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ABSTRACT

TheNational Agricultural Statistics Service (NASS) plansto use estimation strategies of increasing
complexity inthefutureand will need to estimate thevariancesresulting from those strategies. This
report describesarelatively simple method of variance/mean squared error estimation, the del ete-a-
group jackknife, that can be used meaningfully in aremarkably broad range of settings employing
complex estimation strategies. Thetext describesanumber of applicationsof the method in abstract
terms. It goeson to showshow the delete-a-group jackknife has been applied to somerecent NASS
surveys.
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SUMMARY

Historically, NASS has employed mostly expansion estimators and ratios of expansion estimators
based on stratified, simple random samples when computing indications of agricultural activity.
Thisischanging duein no small part to increasing demands on the agency to make more efficient
use of theinformation it collects. Fortunately, parallel increasesin computing power are allowing
NA SSto use more sophisticated estimation strategiesinvol ving multi-phase sampling designs and
calibration estimators. For example, the 1996 Agricultural Resource Management Study (ARMS)
used a multi-phase sampling design (afirst-phase sample israndomly drawn, then a second-phase
subsampleisrandomly drawn from the first-phase sample, and so forth). Ratio adjustments of the
initial inverse-probability sampling weightscapturerel evant information from the ARM Sscreening
phase about farms not selected for a particular survey module.

Thisreport showshow different variations of adel ete-a-group jackknife can be used to estimate the
variances(or, more precisely, the mean squared errors) of avariety of estimation strategies. Many
of these are strategies are currently in use by NASS.

The delete-a-group jackknife is simpleto use once appropriate replicate weights are constructed.
By contrag, the “linearization” methods traditionally used by NASS for estimating variances can
be exceedingly complicated and cumbersome when goplied to complex estimatorsstrategies. The
advantageof the del ete-a-groupjackknifeover thetraditional, del ete-one-primary-sampling-unit-at-
a-timejackknife (see Rust 1985) is that the number of needed replicate weights per sample record
is kept manageable.

A disadvantage of the delete-a-group jackknife over the dd ete-one jackknifeisthat it requiresthe
first-phase stratum sample sizesto be large— at least five sample units per stratum. Otherwise, the
delete-a-group jackknife will be overly conservative; that is, higher, on average, than the true
varianceit ismeasuring. Asaresult, when thisjackknifeis applied to estimators from the NASS
areaframe, it will be biased upward.

Like the delete-one jackknife, the ddete-a-group jackknife is a nearly unbiased estimator of
variance only when the first-phase sampling fractions are small — no more than 1/5 for most
records. Otherwise, the delete-a-group jackknife tends to be biased upward. Thisbiasislikely to
be ignorable in most NASS applications. For the 1996 VCUS, however, it was so great that the
delete-a-group jackknife has to be modified. A potential modification is discussed in the text. It
isuseful, but hasastriking limitation: One set of replicate weightsis needed when estimating the
variances of totals and another when estimating the variances of ratios.



INTRODUCTION

This report addresses the construction of
delete-a-group jackknife variance estimators
for a variety of estimation strategies (an
estimation strategy is a sampling design
paired with an esimator).  The emphasis
will be on computational formulae, which
will be rendered in fairly abstract form.
Relevant theoretical comments will be made
where appropriate, but most proofsareleft for
the appendices.

The sampling designs with which we will be
dealing may have any number of phases. At
each phase, one of the following selection
schemesis assumed to be used:

1) stratified simple random sampling without
replacement,

2) systematic probability sampling (usually
called systematic probability proportional to
size sampling; herewewant to de-emphasize
the “size” measure),

3) the converse of systematic probability
sampling (what remains in a frame after a
systematic probability sample has been
removed), or

4) Poisson sampling (in which each element
isgivenitsown selection probability, and the
sampling of one element has no impact on
whether another gets selected).

All stratum samples are assumed to be large
(contain at least five sampling units).
Violation of thisassumption inthefirst-phase
of sampling can cause the delete-a-group
jackknifeto be biased upward. Thisisshown
in Appendix A.

NASS currently incorporates two types of

calibration in itsestimators and does not plan
to use any other types in the near future.
“Cdlibration” is a generad term for a
sampling-weight adjustment that forces the
estimates of certain item totals based on the
sampl e at one phase of sampling to equal the
same totals based on a previous phase or
frame (control) data.

Ratio adjustments, the most common form of
calibration, were used repeatedly in the 1996
Agricultural Resource Management Study
(ARMS). Restricted regression, another
population form of calibration, was used in
both the 1997 Minnesota pilot Quarterly
Agriculture Survey (QAS) and the second-
phase of the 1996 V egetable Chemical Use
Survey (VCUS).  Only these forms of
calibration are discussed in the text.

Most of the resultsinthisreport are supported
with randomization-based (design-based)
analyses. Asaconsequence, all estimators of
population parameters are assumed to be
randomization consistent (i.e., have smdl
randomization mean squared errors and even
smaller randomization biases). A brief
discussion of the model-based properties of
the delete-a-group jackknifeis reserved for a
Separate section.

The concise term “variance estimation” will
be used throughout the text in place of the
more cumbersome “mean sguared error
estimation.” It should be understood,
however, when the delete-a-group jackknife
is a good estimator for the variance of a
randomi zation-consistent estimator, itisalso
agood estimator for its mean squared error.

For our purposes, theterm “nearly unbiased”
will mean that the bias of the estimator in
question is an ignorably small fraction of its
mean squared error. The term “biased” will



be used to mean “not (necessarily) nearly
unbiased.”

When first-phase stratum sample sizes are
large, the delete-a-group jackknife is
appropriate (has only a small potential for
bias) whenever the conventional,
randomization-based, delete-onejackknifeis.
Kott and Stukel (1997) have extended the use
of thelatter jackknifeto two-phase estimators
with calibration in the second phase This
report relies heavily on their results. Here,
however, systematic probability can be used
in the second design phase, even though K ott
and Stukel only treated strategies featuring
stratified simple random sampling in the
second phase.

In most applications of the delete-a-group
jackknife at NASS the need for finite
population correction (fpc) isignored. One
section of the text discusses a number of
those applications.

A subsequent section takes up variance
estimation of totals and ratios when proper
fpc is a concern. Strictly speaking, the
variant of the delete-a-group jackknife that
captures fpc requires single-phase Poisson
sampling to be nearly unbiased.
Nevertheless, the practical application can be
broader, as we shall see.

WHY USE THE DELETE-A-GROUP
JACKKNIFE?

The delete-a-group jackknife is simple to
compute once appropriate replicate weights
are constructed. The so-caled “lineari-
zation” methods traditionally used by NASS
for estimating variances can be very
cumbersome when applied to estimators
based on multi-phase designs like the 1996
Vegetable Chemical Use Survey (VCUYS)

1998) and components of the 1996 ARMS
(Kott and Fetter 1997). Estimators using
calibrated weights based on restricted
regression, like those calculated for the 1997
Minnesotapilot Quarterly Agriculture Survey
(QAYS), pose even greater practical problems
for linearization variance methods (a
multivariate regression coefficient would
need to be estimated for every item of
interest).

It is also arelatively simple matter to apply
the delete-a-groupjackknifeto the composite
estimators associated with the ARMS. With
1996 survey data, for example, results from
thePhasell Corn Production PracticesReport
(PPR) were composited with resultsfrom the
Phasell Corn-for-Grain Production Practices
and CostsReport (PPCR). Inaddition, results
from the Phase 111 Cost and Returns Report
(CRR) stand-d one (based on respondentsthat
were not in the Phase || PPCR sample) were
composited with results from the Phase Il
CRR follow-on (based on respondents that
were).

Theadvantage of thedelete-a-groupjackknife
over the traditional, delete-one-primary-
sampling-unit-at-a-time jackknife (see Rust
1985) is that the number of needed replicate
weights per sample record is kept
manageable. A common practice with the
delete-one jackknife for handling this
problem is to group primary sampling units
(PSU’s) into variance PSU’s. This practice
reduces the number of replicate weights
needed per record — there is one for every
variance PSU. Nevertheless, NASS would
need at least 15 replicate weights per record
to compute variances for state estimators.
This would result in national variance
estimates employing several hundred
replicate weights per record.



COMPUTING A DELETE-A-GROUP
JACKKNIFE: AN OVERVIEW

Suppose we have a sampling design with any
number of phases and a randomization-
consistent estimator, t, we wish to apply to
the resultant sample. To compute a delete-a-
group jackknife variance estimator for t, we
first divide the first-phase sample — both
respondents and non-respondents — into R
(jackknife) groups. Currently, R is 15 in
NASS applications. Consequently, we will
assume R = 15in the text. By setting R at
15, we lengthen the traditional, normality-
based 95% confidenceinterval by ten percent.
To see why thisis so, observe that theratio
of the t-value at 0.975 for a Student’s t
distribution with 14 degrees of freedom and
the normal z-valueat 0.975 isapproximately
1.1

Suppose we have a survey which may have
multiplephases. Let F bethe sample selected
at the first phase of the sampling process.
The first-phase sample units may be
composed of distinct elements(e.g., farms) or
it may consist of clusters of elements (e.g.,
area segments). Many survey designsfeature
asingle phase of sample selection.

The delete-a-group jackknife begins by
dividing the first-phase sample F, into 15
groups. Thiscan bedoneasfollows: order F
in an appropriate manner (discussed below);
select the first, sixteenth, thirty-first, ... units
for the first group; select the second,
seventeenth, thirty-second, ..., units for the
second group; continue until all 15 groupsare
created. Unless the number of unitsin Fis
divisibleby 15 (whichisunlikely), thegroups
will not all be of the same size.

Orderinginan*“appropriate manner” depends
on the context. If F was drawn using

stratified random sampling, then order the
sample so that units in the same stratum are
listed together (i.e., contiguously). If samples
weredrawn us ng Poisson sampling, order the
sample units randomly.

Let S denote the final respondent sample
used to compute t, and let w, denote the
sampling weight for element i in S. The
elementsin S may be the same as the sample
units in F or they may be a subsample of
those units. Theelementsin S may also have
a different nature than the original sample
unitsin F; for example, they may befarmsas
opposed to areasegmentsor fieldsasopposed
to farms. In al such cases, however, each
element in S must be contained within an
original sample unitin Fin aclearly defined
way. Let e bethe original sampling weight
of the unit containing i (which may be i
itself); that is, e is the inverse of the unit’'s
first-phase probability of selection.

Let S denote that part of the find sample
originating in first-phase sample units
assigned to group r. The jackknife replicate
Sy is the whole find sample S with S
removed. We similarly define F, asthe set
of first-phase sample unitsnot inr.

Weneed to create 15 sets of replicate weights
{w,,}, one for each r, in the following
manner: w,,, = 0 for all elementsin S; for
other elements, w;,, will be closeto (15/14)w,
but adjusted to satisfy calibration constrants
similar to those satisfied by w; (exactly how
to do this in a number of situations is the
subject matter of the following section).
Observe that aw,,-value has been assigned
to every element in S including those in S,

Now t is an estimate based on the sample S
calculated using the set of weights, {w;}. Let
t, be the same estimate but with the member



of {w;,} replacing{w;}. Thedelete-a-group
jackknife variance estimator fortis

v, = (14/15) ¥ (t,, - t)> )

PARTICULAR CASES (IGNORING
FINITE POPULATION CORRECTION)

Inthissection, we see how the delete-a-group
jackknife can be fruitfully applied in a
number of estimation strategies where fpc
may be ignored; that is, when the first-phase
selection probabilities are all samall (say less
than or equal to 1/5).

One sampling design rot discussed in detail
subsequently is stratified multi-stage
sampling, in which subsampling within each
primary (first-stage) sampling unit is
conducted independently of subsampling in
other primary sampling units. Whenthefirst
stage of sampling has ignorably small
selection probabilities, the conventional
variance estimator for a stratified multi-stage
sample looks exactly like that for a stratified
single-stage cluster sample with estimated
totals for primary sampling units used in
place of actual values. As aresult, when a
delete-a-group jackknifeisappropriatefor an
estimator based on a stratified single-stage
sample, it is appropriate for an estimator
based on a stratified multi-stage sample.

Stratified Simple Random Sampling

Suppose we have a single-phase stratified
simple random sample without any
nonresponse (handling nonresponse will be
discussed later). The origina and fina
sampling weight for auniti in stratumhise
=w, =N, /n,, where N, is the population size
of stratum h and n, isits sample size.

Let us now consider the r’th set of replicate
weights. Forauniti inS;, and stratum h,

&n = (15/14)N, /n,. By contrast, the
appropriatefinal r'th replicate weight for unit
| recognizes the calibration equations
inherent in the direct expansion estimator

(i.e, Ny = Y smnWig foral h). Itisw,, =
Np /Ny = (NN )&, Wheren, ., is the number
of sample units in both S, and h. Observe
that g, = w,, only whenn, isdivisibleby 15.

Stratified Systematic Probability Sampling

Suppose we have a single-phase, stratified
systematic probability sample. The origina
and final sampling weight for a unit i in
stratum hise =w, = M, /(n,m), wherem, is
the measure of size of unit i in stratum h, M,
isthe sum of them, acrossdl unitsin stratum
h, and n, isthe stratum sample size.

Analogous to the simple random sampling
case, the appropriate find r'th replicate
weight for element i recognizes the
calibration equationsinherent in the Horvitz-
Thompson expansion estimator (i.e., M, =
Yicsoon Wiy foral h). Itisw,, =
(Nw/ny)e, wheren, , isthe number of sample
unitsin both S, and h.

Stratified simple random sampling can be
viewed as equivalent to a specia case of
systematic probability sampling from
randomly-order lists (one in which m, is
constant within strata). Appendix A provides
some theoretical justification for using the
delete-a-group jackknife as described above
with a stratified, single-phase systematic
probability sampling design under certan
conditions. One of those conditions is that
the systematic samples be drawn from
randomly-ordered lists. Variance estimation
can be problematic when systematic samples
are drawn from purposefully-ordered lists.

Purposefully-ordered lists can reduce the
variance in estimators based on systematic



samples. Unfortunately, the reduction in
variance due to a well-designed ordering
usually can not be measured in an effective
manner.

Restricted Regression

(A Form of Calibration)

There are many versions of restricted
regression. Below is a description of a
method similar to what was used in the 1996
VCUS and 1997 Minnesota pilot QAS. The
version presented here will likely be used in
the future.

Suppose, for exposition purposes, there are
two sampling phases. Suppose further that
the second phase sampleiscalibrated to arow
vector of totals, n, based on estimates from
thefirst-phase sample or determined fromthe
frame itself.

Letf, betheweight for element j after thefirst
phase of sampling, and let p bethe element’s
selection probability in the second sampling
phase. Intheabsence of non-response (again,
nonresponse will be dealt with later) in the
second sampling phase, ageneral form of the
calibrated weight for j under restricted
regression is
w; =f;/p +
(M* — Yies [fi/p]x)
(Lies [fi/plxx;)* [f;/p]x;’ 2

for i € S, and a predetermined vaue
otherwise (chosen so that w; is not too smdl
or too far from f, /p), where S is the second-
phase sample, S* asubset containing a most
al the dlements of S, x, is arow vector of
covariates whose sum across all elementsin
the population is either n or has been
previously estimated to ben —that is, n =

Y fix;, where F denotes the elements in the
first-phasesample; finally, n* =n—Y s s WX,

Let f,, be the r'th jackknife replicate weight
for unit j after the first sasmpling phase. The
r’th jackknife replicate weight for element |
isOwhen jeS; otherwisg, itis

Wig) = Wi[fi /] +
(n(r) - ZieS(r) W, [fi(r) /fi]lxi) (3)
(Yiesoy Wil X %) W [ /R ]

where n,, = n when n has been determined
from frame; n, = Y. fi,x; when n has been
estimated from the first-phase sample.

Equation (3) is not the standard way to
construct jackknife replicate weights. The
expression w,[f,, /f,] has been used in place
of the more common f,,, /p,, with which it is
nearly equal (because w, = f,/p,). Equation
(3)’'s strength is that it forces the replicate
weights (for elements not in group r) to be
fairly close to the associated calibrated
weights. This appears to reduce the upward
bias that unexpected differences between the
two can cause. It should be noted that any
such upward bias is small; in fact, it is
asymptotically ignorable. Welive, however,
in afinite world.

Restricted-regression as described above can
be done at any phase of sampling. At thet’th
phase, f. in equation (2) becomes the weight
for element i at the t-1'th phase and p, the
element’ sconditional selection probability at
the t’th phase. For a single-phase restricted-
regression estimator, we can set dl p. =1 in
equation (2).

When the phaseof sampling calibratedinthis
manner contains more than a single stratum,
the jackknife can have an upward bias (see
Appendix B). Inaddition, for asingle-phase
Poisson sample, x;,A = 1 must hold for some A
(see the section on Poisson sampling and
Appendix D).



Ratio-Adjusted Weights

(Another Form of Calibration)

Consider, again, a two-phase sample with f,
and p, as above. A very common form of
calibration occurswhen avector of covariates
for element i, x;, isdefined in such away that
only one component of the vector isnon-zero
for each i. That isto say, the elements are
categorized into G mutually exclusive
calibration (or ratio-adjustment) groups, and
X;; >0 only when element i is in group g;
otherwise, x;, = 0.

Under that structure, a ratio-adjusted weight
for an dement jingroup gis

w; =g ( Yies[fi /pi]xig)_l[fj Ipl, (4)

and n = (my, .., mg). Similarly, the
corresponding replicate weight is O for
jeS,, and

Wi = Ny ( EieS(r)fi(r)/pi]xig)_l[fj(r)/pj] (5)
otherwise, where ng, = (N3, - Nggr)-

If the second-phase sample is stratified, and
more than one of these strata are contained
within acalibration group, then the jackknife
can have an upward bias (see Appendix B).
When the second- phasesampl eisunstratified
or the second-phase strata and ratio-
adjustment groups coincide, the delete-a
group jackknife is nearly unbiased. In the
1996 ARMS and 1996 VCUS, second-(and
later-)phase sampling was unstratified.

Extensions of these results to estimation
strategies with t > 2 phases are straight-
forward; the f; in equation (4) and f,, in
equation (5) becomethe weight and replicate
weight at thet-1'th phase. For asingle-phase
sample, we can set all the p, equal to 1in both
eguations (4) and (5).

The establishment of the appropriateness of
thedelete-a-group jackknifefor ratio-adjusted
estimators paralels that of restricted-
regression estimators, which is outlined in
Appendix B.

NASS Applications of Ratio-Adjusted
Weighting

Oneway to handle nonresponseisto treat the
set of responding elements (at any phase of
the design) as a stratified simple random
subsample of the selected sample. Thiswas
essentidly what wasdoneinthefirst-phase of
the 1996 VCUS. All the origina sample
elements (respondents and nonrespondents)
were assigned to jackknife replicates, and
nonresponse was treated as a second phase of
sampling. The “second-phase” strata and
calibration groups coincided withthe original
stratum definitions, and x;, was set equal to 1
when i wasin group g (0, otherwise). Since
f, was equal for al i in the same stratum, and
p. was likewise identical for each respondent
i in the stratum, w;, in equation (4) collapsed
to the population size in the stratum
containingi divided by therespondent sample
size in that stratum. Equation (5) collapsed
similarly.

In the 1996 ARMS, a stratified simple
random screening sample of farms was
subsampl ed sequentially for several mutually
exclusivesurvey modules(seeKott and Fetter
1997). Farms were sdlected for the Phase ||
Soybean PPR in Nebraska, for example, using
an additiond five phases of sampling (to be
selected for this module, a respondent farm
from the screening sampled had to avoid
being subsampl ed for one of thefour modules
precedingit). Each of these phasesemployed
unstratified systematic probability sampling
fromapurposefully-ordered list (thetheory in
Appendix B is assumes arandomly-ordered
list; if anything, purposeful ordering should



reduce mean squared errors and contribute an
upward biasto the delete-a-group jackknife).
Finally, a field was randomly selected from
each sampled soybean farm.

The separate-ratio estimator in equation (4)
was used twice in Phase || Soybean PPR
estimates. It was used to ratio adjust the
wel ghtsfor the screening-samplerespondents
to the frame total-val ue-of-saleswithin every
screening stratum (notice that
response/nonresponseon the screening survey
is treated here implicitly as another phase of
sampling). In addition, the soybean fied
sample was divided into three size groups.
Here, n, was the totd soybean acres in
calibration (size) group g as estimated from
the screening sample with the weights
described above, and p, wasthe product of the
six (conditional) probabilities: the
probabilities that the farm containing field i
was not selected for the four modules
preceding soybeans, the probability that this
farmwas sel ected for the production practices
module, and the probability that field i was
subsampled from the farm.

Wetreated thefieldsfromwhichwecollected
Phase |l PPR information as if they were a
stratified simple random subsample of the
selected fields, where the three calibration
groups served asstrata. Thishad no practical
effect on the calculation of the p. (observe
that if all the p, in a group are multiplied by
the same factor, the computed weights in
equations (4) and (5) are unchanged).

Composite Estimators

Consider a set of C distinct samples, each of
which can be used to estimate a common
target value. Let S denote the combined
sample, and w.© denote the weight for
element i in original samplec. Ifiisnotin
sample ¢, set w® = 0. A composite

estimator t uses the set of weights {w;},
whereeachw, =Y A w@and ¥ A, = 1.

To estimate the variance of t, we can create
15 sets of replicate weightsfor every w.© and
denoteeach by {w; (B(C)} . Wethen estimatethe
ty using W, = ¥ AW, and compute v,
using equation (1).

Compositeestimation was used, for example,
to combine the Phase |11 Beef and Corn-for-
Grain CRR follow-on samples in the 1996
ARMS with the Phase |1l CRR stand-alone
sample. First the two enterprise CRR
samples were composited and then this
combined sample was composited with the
other CRR sample (see Kott and Fetter 1997).

Sampl es being combined need not correspond
to identical target populations. For example,
the population of list farms with corn for
grain in 1996 is not the same as the
population of list farms with ten weaned
calves in 1996 (the Beef CRR population).
When combining CRR samples, we also
combine target populaions; in this case, to
the set of all list farms with either grain corn
or ten weaned caves in 1996. Only those
sample farms having both corn for grain and
a least 10 weaned caves are assigned
compositeweightsas described above. Other
farmsinthe combined sampleretaintheir pre-
composite weights.

Appendix C shows why the delete-a-group
jackknife worksfor the composite estimators
used in the ARMS in which the components
were separate modules based on the same
screening sampling. Composite estimation
was aso used in the ARMS to combine
independently drawn samples like the Phase
Il Soybean PPR sample and the National
Resource Inventory sample. Here, like a
conventional jackknife, when the delete-a-



group jackknife is appropriate for each
Independent component, it isal so appropriate
for any linear combination of the components.

SINGLE-PHASE POISSON SAMPLING
AND FINITE POPULATION
CORRECTION

In this section, we restrict our attention — at
first — to a single-phase Poisson sample of
elements. Let n; be the selection probability
of element j. We assume there is no
nonresponse.

The versions of the delete-a-group jackknife
developed in this section will contain finite
population corrections. The versions are
different for an estimator of a total and the
estimator of aratio. Thisisareflection of the
fact that a simple formula like equation (1)
does NOT work for all smooth
transformations of calibrated expansion
estimators when finite population correction
is an issue (note: a“smooth” transformation
has first, second, and third derivatives, most
statistics of interest are smooth
transformationsof expansion estimations, the
major exception being percentiles).

A Calibrated Estimator for a Total
Suppose we have a calibrated estimator for a
total, t = ) sw,y;, where

w; = Um; +
(* = Lies [Um]x) (6)
(Yies [Uni]xilxi)-l [1/751]"1'

for | € S, and a predetermined vaue
otherwise (chosensothat w, > 1 and, perhaps,
not too far from 1/x;), Sisthe sample, S a
subset containing almost al the elements of
S, x; isarow vector of covariates whose sum
acrossall elementsin the populaionisn, and

n* =n— Yes WX,. There must aso be a
vector A suchthat x,A = { (1— =) for al j (that
isto say, either acomponent of x; or alinear
combination of components must equal

(1 - m)). Since we are dealing with a
single-phase sample, (6) is ssimply equation
(2) with 1lm, replacing f, /p, (i.e, f, in
equation (2) is 1, whilep, ism,).

To estimate the variance of t, we use equation
(1) but replace t with t¥ = ¥ swMy;, and t,,
with t,,") =Y sw,“y;, where

wj‘W =wi (1- Uwy), 7)
and

Wi(r)(V) - Wj(V){ 1+ (ZsWi(Vgi - Z—?(r) Wi(V)Xi)
Ty Wi 7x,"%;) X } (8)

when j € S, and O otherwise. Appendix D
outlines why this works.

Observethat w ~ w,! (1 - =), so that

w," = w; when the selection probability for
element | is ignorably smal. When dl
element sel ection probabilitiesarevery small,
thereislittle difference between thisdelete-a-
group jackknife for a total estimator with
finite population correction, v, and the
standard delete-a-group jackknife, v,
Moreover, the rather odd assumption that
there exists a A such that xA = (1 - m)
becomes close to the more standard
assumption that either a component of x; or a
linear combination of components is a
congtant (i.e., x;,A = 1for someA).

Infact, if we wereto ignorefinite population
correction (which we can do for most
surveys, but not VCUS), we could estimate
the variance of t with equation (1), replacing
equation (8) with



Wi = W1+ (UsWix; — ¥ 5y WixX;)
(X sy Wixi'x; _1le} (8)

whenj e S, and 0 otherwise aslong as x;A =
1 for some A. Thisis what we did for the
1997 Minnesota pilot QAS (see Bailey and
Kott 1977).

An Estimator for a Ratio

Suppose t, is an estimator for aratio of the
form, t, = Y5 wy, /Ys Wz , where w; is
calibrated as above. One can estimate the
variance of t with

Vitper) = (Zst(v)Zj /ZSWJ'Z])Z
(14/15)Y" (e, - t)7, 9)

where t.") = ¥ swy; 1y sw,“'z;, and tg," =
YW,y / Y.sW,,"z. This assumes x;2 =
{(1 - m) for some A. Even without this
assumption holding, in fact, even without
calibration, v, will likely be areasonable

variance estimator; as we shall see.

Alternatively, we could estimate thevariance
of t; ignoring finite population correction
with equation (1). We need not assume that
x;A = 1 for some A. In fact, the w, need not
even be calibrated in this case (t0 see why,
observethat multiplying all the weightsin t,
by a fixed constant so that ' s w; equals the
population size has no effect on the
estimator; consequently, al ratio estimators
are effectively calibrated on x; = 1).

Some Explanations and Extensions
Consider asingle-phase element sample that
is not necessarily Poisson. Suppose wewish
to estimate the variance of t =) sw)y;, where
the w, satisfy equation (6). Let u =y, —
x(Yy x'x)™"Y, X'y, where U denotes the
population. The variance of t s
approximately

V=Y ul(l - m)im +
Yo ul(my — mem)/ (). (10)

Under Poisson sampling the joint selection
probability of k and i, ,, is equal to the
product r,7;, and so V collapsesto

Y, U1 — m)/m,. Thiscan, in principle, be
estimated by Y u (1 — m)/m’ , which is
approximately equal to Y Jw, u, ! (1— 1/w,)]?,
whichiswhat v, estimates (see Appendix
D).

A similar argument can be madefor the ratio
estimator, t; = Y Wy, /Y. sW,z, except that now
V becomes approximately

V' = (TswWz) [y (uH) (1 - m)/m +
ZU(kti) uF u* (my — mem)/(mm)],
where

u* =u" —x, (Lpx'x)" Y x'U’", and
U’ =Y— QuYi/lYuz) z-

Under Poisson sampling, V' collapses to
CsW,z) Y, (uX)*(1—n)lim]. If wetriedto
compute a delete-a-group jackknife with
equation (1) replacing t by t.*’ and t,, by
tre "> Wewould get areasonabl e estimator for
s Wj(V)Zj)_Z[ZU (u*)*(1 - m)/m] rather than
V', hence the factor (Y sw,"'z /Y sw;z)? onthe
right hand side of equation (9).

Thisfactor isunnecessary if finite population
correctionisignored. Infact, sinceY u*=0
(smplifying the proof in Appendix D), the
weights need not be calibrated for the delete-
a-group jackknife variance estimator for t; to
be nearly unbiased.

Calibrated estimatorsof total swere computed
inthe 1997 Minnesota pilot QAS. Sampling
was not exactly Poisson due to the need to
combine some samples and subsampl e others
(seeBailey and Kott 1997). Nevertheless,itis



not unreasonabl e to assume that

Y uteiy Yl (g — m )/ (mm;) in the right hand
side of equation (10) isroughly zero and then
— ignoring finite population correction— use
v, to estimate variances.

It is of interest to note that for systematic
probability sampling from an purposefully-
ordered list, m,; will often be zero wheni and
k arelisted sequentially inthe ordering. 1f u,
and u; in equation (10) tend to havethe same
sign when i and k arelisted together, then it
islikely that Y., Ul (g — mm)/ (m ;) will
be negative— reducing thevarianceof t. The
delete-a-groupjackknife doesnot capturethis
variance-reducing phenomenon, however.
That is why it was claimed earlier that the
use of systematic unequal probability
sampling from an ordered list will, if
anything, bias the delete-a-group jackknife
upward. This presupposes that elements (or
units) listed together in the ordering are in
some sense similar.

Remember the delete-a-group jackknife for
an estimated total with finite population
correction, Vy,.r, IS only appropriate when
there is no nonresponse. Still, computing
Vyipery @Nd V; Using imputed val uesin place of
real ones can provide a means of evaluating
the impact of high selection probabilities on
variance. There is one additional caveat.
When one does not require there exists a A
suchthat x;A = {(1— =) for all j, then vy,
may be biased downward. Thispossibilityis
likely to beremotein practice (see Appendix
D).

We could have used Vi, to estimate
variances from the 1996 VCUS. In theory,
this might not be appropriate since the
calibration in that survey was to firg-phase
totalsrather than to control totals. Moreover,
we did not require that there be a vector A
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suchthat x;,A = { (1—m;) foralj. Itisunlikely
that either failing would cause much biasin
Vymer: THiSis because calibration does little
to reduce the variance of t in the VCUS.
Moreover, it is likely that Y. wYu* (or
Ys WU when v, is used with an un-
calibrated VCUS estimator) is close to zero
even when thereisno A such that x;A = { (1 —
m). Appendix D explains why Y <w,“u*
must be near zero.

SUMMARY OF NASS USES (SO FAR)

The delete-a-group jackknife was used to
estimate variances for the 1996 ARMS, 1996
VCUS, and 1997 Minnesotapilot QAS. It has
also been used in some of NASS's foreign
consulting work, but that is beyond the scope
of this report.

Bailey and Kott (1997) describes the sample
design used in the Minnesota pilot QAS.
Since NASS imputes for nonresponse on the
QAS, there was essentidly a single-phase
samplein Minnesota. Equation (2), withall p
set equal to 1 and f; computed as described in
Bailey and Kott, was used to generate most of
the calibration weights. The vector x; had 20
components including a constant term.

Whenaw, calculaed withequation (2) would
have been less than 1, farm | was removed
from S+, and w; was set equal to 1. Sampled
farms were randomly assigned to jackknife
groups, and replicate weights were cal cul ated
using the more conventional

W, =[15/14]f +
(M@ — Liesn [15/24]fix;)
(Lieso [15/14]fx'x;) " [15/14]f x;'
= fi + (n(r) - Eies(r)fixi) e
(ZieS(r)fiXi X;) ijj



instead of equation (3). This was because
the advantages of using the latter equation
was not clear at the time.

The 1996 VCUS had a two-phase design.
Thefirst phase was stratified simple random
sampling. Sampled units were randomly
assigned to jackknife groups within first-
phasestrata. Nonresponseto thefirst design
phase of the VCUS was treated as an
additional phase of stratified simple random
sampling where the strata were the same as
the first-phase.

The second design phase of the VCUS used
systematic unequal probability sampling.
Nonresponse to this phase was treated as an
additional phase of simple random sample.
Equation (2) was used to compute calibrated
weights. The “first-phase’ weight, f;, was
actually the population size of thefirst-phase
stratum containing i divided by the number
of first-phase usablesin the sratum; n wasa
vector of estimated planted-acretotalsfor in-
scope vegetables based on the first-phase
sample adjusted for nonresponse; p, was the
second-phase probability of selection
multiplied by the number of second-phase
usables and divided by the number of
second-phase sample farms. Replicate
weights were computed using

Wiy =W + (Tl(r) - Zies(r)wixi) o .
(EieS(r)WiXi X;) WX,

which turned out to have dightly better
empirical properties (less negative values;
valuescloser tow,) in this context than those
produced by equation (3) for some reason .

The many uses of ratio-adjustment and
composite estimation in list-based estimates
from the 1996 ARMS are discussed
thoroughly in Kott and Fetter (1997). The

11

original screening sample was randomly
allocated into jackknife groups on a stratum-
by-stratum basis. The text provides some
detailsfor acoupleof examples. SeeKott and
Fetter for more.

The delete-a-group jackknife was also used
for the non-overlap (area) portion of the 1996
ARMS for economic statistics. The area
design had effectively three-phases. 1) a
stratified ssimple random sample of area
segments, 2) a restratified simple random
subsample of farms; and 3) astratified (using
the first-phase strata) simple random
subsampl eof respondents. Usingthedelete-a-
group jackknifeinthiscontext treatsthethree-
phase sample as if it were a three-stage
sample. As a result, the variance estimator
can be biased upward (see Kott 1990). The
problem hereisthat the second-phase sample
isnot calibrated in any way.

There is an additional source of upward bias
in the delete-a-group jackknife applied to the
1996 ARM S non-overlap sample. Somearea
substrata have very small samples sizes (less
than five areas segments). Collapsing
substratainto land-use strata hel ped some, but
on occasion even land-use strata had small
sample sizes. Appendix A shows why this
can cause a bias in the delete-a-group
jackknife.

A DIGRESSION ON MODEL-BASED
INFERENCE

The delete-a-group jackknife can be applied
to estimate variances in a reasonable fashion
under a varigy of complex estimaion
strategies. Both the text so far and the
appendices rely exdusively on the principles
of randomization-based inference. Asaresult
of this, we were forced to assume two number
of questionable or erroneous assumptions:



1) systematic probability sampling is
conducted by NASSfrom randomly-ordered
lists, and

2) fam in the same ratio-adjustment
(calibration) group are equally likely to
respond to a survey.

These assumptionswould not be necessary if
we replace them by the model assumptions
behind cdibration; namely;

Yi=xp te,

where the €, have zero mean, bounded
variances, and are uncorrelated — at least
across first-phase sampling units.

For exampl e, consider thedifferencebetween
the calibration estimator,
t=Y wy, anditstarget, T=Y,y;:

=T =Y WY —YuYi = XsWie— Ly &
=YWl = e,

wherel,=1whenie S, and |, = 0 otherwise.
Now

(t—T)= Yo Wl — 1)% +
Yuii-k (Wil; = D)Wl — Dese,.

If ¢ and ¢, are uncorrelated, the model
variance of t as an estimator for T is

EL(t—T)7T = Yo W, —2wl; + 1)E(e?)
=Y s(W”—W)E(e?)
- [XsW E(e 2) - E(eiz)]

no matter what the sampling design.
Moreover, if E(e,?) = x,y for somey, thenthe
model variance of t as an estimator for T
collapsesfurther to Y ¢ (w;” — w;)E(e;?), which
Is what the delete-a-group jackknife for a
total with finite population correction
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estimates. (Note: evenif E(e;?) doesnot equal
x,y for some y, we know that ¥ w, E(e,?) =
Y (1/m)E(e;?) = ¥, E(e,%) for randomization-
based reasons).

Similar arguments can bemadefor calibration
in the second (or later) phase of sampling.
Kott (1997) contains a treatment of thistopic
for the conventional delete-one-primary-
sampling-unitjackknife. Theinterested reader
may also want to look at the expression for
Var,, in Appendix B and replace each u, with
€. Similar sub-stitutions can profitably be
made in Appendices C and D aswell.

In the real world, models fail, which is the
reason NA SSinsists on using randomization-
consistent estimators where possible. The
impact of model failureistypically greater on
bias than on variance. Thisis because model
failure is usually small and subtle but can
nonetheless lead to a bias in a non-
randomi zation-consistent estimator that isnot
asymptotically ignorable. Once the potential
for asymptotic bias is removed by using a
randomization-consistent estimator, a model
can often be safely invoked to estimate
variance.

The situation can be reversed when ratio-
adjustment is used (in part) to handle
nonresponse as in the 1996 ARMS and
VCUS. The mode assumption that the
expected value for an unknown y-vaue is a
fixed multiple of a known x-value within a
ratio-adjustment group is usually more
reasonable than the quasi-randomization
assumption that all farms in the group are
equally likely to be survey respondents. In
this situation, the assumption of the linear
model offers some protection aganst a
systematic bias in an estimated value due to
the failure of the quasi-randomization
assumption.



CONCLUDING REMARKS

The delete-a-group jackknife is remarkably
simpleto compute once appropriate replicate
weights are determined. We have seen how
this variance estimation method can be
meaningfully applied toanumber of complex
estimation strategies. Theseincludethe 1996
ARMS (with multiple phases and ratio
adjustments), the 1997 Minnesotapilot QAS
(restricted regression and Poisson sampling),
and the 1996 VCUS (two phases, calibration
of the second phase to the first, and finite
population correction problems).

Like any variance edimator, the delete-a
group jackknife isnot necessarily nearly

unbiased when any phase of the sampleis
drawn systematically from a purposefully-
ordered list (asisthe case in latter phases of

the ARMS). If anything, however, the
delete-
a-group jackknife will wusually be

conservative (biased upward) in this
circumstance. Inaddition, thedelete-a-group
jackknife requires the following to be nearly
unbiased:

1) results from each phase of a survey —
including the first phase — be calibrated for
some key items of interest on results from
either an earlier same phase or the frame (for
example, the estimated number of farm
names on the list frame is often forced to
equal theactual number of farm namesonthe
list frame); and
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2) the sample size of at every follow-on
phase of anon-nested (not multi-stage) multi-
phase design be large (contain at least five
sample units per stratum at that phase).

These are not difficult requirements, and
NASS need keep them in mind when
developing estimatorsin the future.

A disadvantage of the delete-a-group
jackknife over potential competitorsisthat it
requiresthefirst-phase stratum samplesizesto
be large (at least five sample units per
stratum).  Otherwise, the delete-a-group
jackknife can be overly conservative. As a
result, when this jackknife is applied to
estimators from the NASS area frame — as it
was with the non-overlap component of the
1996 Phase Ill CRR, it has an upward bias.
NASS needs to assess how big aproblem this
constitutesin practice.

JULY 2001 UPDATE

NASS made the Minnesota QAS pilot
operational in all states in 2000. A dslightly
different form of restricted regression isused.
Variances are estimated ignoring finite
population correction. For more details, see
Kott and Bailey (2000).
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APPENDIX A: Justifying the Delete-a-Group Jackknife
Under a Single-Phase, Stratified Sampling Design

Suppose we have a probability sample design with H strata and n, sampled units within each
stratum h. Let us assume that the sample was selected without replacement but the selection
probabilities are all so small, and the joint selection probabilities are such, that using the with-
replacement variance estimator is appropriate (this rules out systematic sampling from a

purposefully-ordered lists). In particular, let us assume that the estimator itself can be written in
the form:

H n,
t=Y ¥ t,.
h=1j=1

N,
Let g, = t, — Yt /N, Therandomization varianceof tisVar(t) =Y "Var(} t,.), wheret,, =Yt
Now Var(t,,) can be estimated in a (nearly) unbiased fashion by

n,
var(t,,) = (/[n, —1]) ¥ Oi”
=1

(“nearly” because we are ignoring finite population correction).

In order to estimate Var(t) with a delete-a-group jackknife as suggested in the text, we first order
the strata in some fashion and then order the units within each stratum randomly. Thesampleis
partitioned into R (i.e, 15) systematic samples using the resulting ordered list. Let S denote one

such systematic sample, S, the set of n,, unitsin both S, and stratum h, and S, the set of n,, units
instratum hand not inr.

The jackknife replicate estimator t, is

H
th= L (/M) Tt
h=1 1€Sy

H
ty—t=% [(nh/nh(r))lz ty — bl
h=1 1€Sy

Treating each §, ) as asimple random subsample of the sample in stratum h, we have

Now

H
EZ[(t(r) —1)7 = Y, Vary([n, /nh(r)] Z thj)
1€Sy
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H n,
= EI (n2 nh(r))[l - (nh(r)/ 1Y thzl (n,— 1)
N,
= a (ny/[n, = DNy /ney) X th2

= Z (nhr/nh(r)) Var(th+)1
where E, denotes expectation with respect to the subsampling.

Observethat for stratawheren, <R, n, /n,, is either zero because there are no unitsin both r and
horn,/n,,is1/(n,— 1) becausethereisoneunitin bothrand h. Sincethe latter situation occurs
in exactly n, replicates, ¥ *n, /n,, = n,/(n,— 1).

For stratawheren, > R, n,./n,, = O(UR) and Y *n,, /n,,, ~ 1+ O(L/R). (Technical note: z= O(I/R)
meanslim,_ R|z|isaconstant). Infact, whenn,/Risaninteger, n, /n,, exactly equals /(R- 1),
andy*n, /n,, = RIR-1].

Since Var(t) can itself be estimated in an approximately unbiased fashion by var(t) =

Y (ny/[n, —11) ¥, a,” itisnot difficult to seethat the delete-a-group jackknife variance estimator,
v,=([R—1]/R) Y7 (t,, — t)* isapproximately unbiased for var(t) and thus for Var(t) when all strata
aresuchthatn, > Randisbiased upward otherwise. Moreover, the rd ative upward biasisbounded
by ([R- 1]/R)min {Y/(n,— 1)}.
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APPENDIX B: Justifying the Delete-a-Group Jackknife
for a Restricted-Regression Estimator Under a Two-Phase Sample
(Including When the “Second” Phase is a String of Phases)

Consider the estimator, t = Y’ cw,y,, where w;, have the same definition asin equation (2), and y; is
avalue of interest for dement i. For ease of exposition, we will let f, be the inverse of the first-
phase selection probability of element i, which we assumeto belargeforall i. Itisasimple matter
to useinduction to cover the situation wheref; isitself theresult of severd phasesand calibrations.

We also assume that neither phase sample is Poisson. Poisson sampling in the first phase is
discussed in Appendix D. Poisson sampling in alaer phaseisidentical to an additiond szage of
sampling because Poisson sampling is independent from one selection to the next.

Let B=(Y,x/'x)"Y,x'y; where U isthe set of all elementsin the population, and u, =y, — x,B.
Equation (2) allowsusto rewritet ast =nB + ) sw,u,, and the variance of t asVar(t) = Var(nB) +
Var(}Yswu, ) + 2Cov(nB, Y sw,u). Now n has no variance when it comes from the frame, and
Var(t) collapsesto Var(} swu,) .

Let O and o define asymptotic orders (z= O(m) meanslim,, _ |z//m isaconstant; z= o(m) means
lim,, . |zJ/m =0). We assumethat equation (2) holdsfor dmost all dementsinthe sample(i.e., it
fails at most o,(m) times, wheremisthesizeof S). Asaresult, Y swu, = ¥ (f;/p)u; under mild
conditions, we assume to hold (thisis because, treating each (f,/p) as O(1), (n* — Y.< [fi/p]Ix)
(Yoo [fi/p]x'x) Ve [f;/p]x,'u, = Op(+ M)O(L/mM)Op(1 m) isignorably small compared tot = Oy(m);
note that the equaity Y, x;'; = 0 has arole in making this contention viable). Thus, Var(ysw,u)
is approximately the variance of adouble-expansion estimator, Y (f./p,)u,. Assuming the second-
phase samples within each second-phase stratum are large, resultsin Kott (1990, p. 103) show the
single-phase variance estimator with estimated primary sampling unit values put in place of actual
values will over-estimate the variance of adouble expansion estimator unlessthe sum of thef,u; in
the second-phase strata before subsampling are equal to zero (note tha since both m, and n,,in
equation (B) of Kott are large, only g, > matters).

Kott assumed stratified simple random sampling in both phases, but extensions to stratified
systematic probability sampling from randomly-ordered lists are straight-forward. For the first-
phase sample all the f, must be large (as in the smple random sampling case), so that the with-
replacement expression for variance is appropriate. For the second-phase sample, the selection
probabilities and population must be such that the approximation p,, = (m, — 1)p.p,/m, holds (see
Hartley and Rao 1962), where p,, is the second-phase joint sdection probability of two elements,
i and k, from second-phase stratum d, and m, is the number of sampled elementsin that stratum.
In most NASS applications, the second-phase of selectionisunstratified, whichisequivalent to d
being all the elementsin the first-phase sample.

The second-phase variance of Y cw;u; originating from second-phase stratum d can be expressed by
(we are assuming m, islarge)
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Var, = Y (fu)* (1 —p)/p + ¥ (fu)(fu) (P — PRI/ (PP
= ¥ (fu)’(1—p)/p — ¥ (fu)(Fu)pp/m,
= ¥ (fu)’ (1 - [(my— D/mdp)/p, — (X fiu)?/m,
= ¥ (fu)’(-p)p — (& fu)/m,

where the summations are over all el ementsin second-phase stratum d before the second-phase of
sampling takes place. This isanalogous to equation (3) in Kott.

Notethat Var,, < ¥ (f,u)’(1— p)/p, where equality holds only when Y’ f,u, = 0. Thisturns out to
be the reason (not directly proven here) why the delete-a-group jackknife over-estimates the
variance of t when the sum of the f,u, within all second-phase strata are not approximately zero.
Observe that given any column vector A of the same dimension asx;’, Y - A'x,'f.u, =Y, A'x'u =
YoAXTY —x(Yux'x) Y x'y] =0. SinceY - A'x,'f.u ~0for any A, whenthereexistsa, for every
second-phase stratum d such that x4, = A';x," equals 1 when i isin d and O otherwise, then the sum
of the f,u; in any second-phase strata before subsampling is approximately (asymptotically) zero.

Applying the weights defined by equation (3) tot, we get t,) = n,B + ¥.q, [fn ffilWu, =

Yso [fiy /B]u.  The second part of the first s approximation makes use of the facts that the
components of (n,, — Y. [fi /filwix) are Ox(m/R), while the diagonal components of

Yieso [fie /filwix;"x; are Ox(m) under mild conditions.

Whenn =1, isaframevalue, t, —t= Y, [f,/plY — Xs[f;/ply. Itisstraight-forward to show
that the del ete-a-group jackknife estimates Var(t) = Var(} sw,u) = Var(} s[f;/p]u) fairly well with
the possibility of being upwardly biased when the sum of thef,u, before subsampling in oneor more
of the second-phase strata is not equal to zero.

Whenn =Y fx, thennB =Y . fx,B, and t can berewrittenast =Y - fy, + X swu — Y :fu) =
Yefyi + Oslfi/plu — X fiu) = Yefily; + {[li/p] — 1}u), wherel; = 1 wheni isin S and zero
otherwise. Inasimilar fashion, t,, = Y. f, (v, + {[l;/p] — 1}u). Itisstraight-forward to show that
thedel ete-a-groupjackknife estimatesthe conventiond multi-stage variance estimator ignoring fpc
at thefirst stage, whichinturn estimates Var(t) fairly well but hasthe possibility of being upwardly
biased when the sum of thef,u, before subsampling in one or more of the second-phase stratais not
equal to zero (see Kott and Stukel [1997] for some missing details).

Extension of the above result to a sample design where the “second-phase” sample is itself the
result of a string of phases, all within the same second-phase strata, is a simple matter. We need
only assume that p,* ~ ap*p* where p* (p,*) denotes the appropriate product of conditional
(joint) selection probabilities, and « = 1 — O(1/m,). Appendix C has more on the sequence-of-
sampling-phases methodology used in the ARMS design.
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APPENDIX C: Justifying the Delete-a-Group Jackknife
for Certain Composite Estimators in the ARMS

We restrict attention in this appendix to the unusual composite estimators used with the ARMS
surveys.

To show that the del ete-a-group jackknife works for acomposite estimator like the Phase 11 Corn-
for-Grain/Beef CRR described in the text, one needsto show that it works when estimating atotal
for:

1) the intersection of the two original target populations (list farmswith grain corn and at least 10
weaned calves),

2) each of the two “rump” populations that contain elements in one population but not the other,
and,

3) the union of the two rumps and the intersection.

The delete-a-group jackknife works for estimates of arump total becauseit worksfor domains (by
defining item values within one target population as zero for farms outside the domain), and it
worksfor estimated totasin the union — assuming it works for estimated totalsin the intersection
— because it works for functions of estimators ( like the sum of the totalsin the two rumps and the
intersection). We discuss intersections below.

Let uscall thetwo sampleswe arecompositing A and B. In principle, we can estimate an item total
in the intersection of the target population using either sample. Lett° =Y . w.y, be the estimated
total calculated using sample C (= A or B), and let t = At* + (1-1)t® be the composite total. Note
they, is defined to be zero for farms outside the intersection.

The ARMS samples are drawn sequentially to avoid overlap using an unstratified variant of
systematic unequal probability sampling at every phase after theinitial screening phase. Let ;' be
the probability of selecting farm i for samplet giventhat it is availablefor sampling after sample
t-1isdrawn. Let t=1 denote the first sample drawn after the screening sample. Findly, letp'=
(1-n" " (1-n"Yn' Notetha =°=0whenfarmi isnot in the target population for sample s.
Without loss of generality, we will assume sample A was selected before B, and that A, B, and
their intersection are of size O(m).

Using arguments similar to those in the previous appendix, we can see that
t°~ Yefy + (Cclfi/pTuc - Yefiu©),
whereu® =y, — (¥ v /Y x.5)x., the summations being over the farmsin the popul ation that arein

the same calibration group asi when computing t°, and x, © isthe x-value of farm k when computing
t¢. Observethat the first-phase sampleappliestoboth A and B sincethereis one ARM S screening
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samplefor all purposes. By contrast x and u-values aswell as calibration group membershipsmay
differ across samplesfor the samei. This happenswhen the 1996 Phasell Corn-for-Grain PPCR
iscomposited with the Phasell Corn PPR; x* iscorn-for-grain acresfor farmi, whilex® isgeneral
corn acres.

We can now see that

Var(t) = Var,(Ycfy) + E{Var,( LA [fi/p"u®) +Var,( Yg[f /p°1u®) +
2Cov,( YA [fi/p"u?, Y [fi /pPTuP)} .

Now

Covy( YA [fi/pAIu, Ye [fi/pPIuP) = Yicra) LkeF@) U EUSIEAE (R ] - 1},

where F(C) denotes that part of the first-phase sample in the target population for sample C, and
pPAE = e e A (L= 1 MY (- 1 2w, when ., isthe probability of selecting neither
farmi nor k for samplet providing both are available after samplet-1, and =,.” isthe probability
of selecting farm i but not k for sample A given that both are available after A-1. We will assume
that the designissuch that given k#i, pA® = (1 + «)p"p>, where o, = O(U/m) (if .7, °m° =
1for al s< A, then the assumption isequivalent to . = m,.* Prob(i chosen for Ak not chosen
for A) = . n (1 + ). SinceY e fiu® =~ 0and p*® =0, summing the left hand size of the last
expression for Cov, over i yieldsaterm of order 1/m. Summing then over k yieldsaterm of order
1. Since Var,(t*) is O(m), the covariance term is asymptotically ignorable.

It isnow not hard to show using arguments devel oped here and in the previous appendicesthat the
delete-a-group jackknife is unbiased for t under conditions we assume to hold.
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APPENDIX D: Justifying the Delete-a-Group Jackknife
with Finite Population Correction for a Single-Phase Poisson Sample

Suppose we have a calibrated estimator for atotal, t =} swy;, where the w; satisfy equation (6):
W, = 1/7Tj +(* = Lies [Um]x)(Lics [Vm]x'x)™ [1/ch]le (6)

forj e S*, and apredetermined value otherwise. In addition, thereis avector A such that
x4 = 1 (1— =) for allj.

Let B=(Y,x'x)" Y, X'y, where U isthe set of all elementsin the population, and u =y, — x;B.
Now t =) swy; = Y sW,(x;B + U) =n + Y sw,u,. Consequently, Var(t) = Var(yswu) =
Var( Y su /m;) under conditions we assume to hold (see Appendix B).

If the sampleis Poisson, we have Var(t) = Y, ujz(l — m;)/m;, which, in principle, can be estimated
inanearly unbiased fashion by var(t) = ¥ su*(1—n)/n” = ¥ s W(1— Lw)u?= ¥ (w,")’u? where
w " = w1 (1 - 1/w,) (see equation (7)).

Using the definition of WJ(,)(V) in equation (8), W%)have t"” :ZSV(\\I})(F)(V)yi =YW, xB + Z%)V\?r‘v)uj.
Consequently, t,,") — t“'=Y ¢ w,“u —Yw,"u. Now Yswu/in= Y, (1- Lw) " u/in=
Yo (@ —m)"u in=Y,Ax'y/in=0,since X' =xA =1 (1-m) for some 4, while ', x;'u, = 0.

Similarly, ¥sw,“u/in = 0.

The the n,, members of S, can be viewed as a simple random subsample of the n members of S.
Since n/n, = 1 +O(UR), t," —t¥ = (n/n)¥ ¢, W,y Using arguments similar to ones made
in Appendix A, we have Ej[(t,,*) — t)7] = (W/n,)(1 — n, M) Ts (W)u? — (s w,'u)?n]. So,
El(t," —t“)7 = (ng)(L—ny,/n) Ys (W)U = (n/n,) ¥s (w)u? wheren isthesizeof S.
From hereiit is easy to see that Vyy,.r, is nearly unbiased for Y s (w*)?u? which isturn is nearly
unbiased for Var(t).

Observethat when Y, (1— m,)"?u, = 0, thejackknifeis biased, although the bias depends on the size

of then,. Inpractice, thismay be of littleimportance becauseif wefelt that ¥, (1 — m,)?u, /1 n had
an absolute value far from zero, wewould include 1 (1 — ;) as a component of x;.
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