1961.96        1961        12
 
   1.7         1962.04        1962         1
  -0.5         1962.13        1962         2
  -0.4         1962.21        1962         3
   0.0         1962.29        1962         4
   1.2         1962.38        1962         5
   0.5         1962.46        1962         6
  -0.1         1962.54        1962         7
   0.3         1962.63        1962         8
   0.5         1962.71        1962         9
   0.9         1962.79        1962        10
   0.2         1962.88        1962        11
   0.0         1962.96        1962        12
 
   0.8         1963.04        1963         1
   0.3         1963.13        1963         2
   0.6         1963.21        1963         3
   0.9         1963.29        1963         4
   0.0         1963.38        1963         5
  -1.5         1963.46        1963         6
  -0.3         1963.54        1963         7
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  -0.4         1963.63        1963         8
  -0.7         1963.71        1963         9
  -1.6         1963.79        1963        10
  -1.0         1963.88        1963        11
  -1.4         1963.96        1963        12
 
  -0.5         1964.04        1964         1
  -0.2         1964.13        1964         2
   0.6         1964.21        1964         3
   1.7         1964.29        1964         4
  -0.2         1964.38        1964         5
   0.7         1964.46        1964         6
   0.5         1964.54        1964         7
   1.4         1964.63        1964         8
   1.3         1964.71        1964         9
   1.3         1964.79        1964        10
   0.0         1964.88        1964        11
  -0.5         1964.96        1964        12
 
  -0.5         1965.04        1965         1
   0.0         1965.13        1965         2
   0.2         1965.21        1965         3
  -1.1         1965.29        1965         4
   0.0         1965.38        1965         5
  -1.5         1965.46        1965         6
  -2.3         1965.54        1965         7
  -1.3         1965.63        1965         8
  -1.4         1965.71        1965         9
  -1.2         1965.79        1965        10
  -1.8         1965.88        1965        11
   0.0         1965.96        1965        12
 
  -1.4         1966.04        1966         1
  -0.5         1966.13        1966         2
  -1.6         1966.21        1966         3
  -0.7         1966.29        1966         4
  -0.6         1966.38        1966         5
   0.0         1966.46        1966         6
  -0.1         1966.54        1966         7
   0.3         1966.63        1966         8
  -0.3         1966.71        1966         9
  -0.3         1966.79        1966        10
  -0.1         1966.88        1966        11
  -0.5         1966.96        1966        12
 
   1.5         1967.04        1967         1
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   1.2         1967.13        1967         2
   0.8         1967.21        1967         3
  -0.2         1967.29        1967         4
  -0.4         1967.38        1967         5
   0.6         1967.46        1967         6
   0.0         1967.54        1967         7
   0.4         1967.63        1967         8
   0.5         1967.71        1967         9
  -0.2         1967.79        1967        10
  -0.7         1967.88        1967        11
  -0.7         1967.96        1967        12
 
   0.5         1968.04        1968         1
   0.8         1968.13        1968         2
  -0.5         1968.21        1968         3
  -0.3         1968.29        1968         4
   1.2         1968.38        1968         5
   1.4         1968.46        1968         6
   0.6         1968.54        1968         7
  -0.1         1968.63        1968         8
  -0.3         1968.71        1968         9
  -0.3         1968.79        1968        10
  -0.4         1968.88        1968        11
   0.0         1968.96        1968        12
 
  -1.4         1969.04        1969         1
   0.8         1969.13        1969         2
  -0.1         1969.21        1969         3
  -0.8         1969.29        1969         4
  -0.8         1969.38        1969         5
  -0.2         1969.46        1969         6
  -0.7         1969.54        1969         7
  -0.6         1969.63        1969         8
  -1.0         1969.71        1969         9
  -1.4         1969.79        1969        10
  -0.1         1969.88        1969        11
   0.3         1969.96        1969        12
 
  -1.2         1970.04        1970         1
  -1.2         1970.13        1970         2
   0.0         1970.21        1970         3
  -0.5         1970.29        1970         4
   0.1         1970.38        1970         5
   1.1         1970.46        1970         6
  -0.6         1970.54        1970         7
   0.3         1970.63        1970         8
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   1.2         1970.71        1970         9
   0.8         1970.79        1970        10
   1.8         1970.88        1970        11
   1.8         1970.96        1970        12
 
   0.2         1971.04        1971         1
   1.4         1971.13        1971         2
   2.0         1971.21        1971         3
   2.6         1971.29        1971         4
   0.9         1971.38        1971         5
   0.2         1971.46        1971         6
   0.1         1971.54        1971         7
   1.4         1971.63        1971         8
   1.5         1971.71        1971         9
   1.8         1971.79        1971        10
   0.5         1971.88        1971        11
   0.1         1971.96        1971        12
 
   0.3         1972.04        1972         1
   0.6         1972.13        1972         2
   0.1         1972.21        1972         3
  -0.5         1972.29        1972         4
  -2.1         1972.38        1972         5
  -1.7         1972.46        1972         6
  -1.9         1972.54        1972         7
  -1.1         1972.63        1972         8
  -1.5         1972.71        1972         9
  -1.1         1972.79        1972        10
  -0.4         1972.88        1972        11
  -1.5         1972.96        1972        12
 
  -0.4         1973.04        1973         1
  -1.5         1973.13        1973         2
   0.2         1973.21        1973         3
  -0.4         1973.29        1973         4
   0.3         1973.38        1973         5
   1.2         1973.46        1973         6
   0.5         1973.54        1973         7
   1.2         1973.63        1973         8
   1.3         1973.71        1973         9
   0.6         1973.79        1973        10
   2.9         1973.88        1973        11
   1.7         1973.96        1973        12
 
   2.2         1974.04        1974         1
   1.5         1974.13        1974         2

6.4.4.1.2. Data Set of Southern Oscillations

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4412.htm (6 of 12) [5/1/2006 10:35:19 AM]



   2.1         1974.21        1974         3
   1.3         1974.29        1974         4
   1.3         1974.38        1974         5
   0.1         1974.46        1974         6
   1.2         1974.54        1974         7
   0.5         1974.63        1974         8
   1.1         1974.71        1974         9
   0.8         1974.79        1974        10
  -0.4         1974.88        1974        11
   0.0         1974.96        1974        12
 
  -0.6         1975.04        1975         1
   0.4         1975.13        1975         2
   1.1         1975.21        1975         3
   1.5         1975.29        1975         4
   0.5         1975.38        1975         5
   1.7         1975.46        1975         6
   2.1         1975.54        1975         7
   2.0         1975.63        1975         8
   2.2         1975.71        1975         9
   1.7         1975.79        1975        10
   1.3         1975.88        1975        11
   2.0         1975.96        1975        12
 
   1.2         1976.04        1976         1
   1.2         1976.13        1976         2
   1.3         1976.21        1976         3
   0.2         1976.29        1976         4
   0.6         1976.38        1976         5
  -0.1         1976.46        1976         6
  -1.2         1976.54        1976         7
  -1.5         1976.63        1976         8
  -1.2         1976.71        1976         9
   0.2         1976.79        1976        10
   0.7         1976.88        1976        11
  -0.5         1976.96        1976        12
 
  -0.5         1977.04        1977         1
   0.8         1977.13        1977         2
  -1.2         1977.21        1977         3
  -1.3         1977.29        1977         4
  -1.1         1977.38        1977         5
  -2.3         1977.46        1977         6
  -1.5         1977.54        1977         7
  -1.4         1977.63        1977         8
  -0.9         1977.71        1977         9
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  -1.4         1977.79        1977        10
  -1.6         1977.88        1977        11
  -1.3         1977.96        1977        12
 
  -0.5         1978.04        1978         1
  -2.6         1978.13        1978         2
  -0.8         1978.21        1978         3
  -0.9         1978.29        1978         4
   1.3         1978.38        1978         5
   0.4         1978.46        1978         6
   0.4         1978.54        1978         7
   0.1         1978.63        1978         8
   0.0         1978.71        1978         9
  -0.8         1978.79        1978        10
  -0.1         1978.88        1978        11
  -0.2         1978.96        1978        12
 
  -0.5         1979.04        1979         1
   0.6         1979.13        1979         2
  -0.5         1979.21        1979         3
  -0.7         1979.29        1979         4
   0.5         1979.38        1979         5
   0.6         1979.46        1979         6
   1.3         1979.54        1979         7
  -0.7         1979.63        1979         8
   0.1         1979.71        1979         9
  -0.4         1979.79        1979        10
  -0.6         1979.88        1979        11
  -0.9         1979.96        1979        12
 
   0.3         1980.04        1980         1
   0.0         1980.13        1980         2
  -1.1         1980.21        1980         3
  -1.7         1980.29        1980         4
  -0.3         1980.38        1980         5
  -0.7         1980.46        1980         6
  -0.2         1980.54        1980         7
  -0.1         1980.63        1980         8
  -0.5         1980.71        1980         9
  -0.3         1980.79        1980        10
  -0.5         1980.88        1980        11
  -0.2         1980.96        1980        12
 
   0.3         1981.04        1981         1
  -0.5         1981.13        1981         2
  -2.0         1981.21        1981         3
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  -0.6         1981.29        1981         4
   0.8         1981.38        1981         5
   1.6         1981.46        1981         6
   0.8         1981.54        1981         7
   0.4         1981.63        1981         8
   0.3         1981.71        1981         9
  -0.7         1981.79        1981        10
   0.1         1981.88        1981        11
   0.4         1981.96        1981        12
 
   1.0         1982.04        1982         1
   0.0         1982.13        1982         2
   0.0         1982.21        1982         3
  -0.1         1982.29        1982         4
  -0.6         1982.38        1982         5
  -2.5         1982.46        1982         6
  -2.0         1982.54        1982         7
  -2.7         1982.63        1982         8
  -1.9         1982.71        1982         9
  -2.2         1982.79        1982        10
  -3.2         1982.88        1982        11
  -2.5         1982.96        1982        12
 
  -3.4         1983.04        1983         1
  -3.5         1983.13        1983         2
  -3.2         1983.21        1983         3
  -2.1         1983.29        1983         4
   0.9         1983.38        1983         5
  -0.5         1983.46        1983         6
  -0.9         1983.54        1983         7
  -0.4         1983.63        1983         8
   0.9         1983.71        1983         9
   0.3         1983.79        1983        10
  -0.1         1983.88        1983        11
  -0.1         1983.96        1983        12
 
   0.0         1984.04        1984         1
   0.4         1984.13        1984         2
  -0.8         1984.21        1984         3
   0.4         1984.29        1984         4
   0.0         1984.38        1984         5
  -1.2         1984.46        1984         6
   0.0         1984.54        1984         7
   0.1         1984.63        1984         8
   0.1         1984.71        1984         9
  -0.6         1984.79        1984        10

6.4.4.1.2. Data Set of Southern Oscillations
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   0.3         1984.88        1984        11
  -0.3         1984.96        1984        12
 
  -0.5         1985.04        1985         1
   0.8         1985.13        1985         2
   0.2         1985.21        1985         3
   1.4         1985.29        1985         4
  -0.2         1985.38        1985         5
  -1.4         1985.46        1985         6
  -0.3         1985.54        1985         7
   0.7         1985.63        1985         8
   0.0         1985.71        1985         9
  -0.8         1985.79        1985        10
  -0.4         1985.88        1985        11
   0.1         1985.96        1985        12
 
   0.8         1986.04        1986         1
  -1.2         1986.13        1986         2
  -0.1         1986.21        1986         3
   0.1         1986.29        1986         4
  -0.6         1986.38        1986         5
   1.0         1986.46        1986         6
   0.1         1986.54        1986         7
  -0.9         1986.63        1986         8
  -0.5         1986.71        1986         9
   0.6         1986.79        1986        10
  -1.6         1986.88        1986        11
  -1.6         1986.96        1986        12
 
  -0.7         1987.04        1987         1
  -1.4         1987.13        1987         2
  -2.0         1987.21        1987         3
  -2.7         1987.29        1987         4
  -2.0         1987.38        1987         5
  -2.7         1987.46        1987         6
  -1.8         1987.54        1987         7
  -1.7         1987.63        1987         8
  -1.1         1987.71        1987         9
  -0.7         1987.79        1987        10
  -0.1         1987.88        1987        11
  -0.6         1987.96        1987        12
 
  -0.3         1988.04        1988         1
  -0.6         1988.13        1988         2
   0.1         1988.21        1988         3
   0.0         1988.29        1988         4

6.4.4.1.2. Data Set of Southern Oscillations
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   1.1         1988.38        1988         5
  -0.3         1988.46        1988         6
   1.1         1988.54        1988         7
   1.4         1988.63        1988         8
   1.9         1988.71        1988         9
   1.5         1988.79        1988        10
   1.9         1988.88        1988        11
   1.1         1988.96        1988        12
 
   1.5         1989.04        1989         1
   1.1         1989.13        1989         2
   0.6         1989.21        1989         3
   1.6         1989.29        1989         4
   1.2         1989.38        1989         5
   0.5         1989.46        1989         6
   0.8         1989.54        1989         7
  -0.8         1989.63        1989         8
   0.6         1989.71        1989         9
   0.6         1989.79        1989        10
  -0.4         1989.88        1989        11
  -0.7         1989.96        1989        12
 
  -0.2         1990.04        1990         1
  -2.4         1990.13        1990         2
  -1.2         1990.21        1990         3
   0.0         1990.29        1990         4
   1.1         1990.38        1990         5
   0.0         1990.46        1990         6
   0.5         1990.54        1990         7
  -0.5         1990.63        1990         8
  -0.8         1990.71        1990         9
   0.1         1990.79        1990        10
  -0.7         1990.88        1990        11
  -0.4         1990.96        1990        12
 
   0.6         1991.04        1991         1
  -0.1         1991.13        1991         2
  -1.4         1991.21        1991         3
  -1.0         1991.29        1991         4
  -1.5         1991.38        1991         5
  -0.5         1991.46        1991         6
  -0.2         1991.54        1991         7
  -0.9         1991.63        1991         8
  -1.8         1991.71        1991         9
  -1.5         1991.79        1991        10
  -0.8         1991.88        1991        11

6.4.4.1.2. Data Set of Southern Oscillations
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  -2.3         1991.96        1991        12
 
  -3.4         1992.04        1992         1
  -1.4         1992.13        1992         2
  -3.0         1992.21        1992         3
  -1.4         1992.29        1992         4
   0.0         1992.38        1992         5
  -1.2         1992.46        1992         6
  -0.8         1992.54        1992         7
   0.0         1992.63        1992         8
   0.0         1992.71        1992         9
  -1.9         1992.79        1992        10
  -0.9         1992.88        1992        11
  -1.1         1992.96        1992        12

6.4.4.1.2. Data Set of Southern Oscillations
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.2.Stationarity

Stationarity A common assumption in many time series techniques is that the
data are stationary.

A stationary process has the property that the mean, variance and
autocorrelation structure do not change over time. Stationarity can
be defined in precise mathematical terms, but for our purpose we
mean a flat looking series, without trend, constant variance over
time, a constant autocorrelation structure over time and no periodic
fluctuations (seasonality).

For practical purposes, stationarity can usually be determined from a
run sequence plot.

Transformations
to Achieve
Stationarity

If the time series is not stationary, we can often transform it to
stationarity with one of the following techniques.

We can difference the data. That is, given the series Zt, we
create the new series

The differenced data will contain one less point than the
original data. Although you can difference the data more than
once, one differene is usually sufficient.

1.  

If the data contain a trend, we can fit some type of curve to
the data and then model the residuals from that fit. Since the
purpose of the fit is to simply remove long term trend, a
simple fit, such as a straight line, is typically used.

2.  

For non-constant variance, taking the logarithm or square root
of the series may stabilize the variance. For negative data, you
can add a suitable constant to make all the data positive before
applying the transformation. This constant can then be
subtracted from the model to obtain predicted (i.e., the fitted)
values and forecasts for future points.

3.  

The above techniques are intended to generate series with constant

6.4.4.2. Stationarity
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location and scale. Although seasonality also violates stationarity,
this is usually explicitly incorporated into the time series model.

Example The following plots are from a data set of monthly CO2
concentrations.

Run Sequence
Plot

The initial run sequence plot of the data indicates a rising trend. A
visual inspection of this plot indicates that a simple linear fit should
be sufficient to remove this upward trend.

This plot also shows periodical behavior. This is discussed in the
next section.

Linear Trend
Removed

6.4.4.2. Stationarity
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This plot contains the residuals from a linear fit to the original data.
After removing the linear trend, the run sequence plot indicates that
the data have a constant location and variance, although the pattern
of the residuals shows that the data depart from the model in a
systematic way.

6.4.4.2. Stationarity
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.3.Seasonality

Seasonality Many time series display seasonality. By seasonality, we mean periodic
fluctuations. For example, retail sales tend to peak for the Christmas
season and then decline after the holidays. So time series of retail sales
will typically show increasing sales from September through December
and declining sales in January and February.

Seasonality is quite common in economic time series. It is less common
in engineering and scientific data.

If seasonality is present, it must be incorporated into the time series
model. In this section, we discuss techniques for detecting seasonality.
We defer modeling of seasonality until later sections.

Detecting
Seasonality

he following graphical techniques can be used to detect seasonality.

A run sequence plot will often show seasonality.1.  

A seasonal subseries plot is a specialized technique for showing
seasonality.

2.  

Multiple box plots can be used as an alternative to the seasonal
subseries plot to detect seasonality.

3.  

The autocorrelation plot can help identify seasonality.4.  

Examples of each of these plots will be shown below.

The run sequence plot is a recommended first step for analyzing any
time series. Although seasonality can sometimes be indicated with this
plot, seasonality is shown more clearly by the seasonal subseries plot or
the box plot. The seasonal subseries plot does an excellent job of
showing both the seasonal differences (between group patterns) and also
the within-group patterns. The box plot shows the seasonal difference
(between group patterns) quite well, but it does not show within group
patterns. However, for large data sets, the box plot is usually easier to
read than the seasonal subseries plot.

Both the seasonal subseries plot and the box plot assume that the

6.4.4.3. Seasonality
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seasonal periods are known. In most cases, the analyst will in fact know
this. For example, for monthly data, the period is 12 since there are 12
months in a year. However, if the period is not known, the
autocorrelation plot can help. If there is significant seasonality, the
autocorrelation plot should show spikes at lags equal to the period. For
example, for monthly data, if there is a seasonality effect, we would
expect to see significant peaks at lag 12, 24, 36, and so on (although the
intensity may decrease the further out we go).

Example
without
Seasonality

The following plots are from a data set of southern oscillations for
predicting el nino.

Run
Sequence
Plot

No obvious periodic patterns are apparent in the run sequence plot.

6.4.4.3. Seasonality
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Seasonal
Subseries
Plot

The means for each month are relatively close and show no obvious
pattern.

Box Plot

As with the seasonal subseries plot, no obvious seasonal pattern is
apparent.

Due to the rather large number of observations, the box plot shows the
difference between months better than the seasonal subseries plot.

6.4.4.3. Seasonality
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Example
with
Seasonality

The following plots are from a data set of monthly CO2 concentrations.
A linear trend has been removed from these data.

Run
Sequence
Plot

This plot shows periodic behavior. However, it is difficult to determine
the nature of the seasonality from this plot.

Seasonal
Subseries
Plot

The seasonal subseries plot shows the seasonal pattern more clearly. In

6.4.4.3. Seasonality
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this case, the CO2 concentrations are at a minimun in September and
October. From there, steadily the concentrations increase until June and
then begin declining until September.

Box Plot

As with the seasonal subseries plot, the seasonal pattern is quite evident
in the box plot.

6.4.4.3. Seasonality

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm (5 of 5) [5/1/2006 10:35:20 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.3. Seasonality

6.4.4.3.1.Seasonal Subseries Plot

Purpose Seasonal subseries plots (Cleveland 1993) are a tool for detecting
seasonality in a time series.

This plot is only useful if the period of the seasonality is already known.
In many cases, this will in fact be known. For example, monthly data
typically has a period of 12.

If the period is not known, an autocorrelation plot or spectral plot can be
used to determine it.

Sample Plot

This seasonal subseries plot containing monthly data of CO2
concentrations reveals a strong seasonality pattern. The CO2
concentrations peak in May, steadily decrease through September, and
then begin rising again until the May peak.

6.4.4.3.1. Seasonal Subseries Plot
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This plot allows you to detect both between group and within group
patterns.

If there is a large number of observations, then a box plot may be
preferable.

Definition Seasonal subseries plots are formed by

Vertical axis: Response variable
Horizontal axis: Time ordered by season. For example, with

monthly data, all the January values are plotted
(in chronological order), then all the February
values, and so on.

In addition, a reference line is drawn at the group means.

The user must specify the length of the seasonal pattern before
generating this plot. In most cases, the analyst will know this from the
context of the problem and data collection.

Questions The seasonal subseries plot can provide answers to the following
questions:

Do the data exhibit a seasonal pattern?1.  

What is the nature of the seasonality?2.  

Is there a within-group pattern (e.g., do January and July exhibit
similar patterns)?

3.  

Are there any outliers once seasonality has been accounted for?4.  

Importance It is important to know when analyzing a time series if there is a
significant seasonality effect. The seasonal subseries plot is an excellent
tool for determining if there is a seasonal pattern.

Related
Techniques

Box Plot
Run Sequence Plot
Autocorrelation Plot

Software Seasonal subseries plots are available in a few general purpose statistical
software programs. They are available in Dataplot. It may possible to
write macros to generate this plot in most statistical software programs
that do not provide it directly.

6.4.4.3.1. Seasonal Subseries Plot
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.4.Common Approaches to Univariate
Time Series

There are a number of approaches to modeling time series. We outline
a few of the most common approaches below.

Trend,
Seasonal,
Residual
Decompositions

One approach is to decompose the time series into a trend, seasonal,
and residual component.

Triple exponential smoothing is an example of this approach. Another
example, called seasonal loess, is based on locally weighted least
squares and is discussed by Cleveland (1993). We do not discuss
seasonal loess in this handbook.

Frequency
Based Methods

Another approach, commonly used in scientific and engineering
applications, is to analyze the series in the frequency domain. An
example of this approach in modeling a sinusoidal type data set is
shown in the beam deflection case study. The spectral plot is the
primary tool for the frequency analysis of time series.

Detailed discussions of frequency-based methods are included in
Bloomfield (1976), Jenkins and Watts (1968), and Chatfield (1996).

6.4.4.4. Common Approaches to Univariate Time Series

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc444.htm (1 of 3) [5/1/2006 10:35:21 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm


Autoregressive
(AR) Models

A common approach for modeling univariate time series is the
autoregressive (AR) model:

where Xt is the time series, At is white noise, and

with  denoting the process mean.

An autoregressive model is simply a linear regression of the current
value of the series against one or more prior values of the series. The
value of p is called the order of the AR model.

AR models can be analyzed with one of various methods, including
standard linear least squares techniques. They also have a
straightforward interpretation.

Moving
Average (MA)
Models

Another common approach for modeling univariate time series
models is the moving average (MA) model:

where Xt is the time series,  is the mean of the series, At-i are white
noise, and 1, ... , q are the parameters of the model. The value of q
is called the order of the MA model.

That is, a moving average model is conceptually a linear regression of
the current value of the series against the white noise or random
shocks of one or more prior values of the series. The random shocks
at each point are assumed to come from the same distribution,
typically a normal distribution, with location at zero and constant
scale. The distinction in this model is that these random shocks are
propogated to future values of the time series. Fitting the MA
estimates is more complicated than with AR models because the error
terms are not observable. This means that iterative non-linear fitting
procedures need to be used in place of linear least squares. MA
models also have a less obvious interpretation than AR models.

Sometimes the ACF and PACF will suggest that a MA model would
be a better model choice and sometimes both AR and MA terms
should be used in the same model (see Section 6.4.4.5).

Note, however, that the error terms after the model is fit should be
independent and follow the standard assumptions for a univariate
process.

6.4.4.4. Common Approaches to Univariate Time Series
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Box-Jenkins
Approach

Box and Jenkins popularized an approach that combines the moving
average and the autoregressive approaches in the book "Time Series
Analysis: Forecasting and Control" (Box, Jenkins, and Reinsel,
1994).

Although both autoregressive and moving average approaches were
already known (and were originally investigated by Yule), the
contribution of Box and Jenkins was in developing a systematic
methodology for identifying and estimating models that could
incorporate both approaches. This makes Box-Jenkins models a
powerful class of models. The next several sections will discuss these
models in detail.

6.4.4.4. Common Approaches to Univariate Time Series
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.5.Box-Jenkins Models

Box-Jenkins
Approach

The Box-Jenkins ARMA model is a combination of the AR and MA
models (described on the previous page):

where the terms in the equation have the same meaning as given for the
AR and MA model.

Comments
on
Box-Jenkins
Model

A couple of notes on this model.

The Box-Jenkins model assumes that the time series is stationary.
Box and Jenkins recommend differencing non-stationary series
one or more times to achieve stationarity. Doing so produces an
ARIMA model, with the "I" standing for "Integrated".

1.  

Some formulations transform the series by subtracting the mean
of the series from each data point. This yields a series with a
mean of zero. Whether you need to do this or not is dependent on
the software you use to estimate the model.

2.  

Box-Jenkins models can be extended to include seasonal
autoregressive and seasonal moving average terms. Although this
complicates the notation and mathematics of the model, the
underlying concepts for seasonal autoregressive and seasonal
moving average terms are similar to the non-seasonal
autoregressive and moving average terms.

3.  

The most general Box-Jenkins model includes difference
operators, autoregressive terms, moving average terms, seasonal
difference operators, seasonal autoregressive terms, and seasonal
moving average terms. As with modeling in general, however,
only necessary terms should be included in the model. Those
interested in the mathematical details can consult Box, Jenkins
and Reisel (1994), Chatfield (1996), or Brockwell and Davis
(2002).

4.  

6.4.4.5. Box-Jenkins Models
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Stages in
Box-Jenkins
Modeling

There are three primary stages in building a Box-Jenkins time series
model.

Model Identification1.  

Model Estimation2.  

Model Validation3.  

Remarks The following remarks regarding Box-Jenkins models should be noted.

Box-Jenkins models are quite flexible due to the inclusion of both
autoregressive and moving average terms.

1.  

Based on the Wold decomposition thereom (not discussed in the
Handbook), a stationary process can be approximated by an
ARMA model. In practice, finding that approximation may not be
easy.

2.  

Chatfield (1996) recommends decomposition methods for series
in which the trend and seasonal components are dominant.

3.  

Building good ARIMA models generally requires more
experience than commonly used statistical methods such as
regression.

4.  

Sufficiently
Long Series
Required

Typically, effective fitting of Box-Jenkins models requires at least a
moderately long series. Chatfield (1996) recommends at least 50
observations. Many others would recommend at least 100 observations.

6.4.4.5. Box-Jenkins Models
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.6.Box-Jenkins Model Identification

Stationarity
and Seasonality

The first step in developing a Box-Jenkins model is to determine if
the series is stationary and if there is any significant seasonality that
needs to be modeled.

Detecting
stationarity

Stationarity can be assessed from a run sequence plot. The run
sequence plot should show constant location and scale. It can also be
detected from an autocorrelation plot. Specifically, non-stationarity is
often indicated by an autocorrelation plot with very slow decay.

Detecting
seasonality

Seasonality (or periodicity) can usually be assessed from an
autocorrelation plot, a seasonal subseries plot, or a spectral plot.

Differencing to
achieve
stationarity

Box and Jenkins recommend the differencing approach to achieve
stationarity. However, fitting a curve and subtracting the fitted values
from the original data can also be used in the context of Box-Jenkins
models.

Seasonal
differencing

At the model identification stage, our goal is to detect seasonality, if
it exists, and to identify the order for the seasonal autoregressive and
seasonal moving average terms. For many series, the period is known
and a single seasonality term is sufficient. For example, for monthly
data we would typically include either a seasonal AR 12 term or a
seasonal MA 12 term. For Box-Jenkins models, we do not explicitly
remove seasonality before fitting the model. Instead, we include the
order of the seasonal terms in the model specification to the ARIMA
estimation software. However, it may be helpful to apply a seasonal
difference to the data and regenerate the autocorrelation and partial
autocorrelation plots. This may help in the model idenfitication of the
non-seasonal component of the model. In some cases, the seasonal
differencing may remove most or all of the seasonality effect.

6.4.4.6. Box-Jenkins Model Identification
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Identify p and q Once stationarity and seasonality have been addressed, the next step
is to identify the order (i.e., the p and q) of the autoregressive and
moving average terms.

Autocorrelation
and Partial
Autocorrelation
Plots

The primary tools for doing this are the autocorrelation plot and the
partial autocorrelation plot. The sample autocorrelation plot and the
sample partial autocorrelation plot are compared to the theoretical
behavior of these plots when the order is known.

Order of
Autoregressive
Process (p)

Specifically, for an AR(1) process, the sample autocorrelation
function should have an exponentially decreasing appearance.
However, higher-order AR processes are often a mixture of
exponentially decreasing and damped sinusoidal components.

For higher-order autoregressive processes, the sample autocorrelation
needs to be supplemented with a partial autocorrelation plot. The
partial autocorrelation of an AR(p) process becomes zero at lag p+1
and greater, so we examine the sample partial autocorrelation
function to see if there is evidence of a departure from zero. This is
usually determined by placing a 95% confidence interval on the
sample partial autocorrelation plot (most software programs that
generate sample autocorrelation plots will also plot this confidence
interval). If the software program does not generate the confidence

band, it is approximately , with N denoting the sample
size.

Order of
Moving
Average
Process (q)

The autocorrelation function of a MA(q) process becomes zero at lag
q+1 and greater, so we examine the sample autocorrelation function
to see where it essentially becomes zero. We do this by placing the
95% confidence interval for the sample autocorrelation function on
the sample autocorrelation plot. Most software that can generate the
autocorrelation plot can also generate this confidence interval.

The sample partial autocorrelation function is generally not helpful
for identifying the order of the moving average process.

6.4.4.6. Box-Jenkins Model Identification

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc446.htm (2 of 4) [5/1/2006 10:35:27 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm


Shape of
Autocorrelation
Function

The following table summarizes how we use the sample
autocorrelation function for model identification.

SHAPE INDICATED MODEL

Exponential, decaying to
zero

Autoregressive model. Use the
partial autocorrelation plot to
identify the order of the
autoregressive model.

Alternating positive and
negative, decaying to
zero

Autoregressive model. Use the
partial autocorrelation plot to
help identify the order.

One or more spikes, rest
are essentially zero

Moving average model, order
identified by where plot
becomes zero.

Decay, starting after a
few lags

Mixed autoregressive and
moving average model.

All zero or close to zero Data is essentially random.

High values at fixed
intervals

Include seasonal
autoregressive term.

No decay to zero Series is not stationary.

Mixed Models
Difficult to
Identify

In practice, the sample autocorrelation and partial autocorrelation
functions are random variables and will not give the same picture as
the theoretical functions. This makes the model identification more
difficult. In particular, mixed models can be particularly difficult to
identify.

Although experience is helpful, developing good models using these
sample plots can involve much trial and error. For this reason, in
recent years information-based criteria such as FPE (Final Prediction
Error) and AIC (Aikake Information Criterion) and others have been
preferred and used. These techniques can help automate the model
identification process. These techniques require computer software to
use. Fortunately, these techniques are available in many commerical
statistical software programs that provide ARIMA modeling
capabilities.

For additional information on these techniques, see Brockwell and
Davis (1987, 2002).

6.4.4.6. Box-Jenkins Model Identification
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Examples We show a typical series of plots for performing the initial model
identification for

the southern oscillations data and1.  

the CO2 monthly concentrations data.2.  

6.4.4.6. Box-Jenkins Model Identification
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.6. Box-Jenkins Model Identification

6.4.4.6.1.Model Identification for Southern
Oscillations Data

Example for
Southern
Oscillations

We show typical series of plots for the initial model identification
stages of Box-Jenkins modeling for two different examples.

The first example is for the southern oscillations data set. We start
with the run sequence plot and seasonal subseries plot to determine if
we need to address stationarity and seasonality.

Run Sequence
Plot

The run sequence plot indicates stationarity.

6.4.4.6.1. Model Identification for Southern Oscillations Data
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Seasonal
Subseries Plot

The seasonal subseries plot indicates that there is no significant
seasonality.

Since the above plots show that this series does not exhibit any
significant non-stationarity or seasonality, we generate the
autocorrelation and partial autocorrelation plots of the raw data.

Autocorrelation
Plot

The autocorrelation plot shows a mixture of exponentially decaying

6.4.4.6.1. Model Identification for Southern Oscillations Data
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and damped sinusoidal components. This indicates that an
autoregressive model, with order greater than one, may be
appropriate for these data. The partial autocorrelation plot should be
examined to determine the order.

Partial
Autocorrelation
Plot

The partial autocorrelation plot suggests that an AR(2) model might
be appropriate.

In summary, our intial attempt would be to fit an AR(2) model with
no seasonal terms and no differencing or trend removal. Model
validation should be performed before accepting this as a final
model.

6.4.4.6.1. Model Identification for Southern Oscillations Data
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.6. Box-Jenkins Model Identification

6.4.4.6.2.Model Identification for the CO2
Concentrations Data

Example for
Monthly CO2
Concentrations

The second example is for the monthly CO2 concentrations data set.

As before, we start with the run sequence plot to check for
stationarity.

Run Sequence
Plot

The initial run sequence plot of the data indicates a rising trend. A
visual inspection of this plot indicates that a simple linear fit should
be sufficient to remove this upward trend.

6.4.4.6.2. Model Identification for the CO2 Concentrations Data
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Linear Trend
Removed

This plot contains the residuals from a linear fit to the original data.
After removing the linear trend, the run sequence plot indicates that
the data have a constant location and variance, which implies
stationarity.

However, the plot does show seasonality. We generate an
autocorrelation plot to help determine the period followed by a
seasonal subseries plot.

Autocorrelation
Plot

6.4.4.6.2. Model Identification for the CO2 Concentrations Data
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The autocorrelation plot shows an alternating pattern of positive and
negative spikes. It also shows a repeating pattern every 12 lags,
which indicates a seasonality effect.

The two connected lines on the autocorrelation plot are 95% and
99% confidence intervals for statistical significance of the
autocorrelations.

Seasonal
Subseries Plot

A significant seasonal pattern is obvious in this plot, so we need to
include seasonal terms in fitting a Box-Jenkins model. Since this is
monthly data, we would typically include either a lag 12 seasonal
autoregressive and/or moving average term.

To help identify the non-seasonal components, we will take a
seasonal difference of 12 and generate the autocorrelation plot on the
seasonally differenced data.

6.4.4.6.2. Model Identification for the CO2 Concentrations Data
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Autocorrelation
Plot for
Seasonally
Differenced
Data

This autocorrelation plot shows a mixture of exponential decay and a
damped sinusoidal pattern. This indicates that an AR model, with
order greater than one, may be appropriate. We generate a partial
autocorrelation plot to help identify the order.

Partial
Autocorrelation
Plot of
Seasonally
Differenced
Data

The partial autocorrelation plot suggests that an AR(2) model might
be appropriate since the partial autocorrelation becomes zero after
the second lag. The lag 12 is also significant, indicating some

6.4.4.6.2. Model Identification for the CO2 Concentrations Data
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remaining seasonality.

In summary, our intial attempt would be to fit an AR(2) model with a
seasonal AR(12) term on the data with a linear trend line removed.
We could try the model both with and without seasonal differencing
applied. Model validation should be performed before accepting this
as a final model.

6.4.4.6.2. Model Identification for the CO2 Concentrations Data
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.6. Box-Jenkins Model Identification

6.4.4.6.3.Partial Autocorrelation Plot

Purpose:
Model
Identification
for
Box-Jenkins
Models

Partial autocorrelation plots (Box and Jenkins, pp. 64-65, 1970) are a
commonly used tool for model identification in Box-Jenkins models.

The partial autocorrelation at lag k is the autocorrelation between Xt
and Xt-k that is not accounted for by lags 1 through k-1.

There are algorithms, not discussed here, for computing the partial
autocorrelation based on the sample autocorrelations. See (Box,
Jenkins, and Reinsel 1970) or (Brockwell, 1991) for the mathematical
details.

Specifically, partial autocorrelations are useful in identifying the order
of an autoregressive model. The partial autocorrelation of an AR(p)
process is zero at lag p+1 and greater. If the sample autocorrelation plot
indicates that an AR model may be appropriate, then the sample partial
autocorrelation plot is examined to help identify the order. We look for
the point on the plot where the partial autocorrelations essentially
become zero. Placing a 95% confidence interval for statistical
significance is helpful for this purpose.

The approximate 95% confidence interval for the partial

autocorrelations are at .

6.4.4.6.3. Partial Autocorrelation Plot
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Sample Plot

This partial autocorrelation plot shows clear statistical significance for
lags 1 and 2 (lag 0 is always 1). The next few lags are at the borderline
of statistical significance. If the autocorrelation plot indicates that an
AR model is appropriate, we could start our modeling with an AR(2)
model. We might compare this with an AR(3) model.

Definition Partial autocorrelation plots are formed by

Vertical axis: Partial autocorrelation coefficient at lag h.
Horizontal axis: Time lag h (h = 0, 1, 2, 3, ...).

In addition, 95% confidence interval bands are typically included on the
plot.

Questions The partial autocorrelation plot can help provide answers to the
following questions:

Is an AR model appropriate for the data?1.  

If an AR model is appropriate, what order should we use?2.  

Related
Techniques

Autocorrelation Plot
Run Sequence Plot
Spectral Plot

Case Study The partial autocorrelation plot is demonstrated in the Negiz data case
study.

6.4.4.6.3. Partial Autocorrelation Plot
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Software Partial autocorrelation plots are available in many general purpose
statistical software programs including Dataplot.

6.4.4.6.3. Partial Autocorrelation Plot
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.7.Box-Jenkins Model Estimation

Use Software Estimating the parameters for the Box-Jenkins models is a quite
complicated non-linear estimation problem. For this reason, the
parameter estimation should be left to a high quality software program
that fits Box-Jenkins models. Fortunately, many commerical statistical
software programs now fit Box-Jenkins models.

Approaches The main approaches to fitting Box-Jenkins models are non-linear
least squares and maximum likelihood estimation.

Maximum likelihood estimation is generally the preferred technique.
The likelihood equations for the full Box-Jenkins model are
complicated and are not included here. See (Brockwell and Davis,
1991) for the mathematical details.

Sample
Output for
Model
Estimation

The Negiz case study shows an example of the Box-Jenkins
model-fitting output using the Dataplot software. The two examples
later in this section show sample output from the SEMPLOT software.

6.4.4.7. Box-Jenkins Model Estimation
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.8.Box-Jenkins Model Diagnostics

Assumptions
for a Stable
Univariate
Process

Model diagnostics for Box-Jenkins models is similar to model
validation for non-linear least squares fitting.

That is, the error term At is assumed to follow the assumptions for a
stationary univariate process. The residuals should be white noise (or
independent when their distributions are normal) drawings from a
fixed distribution with a constant mean and variance. If the
Box-Jenkins model is a good model for the data, the residuals should
satisfy these assumptions.

If these assumptions are not satisfied, we need to fit a more
appropriate model. That is, we go back to the model identification step
and try to develop a better model. Hopefully the analysis of the
residuals can provide some clues as to a more appropriate model.

4-Plot of
Residuals

As discussed in the EDA chapter, one way to assess if the residuals
from the Box-Jenkins model follow the assumptions is to generate a
4-plot of the residuals and an autocorrelation plot of the residuals. One
could also look at the value of the Box-Ljung (1978) statistic.

An example of analyzing the residuals from a Box-Jenkins model is
given in the Negiz data case study.

6.4.4.8. Box-Jenkins Model Diagnostics
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.9.Example of Univariate Box-Jenkins Analysis

Example
with the
SEMPLOT
Software

A computer software package is needed to do a Box-Jenkins time series analysis. The
computer output on this page will illustrate sample output from a Box-Jenkins analysis
using the SEMSTAT statistical software program. It analyzes the series F data set in the
Box, Jenkins and Reinsel text.

The graph of the data and the resulting forecasts after fitting a model are portrayed below.

Output from other software programs will be similar, but not identical.

Model
Identification
Section

With the SEMSTAT program, you start by entering a valid file name or you can select a
file extension to search for files of particular interest. In this program, if you press the
enter key, ALL file names in the directory are displayed.

Enter FILESPEC or EXTENSION (1-3 letters): To quit, press F10.

? bookf.bj 

MAX MIN MEAN VARIANCE NO. DATA 
80.0000 23.0000 51.7086 141.8238 70 
Do you wish to make transformations? y/n n 
Input order of difference or 0: 0 
Input period of seasonality (2-12) or 0: 0 

Time Series: bookf.bj. Regular difference: 0 Seasonal Difference: 0 

Autocorrelation Function for the first 35 lags 

    0   1.0000       12   -0.0688       24  -0.0731
    1  -0.3899       13    0.1480       25  -0.0195
    2   0.3044       14    0.0358       26   0.0415
    3  -0.1656       15   -0.0067       27  -0.0221
    4   0.0707       16    0.1730       28   0.0889
    5  -0.0970       17   -0.7013       29   0.0162
    6  -0.0471       18    0.0200       30   0.0039
    7   0.0354       19   -0.0473       31   0.0046
    8  -0.0435       20    0.0161       32  -0.0248
    9  -0.0048       21    0.0223       33  -0.0259
   10   0.0144       22   -0.0787       34  -0.0629
   11   0.1099       23   -0.0096       35   0.0261
   

6.4.4.9. Example of Univariate Box-Jenkins Analysis
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Model
Fitting
Section

Enter FILESPEC or EXTENSION (1-3 letters): To quit, press F10.

? bookf.bj 

MAX MIN MEAN VARIANCE NO. DATA 
80.0000 23.0000 51.7086 141.8238 70 
Do you wish to make transformations? y/n n 
Input order of difference or 0: 0 
Input NUMBER of AR terms: 2 
Input NUMBER of MA terms: 0 
Input period of seasonality (2-12) or 0: 0 

*********** OUTPUT SECTION ***********

    AR estimates with Standard Errors
    Phi 1   :   -0.3397    0.1224
    Phi 2   :    0.1904    0.1223

    Original Variance           :    141.8238
    Residual Variance           :    110.8236
    Coefficient of Determination:     21.8582

    ***** Test on randomness of Residuals *****
    The Chi-Square value       =  11.7034
    with degrees of freedom    =  23
    The 95th percentile        =  35.16596

    Hypothesis of randomness accepted.
    Press any key to proceed to the forecasting section.
   
   

6.4.4.9. Example of Univariate Box-Jenkins Analysis
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Forecasting
Section

   ---------------------------------------------------
             FORECASTING SECTION
   ---------------------------------------------------

   Defaults are obtained by pressing the enter key, without
input.
   Default for number of periods ahead from last period = 6.
   Default for the confidence band around the forecast  =
90%.

   How many periods ahead to forecast? (9999 to quit...):
   Enter confidence level for the forecast limits      :

   90 Percent Confidence limits
   Next        Lower     Forecast         Upper
     71      43.8734      61.1930       78.5706
     72      24.0239      42.3156       60.6074
     73      36.9575      56.0006       75.0438
     74      28.4916      47.7573       67.0229
     75      33.7942      53.1634       72.5326
     76      30.3487      49.7573       69.1658

   

6.4.4.9. Example of Univariate Box-Jenkins Analysis
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.10.Box-Jenkins Analysis on Seasonal
Data

Example with
the SEMPLOT
Software for a
Seasonal Time
Series

A computer software package is needed to do a Box-Jenkins time series
analysis for seasonal data. The computer output on this page will illustrate
sample output from a Box-Jenkins analysis using the SEMSTAT statisical
software program. It analyzes the series G data set in the Box, Jenkins and
Reinsel text.

The graph of the data and the resulting forecasts after fitting a model are
portrayed below.

Model
Identification
Section

Enter FILESPEC or EXTENSION (1-3 letters):
To quit, press F10.

? bookg.bj 

MAX MIN MEAN VARIANCE NO. DATA 
622.0000 104.0000 280.2986 14391.9170 144 

6.4.4.10. Box-Jenkins Analysis on Seasonal Data
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Do you wish to make transformations? y/n y 
The following transformations are available:

 

1 Square root 2 Cube root 
3 Natural log 4 Natural log log 
5 Common log 6 Exponentiation 
7 Reciprocal 8 Square root of Reciprocal 
9 Normalizing (X-Xbar)/Standard deviation 
10 Coding (X-Constant 1)/Constant 2 

Enter your selection, by number: 3 
Statistics of Transformed series: 
Mean:     5.542 Variance     0.195 
Input order of difference or 0: 1 
Input period of seasonality (2-12) or 0: 12 
Input order of seasonal difference or 0: 0 
Statistics of Differenced series: 
Mean:     0.009 Variance     0.011 
Time Series: bookg.bj. 
Regular difference: 1 Seasonal Difference: 0 

Autocorrelation Function for the first 36 lags 

 1   0.19975     13   0.21509      25   0.19726
 2  -0.12010     14  -0.13955      26  -0.12388
 3  -0.15077     15  -0.11600      27  -0.10270
 4  -0.32207     16  -0.27894      28  -0.21099
 5  -0.08397     17  -0.05171      29  -0.06536
 6   0.02578     18   0.01246      30   0.01573
 7  -0.11096     19  -0.11436      31  -0.11537
 8  -0.33672     20  -0.33717      32  -0.28926
 9  -0.11559     21  -0.10739      33  -0.12688
10  -0.10927     22  -0.07521      34  -0.04071
11   0.20585     23   0.19948      35   0.14741
12   0.84143     24   0.73692      36   0.65744
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Analyzing
Autocorrelation
Plot for
Seasonality

If you observe very large autocorrelations at lags spaced n periods apart, for
example at lags 12 and 24, then there is evidence of periodicity. That effect
should be removed, since the objective of the identification stage is to reduce
the autocorrelations throughout. So if simple differencing was not enough,
try seasonal differencing at a selected period. In the above case, the period is
12. It could, of course, be any value, such as 4 or 6.

The number of seasonal terms is rarely more than 1. If you know the shape of
your forecast function, or you wish to assign a particular shape to the forecast
function, you can select the appropriate number of terms for seasonal AR or
seasonal MA models.

The book by Box and Jenkins, Time Series Analysis Forecasting and Control
(the later edition is Box, Jenkins and Reinsel, 1994) has a discussion on these
forecast functions on pages 326 - 328. Again, if you have only a faint notion,
but you do know that there was a trend upwards before differencing, pick a
seasonal MA term and see what comes out in the diagnostics.

The results after taking a seasonal difference look good!
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Model Fitting
Section

Now we can proceed to the estimation, diagnostics and forecasting routines.
The following program is again executed from a menu and issues the
following flow of output:

Enter FILESPEC or EXTENSION (1-3 letters):
To quit press F10. 

? bookg.bj 

MAX MIN MEAN VARIANCE NO. DATA 
622.0000 104.0000 280.2986 14391.9170 144 

Do you wish to make
transformations? y/n 

y (we selected a square root
transformation because a closer
inspection of the plot revealed
increasing variances over time) 

Statistics of Transformed series: 
Mean:     5.542 Variance     0.195 
Input order of difference or 0: 1 
Input NUMBER of AR terms:    Blank defaults to 0 
Input NUMBER of MA terms: 1 
Input period of seasonality (2-12) or
0: 

12 

Input order of seasonal difference or
0: 

1 

Input NUMBER of seasonal AR
terms: 

   Blank defaults to 0 

Input NUMBER of seasonal MA
terms: 

1 

Statistics of Differenced series: 
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Mean:     0.000 Variance     0.002 
Pass 1 SS: 0.1894 
Pass 2 SS: 0.1821 
Pass 3 SS: 0.1819 

Estimation is finished after 3 Marquardt iterations. 

Output Section MA estimates with Standard Errors
Theta 1 :    0.3765    0.0811 

Seasonal MA estimates with Standard Errors
Theta 1 :    0.5677    0.0775 

Original Variance            :             0.0021
Residual Variance   (MSE)    :      0.0014 
Coefficient of Determination :     33.9383 

AIC criteria ln(SSE)+2k/n    :      -1.4959 
BIC criteria ln(SSE)+ln(n)k/n:     -1.1865 

k = p + q + P + Q + d + sD = number of estimates + order of regular
difference + product of period of seasonality and seasonal difference. 

n is the total number of observations.
In this problem k and n are:  15   144

***** Test on randomness of Residuals *****
The Box-Ljung  value      =   28.4219
The Box-Pierce value      =   24.0967
with degrees of freedom  =   30 
The 95th percentile           =   43.76809 

Hypothesis of randomness accepted. 

Forecasting
Section

Defaults are obtained by pressing the enter key, without input.
Default for number of periods ahead from last period = 6.
Default for the confidence band around the forecast = 90%.

Next Period Lower Forecast Upper 
145 423.4257 450.1975 478.6620 
146 382.9274 411.6180 442.4583 
147 407.2839 441.9742 479.6191 
148 437.8781 479.2293 524.4855 
149 444.3902 490.1471 540.6153 
150 491.0981 545.5740 606.0927 
151 583.6627 652.7856 730.0948 
152 553.5620 623.0632 701.2905 
153 458.0291 518.6510 587.2965 
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154 417.4242 475.3956 541.4181 
155 350.7556 401.6725 459.9805 
156 382.3264 440.1473 506.7128 
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.5. Multivariate Time Series Models

If each time
series
observation
is a vector
of numbers,
you can
model them
using a
multivariate
form of the
Box-Jenkins
model

The multivariate form of the Box-Jenkins univariate models is
sometimes called the ARMAV model, for AutoRegressive Moving
Average Vector or simply vector ARMA process.

The ARMAV model for a stationary multivariate time series, with a
zero mean vector, represented by

is of the form

where

xt and at are n x 1 column vectors with at representing
multivariate white noise

●   

are n x n matrices for autoregressive and moving average
parameters

●   

E[at] = 0●   

where a is the dispersion or covariance matrix of at

●   

As an example, for a bivariate series with n = 2, p = 2, and q = 1, the
ARMAV(2,1) model is:
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with

Estimation
of
parameters
and
covariance
matrix
difficult

The estimation of the matrix parameters and covariance matrix is
complicated and very difficult without computer software. The
estimation of the Moving Average matrices is especially an ordeal. If we
opt to ignore the MA component(s) we are left with the ARV model
given by:

where

xt is a vector of observations, x1t, x2t, ... , xnt at time t●   

at is a vector of white noise, a1t, a2t, ... , ant at time t●   

is a n x n matrix of autoregressive parameters

●   

E[at] = 0●   

where a = E[at,at-k] is the dispersion or covariance matrix

●   

A model with p autoregressive matrix parameters is an ARV(p) model
or a vector AR model.

The parameter matrices may be estimated by multivariate least squares,
but there are other methods such as maximium likelihood estimation.

Interesting
properties of
parameter
matrices

There are a few interesting properties associated with the phi or AR
parameter matrices. Consider the following example for a bivariate
series with n =2, p = 2, and q = 0. The ARMAV(2,0) model is:

Without loss of generality, assume that the X series is input and the Y series
are output and that the mean vector = (0,0).

Therefore, tranform the observation by subtracting their respective averages.
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Diagonal
terms of
Phi matrix

The diagonal terms of each Phi matrix are the scalar estimates for each series,
in this case:

1.11, 2.11 for the input series X,

1.22, .2.22 for the output series Y.

Transfer
mechanism

The lower off-diagonal elements represent the influence of the input on the
output.

This is called the "transfer" mechanism or transfer-function model as
discussed by Box and Jenkins in Chapter 11. The  terms here correspond to

their  terms.

The upper off-diagonal terms represent the influence of the output on the
input.

Feedback This is called "feedback". The presence of feedback can also be seen as a high
value for a coefficient in the correlation matrix of the residuals. A "true"
transfer model exists when there is no feedback.

This can be seen by expressing the matrix form into scalar form:

Delay Finally, delay or "dead' time can be measured by studying the lower
off-diagonal elements again.

If, for example, 1.21 is non-significant, the delay is 1 time period.
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.5. Multivariate Time Series Models

6.4.5.1.Example of Multivariate Time Series
Analysis

A
multivariate
Box-Jenkins
example

As an example, we will analyze the gas furnace data from the Box-Jenkins
textbook. In this gas furnace, air and methane were combined in order to
obtain a mixture of gases which contained CO2 (carbon dioxide). The
methane gas feedrate constituted the input series and followed the process

Methane Gas Input Feed = .60 - .04 X(t)

the CO2 concentration was the output, Y(t). In this experiment 296 successive
pairs of observations (Xt, Yt) were read off from the continuous records at
9-second intervals. For the example described below, the first 60 pairs were
used. It was decided to fit a bivariate model as described in the previous
section and to study the results.

Plots of
input and
output
series

The plots of the input and output series are displayed below. 
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From a suitable Box-Jenkins software package, we select the routine for
multivariate time series analysis. Typical output information and prompts for
input information will look as follows:

SEMPLOT
output

MULTIVARIATE AUTOREGRESSION

  Enter FILESPEC       GAS.BJ
                                                     Explanation of Input
  How many series? :  2      the input and the output series
  Which order?        :  2      this means that we consider times
                                          t-1 and t-2 in the model , which is 
                                          a special case of the general ARV 
                                          model
 
 

SERIES     MAX           MIN            MEAN      VARIANCE      

 1            56.8000        45.6000        50.8650         9.0375                 
 2              2.8340        -1.5200           0.7673         1.0565               

  NUMBER OF OBSERVATIONS:  60 . 
  THESE WILL BE MEAN CORRECTED.  so we don't have to 
  fit the means 

------------------------------------------------------------------------------- 
  OPTION TO TRANSFORM DATA 
  Transformations?    :  y/N 
------------------------------------------------------------------------------- 
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  OPTION TO DETREND DATA 
  Seasonal adjusting? :  y/N 
------------------------------------------------------------------------------- 

  FITTING ORDER:  2 
  OUTPUT SECTION 
   the notation of the output follows the notation of the previous
   section 

                                   MATRIX FORM OF ESTIMATES 

       1 
     1.2265     0.2295 
    -0.0755     1.6823 

       2 
    -0.4095    -0.8057 
     0.0442    -0.8589 

 Estimate Std. Err t value Prob(t)

Con 1 -0.0337 0.0154 -2.1884 0.9673
Con 2 0.003 0.0342 0.0914 0.0725

 1.11 1.2265 0.0417 29.4033 > .9999
 1.12 0.2295 0.0530 4.3306 0.9999
 1.21 -0.0755 0.0926 -0.8150 0.5816
 1.22 1.6823 0.1177 14.2963 > .9999
 2.11 -0.4095 0.0354 -11.5633 > .9999
 2.12 -0.8057 0.0714 -11.2891 > .9999
 2.21 0.0442 0.0786 0.5617 0.4235
 2.22 -0.8589 0.1585 -5.4194 > .9999

        ------------------------------------------------------------------------------- 
  Statistics on the Residuals 

             MEANS 
    -0.0000     0.0000 

  COVARIANCE MATRIX 
       0.01307      -0.00118 
      -0.00118       0.06444 

  CORRELATION MATRIX 
     1.0000    -0.0407 
    -0.0407     1.0000 

---------------------------------------------------------------------- 
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SERIES   ORIGINAL      RESIDUAL    COEFFICIENT OF    
               VARIANCE     VARIANCE   DETERMINATION 
  1                9.03746           0.01307           99.85542                          
  2                1.05651           0.06444           93.90084                          

This illustrates excellent univariate fits for the individual series. 

--------------------------------------------------------------------- 
This portion of the computer output lists the results of testing for
independence (randomness) of each of the series. 

  Theoretical Chi-Square Value: 
  The 95th percentile       =   35.16595 
  for degrees of freedom  =   23 

  Test on randomness of Residuals for Series:  1 
  The Box-Ljung  value    =   20.7039      Both Box-Ljung and
Box-Pierce 
  The Box-Pierce value    =   16.7785       tests for randomness of
residuals 
  Hypothesis of randomness accepted.      using the chi-square test on
the 
                                                                sum of the squared residuals. 

  Test on randomness of Residuals for Series:  2 
  The Box-Ljung  value    =   16.9871       For example, 16.98 < 35.17 
  The Box-Pierce value    =   13.3958       and 13.40 < 35.17 
  Hypothesis of randomness accepted. 
 

     -------------------------------------------------------- 
                         FORECASTING SECTION 
     -------------------------------------------------------- 

The forecasting method is an extension of the model and follows the
theory outlined in the previous section. Based on the estimated variances
and number 
of forecasts we can compute the forecasts and their confidence limits.
The user, in this software, is able to choose how many forecasts to
obtain, and at what confidence levels. 

  Defaults are obtained by pressing the enter key, without input. 
  Default for number of periods ahead from last period = 6. 
  Default for the confidence band around the forecast  = 90%.

  How many periods ahead to forecast?     6 
  Enter confidence level for the forecast limits : .90: 

                             SERIES:  1 
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                      90 Percent Confidence limits 
    Next Period      Lower      Forecast         Upper 
         61            51.0534       51.2415       51.4295 
         62            50.9955       51.3053       51.6151 
         63            50.5882       50.9641       51.3400 
         64            49.8146       50.4561       51.0976 
         65            48.7431       49.9886       51.2341 
         66            47.6727       49.6864       51.7001 

                             SERIES:  2 

                      90 Percent Confidence limits 
    Next Period      Lower      Forecast         Upper 
         61              0.8142        1.2319        1.6495 
         62              0.4777        1.2957        2.1136 
         63              0.0868        1.2437        2.4005 
         64             -0.2661        1.1300        2.5260 
         65             -0.5321        1.0066        2.5453 
         66             -0.7010        0.9096        2.5202 
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6. Process or Product Monitoring and Control

6.5.Tutorials

Tutorial
contents

What do we mean by "Normal" data? 1.  

What do we do when data are "Non-normal"? 2.  

Elements of Matrix Algebra 

Numerical Examples 1.  

Determinant and Eigenstructure 2.  

3.  

Elements of Multivariate Analysis 

Mean vector and Covariance Matrix 1.  

The Multivariate Normal Distribution 2.  

Hotelling's  T2

Example of Hotelling's T2 Test 1.  

Example 1 (continued) 2.  

Example 2 (multiple groups) 3.  

3.  

Hotelling's T2 Chart 4.  

4.  

Principal Components 

Properties of Principal Components 1.  

Numerical Example 2.  

5.  
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6. Process or Product Monitoring and Control
6.5. Tutorials

6.5.1.What do we mean by "Normal" data?

The Normal
distribution
model

"Normal" data are data that are drawn (come from) a population that
has a normal distribution. This distribution is inarguably the most
important and the most frequently used distribution in both the theory
and application of statistics. If X is a normal random variable, then the
probability distribution of X is

Normal
probability
distribution

Parameters
of normal
distribution

The parameters of the normal distribution are the mean  and the

standard deviation  (or the variance 2). A special notation is
employed to indicate that X is normally distributed with these
parameters, namely

X ~ N( , ) or X ~ N( ,  2).

Shape is
symmetric
and unimodal

The shape of the normal distribution is symmetric and unimodal. It is
called the bell-shaped or Gaussian distribution after its inventor, Gauss
(although De Moivre also deserves credit).

The visual appearance is given below.
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Property of
probability
distributions
is that area
under curve
equals one

A property of a special class of non-negative functions, called
probability distributions, is that the area under the curve equals unity.
One finds the area under any portion of the curve by integrating the
distribution between the specified limits. The area under the
bell-shaped curve of the normal distribution can be shown to be equal
to 1, and therefore the normal distribution is a probability distribution.

Interpretation
of 

There is a simple interpretation of 

68.27% of the population fall between  +/- 1 
95.45% of the population fall between  +/- 2 
99.73% of the population fall between  +/- 3 

The
cumulative
normal
distribution

The cumulative normal distribution is defined as the probability that
the normal variate is less than or equal to some value v, or

Unfortunately this integral cannot be evaluated in closed form and one
has to resort to numerical methods. But even so, tables for all possible
values of  and  would be required. A change of variables rescues
the situation. We let
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Now the evaluation can be made independently of  and ; that is,

where (.) is the cumulative distribution function of the standard
normal distribution (  = 0,  = 1).

Tables for the
cumulative
standard
normal
distribution

Tables of the cumulative standard normal distribution are given in
every statistics textbook and in the handbook. A rich variety of
approximations can be found in the literature on numerical methods.

For example, if  = 0 and  = 1 then the area under the curve from  -
1  to  + 1  is the area from 0 - 1 to 0 + 1, which is 0.6827. Since
most standard normal tables give area to the left of the lookup value,
they will have for z = 1 an area of .8413 and for z = -1 an area of .1587.
By subtraction we obtain the area between -1 and +1 to be .8413 -
.1587 = .6826.

6.5.1. What do we mean by "Normal" data?

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc51.htm (3 of 3) [5/1/2006 10:35:32 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control
6.5. Tutorials

6.5.2. What to do when data are non-normal

Often it is
possible to
transform
non-normal
data into
approximately
normal data

Non-normality is a way of life, since no characteristic (height, weight,
etc.) will have exactly a normal distribution. One strategy to make
non-normal data resemble normal data is by using a transformation. There
is no dearth of transformations in statistics; the issue is which one to select
for the situation at hand. Unfortunately, the choice of the "best"
transformation is generally not obvious.

This was recognized in 1964 by G.E.P. Box and D.R. Cox. They wrote a
paper in which a useful family of power transformations was suggested.
These transformations are defined only for positive data values. This
should not pose any problem because a constant can always be added if
the set of observations contains one or more negative values.

The Box-Cox power transformations are given by

The Box-Cox
Transformation

Given the vector of data observations x = x1, x2, ...xn, one way to select the
power  is to use the  that maximizes the logarithm of the likelihood
function

The logarithm
of the
likelihood
function where

is the arithmetic mean of the transformed data.
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Confidence
bound for 

In addition, a confidence bound (based on the likelihood ratio statistic) can

be constructed for  as follows: A set of  values that represent an
approximate 100(1- )% confidence bound for  is formed from those 
that satisfy

where  denotes the maximum likelihood estimator for  and  is the
upper 100x(1- ) percentile of the chi-square distribution with 1 degree of
freedom.

Example of the
Box-Cox
scheme

To illustrate the procedure, we used the data from Johnson and Wichern's
textbook (Prentice Hall 1988), Example 4.14. The observations are
microwave radiation measurements.

Sample data .15 .09 .18 .10 .05 .12 .08
.05 .08 .10 .07 .02 .01 .10
.10 .10 .02 .10 .01 .40 .10
.05 .03 .05 .15 .10 .15 .09
.08 .18 .10 .20 .11 .30 .02
.20 .20 .30 .30 .40 .30 .05

Table of
log-likelihood
values for
various values
of 

The values of the log-likelihood function obtained by varying  from -2.0
to 2.0 are given below.

LLF LLF LLF

-2.0 7.1146 -0.6 89.0587 0.7 103.0322
-1.9 14.1877 -0.5 92.7855 0.8 101.3254
-1.8 21.1356 -0.4 96.0974 0.9 99.3403
-1.7 27.9468 -0.3 98.9722 1.0 97.1030
-1.6 34.6082 -0.2 101.3923 1.1 94.6372
-1.5 41.1054 -0.1 103.3457 1.2 91.9643
-1.4 47.4229 0.0 104.8276 1.3 89.1034
-1.3 53.5432 0.1 105.8406 1.4 86.0714
1.2 59.4474 0.2 106.3947 1.5 82.8832
-1.1 65.1147 0.3 106.5069 1.6 79.5521
-0.9 75.6471 0.4 106.1994 1.7 76.0896
-0.8 80.4625 0.5 105.4985 1.8 72.5061
-0.7 84.9421 0.6 104.4330 1.9 68.8106

This table shows that  = .3 maximizes the log-likelihood function (LLF).
This becomes 0.28 if a second digit of accuracy is calculated.
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The Box-Cox transform is also discussed in Chapter 1 under the Box Cox
Linearity Plot and the Box Cox Normality Plot. The Box-Cox normality
plot discussion provides a graphical method for choosing  to transform a
data set to normality. The criterion used to choose  for the Box-Cox
linearity plot is the value of  that maximizes the correlation between the
transformed x-values and the y-values when making a normal probability
plot of the (transformed) data.
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6.5.3.Elements of Matrix Algebra

Elementary Matrix Algebra

Basic
definitions
and
operations of
matrix
algebra -
needed for
multivariate
analysis

Vectors and matrices are arrays of numbers. The algebra for symbolic
operations on them is different from the algebra for operations on
scalars, or single numbers. For example there is no division in matrix
algebra, although there is an operation called "multiplying by an
inverse". It is possible to express the exact equivalent of matrix algebra
equations in terms of scalar algebra expressions, but the results look
rather messy.

It can be said that the matrix algebra notation is shorthand for the
corresponding scalar longhand.

Vectors A vector is a column of numbers

The scalars ai are the elements of vector a.

Transpose The transpose of a, denoted by a', is the row arrangement of the
elements of a.

6.5.3. Elements of Matrix Algebra
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Sum of two
vectors

The sum of two vectors (say, a and b) is the vector of sums of
corresponding elements.

The difference of two vectors is the vector of differences of
corresponding elements.

Product of
a'b

The product a'b is a scalar formed by

which may be written in shortcut notation as

where ai and bi are the ith elements of vector a and b, respectively.

Product of
ab'

The product ab' is a square matrix

6.5.3. Elements of Matrix Algebra
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Product of
scalar times a
vector

The product of a scalar k, times a vector a is k times each element of a

A matrix is a
rectangular
table of
numbers

A matrix is a rectangular table of numbers, with p rows and n columns.
It is also referred to as an array of n column vectors of length p. Thus

is a p by n matrix. The typical element of A is aij, denoting the element
of row i and column j.

Matrix
addition and
subtraction

Matrices are added and subtracted on an element-by-element basis.
Thus

6.5.3. Elements of Matrix Algebra
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Matrix
multiplication

Matrix multiplication involves the computation of the sum of the
products of elements from a row of the first matrix (the premultiplier
on the left) and a column of the second matrix (the postmultiplier on
the right). This sum of products is computed for every combination of
rows and columns. For example, if A is a 2 x 3 matrix and B is a 3 x 2
matrix, the product AB is

Thus, the product is a 2 x 2 matrix. This came about as follows: The
number of columns of A must be equal to the number of rows of B. In
this case this is 3. If they are not equal, multiplication is impossible. If
they are equal, then the number of rows of the product AB is equal to
the number of rows of A and the number of columns is equal to the
number of columns of B.

Example of
3x2 matrix
multiplied by
a 2x3

It follows that the result of the product BA is a 3 x 3 matrix

General case
for matrix
multiplication

In general, if A is a k x p matrix and B is a p x n matrix, the product
AB is a k x n matrix. If k = n, then the product BA can also be formed.
We say that matrices conform for the operations of addition,
subtraction or multiplication when their respective orders (numbers of
row and columns) are such as to permit the operations. Matrices that do
not conform for addition or subtraction cannot be added or subtracted.
Matrices that do not conform for multiplication cannot be multiplied.

6.5.3. Elements of Matrix Algebra
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6.5.3.1.Numerical Examples

Numerical
examples of
matrix
operations

Numerical examples of the matrix operations described on the
previous page are given here to clarify these operations.

Sample matrices If

then

Matrix addition,
subtraction, and
multipication

and

6.5.3.1. Numerical Examples
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Multiply matrix
by a scalar

To multiply a a matrix by a given scalar, each element of the matrix
is multiplied by that scalar

Pre-multiplying
matrix by
transpose of a
vector

Pre-multiplying a p x n matrix by the transpose of a p-element vector
yields a n-element transpose

Post-multiplying
matrix by vector

Post-multiplying a p x n matrix by an n-element vector yields an
n-element vector

Quadratic form It is not possible to pre-multiply a matrix by a column vector, nor to
post-multiply a matrix by a row vector. The matrix product a'Ba
yields a scalar and is called a quadratic form. Note that B must be a
square matrix if a'Ba is to conform to multiplication. Here is an
example of a quadratic form

6.5.3.1. Numerical Examples
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Inverting a
matrix

The matrix analog of division involves an operation called inverting
a matrix. Only square matrices can be inverted. Inversion is a
tedious numerical procedure and it is best performed by computers.
There are many ways to invert a matrix, but ultimately whichever
method is selected by a program is immaterial. If you wish to try one
method by hand, a very popular numerical method is the
Gauss-Jordan method.

Identity matrix To augment the notion of the inverse of a matrix, A-1 (A inverse) we
notice the following relation

A-1A = A A-1 = I

I is a matrix of form

I is called the identity matrix and is a special case of a diagonal
matrix. Any matrix that has zeros in all of the off-diagonal positions
is a diagonal matrix.

6.5.3.1. Numerical Examples
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6.5.3.2.Determinant and Eigenstructure

A matrix
determinant is
difficult to define
but a very useful
number

Unfortunately, not every square matrix has an inverse (although
most do). Associated with any square matrix is a single number
that represents a unique function of the numbers in the matrix.
This scalar function of a square matrix is called the determinant.
The determinant of a matrix A is denoted by |A|. A formal
definition for the deteterminant of a square matrix A = (aij) is
somewhat beyond the scope of this Handbook. Consult any good
linear algebra textbook if you are interested in the mathematical
details.

Singular matrix As is the case of inversion of a square matrix, calculation of the
determinant is tedious and computer assistance is needed for
practical calculations. If the determinant of the (square) matrix is
exactly zero, the matrix is said to be singular and it has no
inverse.

Determinant of
variance-covariance
matrix

Of great interest in statistics is the determinant of a square
symmetric matrix D whose diagonal elements are sample
variances and whose off-diagonal elements are sample
covariances. Symmetry means that the matrix and its transpose
are identical (i.e., A = A'). An example is

where s1 and s2 are sample standard deviations and rij is the
sample correlation.

6.5.3.2. Determinant and Eigenstructure
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D is the sample variance-covariance matrix for observations of
a multivariate vector of p elements. The determinant of D, in
this case, is sometimes called the generalized variance.

Characteristic
equation

In addition to a determinant and possibly an inverse, every
square matrix has associated with it a characteristic equation.
The characteristic equation of a matrix is formed by subtracting
some particular value, usually denoted by the greek letter 
(lambda), from each diagonal element of the matrix, such that
the determinant of the resulting matrix is equal to zero. For
example, the characteristic equation of a second order (2 x 2)
matrix A may be written as

Definition of the
characteristic
equation for 2x2
matrix

Eigenvalues of a
matrix

For a matrix of order p, there may be as many as p different
values for  that will satisfy the equation. These different values
are called the eigenvalues of the matrix.

Eigenvectors of a
matrix

Associated with each eigenvalue is a vector, v, called the
eigenvector. The eigenvector satisfies the equation

Av = v

Eigenstructure of a
matrix

If the complete set of eigenvalues is arranged in the diagonal
positions of a diagonal matrix V, the following relationship
holds

AV = VL

This equation specifies the complete eigenstructure of A.
Eigenstructures and the associated theory figure heavily in
multivariate procedures and the numerical evaluation of L and V
is a central computing problem.

6.5.3.2. Determinant and Eigenstructure

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc532.htm (2 of 2) [5/1/2006 10:35:36 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control
6.5. Tutorials

6.5.4.Elements of Multivariate Analysis

Multivariate
analysis

Multivariate analysis is a branch of statistics concerned with the
analysis of multiple measurements, made on one or several samples of
individuals. For example, we may wish to measure length, width and
weight of a product.

Multiple
measurement,
or
observation,
as row or
column
vector

A multiple measurement or observation may be expressed as

x = [4  2  0.6]

referring to the physical properties of length, width and weight,
respectively. It is customary to denote multivariate quantities with bold
letters. The collection of measurements on x is called a vector. In this
case it is a row vector. We could have written x as a column vector.

Matrix to
represent
more than
one multiple
measurement

If we take several such measurements, we record them in a rectangular
array of numbers. For example, the X matrix below represents 5
observations, on each of three variables.

6.5.4. Elements of Multivariate Analysis
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By
convention,
rows
typically
represent
observations
and columns
represent
variables

In this case the number of rows, (n = 5), is the number of observations,
and the number of columns, (p = 3), is the number of variables that are
measured. The rectangular array is an assembly of n row vectors of
length p. This array is called a matrix, or, more specifically, a n by p
matrix. Its name is X. The names of matrices are usually written in
bold, uppercase letters, as in Section 6.5.3. We could just as well have
written X as a p (variables) by n (measurements) matrix as follows:

Definition of
Transpose

A matrix with rows and columns exchanged in this manner is called the
transpose of the original matrix.

6.5.4. Elements of Multivariate Analysis
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6.5.4.1.Mean Vector and Covariance Matrix

The first step in analyzing multivariate data is computing the mean
vector and the variance-covariance matrix.

Sample data
matrix

Consider the following matrix:

The set of 5 observations, measuring 3 variables, can be described by its
mean vector and variance-covariance matrix. The three variables, from
left to right are length, width, and height of a certain object, for
example. Each row vector Xi is another observation of the three
variables (or components).

Definition of
mean vector
and
variance-
covariance
matrix

The mean vector consists of the means of each variable and the
variance-covariance matrix consists of the variances of the variables
along the main diagonal and the covariances between each pair of
variables in the other matrix positions.

The formula for computing the covariance of the variables X and Y is

with  and  denoting the means of X and Y, respectively.

6.5.4.1. Mean Vector and Covariance Matrix

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc541.htm (1 of 2) [5/1/2006 10:35:37 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Mean vector
and
variance-
covariance
matrix for
sample data
matrix

The results are:

 

where the mean vector contains the arithmetic averages of the three
variables and the (unbiased) variance-covariance matrix S is calculated
by

where n = 5 for this example.

Thus, 0.025 is the variance of the length variable, 0.0075 is the
covariance between the length and the width variables, 0.00175 is the
covariance between the length and the height variables, 0.007 is the
variance of the width variable, 0.00135 is the covariance between the
width and height variables and .00043 is the variance of the height
variable.

Centroid,
dispersion
matix

The mean vector is often referred to as the centroid and the
variance-covariance matrix as the dispersion or dispersion matrix. Also,
the terms variance-covariance matrix and covariance matrix are used
interchangeably. 
 

6.5.4.1. Mean Vector and Covariance Matrix
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6.5.4.2.The Multivariate Normal Distribution

Multivariate
normal
model

When multivariate data are analyzed, the multivariate normal model is the most
commonly used model.

The multivariate normal distribution model extends the univariate normal
distribution model to fit vector observations.

Definition
of
multivariate
normal
distribution

A p-dimensional vector of random variables

is said to have a multivariate normal distribution if its density function f(X) is of
the form

where m = (m1, ..., mp) is the vector of means and  is the variance-covariance
matrix of the multivariate normal distribution. The shortcut notation for this density
is

Univariate
normal
distribution

When p = 1, the one-dimensional vector X = X1 has the normal distribution with

mean m and variance 2

6.5.4.2. The Multivariate Normal Distribution
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Bivariate
normal
distribution

When p = 2, X = (X1,X2) has the bivariate normal distribution with a
two-dimensional vector of means, m = (m1,m2) and covariance matrix

The correlation between the two random variables is given by

6.5.4.2. The Multivariate Normal Distribution
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6.5.4.3.Hotelling's T squared

Hotelling's T2

distribution
A multivariate method that is the multivariate counterpart of
Student's-t and which also forms the basis for certain multivariate
control charts is based on Hotelling's T2 distribution, which was
introduced by Hotelling (1947).

Univariate
t-test for
mean

Recall, from Section 1.3.5.2,

has a t distribution provided that X is normally distributed, and can be
used as long as X doesn't differ greatly from a normal distribution. If
we wanted to test the hypothesis that  = 0, we would then have

so that

Generalize to
p variables

When t2 is generalized to p variables it becomes

with

           

S-1 is the inverse of the sample variance-covariance matrix, S, and n is
the sample size upon which each i, i = 1, 2, ..., p, is based. (The

6.5.4.3. Hotelling's T squared
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diagonal elements of S are the variances and the off-diagonal elements
are the covariances for the p variables. This is discussed further in
Section 6.5.4.3.1.)

Distribution
of T2

It is well known that when  = 0

with F(p,n-p) representing the F distribution with p degrees of freedom
for the numerator and n - p for the denominator. Thus, if  were
specified to be 0, this could be tested by taking a single p-variate

sample of size n, then computing T2 and comparing it with

for a suitably chosen .

Result does
not apply
directly to
multivariate
Shewhart-type
charts

Although this result applies to hypothesis testing, it does not apply
directly to multivariate Shewhart-type charts (for which there is no

0), although the result might be used as an approximation when a
large sample is used and data are in subgroups, with the upper control
limit (UCL) of a chart based on the approximation.

Three-sigma
limits from
univariate
control chart

When a univariate control chart is used for Phase I (analysis of
historical data), and subsequently for Phase II (real-time process
monitoring), the general form of the control limits is the same for each
phase, although this need not be the case. Specifically, three-sigma
limits are used in the univariate case, which skirts the relevant
distribution theory for each Phase.

Selection of
different
control limit
forms for
each Phase

Three-sigma units are generally not used with multivariate charts,
however, which makes the selection of different control limit forms for
each Phase (based on the relevant distribution theory), a natural
choice.

6.5.4.3. Hotelling's T squared
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6.5.4.3.1.T2 Chart for Subgroup Averages --
Phase I

Estimate 

with 

Since  is generally unknown, it is necessary to estimate  analogous

to the way that  is estimated when an  chart is used. Specifically,

when there are rational subgroups,  is estimated by , with

Obtaining the

i

Each i, i = 1, 2, ..., p, is obtained the same way as with an  chart,
namely, by taking k subgroups of size n and computing

.

Here  is used to denote the average for the lth subgroup of the ith
variable. That is,

with xilr denoting the rth observation (out of n) for the ith variable in
the lth subgroup.

6.5.4.3.1. T2 Chart for Subgroup Averages -- Phase I
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Estimating
the variances
and
covariances

The variances and covariances are similarly averaged over the
subgroups. Specifically, the sij elements of the variance-covariance
matrix S are obtained as

with sijl for i  j denoting the sample covariance between variables Xi

and Xj for the lth subgroup, and sij for i = j denotes the sample variance

of Xi. The variances  (= siil) for subgroup l and for variables i = 1, 2,

..., p are computed as

 .

Similarly, the covariances sijl between variables Xi and Xj for subgroup
l are computed as

 .

Compare T2

against
control
values

As with an  chart (or any other chart), the k subgroups would be
tested for control by computing k values of T2 and comparing each
against the UCL. If any value falls above the UCL (there is no lower
control limit), the corresponding subgroup would be investigated.

Formula for
plotted T2

values

Thus, one would plot

for the jth subgroup (j = 1, 2, ..., k), with  denoting a vector with p
elements that contains the subgroup averages for each of the p

characteristics for the jth subgroup. (  is the inverse matrix of the

"pooled" variance-covariance matrix, , which is obtained by
averaging the subgroup variance-covariance matrices over the k
subgroups.)

Formula for
the upper
control limit

Each of the k values of  given in the equation above would be

compared with

6.5.4.3.1. T2 Chart for Subgroup Averages -- Phase I
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Lower
control limits

A lower control limit is generally not used in multivariate control chart
applications, although some control chart methods do utilize a LCL.

Although a small value for  might seem desirable, a value that is

very small would likely indicate a problem of some type as we would

not expect every element of  to be virtually equal to every element
in .

Delete
out-of-control
points once
cause
discovered
and corrected

As with any Phase I control chart procedure, if there are any points that
plot above the UCL and can be identified as corresponding to
out-of-control conditions that have been corrected, the point(s) should
be deleted and the UCL recomputed. The remaining points would then
be compared with the new UCL and the process continued as long as
necessary, remembering that points should be deleted only if their
correspondence with out-of-control conditions can be identified and the
cause(s) of the condition(s) were removed.

6.5.4.3.1. T2 Chart for Subgroup Averages -- Phase I
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6.5.4.3.2.T2 Chart for Subgroup Averages --
Phase II

Phase II
requires
recomputing
Sp and 
and
different
control
limits

Determining the UCL that is to be subsequently applied to future subgroups entails
recomputing, if necessary, Sp and , and using a constant and an F-value that are
different from the form given for the Phase I control limits. The form is different
because different distribution theory is involved since future subgroups are
assumed to be independent of the "current" set of subgroups that is used in

calculating Sp and . (The same thing happens with  charts; the problem is
simply ignored through the use of 3-sigma limits, although a different approach
should be used when there is a small number of subgroups -- and the necessary
theory has been worked out.)

Illustration To illustrate, assume that a subgroups had been discarded (with possibly a = 0) so
that k - a subgroups are used in obtaining  and . We shall let these two values

be represented by  and  to distinguish them from the original values,  and

, before any subgroups are deleted. Future values to be plotted on the
multivariate chart would then be obtained from

with  denoting an arbitrary vector containing the averages for the p
characteristics for a single subgroup obtained in the future. Each of these future
values would be plotted on the multivariate chart and compared with

6.5.4.3.2. T2 Chart for Subgroup Averages -- Phase II
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Phase II
control
limits

with a denoting the number of the original subgroups that are deleted before
computing  and . Notice that the equation for the control limits for Phase II
given here does not reduce to the equation for the control limits for Phase I when a
= 0, nor should we expect it to since the Phase I UCL is used when testing for
control of the entire set of subgroups that is used in computing  and .
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6.5. Tutorials
6.5.4. Elements of Multivariate Analysis
6.5.4.3. Hotelling's T squared

6.5.4.3.3.Chart for Individual Observations
-- Phase I

Multivariate
individual
control
charts

Control charts for multivariate individual observations can be
constructed, just as charts can be constructed for univariate individual
observations.

Constructing
the control
chart

Assume there are m historical multivariate observations to be tested for
control, so that Qj, j = 1, 2, ...., m are computed, with

Control
limits

Each value of Qj is compared against control limits of

with B( ) denoting the beta distribution with parameters p/2 and
(m-p-1)/2. These limits are due to Tracy, Young and Mason (1992).
Note that a LCL is stated, unlike the other multivariate control chart
procedures given in this section. Although interest will generally be
centered at the UCL, a value of Q below the LCL should also be
investigated, as this could signal problems in data recording.

6.5.4.3.3. Chart for Individual Observations -- Phase I
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Delete
points if
special
cause(s) are
identified
and
corrected

As in the case when subgroups are used, if any points plot outside these
control limits and special cause(s) that were subsequently removed can
be identified, the point(s) would be deleted and the control limits
recomputed, making the appropriate adjustments on the degrees of
freedom, and re-testing the remaining points against the new limits.
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6.5.4. Elements of Multivariate Analysis
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6.5.4.3.4.Chart for Individual Observations
-- Phase II

Control
limits

In Phase II, each value of Qj would be plotted against the UCL of

with, as before, p denoting the number of characteristics.

Further
Information

The control limit expressions given in this section and the immediately
preceding sections are given in Ryan (2000, Chapter 9).
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6. Process or Product Monitoring and Control
6.5. Tutorials
6.5.4. Elements of Multivariate Analysis
6.5.4.3. Hotelling's T squared

6.5.4.3.5.Charts for Controlling Multivariate
Variability

No
satisfactory
charts for
multivariate
variability

Unfortunately, there are no charts for controlling multivariate
variability, with either subgroups or individual observations, that are
simple, easy-to-understand and implement, and statistically defensible.
Methods based on the generalized variance have been proposed for
subgroup data, but such methods have been criticized by Ryan (2000,
Section 9.4) and some references cited therein. For individual
observations, the multivariate analogue of a univariate moving range
chart might be considered as an estimator of the variance-covariance
matrix for Phase I, although the distribution of the estimator is
unknown.
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6. Process or Product Monitoring and Control
6.5. Tutorials
6.5.4. Elements of Multivariate Analysis
6.5.4.3. Hotelling's T squared

6.5.4.3.6.Constructing Multivariate Charts

Multivariate
control charts
not commonly
available in
statistical
software

Although control charts were originally constructed and maintained by
hand, it would be extremely impractical to try to do that with the chart
procedures that were presented in Sections 6.5.4.3.1-6.5.4.3.4.
Unfortunately, the well-known statistical software packages do not
have capability for the four procedures just outlined. However,
Dataplot, which is used for case studies and tutorials throughout this
e-Handbook, does have that capability.

6.5.4.3.6. Constructing Multivariate Charts
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6. Process or Product Monitoring and Control
6.5. Tutorials

6.5.5.Principal Components

Dimension
reduction tool

A Multivariate Analysis problem could start out with a substantial
number of correlated variables. Principal Component Analysis is a
dimension-reduction tool that can be used advantageously in such
situations. Principal component analysis aims at reducing a large set of
variables to a small set that still contains most of the information in
the large set.

Principal
factors

The technique of principal component analysis enables us to create
and use a reduced set of variables, which are called principal factors.
A reduced set is much easier to analyze and interpret. To study a data
set that results in the estimation of roughly 500 parameters may be
difficult, but if we could reduce these to 5 it would certainly make our
day. We will show in what follows how to achieve substantial
dimension reduction.

Inverse
transformaion
not possible

While these principal factors represent or replace one or more of the
original variables, it should be noted that they are not just a one-to-one
transformation, so inverse transformations are not possible.

Original data
matrix

To shed a light on the structure of principal components analysis, let
us consider a multivariate data matrix X, with n rows and p columns.
The p elements of each row are scores or measurements on a subject
such as height, weight and age.

Linear
function that
maximizes
variance

Next, standardize the X matrix so that each column mean is 0 and
each column variance is 1. Call this matrix Z. Each column is a vector
variable, zi, i = 1, . . . , p. The main idea behind principal component
analysis is to derive a linear function y for each of the vector variables
zi. This linear function possesses an extremely important property;
namely, its variance is maximized.

6.5.5. Principal Components
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Linear
function is
component of
z

This linear function is referred to as a component of z. To illustrate the
computation of a single element for the jth y vector, consider the
product y = z v' where v' is a column vector of V and V is a p x p
coefficient matrix that carries the p-element variable z into the derived
n-element variable y. V is known as the eigen vector matrix. The
dimension of z is 1 x p, the dimension of v' is p x 1. The scalar algebra
for the component score for the ith individual of yj, j = 1, ...p is:

yji = v'1z1i + v'2z2i + ... + v'pzpi

This becomes in matrix notation for all of the y:

Y = ZV

Mean and
dispersion
matrix of y

The mean of y is my = V'mz = 0, because mz = 0.

The dispersion matrix of y is

Dy = V'DzV = V'RV

R is
correlation
matrix

Now, it can be shown that the dispersion matrix Dz of a standardized
variable is a correlation matrix. Thus R is the correlation matrix for z.

Number of
parameters to
estimate
increases
rapidly as p
increases

At this juncture you may be tempted to say: "so what?". To answer
this let us look at the intercorrelations among the elements of a vector
variable. The number of parameters to be estimated for a p-element
variable is

p means●   

p variances●   

(p2 - p)/2 covariances●   

for a total of 2p + (p2-p)/2 parameters.●   

So

If p = 2, there are 5 parameters●   

If p = 10, there are 65 parameters●   

If p = 30, there are 495 parameters●   

Uncorrelated
variables
require no
covariance
estimation

All these parameters must be estimated and interpreted. That is a
herculean task, to say the least. Now, if we could transform the data so
that we obtain a vector of uncorrelated variables, life becomes much
more bearable, since there are no covariances.

6.5.5. Principal Components
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6.5.5.1.Properties of Principal Components

Orthogonalizing Transformations

Transformation
from z to y

The equation y = V'z represents a transformation, where y is the
transformed variable, z is the original standardized variable and V is
the premultiplier to go from z to y.

Orthogonal
transformations
simplify things

To produce a transformation vector for y for which the elements are
uncorrelated is the same as saying that we want V such that Dy is a
diagonal matrix. That is, all the off-diagonal elements of Dy must be
zero. This is called an orthogonalizing transformation.

Infinite number
of values for V

There are an infinite number of values for V that will produce a
diagonal Dy for any correlation matrix R. Thus the mathematical
problem "find a unique V such that Dy is diagonal" cannot be solved
as it stands. A number of famous statisticians such as Karl Pearson
and Harold Hotelling pondered this problem and suggested a
"variance maximizing" solution.

Principal
components
maximize
variance of the
transformed
elements, one
by one

Hotelling (1933) derived the "principal components" solution. It
proceeds as follows: for the first principal component, which will be
the first element of y and be defined by the coefficients in the first
column of V, (denoted by v1), we want a solution such that the
variance of y1 will be maximized.

6.5.5.1. Properties of Principal Components
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Constrain v to
generate a
unique solution

The constraint on the numbers in v1 is that the sum of the squares of
the coefficients equals 1. Expressed mathematically, we wish to
maximize

where

y1i = v1'  zi

and v1'v1 = 1 ( this is called "normalizing " v1).

Computation of
first principal
component
from R and v1

Substituting the middle equation in the first yields

where R is the correlation matrix of Z, which, in turn, is the
standardized matrix of X, the original data matrix. Therefore, we
want to maximize v1'Rv1 subject to v1'v1 = 1.

The eigenstructure

Lagrange
multiplier
approach

Let

>

introducing the restriction on v1 via the Lagrange multiplier
approach. It can be shown (T.W. Anderson, 1958, page 347, theorem
8) that the vector of partial derivatives is

6.5.5.1. Properties of Principal Components
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and setting this equal to zero, dividing out 2 and factoring gives

This is known as "the problem of the eigenstructure of R".

Set of p
homogeneous
equations

The partial differentiation resulted in a set of p homogeneous
equations, which may be written in matrix form as follows 

The characteristic equation

Characterstic
equation of R is
a polynomial of
degree p

The characteristic equation of R is a polynomial of degree p, which
is obtained by expanding the determinant of

and solving for the roots  j, j = 1, 2, ..., p.

Largest
eigenvalue

Specifically, the largest eigenvalue, 1, and its associated vector, v1,
are required. Solving for this eigenvalue and vector is another
mammoth numerical task that can realistically only be performed by
a computer. In general, software is involved and the algorithms are
complex.

Remainig p
eigenvalues

After obtaining the first eigenvalue, the process is repeated until all p
eigenvalues are computed.

6.5.5.1. Properties of Principal Components
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Full
eigenstructure
of R

To succinctly define the full eigenstructure of R, we introduce
another matrix L, which is a diagonal matrix with j in the jth
position on the diagonal. Then the full eigenstructure of R is given as

RV = VL
where

V'V = VV' = I
and

V'RV = L = D y

Principal Factors

Scale to zero
means and unit
variances

It was mentioned before that it is helpful to scale any transformation
y of a vector variable z so that its elements have zero means and unit
variances. Such a standardized transformation is called a factoring of
z, or of R, and each linear component of the transformation is called
a factor.

Deriving unit
variances for
principal
components

Now, the principal components already have zero means, but their
variances are not 1; in fact, they are the eigenvalues, comprising the
diagonal elements of L. It is possible to derive the principal factor
with unit variance from the principal component as follows

or for all factors:

substituting V'z for y we have

where

B = VL -1/2

B matrix The matrix B is then the matrix of factor score coefficients for
principal factors.

How many Eigenvalues?

6.5.5.1. Properties of Principal Components
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Dimensionality
of the set of
factor scores

The number of eigenvalues, N, used in the final set determines the
dimensionality of the set of factor scores. For example, if the original
test consisted of 8 measurements on 100 subjects, and we extract 2
eigenvalues, the set of factor scores is a matrix of 100 rows by 2
columns.

Eigenvalues
greater than
unity

Each column or principal factor should represent a number of
original variables. Kaiser (1966) suggested a rule-of-thumb that takes
as a value for N, the number of eigenvalues larger than unity.

Factor Structure

Factor
structure
matrix S

The primary interpretative device in principal components is the
factor structure, computed as

S = VL1/2

S is a matrix whose elements are the correlations between the
principal components and the variables. If we retain, for example,
two eigenvalues, meaning that there are two principal components,
then the S matrix consists of two columns and p (number of
variables) rows.

Table showing
relation
between
variables and
principal
components

 Principal Component
Variable 1 2

1 r11 r12

2 r21 r22

3 r31 r32

4 r41 r42

The rij are the correlation coefficients between variable i and
principal component j, where i ranges from 1 to 4 and j from 1 to 2.

The
communality

SS' is the source of the "explained" correlations among the variables.
Its diagonal is called "the communality".

Rotation

Factor analysis If this correlation matrix, i.e., the factor structure matrix, does not
help much in the interpretation, it is possible to rotate the axis of the
principal components. This may result in the polarization of the
correlation coefficients. Some practitioners refer to rotation after
generating the factor structure as factor analysis.

6.5.5.1. Properties of Principal Components
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Varimax
rotation

A popular scheme for rotation was suggested by Henry Kaiser in
1958. He produced a method for orthogonal rotation of factors, called
the varimax rotation, which cleans up the factors as follows:

for each factor, high loadings (correlations) will result for a
few variables; the rest will be near zero.

Example The following computer output from a principal component analysis
on a 4-variable data set, followed by varimax rotation of the factor
structure, will illustrate his point.

 Before Rotation After Rotation
Variable Factor 1 Factor 2 Factor 1 Factor 2

1 .853 -.989 .997 .058
2 .634 .762 .089 .987
3 .858 -.498 .989 .076
4 .633 .736 .103 .965

Communality

Formula for
communality
statistic

A measure of how well the selected factors (principal components)
"explain" the variance of each of the variables is given by a statistic
called communality. This is defined by

Explanation of
communality
statistic

That is: the square of the correlation of variable k with factor i gives
the part of the variance accounted for by that factor. The sum of these
squares for n factors is the communality, or explained variable for
that variable (row).

Roadmap to solve the V matrix

6.5.5.1. Properties of Principal Components
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Main steps to
obtaining
eigenstructure
for a
correlation
matrix

In summary, here are the main steps to obtain the eigenstructure for a
correlation matrix.

Compute R, the correlation matrix of the original data. R is
also the correlation matrix of the standardized data.

1.  

Obtain the characteristic equation of R which is a polynomial
of degree p (the number of variables), obtained from
expanding the determinant of |R-  I| = 0 and solving for the
roots  i, that is:  1,  2, ... ,  p.

2.  

Then solve for the columns of the V matrix, (v1, v2, ..vp). The
roots, , i, are called the eigenvalues (or latent values). The
columns of V are called the eigenvectors.

3.  

6.5.5.1. Properties of Principal Components
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6.5.5.2.Numerical Example

Calculation
of principal
components
example

A numerical example may clarify the mechanics of principal component analysis.

Sample data
set

Let us analyze the following 3-variate dataset with 10 observations. Each
observation consists of 3 measurements on a wafer: thickness, horizontal
displacement and vertical displacement.

6.5.5.2. Numerical Example
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Compute the
correlation
matrix

First compute the correlation matrix

Solve for the
roots of R

Next solve for the roots of R, using software

value proportion

1 1.769 .590
2 .927 .899
3 .304 1.000

Notice that

Each eigenvalue satisfies |R-  I| = 0.●   

The sum of the eigenvalues = 3 = p, which is equal to the trace of R (i.e., the
sum of the main diagonal elements).

●   

The determinant of R is the product of the eigenvalues.●   

The product is  1 x  2 x  3 = .499.●   

Compute the
first column
of the V
matrix

Substituting the first eigenvalue of 1.769 and R in the appropriate equation we
obtain

This is the matrix expression for 3 homogeneous equations with 3 unknowns and
yields the first column of V: .64  .69  -.34  (again, a computerized solution is
indispensable).

6.5.5.2. Numerical Example

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc552.htm (2 of 4) [5/1/2006 10:35:45 AM]



Compute the
remaining
columns of
the V matrix

Repeating this procedure for the other 2 eigenvalues yields the matrix V

Notice that if you multiply V by its transpose, the result is an identity matrix,
V'V=I.

Compute the
L1/2 matrix

Now form the matrix L1/2, which is a diagonal matrix whose elements are the
square roots of the eigenvalues of R. Then obtain S, the factor structure, using S =
V L1/2

So, for example, .91 is the correlation between variable 2 and the first principal
component.

Compute the
communality

Next compute the communality, using the first two eigenvalues only

Diagonal
elements
report how
much of the
variability is
explained

Communality consists of the diagonal elements.

var  
1 .8662
2 .8420
3 .9876

This means that the first two principal components "explain" 86.62% of the first
variable, 84.20 % of the second variable, and 98.76% of the third.

6.5.5.2. Numerical Example
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Compute the
coefficient
matrix

The coefficient matrix, B, is formed using the reciprocals of the diagonals of L1/2

Compute the
principal
factors

Finally, we can compute the factor scores from ZB, where Z is X converted to
standard score form. These columns are the principal factors.

Principal
factors
control
chart

These factors can be plotted against the indices, which could be times. If time is
used, the resulting plot is an example of a principal factors control chart.

6.5.5.2. Numerical Example

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc552.htm (4 of 4) [5/1/2006 10:35:45 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control

6.6.Case Studies in Process Monitoring

Detailed,
Realistic
Examples

The general points of the first five sections are illustrated in this section
using data from physical science and engineering applications. Each
example is presented step-by-step in the text, and is often cross-linked
with the relevant sections of the chapter describing the analysis in
general. Each analysis can also be repeated using a worksheet linked to
the appropriate Dataplot macros. The worksheet is also linked to the
step-by-step analysis presented in the text for easy reference.

Contents:
Section 6

Lithography Process Example1.  

Aerosol Particle Size Example2.  

6.6. Case Studies in Process Monitoring
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6.6. Case Studies in Process Monitoring

6.6.1.Lithography Process

Lithography
Process

This case study illustrates the use of control charts in analyzing a
lithography process.

Background and Data1.  

Graphical Representation of the Data2.  

Subgroup Analysis3.  

Shewhart Control Chart4.  

Work This Example Yourself5.  

6.6.1. Lithography Process
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.1. Lithography Process

6.6.1.1.Background and Data

Case Study for SPC in Batch Processing Environment

Semiconductor
processing
creates
multiple
sources of
variability to
monitor

One of the assumptions in using classical Shewhart SPC charts is that the only
source of variation is from part to part (or within subgroup variation). This is
the case for most continuous processing situations. However, many of today's
processing situations have different sources of variation. The semiconductor
industry is one of the areas where the processing creates multiple sources of
variation.

In semiconductor processing, the basic experimental unit is a silicon wafer.
Operations are performed on the wafer, but individual wafers can be grouped
multiple ways. In the diffusion area, up to 150 wafers are processed in one
time in a diffusion tube. In the etch area, single wafers are processed
individually. In the lithography area, the light exposure is done on sub-areas of
the wafer. There are many times during the production of a computer chip
where the experimental unit varies and thus there are different sources of
variation in this batch processing environment.

tHE following is a case study of a lithography process. Five sites are measured
on each wafer, three wafers are measured in a cassette (typically a grouping of
24 - 25 wafers) and thirty cassettes of wafers are used in the study. The width
of a line is the measurement under study. There are two line width variables.
The first is the original data and the second has been cleaned up somewhat.
This case study uses the raw data. The entire data table is 450 rows long with
six columns.
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Case study
data: wafer
line width
measurements

                              Raw             Cleaned
                             Line                Line
Cassette Wafer  Site        Width  Sequence     Width
=====================================================
 1         1     Top     3.199275      1     3.197275
 1         1     Lef     2.253081      2     2.249081
 1         1     Cen     2.074308      3     2.068308
 1         1     Rgt     2.418206      4     2.410206
 1         1     Bot     2.393732      5     2.383732
 1         2     Top     2.654947      6     2.642947
 1         2     Lef     2.003234      7     1.989234
 1         2     Cen     1.861268      8     1.845268
 1         2     Rgt     2.136102      9     2.118102
 1         2     Bot     1.976495     10     1.956495
 1         3     Top     2.887053     11     2.865053
 1         3     Lef     2.061239     12     2.037239
 1         3     Cen     1.625191     13     1.599191
 1         3     Rgt     2.304313     14     2.276313
 1         3     Bot     2.233187     15     2.203187
 2         1     Top     3.160233     16     3.128233
 2         1     Lef     2.518913     17     2.484913
 2         1     Cen     2.072211     18     2.036211
 2         1     Rgt     2.287210     19     2.249210
 2         1     Bot     2.120452     20     2.080452
 2         2     Top     2.063058     21     2.021058
 2         2     Lef     2.217220     22     2.173220
 2         2     Cen     1.472945     23     1.426945
 2         2     Rgt     1.684581     24     1.636581
 2         2     Bot     1.900688     25     1.850688
 2         3     Top     2.346254     26     2.294254
 2         3     Lef     2.172825     27     2.118825
 2         3     Cen     1.536538     28     1.480538
 2         3     Rgt     1.966630     29     1.908630
 2         3     Bot     2.251576     30     2.191576
 3         1     Top     2.198141     31     2.136141
 3         1     Lef     1.728784     32     1.664784
 3         1     Cen     1.357348     33     1.291348
 3         1     Rgt     1.673159     34     1.605159
 3         1     Bot     1.429586     35     1.359586
 3         2     Top     2.231291     36     2.159291
 3         2     Lef     1.561993     37     1.487993
 3         2     Cen     1.520104     38     1.444104
 3         2     Rgt     2.066068     39     1.988068
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 3         2     Bot     1.777603     40     1.697603
 3         3     Top     2.244736     41     2.162736
 3         3     Lef     1.745877     42     1.661877
 3         3     Cen     1.366895     43     1.280895
 3         3     Rgt     1.615229     44     1.527229
 3         3     Bot     1.540863     45     1.450863
 4         1     Top     2.929037     46     2.837037
 4         1     Lef     2.035900     47     1.941900
 4         1     Cen     1.786147     48     1.690147
 4         1     Rgt     1.980323     49     1.882323
 4         1     Bot     2.162919     50     2.062919
 4         2     Top     2.855798     51     2.753798
 4         2     Lef     2.104193     52     2.000193
 4         2     Cen     1.919507     53     1.813507
 4         2     Rgt     2.019415     54     1.911415
 4         2     Bot     2.228705     55     2.118705
 4         3     Top     3.219292     56     3.107292
 4         3     Lef     2.900430     57     2.786430
 4         3     Cen     2.171262     58     2.055262
 4         3     Rgt     3.041250     59     2.923250
 4         3     Bot     3.188804     60     3.068804
 5         1     Top     3.051234     61     2.929234
 5         1     Lef     2.506230     62     2.382230
 5         1     Cen     1.950486     63     1.824486
 5         1     Rgt     2.467719     64     2.339719
 5         1     Bot     2.581881     65     2.451881
 5         2     Top     3.857221     66     3.725221
 5         2     Lef     3.347343     67     3.213343
 5         2     Cen     2.533870     68     2.397870
 5         2     Rgt     3.190375     69     3.052375
 5         2     Bot     3.362746     70     3.222746
 5         3     Top     3.690306     71     3.548306
 5         3     Lef     3.401584     72     3.257584
 5         3     Cen     2.963117     73     2.817117
 5         3     Rgt     2.945828     74     2.797828
 5         3     Bot     3.466115     75     3.316115
 6         1     Top     2.938241     76     2.786241
 6         1     Lef     2.526568     77     2.372568
 6         1     Cen     1.941370     78     1.785370
 6         1     Rgt     2.765849     79     2.607849
 6         1     Bot     2.382781     80     2.222781
 6         2     Top     3.219665     81     3.057665
 6         2     Lef     2.296011     82     2.132011
 6         2     Cen     2.256196     83     2.090196
 6         2     Rgt     2.645933     84     2.477933
 6         2     Bot     2.422187     85     2.252187
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 6         3     Top     3.180348     86     3.008348
 6         3     Lef     2.849264     87     2.675264
 6         3     Cen     1.601288     88     1.425288
 6         3     Rgt     2.810051     89     2.632051
 6         3     Bot     2.902980     90     2.722980
 7         1     Top     2.169679     91     1.987679
 7         1     Lef     2.026506     92     1.842506
 7         1     Cen     1.671804     93     1.485804
 7         1     Rgt     1.660760     94     1.472760
 7         1     Bot     2.314734     95     2.124734
 7         2     Top     2.912838     96     2.720838
 7         2     Lef     2.323665     97     2.129665
 7         2     Cen     1.854223     98     1.658223
 7         2     Rgt     2.391240     99     2.19324
 7         2     Bot     2.196071     100    1.996071
 7         3     Top     3.318517     101    3.116517
 7         3     Lef     2.702735     102    2.498735
 7         3     Cen     1.959008     103    1.753008
 7         3     Rgt     2.512517     104    2.304517
 7         3     Bot     2.827469     105    2.617469
 8         1     Top     1.958022     106    1.746022
 8         1     Lef     1.360106     107    1.146106
 8         1     Cen     0.971193     108    0.755193
 8         1     Rgt     1.947857     109    1.729857
 8         1     Bot     1.643580     110    1.42358
 8         2     Top     2.357633     111    2.135633
 8         2     Lef     1.757725     112    1.533725
 8         2     Cen     1.165886     113    0.939886
 8         2     Rgt     2.231143     114    2.003143
 8         2     Bot     1.311626     115    1.081626
 8         3     Top     2.421686     116    2.189686
 8         3     Lef     1.993855     117    1.759855
 8         3     Cen     1.402543     118    1.166543
 8         3     Rgt     2.008543     119    1.770543
 8         3     Bot     2.139370     120    1.899370
 9         1     Top     2.190676     121    1.948676
 9         1     Lef     2.287483     122    2.043483
 9         1     Cen     1.698943     123    1.452943
 9         1     Rgt     1.925731     124    1.677731
 9         1     Bot     2.057440     125    1.807440
 9         2     Top     2.353597     126    2.101597
 9         2     Lef     1.796236     127    1.542236
 9         2     Cen     1.241040     128    0.985040
 9         2     Rgt     1.677429     129    1.419429
 9         2     Bot     1.845041     130    1.585041
 9         3     Top     2.012669     131    1.750669
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 9         3     Lef     1.523769     132    1.259769
 9         3     Cen     0.790789     133    0.524789
 9         3     Rgt     2.001942     134    1.733942
 9         3     Bot     1.350051     135    1.080051
10         1     Top     2.825749     136    2.553749
10         1     Lef     2.502445     137    2.228445
10         1     Cen     1.938239     138    1.662239
10         1     Rgt     2.349497     139    2.071497
10         1     Bot     2.310817     140    2.030817
10         2     Top     3.074576     141    2.792576
10         2     Lef     2.057821     142    1.773821
10         2     Cen     1.793617     143    1.507617
10         2     Rgt     1.862251     144    1.574251
10         2     Bot     1.956753     145    1.666753
10         3     Top     3.072840     146    2.780840
10         3     Lef     2.291035     147    1.997035
10         3     Cen     1.873878     148    1.577878
10         3     Rgt     2.475640     149    2.177640
10         3     Bot     2.021472     150    1.721472
11         1     Top     3.228835     151    2.926835
11         1     Lef     2.719495     152    2.415495
11         1     Cen     2.207198     153    1.901198
11         1     Rgt     2.391608     154    2.083608
11         1     Bot     2.525587     155    2.215587
11         2     Top     2.891103     156    2.579103
11         2     Lef     2.738007     157    2.424007
11         2     Cen     1.668337     158    1.352337
11         2     Rgt     2.496426     159    2.178426
11         2     Bot     2.417926     160    2.097926
11         3     Top     3.541799     161    3.219799
11         3     Lef     3.058768     162    2.734768
11         3     Cen     2.187061     163    1.861061
11         3     Rgt     2.790261     164    2.462261
11         3     Bot     3.279238     165    2.949238
12         1     Top     2.347662     166    2.015662
12         1     Lef     1.383336     167    1.049336
12         1     Cen     1.187168     168    0.851168
12         1     Rgt     1.693292     169    1.355292
12         1     Bot     1.664072     170    1.324072
12         2     Top     2.385320     171    2.043320
12         2     Lef     1.607784     172    1.263784
12         2     Cen     1.230307     173    0.884307
12         2     Rgt     1.945423     174    1.597423
12         2     Bot     1.907580     175    1.557580
12         3     Top     2.691576     176    2.339576
12         3     Lef     1.938755     177    1.584755
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12         3     Cen     1.275409     178    0.919409
12         3     Rgt     1.777315     179    1.419315
12         3     Bot     2.146161     180    1.786161
13         1     Top     3.218655     181    2.856655
13         1     Lef     2.912180     182    2.548180
13         1     Cen     2.336436     183    1.970436
13         1     Rgt     2.956036     184    2.588036
13         1     Bot     2.423235     185    2.053235
13         2     Top     3.302224     186    2.930224
13         2     Lef     2.808816     187    2.434816
13         2     Cen     2.340386     188    1.964386
13         2     Rgt     2.795120     189    2.417120
13         2     Bot     2.865800     190    2.485800
13         3     Top     2.992217     191    2.610217
13         3     Lef     2.952106     192    2.568106
13         3     Cen     2.149299     193    1.763299
13         3     Rgt     2.448046     194    2.060046
13         3     Bot     2.507733     195    2.117733
14         1     Top     3.530112     196    3.138112
14         1     Lef     2.940489     197    2.546489
14         1     Cen     2.598357     198    2.202357
14         1     Rgt     2.905165     199    2.507165
14         1     Bot     2.692078     200    2.292078
14         2     Top     3.764270     201    3.362270
14         2     Lef     3.465960     202    3.061960
14         2     Cen     2.458628     203    2.052628
14         2     Rgt     3.141132     204    2.733132
14         2     Bot     2.816526     205    2.406526
14         3     Top     3.217614     206    2.805614
14         3     Lef     2.758171     207    2.344171
14         3     Cen     2.345921     208    1.929921
14         3     Rgt     2.773653     209    2.355653
14         3     Bot     3.109704     210    2.689704
15         1     Top     2.177593     211    1.755593
15         1     Lef     1.511781     212    1.087781
15         1     Cen     0.746546     213    0.320546
15         1     Rgt     1.491730     214    1.063730
15         1     Bot     1.268580     215    0.838580
15         2     Top     2.433994     216    2.001994
15         2     Lef     2.045667     217    1.611667
15         2     Cen     1.612699     218    1.176699
15         2     Rgt     2.082860     219    1.644860
15         2     Bot     1.887341     220    1.447341
15         3     Top     1.923003     221    1.481003
15         3     Lef     2.124461     222    1.680461
15         3     Cen     1.945048     223    1.499048
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15         3     Rgt     2.210698     224    1.762698
15         3     Bot     1.985225     225    1.535225
16         1     Top     3.131536     226    2.679536
16         1     Lef     2.405975     227    1.951975
16         1     Cen     2.206320     228    1.750320
16         1     Rgt     3.012211     229    2.554211
16         1     Bot     2.628723     230    2.168723
16         2     Top     2.802486     231    2.340486
16         2     Lef     2.185010     232    1.721010
16         2     Cen     2.161802     233    1.695802
16         2     Rgt     2.102560     234    1.634560
16         2     Bot     1.961968     235    1.491968
16         3     Top     3.330183     236    2.858183
16         3     Lef     2.464046     237    1.990046
16         3     Cen     1.687408     238    1.211408
16         3     Rgt     2.043322     239    1.565322
16         3     Bot     2.570657     240    2.090657
17         1     Top     3.352633     241    2.870633
17         1     Lef     2.691645     242    2.207645
17         1     Cen     1.942410     243    1.456410
17         1     Rgt     2.366055     244    1.878055
17         1     Bot     2.500987     245    2.010987
17         2     Top     2.886284     246    2.394284
17         2     Lef     2.292503     247    1.798503
17         2     Cen     1.627562     248    1.131562
17         2     Rgt     2.415076     249    1.917076
17         2     Bot     2.086134     250    1.586134
17         3     Top     2.554848     251    2.052848
17         3     Lef     1.755843     252    1.251843
17         3     Cen     1.510124     253    1.004124
17         3     Rgt     2.257347     254    1.749347
17         3     Bot     1.958592     255    1.448592
18         1     Top     2.622733     256    2.110733
18         1     Lef     2.321079     257    1.807079
18         1     Cen     1.169269     258    0.653269
18         1     Rgt     1.921457     259    1.403457
18         1     Bot     2.176377     260    1.656377
18         2     Top     3.313367     261    2.791367
18         2     Lef     2.559725     262    2.035725
18         2     Cen     2.404662     263    1.878662
18         2     Rgt     2.405249     264    1.877249
18         2     Bot     2.535618     265    2.005618
18         3     Top     3.067851     266    2.535851
18         3     Lef     2.490359     267    1.956359
18         3     Cen     2.079477     268    1.543477
18         3     Rgt     2.669512     269    2.131512
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18         3     Bot     2.105103     270    1.565103
19         1     Top     4.293889     271    3.751889
19         1     Lef     3.888826     272    3.344826
19         1     Cen     2.960655     273    2.414655
19         1     Rgt     3.618864     274    3.070864
19         1     Bot     3.562480     275    3.012480
19         2     Top     3.451872     276    2.899872
19         2     Lef     3.285934     277    2.731934
19         2     Cen     2.638294     278    2.082294
19         2     Rgt     2.918810     279    2.360810
19         2     Bot     3.076231     280    2.516231
19         3     Top     3.879683     281    3.317683
19         3     Lef     3.342026     282    2.778026
19         3     Cen     3.382833     283    2.816833
19         3     Rgt     3.491666     284    2.923666
19         3     Bot     3.617621     285    3.047621
20         1     Top     2.329987     286    1.757987
20         1     Lef     2.400277     287    1.826277
20         1     Cen     2.033941     288    1.457941
20         1     Rgt     2.544367     289    1.966367
20         1     Bot     2.493079     290    1.913079
20         2     Top     2.862084     291    2.280084
20         2     Lef     2.404703     292    1.820703
20         2     Cen     1.648662     293    1.062662
20         2     Rgt     2.115465     294    1.527465
20         2     Bot     2.633930     295    2.043930
20         3     Top     3.305211     296    2.713211
20         3     Lef     2.194991     297    1.600991
20         3     Cen     1.620963     298    1.024963
20         3     Rgt     2.322678     299    1.724678
20         3     Bot     2.818449     300    2.218449
21         1     Top     2.712915     301    2.110915
21         1     Lef     2.389121     302    1.785121
21         1     Cen     1.575833     303    0.969833
21         1     Rgt     1.870484     304    1.262484
21         1     Bot     2.203262     305    1.593262
21         2     Top     2.607972     306    1.995972
21         2     Lef     2.177747     307    1.563747
21         2     Cen     1.246016     308    0.630016
21         2     Rgt     1.663096     309    1.045096
21         2     Bot     1.843187     310    1.223187
21         3     Top     2.277813     311    1.655813
21         3     Lef     1.764940     312    1.140940
21         3     Cen     1.358137     313    0.732137
21         3     Rgt     2.065713     314    1.437713
21         3     Bot     1.885897     315    1.255897
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22         1     Top     3.126184     316    2.494184
22         1     Lef     2.843505     317    2.209505
22         1     Cen     2.041466     318    1.405466
22         1     Rgt     2.816967     319    2.178967
22         1     Bot     2.635127     320    1.995127
22         2     Top     3.049442     321    2.407442
22         2     Lef     2.446904     322    1.802904
22         2     Cen     1.793442     323    1.147442
22         2     Rgt     2.676519     324    2.028519
22         2     Bot     2.187865     325    1.537865
22         3     Top     2.758416     326    2.106416
22         3     Lef     2.405744     327    1.751744
22         3     Cen     1.580387     328    0.924387
22         3     Rgt     2.508542     329    1.850542
22         3     Bot     2.574564     330    1.914564
23         1     Top     3.294288     331    2.632288
23         1     Lef     2.641762     332    1.977762
23         1     Cen     2.105774     333    1.439774
23         1     Rgt     2.655097     334    1.987097
23         1     Bot     2.622482     335    1.952482
23         2     Top     4.066631     336    3.394631
23         2     Lef     3.389733     337    2.715733
23         2     Cen     2.993666     338    2.317666
23         2     Rgt     3.613128     339    2.935128
23         2     Bot     3.213809     340    2.533809
23         3     Top     3.369665     341    2.687665
23         3     Lef     2.566891     342    1.882891
23         3     Cen     2.289899     343    1.603899
23         3     Rgt     2.517418     344    1.829418
23         3     Bot     2.862723     345    2.172723
24         1     Top     4.212664     346    3.520664
24         1     Lef     3.068342     347    2.374342
24         1     Cen     2.872188     348    2.176188
24         1     Rgt     3.040890     349    2.342890
24         1     Bot     3.376318     350    2.676318
24         2     Top     3.223384     351    2.521384
24         2     Lef     2.552726     352    1.848726
24         2     Cen     2.447344     353    1.741344
24         2     Rgt     3.011574     354    2.303574
24         2     Bot     2.711774     355    2.001774
24         3     Top     3.359505     356    2.647505
24         3     Lef     2.800742     357    2.086742
24         3     Cen     2.043396     358    1.327396
24         3     Rgt     2.929792     359    2.211792
24         3     Bot     2.935356     360    2.215356
25         1     Top     2.724871     361    2.002871

6.6.1.1. Background and Data
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25         1     Lef     2.239013     362    1.515013
25         1     Cen     2.341512     363    1.615512
25         1     Rgt     2.263617     364    1.535617
25         1     Bot     2.062748     365    1.332748
25         2     Top     3.658082     366    2.926082
25         2     Lef     3.093268     367    2.359268
25         2     Cen     2.429341     368    1.693341
25         2     Rgt     2.538365     369    1.800365
25         2     Bot     3.161795     370    2.421795
25         3     Top     3.178246     371    2.436246
25         3     Lef     2.498102     372    1.754102
25         3     Cen     2.445810     373    1.699810
25         3     Rgt     2.231248     374    1.483248
25         3     Bot     2.302298     375    1.552298
26         1     Top     3.320688     376    2.568688
26         1     Lef     2.861800     377    2.107800
26         1     Cen     2.238258     378    1.482258
26         1     Rgt     3.122050     379    2.364050
26         1     Bot     3.160876     380    2.400876
26         2     Top     3.873888     381    3.111888
26         2     Lef     3.166345     382    2.402345
26         2     Cen     2.645267     383    1.879267
26         2     Rgt     3.309867     384    2.541867
26         2     Bot     3.542882     385    2.772882
26         3     Top     2.586453     386    1.814453
26         3     Lef     2.120604     387    1.346604
26         3     Cen     2.180847     388    1.404847
26         3     Rgt     2.480888     389    1.702888
26         3     Bot     1.938037     390    1.158037
27         1     Top     4.710718     391    3.928718
27         1     Lef     4.082083     392    3.298083
27         1     Cen     3.533026     393    2.747026
27         1     Rgt     4.269929     394    3.481929
27         1     Bot     4.038166     395    3.248166
27         2     Top     4.237233     396    3.445233
27         2     Lef     4.171702     397    3.377702
27         2     Cen     3.04394      398    2.247940
27         2     Rgt     3.91296      399    3.114960
27         2     Bot     3.714229     400    2.914229
27         3     Top     5.168668     401    4.366668
27         3     Lef     4.823275     402    4.019275
27         3     Cen     3.764272     403    2.958272
27         3     Rgt     4.396897     404    3.588897
27         3     Bot     4.442094     405    3.632094
28         1     Top     3.972279     406    3.160279
28         1     Lef     3.883295     407    3.069295

6.6.1.1. Background and Data
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28         1     Cen     3.045145     408    2.229145
28         1     Rgt     3.51459      409    2.696590
28         1     Bot     3.575446     410    2.755446
28         2     Top     3.024903     411    2.202903
28         2     Lef     3.099192     412    2.275192
28         2     Cen     2.048139     413    1.222139
28         2     Rgt     2.927978     414    2.099978
28         2     Bot     3.15257      415    2.322570
28         3     Top     3.55806      416    2.726060
28         3     Lef     3.176292     417    2.342292
28         3     Cen     2.852873     418    2.016873
28         3     Rgt     3.026064     419    2.188064
28         3     Bot     3.071975     420    2.231975
29         1     Top     3.496634     421    2.654634
29         1     Lef     3.087091     422    2.243091
29         1     Cen     2.517673     423    1.671673
29         1     Rgt     2.547344     424    1.699344
29         1     Bot     2.971948     425    2.121948
29         2     Top     3.371306     426    2.519306
29         2     Lef     2.175046     427    1.321046
29         2     Cen     1.940111     428    1.084111
29         2     Rgt     2.932408     429    2.074408
29         2     Bot     2.428069     430    1.568069
29         3     Top     2.941041     431    2.079041
29         3     Lef     2.294009     432    1.430009
29         3     Cen     2.025674     433    1.159674
29         3     Rgt     2.21154      434    1.343540
29         3     Bot     2.459684     435    1.589684
30         1     Top     2.86467      436    1.992670
30         1     Lef     2.695163     437    1.821163
30         1     Cen     2.229518     438    1.353518
30         1     Rgt     1.940917     439    1.062917
30         1     Bot     2.547318     440    1.667318
30         2     Top     3.537562     441    2.655562
30         2     Lef     3.311361     442    2.427361
30         2     Cen     2.767771     443    1.881771
30         2     Rgt     3.388622     444    2.500622
30         2     Bot     3.542701     445    2.652701
30         3     Top     3.184652     446    2.292652
30         3     Lef     2.620947     447    1.726947
30         3     Cen     2.697619     448    1.801619
30         3     Rgt     2.860684     449    1.962684
30         3     Bot     2.758571     450    1.858571

6.6.1.1. Background and Data
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.1. Lithography Process

6.6.1.2.Graphical Representation of the
Data

The first step in analyzing the data is to generate some simple plots of
the response and then of the response versus the various factors.

4-Plot of
Data

Interpretation This 4-plot shows the following.

The run sequence plot (upper left) indicates that the location and
scale are not constant over time. This indicates that the three
factors do in fact have an effect of some kind.

1.  

The lag plot (upper right) indicates that there is some mild
autocorrelation in the data. This is not unexpected as the data are
grouped in a logical order of the three factors (i.e., not
randomly) and the run sequence plot indicates that there are
factor effects.

2.  

The histogram (lower left) shows that most of the data fall
between 1 and 5, with the center of the data at about 2.2.

3.  

6.6.1.2. Graphical Representation of the Data
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Due to the non-constant location and scale and autocorrelation in
the data, distributional inferences from the normal probability
plot (lower right) are not meaningful.

4.  

The run sequence plot is shown at full size to show greater detail. In
addition, a numerical summary of the data is generated.

Run
Sequence
Plot of Data

Numerical
Summary

  
  
                                 SUMMARY
  
                      NUMBER OF OBSERVATIONS =      450
  
  
 ***********************************************************************
 *        LOCATION MEASURES         *       DISPERSION MEASURES       
*
 ***********************************************************************
 *  MIDRANGE     =   0.2957607E+01  *  RANGE        =   0.4422122E+01 
*
 *  MEAN         =   0.2532284E+01  *  STAND. DEV.  =   0.6937559E+00 
*
 *  MIDMEAN      =   0.2393183E+01  *  AV. AB. DEV. =   0.5482042E+00 
*
 *  MEDIAN       =   0.2453337E+01  *  MINIMUM      =   0.7465460E+00 
*
 *               =                  *  LOWER QUART. =   0.2046285E+01 
*
 *               =                  *  LOWER HINGE  =   0.2048139E+01 
*
 *               =                  *  UPPER HINGE  =   0.2971948E+01 
*
 *               =                  *  UPPER QUART. =   0.2987150E+01 

6.6.1.2. Graphical Representation of the Data
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*
 *               =                  *  MAXIMUM      =   0.5168668E+01 
*
 ***********************************************************************
 *       RANDOMNESS MEASURES        *     DISTRIBUTIONAL MEASURES     
*
 ***********************************************************************
 *  AUTOCO COEF  =   0.6072572E+00  *  ST. 3RD MOM. =   0.4527434E+00 
*
 *               =   0.0000000E+00  *  ST. 4TH MOM. =   0.3382735E+01 
*
 *               =   0.0000000E+00  *  ST. WILK-SHA =   0.6957975E+01 
*
 *               =                  *  UNIFORM PPCC =   0.9681802E+00 
*
 *               =                  *  NORMAL  PPCC =   0.9935199E+00 
*
 *               =                  *  TUK -.5 PPCC =   0.8528156E+00 
*
 *               =                  *  CAUCHY  PPCC =   0.5245036E+00 
*
 ***********************************************************************

This summary generates a variety of statistics. In this case, we are primarily interested in
the mean and standard deviation. From this summary, we see that the mean is 2.53 and
the standard deviation is 0.69.

Plot response
agains
individual
factors

The next step is to plot the response against each individual factor. For
comparison, we generate both a scatter plot and a box plot of the data.
The scatter plot shows more detail. However, comparisons are usually
easier to see with the box plot, particularly as the number of data points
and groups become larger.

Scatter plot
of width
versus
cassette

6.6.1.2. Graphical Representation of the Data
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Box plot of
width versus
cassette

Interpretation We can make the following conclusions based on the above scatter and
box plots.

There is considerable variation in the location for the various
cassettes. The medians vary from about 1.7 to 4.

1.  

There is also some variation in the scale.2.  

There are a number of outliers.3.  

6.6.1.2. Graphical Representation of the Data
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Scatter plot
of width
versus wafer

Box plot of
width versus
wafer

Interpretation We can make the following conclusions based on the above scatter and
box plots.

The locations for the 3 wafers are relatively constant.1.  

The scales for the 3 wafers are relatively constant.2.  

There are a few outliers on the high side.3.  

It is reasonable to treat the wafer factor as homogeneous.4.  

6.6.1.2. Graphical Representation of the Data
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Scatter plot
of width
versus site

Box plot of
width versus
site

Interpretation We can make the following conclusions based on the above scatter and
box plots.

There is some variation in location based on site. The center site
in particular has a lower median.

1.  

The scales are relatively constant across sites.2.  

There are a few outliers.3.  

6.6.1.2. Graphical Representation of the Data
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Dex mean
and sd plots

We can use the dex mean plot and the dex standard deviation plot to
show the factor means and standard deviations together for better
comparison.

Dex mean
plot

Dex sd plot

6.6.1.2. Graphical Representation of the Data
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Summary The above graphs show that there are differences between the lots and
the sites.

There are various ways we can create subgroups of this dataset: each
lot could be a subgroup, each wafer could be a subgroup, or each site
measured could be a subgroup (with only one data value in each
subgroup).

Recall that for a classical Shewhart Means chart, the average within
subgroup standard deviation is used to calculate the control limits for
the Means chart. However, on the means chart you are monitoring the
subgroup mean-to-mean variation. There is no problem if you are in a
continuous processing situation - this becomes an issue if you are
operating in a batch processing environment.

We will look at various control charts based on different subgroupings
next.

6.6.1.2. Graphical Representation of the Data
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.1. Lithography Process

6.6.1.3.Subgroup Analysis

Control
charts for
subgroups

The resulting classical Shewhart control charts for each possible
subgroup are shown below.

Site as
subgroup

The first pair of control charts use the site as the subgroup. However,
since site has a subgroup size of one we use the control charts for
individual measurements. A moving average and a moving range chart
are shown.

Moving
average
control chart

6.6.1.3. Subgroup Analysis
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Moving
range control
chart

Wafer as
subgroup

The next pair of control charts use the wafer as the subgroup. In this
case, that results in a subgroup size of 5. A mean and a standard
deviation control chart are shown.

Mean control
chart

6.6.1.3. Subgroup Analysis
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SD control
chart

Note that there is no LCL here because of the small subgroup size.

Cassette as
subgroup

The next pair of control charts use the cassette as the subgroup. In this
case, that results in a subgroup size of 15. A mean and a standard
deviation control chart are shown.

Mean control
chart

6.6.1.3. Subgroup Analysis
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SD control
chart

Interpretation Which of these subgroupings of the data is correct? As you can see,
each sugrouping produces a different chart. Part of the answer lies in
the manufacturing requirements for this process. Another aspect that
can be statistically determined is the magnitude of each of the sources
of variation. In order to understand our data structure and how much
variation each of our sources contribute, we need to perform a variance
component analysis. The variance component analysis for this data set
is shown below.

Component
of variance
table

Component
Variance Component

Estimate

Cassette 0.2645
Wafer 0.0500
Site 0.1755

Equating
mean squares
with expected
values

If your software does not generate the variance components directly,
they can be computed from a standard analysis of variance output by
equating means squares (MSS) to expected mean squares (EMS).

JMP ANOVA
output

Below we show SAS JMP 4 output for this dataset that gives the SS,
MSS, and components of variance (the model entered into JMP is a
nested, random factors model). The EMS table contains the
coefficients needed to write the equations setting MSS values equal to
their EMS's. This is further described below.

6.6.1.3. Subgroup Analysis
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Variance
Components
Estimation

From the ANOVA table, labelled "Tests wrt to Random Effects" in the
JMP output, we can make the following variance component
calculations:

 4.3932  = (3*5)*Var(cassettes) + 5*Var(wafer) +
           Var(site)
 0.42535 = 5*Var(wafer) + Var(site)
 0.1755  =  Var(site)
    

Solving these equations we obtain the variance component estimates
0.2645, 0.04997 and 0.1755 for cassettes, wafers and sites, respectively.

6.6.1.3. Subgroup Analysis
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.1. Lithography Process

6.6.1.4.Shewhart Control Chart

Choosing
the right
control
charts to
monitor the
process

The largest source of variation in this data is the lot-to-lot variation. So,
using classical Shewhart methods, if we specify our subgroup to be
anything other than lot, we will be ignoring the known lot-to-lot
variation and could get out-of-control points that already have a known,
assignable cause - the data comes from different lots. However, in the
lithography processing area the measurements of most interest are the
site level measurements, not the lot means. How can we get around this
seeming contradiction?

Chart
sources of
variation
separately

One solution is to chart the important sources of variation separately.
We would then be able to monitor the variation of our process and truly
understand where the variation is coming from and if it changes. For this
dataset, this approach would require having two sets of control charts,
one for the individual site measurements and the other for the lot means.
This would double the number of charts necessary for this process (we
would have 4 charts for line width instead of 2).

Chart only
most
important
source of
variation

Another solution would be to have one chart on the largest source of
variation. This would mean we would have one set of charts that
monitor the lot-to-lot variation. From a manufacturing standpoint, this
would be unacceptable.

Use boxplot
type chart

We could create a non-standard chart that would plot all the individual
data values and group them together in a boxplot type format by lot. The
control limits could be generated to monitor the individual data values
while the lot-to-lot variation would be monitored by the patterns of the
groupings. This would take special programming and management
intervention to implement non-standard charts in most floor shop control
systems.

6.6.1.4. Shewhart Control Chart
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Alternate
form for
mean
control
chart

A commonly applied solution is the first option; have multiple charts on
this process. When creating the control limits for the lot means, care
must be taken to use the lot-to-lot variation instead of the within lot
variation. The resulting control charts are: the standard
individuals/moving range charts (as seen previously), and a control chart
on the lot means that is different from the previous lot means chart. This
new chart uses the lot-to-lot variation to calculate control limits instead
of the average within-lot standard deviation. The accompanying
standard deviation chart is the same as seen previously.

Mean
control
chart using
lot-to-lot
variation

The control limits labeled with "UCL" and "LCL" are the standard
control limits. The control limits labeled with "UCL: LL" and "LCL:
LL" are based on the lot-to-lot variation.

6.6.1.4. Shewhart Control Chart
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.1. Lithography Process

6.6.1.5.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output Window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case
study yourself. Each step may use results from previous
steps, so please be patient. Wait until the software verifies
that the current step is complete before clicking on the next
step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Invoke Dataplot and read data.

  1. Read in the data.   1. You have read 5 columns of numbers
     into Dataplot, variables CASSETTE,
     WAFER, SITE, WIDTH, and RUNSEQ.

2. Plot of the response variable

  1. Numerical summary of WIDTH.

  2. 4-Plot of WIDTH.

 1. The summary shows the mean line width
    is 2.53 and the standard deviation
    of the line width is 0.69.

 2. The 4-plot shows non-constant
    location and scale and moderate
    autocorrelation.

6.6.1.5. Work This Example Yourself
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  3. Run sequence plot of WIDTH.  3. The run sequence plot shows
    non-constant location and scale.

3. Generate scatter and box plots against
   individual factors.

  1. Scatter plot of WIDTH versus
     CASSETTE.

  2. Box plot of WIDTH versus
     CASSETTE.

  3. Scatter plot of WIDTH versus
     WAFER.

  4. Box plot of WIDTH versus
     WAFER.

  5. Scatter plot of WIDTH versus
     SITE.

  6. Box plot of WIDTH versus
     SITE.

  7. Dex mean plot of WIDTH versus
     CASSETTE, WAFER, and SITE.

  8. Dex sd plot of WIDTH versus
     CASSETTE, WAFER, and SITE.

 1. The scatter plot shows considerable
    variation in location.

 2. The box plot shows considerable
    variation in location and scale
    and the prescence of some outliers.

 3. The scatter plot shows minimal
    variation in location and scale.

 4. The box plot shows minimal
    variation in location and scale.
    It also show some outliers.

 5. The scatter plot shows some
    variation in location.

 6. The box plot shows some
    variation in location.  Scale
    seems relatively constant.
    Some outliers.

 7. The dex mean plot shows effects
    for CASSETTE and SITE, no effect
    for WAFER.

 8. The dex sd plot shows effects
    for CASSETTE and SITE, no effect
    for WAFER.
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4. Subgroup analysis.

  1. Generate a moving mean control
     chart.

  2. Generate a moving range control
     chart.

  3. Generate a mean control chart
     for WAFER.

  4. Generate a sd control chart
     for WAFER.

  5. Generate a mean control chart
     for CASSETTE.

  6. Generate a sd control chart
     for CASSETTE.

  7. Generate an analysis of
     variance.  This is not
     currently implemented in
     DATAPLOT for nested
     datasets.

  8. Generate a mean control chart
     using lot-to-lot variation.

 1. The moving mean plot shows
    a large number of out-of-
    control points.

 2. The moving range plot shows
    a large number of out-of-
    control points.

 3. The mean control chart shows
    a large number of out-of-
    control points.

 4. The sd control chart shows
    no out-of-control points.

 5. The mean control chart shows
    a large number of out-of-
    control points.

 6. The sd control chart shows
    no out-of-control points.

 7. The analysis of variance and
    components of variance
    calculations show that
    cassette to cassette
    variation is 54% of the total
    and site to site variation
    is 36% of the total.

8. The mean control chart shows one
   point that is on the boundary of
   being out of control.

6.6.1.5. Work This Example Yourself
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring

6.6.2.Aerosol Particle Size

Box-Jenkins
Modeling of
Aerosol
Particle Size

This case study illustrates the use of Box-Jenkins modeling with aerosol
particle size data.

Background and Data1.  

Model Identification2.  

Model Estimation3.  

Model Validation4.  

Work This Example Yourself5.  

6.6.2. Aerosol Particle Size
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.2. Aerosol Particle Size

6.6.2.1.Background and Data

Data Source The source of the data for this case study is Antuan Negiz who
analyzed these data while he was a post-doc in the NIST Statistical
Engineering Division from the Illinois Institute of Technology.

Data
Collection

These data were collected from an aerosol mini-spray dryer device. The
purpose of this device is to convert a slurry stream into deposited
particles in a drying chamber. The device injects the slurry at high
speed. The slurry is pulverized as it enters the drying chamber when it
comes into contact with a hot gas stream at low humidity. The liquid
contained in the pulverized slurry particles is vaporized, then
transferred to the hot gas stream leaving behind dried small-sized
particles.

The response variable is particle size, which is collected equidistant in
time. There are a variety of associated variables that may affect the
injection process itself and hence the size and quality of the deposited
particles. For this case study, we restrict our analysis to the response
variable.

Applications Such deposition process operations have many applications from
powdered laundry detergents at one extreme to ceramic molding at an
important other extreme. In ceramic molding, the distribution and
homogeneity of the particle sizes are particularly important because
after the molds are baked and cured, the properties of the final molded
ceramic product is strongly affected by the intermediate uniformity of
the base ceramic particles, which in turn is directly reflective of the
quality of the initial atomization process in the aerosol injection device.

6.6.2.1. Background and Data
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Aerosol
Particle Size
Dynamic
Modeling
and Control

The data set consists of particle sizes collected over time. The basic
distributional properties of this process are of interest in terms of
distributional shape, constancy of size, and variation in size. In
addition, this time series may be examined for autocorrelation structure
to determine a prediction model of particle size as a function of
time--such a model is frequently autoregressive in nature. Such a
high-quality prediction equation would be essential as a first step in
developing a predictor-corrective recursive feedback mechanism which
would serve as the core in developing and implementing real-time
dynamic corrective algorithms. The net effect of such algorthms is, of
course, a particle size distribution that is much less variable, much
more stable in nature, and of much higher quality. All of this results in
final ceramic mold products that are more uniform and predictable
across a wide range of important performance characteristics. 

For the purposes of this case study, we restrict the analysis to
determining an appropriate Box-Jenkins model of the particle size.

Case study
data 115.36539

114.63150
114.63150
116.09940
116.34400
116.09940
116.34400
116.83331
116.34400
116.83331
117.32260
117.07800
117.32260
117.32260
117.81200
117.56730
118.30130
117.81200
118.30130
117.81200
118.30130
118.30130
118.54590
118.30130
117.07800
116.09940
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118.30130
118.79060
118.05661
118.30130
118.54590
118.30130
118.54590
118.05661
118.30130
118.54590
118.30130
118.30130
118.30130
118.30130
118.05661
118.30130
117.81200
118.30130
117.32260
117.32260
117.56730
117.81200
117.56730
117.81200
117.81200
117.32260
116.34400
116.58870
116.83331
116.58870
116.83331
116.83331
117.32260
116.34400
116.09940
115.61010
115.61010
115.61010
115.36539
115.12080
115.61010
115.85471
115.36539
115.36539
115.36539
115.12080
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114.87611
114.87611
115.12080
114.87611
114.87611
114.63150
114.63150
114.14220
114.38680
114.14220
114.63150
114.87611
114.38680
114.87611
114.63150
114.14220
114.14220
113.89750
114.14220
113.89750
113.65289
113.65289
113.40820
113.40820
112.91890
113.40820
112.91890
113.40820
113.89750
113.40820
113.65289
113.89750
113.65289
113.65289
113.89750
113.65289
113.16360
114.14220
114.38680
113.65289
113.89750
113.89750
113.40820
113.65289
113.89750
113.65289
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113.65289
114.14220
114.38680
114.63150
115.61010
115.12080
114.63150
114.38680
113.65289
113.40820
113.40820
113.16360
113.16360
113.16360
113.16360
113.16360
112.42960
113.40820
113.40820
113.16360
113.16360
113.16360
113.16360
111.20631
112.67420
112.91890
112.67420
112.91890
113.16360
112.91890
112.67420
112.91890
112.67420
112.91890
113.16360
112.67420
112.67420
112.91890
113.16360
112.67420
112.91890
111.20631
113.40820
112.91890
112.67420
113.16360
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113.65289
113.40820
114.14220
114.87611
114.87611
116.09940
116.34400
116.58870
116.09940
116.34400
116.83331
117.07800
117.07800
116.58870
116.83331
116.58870
116.34400
116.83331
116.83331
117.07800
116.58870
116.58870
117.32260
116.83331
118.79060
116.83331
117.07800
116.58870
116.83331
116.34400
116.58870
116.34400
116.34400
116.34400
116.09940
116.09940
116.34400
115.85471
115.85471
115.85471
115.61010
115.61010
115.61010
115.36539
115.12080
115.61010
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115.85471
115.12080
115.12080
114.87611
114.87611
114.38680
114.14220
114.14220
114.38680
114.14220
114.38680
114.38680
114.38680
114.38680
114.38680
114.14220
113.89750
114.14220
113.65289
113.16360
112.91890
112.67420
112.42960
112.42960
112.42960
112.18491
112.18491
112.42960
112.18491
112.42960
111.69560
112.42960
112.42960
111.69560
111.94030
112.18491
112.18491
112.18491
111.94030
111.69560
111.94030
111.94030
112.42960
112.18491
112.18491
111.94030
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112.18491
112.18491
111.20631
111.69560
111.69560
111.69560
111.94030
111.94030
112.18491
111.69560
112.18491
111.94030
111.69560
112.18491
110.96170
111.69560
111.20631
111.20631
111.45100
110.22771
109.98310
110.22771
110.71700
110.22771
111.20631
111.45100
111.69560
112.18491
112.18491
112.18491
112.42960
112.67420
112.18491
112.42960
112.18491
112.91890
112.18491
112.42960
111.20631
112.42960
112.42960
112.42960
112.42960
113.16360
112.18491
112.91890
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112.91890
112.67420
112.42960
112.42960
112.42960
112.91890
113.16360
112.67420
113.16360
112.91890
112.42960
112.67420
112.91890
112.18491
112.91890
113.16360
112.91890
112.91890
112.91890
112.67420
112.42960
112.42960
113.16360
112.91890
112.67420
113.16360
112.91890
113.16360
112.91890
112.67420
112.91890
112.67420
112.91890
112.91890
112.91890
113.16360
112.91890
112.91890
112.18491
112.42960
112.42960
112.18491
112.91890
112.67420
112.42960
112.42960
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112.18491
112.42960
112.67420
112.42960
112.42960
112.18491
112.67420
112.42960
112.42960
112.67420
112.42960
112.42960
112.42960
112.67420
112.91890
113.40820
113.40820
113.40820
112.91890
112.67420
112.67420
112.91890
113.65289
113.89750
114.38680
114.87611
114.87611
115.12080
115.61010
115.36539
115.61010
115.85471
116.09940
116.83331
116.34400
116.58870
116.58870
116.34400
116.83331
116.83331
116.83331
117.32260
116.83331
117.32260
117.56730
117.32260
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117.07800
117.32260
117.81200
117.81200
117.81200
118.54590
118.05661
118.05661
117.56730
117.32260
117.81200
118.30130
118.05661
118.54590
118.05661
118.30130
118.05661
118.30130
118.30130
118.30130
118.05661
117.81200
117.32260
118.30130
118.30130
117.81200
117.07800
118.05661
117.81200
117.56730
117.32260
117.32260
117.81200
117.32260
117.81200
117.07800
117.32260
116.83331
117.07800
116.83331
116.83331
117.07800
115.12080
116.58870
116.58870
116.34400
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115.85471
116.34400
116.34400
115.85471
116.58870
116.34400
115.61010
115.85471
115.61010
115.85471
115.12080
115.61010
115.61010
115.85471
115.61010
115.36539
114.87611
114.87611
114.63150
114.87611
115.12080
114.63150
114.87611
115.12080
114.63150
114.38680
114.38680
114.87611
114.63150
114.63150
114.63150
114.63150
114.63150
114.14220
113.65289
113.65289
113.89750
113.65289
113.40820
113.40820
113.89750
113.89750
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113.65289
113.65289
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113.40820
113.40820
113.65289
113.89750
113.89750
114.14220
113.65289
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113.65289
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114.14220
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114.14220
113.65289
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113.40820
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112.91890
112.67420

6.6.2.1. Background and Data

http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc621.htm (13 of 14) [5/1/2006 10:35:55 AM]



112.91890
112.91890
112.91890
111.20631
112.91890
113.16360
112.42960
112.67420
113.16360
112.42960
112.67420
112.91890
112.67420
111.20631
112.42960
112.67420
112.42960
113.16360
112.91890
112.67420
112.91890
112.42960
112.67420
112.18491
112.91890
112.42960
112.18491

6.6.2.1. Background and Data

http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc621.htm (14 of 14) [5/1/2006 10:35:55 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.2. Aerosol Particle Size

6.6.2.2.Model Identification

Check for
Stationarity,
Outliers,
Seasonality

The first step in the analysis is to generate a run sequence plot of the
response variable. A run sequence plot can indicate stationarity (i.e.,
constant location and scale), the presence of outliers, and seasonal
patterns.

Non-stationarity can often be removed by differencing the data or
fitting some type of trend curve. We would then attempt to fit a
Box-Jenkins model to the differenced data or to the residuals after
fitting a trend curve.

Although Box-Jenkins models can estimate seasonal components, the
analyst needs to specify the seasonal period (for example, 12 for
monthly data). Seasonal components are common for economic time
series. They are less common for engineering and scientific data.

Run Sequence
Plot

6.6.2.2. Model Identification
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Interpretation
of the Run
Sequence Plot

We can make the following conclusions from the run sequence plot.

The data show strong and positive autocorrelation.1.  

There does not seem to be a significant trend or any obvious
seasonal pattern in the data.

2.  

The next step is to examine the sample autocorrelations using the
autocorrelation plot.

Autocorrelation
Plot

Interpretation
of the
Autocorrelation
Plot

The autocorrelation plot has a 95% confidence band, which is
constructed based on the assumption that the process is a moving
average process. The autocorrelation plot shows that the sample
autocorrelations are very strong and positive and decay very slowly.

The autocorrelation plot indicates that the process is non-stationary
and suggests an ARIMA model. The next step is to difference the
data.

6.6.2.2. Model Identification
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Run Sequence
Plot of
Differenced
Data

Interpretation
of the Run
Sequence Plot

The run sequence plot of the differenced data shows that the mean of
the differenced data is around zero, with the differenced data less
autocorrelated than the original data.

The next step is to examine the sample autocorrelations of the
differenced data.

Autocorrelation
Plot of the
Differenced
Data

6.6.2.2. Model Identification
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Interpretation
of the
Autocorrelation
Plot of the
Differenced
Data

The autocorrelation plot of the differenced data with a 95%
confidence band shows that only the autocorrelation at lag 1 is
significant. The autocorrelation plot together with run sequence of
the differenced data suggest that the differenced data are stationary.
Based on the autocorrelation plot, an MA(1) model is suggested for
the differenced data.

To examine other possible models, we produce the partial
autocorrelation plot of the differenced data.

Partial
Autocorrelation
Plot of the
Differenced
Data

Interpretation
of the Partial
Autocorrelation
Plot of the
Differenced
Data

The partial autocorrelation plot of the differenced data with 95%
confidence bands shows that only the partial autocorrelations of the
first and second lag are significant. This suggests an AR(2) model for
the differenced data.

6.6.2.2. Model Identification
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Akaike
Information
Criterion (AIC
and AICC)

Information-based criteria, such as the AIC or AICC (see Brockwell
and Davis (2002), pp. 171-174), can be used to automate the choice
of an appropriate model. When available, the AIC or AICC can be a
useful tool for model identification.

Many software programs for time series analysis will generate the
AIC or AICC for a broad range of models. At this time, Dataplot
does not support this feature. However, based on the plots in this
section, we will examine the ARIMA(2,1,0) and ARIMA(0,1,1)
models in detail.

Note that whatever method is used for model identification, model
diagnostics should be performed on the selected model.

6.6.2.2. Model Identification
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.2. Aerosol Particle Size

6.6.2.3.Model Estimation

Dataplot
ARMA
Output
for the
AR(2)
Model

Based on the differenced data, Dataplot generated the following estimation output for the
AR(2) model:
  
  
 #############################################################
 #  NONLINEAR LEAST SQUARES ESTIMATION FOR THE PARAMETERS OF #
 #  AN ARIMA MODEL USING BACKFORECASTS                       #
 #############################################################
  
  SUMMARY OF INITIAL CONDITIONS
  ------------------------------
  
     MODEL SPECIFICATION
  
        FACTOR          (P     D     Q)    S
             1           2     1     0     1
  
  
  
 DEFAULT SCALING USED FOR ALL PARAMETERS.
  
                                                           ##STEP SIZE
FOR
                                          ######PARAMETER 
##APPROXIMATING
  #################PARAMETER DESCRIPTION  STARTING VALUES 
#####DERIVATIVE
  INDEX  #########TYPE  ##ORDER  ##FIXED  ##########(PAR) 
##########(STP)
  
      1  AR (FACTOR 1)        1       NO   0.10000000E+00  
0.77167549E-06
      2  AR (FACTOR 1)        2       NO   0.10000000E+00  
0.77168311E-06
      3             MU      ###       NO   0.00000000E+00  
0.80630875E-06
  
  NUMBER OF OBSERVATIONS                  (N)   559
  MAXIMUM NUMBER OF ITERATIONS ALLOWED                      (MIT)  
500
  MAXIMUM NUMBER OF MODEL SUBROUTINE CALLS ALLOWED                
1000
  
  CONVERGENCE CRITERION FOR TEST BASED ON THE
     FORECASTED RELATIVE CHANGE IN RESIDUAL SUM OF SQUARES (STOPSS) 

6.6.2.3. Model Estimation

http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc623.htm (1 of 5) [5/1/2006 10:35:56 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


0.1000E-09
     MAXIMUM SCALED RELATIVE CHANGE IN THE PARAMETERS       (STOPP) 
0.1489E-07
  
  MAXIMUM CHANGE ALLOWED IN THE PARAMETERS AT FIRST ITERATION (DELTA)  
100.0
  RESIDUAL SUM OF SQUARES FOR INPUT PARAMETER VALUES                   
138.7
       (BACKFORECASTS INCLUDED)
  RESIDUAL STANDARD DEVIATION FOR INPUT PARAMETER VALUES    (RSD)     
0.4999
  BASED ON DEGREES OF FREEDOM       559 -   1 -   3 =  555
  
  NONDEFAULT VALUES....
  
  AFCTOL.... V(31) =  0.2225074-307
  
  
  ##### RESIDUAL SUM OF SQUARES CONVERGENCE #####
  
  
  
  
  
  ESTIMATES FROM LEAST SQUARES FIT (* FOR FIXED PARAMETER)
  ########################################################
  
                PARAMETER     STD DEV OF ###PAR/  
##################APPROXIMATE
                ESTIMATES  ####PARAMETER ####(SD    95 PERCENT
CONFIDENCE LIMITS
  TYPE ORD    ###(OF PAR)  ####ESTIMATES ##(PAR)    #######LOWER    
######UPPER
  
  FACTOR 1
    AR  1 -0.40604575E+00 0.41885445E-01   -9.69 -0.47505616E+00
-0.33703534E+00
    AR  2 -0.16414479E+00 0.41836922E-01   -3.92 -0.23307525E+00
-0.95214321E-01
    MU ## -0.52091780E-02 0.11972592E-01   -0.44 -0.24935207E-01 
0.14516851E-01
  
  NUMBER OF OBSERVATIONS                  (N)   559
  RESIDUAL SUM OF SQUARES                  109.2642
      (BACKFORECASTS INCLUDED)
  RESIDUAL STANDARD DEVIATION             0.4437031
  BASED ON DEGREES OF FREEDOM  559 -   1 -   3 =  555
  APPROXIMATE CONDITION NUMBER             3.498456

6.6.2.3. Model Estimation
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Interpretation
of Output

The first section of the output identifies the model and shows the starting values for the fit.
This output is primarily useful for verifying that the model and starting values were
correctly entered.

The section labeled "ESTIMATES FROM LEAST SQUARES FIT" gives the parameter
estimates, standard errors from the estimates, and 95% confidence limits for the
parameters. A confidence interval that contains zero indicates that the parameter is not
statistically significant and could probably be dropped from the model.

The model for the differenced data, Yt, is an AR(2) model:

with 0.44.

It is often more convenient to express the model in terms of the original data, Xt, rather
than the differenced data. From the definition of the difference, Yt = Xt - Xt-1, we can make
the appropriate substitutions into the above equation:

to arrive at the model in terms of the original series:

Dataplot
ARMA
Output for
the MA(1)
Model

Alternatively, based on the differenced data Dataplot generated the following estimation
output for an MA(1) model:

 #############################################################
 #  NONLINEAR LEAST SQUARES ESTIMATION FOR THE PARAMETERS OF #
 #  AN ARIMA MODEL USING BACKFORECASTS                       #
 #############################################################
  
  SUMMARY OF INITIAL CONDITIONS
  ------------------------------
  
     MODEL SPECIFICATION
  
        FACTOR          (P     D     Q)    S
             1           0     1     1     1
  
  
  
 DEFAULT SCALING USED FOR ALL PARAMETERS.
  
                                                           ##STEP SIZE
FOR
                                          ######PARAMETER 
##APPROXIMATING
  #################PARAMETER DESCRIPTION  STARTING VALUES 
#####DERIVATIVE
  INDEX  #########TYPE  ##ORDER  ##FIXED  ##########(PAR) 

6.6.2.3. Model Estimation
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##########(STP)
  
      1             MU      ###       NO   0.00000000E+00  
0.20630657E-05
      2  MA (FACTOR 1)        1       NO   0.10000000E+00  
0.34498203E-07
  
  NUMBER OF OBSERVATIONS                  (N)   559
  MAXIMUM NUMBER OF ITERATIONS ALLOWED                      (MIT)  
500
  MAXIMUM NUMBER OF MODEL SUBROUTINE CALLS ALLOWED                
1000
  
  CONVERGENCE CRITERION FOR TEST BASED ON THE
     FORECASTED RELATIVE CHANGE IN RESIDUAL SUM OF SQUARES (STOPSS) 
0.1000E-09
     MAXIMUM SCALED RELATIVE CHANGE IN THE PARAMETERS       (STOPP) 
0.1489E-07
  
  MAXIMUM CHANGE ALLOWED IN THE PARAMETERS AT FIRST ITERATION (DELTA)  
100.0
  RESIDUAL SUM OF SQUARES FOR INPUT PARAMETER VALUES                   
120.0
       (BACKFORECASTS INCLUDED)
  RESIDUAL STANDARD DEVIATION FOR INPUT PARAMETER VALUES    (RSD)     
0.4645
  BASED ON DEGREES OF FREEDOM       559 -   1 -   2 =  556
  
  NONDEFAULT VALUES....
  
  AFCTOL.... V(31) =  0.2225074-307
  
  
  
  ##### RESIDUAL SUM OF SQUARES CONVERGENCE #####
  
  
  
  
  
  ESTIMATES FROM LEAST SQUARES FIT (* FOR FIXED PARAMETER)
  ########################################################
  
                PARAMETER     STD DEV OF ###PAR/  
##################APPROXIMATE
                ESTIMATES  ####PARAMETER ####(SD    95 PERCENT
CONFIDENCE LIMITS
  TYPE ORD    ###(OF PAR)  ####ESTIMATES ##(PAR)    #######LOWER    
######UPPER
  
  FACTOR 1
    MU ## -0.51160754E-02 0.11431230E-01   -0.45 -0.23950101E-01 
0.13717950E-01
    MA  1  0.39275694E+00 0.39028474E-01   10.06  0.32845386E+00 
0.45706001E+00
  
  NUMBER OF OBSERVATIONS                  (N)   559
  RESIDUAL SUM OF SQUARES                  109.6880
      (BACKFORECASTS INCLUDED)
  RESIDUAL STANDARD DEVIATION             0.4441628
  BASED ON DEGREES OF FREEDOM  559 -   1 -   2 =  556
  APPROXIMATE CONDITION NUMBER             3.414207

6.6.2.3. Model Estimation
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Interpretation
of the Output

The model for the differenced data, Yt, is an ARIMA(0,1,1) model:

with 0.44.

It is often more convenient to express the model in terms of the
original data, Xt, rather than the differenced data. Making the
appropriate substitutions into the above equation:

we arrive at the model in terms of the original series:

6.6.2.3. Model Estimation
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.2. Aerosol Particle Size

6.6.2.4.Model Validation

Residuals After fitting the model, we should check whether the model is appropriate.

As with standard non-linear least squares fitting, the primary tool for model
diagnostic checking is residual analysis.

4-Plot of
Residuals from
ARIMA(2,1,0)
Model

The 4-plot is a convenient graphical technique for model validation in that it
tests the assumptions for the residuals on a single graph.

6.6.2.4. Model Validation
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Interpretation
of the 4-Plot

We can make the following conclusions based on the above 4-plot.

The run sequence plot shows that the residuals do not violate the
assumption of constant location and scale. It also shows that most of
the residuals are in the range (-1, 1).

1.  

The lag plot indicates that the residuals are not autocorrelated at lag 1.2.  

The histogram and normal probability plot indicate that the normal
distribution provides an adequate fit for this model.

3.  

Autocorrelation
Plot of
Residuals from
ARIMA(2,1,0)
Model

In addition, the autocorrelation plot of the residuals from the ARIMA(2,1,0)
model was generated.

Interpretation
of the
Autocorrelation
Plot

The autocorrelation plot shows that for the first 25 lags, all sample
autocorrelations expect those at lags 7 and 18 fall inside the 95% confidence
bounds indicating the residuals appear to be random.

6.6.2.4. Model Validation
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Ljung-Box Test
for
Randomness
for the
ARIMA(2,1,0)
Model

Instead of checking the autocorrelation of the residuals, portmanteau tests
such as the test proposed by Ljung and Box (1978) can be used. In this
example, the test of Ljung and Box indicates that the residuals are random at
the 95% confidence level and thus the model is appropriate. Dataplot
generated the following output for the Ljung-Box test.

               LJUNG-BOX TEST FOR RANDOMNESS
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS      =      559
       LAG TESTED                  =       24
       LAG 1 AUTOCORRELATION       =  -0.1012441E-02
       LAG 2 AUTOCORRELATION       =   0.6160716E-02
       LAG 3 AUTOCORRELATION       =   0.5182213E-02
  
    LJUNG-BOX TEST STATISTIC       =    31.91066
  
 2. PERCENT POINTS OF THE REFERENCE CHI-SQUARE DISTRIBUTION
    (REJECT HYPOTHESIS OF RANDOMNESS IF TEST STATISTIC VALUE
    IS GREATER THAN PERCENT POINT VALUE)
    FOR LJUNG-BOX TEST STATISTIC
       0          % POINT    =          0.
       50         % POINT    =    23.33673
       75         % POINT    =    28.24115
       90         % POINT    =    33.19624
       95         % POINT    =    36.41503
       99         % POINT    =    42.97982
  
  
 3. CONCLUSION (AT THE 5% LEVEL):
    THE DATA ARE RANDOM.

4-Plot of
Residuals from
ARIMA(0,1,1)
Model

The 4-plot is a convenient graphical technique for model validation in that it
tests the assumptions for the residuals on a single graph.

6.6.2.4. Model Validation
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Interpretation
of the 4-Plot
from the
ARIMA(0,1,1)
Model

We can make the following conclusions based on the above 4-plot.

The run sequence plot shows that the residuals do not violate the
assumption of constant location and scale. It also shows that most of
the residuals are in the range (-1, 1).

1.  

The lag plot indicates that the residuals are not autocorrelated at lag 1.2.  

The histogram and normal probability plot indicate that the normal
distribution provides an adequate fit for this model.

3.  

This 4-plot of the residuals indicates that the fitted model is an adequate
model for these data.

Autocorrelation
Plot of
Residuals from
ARIMA(0,1,1)
Model

The autocorrelation plot of the residuals from ARIMA(0,1,1) was generated.

6.6.2.4. Model Validation
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Interpretation
of the
Autocorrelation
Plot

Similar to the result for the ARIMA(2,1,0) model, it shows that for the first
25 lags, all sample autocorrelations expect those at lags 7 and 18 fall inside
the 95% confidence bounds indicating the residuals appear to be random.

Ljung-Box Test
for
Randomness of
the Residuals
for the
ARIMA(0,1,1)
Model

The Ljung and Box test is also applied to the residuals from the
ARIMA(0,1,1) model. The test indicates that the residuals are random at the
99% confidence level, but not at the 95% level.

Dataplot generated the following output for the Ljung-Box test.

               LJUNG-BOX TEST FOR RANDOMNESS
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS      =      559
       LAG TESTED                  =       24
       LAG 1 AUTOCORRELATION       =  -0.1280136E-01
       LAG 2 AUTOCORRELATION       =  -0.3764571E-02
       LAG 3 AUTOCORRELATION       =   0.7015200E-01
  
    LJUNG-BOX TEST STATISTIC       =    38.76418
  
 2. PERCENT POINTS OF THE REFERENCE CHI-SQUARE DISTRIBUTION
    (REJECT HYPOTHESIS OF RANDOMNESS IF TEST STATISTIC VALUE
    IS GREATER THAN PERCENT POINT VALUE)
    FOR LJUNG-BOX TEST STATISTIC
       0          % POINT    =          0.
       50         % POINT    =    23.33673
       75         % POINT    =    28.24115
       90         % POINT    =    33.19624
       95         % POINT    =    36.41503

6.6.2.4. Model Validation
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       99         % POINT    =    42.97982
  
  
 3. CONCLUSION (AT THE 5% LEVEL):
    THE DATA ARE NOT RANDOM.

Summary Overall, the ARIMA(0,1,1) is an adequate model. However, the
ARIMA(2,1,0) is a little better than the ARIMA(0,1,1).

6.6.2.4. Model Validation
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.2. Aerosol Particle Size

6.6.2.5.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output Window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this
case study yourself. Each step may use results from
previous steps, so please be patient. Wait until the
software verifies that the current step is complete before
clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Invoke Dataplot and read data.

   1. Read in the data.   1. You have read one column of numbers
     into Dataplot, variable Y.

2. Model identification plots

  1. Run sequence plot of Y.

  2. Autocorrelation plot of Y.

  3. Run sequence plot of the
     differenced data of Y.

 1. The run sequence plot shows that the
    data show strong and positive
    autocorrelation.

 2. The autocorrelation plot indicates
    significant autocorrelation 
    and that the data are not
    stationary.

 3. The run sequence plot shows that the

6.6.2.5. Work This Example Yourself
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  4. Autocorrelation plot of the
     differenced data of Y.

  5. Partial autocorrelation plot
     of the differenced data of Y.

    differenced data appear to be stationary
    and do not exhibit seasonality.

 4. The autocorrelation plot of the
    differenced data suggests an
    ARIMA(0,1,1) model may be
    appropriate.

 5. The partial autocorrelation plot
    suggests an ARIMA(2,1,0) model may
    be appropriate.

3. Estimate the model.

  1. ARIMA(2,1,0) fit of Y.

  2. ARIMA(0,1,1) fit of Y.

 1. The ARMA fit generates parameter
    estimates for the ARIMA(2,1,0)
    model.

 2. The ARMA fit generates parameter
    estimates for the ARIMA(0,1,1)
    model.

4. Model validation.

  1. Generate a 4-plot of the
     residuals from the ARIMA(2,1,0)
     model.

  2. Generate an autocorrelation plot
     of the residuals from the
     ARIMA(2,1,0) model.

  3. Perform a Ljung-Box test of
     randomness for the residuals from
     the ARIMA(2,1,0) model.

  4. Generate a 4-plot of the
     residuals from the ARIMA(0,1,1)
     model.

 1. The 4-plot shows that the
    assumptions for the residuals
    are satisfied.

 2. The autocorrelation plot of the
    residuals indicates that the
    residuals are random.

 3. The Ljung-Box test indicates
    that the residuals are
    random.

 4. The 4-plot shows that the
    assumptions for the residuals
    are satisfied.
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  5. Generate an autocorrelation plot
     of the residuals from the
     ARIMA(0,1,1) model.

  6. Perform a Ljung-Box test of
     randomness for the residuals from
     the ARIMA(0,1,1) model.

 5. The autocorrelation plot of the
    residuals indicates that the
    residuals are random.

 6. The Ljung-Box test indicates
    that the residuals are not
    random at the 95% level, but
    are random at the 99% level.

6.6.2.5. Work This Example Yourself
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7.Product and Process
Comparisons

This chapter presents the background and specific analysis techniques needed to
compare the performance of one or more processes against known standards or one
another.

1. Introduction

Scope1.  

Assumptions2.  

Statistical Tests3.  

Confidence Intervals4.  

Equivalence of Tests and Intervals5.  

Outliers6.  

Trends7.  

2. Comparisons: One Process

Comparing to a Distribution1.  

Comparing to a Nominal
Mean

2.  

Comparing to Nominal
Variability

3.  

Fraction Defective4.  

Defect Density5.  

Location of Population
Values

6.  

3. Comparisons: Two Processes

Means: Normal Data1.  

Variability: Normal Data2.  

Fraction Defective3.  

Failure Rates4.  

Means: General Case5.  

4. Comparisons: Three +
Processes

Comparing Populations1.  

Comparing Variances2.  

Comparing Means3.  

Variance Components4.  

Comparing Categorical
Datasets

5.  

Comparing Fraction
Defectives

6.  

Multiple Comparisons7.  
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7. Product and Process Comparisons

7.1. Introduction

Goals of this
section

The primary goal of this section is to lay a foundation for understanding
statistical tests and confidence intervals that are useful for making
decisions about processes and comparisons among processes. The
materials covered are: 

Scope●   

Assumptions●   

Introduction to hypothesis testing●   

Introduction to confidence intervals●   

Relationship between hypothesis testing and confidence intervals●   

Outlier detection●   

Detection of sequential trends in data or processes●   

Hypothesis
testing and
confidence
intervals

This chapter explores the types of comparisons which can be made from
data and explains hypothesis testing, confidence intervals, and the
interpretation of each.

7.1. Introduction
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7. Product and Process Comparisons
7.1. Introduction

7.1.1.What is the scope?

Data from
one process

This section deals with introductory material related to comparisons that
can be made on data from one process for cases where the process
standard deviation may be known or unknown.

7.1.1. What is the scope?
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7. Product and Process Comparisons
7.1. Introduction

7.1.2.What assumptions are typically
made?

Validity of tests The validity of the tests described in this chapter depend on the
following assumptions:

The data come from a single process that can be represented
by a single statistical distribution.

1.  

The distribution is a normal distribution.2.  

The data are uncorrelated over time.3.  

An easy method for checking the assumption of a single normal
distribution is to construct a histogram of the data.

Clarification The tests described in this chapter depend on the assumption of
normality, and the data should be examined for departures from
normality before the tests are applied. However, the tests are robust
to small departures from normality; i.e., they work fairly well as
long as the data are bell-shaped and the tails are not heavy.
Quantitative methods for checking the normality assumption are
discussed in the next section.

Another graphical method for testing the normality assumption is
the normal probability plot.

7.1.2. What assumptions are typically made?
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A graphical method for testing for correlation among
measurements is a time-lag plot. Correlation may not be a problem
if measurements are properly structured over time. Correlation
problems often occur when measurements are made close together
in time.

7.1.2. What assumptions are typically made?
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7. Product and Process Comparisons
7.1. Introduction

7.1.3.What are statistical tests?

What is
meant by a
statistical
test?

A statistical test provides a mechanism for making quantitative
decisions about a process or processes. The intent is to determine
whether there is enough evidence to "reject" a conjecture or hypothesis
about the process. The conjecture is called the null hypothesis. Not
rejecting may be a good result if we want to continue to act as if we
"believe" the null hypothesis is true. Or it may be a disappointing result,
possibly indicating we may not yet have enough data to "prove"
something by rejecting the null hypothesis.

For more discussion about the meaning of a statistical hypothesis test,
see Chapter 1.

Concept of
null
hypothesis

A classic use of a statistical test occurs in process control studies. For
example, suppose that we are interested in ensuring that photomasks in a
production process have mean linewidths of 500 micrometers. The null
hypothesis, in this case, is that the mean linewidth is 500 micrometers.
Implicit in this statement is the need to flag photomasks which have
mean linewidths that are either much greater or much less than 500
micrometers. This translates into the alternative hypothesis that the
mean linewidths are not equal to 500 micrometers. This is a two-sided
alternative because it guards against alternatives in opposite directions;
namely, that the linewidths are too small or too large.

The testing procedure works this way. Linewidths at random positions
on the photomask are measured using a scanning electron microscope. A
test statistic is computed from the data and tested against pre-determined
upper and lower critical values. If the test statistic is greater than the
upper critical value or less than the lower critical value, the null
hypothesis is rejected because there is evidence that the mean linewidth
is not 500 micrometers.

7.1.3. What are statistical tests?
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One-sided
tests of
hypothesis

Null and alternative hypotheses can also be one-sided. For example, to
ensure that a lot of light bulbs has a mean lifetime of at least 500 hours,
a testing program is implemented. The null hypothesis, in this case, is
that the mean lifetime is greater than or equal to 500 hours. The
complement or alternative hypothesis that is being guarded against is
that the mean lifetime is less than 500 hours. The test statistic is
compared with a lower critical value, and if it is less than this limit, the
null hypothesis is rejected.

Thus, a statistical test requires a pair of hypotheses; namely,

H0: a null hypothesis●   

Ha: an alternative hypothesis.●   

Significance
levels

The null hypothesis is a statement about a belief. We may doubt that the
null hypothesis is true, which might be why we are "testing" it. The
alternative hypothesis might, in fact, be what we believe to be true. The
test procedure is constructed so that the risk of rejecting the null
hypothesis, when it is in fact true, is small. This risk, , is often
referred to as the significance level of the test. By having a test with a
small value of , we feel that we have actually "proved" something
when we reject the null hypothesis.

Errors of
the second
kind

The risk of failing to reject the null hypothesis when it is in fact false is
not chosen by the user but is determined, as one might expect, by the
magnitude of the real discrepancy. This risk, , is usually referred to as
the error of the second kind. Large discrepancies between reality and the
null hypothesis are easier to detect and lead to small errors of the second
kind; while small discrepancies are more difficult to detect and lead to
large errors of the second kind. Also the risk  increases as the risk 
decreases. The risks of errors of the second kind are usually summarized
by an operating characteristic curve (OC) for the test. OC curves for
several types of tests are shown in (Natrella, 1962).

Guidance in
this chapter

This chapter gives methods for constructing test statistics and their
corresponding critical values for both one-sided and two-sided tests for
the specific situations outlined under the scope. It also provides
guidance on the sample sizes required for these tests.

Further guidance on statistical hypothesis testing, significance levels and
critical regions, is given in Chapter 1.

7.1.3. What are statistical tests?
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7. Product and Process Comparisons
7.1. Introduction
7.1.3. What are statistical tests?

7.1.3.1.Critical values and p values

Determination
of critical
values

Critical values for a test of hypothesis depend upon a test statistic,
which is specific to the type of test, and the significance level, ,
which defines the sensitivity of the test. A value of  = 0.05 implies
that the null hypothesis is rejected 5% of the time when it is in fact
true. The choice of  is somewhat arbitrary, although in practice
values of 0.1, 0.05, and 0.01 are common. Critical values are
essentially cut-off values that define regions where the test statistic is
unlikely to lie; for example, a region where the critical value is
exceeded with probability  if the null hypothesis is true. The null
hypothesis is rejected if the test statistic lies within this region which
is often referred to as the rejection region(s). Critical values for
specific tests of hypothesis are tabled in chapter 1.

Information in
this chapter

This chapter gives formulas for the test statistics and points to the
appropriate tables of critical values for tests of hypothesis regarding
means, standard deviations, and proportion defectives.

P values Another quantitative measure for reporting the result of a test of
hypothesis is the p-value. The p-value is the probability of the test
statistic being at least as extreme as the one observed given that the
null hypothesis is true. A small p-value is an indication that the null
hypothesis is false.

Good practice It is good practice to decide in advance of the test how small a p-value
is required to reject the test. This is exactly analagous to choosing a
significance level,  for test. For example, we decide either to reject
the null hypothesis if the test statistic exceeds the critical value (for 
= 0.05) or analagously to reject the null hypothesis if the p-value is
smaller than 0.05. It is important to understand the relationship
between the two concepts because some statistical software packages
report p-values rather than critical values.

7.1.3.1. Critical values and p values
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7. Product and Process Comparisons
7.1. Introduction

7.1.4. What are confidence intervals?

How do we
form a
confidence
interval?

The purpose of taking a random sample from a lot or population and
computing a statistic, such as the mean from the data, is to approximate
the mean of the population. How well the sample statistic estimates the
underlying population value is always an issue. A confidence interval
addresses this issue because it provides a range of values which is likely
to contain the population parameter of interest.

Confidence
levels

Confidence intervals are constructed at a confidence level, such as 95%,
selected by the user. What does this mean? It means that if the same
population is sampled on numerous occasions and interval estimates are
made on each occasion, the resulting intervals would bracket the true
population parameter in approximately 95% of the cases. A confidence
stated at a  level can be thought of as the inverse of a significance
level, .

One and
two-sided
confidence
intervals

In the same way that statistical tests can be one or two-sided, confidence
intervals can be one or two-sided. A two-sided confidence interval
brackets the population parameter from above and below. A one-sided
confidence interval brackets the population parameter either from above
or below and furnishes an upper or lower bound to its magnitude.

Example of
a two-sided
confidence
interval

For example, a 100( )% confidence interval for the mean of a
normal population is;

where  is the sample mean,  is the upper  critical value of the
standard normal distribution which is found in the table of the standard
normal distribution,  is the known population standard deviation, and
N is the sample size.

7.1.4. What are confidence intervals?
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Guidance in
this chapter

This chapter provides methods for estimating the population parameters
and confidence intervals for the situations described under the scope.

Problem
with
unknown
standard
deviation

In the normal course of events, population standard deviations are not
known, and must be estimated from the data. Confidence intervals,
given the same confidence level, are by necessity wider if the standard
deviation is estimated from limited data because of the uncertainty in
this estimate. Procedures for creating confidence intervals in this
situation are described fully in this chapter.

More information on confidence intervals can also be found in Chapter
1.

7.1.4. What are confidence intervals?
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7. Product and Process Comparisons
7.1. Introduction

7.1.5. What is the relationship between a
test and a confidence interval?

There is a
correspondence
between
hypothesis
testing and
confidence
intervals

In general, for every test of hypothesis there is an equivalent
statement about whether the hypothesized parameter value is
included in a confidence interval. For example, consider the previous
example of linewidths where photomasks are tested to ensure that
their linewidths have a mean of 500 micrometers. The null and
alternative hypotheses are:

H0: mean linewidth = 500 micrometers

Ha: mean linewidth  500 micrometers

Hypothesis test
for the mean For the test, the sample mean, , is calculated from N linewidths

chosen at random positions on each photomask. For the purpose of
the test, it is assumed that the standard deviation, , is known from a
long history of this process. A test statistic is calculated from these
sample statistics, and the null hypothesis is rejected if:

where  is a tabled value from the normal distribution.

Equivalent
confidence
interval

With some algebra, it can be seen that the null hypothesis is rejected
if and only if the value 500 micrometers is not in the confidence
interval

7.1.5. What is the relationship between a test and a confidence interval?
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Equivalent
confidence
interval

In fact, all values bracketed by this interval would be accepted as null
values for a given set of test data.

7.1.5. What is the relationship between a test and a confidence interval?
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7. Product and Process Comparisons
7.1. Introduction

7.1.6.What are outliers in the data?

Definition of
outliers

An outlier is an observation that lies an abnormal distance from other
values in a random sample from a population. In a sense, this definition
leaves it up to the analyst (or a consensus process) to decide what will
be considered abnormal. Before abnormal observations can be singled
out, it is necessary to characterize normal observations.

Ways to
describe
data

Two activities are essential for characterizing a set of data:

Examination of the overall shape of the graphed data for
important features, including symmetry and departures from
assumptions. The chapter on Exploratory Data Analysis (EDA)
discusses assumptions and summarization of data in detail.

1.  

Examination of the data for unusual observations that are far
removed from the mass of data. These points are often referred to
as outliers. Two graphical techniques for identifying outliers,
scatter plots and box plots, along with an analytic procedure for
detecting outliers when the distribution is normal (Grubbs' Test),
are also discussed in detail in the EDA chapter.

2.  

Box plot
construction

The box plot is a useful graphical display for describing the behavior of
the data in the middle as well as at the ends of the distributions. The box
plot uses the median and the lower and upper quartiles (defined as the
25th and 75th percentiles). If the lower quartile is Q1 and the upper
quartile is Q2, then the difference (Q2 - Q1) is called the interquartile
range or IQ.

7.1.6. What are outliers in the data?
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Box plots
with fences

A box plot is constructed by drawing a box between the upper and lower
quartiles with a solid line drawn across the box to locate the median.
The following quantities (called fences) are needed for identifying
extreme values in the tails of the distribution:

lower inner fence: Q1 - 1.5*IQ1.  

upper inner fence: Q2 + 1.5*IQ2.  

lower outer fence: Q1 - 3*IQ3.  

upper outer fence: Q2 + 3*IQ4.  

Outlier
detection
criteria

A point beyond an inner fence on either side is considered a mild
outlier. A point beyond an outer fence is considered an extreme
outlier.

Example of
an outlier
box plot

The data set of N = 90 ordered observations as shown below is
examined for outliers:

30, 171, 184, 201, 212, 250, 265, 270, 272, 289, 305, 306, 322, 322,
336, 346, 351, 370, 390, 404, 409, 411, 436, 437, 439, 441, 444, 448,
451, 453, 470, 480, 482, 487, 494, 495, 499, 503, 514, 521, 522, 527,
548, 550, 559, 560, 570, 572, 574, 578, 585, 592, 592, 607, 616, 618,
621, 629, 637, 638, 640, 656, 668, 707, 709, 719, 737, 739, 752, 758,
766, 792, 792, 794, 802, 818, 830, 832, 843, 858, 860, 869, 918, 925,
953, 991, 1000, 1005, 1068, 1441

The computatons are as follows:

Median = (n+1)/2 largest data point = the average of the 45th and
46th ordered points = (559 + 560)/2 = 559.5

●   

Lower quartile = .25(N+1)= .25*91= 22.75th ordered point = 411
+ .75(436-411) = 429.75

●   

Upper quartile = .75(N+1)=0.75*91= = 68.25th ordered point =
739 +.25(752-739) = 742.25

●   

Interquartile range = 742.25 - 429.75 = 312.5●   

Lower inner fence = 429.75 - 1.5 (313.5) = -40.5●   

Upper inner fence = 742.25 + 1.5 (313.5) = 1212.50●   

Lower outer fence = 429.75 - 3.0 (313.5) = -510.75●   

Upper outer fence = 742.25 + 3.0 (313.5) = 1682.75●   

From an examination of the fence points and the data, one point (1441)
exceeds the upper inner fence and stands out as a mild outlier; there are
no extreme outliers.

7.1.6. What are outliers in the data?
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JMP
software
output
showing the
outlier box
plot

Output from a JMP command is shown below. The plot shows a
histogram of the data on the left and a box plot with the outlier
identified as a point on the right. Clicking on the outlier while in JMP
identifies the data point as 1441.

Outliers
may contain
important
information

Outliers should be investigated carefully. Often they contain valuable
information about the process under investigation or the data gathering
and recording process. Before considering the possible elimination of
these points from the data, one should try to understand why they
appeared and whether it is likely similar values will continue to appear.
Of course, outliers are often bad data points.

7.1.6. What are outliers in the data?
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7. Product and Process Comparisons
7.1. Introduction

7.1.7.What are trends in sequential
process or product data?

Detecting
trends by
plotting the
data points
to see if a
line with an
obviously
non-zero
slope fits the
points

Detecting trends is equivalent to comparing the process values to what
we would expect a series of numbers to look like if there were no trends.
If we see a significant departure from a model where the next
observation is equally likely to go up or down, then we would reject the
hypothesis of "no trend".

A common way of investigating for trends is to fit a straight line to the
data and observe the line's direction (or slope). If the line looks
horizontal, then there is no evidence of a trend; otherwise there is.
Formally, this is done by testing whether the slope of the line is
significantly different from zero. The methodology for this is covered in
Chapter 4.

Other trend
tests

A non-parametric approach for detecting significant trends known as the
Reverse Arrangement Test is described in Chapter 8.

7.1.7. What are trends in sequential process or product data?
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7. Product and Process Comparisons

7.2.Comparisons based on data from one
process

Questions
answered in this
section

For a single process, the current state of the process can be compared
with a nominal or hypothesized state. This section outlines
techniques for answering the following questions from data gathered
from a single process:

Do the observations come from a particular distribution?

Chi-Square Goodness-of-Fit test for a continuous or
discrete distribution

1.  

Kolmogorov- Smirnov test for a continuous distribution2.  

Anderson-Darling and Shapiro-Wilk tests for a
continuous distribution

3.  

1.  

Are the data consistent with the assumed process mean?

Confidence interval approach1.  

Sample sizes required2.  

2.  

Are the data consistent with a nominal standard deviation?

Confidence interval approach1.  

Sample sizes required2.  

3.  

Does the proportion of defectives meet requirements?

Confidence intervals1.  

Sample sizes required2.  

4.  

Does the defect density meet requirements?5.  

What intervals contain a fixed percentage of the data?

Approximate intervals that contain most of the
population values

1.  

Percentiles2.  

Tolerance intervals3.  

Tolerance intervals using EXCEL4.  

6.  

7.2. Comparisons based on data from one process
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Tolerance intervals based on the smallest and largest
observations

5.  

General forms
of testing

These questions are addressed either by an hypothesis test or by a
confidence interval.

Parametric vs.
non-parametric
testing

All hypothesis-testing procedures can be broadly described as either
parametric or non-parametric/distribution-free. Parametric test
procedures are those that:

Involve hypothesis testing of specified parameters (such as
"the population mean=50 grams"...).

1.  

Require a stringent set of assumptions about the underlying
sampling distributions.

2.  

When to use
nonparametric
methods?

When do we require non-parametric or distribution-free methods?
Here are a few circumstances that may be candidates:

The measurements are only categorical; i.e., they are
nominally scaled, or ordinally (in ranks) scaled.

1.  

The assumptions underlying the use of parametric methods
cannot be met.

2.  

The situation at hand requires an investigation of such features
as randomness, independence, symmetry, or goodness of fit
rather than the testing of hypotheses about specific values of
particular population parameters.

3.  

Difference
between
non-parametric
and
distribution-free

Some authors distinguish between non-parametric and
distribution-free procedures.

Distribution-free test procedures are broadly defined as:

Those whose test statistic does not depend on the form of the
underlying population distribution from which the sample data
were drawn, or

1.  

Those for which the data are nominally or ordinally scaled.2.  

Nonparametric test procedures are defined as those that are not
concerned with the parameters of a distribution.

7.2. Comparisons based on data from one process
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Advantages of
nonparametric
methods.

Distribution-free or nonparametric methods have several advantages,
or benefits:

They may be used on all types of data-categorical data, which
are nominally scaled or are in rank form, called ordinally
scaled, as well as interval or ratio-scaled data.

1.  

For small sample sizes they are easy to apply.2.  

They make fewer and less stringent assumptions than their
parametric counterparts.

3.  

Depending on the particular procedure they may be almost as
powerful as the corresponding parametric procedure when the
assumptions of the latter are met, and when this is not the
case, they are generally more powerful.

4.  

Disadvantages
of
nonparametric
methods

Of course there are also disadvantages:

If the assumptions of the parametric methods can be met, it is
generally more efficient to use them.

1.  

For large sample sizes, data manipulations tend to become
more laborious, unless computer software is available.

2.  

Often special tables of critical values are needed for the test
statistic, and these values cannot always be generated by
computer software. On the other hand, the critical values for
the parametric tests are readily available and generally easy to
incorporate in computer programs.

3.  

7.2. Comparisons based on data from one process
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.1.Do the observations come from a
particular distribution?

Data are often
assumed to
come from a
particular
distribution.

Goodness-of-fit tests indicate whether or not it is reasonable to
assume that a random sample comes from a specific distribution.
Statistical techniques often rely on observations having come from a
population that has a distribution of a specific form (e.g., normal,
lognormal, Poisson, etc.). Standard control charts for continuous
measurements, for instance, require that the data come from a normal
distribution. Accurate lifetime modeling requires specifying the
correct distributional model. There may be historical or theoretical
reasons to assume that a sample comes from a particular population,
as well. Past data may have consistently fit a known distribution, for
example, or theory may predict that the underlying population should
be of a specific form.

Hypothesis
Test model for
Goodness-of-fit

Goodness-of-fit tests are a form of hypothesis testing where the null
and alternative hypotheses are

H0: Sample data come from the stated distribution.
HA: Sample data do not come from the stated distribution.

Parameters
may be
assumed or
estimated from
the data

One needs to consider whether a simple or composite hypothesis is
being tested. For a simple hypothesis, values of the distribution's
parameters are specified prior to drawing the sample. For a composite
hypothesis, one or more of the parameters is unknown. Often, these
parameters are estimated using the sample observations.

A simple hypothesis would be:

H0: Data are from a normal distribution,  = 0 and  = 1.

A composite hypothesis would be:

H0: Data are from a normal distribution, unknown  and .

Composite hypotheses are more common because they allow us to

7.2.1. Do the observations come from a particular distribution?
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decide whether a sample comes from any distribution of a specific
type. In this situation, the form of the distribution is of interest,
regardless of the values of the parameters. Unfortunately, composite
hypotheses are more difficult to work with because the critical values
are often hard to compute.

Problems with
censored data

A second issue that affects a test is whether the data are censored.
When data are censored, sample values are in some way restricted.
Censoring occurs if the range of potential values are limited such that
values from one or both tails of the distribution are unavailable (e.g.,
right and/or left censoring - where high and/or low values are
missing). Censoring frequently occurs in reliability testing, when
either the testing time or the number of failures to be observed is
fixed in advance. A thorough treatment of goodness-of-fit testing
under censoring is beyond the scope of this document. See
D'Agostino & Stephens (1986) for more details.

Three types of
tests will be
covered

Three goodness-of-fit tests are examined in detail:

Chi-square test for continuous and discrete distributions;1.  

Kolmogorov-Smirnov test for continuous distributions based
on the empirical distribution function (EDF);

2.  

Anderson-Darling test for continuous distributions.3.  

A more extensive treatment of goodness-of-fit techniques is presented
in D'Agostino & Stephens (1986). Along with the tests mentioned
above, other general and specific tests are examined, including tests
based on regression and graphical techniques.

7.2.1. Do the observations come from a particular distribution?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.1. Do the observations come from a particular distribution?

7.2.1.1.Chi-square goodness-of-fit test

Choice of
number of
groups for
"Goodness of
Fit" tests is
important - but
only useful rules
of thumb can be
given

The test requires that the data first be grouped. The actual number
of observations in each group is compared to the expected number
of observations and the test statistic is calculated as a function of
this difference. The number of groups and how group membership
is defined will affect the power of the test (i.e., how sensitive it is to
detecting departures from the null hypothesis). Power will not only
be affected by the number of groups and how they are defined, but
by the sample size and shape of the null and underlying (true)
distributions. Despite the lack of a clear "best method", some useful
rules of thumb can be given.

Group
Membership

When data are discrete, group membership is unambiguous.
Tabulation or cross tabulation can be used to categorize the data.
Continuous data present a more difficult challenge. One defines
groups by segmenting the range of possible values into
non-overlapping intervals. Group membership can then be defined
by the endpoints of the intervals. In general, power is maximized by
choosing endpoints such that group membership is equiprobable
(i.e., the probabilities associated with an observation falling into a
given group are divided as evenly as possible across the intervals).
Many commercial software packages follow this procedure.

Rule-of-thumb
for number of
groups

One rule-of-thumb suggests using the value 2n2/5 as a good starting
point for choosing the number of groups. Another well known
rule-of-thumb requires every group to have at least 5 data points.

Computation of
the chi-square
goodness-of-fit
test

The formulas for the computation of the chi-square goodnes-of-fit
test are given in the EDA chapter.

7.2.1.1. Chi-square goodness-of-fit test
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.1. Do the observations come from a particular distribution?

7.2.1.2.Kolmogorov- Smirnov test

The K-S test
is a good
alternative
to the
chi-square
test.

The Kolmogorov-Smirnov (K-S) test was originally proposed in the
1930's in papers by Kolmogorov (1933) and Smirnov (1936). Unlike the
Chi-Square test, which can be used for testing against both continuous
and discrete distributions, the K-S test is only appropriate for testing
data against a continuous distribution, such as the normal or Weibull
distribution. It is one of a number of tests that are based on the empirical
cumulative distribution function (ECDF).

K-S
procedure

Details on the construction and interpretation of the K-S test statistic, D,
and examples for several distributions are outlined in Chapter 1.

The
probability
associated
with the test
statistic is
difficult to
compute.

Critical values associated with the test statistic, D, are difficult to
compute for finite sample sizes, often requiring Monte Carlo simulation.
However, some general purpose statistical software programs, including
Dataplot, support the Kolmogorov-Smirnov test at least for some of the
more common distributions. Tabled values can be found in Birnbaum
(1952). A correction factor can be applied if the parameters of the
distribution are estimated with the same data that are being tested. See
D'Agostino and Stephens (1986) for details.

7.2.1.2. Kolmogorov- Smirnov test
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.1. Do the observations come from a particular distribution?

7.2.1.3.Anderson-Darling and Shapiro-Wilk
tests

Purpose: Test for
distributional
adequacy

The Anderson-Darling Test

The Anderson-Darling test (Stephens, 1974) is used to test if a
sample of data comes from a specific distribution. It is a
modification of the Kolmogorov-Smirnov (K-S) test and gives
more weight to the tails of the distribution than does the K-S test.
The K-S test is distribution free in the sense that the critical
values do not depend on the specific distribution being tested.

Requires critical
values for each
distribution

The Anderson-Darling test makes use of the specific distribution
in calculating critical values. This has the advantage of allowing
a more sensitive test and the disadvantage that critical values
must be calculated for each distribution. Tables of critical values
are not given in this handbook (see Stephens 1974, 1976, 1977,
and 1979) because this test is usually applied with a statistical
software program that produces the relevant critical values.
Currently, Dataplot computes critical values for the
Anderson-Darling test for the following distributions:

normal●   

lognormal●   

Weibull●   

extreme value type I.●   

Anderson-Darling
procedure

Details on the construction and interpretation of the
Anderson-Darling test statistic, A2, and examples for several
distributions are outlined in Chapter 1.

7.2.1.3. Anderson-Darling and Shapiro-Wilk tests
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Shapiro-Wilk test
for normality

The Shapiro-Wilk Test For Normality

The Shapiro-Wilk test, proposed in 1965, calculates a W statistic
that tests whether a random sample, x1, x2, ..., xn comes from
(specifically) a normal distribution . Small values of W are
evidence of departure from normality and percentage points for
the W statistic, obtained via Monte Carlo simulations, were
reproduced by Pearson and Hartley (1972, Table 16). This test
has done very well in comparison studies with other goodness of
fit tests.

The W statistic is calculated as follows:

where the x(i) are the ordered sample values (x(1) is the smallest)
and the ai are constants generated from the means, variances and
covariances of the order statistics of a sample of size n from a
normal distribution (see Pearson and Hartley (1972, Table 15).

Dataplot has an accurate approximation of the Shapiro-Wilk test
that uses the command "WILKS SHAPIRO TEST Y ", where Y
is a data vector containing the n sample values. Dataplot
documentation for the test can be found here on the internet.

For more information about the Shapiro-Wilk test the reader is
referred to the original Shapiro and Wilk (1965) paper and the
tables in Pearson and Hartley (1972),

7.2.1.3. Anderson-Darling and Shapiro-Wilk tests
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.2.Are the data consistent with the
assumed process mean?

The testing
of H0 for a
single
population
mean

Given a random sample of measurements, Y1, ..., YN, there are three
types of questions regarding the true mean of the population that can be
addressed with the sample data. They are:

Does the true mean agree with a known standard or assumed
mean?

1.  

Is the true mean of the population less than a given standard?2.  

Is the true mean of the population at least as large as a given
standard?

3.  

Typical null
hypotheses

The corresponding null hypotheses that test the true mean, , against

the standard or assumed mean,  are:

1.  

2.  

3.  

Test statistic
where the
standard
deviation is
not known

The basic statistics for the test are the sample mean and the standard
deviation. The form of the test statistic depends on whether the
poulation standard deviation, , is known or is estimated from the data
at hand. The more typical case is where the standard deviation must be
estimated from the data, and the test statistic is

where the sample mean is

7.2.2. Are the data consistent with the assumed process mean?
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and the sample standard deviation is

with N - 1 degrees of freedom.

Comparison
with critical
values

For a test at significance level , where  is chosen to be small,
typically .01, .05 or .10, the hypothesis associated with each case
enumerated above is rejected if:

1.  

2.  

3.  

where  is the upper  critical value from the t distribution

with N-1 degrees of freedom and similarly for cases (2) and (3). Critical
values can be found in the t-table in Chapter 1.

Test statistic
where the
standard
deviation is
known

If the standard deviation is known, the form of the test statistic is

For case (1), the test statistic is compared with , which is the upper

 critical value from the standard normal distribution, and similarly
for cases (2) and (3).

Caution If the standard deviation is assumed known for the purpose of this test,
this assumption should be checked by a test of hypothesis for the
standard deviation.

An
illustrative
example of
the t-test

The following numbers are particle (contamination) counts for a sample
of 10 semiconductor silicon wafers:

50  48  44  56  61  52  53  55  67  51

The mean = 53.7 counts and the standard deviation = 6.567 counts.

7.2.2. Are the data consistent with the assumed process mean?
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The test is
two-sided

Over a long run the process average for wafer particle counts has been
50 counts per wafer, and on the basis of the sample, we want to test
whether a change has occurred. The null hypothesis that the process
mean is 50 counts is tested against the alternative hypothesis that the
process mean is not equal to 50 counts. The purpose of the two-sided
alternative is to rule out a possible process change in either direction.

Critical
values

For a significance level of  = .05, the chances of erroneously rejecting
the null hypothesis when it is true are 5% or less. (For a review of
hypothesis testing basics, see Chapter 1).

Even though there is a history on this process, it has not been stable
enough to justify the assumption that the standard deviation is known.
Therefore, the appropriate test statistic is the t-statistic. Substituting the
sample mean, sample standard deviation, and sample size into the
formula for the test statistic gives a value of

t = 1.782

with degrees of freedom = N - 1 = 9. This value is tested against the
upper critical value

t0.025;9 = 2.262

from the t-table where the critical value is found under the column
labeled 0.025 for the probability of exceeding the critical value and in
the row for 9 degrees of freedom. The critical value  is used instead
of  because of the two-sided alternative (two-tailed test) which
requires equal probabilities in each tail of the distribution that add to .

Conclusion Because the value of the test statistic falls in the interval (-2.262, 2.262),
we cannot reject the null hypothesis and, therefore, we may continue to
assume the process mean is 50 counts.

7.2.2. Are the data consistent with the assumed process mean?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.2. Are the data consistent with the assumed process mean?

7.2.2.1.Confidence interval approach

Testing using
a confidence
interval

The hypothesis test results in a "yes" or "no" answer. The null
hypothesis is either rejected or not rejected. There is another way of
testing a mean and that is by constructing a confidence interval about
the true but unknown mean.

General form
of confidence
intervals
where the
standard
deviation is
unknown

Tests of hypotheses that can be made from a single sample of data
were discussed on the foregoing page. As with null hypotheses,
confidence intervals can be two-sided or one-sided, depending on the
question at hand. The general form of confidence intervals, for the
three cases discussed earlier, where the standard deviation is unknown
are:

Two-sided confidence interval for :1.  

Lower one-sided confidence interval for :2.  

Upper one-sided confidence interval for :3.  

where  is the upper  critical value from the t distribution

with N-1 degrees of freedom and similarly for cases (2) and (3).
Critical values can be found in the t-table in Chapter 1.

7.2.2.1. Confidence interval approach
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Confidence
level

The confidence intervals are constructed so that the probability of the
interval containing the mean is 1 - . Such intervals are referred to as
100(1- )% confidence intervals.

A 95%
confidence
interval for
the example

The corresponding confidence interval for the test of hypothesis
example on the foregoing page is shown below. A 95% confidence
interval for the population mean of particle counts per wafer is given
by

Interpretation The 95% confidence interval includes the null hypothesis if, and only
if, it would be accepted at the 5% level. This interval includes the null
hypothesis of 50 counts so we cannot reject the hypothesis that the
process mean for particle counts is 50. The confidence interval
includes all null hypothesis values for the population mean that would
be accepted by an hypothesis test at the 5% significance level. This
assumes, of course, a two-sided alternative.

7.2.2.1. Confidence interval approach
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.2. Are the data consistent with the assumed process mean?

7.2.2.2.Sample sizes required

The
computation
of sample
sizes depends
on many
things, some
of which have
to be
assumed in
advance

Perhaps one of the most frequent questions asked of a statistician is,

"How many measurements should be included in the sample?"

Unfortunately, there is no correct answer without additional
information (or assumptions). The sample size required for an
experiment designed to investigate the behavior of an unknown
population mean will be influenced by the following:

value selected for , the risk of rejecting a true hypothesis●   

value of , the risk of accepting a false null hypothesis when a
particular value of the alternative hypothesis is true.

●   

value of the population standard deviation.●   

Application -
estimating a
minimum
sample size,
N, for
limiting the
error in the
estimate of
the mean

For example, suppose that we wish to estimate the average daily yield,
, of a chemical process by the mean of a sample, Y1, ..., YN, such that

the error of estimation is less than  with a probability of 95%. This
means that a 95% confidence interval centered at the sample mean
should be

and if the standard deviation is known,

The upper critical value from the normal distribution for  = 0.025
is 1.96. Therefore,

7.2.2.2. Sample sizes required
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Limitation
and
interpretation

A restriction is that the standard deviation must be known. Lacking an
exact value for the standard deviation requires some accommodation,
perhaps the best estimate available from a previous experiment.

Controlling
the risk of
accepting a
false
hypothesis

To control the risk of accepting a false hypothesis, we set not only ,
the probability of rejecting the null hypothesis when it is true, but also

, the probability of accepting the null hypothesis when in fact the

population mean is  where  is the difference or shift we want to
detect.

Standard
deviation
assumed to
be known

The minimum sample size, N, is shown below for two- and one-sided
tests of hypotheses with  assumed to be known.

The quantities  and  are upper critical values from the normal

distribution.

Note that it is usual to state the shift, , in units of the standard
deviation, thereby simplifying the calculation.

Example
where the
shift is stated
in terms of
the standard
deviation

For a one-sided hypothesis test where we wish to detect an increase in
the population mean of one standard deviation, the following
information is required: , the significance level of the test, and , the
probability of failing to detect a shift of one standard deviation. For a
test with  = 0.05 and  = 0.10, the minimum sample size required
for the test is

N = (1.645 + 1.282)2 = 8.567 ~ 9.

7.2.2.2. Sample sizes required
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More often
we must
compute the
sample size
with the
population
standard
deviation
being
unknown

The procedures for computing sample sizes when the standard
deviation is not known are similar to, but more complex, than when the
standard deviation is known. The formulation depends on the
t-distribution where the minimum sample size is given by

The drawback is that critical values of the t-distribution depend on
known degrees of freedom, which in turn depend upon the sample size
which we are trying to estimate.

Iterate on the
initial
estimate
using critical
values from
the t-table

Therefore, the best procedure is to start with an intial estimate based on
a sample standard deviation and iterate. Take the example discussed
above where the the minimum sample size is computed to be N = 9.
This estimate is low. Now use the formula above with degrees of
freedom N - 1 = 8 which gives a second estimate of

N = (1.860 + 1.397)2 = 10.6 ~11.

It is possible to apply another iteration using degrees of freedom 10,
but in practice one iteration is usually sufficient. For the purpose of this
example, results have been rounded to the closest integer; however,
computer programs for finding critical values from the t-distribution
allow non-integer degrees of freedom.

Table
showing
minimum
sample sizes
for a
two-sided test

The table below gives sample sizes for a two-sided test of hypothesis
that the mean is a given value, with the shift to be detected a multiple
of the standard deviation. For a one-sided test at significance level ,
look under the value of 2  in column 1.

Sample Size Table for Two-Sided Tests

.01 .01 98 25 11

.01 .05 73 18 8

.01 .10 61 15 7

.01 .20 47 12 6

.01 .50 27 7 3

.05 .01 75 19 9

.05 .05 53 13 6

7.2.2.2. Sample sizes required
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.05 .10 43 11 5

.05 .20 33 8 4

.05 .50 16 4 3

.10 .01 65 16 8

.10 .05 45 11 5

.10 .10 35 9 4

.10 .20 25 7 3

.10 .50 11 3 3

.20 .01 53 14 6

.20 .05 35 9 4

.20 .10 27 7 3

.20 .20 19 5 3

.20 .50 7 3 3

7.2.2.2. Sample sizes required
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.3.Are the data consistent with a
nominal standard deviation?

The testing of
H0 for a single
population
mean

Given a random sample of measurements, Y1, ..., YN, there are three
types of questions regarding the true standard deviation of the
population that can be addressed with the sample data. They are:

Does the true standard deviation agree with a nominal value?1.  

Is the true standard deviation of the population less than or
equal to a nominal value?

2.  

Is the true stanard deviation of the population at least as large
as a nominal value?

3.  

Corresponding
null
hypotheses

The corresponding null hypotheses that test the true standard

deviation, , against the nominal value,  are:

H0:  = 1.  

H0:  <= 2.  

H0:  >= 3.  

Test statistic The basic test statistic is the chi-square statistic

with N - 1 degrees of freedom where s is the sample standard
deviation; i.e.,

7.2.3. Are the data consistent with a nominal standard deviation?
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.

Comparison
with critical
values

For a test at significance level , where  is chosen to be small,
typically .01, .05 or .10, the hypothesis associated with each case
enumerated above is rejected if:

1.  

2.  

3.  

where  is the upper  critical value from the chi-square

distribution with N-1 degrees of freedom and similarly for cases (2)
and (3). Critical values can be found in the chi-square table in Chapter
1.

Warning Because the chi-square distribution is a non-negative, asymmetrical
distribution, care must be taken in looking up critical values from
tables. For two-sided tests, critical values are required for both tails of
the distribution.

Example A supplier of 100 ohm.cm silicon wafers claims that his fabrication
process can produce wafers with sufficient consistency so that the
standard deviation of resistivity for the lot does not exceed 10
ohm.cm. A sample of N = 10 wafers taken from the lot has a standard
deviation of 13.97 ohm.cm. Is the suppliers claim reasonable? This
question falls under null hypothesis (2) above. For a test at
significance level,  = 0.05, the test statistic,

is compared with the critical value, .

Since the test statistic (17.56) exceeds the critical value (16.92) of the
chi-square distribution with 9 degrees of freedom, the manufacturer's
claim is rejected.

7.2.3. Are the data consistent with a nominal standard deviation?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.3. Are the data consistent with a nominal standard deviation?

7.2.3.1.Confidence interval approach

Confidence
intervals for
the standard
deviation

Confidence intervals for the true standard deviation can be constructed
using the chi-square distribution. The 100(1- )% confidence intervals
that correspond to the tests of hypothesis on the previous page are given
by

Two-sided confidence interval for 1.  

Lower one-sided confidence interval for 2.  

Upper one-sided confidence interval for 3.  

where for case (1)  is the upper  critical value from the

chi-square distribution with N-1 degrees of freedom and similarly for
cases (2) and (3). Critical values can be found in the chi-square table in
Chapter 1.

Choice of
risk level 
can change
the
conclusion

Confidence interval (1) is equivalent to a two-sided test for the standard

deviation. That is, if the hypothesized or nominal value, , is not

contained within these limits, then the hypothesis that the standard
deviation is equal to the nominal value is rejected.

7.2.3.1. Confidence interval approach
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A dilemma
of
hypothesis
testing

A change in  can lead to a change in the conclusion. This poses a
dilemma. What should  be? Unfortunately, there is no clear-cut
answer that will work in all situations. The usual strategy is to set 
small so as to guarantee that the null hypothesis is wrongly rejected in
only a small number of cases. The risk, , of failing to reject the null
hypothesis when it is false depends on the size of the discrepancy, and
also depends on . The discussion on the next page shows how to
choose the sample size so that this risk is kept small for specific
discrepancies.

7.2.3.1. Confidence interval approach
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.3. Are the data consistent with a nominal standard deviation?

7.2.3.2.Sample sizes required

Sample sizes
to minimize
risk of false
acceptance

The following procedure for computing sample sizes for tests involving standard
deviations follows W. Diamond (1989). The idea is to find a sample size that is
large enough to guarantee that the risk, , of accepting a false hypothesis is small.

Alternatives
are specific
departures
from the null
hypothesis

This procedure is stated in terms of changes in the variance, not the standard
deviation, which makes it somewhat difficult to interpret. Tests that are generally of
interest are stated in terms of , a discrepancy from the hypothesized variance. For
example:

Is the true variance larger than its hypothesized value by ?1.  

Is the true variance smaller than its hypothesized value by ?2.  

That is, the tests of interest are:

H0: 1.  

H0: 2.  

Interpretation The experimenter wants to assure that the probability of erroneously accepting the
null hypothesis of unchanged variance is at most . The sample size, N, required
for this type of detection depends on the factor, ; the significance level, ; and
the risk, .

First choose
the level of
significance
and beta risk

The sample size is determined by first choosing appropriate values of  and  and
then following the directions below to find the degrees of freedom, , from the
chi-square distribution.

7.2.3.2. Sample sizes required
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The
calculations
should be
done by
creating a
table or
spreadsheet

First compute

Then generate a table of degrees of freedom, say between 1 and 200. For case (1) or
(2) above, calculate  and the corresponding value of  for each value of
degrees of freedom in the table where

1.  

2.  

The value of  where  is closest to  is the correct degrees of freedom and

N =  + 1

Hints on
using
software
packages to
do the
calculations

The quantity  is the critical value from the chi-square distribution with 

degrees of freedom which is exceeded with probability . It is sometimes referred
to as the percent point function (PPF) or the inverse chi-square function. The
probability that is evaluated to get  is called the cumulative density function
(CDF).

Example Consider the case where the variance for resistivity measurements on a lot of
silicon wafers is claimed to be 100 ohm.cm. A buyer is unwilling to accept a
shipment if  is greater than 55 ohm.cm for a particular lot. This problem falls
under case (1) above. The question is how many samples are needed to assure risks
of  = 0.05 and  = .01.

7.2.3.2. Sample sizes required
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Calculations
using
Dataplot

The procedure for performing these calculations using Dataplot is as follows:

   let d=55
   let var = 100
   let r = 1 + d/(var)
   let function cnu=chscdf(chsppf(.95,nu)/r,nu) - 0.01
   let a = roots cnu wrt nu  for nu = 1 200

Dataplot returns a value of 169.5. Therefore, the minimum sample size needed to
guarantee the risk level is N = 170.

Alternatively, we could generate a table using the following Dataplot commands:

   let d=55
   let var = 100
   let r = 1 + d/(var)
   let nu = 1 1 200
   let bnu = chsppf(.95,nu)
   let bnu=bnu/r
   let cnu=chscdf(bnu,nu)
   print nu bnu cnu for nu = 165 1 175

Dataplot
output

The Dataplot output, for calculations between 165 and 175 degrees of freedom, is
shown below.

 VARIABLES--
       NU                BNU              CNU
   0.1650000E+03    0.1264344E+03     0.1136620E-01
   0.1660000E+03    0.1271380E+03     0.1103569E-01
   0.1670000E+03    0.1278414E+03     0.1071452E-01
   0.1680000E+03    0.1285446E+03     0.1040244E-01
   0.1690000E+03    0.1292477E+03     0.1009921E-01
   0.1700000E+03    0.1299506E+03     0.9804589E-02
   0.1710000E+03    0.1306533E+03     0.9518339E-02
   0.1720000E+03    0.1313558E+03     0.9240230E-02
   0.1730000E+03    0.1320582E+03     0.8970034E-02
   0.1740000E+03    0.1327604E+03     0.8707534E-02
   0.1750000E+03    0.1334624E+03     0.8452513E-02

The value of  which is closest to 0.01 is 0.010099; this has degrees of freedom
 = 169. Therefore, the minimum sample size needed to guarantee the risk level is

N = 170.

Calculations
using EXCEL

The procedure for doing the calculations using an EXCEL spreadsheet is shown
below. The EXCEL calculations begin with 1 degree of freedom and iterate to the
correct solution.

7.2.3.2. Sample sizes required
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Definitions in
EXCEL

Start with:

1 in A11.  

CHIINV{(1- ), A1}/R in B12.  

CHIDIST(B1,A1) in C1

In EXCEL, CHIINV{(1- ), A1} is the critical value of the chi-square
distribution that is exceeded with probabililty . This example requires
CHIINV(.95,A1). CHIDIST(B1,A1) is the cumulative density function up to
B1 which, for this example, needs to reach 1 -  = 1 - 0.01 = 0.99. The
EXCEL screen is shown below.

3.  

7.2.3.2. Sample sizes required
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Iteration step Then:

From TOOLS, click on "GOAL SEEK"1.  

Fill in the blanks with "Set Cell C1", "To Value 1 - " and "By Changing
Cell A1".

2.  

Click "OK"3.  

Clicking on "OK" iterates the calculations until C1 reaches 0.99 with the
corresponding degrees of freedom shown in A1:

7.2.3.2. Sample sizes required
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.4.Does the proportion of defectives
meet requirements?

Testing
proportion
defective is
based on the
binomial
distribution

The proportion of defective items in a manufacturing process can be
monitored using statistics based on the observed number of defectives
in a random sample of size N from a continuous manufacturing
process, or from a large population or lot. The proportion defective in
a sample follows the binomial distribution where p is the probability
of an individual item being found defective. Questions of interest for
quality control are:

Is the proportion of defective items within prescribed limits?1.  

Is the proportion of defective items less than a prescribed limit?2.  

Is the proportion of defective items greater than a prescribed
limit?

3.  

Hypotheses
regarding
proportion
defective

The corresponding hypotheses that can be tested are:

p = p01.  

p  p02.  

p  p03.  

where p0 is the prescribed proportion defective.

Test statistic
based on a
normal
approximation

Given a random sample of measurements Y1, ..., YN from a population,
the proportion of items that are judged defective from these N
measurements is denoted . The test statistic

depends on a normal approximation to the binomial distribution that is
valid for large N, (N > 30). This approximation simplifies the
calculations using critical values from the table of the normal
distribution as shown below.

7.2.4. Does the proportion of defectives meet requirements?
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Restriction on
sample size

Because the test is approximate, N needs to be large for the test to be
valid. One criterion is that N should be chosen so that

min{Np0, N(1 - p0)} >= 5

For example, if p0 = 0.1, then N should be at least 50 and if p0 = 0.01,
then N should be at least 500. Criteria for choosing a sample size in

order to guarantee detecting a change of size  are discussed on
another page.

One and
two-sided
tests for
proportion
defective

Tests at the 1 -  confidence level corresponding to hypotheses (1),
(2), and (3) are shown below. For hypothesis (1), the test statistic, z, is

compared with , the upper critical value from the normal

distribution that is exceeded with probability  and similarly for (2)
and (3). If

1.  

2.  

3.  

the null hypothesis is rejected.

Example of a
one-sided test
for proportion
defective

After a new method of processing wafers was introduced into a
fabrication process, two hundred wafers were tested, and twenty-six
showed some type of defect. Thus, for N= 200, the proportion

defective is estimated to be  = 26/200 = 0.13. In the past, the
fabrication process was capable of producing wafers with a proportion
defective of at most 0.10. The issue is whether the new process has
degraded the quality of the wafers. The relevant test is the one-sided
test (3) which guards against an increase in proportion defective from
its historical level.

Calculations
for a
one-sided test
of proportion
defective

For a test at significance level  = 0.05, the hypothesis of no
degradation is validated if the test statistic z is less than the critical
value, z.05 = 1.645. The test statistic is computed to be

7.2.4. Does the proportion of defectives meet requirements?
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Interpretation Because the test statistic is less than the critical value (1.645), we
cannot reject hypothesis (3) and, therefore, we cannot conclude that
the new fabrication method is degrading the quality of the wafers. The
new process may, indeed, be worse, but more evidence would be
needed to reach that conclusion at the 95% confidence level.

7.2.4. Does the proportion of defectives meet requirements?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.4. Does the proportion of defectives meet requirements?

7.2.4.1. Confidence intervals

Confidence
intervals
using the
method of
Agresti and
Coull

The method recommended by Agresti and Coull (1998) and also by
Brown, Cai and DasGupta (2001) (the methodology was originally
developed by Wilson in 1927) is to use the form of the confidence
interval that corresponds to the hypothesis test given in Section 7.2.4.
That is, solve for the two values of p0 (say, pupper and plower) that result
from setting z =  and solving for p0 = pupper, and then setting z = -

 and solving for p0 = plower. (Here, as in Section 7.2.4,  denotes

the variate value from the standard normal distribution such that the area
to the right of the value is /2.) Although solving for the two values of
p0 might sound complicated, the appropriate expressions can be
obtained by straightforward but slightly tedious algebra. Such algebraic
manipulation isn't necessary, however, as the appropriate expressions
are given in various sources. Specifically, we have

Formulas
for the
confidence
intervals

Procedure
does not
strongly
depend on
values of p
and n

This approach can be substantiated on the grounds that it is the exact
algebraic counterpart to the (large-sample) hypothesis test given in
section 7.2.4 and is also supported by the research of Agresti and Coull.
One advantage of this procedure is that its worth does not strongly
depend upon the value of n and/or p, and indeed was recommended by
Agresti and Coull for virtually all combinations of n and p.

7.2.4.1. Confidence intervals
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Another
advantage is
that the
lower limit
cannot be
negative

Another advantage is that the lower limit cannot be negative. That is not
true for the confidence expression most frequently used:

A confidence limit approach that produces a lower limit which is an
impossible value for the parameter for which the interval is constructed
is an inferior approach. This also applies to limits for the control charts
that are discussed in Chapter 6.

One-sided
confidence
intervals

A one-sided confidence interval can also be constructed simply by
replacing each  by  in the expression for the lower or upper limit,
whichever is desired. The 95% one-sided interval for p for the example
in the preceding section is:

Example p  lower limit

p  0.09577

Conclusion
from the
example

Since the lower bound does not exceed 0.10, in which case it would
exceed the hypothesized value, the null hypothesis that the proportion
defective is at most .10, which was given in the preceding section,
would not be rejected if we used the confidence interval to test the
hypothesis. Of course a confidence interval has value in its own right
and does not have to be used for hypothesis testing.

Exact Intervals for Small Numbers of Failures and/or Small Sample
Sizes

7.2.4.1. Confidence intervals
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Constrution
of exact
two-sided
confidence
intervals
based on the
binomial
distribution

If the number of failures is very small or if the sample size N is very
small, symmetical confidence limits that are approximated using the
normal distribution may not be accurate enough for some applications.
An exact method based on the binomial distribution is shown next. To
construct a two-sided confidence interval at the 100(1 - )% confidence
level for the true proportion defective p where Nd defects are found in a
sample of size N follow the steps below.

Solve the equation

for pU to obtain the upper 100(1 - )% limit for p.

1.  

Next solve the equation

for pL to obtain the lower 100(1 - )% limit for p.

2.  

Note The interval {pL, pU} is an exact 100(1 - )% confidence interval for p.
However, it is not symmetric about the observed proportion defective,

.

Example of
calculation
of upper
limit for
binomial
confidence
intervals
using
EXCEL

The equations above that determine pL and pU can easily be solved
using functions built into EXCEL. Take as an example the situation
where twenty units are sampled from a continuous production line and
four items are found to be defective. The proportion defective is
estimated to be  = 4/20 = 0.20. The calculation of a 90% confidence

interval for the true proportion defective, p, is demonstrated using
EXCEL spreadsheets.

7.2.4.1. Confidence intervals
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Upper
confidence
limit from
EXCEL

To solve for pU:

Open an EXCEL spreadsheet and put the starting value of 0.5 in
the A1 cell.

1.  

Put =BINOMDIST(Nd, N, A1, TRUE) in B1, where Nd = 4 and N
= 20.

2.  

Open the Tools menu and click on GOAL SEEK. The GOAL
SEEK box requires 3 entries./li>

B1 in the "Set Cell" box❍   

/2 = 0.05 in the "To Value" box❍   

A1 in the "By Changing Cell" box.❍   

The picture below shows the steps in the procedure.

3.  

Final step Click OK in the GOAL SEEK box. The number in A1 will
change from 0.5 to PU. The picture below shows the final result.

4.  

7.2.4.1. Confidence intervals
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Example of
calculation
of lower
limit for
binomial
confidence
limits using
EXCEL

The calculation of the lower limit is similar. To solve for pL:

Open an EXCEL spreadsheet and put the starting value of 0.5 in
the A1 cell.

1.  

Put =BINOMDIST(Nd -1, N, A1, TRUE) in B1, where Nd -1 = 3
and N = 20.

2.  

Open the Tools menu and click on GOAL SEEK. The GOAL
SEEK box requires 3 entries.

B1 in the "Set Cell" box❍   

1 - /2 = 1 - 0.05 = 0.95 in the "To Value" box❍   

A1 in the "By Changing Cell" box.❍   

The picture below shows the steps in the procedure.

3.  

7.2.4.1. Confidence intervals
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Final step Click OK in the GOAL SEEK box. The number in A1 will
change from 0.5 to pL. The picture below shows the final result.

4.  

7.2.4.1. Confidence intervals
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Interpretation
of result

A 90% confidence interval for the proportion defective, p, is {0.071,
0.400}. Whether or not the interval is truly "exact" depends on the
software. Notice in the screens above that GOAL SEEK is not able to
find upper and lower limits that correspond to exact 0.05 and 0.95
confidence levels; the calculations are correct to two significant digits
which is probably sufficient for confidence intervals. The calculations
using a package called SEMSTAT agree with the EXCEL results to
two significant digits.

Calculations
using
SEMSTAT

The downloadable software package SEMSTAT contains a menu item
"Hypothesis Testing and Confidence Intervals." Selecting this item
brings up another menu that contains "Confidence Limits on Binomial
Parameter." This option can be used to calculate binomial confidence
limits as shown in the screen shot below.

7.2.4.1. Confidence intervals
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Calculations
using
Dataplot

This computation can also be performed using the following Dataplot
program.

. Initalize
let p = 0.5
let nd = 4
let n = 20
. Define the functions
let function fu = bincdf(4,p,20) - 0.05
let function fl = bincdf(3,p,20) - 0.95
. Calculate the roots
let pu = roots fu wrt p  for p = .01 .99
let pl = roots fl wrt p  for p = .01 .99
. print the results
let pu1 = pu(1)
let pl1 = pl(1)
print "PU = ^pu1"
print "PL = ^pl1"

Dataplot generated the following results.

   PU = 0.401029
   PL = 0.071354

7.2.4.1. Confidence intervals
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.4. Does the proportion of defectives meet requirements?

7.2.4.2.Sample sizes required

Derivation of
formula for
required
sample size
when testing
proportions

The method of determining sample sizes for testing proportions is similar
to the method for determining sample sizes for testing the mean.
Although the sampling distribution for proportions actually follows a
binomial distribution, the normal approximation is used for this
derivation.

Minimum
sample size

If we are interested in detecting a change in the proportion defective of
size  in either direction, the minimum sample size is

For a two-sided test1.  

For a one-sided test2.  

Interpretation
and sample
size for high
probability of
detecting a
change

This requirement on the sample size only guarantees that a change of size
 is detected with 50% probability. The derivation of the sample size

when we are interested in protecting against a change  with probability

1 -  (where  is small) is

For a two-sided test1.  

For a one-sided test2.  

7.2.4.2. Sample sizes required
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where  is the upper critical value from the normal distribution that is

exceeded with probability .

Value for the
true
proportion
defective

The equations above require that p be known. Usually, this is not the
case. If we are interested in detecting a change relative to an historical or
hypothesized value, this value is taken as the value of p for this purpose.
Note that taking the value of the proportion defective to be 0.5 leads to
the largest possible sample size.

Example of
calculating
sample size
for testing
proportion
defective

Suppose that a department manager needs to be able to detect any change
above 0.10 in the current proportion defective of his product line, which
is running at approximately 10% defective. He is interested in a one-sided
test and does not want to stop the line except when the process has clearly
degraded and, therefore, he chooses a significance level for the test of
5%. Suppose, also, that he is willing to take a risk of 10% of failing to
detect a change of this magnitude. With these criteria:

z.05 = 1.645; z.10=1.2821.  

 = 0.102.  

p = 0.103.  

and the minimum sample size for a one-sided test procedure is

7.2.4.2. Sample sizes required
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.5.Does the defect density meet
requirements?

Testing defect
densities is
based on the
Poisson
distribution

The number of defects observed in an area of size A units is often
assumed to have a Poisson distribution with parameter A x D, where D
is the actual process defect density (D is defects per unit area). In other
words:

The questions of primary interest for quality control are:

Is the defect density within prescribed limits?1.  

Is the defect density less than a prescribed limit?2.  

Is the defect density greater than a prescribed limit?3.  

Normal
approximation
to the Poisson

We assume that AD is large enough so that the normal approximation
to the Poisson applies (in other words, AD > 10 for a reasonable
approximation and AD > 20 for a good one). That translates to

where  is the standard normal distribution function.

Test statistic
based on a
normal
approximation

If, for a sample of area A with a defect density target of D0, a defect
count of C is observed, then the test statistic

can be used exactly as shown in the discussion of the test statistic for
fraction defectives in the preceding section.

7.2.5. Does the defect density meet requirements?

http://www.itl.nist.gov/div898/handbook/prc/section2/prc25.htm (1 of 3) [5/1/2006 10:38:44 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Testing the
hypothesis
that the
process defect
density is less
than or equal
to D0

For example, after choosing a sample size of area A (see below for
sample size calculation) we can reject that the process defect density is
less than or equal to the target D0 if the number of defects C in the
sample is greater than CA, where

and Z  is the upper 100x(1- ) percentile of the standard normal
distribution. The test significance level is 100x(1- ). For a 90%
significance level use Z  = 1.282 and for a 95% test use Z  = 1.645.

 is the maximum risk that an acceptable process with a defect
density at least as low as D0 "fails" the test.

Choice of
sample size
(or area) to
examine for
defects

In order to determine a suitable area A to examine for defects, you first
need to choose an unacceptable defect density level. Call this
unacceptable defect density D1 = kD0, where k > 1.

We want to have a probability of less than or equal to  is of
"passing" the test (and not rejecting the hypothesis that the true level is
D0 or better) when, in fact, the true defect level is D1 or worse.

Typically  will be .2, .1 or .05. Then we need to count defects in a
sample size of area A, where A is equal to

Example Suppose the target is D0 = 4 defects per wafer and we want to verify a
new process meets that target. We choose  = .1 to be the chance of
failing the test if the new process is as good as D0 (  = the Type I

error probability or the "producer's risk") and we choose  = .1 for the
chance of passing the test if the new process is as bad as 6 defects per
wafer (  = the Type II error probability or the "consumer's risk").
That means Z  = 1.282 and Z1-  = -1.282.

The sample size needed is A wafers, where

7.2.5. Does the defect density meet requirements?
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which we round up to 9.

The test criteria is to "accept" that the new process meets target unless
the number of defects in the sample of 9 wafers exceeds

In other words, the reject criteria for the test of the new process is 44
or more defects in the sample of 9 wafers.

Note: Technically, all we can say if we run this test and end up not
rejecting is that we do not have statistically significant evidence that
the new process exceeds target. However, the way we chose the
sample size for this test assures us we most likely would have had
statistically significant evidence for rejection if the process had been
as bad as 1.5 times the target.

7.2.5. Does the defect density meet requirements?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.6.What intervals contain a fixed
percentage of the population values?

Observations
tend to
cluster
around the
median or
mean

Empirical studies have demonstrated that it is typical for a large
number of the observations in any study to cluster near the median. In
right-skewed data this clustering takes place to the left of (i.e., below)
the median and in left-skewed data the observations tend to cluster to
the right (i.e., above) the median. In symmetrical data, where the
median and the mean are the same, the observations tend to distribute
equally around these measures of central tendency.

Various
methods

Several types of intervals about the mean that contain a large
percentage of the population values are discussed in this section.

Approximate intervals that contain most of the population values●   

Percentiles●   

Tolerance intervals for a normal distribution●   

Tolerance intervals using EXCEL●   

Tolerance intervals based on the smallest and largest
observations

●   

7.2.6. What intervals contain a fixed percentage of the population values?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.1.Approximate intervals that contain
most of the population values

Empirical
intervals

A rule of thumb is that where there is no evidence of significant
skewness or clustering, two out of every three observations (67%)
should be contained within a distance of one standard deviation of the
mean; 90% to 95% of the observations should be contained within a
distance of two standard deviations of the mean; 99-100% should be
contained within a distance of three standard deviations. This rule can
help identify outliers in the data.

Intervals
that apply to
any
distribution

The Bienayme-Chebyshev rule states that regardless of how the data
are distributed, the percentage of observations that are contained within
a distance of k tandard deviations of the mean is at least (1 -
1/k2)100%.

Exact
intervals for
the normal
distribution

The Bienayme-Chebyshev rule is conservative because it applies to any
distribution. For a normal distribution, a higher percentage of the
observations are contained within k standard deviations of the mean as
shown in the following table.

Percentage of observations contained between the mean and k
standard deviations

k, No. of
Standard

Deviations
Empircal Rule Bienayme-Chebychev

Normal
Distribution

1 67% N/A 68.26%
2 90-95% at least 75% 95.44%
3 99-100% at least 88.89% 99.73%
4 N/A at least 93.75% 99.99%

7.2.6.1. Approximate intervals that contain most of the population values
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.2.Percentiles

Definitions of
order
statistics and
ranks

For a series of measurements Y1, ..., YN, denote the data ordered in
increasing order of magnitude by Y[1], ..., Y[N]. These ordered data are
called order statistics. If Y[j] is the order statistic that corresponds to the
measurement Yi, then the rank for Yi is j; i.e.,

Definition of
percentiles

Order statistics provide a way of estimating proportions of the data that
should fall above and below a given value, called a percentile. The pth
percentile is a value, Y(p), such that at most (100p)% of the
measurements are less than this value and at most 100(1- p)% are
greater. The 50th percentile is called the median.

Percentiles split a set of ordered data into hundredths. (Deciles split
ordered data into tenths). For example, 70% of the data should fall
below the 70th percentile.

Estimation of
percentiles

Percentiles can be estimated from N measurements as follows: for the
pth percentile, set p(N+1) equal to k + d for k an integer, and d, a
fraction greater than or equal to 0 and less than 1.

For 0 < k < N,  1.  

For k = 0,  Y(p) = Y[1]2.  

For k = N,  Y(p) = Y[N]3.  

7.2.6.2. Percentiles
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Example and
interpretation

For the purpose of illustration, twelve measurements from a gage study
are shown below. The measurements are resistivities of silicon wafers
measured in ohm.cm.

       i  Measurements  Order stats   Ranks

       1     95.1772     95.0610       9
       2     95.1567     95.0925       6
       3     95.1937     95.1065       10
       4     95.1959     95.1195       11
       5     95.1442     95.1442        5
       6     95.0610     95.1567        1
       7     95.1591     95.1591        7
       8     95.1195     95.1682        4
       9     95.1065     95.1772        3
      10     95.0925     95.1937        2
      11     95.1990     95.1959       12
      12     95.1682     95.1990        8

To find the 90% percentile, p(N+1) = 0.9(13) =11.7; k = 11, and d =
0.7. From condition (1) above, Y(0.90) is estimated to be 95.1981
ohm.cm. This percentile, although it is an estimate from a small sample
of resistivities measurements, gives an indication of the percentile for a
population of resistivity measurements.

Note that
there are
other ways of
calculating
percentiles in
common use

Some software packages (EXCEL, for example) set 1+p(N-1) equal to
k + d, then proceed as above. The two methods give fairly similar
results.

A third way of calculating percentiles (given in some elementary
textbooks) starts by calculating pN. If that is not an integer, round up to
the next highest integer k and use Y[k] as the percentile estimate. If pN
is an integer k, use .5(Y[k] +Y[k+1]).

Definition of
Tolerance
Interval

An interval covering population percentiles can be interpreted as
"covering a proportion p of the population with a level of confidence,
say, 90%." This is known as a tolerance interval.

7.2.6.2. Percentiles
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.3.Tolerance intervals for a normal
distribution

Definition of
a tolerance
interval

A confidence interval covers a population parameter with a stated confidence,
that is, a certain proportion of the time. There is also a way to cover a fixed
proportion of the population with a stated confidence. Such an interval is called
a tolerance interval. The endpoints of a tolerance interval are called tolerance
limits. An application of tolerance intervals to manufacturing involves
comparing specification limits prescribed by the client with tolerance limits that
cover a specified proportion of the population.

Difference
between
confidence
and tolerance
intervals

Confidence limits are limits within which we expect a given population
parameter, such as the mean, to lie. Statistical tolerance limits are limits within
which we expect a stated proportion of the population to lie. Confidence
intervals shrink towards zero as the sample size increases. Tolerance intervals
tend towards a fixed value as the sample size increases.

Not related to
engineering
tolerances

Statistical tolerance intervals have a probabilistic interpretation. Engineering
tolerances are specified outer limits of acceptability which are usually
prescribed by a design engineer and do not necessarily reflect a characteristic of
the actual measurements.

Three types of
tolerance
intervals

Three types of questions can be addressed by tolerance intervals. Question (1)
leads to a two-sided interval; questions (2) and (3) lead to one-sided intervals.

What interval will contain p percent of the population measurements?1.  

What interval guarantees that p percent of population measurements will
not fall below a lower limit?

2.  

What interval guarantees that p percent of population measurements will
not exceed an upper limit?

3.  

7.2.6.3. Tolerance intervals for a normal distribution
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Tolerance
intervals for
measurements
from a
normal
distribution

For the questions above, the corresponding tolerance intervals are defined by
lower (L) and upper (U) tolerance limits which are computed from a series of
measurements Y1, ..., YN :

 1.  

 2.  

3.  
where the k factors are determined so that the intervals cover at least a
proportion p of the population with confidence, .

Calculation
of k factor for
a two-sided
tolerance
limit for a
normal
distribution

If the data are from a normally distributed population, an approximate value for
the factor as a function of p and  for a two-sided tolerance interval (Howe,
1969) is

where  is the critical value of the chi-square distribution with degrees of

freedom, N - 1, that is exceeded with probability  and  is the critical
value of the normal distribution which is exceeded with probability (1-p)/2.

Example of
calculation

For example, suppose that we take a sample of N = 43 silicon wafers from a lot
and measure their thicknesses in order to find tolerance limits within which a
proportion p = 0.90 of the wafers in the lot fall with probability  = 0.99.

Use of tables
in calculating
two-sided
tolerance
intervals

Values of the k factor as a function of p and  are tabulated in some textbooks,
such as Dixon and Massey (1969). To use the tables in this handbook, follow the
steps outlined below:

Calculate  = (1 - p)/2 = 0.051.  

Go to the table of upper critical values of the normal distribution and

under the column labeled 0.05 find  = 1.645.

2.  

Go to the table of lower critical values of the chi-square distribution and
under the column labeled 0.99 in the row labeled degrees of freedom =

42, find  = 23.650.

3.  

7.2.6.3. Tolerance intervals for a normal distribution
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Calculate4.  

The tolerance limits are then computed from the sample mean, , and standard
deviation, s, according to case (1).

Important
note

The notation for the critical value of the chi-square distribution can be
confusing. Values as tabulated are, in a sense, already squared; whereas the
critical value for the normal distribution must be squared in the formula above.

Dataplot
commands for
calculating
the k factor
for a
two-sided
tolerance
interval

The Dataplot commands are:

let n = 43
let nu = n - 1
let p = .90
let g = .99
let g1=1-g
let p1=(1+p)/2
let cg=chsppf(g1,nu)
let np=norppf(p1)
let k = nu*(1+1/n)*np**2
let k2 = (k/cg)**.5

and the output is:

THE COMPUTED VALUE OF THE CONSTANT K2 = 0.2217316E+01

Another note The notation for tail probabilities in Dataplot is the converse of the notation used
in this handbook. Therefore, in the example above it is necessary to specify the
critical value for the chi-square distribution, say, as chsppf(1-.99, 42) and
similarly for the critical value for the normal distribution.

7.2.6.3. Tolerance intervals for a normal distribution
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Direct
calculation of
tolerance
intervals
using
Dataplot

Dataplot also has an option for calculating tolerance intervals directly from the
data. The commands for producing tolerance intervals from twenty-five
measurements of resistivity from a quality control study at a confidence level of
99% are:

read 100ohm.dat cr wafer mo day h min op hum ...
                probe temp y sw df
tolerance y

Automatic output is given for several levels of coverage, and the tolerance
interval for 90% coverage is shown below in bold:

 2-SIDED NORMAL TOLERANCE LIMITS: XBAR +- K*S

     NUMBER OF OBSERVATIONS    =     25
     SAMPLE MEAN               = 97.069832
     SAMPLE STANDARD DEVIATION = 0.26798090E-01

CONFIDENCE =    99.%
  COVERAGE (%)       LOWER LIMIT         UPPER LIMIT
          50.0        97.04242            97.09724
          75.0        97.02308            97.11658
          90.0        97.00299            97.13667
          95.0        96.99020            97.14946
          99.0        96.96522            97.17445
          99.9        96.93625            97.20341

Calculation
for a
one-sided
tolerance
interval for a
normal
distribution

The calculation of an approximate k factor for one-sided tolerance intervals
comes directly from the following set of formulas (Natrella, 1963):

where  is the critical value from the normal distribution that is exceeded

with probability 1-p and  is the critical value from the normal distribution

that is exceeded with probability 1- .

7.2.6.3. Tolerance intervals for a normal distribution
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Dataplot
commands for
calculating
the k factor
for a
one-sided
tolerance
interval

For the example above, it may also be of interest to guarantee with 0.99
probability (or 99% confidence) that 90% of the wafers have thicknesses less
than an upper tolerance limit. This problem falls under case (3), and the Dataplot
commands for calculating the factor for the one-sided tolerance interval are:

let n = 43
let p = .90
let g = .99
let nu = n-1
let zp = norppf(p)
let zg=norppf(g)
let a = 1 - ((zg**2)/(2*nu))
let b = zp**2 - (zg**2)/n
let k1 = (zp + (zp**2 - a*b)**.5)/a

and the output is:

THE COMPUTED VALUE OF THE CONSTANT A  =  0.9355727E+00
THE COMPUTED VALUE OF THE CONSTANT B  =  0.1516516E+01
THE COMPUTED VALUE OF THE CONSTANT K1 =  0.1875189E+01

The upper (one-sided) tolerance limit is therefore 97.07 + 1.8752*2.68 =
102.096.

7.2.6.3. Tolerance intervals for a normal distribution
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.4.Two-sided tolerance intervals using EXCEL

Two-sided
tolerance
intervals
using
EXCEL

One method for computing factors for two-sided tolerance intervals using EXCEL makes
use of the definition

where r is defined by:

and  is the critical value of the chi-square distribution with N - 1 degrees of

freedom that is exceeded with probability, .

Interative
method

Unfortunately, r can only be found by iteration from the integral above which defines
limits within which p percent of the normal distribution lies. An EXCEL calculation is
illustrated below for the same problem as on the previous page except where N= 220
measurements are made of thickness. We wish to find tolerance intervals that contain a
proportion p = 0.90 of the wafers with probability  = 0.99.

The EXCEL commands for this calculation are shown below. The calculations are
approximate and depend on the starting value for r, which is taken to be zero in this
example. Calculations should be correct to three signficant digits.

7.2.6.4. Two-sided tolerance intervals using EXCEL
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Basic
definition
of r in
EXCEL

Enter 0 in cell A1●   

Enter 220 (the sample size) in cell B1●   

Enter in cell C1 the formula:

=NORMDIST((1/SQRT(B1)+A1),0,1,T)-NORMDIST((1/SQRT(B1)-A1),0,1,T)

●   

The screen at this point is:

Iteration
step in
EXCEL

Click on the green V (not shown here) or press the Enter key. Click on TOOLS and then
on GOALSEEK. A drop down menu appears. Then,

Enter C1 (if it is not already there) in the cell in the row labeled: "Set cell:"●   

Enter 0.9 (which is p) in the cell at the row labeled: "To value:"●   

Enter A1 in the cell at the row labeled: "By changing cell:"●   

The screen at this point is:

Click OK. The screen below will be displayed:

7.2.6.4. Two-sided tolerance intervals using EXCEL
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Calculation
in EXCEL
of k factor

Now calculate the k factor from the equation above.

The value r = 1.6484 appears in cell A1●   

The value N = 220 is in cell B1●   

Enter  which is 0.99 in cell C1●   

Enter the formula =A1*SQRT((B1-1)/CHIINV(C1,(B1-1))) in cell D1●   

Press Enter●   

The screen is:

The resulting value k2= 1.853 appears in cell D1.

Calculation
in Dataplot

You can also perform this calculation using the following Dataplot macro.

.  Initialize
let r = 0
let n = 220
let c1 = 1/sqrt(n)
.  Compute R
let function f = norcdf(c+r) - norcdf(c-r) - 0.9
let z = roots f wrt r  for r = -4  4
let r = z(1)
.  Compute K2
let c2 = (n-1)
let k2 = r*sqrt(c2/chsppf(0.01,c2))
. Print results
print "R    = ^r"
print "K2   = ^k2"

Dataplot generates the following output.

 R    = 1.644854
 K2   = 1.849208

7.2.6.4. Two-sided tolerance intervals using EXCEL
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.5.Tolerance intervals based on the
largest and smallest observations

Tolerance
intervals can be
constructed for
a distribution of
any form

The methods on the previous pages for computing tolerance limits are based
on the assumption that the measurements come from a normal distribution. If
the distribution is not normal, tolerance intervals based on this assumption
will not provide coverage for the intended proportion p of the population.
However, there are methods for achieving the intended coverage if the form
of the distribution is not known, but these methods may produce
substantially wider tolerance intervals.

Risks
associated with
making
assumptions
about the
distribution

There are situations where it would be particularly dangerous to make
unwarranted assumptions about the exact shape of the distribution, for
example, when testing the strength of glass for airplane windshields where it
is imperative that a very large proportion of the population fall within
acceptable limits.

Tolerance
intervals based
on largest and
smallest
observations

One obvious choice for a two-sided tolerance interval for an unknown
distribution is the interval between the smallest and largest observations from
a sample of Y1, ..., YN measurements. This choice does not allow us to
choose the confidence and coverage levels that are desired, but it does permit
calculation of' combinations of confidence and coverage that match this
choice.

7.2.6.5. Tolerance intervals based on the largest and smallest observations
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Dataplot
calculations for
distribution-free
tolerance
intervals

The Dataplot commands for calculating confidence and coverage levels
corresponding to a tolerance interval defined as the interval between the
smallest and largest observations are given below. The commands that are
invoked for twenty-five measurements of resistivity from a quality control
study are the same as for producing tolerance intervals for a normal
distribution; namely,

read 100ohm.dat cr wafer mo day h min ...
     op hum probe temp y sw df
tolerance y

Automatic output for combinations of confidence and coverage is shown
below:

 2-SIDED DISTRIBUTION-FREE TOLERANCE LIMITS: 

 INVOLVING XMIN = 97.01400  AND  XMAX = 97.11400
     CONFIDENCE (%)       COVERAGE (%)
           100.0       0.5000000E+02
            99.3       0.7500000E+02
            72.9       0.9000000E+02
            35.8       0.9500000E+02
            12.9       0.9750000E+02
             2.6       0.9900000E+02
             0.7       0.9950000E+02
             0.0       0.9990000E+02
             0.0       0.9995000E+02
             0.0       0.9999000E+02

Note that if 99% confidence is required, the interval that covers the entire
sample data set is guaranteed to achieve a coverage of only 75% of the
population values.

What is the
optimal sample
size?

Another question of interest is, "How large should a sample be so that one
can be assured with probability  that the tolerance interval will contain at
least a proportion p of the population?"

7.2.6.5. Tolerance intervals based on the largest and smallest observations
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Approximation
for N

A rather good approximation for the required sample size is given by

where  is the critical value of the chi-square distribution with 4

degrees of freedom that is exceeded with probability 1 - .

Example of the
effect of p on
the sample size

Suppose we want to know how many measurements to make in order to
guarantee that the interval between the smallest and largest observations
covers a proportion p of the population with probability =0.95. From the
table for the upper critical value of the chi-square distribution, look under the
column labeled 0.05 in the row for 4 degrees of freedom. The value is found

to be  and calculations are shown below for p equal to 0.90

and 0.99.

These calculations demonstrate that requiring the tolerance interval to cover
a very large proportion of the population may lead to an unacceptably large
sample size.

7.2.6.5. Tolerance intervals based on the largest and smallest observations
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7. Product and Process Comparisons

7.3.Comparisons based on data from two
processes

Outline for
this section

In many manufacturing environments it is common to have two or more
processes performing the same task or generating similar products. The
following pages describe tests covering several of the most common and
useful cases for two processes.

Do two processes have the same mean?

Tests when the standard deviations are equal1.  

Tests when the standard deviations are unequal2.  

Tests for paired data3.  

1.  

Do two processes have the same standard deviation?2.  

Do two processes produce the same proportion of defectives?3.  

If the observations are failure times, are the failure rates (or mean
times to failure) the same?

4.  

Example of
a dual track
process

For example, in an automobile manufacturing plant, there may exist
several assembly lines producing the same part. If one line goes down
for some reason, parts can still be produced and production will not be
stopped. For example, if the parts are piston rings for a particular model
car, the rings produced by either line should conform to a given set of
specifications.

How does one confirm that the two processes are in fact producing rings
that are similar? That is, how does one determine if the two processes
are similar?

7.3. Comparisons based on data from two processes

http://www.itl.nist.gov/div898/handbook/prc/section3/prc3.htm (1 of 2) [5/1/2006 10:38:47 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


The goal is
to determine
if the two
processes
are similar

In order to answer this question, data on piston rings are collected for
each process. For example, on a particular day, data on the diameters of
ten piston rings from each process are measured over a one-hour time
frame.

To determine if the two processes are similar, we are interested in
answering the following questions:

Do the two processes produce piston rings with the same
diameter?

1.  

Do the two processes have similar variability in the diameters of
the rings produced?

2.  

Unknown
standard
deviation

The second question assumes that one does not know the standard
deviation of either process and therefore it must be estimated from the
data. This is usually the case, and the tests in this section assume that the
population standard deviations are unknown.

Assumption
of a normal
distribution

The statistical methodology used (i.e., the specific test to be used) to
answer these two questions depends on the underlying distribution of
the measurements. The tests in this section assume that the data are
normally distributed.

7.3. Comparisons based on data from two processes
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.1. Do two processes have the same mean?

Testing
hypotheses
related to
the means of
two
processes

Given two random samples of measurements,

Y1, ..., YN and Z1, ..., ZN

from two independent processes (the Y's are sampled from process 1 and the Z's
are sampled from process 2), there are three types of questions regarding the true
means of the processes that are often asked. They are:

Are the means from the two processes the same?1.  

Is the mean of process 1 less than or equal to the mean of process 2?2.  

Is the mean of process 1 greater than or equal to the mean of process 2?3.  

Typical null
hypotheses

The corresponding null hypotheses that test the true mean of the first process,
, against the true mean of the second process,  are:

H0:  = 1.  

H0:  < or equal to 2.  

H0:  > or equal to 3.  

Note that as previously discussed, our choice of which null hypothesis to use is
typically made based on one of the following considerations:

When we are hoping to prove something new with the sample data, we
make that the alternative hypothesis, whenever possible.

1.  

When we want to continue to assume a reasonable or traditional
hypothesis still applies, unless very strong contradictory evidence is
present, we make that the null hypothesis, whenever possible.

2.  

7.3.1. Do two processes have the same mean?
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Basic
statistics
from the two
processes

The basic statistics for the test are the sample means

 ; 

and the sample standard deviations

with degrees of freedom  and  respectively.

Form of the
test statistic
where the
two
processes
have
equivalent
standard
deviations

If the standard deviations from the two processes are equivalent, and this should
be tested before this assumption is made, the test statistic is

where the pooled standard deviation is estimated as

with degrees of freedom  .

7.3.1. Do two processes have the same mean?
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Form of the
test statistic
where the
two
processes do
NOT have
equivalent
standard
deviations

If it cannot be assumed that the standard deviations from the two processes are
equivalent, the test statistic is

The degrees of freedom are not known exactly but can be estimated using the
Welch-Satterthwaite approximation

Test
strategies

The strategy for testing the hypotheses under (1), (2) or (3) above is to calculate
the appropriate t statistic from one of the formulas above, and then perform a test
at significance level , where  is chosen to be small, typically .01, .05 or .10.
The hypothesis associated with each case enumerated above is rejected if:

1.  

2.  

3.  

Explanation
of critical
values

The critical values from the t table depend on the significance level and the

degrees of freedom in the standard deviation. For hypothesis (1)  is the

 upper critical value from the t table with  degrees of freedom and
similarly for hypotheses (2) and (3).

7.3.1. Do two processes have the same mean?
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Example of
unequal
number of
data points

A new procedure (process 2) to assemble a device is introduced and tested for
possible improvement in time of assembly. The question being addressed is
whether the mean, , of the new assembly process is smaller than the mean,

, for the old assembly process (process 1). We choose to test hypothesis (2) in

the hope that we will reject this null hypothesis and thereby feel we have a strong
degree of confidence that the new process is an improvement worth
implementing. Data (in minutes required to assemble a device) for both the new
and old processes are listed below along with their relevant statistics.

        Device    Process 1 (Old)  Process 2 (New)

           1            32            36
           2            37            31
           3            35            30
           4            28            31
           5            41            34
           6            44            36
           7            35            29
           8            31            32
           9            34            31
          10            38
          11            42

Mean                36.0909        32.2222
Standard deviation   4.9082         2.5386
No. measurements         11              9
Degrees freedom          10              8

Computation
of the test
statistic

From this table we generate the test statistic

with the degrees of freedom approximated by

7.3.1. Do two processes have the same mean?
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Decision
process

For a one-sided test at the 5% significance level, go to the t table for 5%
signficance level, and look up the critical value for degrees of freedom  = 16.
The critical value is 1.746. Thus, hypothesis (2) is rejected because the test
statistic (t = 2.269) is greater than 1.746 and, therefore, we conclude that process
2 has improved assembly time (smaller mean) over process 1.

7.3.1. Do two processes have the same mean?
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes
7.3.1. Do two processes have the same mean?

7.3.1.1.Analysis of paired observations

Definition of
paired
comparisons

Given two random samples,

Y1, ..., YN    and    Z1, ..., ZN

from two populations, the data are said to be paired if the ith
measurement on the first sample is naturally paired with the ith
measurement on the second sample. For example, if N supposedly
identical products are chosen from a production line, and each one, in
turn, is tested with first one measuring device and then with a second
measuring device, it is possible to decide whether the measuring devices
are compatible; i.e., whether there is a difference between the two
measurement systems. Similarly, if "before" and "after" measurements
are made with the same device on N objects, it is possible to decide if
there is a difference between "before" and "after"; for example, whether
a cleaning process changes an important characteristic of an object.
Each "before" measurement is paired with the corresponding "after"
measurement, and the differences

are calculated.

Basic
statistics for
the test

The mean and standard deviation for the differences are calculated as

and

with N - 1 degrees of freedom.

7.3.1.1. Analysis of paired observations
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Test statistic
based on the
t
distribution

The paired sample t-test is used to test for the difference of two means
before and after a treatment. The test statistic is:

The hypotheses described on the foregoing page are rejected if:

1.  

2.  

3.  

where for hypothesis (1)  is the upper  critical value from

the t distribution with  degrees of freedom and similarly for cases (2)
and (3). Critical values can be found in the t-table in Chapter 1.

7.3.1.1. Analysis of paired observations
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes
7.3.1. Do two processes have the same mean?

7.3.1.2.Confidence intervals for differences
between means

Definition of
confidence
interval for
difference
between
population
means

Given two random samples,

Y1, ..., YN    and    Z1, ..., ZN

from two populations, two-sided confidence intervals with 100 (1- )% coverage
for the difference between the unknown population means,  and , are shown in
the table below. Relevant statistics for paired observations and for unpaired
observations are shown elsewhere.

Two-sided confidence intervals with 100(1- )% coverage for  - :

Paired observations

 -  (where  = )

Unpaired observations

 -  (where  = )

 -  (where   )

Interpretation
of confidence
interval

One interpretation of the confidence interval for means is that if zero is contained
within the confidence interval, the two population means are equivalent.

7.3.1.2. Confidence intervals for differences between means
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.2.Do two processes have the same
standard deviation?

Testing
hypotheses
related to
standard
deviations
from two
processes

Given two random samples of measurements,

Y1, ..., YN    and    Z1, ..., ZN

from two independent processes, there are three types of questions
regarding the true standard deviations of the processes that can be
addressed with the sample data. They are:

Are the standard deviations from the two processes the same?1.  

Is the standard deviation of one process less than the standard
deviation of the other process?

2.  

Is the standard deviation of one process greater than the standard
deviation of the other process?

3.  

Typical null
hypotheses

The corresponding null hypotheses that test the true standard deviation of
the first process, , against the true standard deviation of the second

process,  are:

H0:  = 1.  

H0:   2.  

H0:   3.  

Basic
statistics
from the two
processes

The basic statistics for the test are the sample variances

and degrees of freedom  and , respectively.

7.3.2. Do two processes have the same standard deviation?
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Form of the
test statistic

The test statistic is

Test
strategies

The strategy for testing the hypotheses under (1), (2) or (3) above is to
calculate the F statistic from the formula above, and then perform a test
at significance level , where  is chosen to be small, typically .01, .05
or .10. The hypothesis associated with each case enumerated above is
rejected if:

 or 1.  

2.  

3.  

Explanation
of critical
values

The critical values from the F table depend on the significance level and
the degrees of freedom in the standard deviations from the two
processes. For hypothesis (1):

 is the upper critical value from the F table with●   

 degrees of freedom for the numerator and●   

 degrees of freedom for the denominator●   

and

 is the upper critical value from the F table with●   

 degrees of freedom for the numerator and●   

 degrees of freedom for the denominator.●   

7.3.2. Do two processes have the same standard deviation?

http://www.itl.nist.gov/div898/handbook/prc/section3/prc32.htm (2 of 4) [5/1/2006 10:38:50 AM]

http://www.itl.nist.gov/div898/handbook/eda/section3//eda3673.htm


Caution on
looking up
critical
values

The F distribution has the property that

which means that only upper critical values are required for two-sided
tests. However, note that the degrees of freedom are interchanged in the
ratio. For example, for a two-sided test at significance level 0.05, go to
the F table labeled "2.5% significance level".

For , reverse the order of the degrees of freedom; i.e.,

look across the top of the table for  and down the table

for .

●   

For , look across the top of the table for 

and down the table for .

●   

Critical values for cases (2) and (3) are defined similarly, except that the
critical values for the one-sided tests are based on  rather than on .

Two-sided
confidence
interval

The two-sided confidence interval for the ratio of the two unknown
variances (squares of the standard deviations) is shown below.

Two-sided confidence interval with 100(1- )% coverage for:

One interpretation of the confidence interval is that if the quantity "one"
is contained within the interval, the standard deviations are equivalent.

7.3.2. Do two processes have the same standard deviation?
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Example of
unequal
number of
data points

A new procedure to assemble a device is introduced and tested for
possible improvement in time of assembly. The question being addressed
is whether the standard deviation, , of the new assembly process is

better (i.e., smaller) than the standard deviation, , for the old assembly
process. Therefore, we test the null hypothesis that . We form
the hypothesis in this way because we hope to reject it, and therefore
accept the alternative that  is less than . This is hypothesis (2).
Data (in minutes required to assemble a device) for both the old and new
processes are listed on an earlier page. Relevant statistics are shown
below:

                 Process 1          Process 2

Mean                36.0909               32.2222
Standard deviation   4.9082                2.5874
No. measurements         11                     9
Degrees freedom          10                     8

Computation
of the test
statistic

From this table we generate the test statistic

Decision
process

For a test at the 5% significance level, go to the F table for 5%
signficance level, and look up the critical value for numerator degrees of

freedom  = 10 and denominator degrees of freedom 
= 8. The critical value is 3.35. Thus, hypothesis (2) can be rejected
because the test statistic (F = 3.60) is greater than 3.35. Therefore, we
accept the alternative hypothesis that process 2 has better precision
(smaller standard deviation) than process 1.

7.3.2. Do two processes have the same standard deviation?
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.3.How can we determine whether two
processes produce the same
proportion of defectives?

Case 1: Large Samples (Normal Approximation to Binomial)

The
hypothesis of
equal
proportions
can be tested
using a z
statistic

If the samples are reasonably large we can use the normal
approximation to the binomial to develop a test similar to testing
whether two normal means are equal.

Let sample 1 have x1 defects out of n1 and sample 2 have x2 defects
out of n2. Calculate the proportion of defects for each sample and the z
statistic below:

where

Compare z to the normal z  table value for a 2-sided test. For a one
sided test, assuming the alternative hypothesis is p1 > p2, compare z to
the normal z  table value. If the alternative hypothesis is p1 < p2,
compare z to -z .

Case 2: An Exact Test for Small Samples

7.3.3. How can we determine whether two processes produce the same proportion of defectives?
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The Fisher
Exact
Probability
test is an
excellent
choice for
small samples

The Fisher Exact Probability Test is an excellent nonparametric
technique for analyzing discrete data (either nominal or ordinal), when
the two independent samples are small in size. It is used when the
results from two independent random samples fall into one or the other
of two mutually exclusive classes (i.e., defect versus good, or
successes vs failures).

Example of a
2x2
contingency
table

In other words, every subject in each group has one of two possible
scores. These scores are represented by frequencies in a 2x2
contingency table. The following discussion, using a 2x2 contingency
table, illustrates how the test operates.

We are working with two independent groups, such as experiments
and controls, males and females, the Chicago Bulls and the New York
Knicks, etc.

- + Total
Group I A B A+B
Group

II
C D C+D

Total A+C B+D N

The column headings, here arbitrarily indicated as plus and minus,
may be of any two classifications, such as: above and below the
median, passed and failed, Democrat and Republican, agree and
disagree, etc.

Determine
whether two
groups differ
in the
proportion
with which
they fall into
two
classifications

Fisher's test determines whether the two groups differ in the proportion
with which they fall into the two classifications. For the table above,
the test would determine whether Group I and Group II differ
significantly in the proportion of plusses and minuses attributed to
them.

The method proceeds as follows:

The exact probability of observing a particular set of frequencies in a 2
× 2 table, when the marginal totals are regarded as fixed, is given by
the hypergeometric distribution

7.3.3. How can we determine whether two processes produce the same proportion of defectives?
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But the test does not just look at the observed case. If needed, it also
computes the probability of more extreme outcomes, with the same
marginal totals. By "more extreme", we mean relative to the null
hypothesis of equal proportions.

Example of
Fisher's test

This will become clear in the next illustrative example. Consider the
following set of 2 x 2 contingency tables:

Observed Data More extreme outcomes with same marginals
(a) (b) (c)

2 5 7
3 2 5
5 7 12

1 6 7
4 1 5
5 7 12

0 7 7
5 0 5
5 7 12

Table (a) shows the observed frequencies and tables (b) and (c) show
the two more extreme distributions of frequencies that could occur
with the same marginal totals 7, 5. Given the observed data in table (a)
, we wish to test the null hypothesis at, say,  = .05.

Applying the previous formula to tables (a), (b), and (c), we obtain

7.3.3. How can we determine whether two processes produce the same proportion of defectives?
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The probability associated with the occurrence of values as extreme as
the observed results under H0 is given by adding these three p's:

.26515 + .04419 + .00126 = .31060

So p = .31060 is the probability that we get from Fisher's test. Since
.31060 is larger than , we cannot reject the null hypothesis.

Tocher's Modification

Tocher's
modification
makes
Fisher's test
less
conservative

Tocher (1950) showed that a slight modification of the Fisher test
makes it a more useful test. Tocher starts by isolating the probability of
all cases more extreme than the observed one. In this example that is

pb + pc = .04419 + .00126 = .04545

Now, if this probability is larger than , we cannot reject Ho. But if
this probability is less than , while the probability that we got from
Fisher's test is greater than  (as is the case in our example) then
Tocher advises to compute the following ratio:

For the data in the example, that would be

Now we go to a table of random numbers and at random draw a
number between 0 and 1. If this random number is smaller than the
ratio above of .0172, we reject H0. If it is larger we cannot reject H0.
This added small probability of rejecting H0 brings the test procedure
Type I error (i.e.,  value) to exactly .05 and makes the Fisher test
less conservative.

The test is a one-tailed test. For a two-tailed test, the value of p
obtained from the formula must be doubled.

A difficulty with the Tocher procedure is that someone else analyzing
the same data would draw a different random number and possibly
make a different decision about the validity of H0.

7.3.3. How can we determine whether two processes produce the same proportion of defectives?
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.4.Assuming the observations are
failure times, are the failure rates (or
Mean Times To Failure) for two
distributions the same?

Comparing
two
exponential
distributions
is to
compare the
means or
hazard rates

The comparison of two (or more) life distributions is a common
objective when performing statistical analyses of lifetime data. Here we
look at the one-parameter exponential distribution case.

In this case, comparing two exponential distributions is equivalent to
comparing their means (or the reciprocal of their means, known as their
hazard rates).

Type II Censored data

Definition of
Type II
censored
data

Definition: Type II censored data occur when a life test is terminated
exactly when a pre-specified number of failures have occurred. The
remaining units have not yet failed. If n units were on test, and the
pre-specified number of failures is r (where r is less than or equal to n),
then the test ends at tr = the time of the r-th failure.

Two
exponential
samples
oredered by
time

Suppose we have Type II censored data from two exponential
distributions with means 1 and 2. We have two samples from these
distributions, of sizes n1 on test with r1 failures and n2 on test with r2
failures, respectively. The observations are time to failure and are
therefore ordered by time.

7.3.4. Assuming the observations are failure times, are the failure rates (or Mean Times To Failure) for two distributions the same?
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Test of
equality of

1 and 2

and
confidence
interval for

1/ 2

Letting

Then

and

with T1 and T2 independent. Thus

where

 and 

has an F distribution with (2r1, 2r2) degrees of freedom. Tests of
equality of 1 and 2 can be performed using tables of the F distribution
or computer programs. Confidence intervals for 1 / 2, which is the
ratio of the means or the hazard rates for the two distributions, are also
readily obtained.

Numerical
example

A numerical application will illustrate the concepts outlined above.

For this example,

H0: 1/ 2 = 1

Ha: 1/ 2  1

Two samples of size 10 from exponential distributions were put on life
test. The first sample was censored after 7 failures and the second
sample was censored after 5 failures. The times to failure were:

Sample 1: 125 189 210 356 468 550 610
Sample 2: 170 234 280 350 467

So r1 = 7, r2 = 5 and t1,(r1) = 610, t2,(r2)=467.

Then T1 = 4338 and T2 = 3836.

The estimator for 1 is 4338 / 7 = 619.71 and the estimator for 2 is
3836 / 5 = 767.20.

7.3.4. Assuming the observations are failure times, are the failure rates (or Mean Times To Failure) for two distributions the same?
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The ratio of the estimators = U = 619.71 / 767.20 = .808.

If the means are the same, the ratio of the estimators, U, follows an F
distribution with 2r1, 2r2 degrees of freedom. The P(F < .808) = .348.
The associated p-value is 2(.348) = .696. Based on this p-value, we find
no evidence to reject the null hypothesis (that the true but unknown ratio
= 1). Note that this is a two-sided test, and we would reject the null
hyposthesis if the p-value is either too small (i.e., less or equal to .025)
or too large (i.e., greater than or equal to .975) for a 95% significance
level test.

We can also put a 95% confidence interval around the ratio of the two
means. Since the .025 and .975 quantiles of F(14,10) are 0.3178 and
3.5504, respectively, we have

Pr(U/3.5504 < 1/ 2 < U/.3178) = .95

and (.228, 2.542) is a 95% confidence interval for the ratio of the
unknown means. The value of 1 is within this range, which is another
way of showing that we cannot reject the null hypothesis at the 95%
significance level.

7.3.4. Assuming the observations are failure times, are the failure rates (or Mean Times To Failure) for two distributions the same?
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.5.Do two arbitrary processes have the
same mean?

The
nonparametric
equivalent of
the t-test is
due to Mann
and Whitney,
called the U
test

By "arbitrary" we mean that we make no underlying assumptions
about normality or any other distribution. The test is called the
Mann-Whitney U-Test, which is the nonparametric equivalent of the
t-test based for normal means.

The U-test (as the majority of nonparametric tests) uses the rank sums
of the two samples.

Procedure The procedure flows as follows

Rank all (n1 + n2) observations in ascending order. Ties receive
the average of their observations.

1.  

Calculate the sum of the ranks, call these Ta and Tb2.  

Calculate the U statistic,

Ua = n1(n2) + .5(n1)(n1 + 1) - Ta

or

Ub = n1(n2) + .5(n2)(n2 + 1) - Tb

where Ua + Ub = n1(n2).

3.  

Null
Hypothesis

The null hypothesis is: the populations have the same median. The
alternative hypothesis is: The medians are NOT the same.

7.3.5. Do two arbitrary processes have the same mean?
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Test statistic The test statistic, U, is the smaller of Ua and Ub. For sample sizes
larger than 20, we can use the normal z as follows:

z = [ U - E(U)] / 

where

The critical value is the normal tabled z for /2 for a two-tailed test or
z at  level, for a one-tail test.

For small samples use tables, which are readily available in most
textbooks on nonparametric statistics.

Example

An illustrative
example of the
U test

Two processing systems were used to clean wafers. The following
data represent the (coded) particle counts. The null hypothesis is that
there is no difference between the means of the particle counts; the
alternative hypothesis is that there is a difference. The solution shows
the typical kind of output software for this procedure would generate,
based on the large sample approximation.

Group A Rank Group B Rank

.55 8 .49 5

.67 15.5 .68 17

.43 1 .59 9.5

.51 6 .72 19

.48 3.5 .67 15.5

.60 11 .75 20.5

.71 18 .65 13.5

.53 7 .77 22

.44 2 .62 12

.65 13.5 .48 3.5

.75 20.5 .59 9.5

N Sum of Ranks U Std. Dev of U Median

A 11 106.000 81.000 15.229 0.540

B 11 147.000 40.000 15.229 0.635

Enter value for  (press Enter for .05): .05
Enter 1 or 2 for One- or Two-sided test: 2

7.3.5. Do two arbitrary processes have the same mean?
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E(U) = 60.500000

The Z-test statistic = 1.346133
The critical value = +/- 1.960395.

(1.346133) = 0.910870
Right Tail Area = 0.089130

Cannot reject the null hypothesis.

A two-sided confidence interval about U - E(U) is:

Prob {-9.3545 < DELTA < 50.3545 } = 0.9500

DELTA is the absolute difference between U and E(U).
The test statistic is given by: (DELTA / SIGMA).

7.3.5. Do two arbitrary processes have the same mean?
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7. Product and Process Comparisons

7.4.Comparisons based on data from more
than two processes

Introduction This section begins with a nonparametric procedure for comparing
several populations with unknown distributions. Then the following
topics are discussed:

Comparing variances●   

Comparing means (ANOVA technique)●   

Estimating variance components●   

Comparing categorical data●   

Comparing population proportion defectives●   

Making multiple comparisons●   

7.4. Comparisons based on data from more than two processes
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.1.How can we compare several
populations with unknown
distributions (the Kruskal-Wallis
test)?

The Kruskal-Wallis (KW) Test for Comparing Populations with
Unknown Distributions

A
nonparametric
test for
comparing
population
medians by
Kruskal and
Wallis

The KW procedure tests the null hypothesis that k samples from
possibly different populations actually originate from similar
populations, at least as far as their central tendencies, or medians, are
concerned. The test assumes that the variables under consideration
have underlying continuous distributions.

In what follows assume we have k samples, and the sample size of the
i-th sample is ni, i = 1, 2, . . ., k.

Test based on
ranks of
combined data

In the computation of the KW statistic, each observation is replaced
by its rank in an ordered combination of all the k samples. By this we
mean that the data from the k samples combined are ranked in a single
series. The minimum observation is replaced by a rank of 1, the
next-to-the-smallest by a rank of 2, and the largest or maximum
observation is replaced by the rank of N, where N is the total number
of observations in all the samples (N is the sum of the ni).

Compute the
sum of the
ranks for each
sample

The next step is to compute the sum of the ranks for each of the
original samples. The KW test determines whether these sums of
ranks are so different by sample that they are not likely to have all
come from the same population.

7.4.1. How can we compare several populations with unknown distributions (the Kruskal-Wallis test)?
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Test statistic
follows a  2

distribution

It can be shown that if the k samples come from the same population,
that is, if the null hypothesis is true, then the test statistic, H, used in
the KW procedure is distributed approximately as a chi-square
statistic with df = k - 1, provided that the sample sizes of the k samples
are not too small (say, ni>4, for all i). H is defined as follows:

where

k = number of samples (groups)●   

ni = number of observations for the i-th sample or group●   

N = total number of observations (sum of all the ni)●   

Ri = sum of ranks for group i●   

Example

An illustrative
example

The following data are from a comparison of four investment firms.
The observations represent percentage of growth during a three month
period.for recommended funds.
 

A B C D

4.2 3.3 1.9 3.5
4.6 2.4 2.4 3.1
3.9 2.6 2.1 3.7
4.0 3.8 2.7 4.1

2.8 1.8 4.4

Step 1: Express the data in terms of their ranks 

A B C D

17 10 2 11
19 4.5 4.5 9
14 6 3 12
15 13 7 16

7.4.1. How can we compare several populations with unknown distributions (the Kruskal-Wallis test)?
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8 1 18

SUM 65 41.5 17.5 66

Compute the
test statistic

The corresponding H test statistic is

From the chi-square table in Chapter 1, the critical value for  = .05
with df = k-1 = 3 is 7.812. Since 13.678 > 7.812, we reject the null
hypothesis.

Note that the rejection region for the KW procedure is one-sided,
since we only reject the null hypothesis when the H statistic is too
large.

The KW test is implemented in the Dataplot command KRUSKAL
WALLIS TEST Y X .

7.4.1. How can we compare several populations with unknown distributions (the Kruskal-Wallis test)?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.2.Assuming the observations are
normal, do the processes have the
same variance?

Before
comparing
means, test
whether the
variances
are equal

Techniques for comparing means of normal populations generally
assume the populations have the same variance. Before using these
ANOVA techniques, it is advisable to test whether this assumption of
homogeneity of variance is reasonable. The following procedure is
widely used for this purpose.

Bartlett's Test for Homogeneity of Variances

Null
hypothesis

Bartlett's test is a commonly used test for equal variances. Let's examine
the null and alternative hypotheses.

against

Test statistic Assume we have samples of size ni from the i-th population, i = 1, 2, . . .
, k, and the usual variance estimates from each sample:

where

Now introduce the following notation: j = nj - 1 (the j are the degrees
of freedom) and

7.4.2. Assuming the observations are normal, do the processes have the same variance?
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The Bartlett's test statistic M is defined by

Distribution
of the test
statistic

When none of the degrees of freedom is small, Bartlett showed that M is
distributed approximately as . The chi-square approximation is
generally acceptable if all the ni are at least 5.

Bias
correction

This is a slightly biased test, according to Bartlett. It can be improved by
dividing M by the factor

Instead of M, it is suggested to use M/C for the test statistic.

Bartlett's
test is not
robust

This test is not robust, it is very sensitive to departures from normality.

An alternative description of Bartlett's test, which also describes how
Dataplot implements the test, appears in Chapter 1.

Gear Data Example (from Chapter 1):

An
illustrative
example of
Bartlett's
test

Gear diameter measurements were made on 10 batches of product. The
complete set of measurements appears in Chapter 1. Bartlett's test was
applied to this dataset leading to a rejection of the assumption of equal
batch variances at the .05 critical value level. applied to this dataset

The Levene Test for Homogeneity of Variances

7.4.2. Assuming the observations are normal, do the processes have the same variance?
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The Levene
test for
equality of
variances

Levene's test offers a more robust alternative to Bartlett's procedure.
That means it will be less likely to reject a true hypothesis of equality of
variances just because the distributions of the sampled populations are
not normal. When non-normality is suspected, Levene's procedure is a
better choice than Bartlett's.

Levene's test and its implementation in DATAPLOT were described in
Chapter 1. This description also includes an example where the test is
applied to the gear data. Levene's test does not reject the assumption of
equality of batch variances for these data. This differs from the
conclusion drawn from Bartlett's test and is a better answer if, indeed,
the batch population distributions are non-normal.

7.4.2. Assuming the observations are normal, do the processes have the same variance?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.3.Are the means equal?

Test equality
of means

The procedure known as the Analysis of Variance or ANOVA is used to
test hypotheses concerning means when we have several populations.

The Analysis of Variance (ANOVA)

The ANOVA
procedure is
one of the
most
powerful
statistical
techniques

ANOVA is a general technique that can be used to test the hypothesis
that the means among two or more groups are equal, under the
assumption that the sampled populations are normally distributed.

A couple of questions come immediately to mind: what means? and
why analyze variances in order to derive conclusions about the means?

Both questions will be answered as we delve further into the subject.

Introduction
to ANOVA

To begin, let us study the effect of temperature on a passive component
such as a resistor. We select three different temperatures and observe
their effect on the resistors. This experiment can be conducted by
measuring all the participating resistors before placing n resistors each
in three different ovens.

Each oven is heated to a selected temperature. Then we measure the
resistors again after, say, 24 hours and analyze the responses, which are
the differences between before and after being subjected to the
temperatures. The temperature is called a factor. The different
temperature settings are called levels. In this example there are three
levels or settings of the factor Temperature.

What is a
factor?

A factor is an independent treatment variable whose settings
(values) are controlled and varied by the experimenter. The
intensity setting of a factor is the level.

Levels may be quantitative numbers or, in many cases, simply
"present" or "not present" ("0" or "1").

●   

7.4.3. Are the means equal?
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The 1-way
ANOVA

In the experiment above, there is only one factor, temperature, and the
analysis of variance that we will be using to analyze the effect of
temperature is called a one-way or one-factor ANOVA.

The 2-way
or 3-way
ANOVA

We could have opted to also study the effect of positions in the oven. In
this case there would be two factors, temperature and oven position.
Here we speak of a two-way or two-factor ANOVA. Furthermore, we
may be interested in a third factor, the effect of time. Now we deal with
a three-way or three-factorANOVA. In each of these ANOVA's we test
a variety of hypotheses of equality of means (or average responses when
the factors are varied).

Hypotheses
that can be
tested in an
ANOVA

First consider the one-way ANOVA. The null hypothesis is: there is no
difference in the population means of the different levels of factor A
(the only factor).

The alternative hypothesis is: the means are not the same.

For the 2-way ANOVA, the possible null hypotheses are:

There is no difference in the means of factor A1.  

There is no difference in means of factor B2.  

There is no interaction between factors A and B3.  

The alternative hypothesis for cases 1 and 2 is: the means are not equal.

The alternative hypothesis for case 3 is: there is an interaction between
A and B.

For the 3-way ANOVA: The main effects are factors A, B and C. The
2-factor interactions are: AB, AC, and BC. There is also a three-factor
interaction: ABC.

For each of the seven cases the null hypothesis is the same: there is no
difference in means, and the alternative hypothesis is the means are not
equal.

7.4.3. Are the means equal?
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The n-way
ANOVA

In general, the number of main effects and interactions  can be found by
the following expression:

The first term is for the overall mean, and is always 1. The second term
is for the number of main effects. The third term is for the number of
2-factor interactions, and so on. The last term is for the n-factor
interaction and is always 1.

In what follows, we will discuss only the 1-way and 2-way ANOVA.

7.4.3. Are the means equal?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.1.1-Way ANOVA overview

Overview and
principles

This section gives an overview of the one-way ANOVA. First we
explain the principles involved in the 1-way ANOVA. 

Partition
response into
components

In an analysis of variance the variation in the response
measurements is partitoned into components that correspond to
different sources of variation.

The goal in this procedure is to split the total variation in the data into
a portion due to random error and portions due to changes in the
values of the independent variable(s). 

Variance of n
measurements

The variance of n measurements is given by 

where  is the mean of the n measurements. 

Sums of
squares and
degrees of
freedom

The numerator part is called the sum of squares of deviations from the
mean, and the denominator is called the degrees of freedom.

The variance, after some algebra, can be rewritten as:

The first term in the numerator is called the "raw sum of squares" and
the second term is called the "correction term for the mean". Another
name for the numerator is the "corrected sum of squares", and this is
usually abbreviated by Total SS or SS(Total).

7.4.3.1. 1-Way ANOVA overview
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The SS in a 1-way ANOVA can be split into two components, called
the "sum of squares of treatments" and "sum of squares of error",
abbreviated as SST and SSE, respectively. 

The guiding
principle
behind
ANOVA is the
decomposition
of the sums of
squares, or
Total SS

Algebraically, this is expressed by

where k is the number of treatments and the bar over the y.. denotes
the "grand" or "overall" mean. Each ni is the number of observations
for treatment i. The total number of observations is N (the sum of the
ni). 

Note on
subscripting

Don't be alarmed by the double subscripting. The total SS can be
written single or double subscripted. The double subscript stems from
the way the data are arranged in the data table. The table is usually a
rectangular array with k columns and each column consists of ni rows
(however, the lengths of the rows, or the ni, may be unequal).

Definition of
"Treatment"

We introduced the concept of treatment. The definition is: A treatment
is a specific combination of factor levels whose effect is to be
compared with other treatments.

7.4.3.1. 1-Way ANOVA overview
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.2.The 1-way ANOVA model and
assumptions

A model that
describes
the
relationship
between the
response
and the
treatment
(between the
dependent
and
independent
variables)

The mathematical model that describes the relationship between the
response and treatment for the one-way ANOVA is given by

where Yij represents the j-th observation (j = 1, 2, ...ni) on the i-th
treatment (i = 1, 2, ..., k levels). So, Y23 represents the third observation
using level 2 of the factor.  is the common effect for the whole
experiment, i represents the i-th treatment effect and ij represents the
random error present in the j-th observation on the i-th treatment.

Fixed effects
model

The errors ij are assumed to be normally and independently (NID)

distributed, with mean zero and variance .  is always a fixed
parameter and  are considered to be fixed parameters if
the levels of the treatment are fixed, and not a random sample from a
population of possible levels. It is also assumed that  is chosen so that

holds. This is the fixed effects model.

Random
effects
model

If the k levels of treatment are chosen at random, the model equation
remains the same. However, now the i's are random variables assumed
to be NID(0, ). This is the random effects model.

Whether the levels are fixed or random depends on how these levels are
chosen in a given experiment.

7.4.3.2. The 1-way ANOVA model and assumptions
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7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.3.The ANOVA table and tests of
hypotheses about means

Sums of
Squares help
us compute
the variance
estimates
displayed in
ANOVA
Tables

The sums of squares SST and SSE previously computed for the
one-way ANOVA are used to form two mean squares, one for
treatments and the second for error. These mean squares are denoted
by MST and MSE, respectively. These are typically displayed in a
tabular form, known as an ANOVA Table. The ANOVA table also
shows the statistics used to test hypotheses about the population means.

Ratio of MST
and MSE

When the null hypothesis of equal means is true, the two mean squares
estimate the same quantity (error variance), and should be of
approximately equal magnitude. In other words, their ratio should be
close to 1. If the null hypothesis is false, MST should be larger than
MSE.

Divide sum of
squares by
degrees of
freedom to
obtain mean
squares

The mean squares are formed by dividing the sum of squares by the
associated degrees of freedom.

Let N =  ni. Then, the degrees of freedom for treatment, DFT = k - 1,
and the degrees of freedom for error, DFE = N - k.

The corresponding mean squares are:

MST = SST / DFT
MSE = SSE / DFE

The F-test The test statistic, used in testing the equality of treatment means is: F =
MST / MSE.

The critical value is the tabular value of the F distribution, based on the
chosen  level and the degrees of freedom DFT and DFE.

The calculations are displayed in an ANOVA table, as follows:

7.4.3.3. The ANOVA table and tests of hypotheses about means
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ANOVA table
Source SS DF MS F

Treatments SST k-1 SST / (k-1) MST/MSE
Error SSE N-k SSE / (N-k)

Total
(corrected)

SS N-1

The word "source" stands for source of variation. Some authors prefer
to use "between" and "within" instead of "treatments" and "error",
respectively.

ANOVA Table Example

A numerical
example

The data below resulted from measuring the difference in resistance
resulting from subjecting identical resistors to three different
temperatures for a period of 24 hours. The sample size of each group
was 5. In the language of Design of Experiments, we have an
experiment in which each of three treatments was replicated 5 times.

Level 1 Level 2 Level 3

6.9 8.3 8.0
5.4 6.8 10.5
5.8 7.8 8.1
4.6 9.2 6.9
4.0 6.5 9.3

means 5.34 7.72 8.56

The resulting ANOVA table is

Example
ANOVA table Source SS DF MS F

Treatments 27.897 2 13.949 9.59
Error 17.452 12 1.454

Total (corrected) 45.349 14
Correction Factor 779.041 1

7.4.3.3. The ANOVA table and tests of hypotheses about means
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Interpretation
of the
ANOVA table

The test statistic is the F value of 9.59. Using an  of .05, we have that
F.05; 2, 12 = 3.89 (see the F distribution table in Chapter 1). Since the
test statistic is much larger than the critical value, we reject the null
hypothesis of equal population means and conclude that there is a
(statistically) significant difference among the population means. The
p-value for 9.59 is .00325, so the test statistic is significant at that
level.

Techniques
for further
analysis

The populations here are resistor readings while operating under the
three different temperatures. What we do not know at this point is
whether the three means are all different or which of the three means is
different from the other two, and by how much.

There are several techniques we might use to further analyze the
differences. These are:

constructing confidence intervals around the difference of two
means,

●   

estimating combinations of factor levels with confidence bounds●   

multiple comparisons of combinations of factor levels tested
simultaneously.

●   

7.4.3.3. The ANOVA table and tests of hypotheses about means
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7.4.3. Are the means equal?

7.4.3.4.1-Way ANOVA calculations

Formulas
for 1-way
ANOVA
hand
calculations

Although computer programs that do ANOVA calculations now are
common, for reference purposes this page describes how to calculate the
various entries in an ANOVA table. Remember, the goal is to produce
two variances (of treatments and error) and their ratio. The various
computational formulas will be shown and applied to the data from the
previous example.

Step 1:
compute CM

STEP 1 Compute CM, the correction for the mean.

Step 2:
compute
total SS

STEP 2 Compute the total SS.

The total SS = sum of squares of all observations - CM

7.4.3.4. 1-Way ANOVA calculations
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The 829.390 SS is called the "raw" or "uncorrected " sum of squares. 

Step 3:
compute
SST

STEP 3 Compute SST, the treatment sum of squares.

First we compute the total (sum) for each treatment.

T1 = (6.9) + (5.4) + ... + (4.0) = 26.7 
T2 = (8.3) + (6.8) + ... + (6.5) = 38.6 
T1 = (8.0) + (10.5) + ... + (9.3) = 42.8

Then

Step 4:
compute
SSE

STEP 4 Compute SSE, the error sum of squares.

Here we utilize the property that the treatment sum of squares plus the
error sum of squares equals the total sum of squares.

Hence, SSE = SS Total - SST = 45.349 - 27.897 = 17.45. 

Step 5:
Compute
MST, MSE,
and F

STEP 5 Compute MST, MSE and their ratio, F.

MST is the mean square of treatments, MSE is the mean square of error

(MSE is also frequently denoted by ).

MST = SST / (k-1) = 27.897 / 2 = 13.949 
MSE = SSE / (N-k) = 17.452/ 12 = 1.454

where N is the total number of observations and k is the number of
treatments. Finally, compute F as

F = MST / MSE = 9.59

That is it. These numbers are the quantities that are assembled in the
ANOVA table that was shown previously. 

7.4.3.4. 1-Way ANOVA calculations
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.5.Confidence intervals for the
difference of treatment means

Confidence
intervals for
the
difference
between two
means

This page shows how to construct a confidence interval around ( i- j)
for the one-way ANOVA by continuing the example shown on a
previous page.

Formula for
the
confidence
interval

The formula for a (1- ) 100% confidence interval for the difference
between two treatment means is:

where  = MSE.

Computation
of the
confidence
interval for

3 - 1

For the example, we have the following quantities for the formula:

3 = 8.56●   

1 = 5.34●   

●   

t.025;12 = 2.179●   

Substituting these values yields (8.56 - 5.34)  2.179(0.763) or 3.22 
1.616.

That is, the confidence interval is from 1.604 to 4.836.

Additional
95%
confidence
intervals

A 95% confidence interval for 3 - 2 is: from -1.787 to 3.467.

A 95% confidence interval for 2 - 1 is: from -0.247 to 5.007.

7.4.3.5. Confidence intervals for the difference of treatment means
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Contrasts
discussed
later

Later on the topic of estimating more general linear combinations of
means (primarily contrasts) will be discussed, including how to put
confidence bounds around contrasts.

7.4.3.5. Confidence intervals for the difference of treatment means
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.6.Assessing the response from any
factor combination

Contrasts This page treats how to estimate and put confidence bounds around the
response to different combinations of factors. Primary focus is on the
combinations that are known as contrasts. We begin, however, with the
simple case of a single factor-level mean.

Estimation of a Factor Level Mean With Confidence Bounds

Estimating
factor level
means

An unbiased estimator of the factor level mean i in the 1-way
ANOVA model is given by:

where

Variance of
the factor
level means

The variance of this sample mean estimator is

7.4.3.6. Assessing the response from any factor combination
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Confidence
intervals for
the factor
level means

It can be shown that:

has a t-distribution with (N- k) degrees of freedom for the ANOVA
model under consideration, where N is the total number of observations
and k is the number of factor levels or groups. The degrees of freedom
are the same as were used to calculate the MSE in the ANOVA table.
That is: dfe (degrees of freedom for error) = N - k. From this we can
calculate (1- )100% confidence limits for each i. These are given by:

Example 1

Example for
a 4-level
treatment (or
4 different
treatments)

The data in the accompanying table resulted from an experiment run in
a completely randomized design in which each of four treatments was
replicated five times.

Total Mean

Group 1 6.9 5.4 5.8 4.6 4.0 26.70 5.34
Group 2 8.3 6.8 7.8 9.2 6.5 38.60 7.72
Group 3 8.0 10.5 8.1 6.9 9.3 42.80 8.56
Group 4 5.8 3.8 6.1 5.6 6.2 27.50 5.50

All Groups 135.60 6.78

7.4.3.6. Assessing the response from any factor combination
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1-Way
ANOVA
table layout

This experiment can be illustrated by the table layout for this 1-way
ANOVA experiment shown below:

Level   Sample j     
i 1 2 ... 5 Sum Mean N

1 Y11 Y12 ... Y15 Y1. 1.
n1

2 Y21 Y22 ... Y25 Y2. 2.
n2

3 Y31 Y32 ... Y35 Y3. 3.
n3

4 Y41 Y42 ... Y45 Y4. 4.
n4

All     Y. ..
nt

ANOVA
table

The resulting ANOVA table is

Source SS DF MS F
Treatments 38.820 3 12.940 9.724
Error 21.292 16 1.331  
Total (Corrected) 60.112 19   

Mean 919.368 1   
Total (Raw) 979.480 20   

The estimate for the mean of group 1 is 5.34, and the sample size is n1
= 5.

Computing
the
confidence
interval

Since the confidence interval is two-sided, the entry /2 value for the
t-table is .5(1 - .95) = .025, and the associated degrees of freedom is N -
4, or 20 - 4 = 16.

From the t table in Chapter 1, we obtain t.025;16 = 2.120.

Next we need the standard error of the mean for group 1:

Hence, we obtain confidence limits 5.34 ± 2.120 (0.5159) and the
confidence interval is

7.4.3.6. Assessing the response from any factor combination
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Definition and Estimation of Contrasts

Definition of
contrasts
and
orthogonal
contrasts

Definitions

A contrast is a linear combination of 2 or more factor level means with
coefficients that sum to zero.

Two contrasts are orthogonal if the sum of the products of
corresponding coefficients (i.e., coefficients for the same means) adds
to zero.

Formally, the definition of a contrast is expressed below, using the
notation i for the i-th treatment mean:

C = c1 1 + c2 2 + ... + cj j + ... + ck k

where

c1 + c2 + ... + cj + ... + ck =  = 0

Simple contrasts include the case of the difference between two factor
means, such as 1 - 2. If one wishes to compare treatments 1 and 2
with treatment 3, one way of expressing this is by: 1 + 2 - 2 3. Note
that

1 - 2 has coefficients +1, -1

1 + 2 - 2 3 has coefficients +1, +1, -2.
These coefficients sum to zero.

An example
of
orthogonal
contrasts

As an example of orthogonal contrasts, note the three contrasts defined
by the table below, where the rows denote coefficients for the column
treatment means.

 1 2 3 4

c1 +1 0 0 -1

c2 0 +1 -1 0

c3 +1 -1 -1 +1

7.4.3.6. Assessing the response from any factor combination
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Some
properties of
orthogonal
contrasts

The following is true:

The sum of the coefficients for each contrast is zero.1.  

The sum of the products of coefficients of each pair of contrasts
is also 0 (orthogonality property).

2.  

The first two contrasts are simply pairwise comparisons, the third
one involves all the treatments.

3.  

Estimation of
contrasts

As might be expected, contrasts are estimated by taking the same linear
combination of treatment mean estimators. In other words:

and

Note: These formulas hold for any linear combination of treatment
means, not just for contrasts.

Confidence Interval for a Contrast

Confidence
intervals for
contrasts

An unbiased estimator for a contrast C is given by

The estimator of  is

7.4.3.6. Assessing the response from any factor combination
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The estimator  is normally distributed because it is a linear
combination of independent normal random variables. It can be shown
that:

is distributed as tN-r for the one-way ANOVA model under discussion.

Therefore, the 1-  confidence limits for C are:

Example 2 (estimating contrast)

Contrast to
estimate

We wish to estimate, in our previous example, the following contrast:

and construct a 95 percent confidence interval for C.

Computing
the point
estimate and
standard
error

The point estimate is:

Applying the formulas above we obtain

and

and the standard error is  = 0.5159.

7.4.3.6. Assessing the response from any factor combination
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Confidence
interval

For a confidence coefficient of 95% and df = 20 - 4 = 16, t.025;16 = 2.12.
Therefore, the desired 95% confidence interval is -.5 ± 2.12(.5159) or

(-1.594, 0.594).

Estimation of Linear Combinations

Estimating
linear
combinations

Sometimes we are interested in a linear combination of the factor-level
means that is not a contrast. Assume that in our sample experiment
certain costs are associated with each group. For example, there might
be costs associated with each factor as follows:

Factor Cost in $
1 3
2 5
3 2
4 1

The following linear combination might then be of interest:

Coefficients
do not have
to sum to
zero for
linear
combinations

This resembles a contrast, but the coefficients ci do not sum to zero.
A linear combination is given by the definition:

with no restrictions on the coefficients ci.

Confidence
interval
identical to
contrast

Confidence limits for a linear combination C are obtained in precisely
the same way as those for a contrast, using the same calculation for the
point estimator and estimated variance.

7.4.3.6. Assessing the response from any factor combination
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.7.The two-way ANOVA

Definition of
a factorial
experiment

The 2-way ANOVA is probably the most popular layout in the Design
of Experiments. To begin with, let us define a factorial experiment:

An experiment that utilizes every combination of factor levels as
treatments is called a factorial experiment.

Model for
the two-way
factorial
experiment

In a factorial experiment with factor A at a levels and factor B at b
levels, the model for the general layout can be written as

where  is the overall mean response, i is the effect due to the i-th

level of factor A, j is the effect due to the j-th level of factor B and ij
is the effect due to any interaction between the i-th level of A and the
j-th level of B.

Fixed
factors and
fixed effects
models

At this point, consider the levels of factor A and of factor B chosen for
the experiment to be the only levels of interest to the experimenter such
as predetermined levels for temperature settings or the length of time for
process step. The factors A and B are said to be fixed factors and the
model is a fixed-effects model. Random actors will be discussed later.

When an a x b factorial experiment is conducted with an equal number
of observations per treatment combination, the total (corrected) sum of
squares is partitioned as:

SS(total) = SS(A) + SS(B) + SS(AB) + SSE
where AB represents the interaction between A and B.

For reference, the formulas for the sums of squares are:

7.4.3.7. The two-way ANOVA
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The
breakdown
of the total
(corrected
for the
mean) sums
of squares

The resulting ANOVA table for an a x b factorial experiment is

Source SS df MS

Factor A SS(A) (a - 1) MS(A) = SS(A)/(a-1) 
Factor B SS(B) (b - 1) MS(B) = SS(B)/(b-1) 

Interaction AB SS(AB) (a-1)(b-1) MS(AB)=
SS(AB)/(a-1)(b-1) 

Error SSE (N - ab) SSE/(N - ab) 
Total (Corrected)  SS(Total) (N - 1)  

The ANOVA
table can be
used to test
hypotheses
about the
effects and
interactions

The various hypotheses that can be tested using this ANOVA table
concern whether the different levels of Factor A, or Factor B, really
make a difference in the response, and whether the AB interaction is
significant (see previous discussion of ANOVA hypotheses). 

7.4.3.7. The two-way ANOVA
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.8.Models and calculations for the
two-way ANOVA

Basic Layout

The
balanced
2-way
factorial
layout

Factor A has 1, 2, ..., a levels. Factor B has 1, 2, ..., b levels. There are ab
treatment combinations (or cells) in a complete factorial layout. Assume that each
treatment cell has r independent obsevations (known as replications). When each
cell has the same number of replications, the design is a balanced factorial. In
this case, the abrdata points {yijk} can be shown pictorially as follows:

   Factor B   
  1 2 ... b
 1 y111, y112, ..., y11r y121, y122, ..., y12r ... y1b1, y1b2, ..., y1br

 2 y211, y212, ..., y21r y221, y222, ..., y22r ... y2b1, y2b2, ..., y2br

Factor
A

.

.
... ....  ...

 a ya11, ya12, ..., ya1r ya21, ya22, ..., ya2r ... yab1, yab2, ..., yabr

How to
obtain
sums of
squares
for the
balanced
factorial
layout

Next, we will calculate the sums of squares needed for the ANOVA table.

Let Ai be the sum of all observations of level i of factor A, i = 1, ... ,a. The
Ai are the row sums.

●   

Let Bj be the sum of all observations of level j of factor B, j = 1, ...,b. The
Bj are the column sums.

●   

Let (AB)ij be the sum of all observations of level i of A and level j of B.
These are cell sums.

●   

Let r be the number of replicates in the experiment; that is: the number of
times each factorial treatment combination appears in the experiment.

●   

Then the total number of observations for each level of factor A is rb and the total
number of observations for each level of factor B is raand the total number of
observations for each interaction is r.

7.4.3.8. Models and calculations for the two-way ANOVA
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Finally, the total number of observations n in the experiment is abr.

With the help of these expressions we arrive (omitting derivations) at

These expressions are used to calculate the ANOVA table entries for the (fixed
effects) 2-way ANOVA.

Two-Way ANOVA Example:

Data An evaluation of a new coating applied to 3 different materials was conducted at
2 different laboratories. Each laboratory tested 3 samples from each of the treated
materials. The results are given in the next table:

 Materials (B)
LABS (A) 1 2 3

 4.1 3.1 3.5
1 3.9 2.8 3.2
 4.3 3.3 3.6

 2.7 1.9 2.7
2 3.1 2.2 2.3
 2.6 2.3 2.5

7.4.3.8. Models and calculations for the two-way ANOVA
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Row and
column
sums

The preliminary part of the analysis yields a table of row and column sums.

Material (B)

Lab (A) 1 2 3 Total (Ai)

1 12.3 9.2 10.3 31.8
2 8.4 6.4 7.5 22.3

Total (Bj) 20.7 15.6 17.8 54.1

ANOVA
table

From this table we generate the ANOVA table.

Source SS df MS F p-value

A 5.0139 1 5.0139 100.28 0

B 2.1811 2 1.0906 21.81 .0001

AB 0.1344 2 0.0672 1.34 .298

Error 0.6000 12 0.0500   

Total (Corr) 7.9294 17    

7.4.3.8. Models and calculations for the two-way ANOVA
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.4.What are variance components?

Fixed and Random Factors and Components of Variance

A fixed level
of a factor or
variable
means that
the levels in
the
experiment
are the only
ones we are
interested in

In the previous example, the levels of the factor temperature were
considered as fixed; that is, the three temperatures were the only ones
that we were interested in (this may sound somewhat unlikely, but let
us accept it without opposition). The model employed for fixed levels
is called a fixed model. When the levels of a factor are random, such as
operators, days, lots or batches, where the levels in the experiment
might have been chosen at random from a large number of possible
levels, the model is called a random model, and inferences are to be
extended to all levels of the population.

Random
levels are
chosen at
random from
a large or
infinite set of
levels

In a random model the experimenter is often interested in estimating
components of variance. Let us run an example that analyzes and
interprets a component of variance or random model.

Components of Variance Example for Random Factors

7.4.4. What are variance components?
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Data for the
example

A company supplies a customer with a larger number of batches of raw
materials. The customer makes three sample determinations from each
of 5 randomly selected batches to control the quality of the incoming
material. The model is

and the k levels (e.g., the batches) are chosen at random from a
population with variance . The data are shown below

Batch

1 2 3 4 5

74 68 75 72 79

76 71 77 74 81

75 72 77 73 79

ANOVA table
for example

A 1-way ANOVA is performed on the data with the following results:

ANOVA
Source SS df MS EMS

Treatment (batches) 147.74 4 36.935  + 3

Error 17.99 10 1.799

Total (corrected) 165.73 14   

Interpretation
of the
ANOVA table

The computations that produce the SS are the same for both the fixed
and the random effects model. For the random model, however, the
treatment sum of squares, SST, is an estimate of {  + 3 }. This is
shown in the EMS (Expected Mean Squares) column of the ANOVA
table.

The test statistic from the ANOVA table is F = 36.94 / 1.80 = 20.5.

If we had chosen an  value of .01, then the F value from the table in
Chapter 1 for a df of 4 in the numerator and 10 in the denominator is
5.99.

7.4.4. What are variance components?
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Method of
moments

Since the test statistic is larger than the critical value, we reject the
hypothesis of equal means. Since these batches were chosen via a
random selection process, it may be of interest to find out how much of
the variance in the experiment might be attributed to batch diferences
and how much to random error. In order to answer these questions, we
can use the EMS column. The estimate of  is 1.80 and the computed

treatment mean square of 36.94 is an estimate of  + 3 . Setting the
MS values equal to the EMS values (this is called the Method of
Moments), we obtain

where we use s2 since these are estimators of the corresponding 2's.

Computation
of the
components
of variance

Solving these expressions

The total variance can be estimated as

Interpretation In terms of percentages, we see that 11.71/13.51 = 86.7 percent of the
total variance is attributable to batch differences and 13.3 percent to
error variability within the batches.

7.4.4. What are variance components?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.5.How can we compare the results of classifying
according to several categories?

Contingency
Table
approach

When items are classified according to two or more criteria, it is often of interest to
decide whether these criteria act independently of one another.

For example, suppose we wish to classify defects found in wafers produced in a
manufacturing plant, first according to the type of defect and, second, according to the
production shift during which the wafers were produced. If the proportions of the various
types of defects are constant from shift to shift, then classification by defects is
independent of the classification by production shift. On the other hand, if the
proportions of the various defects vary from shift to shift, then the classification by
defects depends upon or is contingent upon the shift classification and the classifications
are dependent.

In the process of investigating whether one method of classification is contingent upon
another, it is customary to display the data by using a cross classification in an array
consisting of r rows and c columns called a contingency table. A contingency table
consists of r x c cells representing the r x c possible outcomes in the classification
process. Let us construct an industrial case:

Industrial
example

A total of 309 wafer defects were recorded and the defects were classified as being one
of four types, A, B, C, or D. At the same time each wafer was identified according to the
production shift in which it was manufactured, 1, 2, or 3.

Contingency
table
classifying
defects in
wafers
according to
type and
production
shift

These counts are presented in the following table.

 Type of Defects

Shift A B C D Total

1 15(22.51) 21(20.99) 45(38.94) 13(11.56) 94
2 26(22.9) 31(21.44) 34(39.77) 5(11.81) 96
3 33(28.50) 17(26.57) 49(49.29) 20(14.63) 119

Total 74 69 128 38 309

(Note: the numbers in parentheses are the expected cell frequencies).

7.4.5. How can we compare the results of classifying according to several categories?
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Column
probabilities

Let pA be the probability that a defect will be of type A. Likewise, define pB, pC, and pD
as the probabilities of observing the other three types of defects. These probabilities,
which are called the column probabilities, will satisfy the requirement

pA + pB + pC + pD = 1

Row
probabilities

By the same token, let pi (i=1, 2, or 3) be the row probability that a defect will have
occurred during shift i, where

p1 + p2 + p3 = 1

Multiplicative
Law of
Probability

Then if the two classifications are independent of each other, a cell probability will
equal the product of its respective row and column probabilities in accordance with
the Multiplicative Law of Probability.

Example of
obtaining
column and
row
probabilities

For example, the probability that a particular defect will occur in shift 1 and is of type A
is (p1) (pA). While the numerical values of the cell probabilities are unspecified, the null
hypothesis states that each cell probability will equal the product of its respective row
and column probabilities. This condition implies independence of the two classifications.
The alternative hypothesis is that this equality does not hold for at least one cell.

In other words, we state the null hypothesis as H0: the two classifications are
independent, while the alternative hypothesis is Ha: the classifications are dependent.

To obtain the observed column probability, divide the column total by the grand total, n.
Denoting the total of column j as cj, we get

Similarly, the row probabilities p1, p2, and p3 are estimated by dividing the row totals r1,
r2, and r3 by the grand total n, respectively

7.4.5. How can we compare the results of classifying according to several categories?
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Expected cell
frequencies

Denote the observed frequency of the cell in row i and column jof the contingency table
by nij. Then we have

Estimated
expected cell
frequency
when H0 is
true.

In other words, when the row and column classifications are independent, the estimated
expected value of the observed cell frequency nij in an r x c contingency table is equal to
its respective row and column totals divided by the total frequency.

The estimated cell frequencies are shown in parentheses in the contingency table above.

Test statistic From here we use the expected and observed frequencies shown in the table to calculate
the value of the test statistic

df =
(r-1)(c-1)

The next step is to find the appropriate number of degrees of freedom associated with the
test statistic. Leaving out the details of the derivation, we state the result:

The number of degrees of freedom associated with a contingency table
consisting of r rows and c columns is (r-1) (c-1).

So for our example we have (3-1) (4-1) = 6 d.f.

Testing the
null
hypothesis

In order to test the null hypothesis, we compare the test statistic with the critical value of
2 at a selected value of . Let us use  = .05. Then the critical value is 2

05;6, which
is 12.5916 (see the chi square table in Chapter 1). Since the test statistic of 19.18 exceeds
the critical value, we reject the null hypothesis and conclude that there is significant
evidence that the proportions of the different defect types vary from shift to shift. In this
case, the p-value of the test statistic is .00387.

7.4.5. How can we compare the results of classifying according to several categories?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.6.Do all the processes have the same
proportion of defects?

The contingency table approach

Testing for
homogeneity
of proportions
using the
chi-square
distribution
via
contingency
tables

When we have samples from n populations (i.e., lots, vendors,
production runs, etc.), we can test whether there are significant
differences in the proportion defectives for these populations using a
contingency table approach. The contingency table we construct has
two rows and n columns.

To test the null hypothesis of no difference in the proportions among
the n populations

H0:  p1 = p2 = ... = pn

against the alternative that not all n population proportions are equal

H1: Not all pi are equal (i = 1, 2, ..., n)

The chi-square
test statistic

we use the following test statistic:

where fo is the observed frequency in a given cell of a 2 x n
contingency table, and fc is the theoretical count or expected
frequency in a given cell if the null hypothesis were true.

The critical
value

The critical value is obtained from the 2 distribution table with
degrees of freedom (2-1)(n-1) = n-1, at a given level of significance.

An illustrative example

7.4.6. Do all the processes have the same proportion of defects?
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Data for the
example

Diodes used on a printed circuit board are produced in lots of size
4000. To study the homogeneity of lots with respect to a demanding
specification, we take random samples of size 300 from 5 consecutive
lots and test the diodes. The results are:

 Lot  
Results 1 2 3 4 5 Totals

Nonconforming 36 46 42 63 38 225
Conforming 264 254 258 237 262 1275

Totals 300 300 300 300 300 1500

Computation
of the overall
proportion of
nonconforming
units

Assuming the null hypothesis is true, we can estimate the single
overall proportion of nonconforming diodes by pooling the results of
all the samples as

Computation
of the overall
proportion of
conforming
units

We estimate the proportion of conforming ("good") diodes by the
complement 1 - 0.15 = 0.85. Multiplying these two proportions by the
sample sizes used for each lot results in the expected frequencies of
nonconforming and conforming diodes. These are presented below:

Table of
expected
frequencies

 Lot  
Results 1 2 3 4 5 Totals

Nonconforming 45 45 45 45 45 225
Conforming 255 255 255 255 255 1275

Totals 300 300 300 300 300 1500

Null and
alternate
hypotheses

To test the null hypothesis of homogeneity or equality of proportions

H0: p1 = p2 = ... = p5

against the alternative that not all 5 population proportions are equal

H1: Not all pi are equal (i = 1, 2, ...,5)

7.4.6. Do all the processes have the same proportion of defects?
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Table for
computing the
test statistic

we use the observed and expected values from the tables above to
compute the 2 test statistic. The calculations are presented below:

fo fc (fo - fc) (fo - fc)2 (fo - fc)2/ fc

36 45 -9 81 1.800
46 45 1 1 0.022
42 45 -3 9 0.200
63 45 18 324 7.200
38 45 -7 49 1.089
264 225 9 81 0.318
254 255 -1 1 0.004
258 255 3 9 0.035
237 255 -18 324 1.271
262 255 7 49 0.192

    12.131

Conclusions If we choose a .05 level of significance, the critical value of 2 with 4
degrees of freedom is 9.488 (see the chi square distribution table in
Chapter 1). Since the test statistic (12.131) exceeds this critical value,
we reject the null hypothesis.

7.4.6. Do all the processes have the same proportion of defects?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.7.How can we make multiple
comparisons?

What to do
after equality
of means is
rejected

When processes are compared and the null hypothesis of equality (or
homogeneity) is rejected, all we know at that point is that there is no
equality amongst them. But we do not know the form of the inequality.

Typical
questions

Questions concerning the reason for the rejection of the null
hypothesis arise in the form of:

"Which mean(s) or proportion (s) differ from a standard or from
each other?"

●   

"Does the mean of treatment 1 differ from that of treatment 2?"●   

"Does the average of treatments 1 and 2 differ from the average
of treatments 3 and 4?"

●   

Multiple
Comparison
test
procedures
are needed

One popular way to investigate the cause of rejection of the null
hypothesis is a Multiple Comparison Procedure. These are methods
which examine or compare more than one pair of means or proportions
at the same time.

Note: Doing pairwise comparison procedures over and over again for
all possible pairs will not, in general, work. This is because the overall
significance level is not as specified for a single pair comparison.

7.4.7. How can we make multiple comparisons?
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ANOVA F test
is a
preliminary
test

The ANOVA uses the F test to determine whether there exists a
significant difference among treatment means or interactions. In this
sense it is a preliminary test that informs us if we should continue the
investigation of the data at hand.

If the null hypothesis (no difference among treatments or interactions)
is accepted, there is an implication that no relation exists between the
factor levels and the response. There is not much we can learn, and we
are finished with the analysis.

When the F test rejects the null hypothesis, we usually want to
undertake a thorough analysis of the nature of the factor-level effects.

Procedures
for examining
factor-level
effects

Previously, we discussed several procedures for examining particular
factor-level effects. These were

Estimation of the Difference Between Two Factor Means●   

Estimation of Factor Level Effects●   

Confidence Intervals For A Contrast●   

Determine
contrasts in
advance of
observing the
experimental
results

These types of investigations should be done on combinations of
factors that were determined in advance of observing the experimental
results, or else the confidence levels are not as specified by the
procedure. Also, doing several comparisons might change the overall
confidence level (see note above). This can be avoided by carefully
selecting contrasts to investigate in advance and making sure that:

the number of such contrasts does not exceed the number of
degrees of freedom between the treatments

●   

only orthogonal contrasts are chosen.●   

However, there are also several powerful multiple comparison
procedures we can use after observing the experimental results.

Tests on Means after Experimentation

7.4.7. How can we make multiple comparisons?
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Procedures
for
performing
multiple
comparisons

If the decision on what comparisons to make is withheld until after the
data are examined, the following procedures can be used:

Tukey's Method to test all possible pairwise differences of
means to determine if at least one difference is significantly
different from 0.

●   

Scheffé's Method to test all possible contrasts at the same time,
to see if at least one is significantly different from 0.

●   

Bonferroni Method to test, or put simultaneous confidence
intervals around, a pre-selected group of contrasts

●   

Multiple Comparisons Between Proportions

Procedure for
proportion
defective data

When we are dealing with population proportion defective data, the
Marascuilo procedure can be used to simultaneously examine
comparisons between all groups after the data have been collected.

7.4.7. How can we make multiple comparisons?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.7. How can we make multiple comparisons?

7.4.7.1.Tukey's method

Tukey's
method
considers all
possible
pairwise
differences
of means at
the same
time

The Tukey method applies simultaneously to the set of all pairwise
comparisons

{ i - j}

The confidence coefficient for the set, when all sample sizes are equal,
is exactly 1- . For unequal sample sizes, the confidence coefficient is
greater than 1- . In other words, the Tukey method is conservative
when there are unequal sample sizes.

Studentized Range Distribution

The
studentized
range q

The Tukey method uses the studentized range distribution. Suppose we
have r independent observations y1, ..., yr from a normal distribution

with mean  and variance 2. Let w be the range for this set , i.e., the
maximum minus the minimum. Now suppose that we have an estimate
s2 of the variance 2 which is based on  degrees of freedom and is
independent of the yi. The studentized range is defined as

7.4.7.1. Tukey's method
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The
distribution
of q is
tabulated in
many
textbooks
and can be
calculated
using
Dataplot

The distribution of q has been tabulated and appears in many textbooks
on statistics. In addition, Dataplot has a CDF function (SRACDF) and a
percentile function (SRAPPF) for q.

As an example, let r = 5 and  = 10. The 95th percentile is q.05;5,10 =
4.65. This means:

So, if we have five observations from a normal distribution, the
probability is .95 that their range is not more than 4.65 times as great as
an independent sample standard deviation estimate for which the
estimator has 10 degrees of freedom.
 

Tukey's Method

Confidence
limits for
Tukey's
method

The Tukey confidence limits for all pairwise comparisons with
confidence coefficient of at least 1-  are:

Notice that the point estimator and the estimated variance are the same
as those for a single pairwise comparison that was illustrated previously.
The only difference between the confidence limits for simultaneous
comparisons and those for a single comparison is the multiple of the
estimated standard deviation.

Also note that the sample sizes must be equal when using the
studentized range approach.

Example

Data We use the data from a previous example.

Set of all
pairwise
comparisons

The set of all pairwise comparisons consists of:

2 - 1, 3 - 1, 1 - 4,

2 - 3, 2 - 4, 3 - 4

7.4.7.1. Tukey's method
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Confidence
intervals for
each pair

Assume we want a confidence coefficient of 95 percent, or .95. Since r
= 4 and nt = 20, the required percentile of the studentized range
distribution is q.05; 4,16. Using the Tukey method for each of the six
comparisons yields:

Conclusions The simultaneous pairwise comparisons indicate that the differences 1
- 4 and 2 - 3 are not significantly different from 0 (their confidence
intervals include 0), and all the other pairs are significantly different.

Unequal
sample sizes

It is possible to work with unequal sample sizes. In this case, one has to
calculate the estimated standard deviation for each pairwise comparison.
The Tukey procedure for unequal sample sizes is sometimes referred to
as the Tukey-Kramer Method.

7.4.7.1. Tukey's method
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.7. How can we make multiple comparisons?

7.4.7.2.Scheffe's method

Scheffe's
method tests
all possible
contrasts at
the same
time

Scheffé's method applies to the set of estimates of all possible contrasts
among the factor level means, not just the pairwise differences
considered by Tukey's method.

Definition of
contrast

An arbitrary contrast is defined by

where

Infinite
number of
contrasts

Technically there is an infinite number of contrasts. The simultaneous
confidence coefficient is exactly 1- , whether the factor level sample
sizes are equal or unequal.

7.4.7.2. Scheffe's method
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Estimate and
variance for
C

As was described earlier, we estimate C by:

for which the estimated variance is:

Simultaneous
confidence
interval

It can be shown that the probability is 1 -  that all confidence limits of
the type

are correct simultaneously.

Scheffe method example

Contrasts to
estimate

We wish to estimate, in our previous experiment, the following
contrasts

and construct 95 percent confidence intervals for them.

7.4.7.2. Scheffe's method
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Compute the
point
estimates of
the
individual
contrasts

The point estimates are:

Compute the
point
estimate and
variance of
C

Applying the formulas above we obtain in both cases:

and

where  = 1.331 was computed in our previous example. The standard
error = .5158 (square root of .2661).

Scheffe
confidence
interval

For a confidence coefficient of 95 percent and degrees of freedom in
the numerator of r - 1 = 4 - 1 = 3, and in the denominator of 20 - 4 = 16,
we have:

The confidence limits for C1 are -.5 ± 3.12(.5158) = -.5 ± 1.608, and for
C2 they are .34 ± 1.608.

The desired simultaneous 95 percent confidence intervals are

-2.108  C1  1.108
-1.268  C2  1.948

7.4.7.2. Scheffe's method
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Comparison
to confidence
interval for a
single
contrast

Recall that when we constructed a confidence interval for a single
contrast, we found the 95 percent confidence interval:

-1.594  C  0.594

As expected, the Scheffé confidence interval procedure that generates
simultaneous intervals for all contrasts is considerabley wider.

Comparison of Scheffé's Method with Tukey's Method

Tukey
preferred
when only
pairwise
comparisons
are of
interest

If only pairwise comparisons are to be made, the Tukey method will
result in a narrower confidence limit, which is preferable.

Consider for example the comparison between 3 and 1.

Tukey:    1.13 < 3 - 1 < 5.31
Scheffé:  0.95 < 3 - 1 < 5.49

which gives Tukey's method the edge.

The normalized contrast, using sums, for the Scheffé method is 4.413,
which is close to the maximum contrast.

Scheffe
preferred
when many
contrasts are
of interest

In the general case when many or all contrasts might be of interest, the
Scheffé method tends to give narrower confidence limits and is
therefore the preferred method.

7.4.7.2. Scheffe's method
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.7. How can we make multiple comparisons?

7.4.7.3. Bonferroni's method

Simple
method

The Bonferroni method is a simple method that allows many
comparison statements to be made (or confidence intervals to be
constructed) while still assuring an overall confidence coefficient is
maintained.

Applies for a
finite number
of contrasts

This method applies to an ANOVA situation when the analyst has
picked out a particular set of pairwise comparisons or contrasts or
linear combinations in advance. This set is not infinite, as in the
Scheffé case, but may exceed the set of pairwise comparisons specified
in the Tukey procedure.

Valid for
both equal
and unequal
sample sizes

The Bonferroni method is valid for equal and unequal sample sizes.
We restrict ourselves to only linear combinations or comparisons of
treatment level means (pairwise comparisons and contrasts are special
cases of linear combinations). We denote the number of statements or
comparisons in the finite set by g.

Bonferroni
general
inequality

Formally, the Bonferroni general inequality is presented by:

where Ai and its complement  are any events.

7.4.7.3. Bonferroni's method
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Interpretation
of Bonferroni
inequality

In particular, if each Ai is the event that a calculated confidence
interval for a particular linear combination of treatments includes the
true value of that combination, then the left-hand side of the inequality
is the probability that all the confidence intervals simultaneously cover
their respective true values. The right-hand side is one minus the sum
of the probabilities of each of the intervals missing their true values.
Therefore, if simultaneous multiple interval estimates are desired with
an overall confidence coefficient 1- , one can construct each interval
with confidence coefficient (1- /g), and the Bonferroni inequality
insures that the overall confidence coefficient is at least 1- .

Formula for
Bonferroni
confidence
interval

In summary, the Bonferroni method states that the confidence
coefficient is at least 1-  that simultaneously all the following
confidence limits for the g linear combinations Ci are "correct" (or
capture their respective true values):

where

Example using Bonferroni method

Contrasts to
estimate

We wish to estimate, as we did using the Scheffe method, the
following linear combinations (contrasts):

and construct 95 percent confidence intervals around the estimates.

7.4.7.3. Bonferroni's method

http://www.itl.nist.gov/div898/handbook/prc/section4/prc473.htm (2 of 4) [5/1/2006 10:39:11 AM]



Compute the
point
estimates of
the individual
contrasts

The point estimates are:

Compute the
point
estimate and
variance of C

As before, for both contrasts, we have

and

where  = 1.331 was computed in our previous example. The
standard error is .5158 (the square root of .2661).

Compute the
Bonferroni
simultaneous
confidence
interval

For a 95 percent overall confidence coefficient using the Bonferroni
method, the t-value is t.05/(2*2);16 = t.0125;16 = 2.473 (see the
t-distribution critical value table in Chapter 1). Now we can calculate
the confidence intervals for the two contrasts. For C1 we have
confidence limits -.5 ± 2.473 (.5158) and for C2 we have confidence
limits .34 ± 2.473 (.5158).

Thus, the confidence intervals are:

-1.776  C1  0.776
-0.936  C2  1.616

Comparison
to Scheffe
interval

Notice that the Scheffé interval for C1 is:

-2.108  C1  1.108

which is wider and therefore less attractive.

7.4.7.3. Bonferroni's method
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Comparison of Bonferroni Method with Scheffé and Tukey
Methods

No one
comparison
method is
uniformly
best - each
has its uses

If all pairwise comparisons are of interest, Tukey has the edge. If
only a subset of pairwise comparisons are required, Bonferroni
may sometimes be better.

1.  

When the number of contrasts to be estimated is small, (about as
many as there are factors) Bonferroni is better than Scheffé.
Actually, unless the number of desired contrasts is at least twice
the number of factors, Scheffé will always show wider
confidence bands than Bonferroni.

2.  

Many computer packages include all three methods. So, study
the output and select the method with the smallest confidence
band.

3.  

No single method of multiple comparisons is uniformly best
among all the methods.

4.  

7.4.7.3. Bonferroni's method
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.7. How can we make multiple comparisons?

7.4.7.4.Comparing multiple proportions:
The Marascuillo procedure

Testing for
equal
proportions of
defects

Earlier, we discussed how to test whether several populations have the
same proportion of defects. The example given there led to rejection of
the null hypothesis of equality.

Marascuilo
procedure
allows
comparison of
all possible
pairs of
proportions

Rejecting the null hypothesis only allows us to conclude that not (in
this case) all lots are equal with respect to the proportion of defectives.
However, it does not tell us which lot or lots caused the rejection.

The Marascuilo procedure enables us to simultaneously test the
differences of all pairs of proportions when there are several
populations under investigation.

The Marascuillo Procedure

Step 1:
compute
differences pi
- pj

Assume we have samples of size ni (i = 1, 2, ..., k) from k populations.
The first step of this procedure is to compute the differences pi - pj,
(where i is not equal to j) among all k(k-1)/2 pairs of proportions.

The absolute values of these differences are the test-statistics.

Step 2:
compute test
statistics

Step 2 is to pick a significance level and compute the corresponding
critical values for the Marascuilo procedure from

7.4.7.4. Comparing multiple proportions: The Marascuillo procedure
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Step 3:
compare test
statistics
against
corresponding
critical values

The third and last step is to compare each of the k(k-1)/2 test statistics
against its corresponding critical rij value. Those pairs that have a test
statistic that exceeds the critical value are significant at the  level.

Example

Sample
proportions

To illustrate the Marascuillo procedure, we use the data from the
previous example. Since there were 5 lots, there are (5 x 4)/2 = 10
possible pairwise comparisons to be made and ten critical ranges to
compute. The five sample proportions are:

p1 = 36/300 = .120
p2 = 46/300 = .153
p3 = 42/300 = .140
p4 = 63/300 = .210
p5 = 38/300 = .127

Table of
critical values

For an overall level of significance of .05, the upper-tailed critical
value of the chi-square distribution having four degrees of freedom is
9.488 and the square root of 9.488 is 3.080. Calculating the 10
absolute differences and the 10 critical values leads to the following
summary table.

contrast value critical range significant

|p1 - p2| .033 0.086 no

|p1 - p3| .020 0.085 no

|p1 - p4| .090 0.093 no

|p1 - p5| .007 0.083 no

|p2 - p3| .013 0.089 no

|p2 - p4| .057 0.097 no

|p2 - p5| .026 0.087 no

|p3 - p4| .070 0.095 no

|p3 - p5| .013 0.086 no

|p4 - p5| .083 0.094 no

Note: The values in this table were computed with the following
Dataplot macro.

7.4.7.4. Comparing multiple proportions: The Marascuillo procedure
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let pii = data .12 .12 .12 .12 .153  ...
    .153 .153 .14 .14 .21
let pjj = data .153 .14 .21 .127 .14 ...
   .21 .127 .21 .127 .127
let cont = abs(pii-pjj)
let rij = sqrt(chsppf(.95,4))* ...
    sqrt(pii*(1-pii)/300 + pjj*(1-pjj)/300)
set write decimals 3
print cont cont rij

No individual
contrast is
statistically
significant

A difference is statistically significant if its value exceeds the critical
range value. In this example, even though the null hypothesis of
equality was rejected earlier, there is not enough data to conclude any
particular difference is significant. Note, however, that all the
comparisons involving population 4 come the closest to significance -
leading us to suspect that more data might actually show that
population 4 does have a significantly higher proportion of defects.

7.4.7.4. Comparing multiple proportions: The Marascuillo procedure

http://www.itl.nist.gov/div898/handbook/prc/section4/prc474.htm (3 of 3) [5/1/2006 10:39:11 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


7. Product and Process Comparisons

7.5.References

Primary
References

Agresti, A. and Coull, B. A. (1998). Approximate is better than "exact"
for interval estimation of binomial proportions", The American
Statistician, 52(2), 119-126.

Berenson M.L. and Levine D.M. (1996) Basic Business Statistics,
Prentice-Hall, Englewood Cliffs, New Jersey.

Bhattacharyya, G. K., and R. A. Johnson, (1997). Statistical Concepts
and Methods, John Wiley and Sons, New York.

Birnbaum, Z. W. (1952). "Numerical tabulation of the distribution of
Kolmogorov's statistic for finite sample size", Journal of the American
Statistical Association, 47, page 425.

Brown, L. D. Cai, T. T. and DasGupta, A. (2001). Interval estimation
for a binomial proportion", Statistical Science, 16(2), 101-133.

Diamond, W. J. (1989). Practical Experiment Designs, Van-Nostrand
Reinhold, New York.

Dixon, W. J. and Massey, F.J. (1969). Introduction to Statistical
Analysis, McGraw-Hill, New York.

Draper, N. and Smith, H., (1981). Applied Regression Analysis, John
Wiley & Sons, New York.

Hicks, C. R. (1973). Fundamental Concepts in the Design of
Experiments, Holt, Rinehart and Winston, New York.

Hollander, M. and Wolfe, D. A. (1973). Nonparametric Statistical
Methods, John Wiley & Sons, New York.

Howe, W. G. (1969). "Two-sided Tolerance Limits for Normal
Populations - Some Improvements", Journal of the Americal Statistical
Association, 64 , pages 610-620.

Kendall, M. and Stuart, A. (1979). The Advanced Theory of Statistics,
Volume 2: Inference and Relationship. Charles Griffin & Co. Limited,
London.

7.5. References

http://www.itl.nist.gov/div898/handbook/prc/section5/prc5.htm (1 of 4) [5/1/2006 10:39:11 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/


Mendenhall, W., Reinmuth, J. E. and Beaver, R. J. Statistics for
Management and Economics, Duxbury Press, Belmont, CA.

Montgomery, D. C. (1991). Design and Analysis of Experiments, John
Wiley & Sons, New York.

Moore, D. S. (1986). "Tests of Chi-Square Type". From Goodness-of-Fit
Techniques (D'Agostino & Stephens eds.).

Myers, R. H., (1990). Classical and Modern Regression with
Applications, PWS-Kent, Boston, MA.

Neter, J., Wasserman, W. and Kutner, M. H. (1990). Applied Linear
Statistical Models, 3rd Edition, Irwin, Boston, MA.

Lawless, J. F., (1982). Statistical Models and Methods for Lifetime
Data, John Wiley & Sons, New York.

Pearson, A. V., and Hartley, H. O. (1972). Biometrica Tables for
Statisticians, Vol 2, Cambridge, England, Cambridge University Press.

Sarhan, A. E. and Greenberg, B. G. (1956). "Estimation of location and
scale parameters by order statistics from singly and double censored
samples," Part I, Annals of Mathematical Statistics, 27, 427-451.

Searle, S. S., Casella, G. and McCulloch, C. E. (1992). Variance
Components, John Wiley & Sons, New York.

Siegel, S. (1956). Nonparametric Statistics, McGraw-Hill, New York.

Shapiro, S. S. and Wilk, M. B. (1965). "An analysis of variance test for
normality (complete samples)", Biometrika, 52, 3 and 4, pages 591-611.

Some Additional References and Bibliography

Books D'Agostino, R. B. and Stephens, M. A. (1986).
Goodness-of-FitTechniques, Marcel Dekker, Inc., New York.

Hicks, C. R. 1973. Fundamental Concepts in the Design of Experiments.
Holt, Rhinehart and Winston,New-York 

Miller, R. G., Jr. (1981). Simultaneous Statistical Inference,
Springer-Verlag, New York.

Neter, Wasserman, and Whitmore (1993). Applied Statistics, 4th
Edition, Allyn and Bacon, Boston, MA.

Neter, J., Wasserman, W. and Kutner, M. H. (1990). Applied Linear
Statistical Models, 3rd Edition, Irwin, Boston, MA.

Scheffe, H. (1959). The Analysis of Variance, John Wiley, New-York.

7.5. References

http://www.itl.nist.gov/div898/handbook/prc/section5/prc5.htm (2 of 4) [5/1/2006 10:39:11 AM]



Articles Begun, J. M. and Gabriel, K. R. (1981). "Closure of the Newman-Keuls
Multiple Comparisons Procedure", Journal of the American Statistical
Association, 76, page 374.

Carmer, S. G. and Swanson, M. R. (1973. "Evaluation of Ten Pairwise
Multiple Comparison Procedures by Monte-Carlo Methods", Journal of
the American Statistical Association, 68, pages 66-74.

Duncan, D. B. (1975). "t-Tests and Intervals for Comparisons suggested
by the Data" Biometrics, 31, pages 339-359.

Dunnett, C. W. (1980). "Pairwise Multiple Comparisons in the
Homogeneous Variance for Unequal Sample Size Case", Journal of the
American Statistical Association, 75, page 789.

Einot, I. and Gabriel, K. R. (1975). "A Study of the Powers of Several
Methods of Multiple Comparison", Journal of the American Statistical
Association, 70, page 351.

Gabriel, K. R. (1978). "A Simple Method of Multiple Comparisons of
Means", Journal of the American Statistical Association, 73, page 364.

Hochburg, Y. (1974). "Some Conservative Generalizations of the
T-Method in Simultaneous Inference", Journal of Multivariate Analysis,
4, pages 224-234.

Kramer, C. Y. (1956). "Extension of Multiple Range Tests to Group
Means with Unequal Sample Sizes", Biometrics, 12, pages 307-310.

Marcus, R., Peritz, E. and Gabriel, K. R. (1976). "On Closed Testing
Procedures with Special Reference to Ordered Analysis of Variance",
Biometrics, 63, pages 655-660.

Ryan, T. A. (1959). "Multiple Comparisons in Psychological Research",
Psychological Bulletin, 56, pages 26-47.

Ryan, T. A. (1960). "Significance Tests for Multiple Comparisons of
Proportions, Variances, and Other Statistics", Psychological Bulletin,
57, pages 318-328.

Scheffe, H. (1953). "A Method for Judging All Contrasts in the Analysis
of Variance", Biometrika,40, pages 87-104.

Sidak, Z., (1967). "Rectangular Confidence Regions for the Means of
Multivariate Normal Distributions", Journal of the American Statistical
Association, 62, pages 626-633.

Tukey, J. W. (1953). The Problem of Multiple Comparisons,
Unpublished Manuscript.

7.5. References

http://www.itl.nist.gov/div898/handbook/prc/section5/prc5.htm (3 of 4) [5/1/2006 10:39:11 AM]



Waller, R. A. and Duncan, D. B. (1969). "A Bayes Rule for the
Symmetric Multiple Comparison Problem", Journal of the American
Statistical Association 64, pages 1484-1504.

Waller, R. A. and Kemp, K. E. (1976). "Computations of Bayesian
t-Values for Multiple Comparisons", Journal of Statistical Computation
and Simulation, 75, pages 169-172.

Welsch, R. E. (1977). "Stepwise Multiple Comparison Procedure",
Journal of the American Statistical Association, 72, page 359.

7.5. References

http://www.itl.nist.gov/div898/handbook/prc/section5/prc5.htm (4 of 4) [5/1/2006 10:39:11 AM]

http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


National Institute of Standards and Technology

http://www.nist.gov/ (3 of 3) [5/1/2006 10:39:15 AM]



8.Assessing Product Reliability

This chapter describes the terms, models and techniques used to evaluate and predict
product reliability. 

1. Introduction

Why important?1.  

Basic terms and models2.  

Common difficulties3.  

Modeling "physical acceleration"4.  

Common acceleration models5.  

Basic non-repairable lifetime
distributions

6.  

Basic models for repairable systems7.  

Evaluate reliability "bottom-up"8.  

Modeling reliability growth9.  

Bayesian methodology 10.  

2. Assumptions/Prerequisites

Choosing appropriate life
distribution

1.  

Plotting reliability data2.  

Testing assumptions3.  

Choosing a physical acceleration
model

4.  

Models and assumptions for
Bayesian methods 

5.  

3. Reliability Data Collection

Planning reliability assessment tests1.  

4. Reliability Data Analysis

Estimating parameters from
censored data

1.  

Fitting an acceleration model2.  

Projecting reliability at use
conditions

3.  

Comparing reliability between two
or more populations

4.  

Fitting system repair rate models5.  

Estimating reliability using a
Bayesian gamma prior 

6.  
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8. Assessing Product Reliability

8.1. Introduction

This section introduces the terminology and models that will be used to
describe and quantify product reliability. The terminology, probability
distributions and models used for reliability analysis differ in many
cases from those used in other statistical applications.

Detailed
contents of
Section 1

Introduction 

Why is the assessment and control of product reliability
important? 

Quality versus reliability 1.  

Competitive driving factors2.  

Safety and health considerations 3.  

1.  

What are the basic terms and models used for reliability
evaluation? 

Repairable systems, non-repairable populations and
lifetime distribution models 

1.  

Reliability or survival function 2.  

Failure (or hazard) rate 3.  

"Bathtub" curve 4.  

Repair rate or ROCOF 5.  

2.  

What are some common difficulties with reliability data
and how are they overcome? 

Censoring 1.  

Lack of failures 2.  

3.  

What is "physical acceleration" and how do we model  it? 4.  

What are some common acceleration models? 

Arrhenius 1.  

Eyring 2.  

Other models 3.  

5.  

1.  
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What are the basic lifetime distribution models used for
non-repairable populations? 

Exponential 1.  

Weibull 2.  

Extreme value distributions3.  

Lognormal 4.  

Gamma 5.  

Fatigue life (Birnbaum-Saunders) 6.  

Proportional hazards model 7.  

6.  

What are some basic repair rate models used for repairable
systems? 

Homogeneous Poisson Process (HPP) 1.  

Non-Homogeneous Poisson Process (NHPP) with
power law 

2.  

Exponential law 3.  

7.  

How can you evaluate reliability from the "bottom-  up"
(component failure mode to system failure rates)? 

Competing risk model 1.  

Series model 2.  

Parallel or redundant model 3.  

R out of N model 4.  

Standby model 5.  

Complex systems6.  

8.  

How can you model reliability growth? 

NHPP power law 1.  

Duane plots 2.  

NHPP exponential law 3.  

9.  

How can Bayesian methodology be used for reliability
evaluation? 

10.  
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8. Assessing Product Reliability
8.1. Introduction

8.1.1.Why is the assessment and control of
product reliability important?

We depend
on, demand,
and expect
reliable
products

In today's technological world nearly everyone depends upon the
continued functioning of a wide array of complex machinery and
equipment for their everyday health, safety, mobility and economic
welfare. We expect our cars, computers, electrical appliances, lights,
televisions, etc. to function whenever we need them - day after day, year
after year. When they fail the results can be catastrophic: injury, loss of
life and/or costly lawsuits can occur. More often, repeated failure leads
to annoyance, inconvenience and a lasting customer dissatisfaction that
can play havoc with the responsible company's marketplace position. 

Shipping
unreliable
products
can destroy
a company's
reputation

It takes a long time for a company to build up a reputation for reliability,
and only a short time to be branded as "unreliable" after shipping a
flawed product. Continual assessment of new product reliability and
ongoing control of the reliability of everything shipped are critical
necessities in today's competitive business arena. 

8.1.1. Why is the assessment and control of product reliability important?
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8. Assessing Product Reliability
8.1. Introduction
8.1.1. Why is the assessment and control of product reliability important?

8.1.1.1.Quality versus reliability

Reliability is
"quality
changing
over time" 

The everyday usage term "quality of a product" is loosely taken to
mean its inherent degree of excellence. In industry, this is made more
precise by defining quality to be "conformance to requirements at the
start of use". Assuming the product specifications adequately capture
customer requirements, the quality level can now be precisely
measured by the fraction of units shipped that meet specifications.

A motion
picture
instead of a
snapshot

But how many of these units still meet specifications after a week of
operation? Or after a month, or at the end of a one year warranty
period? That is where "reliability" comes in. Quality is a snapshot at the
start of life and reliability is a motion picture of the day-by-day
operation. Time zero defects are manufacturing mistakes that escaped
final test. The additional defects that appear over time are "reliability
defects" or reliability fallout.

Life
distributions
model
fraction
fallout over
time

The quality level might be described by a single fraction defective. To
describe reliability fallout a probability model that describes the
fraction fallout over time is needed. This is known as the life
distribution model.

8.1.1.1. Quality versus reliability
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8. Assessing Product Reliability
8.1. Introduction
8.1.1. Why is the assessment and control of product reliability important?

8.1.1.2.Competitive driving factors

Reliability is
a major
economic
factor in
determining a
product's
success

Accurate prediction and control of reliability plays an important role in
the profitability of a product. Service costs for products within the
warranty period or under a service contract are a major expense and a
significant pricing factor. Proper spare part stocking and support
personnel hiring and training also depend upon good reliability fallout
predictions. On the other hand, missing reliability targets may invoke
contractual penalties and cost future business. 

Companies that can economically design and market products that
meet their customers' reliability expectations have a strong competitive
advantage in today's marketplace. 

8.1.1.2. Competitive driving factors
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8. Assessing Product Reliability
8.1. Introduction
8.1.1. Why is the assessment and control of product reliability important?

8.1.1.3.Safety and health considerations

Some failures
have serious
social
consequences
and this should
be taken into
account when
planning
reliability
studies

Sometimes equipment failure can have a major impact on human
safety and/or health. Automobiles, planes, life support equipment,
and power generating plants are a few examples. 

From the point of view of "assessing product reliability", we treat
these kinds of catastrophic failures no differently from the failure
that occurs when a key parameter measured on a manufacturing tool
drifts slightly out of specification, calling for an unscheduled
maintenance action. 

It is up to the reliability engineer (and the relevant customer) to
define what constitutes a failure in any reliability study. More
resource (test time and test units) should be planned for when an
incorrect reliability assessment could negatively impact safety and/or
health.

8.1.1.3. Safety and health considerations
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8. Assessing Product Reliability
8.1. Introduction

8.1.2.What are the basic terms and models
used for reliability evaluation?

Reliability
methods and
terminology
began with
19th century
insurance
companies

Reliability theory developed apart from the mainstream of probability
and statistics, and was used primarily as a tool to help nineteenth
century maritime and life insurance companies compute profitable rates
to charge their customers. Even today, the terms "failure rate" and
"hazard rate" are often used interchangeably. 

The following sections will define some of the concepts, terms, and
models we need to describe, estimate and predict reliability.

8.1.2. What are the basic terms and models used for reliability evaluation?
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8. Assessing Product Reliability
8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.1.Repairable systems, non-repairable
populations and lifetime distribution models

Life
distribution
models
describe how
non-repairable
populations
fail over time

A repairable system is one which can be restored to satisfactory operation by any action,
including parts replacements or changes to adjustable settings. When discussing the rate
at which failures occur during system operation time (and are then repaired) we will
define a Rate Of Occurrence Of Failure (ROCF) or "repair rate". It would be incorrect to
talk about failure rates or hazard rates for repairable systems, as these terms apply only
to the first failure times for a population of non repairable components.  

A non-repairable population is one for which individual items that fail are removed
permanently from the population. While the system may be repaired by replacing failed
units from either a similar or a different population, the members of the original
population dwindle over time until all have eventually failed. 

We begin with models and definitions for non-repairable populations. Repair rates for
repairable populations will be defined in a later section. 

The theoretical population models used to describe unit lifetimes are known as Lifetime
Distribution Models. The population is generally considered to be all of the possible
unit lifetimes for all of the units that could be manufactured based on a particular design
and choice of materials and manufacturing process. A random sample of size n from this
population is the collection of failure times observed for a randomly selected group of n
units.

Any
continuous
PDF defined
only for
non-negative
values can be
a lifetime
distribution
model

A lifetime distribution model can be any probability density function (or PDF) f(t)
defined over the range of time from t = 0 to t = infinity. The corresponding cumulative
distribution function (or CDF) F(t) is a very useful function, as it gives the probability
that a randomly selected unit will fail by time t. The figure below shows the relationship
between f(t) and F(t) and gives three descriptions of F(t). 
 

8.1.2.1. Repairable systems, non-repairable populations and lifetime distribution models
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1. F(t) = the area under the PDF f(t) to the left of t.

2. F(t) = the probability that a single randomly chosen new
unit will fail by time t.

3. F(t) = the proportion of the entire population that fails
by time t.

The figure above also shows a shaded area under f(t) between the two times t1 and t2.
This area is [F(t2) - F(t1)] and represents the proportion of the population that fails
between times t1 and t2 (or the probability that a brand new randomly chosen unit will
survive to time t1 but fail before time t2).

Note that the PDF f(t) has only non-negative values and eventually either becomes 0 as t
increases, or decreases towards 0. The CDF F(t) is monotonically increasing and goes
from 0 to 1 as t approaches infinity. In other words, the total area under the curve is
always 1. 

The Weibull
model is a
good example
of a life
distribution

The 2-parameter Weibull distribution is an example of a popular F(t). It has the CDF and
PDF equations given by: 

where γ is the "shape" parameter and α is a scale parameter called the characteristic
life. 

Example: A company produces automotive fuel pumps that fail according to a Weibull
life distribution model with shape parameter γ = 1.5 and scale parameter 8,000 (time
measured in use hours). If a typical pump is used 800 hours a year, what proportion are
likely to fail within 5 years? 

8.1.2.1. Repairable systems, non-repairable populations and lifetime distribution models
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Dataplot
Weibull CDF
commands

Solution: The Dataplot commands for the Weibull are: 

SET MINMAX = 1
LET Y = WEICDF(((800*5)/8000),1.5) 

and Dataplot computes Y to be .298 or about 30% of the pumps will fail in the first 5
years.

8.1.2.1. Repairable systems, non-repairable populations and lifetime distribution models
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8. Assessing Product Reliability
8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.2.Reliability or survival function

Survival is the
complementary
event to failure

The Reliability FunctionR(t), also known as the Survival Function
S(t), is defined by: 

R(t) = S(t) = the probability a unit survives beyond time t.

Since a unit either fails, or survives, and one of these two mutually
exclusive alternatives must occur, we have 

R(t) = 1 - F(t),   F(t) = 1 - R(t)

Calculations using R(t) often occur when building up from single
components to subsystems with many components. For example, if
one microprocessor comes from a population with reliability
function Rm(t) and two of them are used for the CPU in a system,
then the system CPU has a reliability function given by 

Rcpu(t) = Rm
2(t)

The reliability
of the system is
the product of
the reliability
functions of the
components

since both must survive in order for the system to survive. This
building up to the system from the individual components will be
discussed in detail when we look at the "Bottom-Up" method. The
general rule is: to calculate the reliability of a system of independent
components, multiply the reliability functions of all the components
together.

8.1.2.2. Reliability or survival function
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8. Assessing Product Reliability
8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.3.Failure (or hazard) rate

The
failure
rate is the
rate at
which the
population
survivors
at any
given
instant are
"falling
over the
cliff"

The failure rate is defined for non repairable populations as the
(instantaneous) rate of failure for the survivors to time t during the next
instant of time. It is a rate per unit of time similar in meaning to reading a
car speedometer at a particular instant and seeing 45 mph. The next instant
the failure rate may change and the units that have already failed play no
further role since only the survivors count. 

The failure rate (or hazard rate) is denoted by h(t) and calculated from 

The failure rate is sometimes called a "conditional failure rate" since the
denominator 1 - F(t) (i.e., the population survivors) converts the expression
into a conditional rate, given survival past time t. 

Since h(t) is also equal to the negative of the derivative of ln{R(t)}, we
have the useful identity:

If we let

be the Cumulative Hazard Function, we then have F(t) = 1 - e-H(t). Two
other useful identities that follow from these formulas are:

8.1.2.3. Failure (or hazard) rate
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It is also sometimes useful to define an average failure rate over any
interval (T1, T2) that "averages" the failure rate over that interval. This rate,
denoted by AFR(T1,T2),  is a single number that can be used as a
specification or target for the population failure rate over that interval. If T1
is 0, it is dropped from the expression. Thus, for example, AFR(40,000)
would be the average failure rate for the population over the first 40,000
hours of operation. 

The formulas for calculating AFR's are:

8.1.2.3. Failure (or hazard) rate
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8. Assessing Product Reliability
8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.4."Bathtub" curve

A plot of
the
failure
rate
over
time for
most
products
yields a
curve
that
looks
like a
drawing
of a
bathtub

If enough units from a given population are observed operating and failing over time, it is
relatively easy to compute week-by-week (or month-by-month) estimates of the failure rate
h(t). For example, if N12 units survive to start the 13th month of life and r13 of them fail
during the next month (or 720 hours) of life, then a simple empirical estimate of h(t) averaged
across the 13th month of life (or between 8640 hours and 9360 hours of age), is given by (r13
/ N12 * 720). Similar estimates are discussed in detail in the section on Empirical Model
Fitting. 

Over many years, and across a wide variety of mechanical and electronic components and
systems, people have calculated empirical population failure rates as units age over time and
repeatedly obtained a graph such as shown below. Because of the shape of this failure rate
curve, it has become widely known as the "Bathtub" curve. 

The initial region that begins at time zero when a customer first begins to use the product is
characterized by a high but rapidly decreasing failure rate. This region is known as the Early
Failure Period (also referred to as Infant Mortality Period, from the actuarial origins of the
first bathtub curve plots). This decreasing failure rate typically lasts several weeks to a few
months. 

Next, the failure rate levels off and remains roughly constant for (hopefully) the majority of
the useful life of the product. This long period of a level failure rate is known as the Intrinsic
Failure Period (also called the Stable Failure Period) and the constant failure rate level is
called the Intrinsic Failure Rate. Note that most systems spend most of their lifetimes
operating in this flat portion of the bathtub curve 

Finally, if units from the population remain in use long enough, the failure rate begins to
increase as materials wear out and degradation failures occur at an ever increasing rate. This
is the Wearout Failure Period. 

8.1.2.4. "Bathtub" curve
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NOTE: The Bathtub Curve also applies (based on much empirical evidence) to Repairable
Systems. In this case, the vertical axis is the Repair Rate or the Rate of Occurrence of
Failures (ROCOF). 

8.1.2.4. "Bathtub" curve
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8. Assessing Product Reliability
8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.5.Repair rate or ROCOF

Repair Rate
models are
based on
counting the
cumulative
number of
failures over
time

A different approach is used for modeling the rate of occurrence of
failure incidences for a repairable system. In this chapter, these rates are
called repair rates (not to be confused with the length of time for a
repair, which is not discussed in this chapter). Time is measured by
system power-on-hours from initial turn-on at time zero, to the end of
system life. Failures occur at given system ages and the system is
repaired to a state that may be the same as new, or better, or worse. The
frequency of repairs may be increasing, decreasing, or staying at a
roughly constant rate. 

Let N(t) be a counting function that keeps track of the cumulative
number of failures a given system has had from time zero to time t. N(t)
is a step function that jumps up one every time a failure occurs and stays
at the new level until the next failure. 

Every system will have its own observed N(t) function over time. If we
observed the N(t) curves for a large number of similar systems and
"averaged" these curves, we would have an estimate of M(t) = the
expected number (average number) of cumulative failures by time t for
these systems.

The Repair
Rate (or
ROCOF) is
the mean
rate of
failures per
unit time

The derivative of M(t), denoted m(t), is defined to be the Repair Rate or
the Rate Of Occurrence Of Failures at Time t or ROCOF. 

Models for N(t), M(t) and m(t) will be described in the section on Repair
Rate Models. 

8.1.2.5. Repair rate or ROCOF
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8. Assessing Product Reliability
8.1. Introduction

8.1.3.What are some common difficulties
with reliability data and how are they
overcome?

The
Paradox of
Reliability
Analysis:
The more
reliable a
product is,
the harder it
is to get the
failure data
needed to
"prove" it is
reliable!

There are two closely related problems that are typical with reliability
data and not common with most other forms of statistical data. These
are: 

Censoring (when the observation period ends, not all units have
failed - some are survivors)

●   

Lack of Failures (if there is too much censoring, even though a
large number of units may be under observation, the information
in the data is limited due to the lack of actual failures)

●   

These problems cause considerable practical difficulty when planning
reliability assessment tests and analyzing failure data. Some solutions
are discussed in the next two sections. Typically, the solutions involve
making additional assumptions and using complicated models.

8.1.3. What are some common difficulties with reliability data and how are they overcome?
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8. Assessing Product Reliability
8.1. Introduction
8.1.3. What are some common difficulties with reliability data and how are they overcome?

8.1.3.1.Censoring

When not
all units
on test fail
we have
censored
data

Consider a situation in which we are reliability testing n (non repairable) units taken
randomly from a population. We are investigating the population to determine if its failure
rate is acceptable. In the typical test scenario, we have a fixed time T to run the units to see if
they survive or fail. The data obtained are called Censored Type I data.

Censored Type I Data

During the T hours of test we observe r failures (where r can be any number from 0 to n). The
(exact) failure times are t1, t2, ..., tr and there are (n - r) units that survived the entire T-hour
test without failing. Note that T is fixed in advance and r is random, since we don't know how
many failures will occur until the test is run. Note also that we assume the exact times of
failure are recorded when there are failures. 

This type of censoring is also called "right censored" data since the times of failure to the
right (i.e., larger than T) are missing.

Another (much less common) way to test is to decide in advance that you want to see exactly
r failure times and then test until they occur. For example, you might put 100 units on test
and decide you want to see at least half of them fail. Then r = 50, but T is unknown until the
50th fail occurs. This is called Censored Type II data.

Censored Type II Data

We observe t1, t2, ..., tr, where r is specified in advance. The test ends at time T = tr, and (n-r)
units have survived. Again we assume it is possible to observe the exact time of failure for
failed units.

Type II censoring has the significant advantage that you know in advance how many failure
times your test will yield - this helps enormously when planning adequate tests. However, an
open-ended random test time is generally impractical from a management point of view and
this type of testing is rarely seen.

8.1.3.1. Censoring
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Sometimes
we don't
even know
the exact
time of
failure

Readout or Interval Data

Sometimes exact times of failure are not known; only an interval of time in which the failure
occurred is recorded. This kind of data is called Readout or Interval data and the situation is
shown in the figure below:

.

Multicensored Data

In the most general case, every unit observed yields exactly one of the following three types
of information:

a run-time if the unit did not fail while under observation●   

an exact failure time●   

an interval of time during which the unit failed.●   

The units may all have different run-times and/or readout intervals.

Many
special
methods
have been
developed
to handle
censored
data

How do we handle censored data?

Many statistical methods can be used to fit models and estimate failure rates, even with
censored data. In later sections we will discuss the Kaplan-Meier approach, Probability
Plotting, Hazard Plotting, Graphical Estimation, and Maximum Likelihood Estimation.

Separating out Failure Modes

Note that when a data set consists of failure times that can be sorted into several different
failure modes, it is possible (and often necessary) to analyze and model each mode
separately. Consider all failures due to modes other than the one being analyzed as censoring
times, with the censored run-time equal to the time it failed due to the different (independent)
failure mode. This is discussed further in the competing risk section and later analysis
sections.

8.1.3.1. Censoring
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8. Assessing Product Reliability
8.1. Introduction
8.1.3. What are some common difficulties with reliability data and how are they overcome?

8.1.3.2.Lack of failures

Failure data
is needed to
accurately
assess and
improve
reliability -
this poses
problems
when testing
highly
reliable
parts

When fitting models and estimating failure rates from reliability data,
the precision of the estimates (as measured by the width of the
confidence intervals) tends to vary inversely with the square root of the
number of failures observed - not the number of units on test or the
length of the test. In other words, a test where 5 fail out of a total of 10
on test gives more information than a test with 1000 units but only 2
failures. 

Since the number of failures r is critical, and not the sample size n on
test, it becomes increasingly difficult to assess the failure rates of highly
reliable components. Parts like memory chips, that in typical use have
failure rates measured in parts per million per thousand hours, will have
few or no failures when tested for reasonable time periods with
affordable sample sizes. This gives little or no information for
accomplishing the two primary purposes of reliability testing, namely: 

accurately assessing population failure rates●   

obtaining failure mode information to feedback for product
improvement.

●   

Testing at
much higher
than typical
stresses can
yield
failures but
models are
then needed
to relate
these back
to use stress

How can tests be designed to overcome an expected lack of failures?

The answer is to make failures occur by testing at much higher stresses
than the units would normally see in their intended application. This
creates a new problem: how can these failures at higher-than-normal
stresses be related to what would be expected to happen over the course
of many years at normal use stresses? The models that relate high stress
reliability to normal use reliability are called acceleration models. 

8.1.3.2. Lack of failures
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8. Assessing Product Reliability
8.1. Introduction

8.1.4.What is "physical acceleration" and
how do we model it?

When
changing
stress is
equivalent to
multiplying
time to fail
by a
constant, we
have true
(physical)
acceleration

Physical Acceleration (sometimes called True Acceleration or just
Acceleration) means that operating a unit at high stress (i.e., higher
temperature or voltage or humidity or duty cycle, etc.) produces the
same failures that would occur at typical-use stresses, except that they
happen much quicker. 

Failure may be due to mechanical fatigue, corrosion, chemical reaction,
diffusion, migration, etc. These are the same causes of failure under
normal stress; the time scale is simply different.

An
Acceleration
Factor is the
constant
multiplier
between the
two stress
levels

When there is true acceleration, changing stress is equivalent to
transforming the time scale used to record when failures occur. The
transformations commonly used are linear, which means that
time-to-fail at high stress just has to be multiplied by a constant (the
acceleration factor) to obtain the equivalent time-to-fail at use stress. 

We use the following notation: 

ts = time-to-fail at stress tu = corresponding time-to-fail at use
Fs(t) = CDF at stress Fu(t) = CDF at use
fs(t) = PDF at stress fu(t) = PDF at use
hs(t) = failure rate at stress hu(t) = failure rate at use

Then, an acceleration factor AF between stress and use means the
following relationships hold: 

Linear Acceleration Relationships

Time-to-Fail tu = AF × ts
Failure Probability Fu(t) = Fs(t/AF)

Reliability Ru(t) = Rs(t/AF)

8.1.4. What is "physical acceleration" and how do we model it?
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PDF or Density Function fu(t)  = (1/AF)fs(t/AF)

Failure Rate hu(t) = (1/AF) hs(t/AF)

Each failure
mode has its
own
acceleration
factor

Failure data
should be
separated by
failure mode
when
analyzed, if
acceleration
is relevant

Data from
different
stress cells
have the
same slope
on
probability
paper (if
there is
acceleration)

Note: Acceleration requires that there be a stress dependent physical
process causing change or degradation that leads to failure. In general,
different failure modes will be affected differently by stress and have
different acceleration factors. Therefore, it is unlikely that a single
acceleration factor will apply to more than one failure mechanism. In
general, different failure modes will be affected differently by stress
and have different acceleration factors. Separate out different types of
failure when analyzing failure data. 

Also, a consequence of the linear acceleration relationships shown
above (which follows directly from "true acceleration") is the
following: 

The Shape Parameter for the key life distribution models
(Weibull, Lognormal) does not change for units operating
under different stresses. Plots on probability paper of data
from different stress cells will line up roughly parallel.

These distributions and probability plotting will be discussed in later
sections.

8.1.4. What is "physical acceleration" and how do we model it?
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8. Assessing Product Reliability
8.1. Introduction

8.1.5.What are some common acceleration
models?

Acceleration
models
predict time
to fail as a
function of
stress

Acceleration factors show how time-to-fail at a particular operating
stress level (for one failure mode or mechanism) can be used to predict
the equivalent time to fail at a different operating stress level. 

A model that predicts time-to-fail as a function of stress would be even
better than a collection of acceleration factors. If we write tf = G(S),
with G(S) denoting the model equation for an arbitrary stress level S,
then the acceleration factor between two stress levels S1 and S2 can be
evaluated simply by AF = G(S1)/G(S2). Now we can test at the higher
stress S2, obtain a sufficient number of failures to fit life distribution
models and evaluate failure rates, and use the Linear Acceleration
Relationships Table to predict what will occur at the lower use stress
S1. 

A model that predicts time-to-fail as a function of operating stresses is
known as an acceleration model. 

Acceleration
models are
often derived
from physics
or kinetics
models
related to the
failure
mechanism

Acceleration models are usually based on the physics or chemistry
underlying a particular failure mechanism. Successful empirical
models often turn out to be approximations of complicated physics or
kinetics models, when the theory of the failure mechanism is better
understood. The following sections will consider a variety of powerful
and useful models: 

Arrhenius●   

Eyring●   

Other Models●   

8.1.5. What are some common acceleration models?
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8. Assessing Product Reliability
8.1. Introduction
8.1.5. What are some common acceleration models?

8.1.5.1.Arrhenius

The
Arrhenius
model
predicts
failure
acceleration
due to
temperature
increase

One of the earliest and most successful acceleration models predicts
how time-to-fail varies with temperature. This empirically based model
is known as the Arrhenius equation. It takes the form 

with T denoting temperature measured in degrees Kelvin (273.16 +
degrees Celsius) at the point when the failure process takes place and k
is Boltzmann's constant (8.617 x 10-5 in ev/K). The constant A is a
scaling factor that drops out when calculating acceleration factors, with 

H (pronounced "Delta H") denoting the activation energy, which is
the critical parameter in the model. 

The
Arrhenius
activation
energy, 

H, is all
you need to
know to
calculate
temperature
acceleration

The value of H depends on the failure mechanism and the materials
involved, and typically ranges from .3 or .4 up to 1.5, or even higher.
Acceleration factors between two temperatures increase exponentially
as H increases. 

The acceleration factor between a higher temperature T2 and a lower
temperature T1 is given by

Using the value of k given above, this can be written in terms of T in
degrees Celsius as 

8.1.5.1. Arrhenius
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Note that the only unknown parameter in this formula is H. 

Example: The acceleration factor between 25°C and 125°C is 133 if 
H = .5 and 17,597 if H = 1.0. 

The Arrhenius model has been used successfully for failure mechanisms
that depend on chemical reactions, diffusion processes or migration
processes. This covers many of the non mechanical (or non material
fatigue) failure modes that cause electronic equipment failure. 

8.1.5.1. Arrhenius
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8. Assessing Product Reliability
8.1. Introduction
8.1.5. What are some common acceleration models?

8.1.5.2.Eyring

The Eyring
model has a
theoretical
basis in
chemistry
and quantum
mechanics
and can be
used to
model
acceleration
when many
stresses are
involved

Henry Eyring's contributions to chemical reaction rate theory have led
to a very general and powerful model for acceleration known as the
Eyring Model. This model has several key features: 

It has a theoretical basis from chemistry and quantum mechanics.●   

If a chemical process (chemical reaction, diffusion, corrosion,
migration, etc.) is causing degradation leading to failure, the
Eyring model describes how the rate of  degradation varies with
stress or, equivalently, how time to failure varies with stress.

●   

The model includes temperature and can be expanded to include
other relevant stresses.

●   

The temperature term by itself is very similar to the Arrhenius
empirical model, explaining why that model has been so
successful in establishing the connection between the H
parameter and the quantum theory concept of "activation energy
needed to cross an energy barrier and initiate a reaction".

●   

The model for temperature and one additional stress takes the general
form: 

for which S1 could be some function of voltage or current or any other

relevant stress and the parameters , H, B, and C determine
acceleration between stress combinations. As with the Arrhenius Model,
k is Boltzmann's constant and temperature is in degrees Kelvin. 

If we want to add an additional non-thermal stress term, the model
becomes 

8.1.5.2. Eyring
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and as many stresses as are relevant can be included by adding similar
terms.

Models with
multiple
stresses
generally
have no
interaction
terms -
which means
you can
multiply
acceleration
factors due
to different
stresses

Note that the general Eyring model includes terms that have stress and
temperature interactions (in other words, the effect of changing
temperature varies, depending on the levels of other stresses). Most
models in actual use do not include any interaction terms, so that the
relative change in acceleration factors when only one stress changes
does not depend on the level of the other stresses. 

In models with no interaction, you can compute acceleration factors for
each stress and multiply them together. This would not be true if the
physical mechanism required interaction terms - but, at least to first
approximations, it seems to work for most examples in the literature. 

The Eyring
model can
also be used
to model
rate of
degradation
leading to
failure as a
function of
stress

Advantages of the Eyring Model
Can handle many stresses.●   

Can be used to model degradation data as well as failure data.●   

The H parameter has a physical meaning and has been studied
and estimated for many well known failure mechanisms and
materials.

●   

In practice,
the Eyring
Model is
usually too
complicated
to use in its
most general
form and
must be
"customized"
or simplified
for any
particular
failure
mechanism

Disadvantages of the Eyring Model
Even with just two stresses, there are 5 parameters to estimate.
Each additional stress adds 2 more unknown parameters.

●   

Many of the parameters may have only a second-order effect. For
example, setting   = 0 works quite well since the temperature
term then becomes the same as in the Arrhenius model. Also, the
constants C and E are only needed if there is a significant
temperature interaction effect with respect to the other stresses.

●   

The form in which the other stresses appear is not specified by
the general model and may vary according to the particular
failure mechanism. In other words, S1 may be voltage or ln
(voltage) or some other function of voltage.

●   

Many well-known models are simplified versions of the Eyring model
with appropriate functions of relevant stresses chosen for S1 and S2.

8.1.5.2. Eyring
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Some of these will be shown in the Other Models section. The trick is to
find the right simplification to use for a particular failure mechanism.

8.1.5.2. Eyring
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8. Assessing Product Reliability
8.1. Introduction
8.1.5. What are some common acceleration models?

8.1.5.3.Other models

Many useful 1,
2 and 3 stress
models are
simple Eyring
models. Six
are described

This section will discuss several acceleration models whose
successful use has been described in the literature. 

The (Inverse) Power Rule for Voltage●   

The Exponential Voltage Model●   

Two Temperature/Voltage Models●   

The Electromigration Model●   

Three Stress Models (Temperature, Voltage and Humidity)●   

The Coffin-Manson Mechanical Crack Growth Model●   

The (Inverse) Power Rule for Voltage

This model, used for capacitors, has only voltage dependency and
takes the form: 

This is a very simplified Eyring model with , H, and C all 0, and S

= lnV, and  = -B.

The Exponential Voltage Model

In some cases, voltage dependence is modeled better with an
exponential model:

Two Temperature/Voltage Models

Temperature/Voltage models are common in the literature and take
one of the two forms given below:

8.1.5.3. Other models
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Again, these are just simplified two stress Eyring models with the
appropriate choice of constants and functions of voltage. 

The Electromigration Model

Electromigration is a semiconductor failure mechanism where open
failures occur in metal thin film conductors due to the movement of
ions toward the anode. This ionic movement is accelerated high
temperatures and high current density. The (modified Eyring) model
takes the form 

with J denoting the current density. H is typically between .5 and
1.2 electron volts, while an n around 2 is common. 

Three-Stress Models (Temperature, Voltage and Humidity)

Humidity plays an important role in many failure mechanisms that
depend on corrosion or ionic movement. A common 3-stress model
takes the form 

Here RH is percent relative humidity. Other obvious variations on this
model would be to use an exponential voltage term and/or an
exponential RH term.

Even this simplified Eyring 3-stress model has 4 unknown parameters
and an extensive experimental setup would be required to fit the
model and calculate acceleration factors.

8.1.5.3. Other models
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The
Coffin-Manson
Model is a
useful
non-Eyring
model for
crack growth
or material
fatigue

The Coffin-Manson Mechanical Crack Growth Model

Models for mechanical failure, material fatigue or material
deformation are not forms of the Eyring model. These models 
typically have terms relating to cycles of stress or frequency of use or
change in temperatures. A model of this type known as the (modified)
Coffin-Manson model has been used successfully to model crack
growth in solder and other metals due to repeated temperature cycling
as equipment is turned on and off. This model takes the form 

with 

Nf = the number of cycles to fail●   

f = the cycling frequency●   

T = the temperature range during a cycle●   

and G(Tmax) is an Arrhenius term evaluated at the maximum
temperature reached in each cycle.

Typical values for the cycling frequency exponent  and the
temperature range exponent  are around -1/3 and 2, respectively

(note that reducing the cycling frequency reduces the number of

cycles to failure). The H activation energy term in G(Tmax) is
around 1.25.

8.1.5.3. Other models
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8. Assessing Product Reliability
8.1. Introduction

8.1.6.What are the basic lifetime
distribution models used for
non-repairable populations?

A handful of
lifetime
distribution
models have
enjoyed
great
practical
success

There are a handful of parametric models that have successfully served
as population models for failure times arising from a wide range of
products and failure mechanisms. Sometimes there are probabilistic
arguments based on the physics of the failure mode that tend to justify
the choice of model. Other times the model is used solely because of its 
empirical success IN fitting actual failure data. 

Seven models will be described in this section: 

Exponential1.  

Weibull2.  

Extreme Value 3.  

Lognormal4.  

Gamma 5.  

Birnbaum-Saunders6.  

Proportional hazards7.  

8.1.6. What are the basic lifetime distribution models used for non-repairable populations?
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable populations?

8.1.6.1.Exponential

Formulas and Plots●   

Uses of the Exponential Distribution Model●   

DATAPLOT and EXCEL Functions for the Exponential●   

All the key
formulas
for using
the
exponential
model 

Formulas and Plots

The exponential model, with only one unknown parameter, is the simplest of all life
distribution models. The key equations for the exponential are shown below:

Note that the failure rate reduces to the constant  for any time. The exponential distribution
is the only distribution to have a constant failure rate. Also, another name for the exponential

mean is the Mean Time To Fail or MTTF and we have MTTF = 1/ . 

The Cum Hazard function for the exponential is just the integral of the failure rate or H(t) =

t.

The PDF for the exponential has the familiar shape shown below.

8.1.6.1. Exponential
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The
Exponential
distribution
'shape'

The
Exponential
CDF

8.1.6.1. Exponential
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Below is an example of typical exponential lifetime data displayed in Histogram form with
corresponding exponential PDF drawn through the histogram.

Histogram
of
Exponential
Data

The
Exponential
models the
flat portion
of the
"bathtub"
curve -
where most
systems
spend most
of their
'lives'

Uses of the Exponential Distribution Model
Because of its constant failure rate property, the exponential distribution is an excellent
model for the long flat "intrinsic failure" portion of the Bathtub Curve. Since most
components and systems spend most of their lifetimes in this portion of the Bathtub
Curve, this justifies frequent use of the exponential distribution (when early failures or
wear out is not a concern).

1.  

Just as it is often useful to approximate a curve by piecewise straight line segments, we
can approximate any failure rate curve by week-by-week or month-by-month constant
rates that are the average of the actual changing rate during the respective time
durations. That way we can approximate any model by piecewise exponential
distribution segments patched together.

2.  

Some natural phenomena have a constant failure rate (or occurrence rate) property; for
example, the arrival rate of cosmic ray alpha particles or Geiger counter tics. The
exponential model works well for inter arrival times (while the Poisson distribution
describes the total number of events in a given period). When these events trigger
failures, the exponential life distribution model will naturally apply. 

3.  

8.1.6.1. Exponential
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Dataplot
and EXCEL
functions
for the
Exponential
model

DATAPLOT and EXCEL Functions for the Exponential

The Dataplot commands EXPPDF and EXPCDF calculate the exponential PDF and CDF for

the standardized case with  = 1. To evaluate the PDF and CDF at 100 hours for an

exponential with  = .01, the commands would be 

LET A = EXPPDF(100,0,0.01)
LET B = EXPCDF(100,0,0.01)

and the response would be .003679 for the pdf and .63212 for the cdf. 

Dataplot can do a probability plot of exponential data, normalized so that a perfect
exponential fit is a diagonal line with slope 1. The following commands generate 100 random

exponential observations (  = .01) and generate the probability plot that follows. 

LET Y = EXPONENTIAL RANDOM NUMBERS FOR I = 1 1 100
LET Y = 100*Y
TITLE AUTOMATIC
X1LABEL THEORETICAL (NORMALIZED) VALUE
Y1LABEL DATA VALUE
EXPONENTIAL PROBABILITY PLOT Y

Dataplot
Exponential
probability
plot

EXCEL also has built-in functions for the exponential PDF and CDF. The PDF is given by

EXPONDIST(x, , false) and the CDF is given by EXPONDIST(x, , true). Using 100 for x

and .01 for  will produce the same answers as given by Dataplot.

8.1.6.1. Exponential
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable populations?

8.1.6.2.Weibull

Formulas and Plots●   

Uses of the Weibull Distribution Model●   

DATAPLOT and EXCEL Functions for the Weibull●   

Weibull
Formulas

Formulas and Plots

The Weibull is a very flexible life distribution model with two parameters. It has CDF
and PDF and other key formulas given by: 

with  the scale parameter (the Characteristic Life),  (gamma) the Shape
Parameter, and  is the Gamma function with (N) = (N-1)! for integer N.

The Cum Hazard function for the Weibull is the integral of the failure rate or

8.1.6.2. Weibull
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A more general 3-parameter form of the Weibull includes an additional waiting time
parameter µ (sometimes called a shift or location parameter). The formulas for the
3-parameter Weibull are easily obtained from the above formulas by replacing t by (t - µ)
wherever t appears. No failure can occur before µ hours, so the time scale starts at µ, and
not 0. If a shift parameter µ is known (based, perhaps, on the physics of the failure
mode), then all you have to do is subtract µ from all the observed failure times and/or
readout times and analyze the resulting shifted data with a 2-parameter Weibull.

NOTE: Various texts and articles in the literature use a variety of different symbols for
the same Weibull parameters. For example, the characteristic life is sometimes called c
(or  = nu or  = eta) and the shape parameter is also called m (or  = beta). To add to

the confusion, EXCEL calls the characteristic life  and the shape  and some authors

even parameterize the density function differently, using a scale parameter 

Special Case: When  = 1, the Weibull reduces to the Exponential Model, with  = 1/

 = the mean time to fail (MTTF).

Depending on the value of the shape parameter , the Weibull model can empirically fit
a wide range of data histogram shapes. This is shown by the PDF example curves below.

Weibull
data
'shapes'

8.1.6.2. Weibull
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From a failure rate model viewpoint, the Weibull is a natural extension of the constant
failure rate exponential model since the Weibull has a polynomial failure rate with
exponent {  - 1}. This makes all the failure rate curves shown in the following plot
possible.

Weibull
failure rate
'shapes'

8.1.6.2. Weibull

http://www.itl.nist.gov/div898/handbook/apr/section1/apr162.htm (3 of 6) [5/1/2006 10:41:43 AM]



The Weibull
is very
flexible and
also has
theoretical
justification
in many
applications

Uses of the Weibull Distribution Model
Because of its flexible shape and ability to model a wide range of failure rates, the
Weibull has been used successfully in many applications as a purely empirical
model.

1.  

The Weibull model can be derived theoretically as a form of Extreme Value
Distribution, governing the time to occurrence of the "weakest link" of many
competing failure processes. This may explain why it has been so successful in
applications such as capacitor, ball bearing, relay and material strength failures.

2.  

Another special case of the Weibull occurs when the shape parameter is 2. The
distribution is called the Rayleigh Distribution and it turns out to be the theoretical
probability model for the magnitude of radial error when the x and y coordinate
errors are independent normals with 0 mean and the same standard deviation.

3.  

8.1.6.2. Weibull
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DATAPLOT and EXCEL Functions for the Weibull

The following commands in Dataplot will evaluate the PDF and CDF of a Weibull at
time T, with shape  and characteristic life .

SET MINMAX 1
LET PDF = WEIPDF(T, ,0, ),

LET CDF = WEICDF(T, ,0, )

For example, if T = 1000,  = 1.5 and  = 5000, the above commands will produce a
PDF of .000123 and a CDF of .08556.

NOTE: Whenever using Dataplot for a Weibull analysis, you must start by setting
MINMAX equal to 1.

To generate Weibull random numbers from a Weibull with shape parameter 1.5 and
characteristic life 5000, use the following commands:

SET MINMAX 1
LET GAMMA = 1.5
LET SAMPLE = WEIBULL RANDOM NUMBERS FOR I = 1 1 100
LET SAMPLE = 5000*SAMPLE

Next, to see how well these "random Weibull data points" are actually fit by a Weibull,
we plot the points on "Weibull" paper to check whether they line up following a straight
line. The commands (following the last commands above) are:

X1LABEL LOG TIME
Y1LABEL CUM PROBABILITY
WEIBULL PLOT SAMPLE

The resulting plot is shown below. Note the log scale used is base 10.

Dataplot
Weibull
Probability
Plot
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EXCEL also has Weibull CDF and PDF built in functions. EXCEL calls the shape

parameter  = alpha and the characteristic life  = beta. The following command
evaluates the Weibull PDF for time 1000 when the shape is 1.5 and the characteristic life
is 5000:

WEIBULL(1000,1.5,5000,FALSE)

For the corresponding CDF

WEIBULL(1000,1.5,5000,TRUE)

The returned values (.000123 and .085559, respectively) are the same as calculated by
Dataplot.

8.1.6.2. Weibull
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8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable populations?

8.1.6.3.Extreme value distributions

Description, Formulas and Plots●   

Uses of the Extreme Value Distribution Model●   

DATAPLOT Functions for the Extreme Value Distribution●   

The Extreme
Value
Distribution
usually
refers to the
distribution
of the
minimum of
a large
number of
unbounded
random
observations

Description, Formulas and Plots

We have already referred to Extreme Value Distributions when describing the uses of the
Weibull distribution. Extreme value distributions are the limiting distributions for the
minimum or the maximum of a very large collection of random observations from the same
arbitrary distribution. Gumbel (1958) showed that for any well-behaved initial distribution
(i.e., F(x) is continuous and has an inverse), only a few models are needed, depending on
whether you are interested in the maximum or the minimum, and also if the observations are
bounded above or below. 

In the context of reliability modeling, extreme value distributions for the minimum are
frequently encountered. For example, if a system consists of n identical components in series,
and the system fails when the first of these components fails, then system failure times are the
minimum of  n random component failure times. Extreme value theory says that, independent
of the choice of component model, the system model will approach a Weibull as n becomes
large. The same reasoning can also be applied at a component level, if the component failure
occurs when the first of many similar competing failure processes reaches a critical level. 

The distribution often referred to as the Extreme Value Distribution (Type I) is the limiting
distribution of the minimum of a large number of unbounded identically distributed random
variables. The PDF and CDF are given by:

Extreme
Value
Distribution
formulas
and PDF
shapes

If the x values are bounded below (as is the case with times of failure) then the limiting
distribution is the Weibull. Formulas and uses of the Weibull have already been discussed. 

PDF Shapes for the (minimum) Extreme Value Distribution (Type I) are shown in the
following figure. 
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The natural
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Uses of the Extreme Value Distribution Model
In any modeling application for which the variable of interest is the minimum of many
random factors, all of which can take positive or negative values, try the extreme value
distribution as a likely candidate model. For lifetime distribution modeling, since failure
times are bounded below by zero, the Weibull distribution is a better choice. 

1.  

The Weibull distribution and the extreme value distribution have a useful mathematical
relationship. If t1, t2, ...,tn are a sample of random times of fail from a Weibull
distribution, then ln t1, ln t2, ...,ln tn are random observations from the extreme value
distribution. In other words, the natural log of a Weibull random time is an extreme
value random observation. 

Because of this relationship, computer programs and graph papers designed for the
extreme value distribution can be used to analyze Weibull data. The situation exactly
parallels using normal distribution programs to analyze lognormal data, after first taking
natural logarithms of the data points.

2.  

8.1.6.3. Extreme value distributions
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DATAPLOT for the Extreme Value Distribution

Assume µ = ln 200,000 = 12.206 and  = 1/2 = .5. The extreme value distribution with these

parameters could be obtained by taking natural logarithms of data from a Weibull population

with characteristic life  = 200,000 and shape  = 2. We will use Dataplot to evaluate PDF's,
CDF's and generate random numbers from this distribution. Note that you must first set
MINMAX to 1 in order to do (minimum) extreme value type I calculations. 

SET MINMAX 1
LET BET = .5
LET M = LOG(200000)
LET X = DATA 5 8 10 12 12.8
LET PD = EV1PDF(X, M, BET)
LET CD = EV1CDF(X, M, BET)

Dataplot will calculate PDF and CDF values corresponding to the points 5, 8, 10, 12, 12.8. The
PDF's are .110E-5, .444E-3, .024, .683 and .247. The CDF's are .551E-6, .222E-3, .012, .484
and .962. 

Finally, we generate 100 random numbers from this distribution and construct an extreme
value distribution probability plot as follows: 

LET SAM = EXTREME VALUE TYPE 1 RANDOM NUMBERS FOR I = 1 1
100
LET SAM = (BET*SAMPLE) + M
EXTREME VALUE TYPE 1 PROBABILITY PLOT SAM

Data from an extreme value distribution will line up approximately along a straight line when
this kind of plot is constructed. The slope of the line is an estimate of , and the "y-axis"

8.1.6.3. Extreme value distributions
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value on the line corresponding to the "x-axis" 0 point is an estimate of µ. For the graph above,
these turn out to be very close to the actual values of  and µ.
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8.1. Introduction
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8.1.6.4.Lognormal

Formulas and Plots

Uses of the Lognormal Distribution Model●   

DATAPLOT and EXCEL Functions for the Lognormal●   

Lognormal
Formulas and
relationship
to the normal
distribution

Formulas and Plots

The lognormal life distribution, like the Weibull, is a very flexible model that can empirically
fit many types of failure data. The two parameter form has parameters  = the shape
parameter and T50 = the median (a scale parameter). 

Note: If time to failure, tf, has a lognormal distribution, then the (natural) logarithm of time to

failure has a normal distribution with mean µ = ln T50 and standard deviation . This makes
lognormal data convenient to work with; just take natural logarithms of all the failure times and
censoring times and analyze the resulting normal data. Later on, convert back to real time and
lognormal parameters using  as the lognormal shape and T50 = eµ as the (median) scale
parameter.

Below is a summary of the key formulas for the lognormal. 

8.1.6.4. Lognormal
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Note: A more general 3-parameter form of the lognormal includes an additional waiting time

parameter  (sometimes called a shift or location parameter). The formulas for the

3-parameter lognormal are easily obtained from the above formulas by replacing t by (t - )

wherever t appears. No failure can occur before  hours, so the time scale starts at  and not 0.

If a shift parameter  is known (based, perhaps, on the physics of the failure mode), then all

you have to do is subtract  from all the observed failure times and/or readout times and
analyze the resulting shifted data with a 2-parameter lognormal. 

Examples of lognormal PDF and failure rate plots are shown below. Note that lognormal shapes

for small sigmas are very similar to Weibull shapes when the shape parameter  is large and

large sigmas give plots similar to small Weibull 's. Both distributions are very flexible and it
is often difficult to choose which to use based on empirical fits to small samples of (possibly
censored) data.

8.1.6.4. Lognormal
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Uses of the Lognormal Distribution Model
As shown in the preceding plots, the lognormal PDF and failure rate shapes are flexible
enough to make the lognormal a very useful empirical model. In addition, the relationship
to the normal (just take natural logarithms of all the data and time points and you have
"normal" data) makes it easy to work with mathematically, with many good software
analysis programs available to treat normal data.

1.  

The lognormal model can be theoretically derived under assumptions matching many
failure degradation processes common to electronic (semiconductor) failure mechanisms.
Some of these are: corrosion, diffusion, migration, crack growth, electromigration, and,
in general, failures resulting from chemical reactions or processes. That does not mean
that the lognormal is always the correct model for these mechanisms, but it does perhaps
explain why it has been empirically successful in so many of these cases. 

A brief sketch of the theoretical arguments leading to a lognormal model follows.
 

Applying the Central Limit Theorem to small additive errors in the log
domain and justifying a normal model is equivalent to justifying the
lognormal model in real time when a process moves towards failure based
on the cumulative effect of many small "multiplicative" shocks. More
precisely, if at any instant in time a degradation process undergoes a small
increase in the total amount of degradation that is proportional to the current
total amount of degradation, then it is reasonable to expect the time to failure
(i.e., reaching a critical amount of degradation) to follow a lognormal
distribution (Kolmogorov, 1941).

A more detailed description of the multiplicative degradation argument appears in a later
section.

2.  

Dataplot and
EXCEL
lognormal
functions

DATAPLOT and EXCEL Functions for the Lognormal

The following commands in Dataplot will evaluate the PDF and CDF of a lognormal at time T,
with shape and median life (scale parameter) T50: 

LET PDF = LGNPDF(T, T50, )

LET CDF = LGNCDF((T, T50, )

For example, if T = 5000 and  = .5 and T50 = 20,000, the above commands will produce a

PDF of .34175E-5 and a CDF of .002781 and a failure rate of PDF/(1-CDF) = .3427 %/K. 

To generate 100 lognormal random numbers from a lognormal with shape .5 and median life
20,000, use the following commands: 

LET SAMPLE = LOGNORMAL RANDOM NUMBERS FOR I = 1 1 100
LET SAMPLE = 20,000*(SAMPLE**.5)

Next, to see how well these random lognormal data points are fit by a lognormal, we plot them
using the lognormal probability plot command. First we have to set  = SD to .5 (see PPCC
PLOT for how to estimate the value of SD from actual data). 

LET SIGMA = .5
X1LABEL EXPECTED (NORMALIZED) VALUES
Y1LABEL  TIME
LOGNORMAL PROBABILITY PLOT SAMPLE

8.1.6.4. Lognormal
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The resulting plot is below. Points that line up approximately on a straight line indicates a good
fit to a lognormal (with shape SD = .5). The time that corresponds to the (normalized) x-axis
T50 of 1 is the estimated T50  according to the data. In this case it is close to 20,000, as expected.

Dataplot
lognormal
probability
plot

Finally, we note that EXCEL has a built in function to calculate the lognormal CDF. The
command is =LOGNORMDIST(5000,9.903487553,0.5) to evaluate the CDF of a lognormal at
time T = 5000 with  = .5 and T50 = 20,000 and ln T50 = 9.903487553. The answer returned is
.002781. There is no lognormal PDF function in EXCEL. The normal PDF can be used as
follows: 

=(1/5000)*NORMDIST(8.517193191,9.903487553,0.5,FALSE)

where 8.517193191 is ln 5000 and "FALSE" is needed to get PDF's instead of CDF's. The
answer returned is 3.42E-06.
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Formulas
for the
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model

Formulas and Plots

There are two ways of writing (parameterizing) the gamma distribution that are common in the
literature. In addition, different authors use different symbols for the shape and scale parameters.

Below we show three ways of writing the gamma, with a =  = , the "shape" parameter, and b

=1/ , the scale parameter. The first choice of parameters (a,b) will be the most convenient for

later applications of the gamma. EXCEL uses  while Dataplot uses . 

8.1.6.5. Gamma
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The
exponential
is a special
case of the
gamma

Note: When a = 1, the gamma reduces to an exponential distribution with b = . 

Another well-known statistical distribution, the Chi-Square, is also a special case of the gamma.
A Chi-Square distribution with n degrees of freedom is the same as a gamma with a = n/2 and b =
.5 (or  = 2). 

The following plots give examples of gamma PDF, CDF and failure rate shapes.

Shapes for
Gamma
data
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Uses of the Gamma Distribution Model
The gamma is a flexible life distribution model that may offer a good fit to some sets of
failure data. It is not, however, widely used as a life distribution model for common failure
mechanisms.

1.  

The gamma does arise naturally as the time-to-first fail distribution for a system with
standby exponentially distributed backups. If there are n-1 standby backup units and the

system and all backups have exponential lifetimes with parameter , then the total lifetime

has a gamma distribution with a = n and b = . Note: when a is a positive integer, the
gamma is sometimes called an Erlang distribution. The Erlang distribution is used
frequently in queuing theory applications. 

2.  

A common use of the gamma model occurs in Bayesian reliability applications. When a

system follows an HPP (exponential) model with a constant repair rate , and it is desired

to make use of prior information about possible values of , a gamma Bayesian prior for

 is a convenient and popular choice. 

3.  
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Dataplot and EXCEL Functions for the Gamma

To calculate the PDF, CDF, Reliability and failure rate at time t for a gamma with parameters a

and b = 1/ , use the following Dataplot statements: 

LET PDF = GAMPDF(t,a,0,b)
LET CDF = GAMCDF(t,a,0,b)
LET REL = 1-CDF
LET FR = PDF/REL

Using an example solved in the section on standby models, if a = 2,  b = 1/30 and t = 24 months,
the statements are:
 

LET PDF = GAMPDF(24, 2, 0, 30) response is .01198
LET CDF = GAMCDF(24, 2, 0, 30) response is .1912
LET REL = 1-CDF response is .8088
LET FR=PDF/REL response is .0148

To generate random gamma data we first have to set the "a" parameter (called "gamma" by
Dataplot). The following commands generate 100 gamma data points chosen randomly from a
gamma distribution with parameters a and b: 

LET GAMMA = a
LET DATA = GAMMA RANDOM NUMBERS FOR I = 1 1 100
LET DATA = (1/b)*DATA

For the above example this becomes

LET GAMMA = 2
LET DATA = GAMMA RANDOM NUMBERS FOR I = 1 1 100
LET DATA = 30*DATA

Continuing this example, we can now do a gamma probability plot of the 100 points in DATA.
The commands are 

LET GAMMA = 2
X1LABEL EXPECTED (NORMALIZED) VALUES
Y1LABEL TIME
GAMMA PROBABILITY PLOT DATA

The resulting plot is shown below. 
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Note that the value of gamma can be estimated using a PPCC plot.

EXCEL also has built-in functions to evaluate the gamma pdf and cdf. The syntax is: 

=GAMMADIST(t,a,1/b,FALSE) for the PDF
=GAMMADIST(t,a,1/b,TRUE) for the CDF

8.1.6.5. Gamma
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8.1.6.6.Fatigue life (Birnbaum-Saunders)

A model
based on
cycles of
stress
causing
degradation
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growth

In 1969, Birnbaum and Saunders described a life distribution model that could be derived
from a physical fatigue process where crack growth causes failure. Since one of the best ways
to choose a life distribution model is to derive it from a physical/statistical argument that is
consistent with the failure mechanism, the Birnbaum-Saunders Fatigue Life Distribution is
worth considering. 

Formulas and Plots for the Birnbaum-Saunders Model●   

Derivation and Use of the Birnbaum-Saunders Model●   

Dataplot Functions for the Birnbaum-Saunders Model●   

Formulas and Plots for the Birnbaum-Saunders Model

Formulas
and shapes
for the
Fatigue
Life model
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The PDF, CDF, mean and variance for the Birnbaum-Saunders Distribution are shown below.

The parameters are: ,  a shape parameter; µ, a scale parameter. These are the parameters
used in Dataplot, but there are other choices also common in the literature (see the parameters
used for the derivation of the model).

PDF shapes for the model vary from highly skewed and long tailed (small gamma values) to
nearly symmetric and short tailed as gamma increases. This is shown in the figure below.
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Corresponding failure rate curves are shown in the next figure.
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Derivation and Use of the Birnbaum-Saunders Model: 

Consider a material that continually undergoes cycles of stress loads. During each cycle, a
dominant crack grows towards a critical length that will cause failure. Under repeated
application of n cycles of loads, the total extension of the dominant crack can be written as 

and we assume the Yj are independent and identically distributed non-negative random

variables with mean µ and variance . Suppose failure occurs at the N-th cycle, when Wn
first exceeds a constant critical value w. If n is large, we can use a central limit theorem
argument to conclude that 

Since there are many cycles, each lasting a very short time, we can replace the discrete
number of cycles N needed to reach failure by the continuous time tf needed to reach failure.
The cdf F(t) of tf is given by 
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Here  denotes the standard normal cdf. Writing the model with parameters  and  is an
alternative way of writing the Birnbaum-Saunders distribution that is often used      (

, as compared to the way the formulas were parameterized earlier in this
section). 

Note:
The critical assumption in the derivation, from a physical point of view, is that the crack
growth during any one cycle is independent of the growth during any other cycle. Also, the
growth has approximately the same random distribution, from cycle to cycle. This is a very
different situation from the proportional degradation argument used to derive a log normal
distribution model, with the rate of degradation at any point in time depending on the total
amount of degradation that has occurred up to that time. 

This kind of
physical
degradation
is
consistent
with
Miner's
Rule.

The Birnbaum-Saunders assumption, while physically restrictive, is consistent with a
deterministic model from materials physics known as Miner's Rule (Miner's Rule implies that
the damage that occurs after n cycles, at a stress level that produces a fatigue life of N cycles,
is proportional to n/N). So, when the physics of failure suggests Miner's Rule applies, the
Birnbaum-Saunders model is a reasonable choice for a life distribution model.

Dataplot
commands
for the
Fatigue
Life model

Dataplot Functions for the Birnbaum-Saunders Model

The PDF for a Birnbaum-Saunders (Fatigue Life) distribution with parameters µ,  is

evaluated at time t by: 

LET PDF = FLPDF(t, , 0, µ).

The CDF is 

LET CDF = FLCDF(t, , 0, µ).

To generate 100 random numbers, when µ = 5000,  = 2, for example, type the following

Dataplot commands: 

LET GAMMA = 2
LET DATA = FATIGUE LIFE RANDOM NUMBERS FOR 
    I = 1 1 100
LET DATA = 5000*DATA

Finally, we can do a Fatigue Life Probability Plot of the 100 data points in DATA by 

LET GAMMA = 2
FATIGUE LIFE PROBABILITY PLOT DATA

and the points on the resulting plot (shown below) line up roughly on a straight line, as

8.1.6.6. Fatigue life (Birnbaum-Saunders)
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expected for data correctly modeled by the Birnbaum-Saunders distribution. 

Notes
We set GAMMA equal to 2 before doing the probability plot because we knew its
value. If we had real experimental data (with no censoring), first we would run PPCC
to estimate gamma. The command is: FATIGUE LIFE PPCC PLOT DATA. To see the
estimated value of gamma we would type WRITE SHAPE. Then, we would type LET
GAMMA = SHAPE before running the Fatigue Life Probability Plot.

1.  

The slope of the line through the points on the probability plot is an estimate of the
scale parameter µ.

2.  

8.1.6.6. Fatigue life (Birnbaum-Saunders)
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable populations?

8.1.6.7.Proportional hazards model

The
proportional
hazards
model is often
used in
survival
analysis
(medical
testing)
studies. It is
not used
much with
engineering
data

The proportional hazards model, proposed by Cox (1972), has been
used primarily in medical testing analysis, to model the effect of
secondary variables on survival. It is more like an acceleration model
than a specific life distribution model, and its strength lies in its ability
to model and test many inferences about survival without making any
specific assumptions about the form of the life distribution model. 

This section will give only a brief description of the proportional
hazards model, since it has limited engineering applications.

Proportional Hazards Model Assumption

Let z = {x, y, ...} be a vector of 1 or more explanatory variables
believed to affect lifetime. These variables may be continuous (like
temperature in engineering studies, or dosage level of a particular drug
in medical studies) or they may be indicator variables with the value 1
if a given factor or condition is present, and 0 otherwise. 

Let the hazard rate for a nominal (or baseline) set z0 = (x0,y0, ...) of
these variables be given by h0(t), with h0(t) denoting legitimate hazard
function (failure rate) for some unspecified life distribution model.

The
proportional
hazard model
assumes
changing a
stress
variable (or
explanatory
variable) has
the effect of
multiplying
the hazard
rate by a

The proportional hazards model assumes we can write the changed
hazard function for a new value of z as 

hz(t) = g(z)h0(t)

In other words, changing z, the explanatory variable vector, results in a
new hazard function that is proportional to the nominal hazard
function, and the proportionality constant is a function of z, g(z),
independent of the time variable t. 

A common and useful form for f(z) is the Log Linear Model which
has the equation: g(x) = eax for one variable, g(x,y) = eax+by for two
variables, etc. 

8.1.6.7. Proportional hazards model
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constant. Properties and Applications of the Proportional Hazards Model
The proportional hazards model is equivalent to the acceleration
factor concept if and only if the life distribution model is a
Weibull (which includes the exponential model, as a special

case). For a Weibull with shape parameter , and an
acceleration factor AF between nominal use fail time t0 and high

stress fail time ts (with t0 = AFts) we have g(s) = AF . In other

words, hs(t) = AF h0(t).

1.  

Under a log-linear model assumption for g(z), without any
further assumptions about the life distribution model, it is
possible to analyze experimental data and compute maximum
likelihood estimates and use likelihood ratio tests to determine
which explanatory variables are highly significant. In order to do
this kind of analysis, however, special software is needed. 

2.  

More details on the theory and applications of the proportional hazards
model may be found in Cox and Oakes (1984). 

8.1.6.7. Proportional hazards model
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8. Assessing Product Reliability
8.1. Introduction

8.1.7.What are some basic repair rate
models used for repairable systems?

Models for
repair rates
of
repairable
systems

N(t), M(t) and m(t) were defined in the section on Repair Rates. Repair
rate models are defined by first picking a functional form for M(t), the
expected number of cumulative failures by time t. Taking the derivative
of this gives the repair rate model m(t). 

In the next three sections we will describe three models, of increasing
complexity, for M(t). They are: the Homogeneous Poisson Process, the
Non-Homogeneous Poisson Process following a Power law, and the
Non-Homogeneous Poisson Process following an Exponential law. 

8.1.7. What are some basic repair rate models used for repairable systems?
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8. Assessing Product Reliability
8.1. Introduction
8.1.7. What are some basic repair rate models used for repairable systems?

8.1.7.1.Homogeneous Poisson Process
(HPP)

Repair rate
(ROCOF)
models and
formulas

The simplest useful model for M(t) is M(t) = t and the repair rate (or

ROCOF) is the constant m(t) = . This model comes about when the
interarrival times between failures are independent and identically

distributed according to the exponential distribution, with parameter .
This basic model is also known as a Homogeneous Poisson Process
(HPP). The following formulas apply: 

8.1.7.1. Homogeneous Poisson Process (HPP)
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HPP model
fits flat
portion of
"bathtub"
curve

Despite the simplicity of this model, it is widely used for repairable
equipment and systems throughout industry. Justification for this comes,
in part, from the shape of the empirical Bathtub Curve. Most systems (or
complex tools or equipment) spend most of their "lifetimes" operating in
the long flat constant repair rate portion of the Bathtub Curve. The HPP
is the only model that applies to that portion of the curve, so it is the
most popular model for system reliability evaluation and reliability test
planning. 

Planning reliability assessment tests (under the HPP assumption) is
covered in a later section, as is estimating the MTBF from system
failure data and calculating upper and lower confidence limits.

Poisson
relationship
and
Dataplot
and EXCEL
functions

Note that in the HPP model, the probability of having exactly k failures
by time T is given by the Poisson distribution with mean T (see

formula for P(N(T) = k) above). This can be evaluated by the Dataplot
expression: 

LET Y = POIPDF(k, T)

or by the EXCEL expression:

POISSON(k, T, FALSE)

8.1.7.1. Homogeneous Poisson Process (HPP)
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8. Assessing Product Reliability
8.1. Introduction
8.1.7. What are some basic repair rate models used for repairable systems?

8.1.7.2.Non-Homogeneous Poisson
Process (NHPP) - power law

The repair
rate for a
NHPP
following the
Power law

A flexible model (that has been very successful in many applications)
for the expected number of failures in the first t hours, M(t), is given by
the polynomial 

The repair rate (or ROCOF) for this model is 

The Power
law model is
very flexible
and contains
the HPP
(exponential)
model as a
special case

The HPP model has a the constant repair rate m(t) = . If we substitute

an arbitrary function (t) for , we have a Non Homogeneous

Poisson Process (NHPP) with Intensity Function . If

then we have an NHPP with a Power Law intensity function (the
"intensity function" is another name for the repair rate m(t)).

Because of the polynomial nature of the ROCOF, this model is very

flexible and can model both increasing (b>1 or  < 0) and decreasing

(0 < b < 1 or 0 <  < 1)) failure rates. When b = 1 or  = 0, the model
reduces to the HPP constant repair rate model.

8.1.7.2. Non-Homogeneous Poisson Process (NHPP) - power law
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Probabilities
of failure for
all NHPP
processes
can easily be
calculated
based on the
Poisson
formula

Probabilities of a given number of failures for the NHPP model are
calculated by a straightforward generalization of the formulas for the
HPP. Thus, for any NHPP 

and for the Power Law model:

The Power
Law model
is also called
the Duane
Model and
the AMSAA
model

Other names for the Power Law model are: the Duane Model and the
AMSAA model. AMSAA stands for the United States Army
Materials System Analysis Activity, where much theoretical work
describing the Power Law model was performed in the 1970's. 

It is also
called a
Weibull
Process - but
this name is
misleading
and should
be avoided

The time to the first fail for a Power Law process has a Weibull
distribution with shape parameter b and characteristic life a. For this
reason, the Power Law model is sometimes called a Weibull Process.
This name is confusing and should be avoided, however, since it mixes
a life distribution model applicable to the lifetimes of a non-repairable
population with a model for the inter-arrival times of failures of a
repairable population.

For any NHPP process with intensity function m(t), the distribution
function (CDF) for the inter-arrival time  to the next failure, given a
failure just occurred at time T, is given by

8.1.7.2. Non-Homogeneous Poisson Process (NHPP) - power law
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Once a
failure
occurs, the
waiting time
to the next
failure for
an NHPP
has a simple
CDF
formula

In particular, for the Power Law the waiting time to the next failure,
given a failure at time T, has distribution function 

This inter arrival time CDF can be used to derive a simple algorithm for
simulating NHPP Power Law Data.

8.1.7.2. Non-Homogeneous Poisson Process (NHPP) - power law
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8. Assessing Product Reliability
8.1. Introduction
8.1.7. What are some basic repair rate models used for repairable systems?

8.1.7.3.Exponential law

The
Exponential
Law is
another
flexible
NHPP model

An NHPP with ROCOF or intensity function given by 

is said to follow an Exponential Law. This is also called the log-linear
model or the Cox-Lewis model. 

A system whose repair rate follows this flexible model is improving if 
 < 0 and deteriorating if  >0. When  = 0, the Exponential Law

reduces to the HPP constant repair rate model

8.1.7.3. Exponential law
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8. Assessing Product Reliability
8.1. Introduction

8.1.8.How can you evaluate reliability from
the "bottom-up" (component failure
mode to system failure rate)?

Several
simple
models can
be used to
calculate
system
failure rates,
starting with
failure rates
for failure
modes within
individual
system
components

This section deals with models and methods that apply to
non-repairable components and systems. Models for failure rates (and
not repair rates) are described. The next section covers models for
(repairable) system reliability growth.

We use the Competing Risk Model to go from component failure
modes to component failure rates. Next we use the Series Model to go
from components to assemblies and systems. These models assume
independence and "first failure mode to reach failure causes both the
component and the system to fail".

If some components are "in parallel", so that the system can survive one
(or possibly more) component failures, we have the parallel or
redundant model. If an assembly has n identical components, at least r
of which must be working for the system to work, we have what is
known as the r out of n model.

The standby model uses redundancy like the parallel model, except that
the redundant unit is in an off-state (not exercised) until called upon to
replace a failed unit.

This section describes these various models. The last subsection shows
how complex systems can be evaluated using the various models as
building blocks.

8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system failure rate)?
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system
failure rate)?

8.1.8.1.Competing risk model

Use the
competing
risk model
when the
failure
mechanisms
are
independent
and the first
mechanism
failure
causes the
component
to fail

Assume a (replaceable) component or unit has k different ways it can
fail. These are called failure modes and underlying each failure mode is
a failure mechanism. 

The Competing Risk Model evaluates component reliability by
"building up" from the reliability models for each failure mode. 

The following 3 assumptions are needed: 

Each failure mechanism leading to a particular type of failure
(i.e., failure mode) proceeds independently of every other one, at
least until a failure occurs.

1.  

The component fails when the first of all the competing failure
mechanisms reaches a failure state.

2.  

Each of the k failure modes has a known life distribution model
Fi(t).

3.  

The competing risk model can be used when all three assumptions hold.
If Rc(t), Fc(t), and hc(t) denote the reliability, CDF and failure rate for
the component, respectively, and Ri(t), Fi(t) and hi(t) are the reliability,
CDF and failure rate for the i-th failure mode, respectively, then the
competing risk model formulas are: 

8.1.8.1. Competing risk model
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Multiply
reliabilities
and add
failure rates

Think of the competing risk model in the following way:

All the failure mechanisms are having a race to see which
can reach failure first. They are not allowed to "look over
their shoulder or sideways" at the progress the other ones
are making. They just go their own way as fast as they can
and the first to reach "failure" causes the component to
fail. 

Under these conditions the component reliability is the
product of the failure mode reliabilities and the component
failure rate is just the sum of the failure mode failure rates.

Note that the above holds for any arbitrary life distribution model, as
long as "independence" and "first mechanism failure causes the
component to fail" holds. 

When we learn how to plot and analyze reliability data in later sections,
the methods will be applied separately to each failure mode within the
data set (considering failures due to all other modes as "censored run
times"). With this approach, the competing risk model provides the glue
to put the pieces back together again.

8.1.8.1. Competing risk model
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system failure rate)?

8.1.8.2.Series model

The series
model is used
to go from
individual
components
to the entire
system,
assuming the
system fails
when the first
component
fails and all
components
fail or
survive
independently
of one
another

The Series Model is used to build up from components to sub-assemblies and systems.
It only applies to non replaceable populations (or first failures of populations of
systems). The assumptions and formulas for the Series Model are identical to those for
the Competing Risk Model, with the k failure modes within a component replaced by the
n components within a system. 

The following 3 assumptions are needed:

Each component operates or fails independently of every other one, at least until
the first component failure occurs. 

1.  

The system fails when the first component failure occurs. 2.  

Each of the n (possibly different) components in the system has a known life
distribution model Fi(t).

3.  

Add failure
rates and
multiply
reliabilities
in the Series
Model

When the Series Model assumptions hold we have:

with the subscript S referring to the entire system and the subscript i referring to the i-th
component. 

Note that the above holds for any arbitrary component life distribution models, as long
as "independence" and "first component failure causes the system to fail" both hold. 

The analogy to a series circuit is useful. The entire system has n components in series.

8.1.8.2. Series model
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The system fails when current no longer flows and each component operates or fails
independently of all the others. The schematic below shows a system with 5 components
in series "replaced" by an "equivalent" (as far as reliability is concerned) system with
only one component. 

8.1.8.2. Series model

http://www.itl.nist.gov/div898/handbook/apr/section1/apr182.htm (2 of 2) [5/1/2006 10:41:50 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system failure rate)?

8.1.8.3.Parallel or redundant model

The parallel
model
assumes all n
components
that make up
a system
operate
independently
and the
system works
as long as at
least  one
component
still works

The opposite of a series model, for which the first component failure causes the system
to fail, is a parallel model for which all the components have to fail before the system
fails. If there are n components, any (n-1) of them may be considered redundant to the
remaining one (even if the components are all different). When the system is turned on,
all the components operate until they fail. The system reaches failure at the time of the
last component failure. 

The assumptions for a parallel model are:

All components operate independently of one another, as far as reliability is
concerned. 

1.  

The system operates as long as at least one component is still operating. System
failure occurs at the time of the last component failure.

2.  

The CDF for each component is known.3.  

Multiply
component
CDF's to get
the system
CDF for a
parallel
model

For a parallel model, the CDF Fs(t) for the system is just the product of the CDF's Fi(t)
for the components or 

Rs(t) and hs(t) can be evaluated using basic definitions, once we have Fs(t). 

The schematic below represents a parallel system with 5 components and the (reliability)
equivalent 1 component system with a CDF Fs equal to the product of the 5 component
CDF's. 

8.1.8.3. Parallel or redundant model
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8.1.8.3. Parallel or redundant model
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system
failure rate)?

8.1.8.4.R out of N model

An r out of n
model is a
system that
survives
when at
least r of its
components
are working
(any r)

An "r out of n" system contains both the series system model and the
parallel system model as special cases. The system has n components
that operate or fail independently of one another and as long as at least r
of these components (any r) survive, the system survives. System failure
occurs when the (n-r+1)th component failure occurs. 

When r = n, the r out of n model reduces to the series model. When r =
1, the r out of n model becomes the parallel model. 

We treat here the simple case where all the components are identical. 

Formulas and assumptions for r out of n model (identical components):

All components have the identical reliability function R(t).1.  

All components operate independently of one another (as far as
failure is concerned).

2.  

The system can survive any (n-r) of the components failing. The
system fails at the instant of the (n-r+1)th component failure.

3.  

Formula for
an r out of n
system
where the
components
are identical

System reliability is given by adding the probability of exactly r
components surviving to time t to the probability of exactly (r+1)
components surviving, and so on up to the probability of all components
surviving to time t. These are binomial probabilities (with p = R(t)), so
the system reliability is given by: 

Note: If we relax the assumption that all the components are identical,
then Rs(t) would be the sum of probabilities evaluated for all possible
terms that could be formed by picking at least r survivors and the
corresponding failures. The probability for each term is evaluated as a
product of R(t)'s and F(t)'s. For example, for n = 4 and r = 2, the system

8.1.8.4. R out of N model
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reliability would be (abbreviating the notation for R(t) and F(t) by using
only R and F)

Rs = R1R2F3F4 + R1R3F2F4 + R1R4F2F3 + R2R3F1F4
        + R2R4F1F3 + R3R4F1F2 + R1R2R3F4 + R1R3R4F2
        + R1R2R4F3 + R2R3R4F1 + R1R2R3R4 

8.1.8.4. R out of N model
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system
failure rate)?

8.1.8.5.Standby model

The Standby
Model
evaluates
improved
reliability
when backup
replacements
are switched
on when
failures
occur.

A Standby Model refers to the case in which a key component (or
assembly) has an identical backup component in an "off" state until
needed. When the original component fails, a switch turns on the
"standby" backup component and the system continues to operate. 

In the simple case, assume the non-standby part of the system has CDF
F(t) and there are (n-1) identical backup units that will operate in
sequence until the last one fails. At that point, the system finally fails. 

The total system lifetime is the sum of n identically distributed random
lifetimes, each having CDF F(t). 

Identical
backup
Standby
model leads
to
convolution
formulas

In other words, Tn = t1 + t2+ ... + tn, where each ti has CDF F(t) and Tn
has a CDF we denote by Fn(t). This can be evaluated using convolution
formulas: 

In general, convolutions are solved numerically. However, for the
special case when F(t) is the exponential model, the above integrations
can be solved in closed form.

8.1.8.5. Standby model
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Exponential
standby
systems lead
to a gamma
lifetime
model

Special Case: The Exponential (or Gamma) Standby Model

If F(t) has the exponential CDF (i.e., F(t) = 1 - e-lt ),  then 

and the PDF fn(t) is the well-known gamma distribution. 

Example: An unmanned space probe sent out to explore the solar
system has an onboard computer with reliability characterized by the

exponential distribution with a Mean Time To Failure (MTTF) of 1/
= 30 months (a constant failure rate of 1/30 = .033 fails per month). The
probability of surviving a two year mission is only e-24/30 = .45. If,
however, a second computer is included in the probe in a standby mode,
the reliability at 24 months (using the above formula for F2) becomes .8
× .449 + .449 = .81. The failure rate at 24 months (f2/[1-F2]) reduces to
[(24/900) ×.449]/.81 = .015 fails per month. At 12 months the failure
rate is only .0095 fails per month, which is less than 1/3 of the failure
rate calculated for the non-standby case. 

Standby units (as the example shows) are an effective way of increasing
reliability and reducing failure rates, especially during the early stages
of product life. Their improvement effect is similar to, but greater than,
that of parallel redundancy . The drawback, from a practical standpoint,
is the expense of extra components that are not needed for
functionality. 

8.1.8.5. Standby model
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system failure rate)?

8.1.8.6.Complex systems

Often the
reliability
of complex
systems can
be
evaluated
by
successive
applications
of Series
and/or
Parallel
model
formulas Many complex systems can be diagrammed as combinations of Series components,

Parallel components, R out of N components and Standby components. By using the
formulas for these models, subsystems or sections of the original system can be replaced
by an "equivalent" single component with a known CDF or Reliability function.
Proceeding like this, it may be possible to eventually reduce the entire system to one
component with a known CDF. 

Below is an example of a complex system composed of both components in parallel and
components in series is reduced first to a series system and finally to a one-component
system. 

8.1.8.6. Complex systems
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Note: The reduction methods described above will work for many, but not all,  systems.
Some systems with a complicated operational logic structure will need a more formal
structural analysis methodology. This methodology deals with subjects such as event
trees, Boolean representations, coherent structures, cut sets and decompositions, and is
beyond the present scope of this Handbook. 

8.1.8.6. Complex systems
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8. Assessing Product Reliability
8.1. Introduction

8.1.9.How can you model reliability
growth?

A reliability
improvement
test is a
formal
procedure
aimed at
discovering
and fixing
system
reliability
flaws

During the early stages of developing and prototyping complex
systems, reliability often does not meet customer requirements. A
formal test procedure aimed at discovering and fixing causes of
unreliability is known as a Reliability Improvement Test. This test
focuses on system design, system assembly and component selection
weaknesses that cause failures. 

A typical reliability improvement test procedure would be to run a
prototype system, as the customer might for a period of several weeks,
while a multidisciplined team of engineers and technicians (design,
quality, reliability, manufacturing, etc.) analyze every failure that
occurs. This team comes up with root causes for the failures and
develops design and/or assembly improvements to hopefully eliminate
or reduce the future occurrence of that type of failure. As the testing
continues, the improvements the team comes up with are incorporated
into the prototype, so it is expected that reliability will improve during
the course of the test.

Repair rates
should show
an
improvement
trend during
the course of
a reliability
improvement
test and this
can be
modeled
using a
NHPP model

Another name for reliability improvement testing is TAAF testing,
standing for Test, Analyze And Fix. In the semiconductor industry,
another common name for a reliability test (trademarked by Motorola)
is an IRONMAN™. The acronym IRONMAN™ stands for "Improve
Reliability Of New Machines At Night" and emphasizes the "around the
clock" nature of the testing process. 

While only one model applies when a repairable system has no
improvement or degradation trends (the constant repair rate HPP
model), there are infinitely many models that could be used to describe
a system with a decreasing repair rate (reliability growth models). 

Fortunately, one or two relatively simple models have been very
successful in a wide range of industrial applications. Two models that
have previously been described will be used in this section. These
models are the NHPP Power Law Model and the NHPP Exponential

8.1.9. How can you model reliability growth?

http://www.itl.nist.gov/div898/handbook/apr/section1/apr19.htm (1 of 2) [5/1/2006 10:41:55 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Law Model. The Power Law Model underlies the frequently used
graphical technique known as Duane Plotting.

8.1.9. How can you model reliability growth?

http://www.itl.nist.gov/div898/handbook/apr/section1/apr19.htm (2 of 2) [5/1/2006 10:41:55 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


8. Assessing Product Reliability
8.1. Introduction
8.1.9. How can you model reliability growth?

8.1.9.1.NHPP power law

If the Power
Law applies,
Repair Rates
improve
over time
according to
the formula

. The

exponent 
lies between
0 and 1 and
is called the
reliability
growth slope

This repairable system model was described in  Section 8.1.7.2. The expected number of
failures by time t has the form M(t) = atb and the repair rate has the form m(t) = abtb-1.
This will model improvement when 0 < b < 1, with larger improvements coming when b
is smaller. As we will see in the next section on Duane Plotting, it is convenient to define

 = 1 - b and  =  ab, and write the repair rate as 

m(t) = 

Again we have improvement when 0 <  < 1, with larger improvement coming from

larger values of .  is known as the Duane Plot slope or the reliability improvement
Growth Slope. 

In terms of the original parameters for M(t), we have 

Use of the Power Law model for reliability growth test data generally assumes the
following:

1. While the test is ongoing, system improvements are introduced that produce continual
improvements in the rate of system repair. 

2. Over a long enough period of time the effect of these improvements can be modeled

adequately by the continuous polynomial repair rate improvement model .

8.1.9.1. NHPP power law
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When an
improvement
test ends, the
MTBF stays
constant at
its last
achieved
value 

3. When the improvement test ends at test time T and no further improvement actions are

ongoing, the repair rate has been reduced to . The repair rate remains constant
from then on at this new (improved) level. 

Assumption 3 means that when the test ends, the HPP constant repair rate model takes
over and the MTBF for the system from then on is the reciprocal of the final repair rate

or . If we estimate the expected number of failures up to time T by the actual
number observed, the estimated MTBF at the end of a reliability test (following the
Power Law) is: 

with T denoting the test time, r  is the total number of test failures and  is the reliability

growth slope. A formula for estimating  from system failure times is given in the
Analysis Section for the Power Law model.

Simulated
Data
Example

Simulating NHPP Power Law Data

Step 1: User inputs the positive constants a and b. 

Step 2: Simulate a vector of n uniform (0,1) random numbers. Call these U1, U2, U3, . . .
Un. 

Step 3: Calculate Y1 = {-1/a * ln U1} ** 1/b

Step i: Calculate Yi = {(Yi-1 ** b) -1/a * ln Ui}**1/b  for i = 2, . . ., n 

The n numbers Y1, Y2, . . ., Yn are the desired repair times simulated from an NHPP Power

Law process with parameters a, b (or  = 1 - b and  = ab). 

The Dataplot Macro powersim.dp will ask the user to input the number N of repair times
desired and the parameters a and b. The program will output the N simulated repair times
and a plot of these repair times. 

Example

Below powersim.dp is used to generate 13 random repair times from the NHPP Power
Law process with a = .2 and b = .4.

CALL powersim.dp 

Enter number N of simulated repair times desired
13
Enter value for shape parameter a (a > 0)
.2
Enter value for shape parameter b (b > 0)

8.1.9.1. NHPP power law
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.4 

FAILNUM FAILTIME
1 26
2 182
3 321
4 728
5 896
6 1268
7 1507
8 2325
9 3427
10 11871
11 11978
12 13562
13 15053

8.1.9.1. NHPP power law
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8. Assessing Product Reliability
8.1. Introduction
8.1.9. How can you model reliability growth?

8.1.9.2.Duane plots

A plot on
log-log paper
of successive
MTBF
estimates
versus system
time of fail for
reliability
improvement
test data is
called a
Duane Plot

The standard estimate of the MTBF for a system with a constant repair rate (an HPP system) is
T/r, with T denoting the total time the system was observed and r is the total number of failures
that occurred. 

If we calculate successive MTBF estimates (called Cum MTBF Estimates), every time a failure
occurs for a system undergoing reliability improvement testing, we typically see a sequence of
mostly increasing numbers. 

In 1964, J. T. Duane observed that when he plotted these cum MTBF estimates versus the times
of failure on log-log paper, the points tended to line up following a straight line. This was true for
many different sets of reliability improvement data and many other engineers have seen similar
results over the last three decades. This type of plot is called a Duane Plot and the slope  of the

best line through the points is called the reliability growth slope or Duane plot slope.

Points on a
Duane plot
line up
approximately
on a straight
line if the
Power Law
model applies

Plotting a Duane Plot is simple. If the ith failure occurs at time ti, then plot ti divided by i (the
"y"- axis value) versus the time ti (the "x"-axis value) on log-log graph paper. Do this for all the
test failures and draw the best straight line you can following all these points. 

Why does this "work"? Following the notation for repairable system models, we are plotting
estimates of {t/M(t)} versus the time of failure t. If M(t) follows the Power Law (also described in
the last section), then we are plotting estimates of t/atb versus the time of fail t. This is the same

as plotting  versus t, with  = 1-b . On log-log paper this will be a straight line with

slope  and intercept (when t = 1) of - log10a. 

In other words, a straight line on a Duane plot is equivalent to the NHPP Power Law Model with
a reliability growth slope of = 1 - b and an "a" parameter equal to

10-intercept. 

Note: A useful empirical rule of thumb based on Duane plots made from many reliability
improvement tests across many industries is the following: 

Duane plot
reliability
growth slopes
should lie
between .3
and .6

The reliability improvement slope for virtually all reliability improvement tests will
be between .3 and .6. The lower end (.3) describes a minimally effective test -
perhaps the cross-functional team is inexperienced or the system has many failure
mechanisms that are not well understood. The higher end (.6) approaches the
empirical state of the art for reliability improvement activities. 

8.1.9.2. Duane plots
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Examples of
Duane Plots

Duane Plot Example 1:

A reliability growth test lasted 1500 hours (approximately 10 weeks) and recorded 8 failures at
the following system hours: 33, 76, 145, 347, 555, 811, 1212, 1499. After calculating successive
cum MTBF estimates, a Duane plot shows these estimates versus system age on log vs log paper.
The "best" straight line through the data points corresponds to a NHPP Power Law model with
reliability growth slope  equal to the slope of the line. This line is an estimate of the theoretical

model line (assuming the Power Law holds during the course of the test) and the achieved MTBF
at the end of the test is given by 

T / [r (1- )]

with T denoting the total test time and r the number of failures. Results for this particular
reliability growth test follow.
 

Failure # System Age of Failure Cum MTBF

1 33 33
2 76 38
3 145 48.3
4 347 86.8
5 555 111.0
6 811 135.2
7 1212 173.1
8 1499 187.3

The Duane plot indicates a reasonable fit to a Power Law NHPP model. The reliability
improvement slope (slope of line on Duane plot) is  = .437 (using the formula given in the

section on reliability data analysis for the Power Law model) and the estimated MTBF achieved
by the end of the 1500 hour test is 1500/(8 × [1-.437]) or 333 hours. 

Duane Plot Example 2: 

For the simulated Power Law data used in the Example in the preceding section, the following

8.1.9.2. Duane plots
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Dataplot commands (executed immediately after running powersim.dp) produce the Duane Plot
shown below. 

XLOG ON
YLOG ON
LET MCUM = FAILTIME/FAILNUM
PLOT MCUM FAILTIME 

8.1.9.2. Duane plots
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8. Assessing Product Reliability
8.1. Introduction
8.1.9. How can you model reliability growth?

8.1.9.3.NHPP exponential law

The
Exponential
Law is
another
useful
reliability
growth
model to try
when the
Power law is
not fitting
well

When the data points in a Duane plot show obvious curvature, a model
that might fit better is the NHPP Exponential Law. 

For this model, if  < 0, the repair rate improves over time according

to 

The corresponding cumulative expected failures model is 

This approaches the maximum value of A expected failures as t goes to
infinity, so the cumulative failures plot should clearly be bending over
and asymptotically approaching a value .

Rule of thumb: First try a Duane plot and the Power law model. If that
shows obvious lack of fit, try the Exponential Law model, estimating
parameters using the formulas in the Analysis Section for the
Exponential law. A plot of cum fails versus time, along with the
estimated M(t) curve, can be used to judge goodness of fit. 

 

8.1.9.3. NHPP exponential law
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8. Assessing Product Reliability
8.1. Introduction

8.1.10.How can Bayesian methodology be used for
reliability evaluation?

Several
Bayesian
Methods
overview
topics are
covered in
this section

This section gives an overview of the application of Bayesian techniques in reliability
investigations. The following topics are covered:

What is Bayesian Methodology ?●   

Bayes Formula, Prior and Posterior Distribution Models, and Conjugate Priors●   

How Bayesian Methodology is used in System Reliability Evaluation●   

Advantages and Disadvantages of using Bayes Methodology●   

What is Bayesian Methodology?

Bayesian
analysis
considers
population
parameters
to be
random, not
fixed 

Old
information,
or subjective
judgment, is
used to
determine a
prior
distribution
for these
population
parameters

It makes a great deal of practical sense to use all the information available, old and/or new,
objective or subjective, when making decisions under uncertainty. This is especially true
when the consequences of the decisions can have a significant impact, financial or
otherwise. Most of us make everyday personal decisions this way, using an intuitive process
based on our experience and subjective judgments. 

Mainstream statistical analysis, however, seeks objectivity by generally restricting the
information used in an analysis to that obtained from a current set of clearly relevant data.
Prior knowledge is not used except to suggest the choice of a particular population model to
"fit" to the data, and this choice is later checked against the data for reasonableness. 

Lifetime or repair models, as we saw earlier when we looked at repairable and non
repairable reliability population models, have one or more unknown parameters. The
classical statistical approach considers these parameters as fixed but unknown constants to
be estimated (i.e., "guessed at") using sample data taken randomly from the population of
interest. A confidence interval for an unknown parameter is really a frequency statement
about the likelihood that numbers calculated from a sample capture the true parameter.
Strictly speaking, one cannot make probability statements about the true parameter since it
is fixed, not random. 

The Bayesian approach, on the other hand, treats these population model parameters as
random, not fixed, quantities. Before looking at the current data, we use old information, or
even subjective judgments, to construct a prior distribution model for these parameters.
This model expresses our starting assessment about how likely various values of the
unknown parameters are. We then make use of the current data (via Baye's formula) to
revise this starting assessment, deriving what is called the posterior distribution model for
the population model parameters. Parameter estimates, along with confidence intervals
(known as credibility intervals), are calculated directly from the posterior distribution.
Credibility intervals are legitimate probability statements about the unknown parameters,

8.1.10. How can Bayesian methodology be used for reliability evaluation?
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since these parameters now are considered random, not fixed. 

It is unlikely in most applications that data will ever exist to validate a chosen prior
distribution model. Parametric Bayesian prior models are chosen because of their flexibility
and mathematical convenience. In particular, conjugate priors (defined below) are a natural
and popular choice of Bayesian prior distribution models. 

Bayes Formula, Prior and Posterior Distribution Models, and Conjugate Priors

Bayes
formula
provides the
mathematical
tool that
combines
prior
knowledge
with current
data to
produce a
posterior
distribution

Bayes formula is a useful equation from probability theory that expresses the conditional
probability of an event A occurring, given that the event B has occurred (written P(A|B)), in
terms of unconditional probabilities and the probability the event B has occurred, given that
A has occurred. In other words, Bayes formula inverts which of the events is the
conditioning event. The formula is 

and P(B) in the denominator is further expanded by using the so-called "Law of Total
Probability" to write 

with the events Ai being mutually exclusive and exhausting all possibilities and including
the event A as one of the Ai.

The same formula, written in terms of probability density function models, takes the form: 

where f(x| ) is the probability model, or likelihood function, for the observed data x given

the unknown parameter (or parameters) , g( ) is the prior distribution model for  and

g( |x) is the posterior distribution model for  given that the data x have been observed. 

When g( |x) and g( ) both belong to the same distribution family, g( ) and 

f(x| ) are called conjugate distributions and g( ) is the conjugate prior for f(x| ). For
example, the Beta distribution model is a conjugate prior for the proportion of successes p
when samples have a binomial distribution. And the Gamma model is a conjugate prior for

the failure rate  when sampling failure times or repair times from an exponentially
distributed population. This latter conjugate pair (gamma, exponential) is used extensively
in Bayesian system reliability applications. 

How Bayes Methodology is used in System Reliability Evaluation

8.1.10. How can Bayesian methodology be used for reliability evaluation?
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Bayesian
system
reliability
evaluation
assumes the
system
MTBF is a
random
quantity
"chosen"
according to
a prior
distribution
model

Models and assumptions for using Bayes methodology will be described in a later section.
Here we compare the classical paradigm versus the Bayesian paradigm when system
reliability follows the HPP or exponential model (i.e., the flat portion of the Bathtub Curve).

Classical Paradigm For System Reliability Evaluation:
The MTBF is one fixed unknown value - there is no “probability” associated with it●   

Failure data from a test or observation period allows you to make inferences about the
value of the true unknown MTBF

●   

No other data are used and no “judgment” - the procedure is objective and based
solely on the test data and the assumed HPP model

●   

Bayesian Paradigm For System Reliability Evaluation:
The MTBF is a random quantity with a probability distribution●   

The particular piece of equipment or system you are testing “chooses” an MTBF from
this distribution and you observe failure data that follow an HPP model with that
MTBF

●   

Prior to running the test, you already have some idea of what the MTBF probability
distribution looks like based on prior test data or an consensus engineering judgment 

●   

Advantages and Disadvantages of using Bayes Methodology

Pro's and
con's for
using
Bayesian
methods

While the primary motivation to use Bayesian reliability methods is typically a desire to
save on test time and materials cost, there are other factors that should also be taken into
account. The table below summarizes some of these "good news" and "bad news"
considerations. 

Bayesian Paradigm: Advantages and Disadvantages

Pro's Con's

Uses prior information - this "makes
sense"

●   

If the prior information is encouraging,
less new testing may be needed to
confirm a desired MTBF at a given
confidence

●   

Confidence intervals are really intervals
for the (random) MTBF - sometimes
called "credibility intervals"

●   

Prior information may not be
accurate - generating misleading
conclusions

●   

Way of inputting prior information
(choice of prior) may not be correct

●   

Customers may not accept validity of
prior data or engineering judgements

●   

There is no one "correct way" of
inputting prior information and
different approaches can give
different results

●   

Results aren't objective and don't
stand by themselves

●   

8.1.10. How can Bayesian methodology be used for reliability evaluation?
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8. Assessing Product Reliability

8.2.Assumptions/Prerequisites

This section describes how life distribution models and acceleration
models are typically chosen. Several graphical and analytical methods
for evaluating model fit are also discussed.

Detailed
contents of
Section 2

2. Assumptions/Prerequisites 

How do you choose an appropriate life distribution model? 

Based on failure mode 1.  

Extreme value argument 2.  

Multiplicative degradation argument 3.  

Fatigue life (Birnbaum-Saunders) argument 4.  

Empirical model fitting - distribution free (Kaplan-Meier)
approach 

5.  

1.  

How do you plot reliability data? 

Probability plotting 1.  

Hazard and cum hazard plotting 2.  

Trend and growth plotting (Duane plots) 3.  

2.  

How can you test reliability model assumptions? 

Visual tests 1.  

Goodness of fit tests 2.  

Likelihood ratio tests 3.  

Trend tests4.  

3.  

How do you choose an appropriate physical acceleration model? 4.  

What models and assumptions are typically made when Bayesian
methods are used for reliability evaluation? 

5.  

 

8.2. Assumptions/Prerequisites
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.1.How do you choose an appropriate
life distribution model?

Choose
models that
make sense,
fit the data
and,
hopefully,
have a
plausible
theoretical
justification

Life distribution models are chosen for one or more of the following
three reasons:

There is a physical/statistical argument that theoretically matches
a failure mechanism to a life distribution model

1.  

A particular model has previously been used successfully for the
same or a similar failure mechanism 

2.  

A convenient model provides a good empirical fit to all the failure
data

3.  

Whatever method is used to choose a model, the model should

"make sense" - for example, don't use an exponential model with
a constant failure rate to model a "wear out" failure mechanism

●   

pass visual and statistical tests for fitting the data.●   

Models like the lognormal and the Weibull are so flexible that it is not
uncommon for both to fit a small set of failure data equally well. Yet,
especially when projecting via acceleration models to a use condition far
removed from the test data, these two models may predict failure rates
that differ by orders of magnitude. That is why it is more than an
academic exercise to try to find a theoretical justification for using a
particular distribution.

There are
several
useful
theoretical
arguments
to help
guide the
choice of a
model

We will consider three well-known arguments of this type: 

Extreme value argument ●   

Multiplicative degradation argument●   

Fatigue life (Birnbaum-Saunders) model●   

Note that physical/statistical arguments for choosing a life distribution
model are typically based on individual failure modes.

8.2.1. How do you choose an appropriate life distribution model?
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For some
questions,
an
"empirical"
distribution-
free
approach
can be used

The Kaplan-Meier technique can be used when it is appropriate to just
"let the data points speak for themselves" without making any model
assumptions. However, you generally need a considerable amount of
data for this approach to be useful, and acceleration modeling is much
more difficult.

8.2.1. How do you choose an appropriate life distribution model?
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.1. How do you choose an appropriate life distribution model?

8.2.1.1.Based on failure mode

Life
distribution
models and
physical
acceleration
models
typically
only apply
at the
individual
failure mode
level

Failure mode data are failure data sorted by types of failures. Root
cause analysis must be done on each failure incident in order to
characterize them by failure mode. While this may be difficult and
costly, it is a key part of any serious effort to understand, model, project
and improve component or system reliability. 

The natural place to apply both life distribution models and physical
acceleration models is at the failure mode level. Each component failure
mode will typically have its own life distribution model. The same is
true for acceleration models. For the most part, these models only make
sense at the failure mode level, and not at the component or system
level. Once each mode (or mechanism) is modeled, the bottom-up
approach can be used to build up to the entire component or system. 

In particular, the arguments for choosing a life distribution model
described in the next 3 sections apply at the failure mode level only.
These are the Extreme value argument, the Multiplicative degradation
argument and the Fatigue life (Birnbaum-Saunders) model. 

The distribution-free (Kaplan - Meier) approach can be applied at any
level (mode, component, system, etc.).

8.2.1.1. Based on failure mode
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.1. How do you choose an appropriate life distribution model?

8.2.1.2.Extreme value argument

If component
or system
failure
occurs when
the first of
many
competing
failure
processes
reaches a
critical
point, then
Extreme
Value
Theory
suggests that
the Weibull
Distribution
will be a
good model

It is well known that the Central Limit Theorem suggests that normal
distributions will successfully model most engineering data when the
observed measurements arise from the sum of many small random
sources (such as measurement errors).  Practical experience validates
this theory - the normal distribution "works" for many engineering data
sets. 

Less known is the fact that Extreme Value Theory suggests that the
Weibull distribution will successfully model failure times for
mechanisms for which many competing similar failure processes are
"racing" to failure and the first to reach it (i.e., the minimum of a large
collection of roughly comparable random failure times) produces the
observed failure time. Analogously, when a large number of roughly
equivalent runners are competing and the winning time is recorded for
many similar races, these times are likely to follow a Weibull
distribution. 

Note that this does not mean that anytime there are several failure
mechanisms competing to cause a component or system to fail, the
Weibull model applies. One or a few of these mechanisms may
dominate the others and cause almost all of the failures. Then the
"minimum of a large number of roughly comparable" random failure
times does not apply and the proper model should be derived from the
distribution models for the few dominating mechanisms using the
competing risk model.

On the other hand, there are many cases in which failure occurs at the
weakest link of a large number of similar degradation processes or
defect flaws. One example of this occurs when modeling catastrophic
failures of capacitors caused by dielectric material breakdown. Typical
dielectric material has many "flaws" or microscopic sites where a
breakdown will eventually take place. These sites may be thought of as
competing with each other to reach failure first. The Weibull model,
as extreme value theory would suggest, has been very successful as a
life distribution model for this failure mechanism. 

8.2.1.2. Extreme value argument
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.1. How do you choose an appropriate life distribution model?

8.2.1.3.Multiplicative degradation argument

The
lognormal
model can be
applied when
degradation
is caused by
random
shocks that
increase
degradation
at a rate
proportional
to the total
amount
already
present

A brief verbal description of the multiplicative degradation argument
(leading to a derivation of the lognormal model) was given under Uses
of the Lognormal Distribution Model. Here a formal derivation will be
outlined because it gives insight into why the lognormal has been a
successful model for many failure mechanisms based on degradation
processes.

Let y1, y2, ...yn  be measurements of the amount of degradation for a
particular failure process taken at successive discrete instants of time as
the process moves towards failure. Assume the following relationships
exist between the y's: 

where the  are small, independent random perturbations or "shocks"

to the system that move the failure process along. In other words, the
increase in the amount of degradation from one instant to the next is a
small random multiple of the total amount of degradation already
present. This is what is meant by multiplicative degradation. The
situation is analogous to a snowball rolling down a snow covered hill;
the larger it becomes, the faster it grows because it is able to pick up
even more snow. 

We can express the total amount of degradation at the n-th instant of
time by

where x0 is a constant and the  are small random shocks. Next we

take natural logarithms of both sides and obtain: 

8.2.1.3. Multiplicative degradation argument
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Using a Central Limit Theorem argument we can conclude that ln xn
has approximately a  normal distribution. But by the properties of the
lognormal distribution, this means that xn (or the amount of
degradation) will follow approximately a lognormal model for any n
(or at any time t). Since failure occurs when the amount of degradation
reaches a critical point, time of failure will be modeled successfully by
a lognormal for this type of process. 

Failure
mechanisms
that might be
successfully
modeled by
the
lognormal
distribution
based on the
multiplicative
degradation
model

What kinds of failure mechanisms might be expected to follow  a
multiplicative degradation model? The processes listed below are likely
candidates:

Chemical reactions leading to the formation of new compounds1.  

Diffusion or migration of ions 2.  

Crack growth or propagation3.  

Many semiconductor failure modes are caused by one of these three
degradation processes. Therefore, it is no surprise that the lognormal
model has been very successful for the following semiconductor wear
out failure mechanisms: 

Corrosion1.  

Metal migration2.  

Electromigration3.  

Diffusion4.  

Crack growth5.  

8.2.1.3. Multiplicative degradation argument

http://www.itl.nist.gov/div898/handbook/apr/section2/apr213.htm (2 of 2) [5/1/2006 10:41:59 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.1. How do you choose an appropriate life distribution model?

8.2.1.4.Fatigue life (Birnbaum-Saunders)
model

A model
derived from
random crack
growth
occurring
during many
independent
cycles of stress

The derivation of the Fatigue Life model is based on repeated cycles
of stress causing degradation leading to eventual failure. The typical
example is crack growth. One key assumption is that the amount of
degradation during any cycle is independent of the degradation in
any other cycle, with the same random distribution. 

When this assumption matches well with a hypothesized physical
model describing the degradation process, one would expect the
Birnbaum-Saunders model to be a reasonable distribution model
candidate. (See the note in the derivation for comments about the
difference between the lognormal model derivation and the Fatigue
Life model assumptions. Also see the comment on Miner's Rule). 

8.2.1.4. Fatigue life (Birnbaum-Saunders) model
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.1. How do you choose an appropriate life distribution model?

8.2.1.5. Empirical model fitting - distribution
free (Kaplan-Meier) approach

The Kaplan-
Meier
procedure
gives CDF
estimates for
complete or
censored
sample data
without
assuming a
particular
distribution
model

The Kaplan-Meier (K-M) Product Limit procedure provides quick,
simple estimates of the Reliability function or the CDF based on failure
data that may even be multicensored. No underlying model (such as
Weibull or lognormal) is assumed; K-M estimation is an empirical
(non-parametric) procedure. Exact times of failure are required,
however.

Calculating Kaplan - Meier Estimates

The steps for calculating K-M estimates are the following:

Order the actual failure times from t1 through tr, where there are r
failures

1.  

Corresponding to each ti, associate the number ni, with ni = the
number of operating units just before the the i-th failure occurred
at time ti

2.  

Estimate R(t1) by (n1 -1)/n13.  

Estimate R(ti) by R(ti-1) × (ni -1)/ni4.  

Estimate the CDF F(ti) by 1 - R(ti)5.  

Note that unfailed units taken off test (i.e., censored) only count up to
the last actual failure time before they were removed. They are included
in the ni counts up to and including that failure time, but not after.

8.2.1.5. Empirical model fitting - distribution free (Kaplan-Meier) approach
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Example of
K-M
estimate
calculations

A simple example will illustrate the K-M procedure. Assume 20 units
are on life test and 6 failures occur at the following times: 10, 32, 56, 98,
122, and 181 hours. There were 4 unfailed units removed from the test
for other experiments at the following times: 50 100 125 and 150 hours.
The remaining 10 unfailed units were removed from the test at 200
hours. The K-M estimates for this life test are:

R(10) = 19/20
R(32) = 19/20 x 18/19
R(56) = 19/20 x 18/19 x 16/17
R(98) = 19/20 x 18/19 x 16/17 x 15/16
R(122) = 19/20 x 18/19 x 16/17 x 15/16 x 13/14
R(181) = 19/20 x 18/19 x 16/17 x 15/16 x 13/14 x 10/11

A General Expression for K-M Estimates

A general expression for the K-M estimates can be written. Assume we
have n units on test and order the observed times for these n units from
t1 to tn. Some of these are actual failure times and some are running
times for units taken off test before they fail. Keep track of all the
indices corresponding to actual failure times. Then the K-M estimates
are given by:

with the "hat" over R indicating it is an estimate and S is the set of all
subscripts j such that tj is an actual failure time. The notation j S and tj
less than or equal to ti means we only form products for indices j that are
in S and also correspond to times of failure less than or equal to ti.

Once values for R(ti) are calculated, the CDF estimates are
F(ti) = 1 - R(ti)

8.2.1.5. Empirical model fitting - distribution free (Kaplan-Meier) approach
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A small
modification
of K-M
estimates
produces
better
results for
probability
plotting

Modified K-M Estimates

The K-M estimate at the time of the last failure is R(tr) = 0 and F(tr) =
1. This estimate has a pessimistic bias and cannot be plotted (without
modification) on probability paper since the CDF for standard reliability
models asymptotically approaches 1 as time approaches infinity. Better
estimates for graphical plotting can be obtained by modifying the K-S
estimates so that they reduce to the median rank estimates for plotting
Type I Censored life test data (described in the next section). Modified
K-M estimates are given by the formula

Once values for R(ti) are calculated, the CDF estimates are F(ti) = 1 -
R(ti)

8.2.1.5. Empirical model fitting - distribution free (Kaplan-Meier) approach

http://www.itl.nist.gov/div898/handbook/apr/section2/apr215.htm (3 of 3) [5/1/2006 10:42:00 AM]

http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.2.How do you plot reliability data?

Plot
reliability
data on the
right
"special"
graph paper
and if the
points line up
approximately
on a straight
line, the
assumed
model is a
reasonable fit

Graphical plots of reliability data are quick, useful visual tests of
whether a particular model is consistent with the observed data. The
basic idea behind virtually all graphical plotting techniques is the
following: 

Points calculated from the data are placed on specially
constructed graph paper and, as long as they line up
approximately on  a straight line, the analyst can conclude
that the data are consistent with the particular model the
paper is designed to test.

If the reliability data consist of (possibly multicensored) failure data
from a non repairable population (or a repairable population for which
only time to the first failure is considered) then the models are life
distribution models such as the exponential, Weibull or lognormal. If
the data consist of repair times for a repairable system, then the model
might be the NHPP Power Law and the plot would be a Duane Plot. 

The kinds of plots we will consider for failure data from
non-repairable populations are: 

Probability (CDF) plots●   

Hazard and Cum Hazard plots●   

For repairable populations we have

Trend plots (to check whether an HPP or exponential model
applies)

●   

Duane plots (to check whether the NHPP Power Law applies)●   

Later on (Section 8.4.2.1) we will also look at plots that can be used to
check acceleration model assumptions. 

Note: Many of the plots discussed in this section can also be used to
obtain quick estimates of model parameters. This will be covered in
later sections. While there may be other, more accurate ways of
estimating parameters, simple graphical estimates can be very handy,
especially when other techniques require software programs that are

8.2.2. How do you plot reliability data?
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not readily available.
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8.2.2. How do you plot reliability data?

8.2.2.1.Probability plotting

Use
probability
plots to see
your data
and visually
check
model
assumptions

Probability plots are simple visual ways of summarizing reliability data by plotting CDF
estimates vs time on specially constructed probability paper. 

Commercial papers are available for all the typical life distribution models. One axis (some
papers use the y-axis and others the x-axis, so you have to check carefully) is labeled "Time"
and the other axis is labeled "Cum Percent" or "Percentile". There are rules, independent of the
model or type of paper, for calculating plotting positions from the reliability data. These only
depend on the type of censoring in the data and whether exact times of failure are recorded or
only readout times. 

Plot each
failure
mode
separately

Remember that different failure modes can and should be separated out and individually
analyzed. When analyzing failure mode A, for example, treat failure times from failure modes
B, C, etc., as censored run times. Then repeat for failure mode B, and so on. 

Data points
line up
roughly on
a straight
line when
the model
chosen is
reasonable

When the points are plotted, the analyst fits a straight line through them (either by eye, or with
the aid of a least squares fitting program). Every straight line on, say, Weibull paper uniquely
corresponds to a particular Weibull life distribution model and the same is true for lognormal
or exponential paper. If the points follow the line reasonably well, then the model is consistent
with the data. If it was your previously chosen model, there is no reason to question the choice.
Depending on the type of paper, there will be a simple way to find the parameter estimates that
correspond to the fitted straight line.

Plotting
positions on
probability
paper
depend on
the type of
data
censoring

Plotting Positions: Censored Data (Type I or Type II)

At the time ti of the i-th failure, we need an estimate of the CDF (or the Cum. Population
Percent Failure). The simplest and most obvious estimate is just 100 × i/n (with a total of n
units on test). This, however, is generally an overestimate (i.e. biased). Various texts
recommend corrections such as 100 × (i-.5)/n or 100 × i/(n+1). Here, we recommend what are
known as (approximate) median rank estimates: 

Corresponding to the time ti of the i-th failure, use a CDF or Percentile estimate of 100 × (i -
.3)/(n + .4) 

Plotting Positions: Readout Data

Let the readout times be T1, T2, ..., Tk and let the corresponding new failures recorded at each
readout be r1, r2, ..., rk. Again, there are n units on test.

8.2.2.1. Probability plotting
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Corresponding to the readout time Tj, use a CDF or Percentile estimate of

Plotting Positions: Multicensored Data

The calculations are more complicated for multicensored data. K-M estimates (described in a
preceding section) can be used to obtain plotting positions at every failure time. The more
precise Modified K-M Estimates are recommended. They reduce to the Censored Type I or the
Censored Type II median rank estimates when the data consist of only failures, without any
removals except possibly at the end of the test. 

How Special Papers Work

It is not
difficult to
do
probability
plotting for
many
reliability
models even
without
specially
constructed
graph
paper

The general idea is to take the model CDF equation and write it in such a way that a function
of F(t) is a linear equation of a function of t. This will be clear after a few examples. In the
formulas that follow, "ln" always means "natural logarithm", while "log" always means "base
10 logarithm". 

a) Exponential Model: Take the exponential CDF and rewrite it as

If we let y = 1/{1 - F(t)} and x = t, then log (y) is linear in x with slope /ln10. This shows we
can make our own special exponential probability paper by using standard semi log paper
(with a logarithmic y-axis). Use the plotting position estimates for F(ti) described above
(without the 100 × multiplier) to calculate pairs of (xi,yi) points to plot. 

If the data are consistent with an exponential model, the resulting plot will have points that

line up almost as a straight line going through the origin with slope /ln10. 

b) Weibull Model: Take the Weibull CDF and rewrite it as

8.2.2.1. Probability plotting
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If we let y = ln [1/{1-F(t)}] and x = t, then log (y) is linear in log(x) with slope . This shows
we can make our own Weibull probability paper by using log log paper. Use the usual plotting
position estimates for F(ti) (without the 100 × multiplier) to calculate pairs of (xi,yi) points to
plot. 

If the data are consistent with a Weibull model, the resulting plot will have points that line up

roughly on a straight line with slope . This line will cross the log x-axis at time t =  and the

log y axis (i.e., the intercept) at - log .

c) Lognormal Model: Take the lognormal cdf and rewrite it as

with  denoting the inverse function for the standard normal distribution (taking a
probability as an argument and returning the corresponding "z" value).

If we let y = t and x = {F(t)}, then log y is linear in x with slope /ln10 and intercept
(when F(t) = .5) of log T50. We can make our own lognormal probability paper by using semi
log paper (with a logarithmic y-axis). Use the usual plotting position estimates for F(ti)
(without the 100 × multiplier) to calculate pairs of (xi,yi) points to plot. 

If the data are consistent with a lognormal model, the resulting plot will have points that line
up roughly on a straight line with slope /ln10 and intercept T50 on the y-axis.

d) Extreme Value Distribution (Type I - for minimum): Take the extreme value distribution
CDF and rewrite it as 

If we let y = -ln(1 - F(x)), then ln y is linear in x with slope 1/  and intercept -µ / . We can

use semi log paper (with a logarithmic y-axis) and plot y vs x. The points should follow a

straight line with a slope of 1/ ln10 and an intercept of - ln10. The ln 10 factors are

needed because commercial log paper uses base 10 logarithms. 

8.2.2.1. Probability plotting
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DATAPLOT Example

A Dataplot
Weibull
example of
probability
plotting

Using the Dataplot commands to generate Weibull random failure times, we generate 20
Weibull failure times with a shape parameter of  γ  = 1.5 and α  = 500. Assuming a test time
of T = 500 hours, only 10 of these failure times would have been observed. They are, to the
nearest hour: 54, 187, 216, 240, 244, 335, 361, 373, 375, and 386. First we will compute
plotting position CDF estimates based on these failure times, and then a probability plot using
the "make our own paper" method. 

( 1)
Fail # = i

( 2) 
Time of Fail 

(x)

(3)
F(ti) estimate 

(i-.3)/20.4

(4)
ln{1/(1-F(ti)} 

(y)
1 54 .034 .035
2 187 .083 .087
3 216 .132 .142
4 240 .181 .200
5 244 .230 .262
6 335 .279 .328
7 361 .328 .398
8 373 .377 .474
9 375 .426 .556
10 386 .475 .645

Of course, with commercial Weibull paper we would plot pairs of points from column (2) and
column (3). With ordinary log log paper we plot (2) vs (4).

The Dataplot sequence of commands and resulting plot follow: 

LET X = DATA 54 187 216 240 244 335 361 373 375 386 
LET Y = DATA .035 .087 .142 .2 .262 .328 .398 .474 .556 .645
XLOG ON
YLOG ON
XLABEL LOG TIME
YLABEL LOG LN (1/(1-F))
PLOT Y X

8.2.2.1. Probability plotting
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Note that the configuration of points appears to have some curvature. This is mostly due to the
very first point on the plot (the earliest time of failure). The first few points on a probability
plot have more variability than points in the central range and less attention should be paid to
them when visually testing for "straightness". 

Use of least
squares
(regression)
technique to
fit a line
through the
points on
probability
paper

We could use Dataplot to fit a straight line through the points via the commands

LET YY = LOG10(Y)
LET XX = LOG10(X)
FIT YY XX

This would give a slope estimate of 1.46, which is close to the 1.5 value used in the
simulation.

The intercept is -4.114 and setting this equal to - log  we estimate  = 657 (the "true"
value used in the simulation was 500).

Dataplot
has a
special
Weibull
probability
paper
function for
complete
data
samples (no
censoring)

Finally, we note that Dataplot has a built-in Weibull probability paper command that can be
used whenever we have a complete sample (i.e., no censoring and exact failure times). First

you have to run PPCC to obtain an estimate of  = GAMMA. This is stored under SHAPE.
The full sequence of commands (with XLOG and YLOG both set to OFF) is

SET MINMAX = 1
WEIBULL PPCC PLOT SAMPLE
SET GAMMA = SHAPE
WEIBULL PLOT SAMPLE

8.2.2.1. Probability plotting
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.2. How do you plot reliability data?

8.2.2.2.Hazard and cum hazard plotting

Another
kind of
plotting,
called
Cum
Hazard
Plotting,
has the
same
purpose as
probability
plotting

Just commercial probability paper is available for most life distribution models for
probability plotting of reliability data, there are also special Cum Hazard Plotting papers
available for many life distribution models. These papers plot estimates for the Cum
Hazard H(ti)vs the time ti of the i-th failure. As with probability plots, the plotting

positions are calculated independently of the model or paper used and a reasonable
straight-line fit to the points confirms that the chosen model and the data are consistent. 

Advantages of Cum Hazard Plotting
It is much easier to calculate plotting positions for multicensored data using cum
hazard plotting techniques. 

1.  

Linear graph paper can be used for exponential data and log-log paper can be used
for Weibull data. 

2.  

Disadvantages of Cum Hazard Plotting
Commercial Cum Hazard paper may be difficult to find. 1.  

It is less intuitively clear just what is being plotted. Cum percent failed (i.e.,
probability plots) is meaningful and the resulting straight-line fit can be used to
read off times when desired percents of the population will have failed. Percent
cumulative hazard increases beyond 100% and is harder to interpret.

2.  

Normal cum hazard plotting techniques require exact times of failure and running
times.

3.  

With computers to calculate the K-M estimates for probability plotting, the main
advantage of cum hazard plotting goes away.

4.  

Since probability plots are generally more useful, we will only give a brief description of
hazard plotting. 

How to Make Cum Hazard Plots
Order the failure times and running times for each of the n units on test in
ascending order from 1 to n. The order is called the rank of the unit. Calculate the
reverse rank for each unit (reverse rank = n- rank +1).

1.  

Calculate a Hazard "value" for every failed unit (do this only for the failed units).
The Hazard value for the failed unit with reverse rank k is just 1/k. 

2.  

Calculate the cumulative hazard values for each failed unit. The cumulative hazard
value corresponding to a particular failed unit is the sum of all the hazard values
for failed units with ranks up to and including that failed unit. 

3.  

8.2.2.2. Hazard and cum hazard plotting
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Plot the time of fail vs the cumulative hazard value on special Cum Hazard paper
(or construct your own paper as covered below for the exponential and the Weibull
model).

4.  

A life test
cum
hazard
plotting
example

Example: Ten units were tested at high stress test for up to 250 hours. Six failures
occurred at 37, 73, 132, 195, 222 and 248 hours. Four units were taken off test without
failing at the following run times: 50, 100, 200 and 250 hours. Cum hazard values were
computed in the following table: 

(1)
Time of Event

(2)
1= failure
0=runtime

(3)
Rank

(4)
Reverse Rank

(5)
Haz Val

(2) x 1/(4)

(6)
Cum Hazard Value

37 1 1 10 1/10 .10
50 0 2 9   
73 1 3 8 1/8 .225
100 0 4 7   
132 1 5 6 1/6 .391
195 1 6 5 1/5 .591
200 0 7 4   
222 1 8 3 1/3 .924
248 1 9 2 1/2 1.424
250 0 10 1   

Next ignore the rows with no cum hazard value and plot column (1) vs column (6).

As with
probability
plotting,
you can
make your
own
special
hazard
plotting
paper for
many
models

Exponential and Weibull "Homemade" Hazard Paper

The cum hazard for the exponential is just H(t) = t, which is linear in t with a 0
intercept. So a simple linear graph paper plot of y = col (6) vs x = col (1) should line up

as approximately a straight line going through the origin with slope  if the exponential
model is appropriate. The Dataplot commands and graph of this are shown below:

LET X = DATA 37 73 132 195 222 248
LET Y = DATA .1 .225 .391 .591 .924 1.424
PLOT Y X

8.2.2.2. Hazard and cum hazard plotting

http://www.itl.nist.gov/div898/handbook/apr/section2/apr222.htm (2 of 4) [5/1/2006 10:42:04 AM]



The cum Hazard for the Weibull is , so a plot of y vs x on log log paper

should resemble a straight line with slope , if the Weibull model is appropriate. The
Dataplot commands and graph of this are shown below:

XLOG ON
YLOG ON
PLOT Y X

8.2.2.2. Hazard and cum hazard plotting
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The equation of the least squares line fit through these points can be found from

LET YY = LOG10(Y)
LET XX = LOG10(X)
FIT Y X

The Weibull fit looks better, although the slope estimate is 1.27, which is not far from an
exponential model slope of 1. Of course, with a sample of just 10, and only 6 failures, it
is difficult to pick a model from the data alone.

8.2.2.2. Hazard and cum hazard plotting
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.2. How do you plot reliability data?

8.2.2.3.Trend and growth plotting (Duane
plots)

Repair rates
are typically
either nearly
constant over
time or else
consistently
follow a
good or a
bad trend

Models for repairable systems were described earlier. These models are
for the cumulative number of failuress (or the repair rate) over time.
The two models used with most success throughout industry are the
HPP (constant repair rate or "exponential" system model) and the
NHPP Power Law process (the repair rate is the polynomial m(t) =

).

Before constructing a Duane Plot, there are a few simple trend plots
that often convey strong evidence of the presence or absence of a trend
in the repair rate over time. If there is no trend, an HPP model is
reasonable. If there is an apparent improvement or degradation trend, a
Duane Plot will provide a visual check for whether the NHPP Power
law model is consistent with the data. 

A few simple
plots can
help us
decide
whether
trends are
present

These simple visual graphical tests for trends are 

Plot cumulative failures versus system age (a step function that
goes up every time there is a new failure). If this plot looks
linear, there is no obvious improvement (or degradation) trend. A
bending downward indicates improvement; bending upward
indicates degradation.

1.  

Plot the inter arrival times between new failures (in other words,
the waiting times between failures, with the time to the first
failure used as the first "inter-arrival" time). If these trend up,
there is improvement; if they trend down, there is degradation.

2.  

Plot the reciprocals of the inter-arrival times. Each reciprocal is a
new failure rate estimate based only on the waiting time since the
last failure. If these trend down, there is improvement; an upward
trend indicates degradation.

3.  

8.2.2.3. Trend and growth plotting (Duane plots)
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Trend plots
and a Duane
Plot for
actual
Reliability
Improvement
Test data

Case Study 1:  Use of Trend Plots and Duane Plots with Reliability
Improvement Test Data

A prototype of a new, complex piece of equipment went through a
1500 operational hours Reliability Improvement Test. During the test
there were 10 failures. As part of the improvement process, a cross
functional Failure Review Board made sure every failure was analyzed
down to the root cause and design and parts selection fixes were
implemented on the prototype. The observed failure times were: 5, 40,
43, 175, 389, 712, 747, 795, 1299 and 1478 hours, with the test ending
at 1500 hours. The reliability engineer on the Failure Review Board
first made trend plots as described above, then made a Duane plot.
These plots (using EXCEL) follow. 

8.2.2.3. Trend and growth plotting (Duane plots)
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Time Cum MTBF
5 5
40 20
43 14.3
175 43.75
389 77.8

8.2.2.3. Trend and growth plotting (Duane plots)
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712 118.67
747 106.7
795 99.4
1299 144.3
1478 147.8

Comments: The three trend plots all show an improvement trend. The
reason it might help to try all three is that there are examples where
trends show up clearer on one of these plots, as compared to the others.
Formal statistical tests on the significance of this visual evidence of a
trend will be shown in the section on Trend Tests. 

The points on the Duane Plot line up roughly as a straight line,
indicating the NHPP Power Law model is consistent with the data. 

Estimates for the reliability growth slope and the MTBF at the end of
this test for this case study will be given in a later section. 

8.2.2.3. Trend and growth plotting (Duane plots)
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.3.How can you test reliability model
assumptions?

Models are
frequently
necessary -
but should
always be
checked

Since reliability models are often used to project (extrapolate) failure
rates or MTBF's that are well beyond the range of the reliability data
used to fit these models, it is very important to "test" whether the
models chosen are consistent with whatever data are available. This
section describes several ways of deciding whether a model under
examination is acceptable. These are: 

Visual Tests1.  

Goodness of Fit Tests2.  

Likelihood Ratio Tests3.  

Trend Tests4.  

8.2.3. How can you test reliability model assumptions?
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.3. How can you test reliability model assumptions?

8.2.3.1.Visual tests

A visual test
of a model is
a simple
plot that
tells us at a
glance
whether the
model is
consistent
with the
data

We have already seen many examples of visual tests of models. These
were: Probability Plots, Cum hazard Plots, Duane Plots and Trend Plots.
In all but the Trend Plots, the model was "tested' by how well the data
points followed a straight line. In the case of the Trend Plots, we looked
for curvature away from a straight line (cum repair plots) or increasing
or decreasing size trends (inter arrival times and reciprocal inter-arrival
times). 

These simple plots are a powerful diagnostic tool since the human eye
can often detect patterns or anomalies in the data by studying graphs.
That kind of invaluable information would be lost if the analyst only
used quantitative statistical tests to check model fit. Every analysis
should include as many visual tests as are applicable. 

Advantages of Visual Tests
Easy to understand and explain.1.  

Can occasionally reveal patterns or anomalies in the data.2.  

When a model "passes" a visual test, it is somewhat unlikely any
quantitative statistical test will "reject" it (the human eye is less
forgiving and more likely to detect spurious trends)

3.  

Combine
visual tests
with formal
quantitative
tests for the
"best of both
worlds"
approach

Disadvantages of Visual Tests
Visual tests are subjective.1.  

They do not quantify how well or how poorly a model fits the
data.

2.  

They are of little help in choosing between two or more
competing models that both appear to fit the data.

3.  

Simulation studies have shown that correct models may often
appear to not fit well by sheer chance - it is hard to know when
visual evidence is strong enough to reject what was previously
believed to be a correct model.

4.  

You can retain the advantages of visual tests and remove their

8.2.3.1. Visual tests
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disadvantages by combining data plots with formal statistical tests of
goodness of fit or trend. 

8.2.3.1. Visual tests
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.3. How can you test reliability model assumptions?

8.2.3.2.Goodness of fit tests

A Goodness
of Fit test
checks on
whether
your data
are
reasonable
or highly
unlikely,
given an
assumed
distribution
model

General tests for checking the hypothesis that your data are consistent
with a particular model are discussed in Chapter 7. Details and examples
of the Chi-Square Goodness of Fit test and the Kolmolgorov-Smirnov
(K-S) test are given in Chapter 1. The Chi-Square test can be used with
Type I or Type II censored data and readout data if there are enough
failures and readout times. The K-S test generally requires complete
samples, which limits its usefulness in reliability analysis. 

These tests control the probability of rejecting a valid model as follows: 

the analyst chooses a confidence level designated by 100 × (1 - 
).

●   

a test statistic is calculated from the data and compared to likely
values for this statistic, assuming the model is correct. 

●   

if the test statistic has a very unlikely value, or less than or equal
to an  probability of occurring, where  is a small value like .1
or .05 or even .01, then the model is rejected.

●   

So the risk of rejecting the right model is kept to  or less, and the
choice of  usually takes into account the potential loss or difficulties
incurred if the model is rejected.

8.2.3.2. Goodness of fit tests
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.3. How can you test reliability model assumptions?

8.2.3.3.Likelihood ratio tests

Likelihood
Ratio Tests
are a
powerful,
very general
method of
testing model
assumptions.
However, 
they require
special
software, not
always
readily
available.

Likelihood functions for reliability data are described in Section 4. Two
ways we use likelihood functions to choose models or verify/validate
assumptions are: 

1. Calculate the maximum likelihood of the sample data based on an
assumed distribution model (the maximum occurs when unknown
parameters are replaced by their maximum likelihood estimates).
Repeat this calculation for other candidate distribution models that also
appear to fit the data (based on probability plots). If all the models have
the same number of unknown parameters, and there is no convincing
reason to choose one particular model over another based on the failure
mechanism or previous successful analyses, then pick the model with
the largest likelihood value. 

2. Many model assumptions can be viewed as putting restrictions on the
parameters in a likelihood expression that effectively reduce the total
number of unknown parameters. Some common examples are: 

Examples
where
assumptions
can be tested
by the
Likelihood
Ratio Test

i) It is suspected that a type of data, typically modeled by a
Weibull distribution, can be fit adequately by an
exponential model. The exponential distribution is a

special case of the Weibull, with the shape parameter  set
to 1. If we write the Weibull likelihood function for the
data, the exponential model likelihood function is obtained

by setting  to 1, and the number of unknown parameters
has been reduced from two to one. 

ii) Assume we have n cells of data from an acceleration
test, with each cell having a different operating
temperature. We assume a lognormal population model
applies in every cell. Without an acceleration model
assumption, the likelihood of the experimental data would
be the product of the likelihoods from each cell and there

8.2.3.3. Likelihood ratio tests
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would be 2n unknown parameters (a different T50 and 
for each cell). If we assume an Arrhenius model applies,
the total number of parameters drops from 2n to just 3, the

single common  and the Arrhenius A and H
parameters. This acceleration assumption "saves" (2n-3)
parameters. 

iii) We life test samples of product from two vendors. The
product is known to have a failure mechanism modeled by
the Weibull distribution, and we want to know whether
there is a difference in reliability between the vendors. The
unrestricted likelihood of the data is the product of the two
likelihoods, with 4 unknown parameters (the shape and
characteristic life for each vendor population). If, however,
we assume no difference between vendors, the likelihood
reduces to having only two unknown parameters (the
common shape and the common characteristic life). Two
parameters are "lost" by the assumption of "no difference".

Clearly, we could come up with many more examples like these three,
for which an important assumption can be restated as a reduction or
restriction on the number of parameters used to formulate the likelihood
function of the data. In all these cases, there is a simple and very useful
way to test whether the assumption is consistent with the data. 

The Likelihood Ratio Test Procedure

Details of
the
Likelihood
Ratio Test
procedure

In general,
calculations
are difficult
and need to
be built into
the software
you use

Let L1 be the maximum value of the likelihood of the data without the
additional assumption. In other words, L1 is the likelihood of the data
with all the parameters unrestricted and maximum likelihood estimates
substituted for these parameters. 

Let L0 be the maximum value of the likelihood when the parameters are
restricted (and reduced in number) based on the assumption. Assume k
parameters were lost (i.e., L0 has k less parameters than L1).

Form the ratio  = L0/L1. This ratio is always between 0 and 1 and the

less likely the assumption is, the smaller  will be. This can be
quantified at a given confidence level as follows:

Calculate = -2 ln . The smaller  is, the larger  will be.1.  

We can tell when  is significantly large by comparing it to the
upper 100 × (1- ) percentile point of a Chi Square distribution

2.  

8.2.3.3. Likelihood ratio tests
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with k degrees of freedom.  has an approximate Chi-Square
distribution with k degrees of freedom and the approximation is
usually good, even for small sample sizes.

The likelihood ratio test computes  and rejects the assumption

if  is larger than a Chi-Square percentile with k degrees of
freedom, where the percentile corresponds to the confidence
level chosen by the analyst.

3.  

Note: While Likelihood Ratio test procedures are very useful and
widely applicable, the computations are difficult to perform by hand,
especially for censored data, and appropriate software is necessary.

8.2.3.3. Likelihood ratio tests
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.3. How can you test reliability model assumptions?

8.2.3.4.Trend tests

Formal
Trend Tests
should
accompany
Trend Plots
and Duane
Plots. Three
are given in
this section

In this section we look at formal statistical tests that can allow us to
quantitatively determine whether or not the repair times of a system
show a significant trend (which may be an improvement or a
degradation trend). The section on trend and growth plotting contained
a discussion of visual tests for trends - this section complements those
visual tests as several numerical tests are presented.

Three statistical test procedures will be described: 

The Reverse Arrangement Test (a simple and useful test that has
the advantage of making no assumptions about a model for the
possible trend)

1.  

The Military Handbook Test (optimal for distinguishing between
"no trend' and a trend following the NHPP Power Law or Duane
model)

2.  

The Laplace Test (optimal for distinguishing between "no trend'
and a trend following the NHPP Exponential Law model)

3.  

The Reverse
Arrangement
Test (RAT
test) is simple
and makes no
assumptions
about what
model a trend
might follow

The Reverse Arrangement Test

Assume there are r repairs during the observation period and they
occurred at system ages T1, T2, T3, ...Tr (we set the start of the
observation period to T = 0). Let I1 = T1, 
I2 = T2 - T1, I3 = T3 - T2, ..., Ir = Tr - Tr-1 be the inter-arrival times for
repairs (i.e., the sequence of waiting times between failures). Assume
the observation period ends at time Tend>Tr. 

Previously, we plotted this sequence of inter-arrival times to look for
evidence of trends. Now, we calculate how many instances we have of
a later inter-arrival time being strictly greater than an earlier
inter-arrival time. Each time that happens, we call it a reversal. If there
are a lot of reversals (more than are likely from pure chance with no
trend), we have significant evidence of an improvement trend. If there
are too few reversals we have significant evidence of degradation. 

8.2.3.4. Trend tests
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A formal definition of the reversal count and some properties of this
count are: 

count a reversal every time Ij < Ik for some j and k with j < k ●   

this reversal count is the total number of reversals R●   

for r repair times, the maximum possible number of reversals is
r(r-1)/2

●   

if there are no trends, on the average one would expect to have
r(r-1)/4 reversals.

●   

As a simple example, assume we have 5 repair times at system ages 22,
58, 71, 156 and 225, and the observation period ended at system age
300 . First calculate the inter arrival times and obtain: 22, 36, 13, 85,
69. Next, count reversals by "putting your finger" on the first
inter-arrival time, 22, and counting how many later inter arrival times
are greater than that. In this case, there are 3. Continue by "moving
your finger" to the second time, 36, and counting how many later times
are greater. There are exactly 2. Repeating this for the third and fourth
inter-arrival times (with many repairs, your finger gets very tired!) we
obtain 2 and 0 reversals, respectively. Adding 3 + 2 + 2 + 0 = 7, we see
that R = 7. The total possible number of reversals is 5x4/2 = 10 and an
"average" number is half this, or 5. 

In the example, we saw 7 reversals (2 more than average). Is this
strong evidence for an improvement trend? The following table allows
us to answer that at a 90% or 95% or 99% confidence level - the higher
the confidence, the stronger the evidence of improvement (or the less
likely that pure chance alone produced the result).

A useful table
to check
whether a
reliability test
has
demonstrated
significant
improvement

Value of R Indicating Significant Improvement (One-Sided Test)

Number of
Repairs

Minimum R for
90% Evidence of

Improvement

Minimum R for
95% Evidence of

Improvement

Minimum R for
99% Evidence of

Improvement
4 6 6 -
5 9 9 10
6 12 13 14
7 16 17 19
8 20 22 24
9 25 27 30
10 31 33 36
11 37 39 43
12 43 46 50

One-sided test means before looking at the data we expected

8.2.3.4. Trend tests
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improvement trends, or, at worst, a constant repair rate. This would be
the case if we know of actions taken to improve reliability (such as
occur during reliability improvement tests). 

For the r = 5 repair times example above where we had R = 7, the table
shows we do not (yet) have enough evidence to demonstrate a
significant improvement trend. That does not mean that an
improvement model is incorrect - it just means it is not yet "proved"
statistically. With small numbers of repairs, it is not easy to obtain
significant results. 

For numbers of repairs beyond 12, there is a good approximation
formula that can be used to determine whether R is large enough to be
significant. Calculate 

Use this
formula when
there are
more than 12
repairs in the
data set

and if z > 1.282, we have at least 90% significance. If z > 1.645, we
have 95% significance and a z > 2.33 indicates 99% significance. Since
z has an approximate standard normal distribution, the Dataplot
command 

LET PERCENTILE = 100* NORCDF(z)

will return the percentile corresponding to z. 

That covers the (one-sided) test for significant improvement trends. If,
on the other hand, we believe there may be a degradation trend (the
system is wearing out or being over stressed, for example) and we want
to know if the data confirms this, then we expect a low value for R and
we need a table to determine when the value is low enough to be
significant. The table below gives these critical values for R. 

Value of R Indicating Significant Degradation Trend (One-Sided Test)

Number of
Repairs

Maximum R for
90% Evidence of

Degradation

Maximum R for
95% Evidence of

Degradation

Maximum R for
99% Evidence of

Degradation
4 0 0 -
5 1 1 0
6 3 2 1
7 5 4 2
8 8 6 4

8.2.3.4. Trend tests
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9 11 9 6
10 14 12 9
11 18 16 12
12 23 20 16

For numbers of repairs r >12, use the approximation formula above,
with R replaced by [r(r-1)/2 - R].

Because of
the success of
the Duane
model with
industrial
improvement
test data, this
Trend Test is
recommended

The Military Handbook Test

This test is better at finding significance when the choice is between no
trend and a NHPP Power Law (Duane) model. In other words, if the
data come from a system following the Power Law, this test will
generally do better than any other test in terms of finding significance. 

As before, we have r times of repair T1, T2, T3, ...Tr with the
observation period ending at time Tend>Tr. Calculate 

and compare this to percentiles of the chi-square distribution with 2r
degrees of freedom. For a one-sided improvement test, reject no trend
(or HPP) in favor of an improvement trend if the chi square value is
beyond the upper 90 (or 95, or 99) percentile. For a one-sided
degradation test, reject no trend if the chi-square value is less than the
10 (or 5, or 1) percentile. 

Applying this test to the 5 repair times example, the test statistic has
value 13.28 with 10 degrees of freedom, and the following Dataplot
command evaluates the chi-square percentile to be 79%: 

LET PERCENTILE = 100*CHSCDF(13.28,10)

The Laplace Test

This test is better at finding significance when the choice is between no
trend and a NHPP Exponential model. In other words, if the data come
from a system following the Exponential Law, this test will generally
do better than any test in terms of finding significance. 

As before, we have r times of repair T1, T2, T3, ...Tr  with the
observation period ending at time Tend>Tr. Calculate

8.2.3.4. Trend tests
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and compare this to high (for improvement) or low (for degradation)
percentiles of the standard normal distribution. The Dataplot command 

LET PERCENTILE = 100* NORCDF(z)

will return the percentile corresponding to z. 

Formal tests
generally
confirm the
subjective
information
conveyed by
trend plots

Case Study 1: Reliability Test Improvement Data (Continued from
earlier work)

The failure data and Trend plots and Duane plot were shown earlier.
The observed failure times were: 5, 40, 43, 175, 389, 712, 747, 795,
1299 and 1478 hours, with the test ending at 1500 hours. 

Reverse Arrangement Test: The inter-arrival times are: 5, 35, 3, 132,
214, 323, 35, 48, 504 and 179. The number of reversals is 33, which,
according to the table above, is just significant at the 95% level. 

The Military Handbook Test: The Chi-Square test statistic, using the
formula given above, is 37.23 with 20 degrees of freedom. The
Dataplot expression

LET PERCENTILE = 100*CHSCDF(37.23,20)

yields a significance level of 98.9%. Since the Duane Plot looked very
reasonable, this test probably gives the most precise significance
assessment of how unlikely it is that sheer chance produced such an
apparent improvement trend (only about 1.1% probability). 

8.2.3.4. Trend tests
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.4.How do you choose an appropriate
physical acceleration model?

Choosing a
good
acceleration
model is
part science
and part art
- but start
with a good
literature
search

Choosing a physical acceleration model is a lot like choosing a life
distribution model. First identify the failure mode and what stresses are
relevant (i.e., will accelerate the failure mechanism). Then check to see
if the literature contains examples of successful applications of a
particular model for this mechanism. 

If the literature offers little help, try the models described in earlier
sections : 

Arrhenius●   

The (inverse) power rule for voltage●   

The exponential voltage model●   

Two temperature/voltage models●   

The electromigration model●   

Three stress models (temperature, voltage and humidity)●   

Eyring (for more than three stresses or when the above  models
are not satisfactory)

●   

The Coffin-Manson mechanical crack growth model●   

All but the last model (the Coffin-Manson) apply to chemical or
electronic failure mechanisms, and since temperature is almost always a
relevant stress for these mechanisms, the Arrhenius model is nearly
always a part of any more general model. The Coffin-Manson model
works well for many mechanical fatigue-related mechanisms. 

Sometimes models have to be adjusted to include a threshold level for
some stresses. In other words, failure might never occur due to a
particular mechanism unless a particular stress (temperature, for
example) is beyond a threshold value. A model for a
temperature-dependent mechanism with a threshold at T = T0 might
look like 

time to fail = f(T)/(T-T0)

8.2.4. How do you choose an appropriate physical acceleration model?
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for which f(T) could be Arrhenius. As the temperature decreases 
towards T0, time to fail increases toward infinity in this (deterministic)
acceleration model.

Models
derived
theoretically
have been
very
successful
and are
convincing

In some cases, a mathematical/physical description of the failure
mechanism can lead to an acceleration model. Some of the models
above were originally derived that way.

Simple
models are
often the
best

In general, use the simplest model (fewest parameters) you can. When
you have chosen a model, use visual tests and formal statistical fit tests
to confirm the model is consistent with your data. Continue to use the
model as long as it gives results that "work," but be quick to look for a
new model when it is clear the old one is no longer adequate.

There are some good quotes that apply here:

Quotes from
experts on
models

"All models are wrong, but some are useful." - George Box, and the
principle of Occam's Razor (attributed to the 14th century logician
William of Occam who said “Entities should not be multiplied
unnecessarily” - or something equivalent to that in Latin). 

A modern version of Occam's Razor is: If you have two theories that
both explain the observed facts then you should use the simplest one
until more evidence comes along - also called the Law of Parsimony. 

Finally, for those who feel the above quotes place too much emphasis on
simplicity, there are several appropriate quotes from Albert Einstein: 

"Make your theory as simple as possible, but no simpler"

"For every complex question there is a simple and wrong
solution."

8.2.4. How do you choose an appropriate physical acceleration model?
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.5.What models and assumptions are
typically made when Bayesian methods
are used for reliability evaluation?

The basics of Bayesian methodology were explained earlier, along with some of
the advantages and disadvantages of using this approach. Here we only consider
the models and assumptions that are commonplace when applying Bayesian
methodology to evaluate system reliability. 

Bayesian
assumptions
for the
gamma
exponential
system
model

Assumptions: 

1. Failure times for the system under investigation can be adequately modeled
by the exponential distribution. For repairable systems, this means the HPP
model applies and the system is operating in the flat portion of the bathtub
curve. While Bayesian methodology can also be applied to non-repairable
component populations, we will restrict ourselves to the system application in
this Handbook. 

2. The MTBF for the system can be regarded as chosen from a prior distribution
model that is an analytic representation of our previous information or
judgments about the system's reliability. The form of this prior model is the
gamma distribution (the conjugate prior for the exponential model). The prior

model is actually defined for  = 1/MTBF since it is easier to do the
calculations this way. 

3. Our prior knowledge is used to choose the gamma parameters a and b for the

prior distribution model for . There are many possible ways to convert
"knowledge" to gamma parameters, depending on the form of the "knowledge"
- we will describe three approaches.

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?
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Several
ways to
choose the
prior
gamma
parameter
values

i) If you have actual data from previous testing done on the system (or a
system believed to have the same reliability as the one under
investigation), this is the most credible prior knowledge, and the easiest
to use. Simply set the gamma parameter a equal to the total number of
failures from all the previous data, and set the parameter b equal to the
total of all the previous test hours.

ii) A consensus method for determining a and b that works well is the
following: Assemble a group of engineers who know the system and its
sub-components well from a reliability viewpoint.
 

Have the group reach agreement on a reasonable MTBF they
expect the system to have. They could each pick a number they
would be willing to bet even money that the system would either
meet or miss, and the average or median of these numbers would
be their 50% best guess for the MTBF. Or they could just discuss
even-money MTBF candidates until a consensus is reached.
 

❍   

Repeat the process again, this time reaching agreement on a low
MTBF they expect the system to exceed. A "5%" value that they
are "95% confident" the system will exceed (i.e., they would give
19 to 1 odds) is a good choice. Or a "10%" value might be chosen
(i.e., they would give 9 to 1 odds the actual MTBF exceeds the low
MTBF). Use whichever percentile choice the group prefers.
 

❍   

Call the reasonable MTBF MTBF50 and the low MTBF you are
95% confident the system will exceed MTBF05. These two
numbers uniquely determine gamma parameters a and b that have

 percentile values at the right locations

We call this method of specifying gamma prior parameters the
50/95 method (or the 50/90 method if we use MTBF10 , etc.). A
simple way to calculate a and b for this method, using EXCEL, is
described below.

❍   

iii) A third way of choosing prior parameters starts the same way as the
second method. Consensus is reached on an reasonable MTBF, MTBF50.
Next, however, the group decides they want a somewhatweak prior that
will change rapidly, based on new test information. If the prior parameter
"a" is set to 1, the gamma has a standard deviation equal to its mean,
which makes it spread out, or "weak". To insure the 50th percentile is set

at 50 = 1/ MTBF50 , we have to choose b = ln 2 × MTBF50, which is

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?
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approximately .6931 × MTBF50. 

Note: As we will see when we plan Bayesian tests, this weak prior is
actually a very friendly prior in terms of saving test time

Many variations are possible, based on the above three methods. For example,
you might have prior data from sources that you  don't completely trust. Or you
might question whether the data really apply to the system under investigation.
You might decide to "weight" the prior data by .5, to "weaken" it. This can be
implemented by setting a = .5 x the number of fails in the prior data and b = .5
times the number of test hours. That spreads out the prior distribution more, and
lets it react quicker to new test data. 

Consequences

After a new
test is run,
the
posterior
gamma
parameters
are easily
obtained
from the
prior
parameters
by adding
the new
number of
fails to "a"
and the new
test time to
"b"

No matter how you arrive at values for the gamma prior parameters a and b, the
method for incorporating new test information is the same. The new
information is combined with the prior model to produce an updated or

posterior distribution model for . 

Under assumptions 1 and 2, when a new test is run with T system operating

hours and r failures, the posterior distribution for  is still a gamma, with new
parameters: 

a' = a + r, b' = b + T

In other words, add to a the number of new failures and add to b the number of
new test hours to obtain the new parameters for the posterior distribution. 

Use of the posterior distribution to estimate the system MTBF (with confidence,
or prediction, intervals) is described in the section on estimating reliability
using the Bayesian gamma model. 

Using EXCEL To Obtain Gamma Parameters

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?
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EXCEL can
easily solve
for gamma
prior
parameters
when using
the "50/95"
consensus
method

We will describe how to obtain a and b for the 50/95 method and indicate the
minor changes needed when any 2 other MTBF percentiles are used. The
step-by-step procedure is 

Calculate the ratio RT = MTBF50/MTBF05.1.  

Open an EXCEL spreadsheet and put any starting value guess for a in A1
- say 2.
 

 

Move to B1 and type the following expression:

= GAMMAINV(.95,A1,1)/GAMMAINV(.5,A1,1)

Press enter and a number will appear in B1. We are going to use the
"Goal Seek" tool EXCEL has to vary A1 until the number in B1 equals
RT.
 

2.  

Click on "Tools" (on the top menu bar) and then on "Goal Seek". A box
will open. Click on "Set cell" and highlight cell B1. $B$1 will appear in
the "Set Cell" window. Click on "To value" and type in the numerical
value for RT. Click on "By changing cell" and highlight A1 ($A$1 will
appear in "By changing cell"). Now click "OK" and watch the value of
the "a" parameter appear in A1.
 

3.  

Go to C1 and type 

= .5*MTBF50*GAMMAINV(.5, A1, 2)

and the value of b will appear in C1 when you hit enter. 

4.  

Example

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?
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An EXCEL
example
using the
"50/95"
consensus
method

A group of engineers, discussing the reliability of a new piece of equipment,
decide to use the 50/95 method to convert their knowledge into a Bayesian
gamma prior. Consensus is reached on a likely MTBF50 value of 600 hours and
a low MTBF05 value of 250. RT is 600/250 = 2.4. The figure below shows the
EXCEL 5.0 spreadsheet just prior to clicking "OK" in the "Goal Seek" box. 

After clicking "OK", the value in A1 changes from 2 to 2.862978. This new
value is the prior a parameter. (Note: if the group felt 250 was a MTBF10 value,
instead of a MTBF05 value, then the only change needed would be to replace
0.95 in the B1 equation by 0.90. This would be the "50/90" method.) 

The figure below shows what to enter in C1 to obtain the prior "b" parameter
value of 1522.46. 

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?
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The gamma prior with parameters a = 2.863 and b = 1522.46 will have
(approximately) a probability of 50% of λ being below 1/600 = .001667 and a

probability of 95% of  being below 1/250 = .004. This can be checked by
typing 

=GAMMDIST(.001667,2.863,(1/1522.46), TRUE)
and

=GAMMDIST(.004,2.863,(1/1522.46), TRUE) 

as described when gamma EXCEL functions were introduced in Section 1. 

This example will be continued in Section 3, in which the Bayesian test time
needed to confirm a 500 hour MTBF at 80% confidence will be derived. 

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?
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8. Assessing Product Reliability

8.3.Reliability Data Collection

In order to assess or improve reliability, it is usually necessary to have
failure data. Failure data can be obtained from field studies of system
performance or from planned reliability tests, sometimes called Life
Tests. This section focuses on how to plan reliability tests. The aim is to
answer questions such as: how long should you test, what sample size
do you need and what test conditions or stresses need to be run?

Detailed
contents of
Section 8.3

The section detailed outline follows. 

3. Reliability Data Collection 

How do you plan a reliability assessment test? 

Exponential life distribution (or HPP model) tests1.  

Lognormal or Weibull tests2.  

Reliability growth tests (Duane model) 3.  

Accelerated life tests4.  

Bayesian gamma prior model tests 5.  

 

1.  

8.3. Reliability Data Collection
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8. Assessing Product Reliability
8.3. Reliability Data Collection

8.3.1.How do you plan a reliability
assessment test?

The Plan for
a reliability
test ends
with a
detailed
description
of the
mechanics
of the test
and starts
with stating
your
assumptions
and what
you want to
discover or
prove

Planning a reliability test means: 

How long should you test?●   

How many units have to be put on test?

For repairable systems, this is often limited to 1.❍   

●   

If acceleration modeling is part of the experimental plan●   

What combination of stresses and how many experimental
cells?

❍   

How many units go in each cell?❍   

The answers to these questions depend on: 

What models are you assuming?●   

What decisions or conclusions do you want to make after running
the test and analyzing the data?

●   

What risks are you willing to take of making wrong decisions or
conclusions?

●   

It is not always possible, or practical, to completely answer all of these
questions for every model we might want to use. This section looks at
answers, or guidelines, for the following models: 

exponential or HPP Model●   

Weibull or lognormal model●   

Duane or NHPP Power Law model●   

acceleration models●   

Bayesian gamma prior model●   

8.3.1. How do you plan a reliability assessment test?
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8. Assessing Product Reliability
8.3. Reliability Data Collection
8.3.1. How do you plan a reliability assessment test?

8.3.1.1. Exponential life distribution (or HPP
model) tests

Using an
exponential
(or HPP)
model to test
whether a
system
meets its
MTBF
requirement
is common
in industry

Exponential tests are common in industry for verifying that tools,
systems or equipment are meeting their reliability requirements for
Mean Time Between Failure (MTBF). The assumption is that the system
has a constant failure (or repair) rate, which is the reciprocal of the
MTBF. The waiting time between failures follows the exponential
distribution model.

A typical test situation might be: a new complex piece of equipment or
tool is installed in a factory and monitored closely for a period of several
weeks to several months. If it has no more than a pre-specified number
of failures during that period, the equipment "passes" its reliability
acceptance test.

This kind of reliability test is often called a Qualification Test or a
Product Reliability Acceptance Test (PRAT). Contractual penalties
may be invoked if the equipment fails the test. Everything is pegged to
meeting a customer MTBF requirement at a specified confidence level.

How Long Must You Test A Piece of Equipment or a System In
order to Assure a Specified MTBF at a Given Confidence?

You start with a given MTBF objective, say M, and a confidence level,
say 100 × (1- ). You need one more piece of information to determine
the test length: how many fails do you want to allow and still "pass" the
equipment? The more fails allowed, the longer the test required.
However, a longer test allowing more failures has the desirable feature
of making it less likely a good piece of equipment will be rejected
because of random "bad luck" during the test period.

The recommended procedure is to iterate on r = the number of allowable
fails until a larger r would require an unacceptable test length. For any
choice of r, the corresponding test length is quickly calculated by
multiplying M (the objective) by the factor in the table below

8.3.1.1. Exponential life distribution (or HPP model) tests
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corresponding to the r-th row and the desired confidence level column.

For example, to confirm a 200-hour MTBF objective at 90%
confidence, allowing up to 4 failures on the test, the test length must be
200 × 7.99 = 1598 hours. If this is unacceptably long, try allowing only
3 fails for a test length of 200 × 6.68 = 1336 hours. The shortest test
would allow no fails and last 200 × 2.3 = 460 hours. All these tests
guarantee a 200-hour MTBF at 90% confidence, when the equipment
passes. However, the shorter test are much less "fair" to the supplier in
that they have a large chance of failing a marginally acceptable piece of
equipment.

Use the Test
length Table
to determine
how long to
test

Test Length Guide Table

NUMBER
OF

FAILURES
ALLOWED

FACTOR FOR GIVEN CONFIDENCE LEVELS

r 50% 60% 75% 80% 90% 95%
0 .693 .916 1.39 1.61 2.30 3.00
1 1.68 2.02 2.69 2.99 3.89 4.74
2 2.67 3.11 3.92 4.28 5.32 6.30
3 3.67 4.18 5.11 5.52 6.68 7.75
4 4.67 5.24 6.27 6.72 7.99 9.15
5 5.67 6.29 7.42 7.90 9.28 10.51
6 6.67 7.35 8.56 9.07 10.53 11.84
7 7.67 8.38 9.68 10.23 11.77 13.15
8 8.67 9.43 10.80 11.38 13.00 14.43
9 9.67 10.48 11.91 12.52 14.21 15.70
10 10.67 11.52 13.02 13.65 15.40 16.96
15 15.67 16.69 18.48 19.23 21.29 23.10
20 20.68 21.84 23.88 24.73 27.05 29.06

The formula to calculate the factors in the table is:

and a Dataplot expression to calculate test length factors is

8.3.1.1. Exponential life distribution (or HPP model) tests
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Dataplot
expression
for
obtaining
same factors
as in Table

LET FAC = .5*CHSPPF([1- ],[2*(r+1)])

The equivalent EXCEL expression for FAC is

= .5* CHIINV(1- , 2*(r+1))).

Example: A new factory tool must meet a 400-hour MTBF requirement
at 80% confidence. You have up to two months of 3-shift operation to
decide whether the tool is acceptable. What is a good test plan?

Two months of around-the-clock operation, with some time off for
maintenance and repairs, amounts to a maximum of about 1300 hours.
The 80% confidence factor for r = 1 is 2.99, so a test of 400 × 2.99 =
about 1200 hours (with up to 1 fail allowed) is the best that can be done.

Shorten
required test
times by
testing more
than 1
system

NOTE: Exponential test times can be shortened significantly if several
similar tools or systems can be put on test at the same time. Test time
means the same as "tool hours" and 1 tool operating for 1000 hours is
equivalent (as far as the exponential model is concerned) to 2 tools
operating for 500 hours each, or 10 tools operating for 100 hours each.
Just count all the fails from all the tools and the sum of the test hours
from all the tools.

8.3.1.1. Exponential life distribution (or HPP model) tests
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8. Assessing Product Reliability
8.3. Reliability Data Collection
8.3.1. How do you plan a reliability assessment test?

8.3.1.2.Lognormal or Weibull tests

Planning
reliability tests
for
distributions
other than the
exponential is
difficult and
involves a lot
of guesswork

Planning a reliability test is not simple and straightforward when the
assumed model is lognormal or Weibull. Since these models have two
parameters, no estimates are possible without at least two test failures,
and good estimates require considerably more than that. Because of
censoring, without a good guess ahead of time at what the unknown
parameters are, any test plan may fail. 

However, it is often possible to make a good guess ahead of time
about at least one of the unknown parameters - typically the "shape"

parameter (  for the lognormal or  for the Weibull). With one
parameter assumed known, test plans can be derived that assure the
reliability or failure rate of the product tested will be acceptable. 

Lognormal Case (shape parameter known): The lognormal model
is used for many microelectronic wear-out failure mechanisms, such
as electromigration. As a production monitor, samples of
microelectronic chips taken randomly from production lots might be
tested at levels of voltage and temperature that are high enough to
significantly accelerate the occurrence of electromigration failures.
Acceleration factors are known from previous testing and range from
several hundred to several thousand.

8.3.1.2. Lognormal or Weibull tests
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Lognormal test
plans,
assuming
sigma and the
acceleration
factor are
known

The goal is to construct a test plan (put n units on stress test for T
hours and accept the lot if no more than r failures occur). The
following assumptions are made:

The life distribution model is lognormal●   

Sigma =  is known from past testing and does not vary

appreciably from lot to lot

●   

Lot reliability varies because T50's (the lognormal median or
50th percentile) differ from lot to lot

●   

The acceleration factor from high stress to use stress is a
known quantity "A"

●   

A stress time of T hours is practical as a line monitor●   

A nominal use T50 of Tu (combined with ) produces an
acceptable use CDF (or use reliability function). This is
equivalent to specifying an acceptable use CDF at, say,
100,000 hours to be a given value p0 and calculating Tu via:

where  is the inverse of the standard normal distribution 

●   

An unacceptable use CDF of p1 leads to a "bad" use T50 of Tb ,
using the same equation as above with po replaced by p1

●   

The acceleration factor A is used to calculate a "good" or acceptable
proportion of failures pa at stress and a "bad" or unacceptable
proportion of fails pb:

where  is the standard normal CDF. This reduces the reliability
problem to a well-known Lot Acceptance Sampling Plan (LASP)
problem, which was covered in Chapter 6. 

If the sample size required to distinguish between pa and pb turns out
to be too large, it may be necessary to increase T or test at a higher
stress. The important point is that the above assumptions and
equations give a methodology for planning ongoing reliability tests
under a lognormal model assumption.

8.3.1.2. Lognormal or Weibull tests
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Weibull test
plans,
assuming
gamma and
the
acceleration.
factor are
known

Weibull Case (shape parameter known): The assumptions and
calculations are similar to those made for the lognormal: 

The life distribution model is Weibull●   

Gamma =  is known from past testing and does not vary

appreciably from lot to lot

●   

Lot reliability varies because 's (the Weibull characteristic
life or 62.3 percentile) differ from lot to lot

●   

The acceleration factor from high stress to use stress is a
known quantity "A"

●   

A stress time of T hours is practical as a line monitor●   

A nominal use  of u (combined with ) produces an
acceptable use CDF (or use reliability function). This is
equivalent to specifying an acceptable use CDF at, say,
100,000 hours to be a given value p0 and calculating u

●   

An unacceptable use CDF of p1 leads to a "bad" use  of  ,

using the same equation as above with po replaced by p1

●   

The acceleration factor A is used next to calculate a "good" or
acceptable proportion of failures pa at stress and a "bad" or
unacceptable proportion of failures pb: 

This reduces the reliability problem to a Lot Acceptance Sampling
Plan (LASP) problem, which was covered in Chapter 6. 

If the sample size required to distinguish between pa and pb turns out
to be too large, it may be necessary to increase T or test at a higher
stress. The important point is that the above assumptions and
equations give a methodology for planning ongoing reliability tests
under a Weibull model assumption. 

Planning Tests to Estimate Both Weibull or Both Lognormal
Parameters

8.3.1.2. Lognormal or Weibull tests
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Rules-of-thumb
for general
lognormal or
Weibull life
test planning

All that can be said here are some general rules-of-thumb: 

If you can observe at least 10 exact times of failure, estimates
are usually reasonable - below 10 failures the critical shape
parameter may be hard to estimate accurately. Below 5 failures,
estimates are often very inaccurate.

1.  

With readout data, even with more than 10 total failures, you
need failures in three or more readout intervals for accurate
estimates.

2.  

When guessing how many units to put on test and for how
long, try various reasonable combinations of distribution
parameters to see if the corresponding calculated proportion of
failures expected during the test, multiplied by the sample size,
gives a reasonable number of failures.

3.  

As an alternative to the last rule, simulate test data from
reasonable combinations of distribution parameters and see if
your estimates from the simulated data are close to the
parameters used in the simulation. If a test plan doesn't work
well with simulated data, it is not likely to work well with real
data.

4.  

8.3.1.2. Lognormal or Weibull tests
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8. Assessing Product Reliability
8.3. Reliability Data Collection
8.3.1. How do you plan a reliability assessment test?

8.3.1.3.Reliability growth (Duane model)

Guidelines
for planning
how long to
run a
reliability
growth test

A reliability improvement test usually takes a large resource
commitment, so it is important to have a way of estimating how long a
test will be required. The following procedure gives a starting point for
determining a test time:

Guess a starting value for , the growth slope. Some guidelines
were previously discussed. Pick something close to 0.3 for a
conservative estimate (perhaps a new cross-functional team will
be working on the improvement test or the system to be improved
has many new parts with possibly unknown failure mechanisms),
or close to 0.5 for a more optimistic estimate.

1.  

Use current data and engineering estimates to arrive at a
consensus for what the starting MTBF for the system is. Call this
M1. 

2.  

Let MT be the target MTBF (the customer requirement). Then the
improvement needed on the test is given by
IM = MT/M1

3.  

A first pass estimate of the test time needed is4.  

This estimate comes from using the starting MTBF of M1 as the MTBF
after 1 hour on test and using the fact that the improvement from 1 hour

to T hours is just .

8.3.1.3. Reliability growth (Duane model)
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Make sure
test time
makes
engineering
sense

The reason the above is just a first pass estimate is it will give

unrealistic (too short) test times when a high  is assumed. A very
short reliability improvement test makes little sense because a minimal
number of failures must be observed before the improvement team can
determine design and parts changes that will "grow" reliability. And it
takes time to implement these changes and observe an improved repair
rate. 

Iterative
simulation is
an aid for
test
planning

Simulation methods can also be used to see if a planned test is likely to
generate data that will demonstrate an assumed growth rate.

8.3.1.3. Reliability growth (Duane model)
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8. Assessing Product Reliability
8.3. Reliability Data Collection
8.3.1. How do you plan a reliability assessment test?

8.3.1.4.Accelerated life tests

Accelerated
testing is
needed when
testing even
large sample
sizes at use
stress would
yield few or
no failures
within a
reasonable
time

Accelerated life tests are component life tests with components operated
at high stresses and failure data observed. While high stress testing can
be performed for the sole purpose of seeing where and how failures
occur and using that information to improve component designs or
make better component selections, we will focus in this section on
accelerated life testing for the following two purposes: 

To study how failure is accelerated by stress and fit an
acceleration model to data from multiple stress cells

1.  

To obtain enough failure data at high stress to accurately project
(extrapolate) what the CDF at use will be.

2.  

If we already know the acceleration model (or the acceleration factor to
typical use conditions from high stress test conditions), then the
methods described two pages ago can be used. We assume, therefore,
that the acceleration model is not known in advance. 

Test
planning
means
picking
stress levels
and sample
sizes and
test times to
produce
enough data
to fit models
and make
projections

Test planning and operation for a (multiple) stress cell life test
experiment consists of the following: 

Pick several combinations of the relevant stresses (the stresses
that accelerate the failure mechanism under investigation). Each
combination is a "stress cell". Note that you are planning for only
one mechanism of failure at a time. Failures on test due to any
other mechanism will be considered censored run times.

●   

Make sure stress levels used are not too high - to the point where
new failure mechanisms that would never occur at use stress are
introduced. Picking a maximum allowable stress level requires
experience and/or good engineering judgment.

●   

Put random samples of components in each stress cell and run the
components in each cell for fixed (but possibly different) lengths
of time.

●   

Gather the failure data from each cell and use the data to fit an
acceleration model and a life distribution model and use these
models to project reliability at use stress conditions.

●   

8.3.1.4. Accelerated life tests
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Test planning would be similar to topics already covered in the chapters
that discussed modeling and experimental design except for one
important point. When you test components in a stress cell for a fixed
length test, it is typical that some (or possibly many) of the components
end the test without failing. This is the censoring problem, and it greatly
complicates experimental design to the point at which it becomes almost
as much of an art (based on engineering judgment) as a statistical
science.

 An example will help illustrate the design issues. Assume a metal
migration failure mode is believed to follow the 2-stress temperature
voltage model given by 

Normal use conditions are 4 volts and 25 degrees Celsius, and the high
stress levels under consideration are 6, 8,12 volts and 85o, 105o and
125o. It probably would be a waste of resources to test at (6v, 85o), or
even possibly (8v, 85o) or (6v,105o) since these cells are not likely to
have enough stress acceleration to yield a reasonable number of failures
within typical test times. 

If you write all the 9 possible stress cell combinations in a 3x3 matrix
with voltage increasing by rows and temperature increasing by columns,
the result would look like the matrix below: 

Matrix Leading to "Backward L Design"

6v, 85o 6v, 105o 6v, 125o

8v, 85o 8v,105o 8v,125o

12v,85o 12v,105o 12v,125o

 

8.3.1.4. Accelerated life tests
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"Backwards
L" designs
are common
in
accelerated
life testing.
Put more
experimental
units in
lower stress
cells.

The combinations in bold are the most likely design choices covering
the full range of both stresses, but still hopefully having enough
acceleration to produce failures. This is the so-called "backwards L"
design commonly used for acceleration modeling experiments.

Note: It is good design practice to put more of your test units in the
lower stress cells, to make up for the fact that these cells will have a
smaller proportion of units failing.

Sometimes
simulation is
the best way
to learn
whether a
test plan has
a chance of
working

Design by Simulation:

A lengthy, but better way to choose a test matrix is the following: 

Pick an acceleration model and a life distribution model (as
usual).

●   

Guess at the shape parameter value of the life distribution model
based on literature studies or earlier experiments. The shape
parameter should remain the same for all stress cells. Choose a
scale parameter value at use so that the use stress CDF exactly
meets requirements (i.e., for the lognormal, pick a use T50 that
gives the desired use reliability - for a Weibull model choice, do
the same for the characteristic life parameter).

●   

Guess at the acceleration model parameters values ( H and ,

for the 2-stress model shown above). Again, use whatever is in
the literature for similar failure mechanisms or data from earlier
experiments).

●   

Calculate acceleration factors from any proposed test cells to  use
stress and divide the use scale parameter by these acceleration
factors to obtain "trial" cell scale parameters.

●   

Simulate cell data for each proposed stress cell using the derived
cell scale parameters and the guessed shape parameter.

●   

Check that every proposed cell has sufficient failures to give
good estimates. 

●   

Adjust the choice of stress cells and the sample size allocations
until you are satisfied that, if everything goes as expected, the
experiment will yield enough data to provide good estimates of
the model parameters.

●   

8.3.1.4. Accelerated life tests
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After you
make
advance
estimates, it
is sometimes
possible to
construct an
optimal
experimental
design - but
software for
this is
scarce

Optimal Designs:

Recent work on designing accelerated life tests has shown it is possible,
for a given choice of models and assumed values of the unknown
parameters, to construct an optimal design (one which will have the best
chance of providing good sample estimates of the model parameters).
These optimal designs typically select stress levels as far apart as
possible and heavily weight the allocation of sample units to the lower
stress cells. However, unless the experimenter can find software that
incorporates these optimal methods for his or her particular choice of
models, the methods described above are the most practical way of
designing acceleration experiments. 

8.3.1.4. Accelerated life tests
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8. Assessing Product Reliability
8.3. Reliability Data Collection
8.3.1. How do you plan a reliability assessment test?

8.3.1.5.Bayesian gamma prior model

How to
plan a
Bayesian
test to
confirm a
system
meets its
MTBF
objective

Review Bayesian basics and assumptions, if needed. We start at the point
when gamma prior parameters a and b have already been determined.
Assume we have a given MTBF objective, say M, and a desired confidence
level, say 100× (1- ). We want to confirm the system will have at least an
MTBF of at least M at the 100×(1- ) confidence level. As in the section
on classical (HPP) test plans, we pick a number of failures, r, that we can
allow on the test. We need a test time T such that we can observe up to r
failures and still "pass" the test. If the test time is too long (or too short),
we can iterate with a different choice of r. 

When the test ends, the posterior gamma distribution will have (worst case
- assuming exactly r failures) new parameters of 

a' = a + r, b' = b + T

and passing the test means that the failure rate  the upper 100×(1- )

percentile for the posterior gamma, has to equal the target failure rate 1/M.
But this percentile is, by definition, G-1(1- ;a',b'), with G-1 denoting the
inverse of the gamma distribution with parameters a', b'. We can find the
value of T that satisfies G-1 (1- ;a',b') = 1/M by trial and error, or by
using "Goal Seek" in EXCEL. However, based on the properties of the
gamma distribution, it turns out that we can calculate T directly by using

T = .5M × G-1 (1- ; 2a',.5) - b

8.3.1.5. Bayesian gamma prior model
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Excel will
easily do
the
required
calculations

Solving For T = Bayesian Test Time Using EXCEL or Dataplot

The EXCEL expression for the required Bayesian test time to confirm a
goal of M at 100×(1-a)% confidence, allowing r failures and assuming
gamma prior parameters of a and b is 

= .5*M*GAMMAINV( (1- ),((a+r)),2) - b

and the equivalent Dataplot expression is 

LET BAYESTIME = M*GAMPPF((1- ),(a+r)) - b.

Special Case: The Prior Has a = 1 (The "Weak" Prior)

When the
prior is a
weak prior
with a = 1,
the
Bayesian
test is
always
shorter
than the
classical
test

There is a very simple way to calculate the required Bayesian test time,
when the prior is a weak prior with a = 1. Just use the Test Length Guide
Table to calculate the classical test time. Call this Tc. The Bayesian test
time T is just Tc minus the prior parameter b (i.e., T = Tc - b). If the b
parameter was set equal to (ln 2) × MTBF50 (with MTBF50  the consensus
choice for an "even money" MTBF), then 

T = Tc - (ln 2) x MTBF50

This shows that when a weak prior is used, the Bayesian test time is always
less than the corresponding classical test time. That is why this prior is also
known as a friendly prior. 

Note: In general, Bayesian test times can be shorter, or longer, than the
corresponding classical test times, depending on the choice of prior
parameters. However, the Bayesian time will always be shorter when the
prior parameter a is less than, or equal to, 1. 

Example: Calculating a Bayesian Test Time

EXCEL
example

A new piece of equipment has to meet a MTBF requirement of 500 hours
at 80% confidence. A group of engineers decide to use their collective
experience to determine a Bayesian gamma prior using the 50/95 method
described in Section 2. They think 600 hours is a likely MTBF value and
they are very confident that the MTBF will exceed 250. Following the
example in Section 2, they determine that the gamma prior parameters are
a = 2.863 and b = 1522.46. 

Now they want to determine an appropriate test time so that they can
confirm a MTBF of 500 with at least 80% confidence, provided they have
no more than 2 failures. 

Using an EXCEL spreadsheet, type the expression 

= .5*500*GAMMAINV(.8,((a+r)),2) - 1522.46

8.3.1.5. Bayesian gamma prior model
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and the required test time of 1756 hours will appear (as shown below).

Using Dataplot, the same result would be obtained from 

LET BAYESTIME = 500*GAMPPF(.8,4.863) - 1522.46

To compare this result to the classical test time required,  use the Test
Length Guide Table. The table factor is 4.28, so the test time needed is 500
x 4.28 = 2140 hours for a non-Bayesian test. The Bayesian test saves about
384 hours, or an 18% savings. If the test is run for 1756 hours, with no
more than 2 failures, then an MTBF of at least 500 hours has been
confirmed at 80% confidence.

If, instead, the engineers had decided to use a weak prior with an MTBF50
of 600, the required test time would have been 

2140 - 600 x ln 2 = 1724 hours

8.3.1.5. Bayesian gamma prior model
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8. Assessing Product Reliability

8.4.Reliability Data Analysis

After you have obtained component or system reliability data, how do
you fit life distribution models, reliability growth models, or
acceleration models? How do you estimate failure rates or MTBF's and
project component or system reliability at use conditions? This section
answers these kinds of questions.

Detailed
outline for
Section 4

The detailed outline for section 4 follows. 

4. Reliability Data Analysis 

How do you estimate life distribution parameters from censored
data? 

Graphical estimation 1.  

Maximum Likelihood Estimation (MLE) 2.  

A Weibull MLE example 3.  

1.  

How do you fit an acceleration model? 

Graphical estimation 1.  

Maximum likelihood2.  

Fitting models using degradation data instead of failures 3.  

2.  

How do you project reliability at use conditions? 3.  

How do you compare reliability between two or more
populations? 

4.  

How do you fit system repair rate models?

Constant repair rate (HPP/Exponential) model1.  

Power law (Duane) model 2.  

Exponential law model3.  

5.  

How do you estimate reliability using the Bayesian gamma prior
model?

6.  

8.4. Reliability Data Analysis
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.1.How do you estimate life distribution
parameters from censored data?

Graphical
estimation
methods
(aided by
computer
line fits) are
easy and
quick 

Maximum
likelihood
methods are
usually
more
precise - but
require
special
software

Two widely used general methods will be described in this section: 

Graphical estimation●   

Maximum Likelihood Estimation (MLE)●   

Recommendation On Which Method to Use

Maximum likelihood estimation (except when the failure data are very
sparse - i.e., only a few failures) is a more precise and flexible method.
However, with censored data, the method of maximum likelihood
estimation requires special computer programs for distributions other
than the exponential. This is no longer an obstacle since, in recent years,
many statistical software packages have added reliability platforms that
will calculate MLE's and most of these packages will estimate
acceleration model parameters and give confidence bounds, as well. It is
even relatively easy to write spreadsheet log likelihood formulas and use
EXCEL's built in SOLVER routine to quickly calculate MLE's.

If important business decisions are based on reliability projections made
from life test data and acceleration modeling, then it pays to obtain
state-of-the art MLE reliability software. Otherwise, for monitoring and
tracking reliability, estimation methods based on computer-augmented
graphical procedures will often suffice. 

8.4.1. How do you estimate life distribution parameters from censored data?
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.1. How do you estimate life distribution parameters from censored data?

8.4.1.1.Graphical estimation

Every line
on
probability
paper
uniquely
identifies
distribution
parameters

Once you have calculated plotting positions from your failure data, and
put the points on the appropriate graph paper for your chosen model,
parameter estimation follows easily. But along with the mechanics of
graphical estimation, be aware of both the advantages and the
disadvantages of graphical estimation methods. 

Most
probability
papers have
simple
procedures
that go from
a line to the
underlying
distribution
parameter
estimates

Graphical Estimation Mechanics:

If you draw a line through the points, and the paper is commercially
designed probability paper, there are usually simple rules to find
estimates of the slope (or shape parameter) and the scale parameter. On
lognormal paper with time on the x-axis and cum percent on the y-axis,
draw horizontal lines from the 34th and the 50th percentiles across to
the line, and drop vertical lines to the time axis from these intersection
points. The time corresponding to the 50th percentile is the T50 estimate.
Divide T50 by the time corresponding to the 34th percentile (this is
called T34). The natural logarithm of that ratio is the estimate of sigma,

or the slope of the line (  = ln (T50 / T34). 

On commercial Weibull probability paper there is often a horizontal line
through the 62.3 percentile point. That estimation line intersects the line
through the points at a time that is the estimate of the characteristic life
parameter . In order to estimate the line slope (or the shape parameter 

), some papers have a special point on them called an estimation
point. You drop a line from the estimation point perpendicular to the
fitted line and look at where it passes through a special estimation

scale. The estimate of  is read off the estimation scale where the line
crosses it.

Other papers may have variations on the methods described above.

8.4.1.1. Graphical estimation
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Using a
computer
generated
line fitting
routine
removes
subjectivity
and can
lead directly
to computer
parameter
estimates
based on the
plotting
positions

To remove the subjectivity of drawing a line through the points, a least
squares (regression) fit can be performed using the equations described
in the section on how special papers work. An example of this for the
Weibull, using the Dataplot FIT program, was also shown in that
section. A SAS JMP™ example of a Weibull plot for the same data is
shown later in this section.

Finally, if you have exact times and complete samples (no censoring),
Dataplot has built-in Probability Plotting functions and built-in Weibull
paper - examples were shown in the sections on the various life
distribution models.

Do
probability
plots even if
you use
some other
method for
the final
estimates

Advantages of Graphical Methods of Estimation:
Graphical methods are quick and easy to use and make visual
sense

●   

Calculations can be done with little or no special software needed.●   

Visual test of model (i.e., how well the points line up) is an
additional benefit

●   

Disadvantages of Graphical Methods of Estimation

Perhaps the
worst
drawback of
graphical
estimation is
you cannot
get
legitimate
confidence
intervals for
the
estimates 

The statistical properties of graphical estimates (i.e., how precise are
they on the average) are not good

they are biased●   

even with large samples, they do not become minimum variance
(i.e., most precise) estimates

●   

graphical methods do not give confidence intervals for the
parameters (intervals generated by a regression program for this
kind of data are incorrect)

●   

Formal statistical tests about model fit or parameter values cannot
be performed with graphical methods

●   

As we will see in the next section, Maximum Likelihood Estimates
overcome all these disadvantages - at least for reliability data sets with a
reasonably large number of failures - at a cost of losing all the
advantages listed above for graphical estimation. 

8.4.1.1. Graphical estimation
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.1. How do you estimate life distribution parameters from censored data?

8.4.1.2.Maximum likelihood estimation

There is
nothing
visual about
the
maximum
likelihood
method - but
it is a
powerful
method and,
at least for
large
samples,
very precise

Maximum likelihood estimation begins with writing a mathematical
expression known as the Likelihood Function of the sample data.
Loosely speaking, the likelihood of a set of data is the probability of
obtaining that particular set of data, given the chosen probability
distribution model. This expression contains the unknown model
parameters. The values of these parameters that maximize the sample
likelihood are known as the Maximum Likelihood Estimatesor MLE's. 

Maximum likelihood estimation is a totally analytic maximization
procedure. It applies to every form of censored or multicensored data,
and it is even possible to use the technique across several stress cells and
estimate acceleration model parameters at the same time as life
distribution parameters. Moreover, MLE's and Likelihood Functions
generally have very desirable large sample properties: 

they become unbiased minimum variance estimators as the
sample size increases

●   

they have approximate normal distributions and approximate
sample variances that can be calculated and used to generate
confidence bounds

●   

likelihood functions can be used to test hypotheses about models
and parameters 

●   

With small
samples,
MLE's may
not be very
precise and
may even
generate a
line that lies
above or
below the
data points

There are only two drawbacks to MLE's, but they are important ones: 

With small numbers of failures (less than 5, and sometimes less
than 10 is small), MLE's can be heavily biased and the large
sample optimality properties do not apply

●   

Calculating MLE's often requires specialized software for solving
complex non-linear equations. This is less of a problem as time
goes by, as more statistical packages are upgrading to contain
MLE analysis capability every year.

●   

Additional information about maximum likelihood estimatation can be
found in Chapter 1.

8.4.1.2. Maximum likelihood estimation
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Likelihood
equation for
censored
data 

Likelihood Function Examples for Reliability Data:

Let f(t) be the PDF and F(t) the CDF for the chosen life distribution
model. Note that these are functions of t and the unknown parameters of
the model. The likelihood function for Type I Censored data is: 

with C denoting a constant that plays no role when solving for the
MLE's. Note that with no censoring, the likelihood reduces to just the
product of the densities, each evaluated at a failure time. For Type II
Censored Data, just replace T above by the random end of test time tr. 

The likelihood function for readout data is:

with F(T0) defined to be 0. 

In general, any multicensored data set likelihood will be a constant
times a product of terms, one for each unit in the sample, that look like
either f(ti), [F(Ti)-F(Ti-1)], or [1-F(ti)], depending on whether the unit
was an exact time failure at time ti, failed between two readouts Ti-1 and
Ti, or survived to time ti and was not observed any longer. 

The general mathematical technique for solving for MLE's involves
setting partial derivatives of ln L (the derivatives are taken with respect
to the unknown parameters) equal to zero and solving the resulting
(usually non-linear) equations. The equation for the exponential model
can easily be solved, however. 
 

8.4.1.2. Maximum likelihood estimation

http://www.itl.nist.gov/div898/handbook/apr/section4/apr412.htm (2 of 3) [5/1/2006 10:42:26 AM]



MLE for the
exponential
model
parameter 

 turns out

to be just
(total # of
failures)
divided by
(total unit
test time)

MLE's for the Exponential Model (Type I Censoring):

Note: The MLE of the failure rate (or repair rate) in the exponential case
turns out to be the total number of failures observed divided by the total
unit test time. For the MLE of the MTBF, take the reciprocal of this or
use the total unit test hours divided by the total observed failures. 

There are examples of Weibull and lognormal MLE analysis, using SAS
JMP™ software, later in this section.

8.4.1.2. Maximum likelihood estimation
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.1. How do you estimate life distribution parameters from censored data?

8.4.1.3.A Weibull maximum likelihood estimation
example

Reliability
analysis
with a
popular
statistical
software
package

SAS JMPTM Example

SAS JMP software has excellent survival analysis (i.e., reliability analysis) capabilities,
incorporating both graphical plotting and maximum likelihood estimation and covering
the exponential, Weibull, lognormal and extreme value distribution models. 

Use of JMP (Release 3) for plotting Weibull censored data and estimating parameters
will be illustrated using data from a previous example. 

Steps in a
Weibull
analysis
using JMP
software

Weibull Data Example

Failure times were 55, 187, 216, 240, 244, 335, 361, 373, 375, and 386 hours, and 10
unfailed units were removed from test at 500 hours. The steps in creating a JMP
worksheet and analyzing the data are as follows:

1. Set up three columns, one for the failure and censoring times ("Time"), another to
indicate whether the time is a failure or a censoring time ("Cens") and the third column
to show how many units failed or were censored at that time ("Freq"). Fill in the 11 times
above, using "0" in Cens to indicate a failure and "1" in Cens to indicate a censoring
time. The spreadsheet will look as follows:

8.4.1.3. A Weibull maximum likelihood estimation example
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You can obtain a copy of this JMP worksheet by clicking here mleex.jmp . If your
browser is configured to bring up JMP automatically, you can try out the example as you
read about it.

2. Click on Analyze, choose "Survival" and then choose "Kaplan - Meier Method". Note:
Some software packages (and other releases of JMP) might use the name "Product Limit
Method" or "Product Limit Survival Estimates" instead of the equivalent name
"Kaplan-Meier". 

3. In the box that appears, select the columns from mleex that correspond to "Time",
"Censor" and "Freq", put them in the corresponding slots on the right (see below) and
click "OK". 

8.4.1.3. A Weibull maximum likelihood estimation example
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4. Click "OK" and the analysis results appear. You may have to use the "check mark" tab
on the lower left to select Weibull Plot (other choices are Lognormal and Exponential).
You may also have to open the tab next to the words "Weibull Plot" and select "Weibull
Estimates". The results are shown below. 

8.4.1.3. A Weibull maximum likelihood estimation example
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Note: JMP uses the parameter  for the Weibull characteristic life (as does Dataplot),

and the parameter  for the shape (Dataplot uses ). The Extreme Value distribution
parameter estimates are for the distribution of "ln time to fail" and have the relationship 

5. There is an alternate way to obtain some of the same results, which can also be used to
fit models when there are additional "effects" such as temperature differences or vintage
or plant of manufacturing differences. Instead of clicking "Kaplan - Meier Method" in
step 2, chose "Parametric Model" after selecting "Survival" from the "Analysis" choices.
The screen below appears. Repeat step 3 and make sure "Weibull" appears as the "Get
Model" choice. In this example there are no other effects to "Add" (the acceleration
model example later on will illustrate how to add a temperature effect). Click "Run

8.4.1.3. A Weibull maximum likelihood estimation example
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Model" to obtain the results below. This time, you need to use the check symbol tab to
obtain confidence limits. Only the Extreme Value distribution parameter estimates are
displayed. 

8.4.1.3. A Weibull maximum likelihood estimation example
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Limitations
and a
warning
about the
Likelihood
calculation
in JMP

Notes: 

1. The built in reliability analysis routine that iscurrently part of JMP only handles exact
time of failure data with possible right censoring. However, the use of templates
(provided later in the Handbook) for either Weibull or lognormal data extends JMP
analysis capabilities to handle readout (interval) data and any type of censoring or
truncation. This will be described in the acceleration model example later on. 

2. The "Model Fit" screen for the Weibull model gives a value for -Loglikelihood for the
Weibull fit. This should be the negative of the maximized likelihood function. However,
JMP leaves out a term consisting of the sum of all the natural logarithms of the times of
failures in the data set. This does not affect the calculation of MLE's or confidence
bounds but can be confusing when comparing results between different software
packages. In the example above, the sum of the ln times is ln 55 + ln 187 + . . . + ln 386
= 55.099 and the correct maximum log likelihood is - (20.023 + 55.099) = - 75.122. 

3. The omission of the sum of the ln times of failures in the likelihood also occurs when
fitting lognormal and exponential models. 

4. Different releases of JMP may, of course, operate somewhat differently. The analysis
shown here used release 3.2.2.

Conclusions

MLE analysis is an accurate and easy way to estimate life distribution parameters,
provided that a good software analysis package is available. The package should also
calculate confidence bounds and loglikelihood values. JMP has this capability, as do
several other commercial statistical analysis packages.

8.4.1.3. A Weibull maximum likelihood estimation example
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.2.How do you fit an acceleration
model?

Acceleration
models can
be fit by
either
graphical
procedures
or maximum
likelihood
methods

As with estimating life distribution model parameters, there are two
general approaches for estimating acceleration model parameters: 

Graphical estimation  (or computer procedures based on a 
graphical approach)

●   

Maximum Likelihood Estimation  (an analytic approach based on
writing the likelihood of all the data across all the cells,
incorporating the acceleration model).

●   

The same comments and recommendations concerning these methods
still apply. Note that it is even harder, however, to find useful software
programs that will do maximum likelihood estimation across stress cells
and fit and test acceleration models. 

Sometimes it
is possible to
fit a model
using
degradation
data

Another promising method of fitting acceleration models is sometimes
possible when studying failure mechanisms characterized by a
stress-induced gradual degradation process that causes the eventual
failure. This approach fits models based on degradation data and has the
advantage of not actually needing failures. This overcomes censoring
limitations by providing measurement data at consecutive time intervals
for every unit in every stress cell.

8.4.2. How do you fit an acceleration model?
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.2. How do you fit an acceleration model?

8.4.2.1.Graphical estimation

This section will discuss the following: 

How to fit an Arrhenius model with graphical estimation1.  

Graphical estimation: an Arrhenius model example2.  

Fitting more complicated models3.  

Estimate
acceleration
model
parameters
by
estimating
cell T50's

(or 's)
and then
using
regression
to fit the
model
across the
cells

How to fit an Arrhenius Model with Graphical Estimation

Graphical methods work best (and are easiest to describe) for a simple one-stress model
like the widely used Arrhenius model

with T denoting temperature measured in degrees Kelvin (273.16 + degrees Celsius) and
k is Boltzmann's constant (8.617 x 10-5 in eV/°K). 

When applying an acceleration model to a distribution of failure times, we interpret the
deterministic model equation to apply at any distribution percentile we want. This is
equivalent to setting the life distribution scale parameter equal to the model equation
(T50 for the lognormal,  for the Weibull and the MTBF or 1/  for the exponential).

For the lognormal, for example, we have

So, if we run several stress cells and compute T50's for each cell, a plot of the natural log
of these T50's versus the corresponding 1/kT values should be roughly linear with a slope

8.4.2.1. Graphical estimation
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of H and an intercept of ln A. In practice, a computer fit of a line through these points
is typically used to obtain the Arrhenius model estimates. There are even commercial
Arrhenius graph papers that have a temperature scale in 1/kT units and a T50 scale in log
units, but it is easy enough to make the transformations and then use linear or log-linear
papers. Remember that T is in Kelvin in the above equations. For temperature in Celsius,
use the following for 1/kT: 11605/(TCELSIUS + 273.16) 

An example will illustrate the procedure. 

Graphical Estimation: An Arrhenius Model Example:

Arrhenius
model
example

Component life tests were run at 3 temperatures: 85°C, 105°C and 125°C. The lowest
temperature cell was populated with 100 components; the 105° cell had 50 components
and the highest stress cell had 25 components. All tests were run until either all the units
in the cell had failed or 1000 hours was reached. Acceleration was assumed to follow an
Arrhenius model and the life distribution model for the failure mode was believed to be
lognormal. The normal operating temperature for the components is 25°C and it is
desired to project the use CDF at 100,000 hours. 

Test results: 

Cell 1 (85°C): 5 failures at 401, 428, 695, 725 and 738 hours. 95 units were censored at
1000 hours running time. 

Cell 2 (105°C): 35 failures at 171, 187, 189, 266, 275, 285, 301, 302, 305, 316, 317, 324,
349, 350, 386, 405, 480, 493, 530, 534, 536, 567, 589, 598, 599, 614, 620, 650, 668,
685, 718, 795, 854, 917, and 926 hours. 15 units were censored at 1000 hours running
time. 

Cell 3 (125°C): 24 failures at 24, 42, 92, 93, 141, 142, 143, 159, 181, 188, 194, 199, 207,
213, 243, 256, 259, 290, 294, 305, 392, 454, 502 and 696. 1 unit was censored at 1000
hours running time. 

Failure analysis confirmed that all failures were due to the same failure mechanism (if
any failures due to another mechanism had occurred, they would have been considered
censored run times in the Arrhenius analysis). 

Steps to Fitting the Distribution Model and the Arrhenius Model:
Do graphical plots for each cell and estimate T50's and sigma's as previously
discussed.

●   

Put all the plots on the same sheet of graph paper and check whether the lines are
roughly parallel (a necessary consequence of true acceleration).

●   

If satisfied from the plots that both the lognormal model and the constant sigma
from cell to cell are consistent with the data, plot the cell ln T50's versus the
11605/(TCELSIUS + 273.16) cell values, check for linearity and fit a straight line
through the points. Since the points have different degrees of precision, because
different numbers of failures went into their calculation, it is recommended that
the number of failures in each cell be used as weights in a regression program,
when fitting a line through the points.

●   

8.4.2.1. Graphical estimation
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Use the slope of the line as the H estimate and calculate the Arrhenius A
constant from the intercept using A = eintercept .

●   

Estimate the common sigma across all the cells by the weighted average of the
individual cell sigma estimates. Use the number of failures in a cell divided by the
total number of failures in all cells as that cells weight. This will allow cells with
more failures to play a bigger role in the estimation process. 

●   

Dataplot
solution for
Arrhenius
model
example 

Dataplot Analysis of Multicell Arrhenius Model Data:

After creating text files DAT1.TXT, DAT2.TXT and DAT3.TXT of the failure times for
the 3 stress cells, enter Dataplot and execute the following sequence of commands
(individual cell plots have been skipped): 

READ DAT1.TXT CELL1
READ DAT2.TXT CELL2
READ DAT3.TXT CELL3
LET Y1 = LOG(CELL1)
LET Y2 = LOG(CELL2)
LET Y3 = LOG(CELL3)
LET POS1 = SEQUENCE 1 1 5
LET POS2 = SEQUENCE 1 1 35
LET POS3 = SEQUENCE 1 1 24
LET POS1 = (POS1 -.3)/100.4
LET POS2 = (POS2 -.3)/50.4
LET POS3 = (POS3 -.3)/25.4
LET X1 = NORPPF(POS1)
LET X2 = NORPPF(POS2)
LET X3 = NORPPF(POS3)
TITLE PROBABILITY PLOTS OF THREE TEMPERATURE CELLS 
PLOT Y1 X1 AND
PLOT Y2 X2 AND
PLOT Y3 X3

This will produce the following probability plot of all three stress cells on the same
graph.

8.4.2.1. Graphical estimation
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Note that the lines are somewhat straight (a check on the lognormal model) and the
slopes are approximately parallel (a check on the acceleration assumption). 

The cell ln T50 and sigma estimates are obtained from the FIT function as follows: 

FIT Y1 X1
FIT Y2 X2
FIT Y3 X3

Each FIT will yield a cell Ao, the ln T50 estimate, and A1, the cell sigma estimate. These
are summarized in the table below. 

Summary of Least Squares Estimation of Cell Lognormal Parameters

Cell Number ln T50 Sigma

1   (T = 85) 8.168 .908
2  (T = 105) 6.415 .663
3  (T = 125) 5.319 .805

The three cells have 11605/(T + 273.16) values of 32.40, 30.69 and 29.15 respectively,
in cell number order. The Dataplot commands to generate the Arrhenius plot are: 

LET YARRH = DATA 8.168 6.415 5.319
LET XARRH = DATA 32.4 30.69 29.15
TITLE = ARRHENIUS PLOT OF CELL T50'S

8.4.2.1. Graphical estimation
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With only three cells, it is unlikely a straight line through the points will present obvious
visual lack of fit. However, in this case, the points appear to line up very well. 

Finally, the model coefficients are computed from 

LET SS = DATA 5 35 24
WEIGHT = SS
FIT YARRH XARRH

This will yield a ln A estimate of -18.312 (A = e-18.312 = .1115x10-7) and a H estimate

of .808. With this value of H, the acceleration between the lowest stress cell of 85°C
and the highest of 125°C is 

which is almost 14× acceleration. Acceleration from 125 to the use condition of 25°C is
3708× . The use T50 is e-18.312 x e.808x11605x1/298.16= e13.137 = 507383. 

A single sigma estimate for all stress conditions can be calculated as a weighted average
of the 3 sigma estimates obtained from the experimental cells. The weighted average is
(5/64) × .908 + (35/64) × .663 + (24/64) × .805 = .74. 

Fitting More Complicated models

8.4.2.1. Graphical estimation
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Models
involving
several
stresses can
be fit using
multiple
regression

Two stress models, such as the temperature /voltage model given by 

need at least 4 or five carefully chosen stress cells to estimate all the parameters. The
Backwards L design previously described is an example of a design for this model. The
bottom row of the "backward L" could be used for a plot testing the Arrhenius
temperature dependence, similar to the above Arrhenius example. The right hand column
could be plotted using y = ln T50 and x = ln V, to check the voltage term in the model.
The overall model estimates should be obtained from fitting the multiple regression
model 

The Dataplot command for fitting this model, after setting up the Y, X1 = X1, X2 = X2 
data vectors, is simply 

FIT Y X1 X2

and the output gives the estimates for b0, b1 and b2. 

Three stress models, and even Eyring models with interaction terms, can be fit by a
direct extension of these methods. Graphical plots to test the model, however, are less
likely to be meaningful as the model becomes more complex.

8.4.2.1. Graphical estimation
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.2. How do you fit an acceleration model?

8.4.2.2.Maximum likelihood

The
maximum
likelihood
method can
be used to
estimate
distribution
and
acceleration
model
parameters
at the same
time

The Likelihood equation for a multi-cell acceleration model starts by computing the Likelihood
functions for each cell, as was described earlier. Each cell will have unknown life distribution
parameters that, in general, are different. For example, if a lognormal model is used, each cell
might have its own T50 and .

Under an acceleration assumption, however, all the cells contain samples from populations that
have the same value of  (the slope does not change for different stress cells). Also, the T50's are
related to one another by the acceleration model; they all can be written using the acceleration
model equation with the proper cell stresses put in. 

To form the Likelihood equation under the acceleration model assumption, simply rewrite each
cell Likelihood by replacing each cell T50 by its acceleration model equation equivalent and

replacing each cell sigma by the same one overall . Then, multiply all these modified cell
Likelihoods together to obtain the overall Likelihood equation. 

Once you have the overall Likelihood equation, the maximum likelihood estimates of sigma and
the acceleration model parameters are the values that maximize this Likelihood. In most cases,
these values are obtained by setting partial derivatives of the log Likelihood to zero and solving
the resulting (non-linear) set of equations. 

The method
is
complicated
and requires
specialized
software

As you can see, the procedure is complicated and computationally intensive, and only practical if
appropriate software is available. It does have many desirable features such as:

the method can, in theory at least, be used for any distribution model and acceleration
model and type of censored data

●   

estimates have "optimal" statistical properties as sample sizes (i.e., numbers of failures)
become large

●   

approximate confidence bounds can be calculated●   

statistical tests of key assumptions can be made using the likelihood ratio test. Some
common tests are:

the life distribution model versus another simpler model with fewer parameters (i.e.,
a 3-parameter Weibull versus a 2-parameter Weibull, or a 2-parameter Weibull vs an
exponential)

❍   

the constant slope from cell to cell requirement of typical acceleration models❍   

the fit of a particular acceleration model❍   

●   

In general, the recommendations made when comparing methods of estimating life distribution
model parameters also apply here. Software incorporating acceleration model analysis capability,
while rare just a few years ago, is now readily available and many companies and universities
have developed their own proprietary versions. 

8.4.2.2. Maximum likelihood
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Example Comparing Graphical Estimates and MLE 's

Arrhenius
example
comparing
graphical
and MLE
method
results

The data from the 3-stress-cell Arrhenius example given in  the preceding section were analyzed
using a proprietary MLE program that could fit individual cells and also do an overall Arrhenius
fit. The tables below compare results. 
 
 

Graphical Estimates MLE's
ln T50 Sigma ln T50 Sigma

Cell 1 8.17 .91 8.89 1.21
Cell 2 6.42 .66 6.47 .71
Cell 3 5.32 .81 5.33 .81

Acceleration Model Overall Estimates

H Sigma ln A

Graphical .808 .74 -18.312
MLE .863 .77 -19.91

Note that when there were a lot of failures and little censoring, the two methods were in fairly
close agreement. Both methods were also in close agreement on the Arrhenius model results.
However, even small differences can be important when projecting reliability numbers at use
conditions. In this example, the CDF at 25°C and 100,000 hours projects to .014 using the
graphical estimates and only .003 using the MLE estimates.

MLE method
tests models
and gives
confidence
intervals

The Maximum Likelihood program also tested whether parallel lines (a single sigma) were
reasonable and whether the Arrhenius model was acceptable. The three cells of data passed both
of these Likelihood Ratio tests easily. In addition, the MLE program output included confidence
intervals for all estimated parameters. 

SAS JMP™ software (previously used to find single cell Weibull MLE's) can also be used for
fitting acceleration models. This is shown next. 

Using SAS JMP™Software To Fit Reliability Models

Detailed
explanation
of how to
use JMP
software to
fit an
Arrhenius
model

If you have JMP on your computer, set up to run as a browser application, click here to load a
lognormal template JMP spreadsheet named arrex.jmp. This template has the Arrhenius example
data already entered. The template extends JMP's analysis capabilities beyond the standard JMP
routines by making use of JMP's powerful "Nonlinear Fit" option (links to blank templates for
both Weibull and lognormal data are provided at the end of this page). 

First, a standard JMP reliability model analysis for these data will be shown. By working with
screen windows showing both JMP and the Handbook, you can try out the steps in this analysis as
you read them. Most of the screens below are based on JMP 3.2 platforms, but comparable
analyses can be run with JMP 4.

The first part of the spreadsheet should appear as illustrated below.

8.4.2.2. Maximum likelihood
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Steps For Fitting The Arrhenius Model Using JMP's "Survival" Options

1. The "Start Time" column has all the fail and censor times and "Censor" and "Freq" were
entered as shown previously. In addition, the temperatures in degrees C corresponding to  each
row were entered in "Temp in C". That is all that has to be entered on the template; all other
columns are calculated as needed. In particular, the "1/kT" column contains the standard
Arrhenius 1/kT values for the different temperature cells.

2. To obtain a plot of all three cells, along with individual cell lognormal parameter estimates,
choose "Kaplan - Meier" (or "Product Limit") from the "Analysis" menu and fill in the screen as
shown below. 

Column names are transferred to the slots on the right by highlighting them and clicking on the
tab for the slot. Note that the "Temp in C" column is transferred to the "Grouping" slot in order to
analyze and plot each of the three temperature cells separately.

8.4.2.2. Maximum likelihood
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Clicking "OK" brings up the analysis screen below. All plots and estimates are based on
individual cell data, without the Arrhenius model assumption. Note: To obtain the lognormal
plots, parameter estimates and confidence bounds, it was necessary to click on various "tabs" or
"check" marks - this may depend on the software release level.

8.4.2.2. Maximum likelihood

http://www.itl.nist.gov/div898/handbook/apr/section4/apr422.htm (4 of 12) [5/1/2006 10:42:29 AM]



This screen does not give -LogLikelihood values for the cells. These are obtained from the
"Parametric Model" option in the "Survival" menu (after clicking "Analyze").

3. First we will use the "Parametric Model" option to obtain individual cell estimates. On the JMP
data spreadsheet (arrex.jmp), select all rows except those corresponding to cell 1 (the 85 degree
cell) and choose "Exclude" from the "Row" button options (or do "ctrl+E"). Then click "Analyze"
followed by "Survival" and "Parametric Model". Enter the appropriate columns, as shown below.
Make sure you use "Get Model" to select "lognormal" and  click "Run Model".

8.4.2.2. Maximum likelihood
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This will generate a model fit screen for cell 1. Repeat for cells 2 and 3. The three resulting model
fit screens are shown below.

8.4.2.2. Maximum likelihood
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Note that the model estimates and bounds are the same as obtained in step 2, but these screens

also give -LogLikelihood values. Unfortunately, as previously noted, these values are off by the
sum of the {ln(times of failure)} for each cell. These sums for the three cells are 31.7871,
213.3097 and 371.2155, respectively. So the correct cell -LogLikelihood values for comparing
with other MLE programs are 53.3546, 265.2323 and 156.5250, respectively. Adding them

together yields a total -LogLikelihood of 475.1119 for all the data fit with separate lognormal
parameters for each cell (no Arrhenius model assumption). 

4. To fit the Arrhenius model across the three cells go back to the survival model screen, this time
with all the data rows included and the "1/kT" column selected and put into the "Effects in
Model" box via the "Add" button. This adds the Arrhenius temperature effect to the MLE analysis
of all the cell data. The screen looks like:

Clicking "Run Model" produces

8.4.2.2. Maximum likelihood
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The MLE estimates agree with those shown in the tables earlier on this page. The -LogLikelihood
for the model is given under "Full" in the output screen (and should be adjusted by adding the
sum of all the ln failure times from all three cells if comparisons to other programs might be

made). This yields a model -LogLikelihood of  105.4934 + 371.2155 = 476.7089. 

5. The likelihood ratio test statistic for the Arrhenius model fit (which also incorporates the single

sigma acceleration assumption) is - 2Log , with  denoting the difference between the
LogLikelihoods with and without the Arrhenius model assumption. Using the results from steps 3

and 4, we have - 2Log  = 2 × (476.709 - 475.112) = 3.194. The degrees of freedom (dof) for the
Chi-Square test statistic is 6 - 3 = 3, since six parameters were reduced to three under the
acceleration model assumption. The chance of obtaining a value 3.194 or higher is 36.3% for a
Chi Square distribution with 3 dof, which indicates an acceptable model (no significant lack of
fit).

This completes a JMP 3.2 Arrhenius model analysis of the three cells of data. Since the Survival
Modeling screen allows any "effects" to be included in the model, if different cells of data had
different voltages, the "ln V" column could be added as an effect to fit the Inverse Power Law
voltage model. In fact, several effects can be included at once if more than one stress varies
across cells. Cross product stress terms could also be included by adding these columns to the
spreadsheet and adding them in the model as additional "effects". 

Arrhenius
example
using
special JMP
template and
"Nonlinear
Fit"

Steps For Fitting The Arrhenius Model Using the "Nonlinear Fit" Option and Special JMP
Templates

There is another powerful and flexible tool included within JMP that can use MLE methods to fit
reliability models. While this approach requires some simple programming of JMP calculator
equations, it offers the advantage of extending JMP's analysis capabilities to readout data (or
truncated data, or any combination of different types of data). Templates (available below) have
been set up to cover lognormal and Weibull data. The spreadsheet used above (arrex.jmp) is just a
partial version of the lognormal template, with the Arrhenius data entered. The full templates can
also be used to project CDF's at user stress conditions, with confidence bounds.

The following steps work with arrex.jmp because the "loss" columns have been set up to calculate
-LogLikelihoods for each row. 

8.4.2.2. Maximum likelihood
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1. Load the arrex.jmp spreadsheet and Click "Analyze" on the Tool Bar and choose "Nonlinear
Fit".

2. Select the Loss (w/Temp) column and click "Loss" to put "Loss (w/Temp)" in the box. This
column on the spreadsheet automatically calculates the - LogLikelihood values at each data point
for the Arrhenius/lognormal model. Click "OK" to run the Nonlinear Analysis.

3. You will next see a "Nonlinear Fit" screen. Select "Loss is -LogLikelihood" and click the
"Reset" and "Go" buttons to make sure you have a new analysis. The parameter values for the
constant ln A (labeled "Con"), ∆H and sig will appear and the value of - LogLikelihood is given
under the heading "SSE". These numbers are -19.91, 0.863, 0.77 and 476.709, respectively. You
can now click on "Confid Limits" to obtain upper and lower confidence limits for these
parameters. The stated value of "Alpha = .05" means that the interval between the limits is a  95%
confidence interval. At this point your "Nonlinear Fit" screen appears as follows

8.4.2.2. Maximum likelihood
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:

4. Next you can run each cell separately by excluding all data rows corresponding to other cells
and repeating steps 1 through 3. For this analysis, select the "Loss (w/o Stress)" column to put in
"Loss" in step 2, since a single cell fit does not use temperature . The numbers should match the

table shown earlier on this page. The three cell -LogLikelihood values are 53.355, 265.232 and

156.525. These add to 475.112, which is the minimum -loglikelihood possible, since it uses 2
independent parameters to fit each cell separately (for a total of six parameters, overall).

The likelihood ratio test statistic for the Arrhenius model fit (which also incorporates the single
sigma acceleration assumption) is - 2Log λ = 2 x (476.709 - 475.112) = 3.194. Degrees of
freedom for the Chi-Square test statistic is 6 - 3 = 3, since six parameters were reduced to three
under the acceleration model assumption. The chance of obtaining a value of 3.194 or higher is
36.3% for a Chi-Square distribution with 3 dof, which indicates an acceptable model (no
significant lack of fit).

For further examples of JMP reliability analysis there is an excellent collection of JMP statistical
tutorials put together by Professor Ramon Leon and one of his students, Barry Eggleston,
available on the Web at
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://web.utk.edu/~leon/jmp/.

8.4.2.2. Maximum likelihood
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Data entry
on JMP
templates
for general
reliability
data

How To Use JMP Templates For Lognormal or Weibull Data (Including Acceleration
Model Analysis)

With JMP installed to run as a browser application, you can click on weibtmp.jmp or
lognmtmp.jmp and load (and save for later use) blank templates similar to the one shown above,
for either Weibull or lognormal data analysis. Here's how to enter any kind of data on either of
the templates.

Typical Data Entry

1. Any kind of censored or truncated or readout data can be entered. The rules are as follows for
the common case of (right) censored reliability data:
 

i) Enter exact failure times in the "Start Time" column, with "0" in the "Cens"
column and the number of failures at that exact time in the "Freq" column.

ii) Enter temperature in degrees Celsius for the row entry in "Temp in C", whenever
data from several different operating temperatures are present and an Arrhenius
model fit is desired.

iii) Enter voltages in "Volt" for each row entry whenever data from several different
voltages are present and an Inverse Power Law model fit is desired. If both
temperatures and voltages are entered for all data rows, a combined two-stress model
can be fit.

iv) Put censor times (when unfailed units are removed from test, or no longer
observed)  in the "Start Time" column, and enter "1" in the "Cens" column. Put the
number of censored units in the "Freq" column.

v) If readout (also known as interval) data are present, put the interval start time and
stop time in the corresponding columns and "2" in the "Cens" column. Put the
number of failures during the interval in the "Freq" column. If the number of failures
is zero, it doesn't matter if you include the interval, or not. 

Using The Templates For Model Fitting and CDF Projections With Bounds

Pick the appropriate template; weibtmp.jmp for a Weibull fit, or lognmtmp.jmp for a lognormal
fit. Follow this link for documentation on the use of these templates. Refer to the Arrhenius
model example above for an illustration of how to use the JMP non-linear fit platform with these
templates.

A few tricks are needed to handle the rare cases of truncated data or left-censored data. These are
described in the template documentation and also repeated below (since they work for the JMP
survival platform and can be used with other similar kinds of reliability analysis software .

8.4.2.2. Maximum likelihood
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How to
handle
truncated or
left-censored
data using
JMP
templates

JMP Template Data Entry For Truncated or Left-Censored Weibull or Lognormal Data

Left censored data means all exact times of failure below a lower cut-off time T0 are unknown,
but the number of these failures is known. Merely enter an interval with start time 0 and stop time
T0 on the appropriate template and put "2" in the "Cens" column and the number in the "Freq"
column.

Left truncated data means all data points below a lower cut off point T0 are unknown, and even
the number of such points is unknown. This situation occurs commonly for measurement data,
when the measuring instrument has a lower threshold detection limit at T0. Assume there are n
data points (all above T0) actually observed. Enter the n points as you normally would on the
appropriate template ("Cens" gets 0 and "Freq" gets 1) and add a start time of T0 with a "Cens"
value of 1 and a "Freq" value of -n (yes, minus n!). 

Right truncated data means all data points above an upper cut-off point T1 are unknown, and
even the number of such points is unknown. Assume there are n data points (all below T1)
actually observed. Enter the n points as you normally would on the appropriate template ("Cens"
gets 0 and "Freq" gets 1) and add a start time of  0 and a stop time of T1 with a "Cens" value of 2
and a "Freq" value of -n (yes, minus n!)

8.4.2.2. Maximum likelihood
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.2. How do you fit an acceleration model?

8.4.2.3.Fitting models using degradation data instead
of failures

If you can fit
models using
degradation
data, you
don't need
actual test
failures

When failure can be related directly to a change over time in a measurable product
parameter, it opens up the possibility of measuring degradation over time and using that data
to extrapolate when failure will occur. That allows us to fit acceleration models and life
distribution models without actually waiting for failures to occur. 

This overview of degradation modeling assumes you have a chosen life distribution model
and an acceleration model and offers an alternative to the accelerated testing methodology
based on failure data, previously described. The following topics are covered: 

Common assumptions●   

Advantages●   

Drawbacks●   

A simple method●   

A more accurate approach for a special case●   

Example●   

More details can be found in Nelson (1990, pages 521-544) or Tobias and Trindade (1995,
pages 197-203). 

Common Assumptions When Modeling Degradation Data

You need a
measurable
parameter
that drifts
(degrades)
linearly to a
critical
failure value

Two common assumptions typically made when degradation data are modeled are the
following:

A parameter D, that can be measured over time, drifts monotonically (upwards, or
downwards) towards a specified critical value DF. When it reaches DF, failure occurs.

1.  

The drift, measured in terms of D, is linear over time with a slope (or rate of
degradation) R, that depends on the relevant stress the unit is operating under and also
the (random) characteristics of the unit being measured. Note: It may be necessary to
define D as a transformation of some standard parameter in order to obtain linearity -
logarithms or powers are sometimes needed.

2.  

The figure below illustrates these assumptions by showing degradation plots of 5 units on
test. Degradation readings for each unit are taken at the same four time points and straight
lines fit through these readings on a unit-by-unit basis. These lines are then extended up to a
critical (failure) degradation value. The projected times of failure for these units are then read
off the plot. The are: t1, t2, ...,t5. 

8.4.2.3. Fitting models using degradation data instead of failures
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Plot of
linear
degradation
trends for 5
units read
out at four
time points

In many practical situations, D starts at 0 at time zero, and all the linear theoretical
degradation lines start at the origin. This is the case when D is a "% change" parameter, or
failure is defined as a change of a specified magnitude in a parameter, regardless of its
starting value. Lines all starting at the origin simplify the analysis since we don't have to
characterize the population starting value for D, and the "distance" any unit "travels" to reach
failure is always the constant DF. For these situations, the degradation lines would look as
follows: 

Often, the
degradation
lines go
through the
origin - as
when %
change is the
measurable
parameter
increasing to
a failure
level

8.4.2.3. Fitting models using degradation data instead of failures
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It is also common to assume the effect of measurement error, when reading values of D, has
relatively little impact on the accuracy of model estimates. 

Advantages of Modeling Based on Degradation Data

Modeling
based on
complete
samples of
measurement
data, even
with low
stress cells,
offers many
advantages

Every degradation readout for every test unit contributes a data point. This leads to
large amounts of useful data, even if there are very few failures.

1.  

You don't have to run tests long enough to obtain significant numbers of failures.2.  

You can run low stress cells that are much closer to use conditions and obtain
meaningful degradation data. The same cells would be a waste of time to run if failures
were needed for modeling. Since these cells are more typical of use conditions, it
makes sense to have them influence model parameters.

3.  

Simple plots of degradation vs time can be used to visually test the linear degradation
assumption.

4.  

Drawbacks to Modeling Based on Degradation Data

8.4.2.3. Fitting models using degradation data instead of failures
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Degradation
may not
proceed in a
smooth,
linear
fashion
towards
what the
customer
calls
"failure"

For many failure mechanisms, it is difficult or impossible to find a measurable
parameter that degrades to a critical value in such a way that reaching that critical
value is equivalent to what the customer calls a failure.

1.  

Degradation trends may vary erratically from unit to unit, with no apparent way to
transform them into linear trends.

2.  

Sometimes degradation trends are reversible and a few units appear to "heal
themselves" or get better. This kind of behavior does not follow typical assumptions
and is difficult to model.

3.  

Measurement error may be significant and overwhelm small degradation trends,
especially at low stresses.

4.  

Even when degradation trends behave according to assumptions and the chosen
models fit well, the final results may not be consistent with an analysis based on actual
failure data. This probably means that the failure mechanism depends on more than a
simple continuous degradation process.

5.  

Because of the last listed drawback, it is a good idea to have at least one high-stress cell
where enough real failures occur to do a standard life distribution model analysis. The
parameter estimates obtained can be compared to the predictions from the degradation data
analysis, as a "reality" check. 

A Simple Method For Modeling Degradation Data

A simple
approach is
to extend
each unit's
degradation
line until a
projected
"failure
time" is
obtained

As shown in the figures above, fit a line through each unit's degradation readings. This
can be done by hand, but using a least squares regression program is better (like
Dataplot's "LINEAR FIT Y X" or EXCEL's line fitting routines).

1.  

Take the equation of the fitted line, substitute DF for Y and solve for X. This value of
X is the "projected time of fail" for that unit.

2.  

Repeat for every unit in a stress cell until a complete sample of (projected) times of
failure is obtained for the cell.

3.  

Use the failure times to compute life distribution parameter estimates for a cell. Under
the fairly typical assumption of a lognormal model, this is very simple. Take natural
logarithms of all failure times and treat the resulting data as a sample from a normal
distribution. Compute the sample mean and the sample standard deviation. These are
estimates of ln T50 and , respectively, for the cell.

4.  

Assuming there are k cells with varying stress, fit an appropriate acceleration model
using the cell ln T50's, as described in the graphical estimation section. A single sigma

estimate is obtained by taking the square root of the average of the cell  estimates
(assuming the same number of units each cell). If the cells have nj units on test, with
the nj's not all equal, use the pooled sum of squares estimate across all k cells
calculated by

5.  

8.4.2.3. Fitting models using degradation data instead of failures
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A More Accurate Regression  Approach For the Case When D = 0 at time 0 and the
"Distance To Fail" DF is the Same for All Units

Models can
be fit using
all the
degradation
readings and
linear
regression

Let the degradation measurement for the i-th unit at the j-th readout time in the k-th stress
cell be given by Dijk, and let the corresponding readout time for this readout be denoted by tjk
. That readout gives a degradation rate (or slope) estimate of Dijk / tjk. This follows from the
linear assumption or:

(Rate of degradation) × (Time on test) = (Amount of degradation)

Based on that readout alone, an estimate of the natural logarithm of the time to fail for that
unit is

yijk = ln DF - (ln Dijk - ln tjk).

This follows from the basic formula connecting linear degradation with failure time 

(rate of degradation) × (time of failure) = DF

by solving for (time of failure) and taking natural logarithms. 

For an Arrhenius model analysis, with 

with the xk values equal to 1/KT. Here T is the temperature of the k-th cell, measured in

Kelvin (273.16 + degrees Celsius) and K is Boltzmann's constant (8.617 × 10-5 in eV/ unit

Kelvin). Use a linear regression program to estimate a = ln A and b = h. If we further
assume tf  has a lognormal distribution, the mean square residual error from the regression

fit is an estimate of  (with the lognormal sigma). 

One way to think about this model is as follows: each unit has a random rate R of
degradation. Since tf = DF/R, it follows from a characterization property of the normal
distribution that if tf  is lognormal, then R must also have a lognormal distribution (assuming
DF and R are independent). After we take logarithms, ln R has a normal distribution with a
mean determined by the acceleration model parameters. The randomness in R comes from
the variability in physical characteristics from unit to unit, due to material and processing
differences. 

Note: The estimate of sigma based on this simple graphical approach might tend to be too
large because it includes an adder due to the measurement error that occurs when making the
degradation readouts. This is generally assumed to have only a small impact. 

Example: Arrhenius Degradation Analysis

8.4.2.3. Fitting models using degradation data instead of failures
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An example
using the
regression
approach to
fit an
Arrhenius
model

A component has a critical parameter that studies show degrades linearly over time at a rate
that varies with operating temperature. A component failure based on this parameter occurs
when the parameter value changes by 30% or more. Fifteen components were tested under 3
different temperature conditions (5 at 65o, 5 at 85o and the last 5 at 105o). Degradation
percent values were read out at 200, 500 and 1000 hours. The readings are given by unit in
the following three temperature cell tables. 

65 Degrees C

200 hr 500 hr 1000 hr
Unit 1      .87 1.48 2.81
Unit 2      .33  .96 2.13
Unit 3      .94 2.91 5.67
Unit 4      .72 1.98 4.28
Unit 5      .66  .99 2.14

 85 Degrees C

200 hr 500 hr 1000 hr
Unit 1      1.41 2.47 5.71
Unit 2      3.61  8.99 17.69
Unit 3      2.13 5.72 11.54
Unit 4      4.36 9.82 19.55
Unit 5      6.91 17.37 34.84

 105 Degrees C

200 hr 500 hr 1000 hr
Unit 1      24.58 62.02 124.10
Unit 2       9.73  24.07 48.06
Unit 3       4.74 11.53 23.72
Unit 4      23.61 58.21 117.20
Unit 5      10.90  27.85 54.97

Note that 1 unit failed in the 85 degree cell and 4 units failed in the 105 degree cell. Because
there were so few failures, it would be impossible to fit a life distribution model in any cell
but the 105 degree cell, and therefore no acceleration model can be fit using failure data. We
will fit an Arrhenius/Lognormal model, using the degradation data. 

Dataplot Solution:

8.4.2.3. Fitting models using degradation data instead of failures
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Dataplot
easily fits the
model to the
degradation
data

Other
regression
programs
would work
equally well

From the above tables, first create a data row of 45 degradation values starting with the first
row in the first table and proceeding to the last row in the last table. Put these in a text file
called DEGDAT. DEGDAT has one row of 45 numbers looking like the following: .87, .33,
.94, .72, .66, 1.48, .96, 2.91, 1.98, .99, . . . , 124.10, 48.06, 23.72, 117.20, 54.97. 

Next, create a text file TEMPDAT, containing the corresponding 45 temperatures. TEMP has
15 repetitions of 65, followed by 15 repetitions of 85 and then 15 repetitions of 105. 

Finally, create a text file TIMEDAT, containing the corresponding readout times. These are
200, 200, 200, 200, 200, 500, 500, 500, 500, 500, 1000, 1000, 1000, 1000, 1000, repeated 3
times. 

Assuming the data files just created are placed in the Dataplot directory, the following
commands will complete the analysis: 

READ DEGDAT. DEG
READ TEMPDAT. TEMP
READ TIMEDAT. TIME
LET YIJK = LOG(30) - (LOG(DEG) - LOG(TIME))
LET XIJK = 100000/(8.617*(TEMP + 273.16))
LINEAR FIT YIJK XIJK

The output is (with unnecessary items edited out) 

LEAST SQUARES POLYNOMIAL FIT
SAMPLE SIZE N = 45
DEGREE = 1

PARAMETER ESTIMATES (APPROX ST. DEV) t-VALUE
1 A0 -18.9434 (1.833) -10
2 A1 .818774 (.5641e-01) 15

RESIDUAL STANDARD DEVIATION = .5610

The Arrhenius model parameter estimates are: ln A = -18.94; H = .82. An estimate of the
lognormal sigma is  = .56.
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.3.How do you project reliability at use
conditions?

When
projecting
from high
stress to use
conditions,
having a
correct
acceleration
model and
life
distribution
model is
critical

General Considerations

Reliability projections based on failure data from high stress tests are
based on assuming we know the correct acceleration model for the
failure mechanism under investigation and we are also using the correct
life distribution model. This is because we are extrapolating
"backwards" - trying to describe failure behavior in the early tail of the
life distribution, where we have little or no actual data. 

For example, with an acceleration factor of 5000 (and some are much
larger than this), the first 100,000 hours of use life is "over" by 20 hours
into the test. Most, or all, of the test failures typically come later in time
and are used to fit a life distribution model with only the first 20 hours
or less being of practical use.  Many distributions may be flexible
enough to adequately fit the data at the percentiles where the points are,
and yet differ from the data by orders of magnitude in the very early
percentiles (sometimes referred to as the early "tail" of the distribution). 

However, it is frequently necessary to test at high stress (to obtain any
failures at all!) and project backwards to use. When doing this bear in
mind two important points:

8.4.3. How do you project reliability at use conditions?
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Project for
each failure
mechanism
separately

Distribution models, and especially acceleration models, should
be applied only to a single failure mechanism at a time. Separate
out failure mechanisms when doing the data analysis and use the
competing risk model to build up to a total component failure rate

●   

Try to find theoretical justification for the chosen models, or at
least a successful history of their use for the same or very similar
mechanisms. (Choosing models solely based on empirical fit is
like extrapolating from quicksand to a mirage.) 

●   

How to Project from High Stress to Use Stress

Two types of use-condition reliability projections are common:

Projection to use conditions after completing a multiple stress cell
experiment and successfully fitting both a life distribution model
and an acceleration model

1.  

Projection to use conditions after a single cell at high stress is run
as a line reliability monitor.

2.  

Arrhenius
model
projection
example
with
Dataplot
commands

The Arrhenius example from the graphical estimation and the MLE
estimation sections ended by comparing use projections of the CDF at
100,000 hours. This is a projection of the first type. We know from the
Arrhenius model assumption that the T50 at 25°C is just 

Using the graphical model estimates for ln A and we have

T50 at use = e-18.312 × e.808 × 11605/298.16 = e13.137 = 507383

and combining this T50 with the estimate of the common sigma of .74
allows us to easily estimate the CDF or failure rate after any number of
hours of operation at use conditions. In particular, the Dataplot
command 

LET Y = LGNCDF((T/T50),sigma)

evaluates a lognormal CDF at time T, and 

LET Y = LGNCDF((100000/507383),.74)

returns the answer .014 given in the MLE estimation section as the
graphical projection of the CDF at 100,000 hours at a use temperature of
25°C. 

If the life distribution model had been Weibull, the same type of
analysis would be performed by letting the characteristic life parameter 

 vary with stress according to the acceleration model, while the shape
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parameter  is constant for all stress conditions. 

The second type of use projection was used in the section on lognormal
and Weibull tests, in which we judged new lots of product by looking at
the proportion of failures in a sample tested at high stress. The
assumptions we made were: 

we knew the acceleration factor between use and high stress●   

the shape parameter (sigma for the lognormal, gamma for the
Weibull) is also known and does not change significantly from lot
to lot.

●   

With these assumptions, we can take any proportion of failures we see
from a high stress test and project a use CDF or failure rate. For a
T-hour high stress test and an acceleration factor of A from high stress to
use stress, an observed proportion p is converted to a use CDF at
100,000 hours for a lognormal model as follows: 

LET T50STRESS = T*LGNPPF(p, )
LET CDF = LGNCDF((100000/(A*T50STRESS)), )

If the model is Weibull, the Dataplot commands are 

LET ASTRESS = T*WEIPPF(p, )

LET CDF = WEICDF((100000/(A*ASTRESS)), )

8.4.3. How do you project reliability at use conditions?
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.4.How do you compare reliability
between two or more populations?

Several
methods for
comparing
reliability
between
populations
are
described

Comparing reliability among populations based on samples of failure
data usually means asking whether the samples came from populations
with the same reliability function (or CDF). Three techniques already
described can be used to answer this question for censored reliability
data. These are: 

Comparing sample proportion failures ●   

Likelihood ratio test comparisons●   

Lifetime regression comparisons●   

Comparing Sample Proportion Failures

Assume each sample is a random sample from possibly a different lot,
vendor or production plant. All the samples are tested under the same
conditions. Each has an observed proportion of failures on test. Call
these sample proportions of failures p1, p2, p3, ...pn. Could these all have
come from equivalent populations? 

This is a question covered in Chapter 7 for two populations, and for
more than two populations, and the techniques described there apply
equally well here. 

Likelihood Ratio Test Comparisons

The Likelihood Ratio test was described earlier. In this application, the

Likelihood ratio  has as a denominator the product of all the
Likelihoods of all the samples assuming each population has its own
unique set of parameters. The numerator is the product of the
Likelihoods assuming the parameters are exactly the same for each

population. The test looks at whether -2ln  is unusually large, in which
case it is unlikely the populations have the same parameters (or
reliability functions). 

This procedure is very effective if, and only if, it is built into the
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analysis software package being used and this software covers the
models and situations of interest to the analyst. 

Lifetime Regression Comparisons

Lifetime regression is similar to maximum likelihood and likelihood
ratio test methods. Each sample is assumed to have come from a
population with the same shape parameter and a wide range of questions
about the scale parameter (which is often assumed to be a "measure" of
lot-to-lot or vendor-to-vendor quality) can be formulated and tested for
significance. 

For a complicated, but realistic example, assume a company
manufactures memory chips and can use chips with some known defects
("partial goods") in many applications. However, there is a question of
whether the reliability of "partial good" chips is equivalent to "all good"
chips. There exists lots of customer reliability data to answer this
question. However the data are difficult to analyze because they contain
several different vintages with known reliability differences as well as
chips manufactured at many different locations. How can the partial
good vs all good question be resolved? 

A lifetime regression model can be constructed with variables included
that change the scale parameter based on vintage, location, partial
versus all good, and any other relevant variables. Then, a good lifetime
regression program will sort out which, if any, of these factors are
significant and, in particular, whether there is a significant difference
between "partial good" and "all good". 
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.5.How do you fit system repair rate
models?

Fitting
models
discussed
earlier

This subsection describes how to fit system repair rate models when you
have actual failure data. The data could come from  from observing a
system in normal operation or from running tests such as Reliability
Improvement tests. 

The three models covered are the constant repair rate (HPP/exponential)
model, the power law (Duane) model and the exponential law model. 
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.5. How do you fit system repair rate models?

8.4.5.1.Constant repair rate
(HPP/exponential) model

This section
covers
estimating
MTBF's and
calculating
upper and
lower
confidence
bounds

The HPP or exponential model is widely used for two reasons: 

Most systems spend most of their useful lifetimes operating in the
flat constant repair rate portion of the bathtub curve

●   

It is easy to plan tests, estimate the MTBF and calculate
confidence intervals when assuming the exponential model.

●   

This section covers the following: 

Estimating the MTBF (or repair rate/failure rate)1.  

How to use the MTBF confidence interval factors2.  

Tables of MTBF confidence interval factors 3.  

Confidence interval equation and "zero fails" case4.  

Dataplot/EXCEL calculation of confidence intervals5.  

Example6.  

Estimating the MTBF (or repair rate/failure rate)

For the HPP system model, as well as for the non repairable exponential

population model, there is only one unknown parameter  (or

equivalently, the MTBF = 1/ ). The method used for estimation is the
same for the HPP model and for the exponential population model. 

8.4.5.1. Constant repair rate (HPP/exponential) model
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The best
estimate of
the MTBF is
just "Total
Time"
divided by
"Total
Failures"

The estimate of the MTBF is 

This estimate is the maximum likelihood estimate whether the data are
censored or complete, or from a repairable system or a non-repairable
population. 

Confidence
Interval
Factors
multiply the
estimated
MTBF to
obtain lower
and upper
bounds on
the true
MTBF

How To Use the MTBF Confidence Interval Factors
Estimate the MTBF by the standard estimate (total unit test hours
divided by total failures)

1.  

Pick a confidence level (i.e., pick 100x(1- )). For 95%,  = .05;
for 90%,  = .1; for 80%,  = .2 and for 60%,  = .4

2.  

Read off a lower and an upper factor from the confidence interval
tables for the given confidence level and number of failures r

3.  

Multiply the MTBF estimate by the lower and upper factors to
obtain MTBFlower and MTBFupper

4.  

When r (the number of failures) = 0, multiply the total unit test
hours by the "0 row" lower factor to obtain a 100 × (1- /2)%
one-sided lower bound for the MTBF. There is no upper bound
when r = 0.

5.  

Use (MTBFlower, MTBFupper) as a 100×(1- )% confidence

interval for the MTBF  (r > 0)

6.  

Use MTBFlower as a (one-sided) lower 100×(1- /2)% limit for
the MTBF

7.  

Use MTBFupper as a (one-sided) upper 100×(1- /2)% limit for
the MTBF

8.  

Use (1/MTBFupper, 1/MTBFlower) as a 100×(1- )% confidence

interval for 

9.  

Use 1/MTBFupper as a (one-sided) lower 100×(1- /2)% limit for 10.  

8.4.5.1. Constant repair rate (HPP/exponential) model
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Use 1/MTBFlower as a (one-sided) upper 100×(1- /2)% limit for 11.  

Tables of MTBF Confidence Interval Factors

Confidence
bound factor
tables for
60, 80, 90
and 95%
confidence

Confidence Interval Factors to Multiply MTBF Estimate

60% 80%
Num

Fails r
Lower for

MTBF
Upper for

MTBF
Lower for

MTBF
Upper for

MTBF

0 0.6213 - 0.4343 -
1 0.3340 4.4814 0.2571  9.4912 
2 0.4674 2.4260 0.3758 3.7607
3 0.5440 1.9543 0.4490   2.7222 
4 0.5952 1.7416 0.5004 2.2926
5 0.6324 1.6184 0.5391 2.0554
6 0.6611 1.5370 0.5697 1.9036
7 0.6841 1.4788 0.5947 1.7974
8 0.7030 1.4347 0.6156  1.7182 
9 0.7189 1.4000 0.6335 1.6567

10 0.7326 1.3719 0.6491 1.6074
11 0.7444 1.3485 0.6627 1.5668
12 0.7548 1.3288 0.6749  1.5327 
13 0.7641 1.3118 0.6857 1.5036
14 0.7724 1.2970 0.6955 1.4784
15 0.7799 1.2840 0.7045 1.4564
20 0.8088 1.2367 0.7395  1.3769 
25 0.8288 1.2063 0.7643  1.3267 
30 0.8436 1.1848 0.7830 1.2915
35 0.8552 1.1687 0.7978 1.2652
40 0.8645 1.1560 0.8099 1.2446
45 0.8722 1.1456 0.8200  1.2280 
50 0.8788 1.1371 0.8286 1.2142
75 0.9012 1.1090 0.8585 1.1694

100 0.9145 1.0929 0.8766 1.1439
500 0.9614 1.0401 0.9436  1.0603 

Confidence Interval Factors to Multiply MTBF Estimate

90% 95%
Num
Fails

Lower for
MTBF

Upper for
MTBF

Lower for
MTBF

Upper for
MTBF

0 0.3338 - 0.2711 -
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1 0.2108 19.4958 0.1795 39.4978 
2 0.3177 5.6281 0.2768 8.2573
3 0.3869 3.6689 0.3422 4.8491
4 0.4370 2.9276 0.3906 3.6702
5 0.4756 2.5379 0.4285 3.0798
6 0.5067 2.2962 0.4594 2.7249
7 0.5324 2.1307 0.4853 2.4872
8 0.5542 2.0096 0.5075 2.3163
9 0.5731  1.9168 0.5268 2.1869

10 0.5895 1.8432 0.5438 2.0853
11 0.6041 1.7831 0.5589 2.0032
12 0.6172 1.7330 0.5725 1.9353
13 0.6290 1.6906 0.5848 1.8781
14 0.6397 1.6541 0.5960 1.8291
15 0.6494 1.6223 0.6063 1.7867
20 0.6882   1.5089 0.6475 1.6371
25 0.7160 1.4383 0.6774 1.5452
30 0.7373 1.3893 0.7005 1.4822
35 0.7542 1.3529 0.7190 1.4357
40 0.7682 1.3247 0.7344 1.3997
45 0.7800 1.3020 0.7473 1.3710
50 0.7901 1.2832 0.7585 1.3473
75 0.8252 1.2226 0.7978 1.2714

100 0.8469 1.1885 0.8222 1.2290
500 0.9287 1.0781 0.9161 1.0938

Confidence Interval Equation and "Zero Fails" Case

Formulas
for
confidence
bound
factors -
even for
"zero fails"
case

Confidence bounds for the typical Type I censoring situation are
obtained from chi-square distribution tables or programs. The formula
for calculating confidence intervals is:

In this formula,  is a value that the chi-square statistic with
2r degrees of freedom is greater than with probability 1- /2. In other
words, the right-hand tail of the distribution has probability 1- /2. An
even simpler version of this formula can be written using T = the total
unit test time: 
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These bounds are exact for the case of one or more repairable systems
on test for a fixed time. They are also exact when non repairable units
are on test for a fixed time and failures are replaced with new units
during the course of the test. For other situations, they are approximate. 

When there are zero failures during the test or operation time, only a
(one-sided) MTBF lower bound exists, and this is given by 

MTBFlower = T/(-ln )

The interpretation of this bound is the following: if the true MTBF were
any lower than MTBFlower, we would have seen at least one failure

during T hours of test with probability at least 1- . Therefore, we are
100×(1- )% confident that the true MTBF is not lower than
MTBFlower. 

Dataplot/EXCEL Calculation of Confidence Intervals

Dataplot
and EXCEL
calculation
of
confidence
limits

A lower 100×(1- /2)% confidence bound for the MTBF is given by 

LET LOWER = T*2/CHSPPF( [1- /2], [2*(r+1)])

where T is the total unit or system test time and r is the total number of
failures. 

The upper 100×(1- /2)% confidence bound is 

LET UPPER = T*2/CHSPPF( /2,[2*r])

and (LOWER, UPPER) is a 100× (1- ) confidence interval for the true
MTBF. 

The same calculations can be performed with EXCEL built-in functions
with the commands 

=T*2/CHIINV([ /2], [2*(r+1)]) for the lower bound and
=T*2/CHIINV( [1- /2],[2*r]) for the upper bound.

Note that the Dataplot CHSPPF function requires left tail probability
inputs (i.e., /2 for the lower bound and 1- /2 for the upper bound),
while the EXCEL CHIINV function requires right tail inputs (i.e., 1-

/2 for the lower bound and /2 for the upper bound). 

Example
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Example
showing
how to
calculate
confidence
limits

A system was observed for two calendar months of operation, during
which time it was in operation for 800 hours and had 2 failures. 

The MTBF estimate is 800/2 = 400 hours. A 90% confidence interval is
given by (400×.3177, 400×5.6281) = (127, 2251). The same interval
could have been obtained using the Dataplot commands 

LET LOWER = 1600/CHSPPF(.95,6)
LET UPPER = 1600/CHSPPF(.05,4)

or the EXCEL commands 

=1600/CHIINV(.05,6) for the lower limit
=1600/CHIINV(.95,4) for the upper limit.

Note that 127 is a 95% lower limit for the true MTBF. The customer is
usually only concerned with the lower limit and one-sided lower limits
are often used for statements of contractual requirements.

Zero fails
confidence
limit
calculation

What could we have said if the system had no failures? For a 95% lower
confidence limit on the true MTBF, we either use the 0 failures factor
from the 90% confidence interval table and calculate 800 × .3338 = 267
or we use T/(-ln ) = 800/(-ln.05) = 267. 

8.4.5.1. Constant repair rate (HPP/exponential) model
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8.4. Reliability Data Analysis
8.4.5. How do you fit system repair rate models?

8.4.5.2.Power law (Duane) model

The Power
Law
(Duane)
model has
been very
successful in
modeling
industrial
reliability
improvement
data

Brief Review of Power Law Model and Duane Plots

Recall that the Power Law is a NHPP with the expected number of fails,
M(t), and the repair rate, M'(t) = m(t), given by: 

The parameter  = 1-b is called the Reliability Growth Slope and

typical industry values for growth slopes during reliability improvement
tests are in the .3 to .6 range. 

If a system is observed for a fixed time of T hours and failures occur at
times t1, t2, t3, ..., tr (with the start of the test or observation period
being time 0), a Duane plot is a plot of (ti / i) versus ti on log-log graph
paper. If the data are consistent with a Power Law model, the points in a

Duane Plot will roughly follow a straight line with slope  and
intercept (where t = 1 on the log-log paper) of -log10a.

MLE's for
the Power
Law model
are given

Estimates for the Power Law Model

Computer aided graphical estimates can easily be obtained by doing a
regression fit of Y = ln (ti / i) vs X = ln ti. The slope is the  estimate

and e-intercept is the a estimate. The estimate of b is 1- . The Dataplot
command for the regression fit is FIT Y X. 

However, better estimates can easily be calculated. These are modified
maximum likelihood estimates (corrected to eliminate bias). The
formulas are given below for a fixed time of T hours, and r failures
occurring at times t1, t2, t3, ..., tr. 

8.4.5.2. Power law (Duane) model
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The estimated MTBF at the end of the test (or observation) period is 

Approximate
confidence
bounds for
the MTBF at
end of test
are given

Approximate Confidence Bounds for the MTBF at End of Test

We give an approximate 100×(1- )% confidence interval (ML, MU)

for the MTBF at the end of the test. Note that ML is a 100×(1- /2)%

lower bound and MU is a 100×(1- /2)% upper bound. The formulas
are: 

with  is the upper 100×(1- /2) percentile point of the standard
normal distribution. 
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Dataplot
calculations
for the
Power Law
(Duane)
Model 

Dataplot Estimates And Confidence Bounds For the Power Law
Model 

Dataplot will calculate , a, and the MTBF at the end of test, along
with a 100x(1- )% confidence interval for the true MTBF at the end of
test (assuming, of course, that the Power Law model holds). The user
needs to pull down the Reliability menu and select "Test" and "Power
Law Model". The times of failure can be entered on the Dataplot spread
sheet. A Dataplot example is shown next. 

Case Study 1: Reliability Improvement Test Data Continued

Dataplot
results
fitting the
Power Law
model to
Case Study
1 failure
data

This case study was introduced in section 2, where we did various plots
of the data, including a Duane Plot. The case study was continued when
we discussed trend tests and verified that significant improvement had
taken place. Now we will use Dataplot to complete the case study data
analysis. 

The observed failure times were: 5, 40, 43, 175, 389, 712, 747, 795,
1299 and 1478 hours, with the test ending at 1500 hours. After entering
this information into the "Reliability/Test/Power Law Model" screen
and the Dataplot spreadsheet and selecting a significance level of .2 (for
an 80% confidence level), Dataplot gives the following output:

THE RELIABILITY GROWTH SLOPE BETA IS 0.516495 

THE A PARAMETER IS 0.2913 

THE MTBF AT END OF TEST IS 310.234 

THE DESIRED 80 PERCENT CONFIDENCE INTERVAL IS: 
(157.7139 , 548.5565) 
AND 157.7139 IS A (ONE-SIDED) 90 PERCENT 
LOWER LIMIT 

Note: The downloadable package of statistical programs, SEMSTAT,
will also calculate Power Law model statistics and construct Duane
plots. The routines are reached by selecting "Reliability" from the main
menu then the "Exponential Distribution" and finally "Duane
Analysis". 
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8.4.5.3.Exponential law model

Estimates of
the
parameters
of the
Exponential
Law model
can be
obtained
from either
a graphical
procedure
or maximum
likelihood
estimation

Recall from section 1 that the Exponential Law refers to a NHPP

process with repair rate M'(t) = m(t) =  . This model has not been
used nearly as much in industrial applications as the Power Law model,
and it is more difficult to analyze. Only a brief description will be given
here. 

Since the expected number of failures is given by 

M(t) =  and ln M(t) = , a plot of the cum
fails versus time of failure on log-linear paper should roughly follow a

straight line with slope . Doing a regression fit of y = ln cum fails

versus x = time of failure will provide estimates of the slope  and the

intercept - ln . 

Alternatively, maximum likelihood estimates can be obtained from the
following pair of equations: 

The first equation is non-linear and must be solved iteratively to obtain
the maximum likelihood estimate for . Then, this estimate is

substituted into the second equation to solve for the maximum
likelihood estimate for .
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8.4.6.How do you estimate reliability using the
Bayesian gamma prior model?

The Bayesian paradigm was introduced in Section 1 and Section 2 described the assumptions
underlying the gamma/exponential system model (including several methods to transform prior
data and engineering judgment into gamma prior parameters "a" and "b"). Finally, we saw in
Section 3 how to use this Bayesian system model to calculate the required test time needed to
confirm a system MTBF at a given confidence level. 

Review of
Bayesian
procedure
for the
gamma
exponential
system
model

The goal of Bayesian reliability procedures is to obtain as accurate a posterior distribution as
possible, and then use this distribution to calculate failure rate (or MTBF) estimates with
confidence intervals (called credibility intervals by Bayesians). The figure below summarizes
the steps in this process.

8.4.6. How do you estimate reliability using the Bayesian gamma prior model?
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How to
estimate
the MTBF
with
bounds,
based on
the
posterior
distribution

Once the test has been run, and r failures observed, the posterior gamma parameters are: 

a' = a + r, b' = b + T

and a (median) estimate for the MTBF, using EXCEL, is calculated by 

= 1/GAMMAINV(.5, a', (1/ b'))

Some people prefer to use the reciprocal of the mean of the posterior distribution as their estimate

for the MTBF. The mean is the minimum mean square error (MSE) estimator of , but using
the reciprocal of the mean to estimate the MTBF is always more conservative than the "even
money" 50% estimator. 

A lower 80% bound for the MTBF is obtained from 

= 1/GAMMAINV(.8, a', (1/ b'))

and, in general, a lower 100×(1- )% lower bound is given by 

= 1/GAMMAINV((1- ), a', (1/ b')).

A two sided 100× (1- )% credibility interval for the MTBF is 

[{= 1/GAMMAINV((1- /2), a', (1/ b'))},{= 1/GAMMAINV(( /2), a', (1/ b'))}].

Finally, = GAMMADIST((1/M), a', (1/b'), TRUE) calculates the probability the MTBF is greater
than M. 

Example

A Bayesian
example
using
EXCEL to
estimate
the MTBF
and
calculate
upper and
lower
bounds

A system has completed a reliability test aimed at confirming a 600 hour MTBF at an 80%
confidence level. Before the test, a gamma prior with a = 2, b = 1400 was agreed upon, based on
testing at the vendor's location. Bayesian test planning calculations, allowing up to 2 new failures,
called for a test of 1909 hours. When that test was run, there actually were exactly two failures.
What can be said about the system?

The posterior gamma CDF has parameters a' = 4 and b' = 3309. The plot below shows CDF

values on the y-axis, plotted against 1/  = MTBF, on the x-axis. By going from probability, on
the y-axis, across to the curve and down to the MTBF, we can read off any MTBF percentile
point we want. (The EXCEL formulas above will give more accurate MTBF percentile values
than can be read off a graph.)
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The MTBF values are shown below: 

= 1/GAMMAINV(.9, 4, (1/ 3309)) has value 495 hours
= 1/GAMMAINV(.8, 4, (1/ 3309)) has value 600 hours (as expected)
= 1/GAMMAINV(.5, 4, (1/ 3309)) has value 901 hours
= 1/GAMMAINV(.1, 4, (1/ 3309)) has value 1897 hours

The test has confirmed a 600 hour MTBF at 80% confidence, a 495 hour MTBF at 90 %
confidence and (495, 1897) is a 90 percent credibility interval for the MTBF. A single number
(point) estimate for the system MTBF would be 901 hours. Alternatively, you might want to use
the reciprocal of the mean of the posterior distribution (b'/a') = 3309/4 = 827 hours as a single

estimate. The reciprocal mean is more conservative - in this case it is a 57% lower bound, as
=GAMMADIST((4/3309),4,(1/3309),TRUE) shows.

8.4.6. How do you estimate reliability using the Bayesian gamma prior model?
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