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Generalization of Atomic Scattering to a

Continuum Model
- Definitions
- Scattering Length Density
- Rayleigh-Gans Equation
- Transmission

Two - Phase Systems

- Babinet’s Principle
- Scattering Invariant
- Porod Limit

Multi-Phase Systems

- Approaches to Determining Structures



Constructive interference from structures in the direction of q

Diffraction length scale d = 2%

ot GA
d 60 to 1000A
20 = 0.3° to 5°

Scattering 1s at small angles - non-zero but smaller than

classical diffraction angles



* Previously defined atomic cross sections:
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 Easier to think in terms of material properties rather than
atomic properties
» Define a “Scattering Length Density”

p(t) =b;o(r — 1)

V is the volume containing the n atoms



What Length Scales Are Probed?
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* Can we really use scattering length densities?
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* We can use material properties rather than atomic properties
when doing small-angle scattering




What Length Scales Are Probed?
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. Then from:
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* We can replace the sum over atoms with integral over
the scattering length density N
Y b, = |p()df
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e Normalizing by sample volume and introducing scattering

length density: 5

dx N do
C.—(Ql) _Vd—ﬂ(q) =

« “Rayleigh-Gans Equation”
 Inhomogeneities in p(T) give rise to small angle scattering
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¢ L= A/ 1s the “macroscopic cross section”



Rayleigh-Gans Equation ST
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 Different types of systems have a natural basis - and all
are equivalent

 This 1s especially true if the scattering 1s from
“countable” units:
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Polymers monomer unit
Particulates per particle
Proteins polypeptide subunits

« A statistical description may also be appropriate:

p(r) — (1)

Non-Particulate correlation function



d—G (q) = differential cross section

dQ

* normalize by scattering volume

dx

dQ

N do
V dQ

——(q) = ———(q) = scattering per unit volume

» Two contributions to measured signal:
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 Incoherent scattering 1s not g-dependent and contributes only
to the noise level, while absorption reduces the overall signal

€ (@) = 1(q)
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"Scattered Intensity"

(measured quantity)



Interaction of Neutron Beam with
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Integrating over the sample thickness:
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Tempting to solve for optimal sample thickness:

t=1/2 or T, =037
but in practice ...
* incoherent scattering background
» multiple scattering
Higher transmissions are desired




* Incompressible phases of scattering length density p, and p,

V=V, +V,

p,1n 'V,
p(r)=9 .
p, In V,



General Two-Phase S
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hen from the Rayleigh-Gans equation:

e break the total volume into two sub-volumes
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e So at non-zero g-values:
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Babinet’s Principle

Two structures give the same scattering
dx _ 2
(@< (P —p2
o (@ )
*incoherent scattering may be different

* Contrast is relative

* Loss of phase information is p; > p; ?

* Very important in multi-phase systems
- contrast matching / variation



10% black / 90% white in each square

 Scattered intensity for each would certainly be different
~ d> .. .. 3/ . —\2
Q= fc.Q(q)dq =(2n) (p()-p)

* For an incompressible, two-phase system:
Q_~*_5 2 2
—=0Q =2n ¢b(1—¢b)(Pw _Pb)
4
*Domains can be in any arrangement
Guinier &Fournet, pp. 75-81.



Porod Scattering
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* S/V = specific surface area of sample
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Porod Scattering

R

A B
1og1«D'___"“\\\\
4
A q

log (q)

*Glatter & Kratky pp. 30-1.



Multi-Phase Materials

o “contrast” and “structure” terms can still be factored as
for 2-phase system

dx dx
— (cu - — . S..



» For ‘p’ different phases (0,p)

jz(q) =Y (0= po V' Si (@ +Y (0= po o= Po B ()

i=I i<j

 Scattering 1s now a sum of several terms with
possibly many unknowns (Sij’s)

*Higgins & Benoit pp. 121-2.



Solving Multi-Phase Structures

- Contrast Matching
- reduce the number of phases ‘visible’

becomes...

OO .
p solvent = p core p solvent = p shell
(shell visible) (core visible)

» The two distinct two-phase systems can be easily understood



Solving Multi-Phase Structures

1=
x [fu]

A set of scattering experiments can yield a set of equations
- of known contrasts and unknown ‘partial structure
functions’
e Sturhmann Analysis
Determine structure from R, = F(contrast)




* General treatment of small-angle scattering:
- Rayleigh-Gans equation
- Scattering length density
- Specialized for specific systems of interest

» Two-phase systems:
- Relative scattering length density
- Model independent results

e Multi-phase systems:
- Advanced techniques
- Control of contrast
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